CONSERVATION ENHANCEMENT ACTIVITY

E590130Z

Improving nutrient uptake efficiency and reducing risks to air quality – emissions of greenhouse gases (GHGs)

Conservation Practice 590: NUTRIENT Management

APPLICABLE LAND USE: Crop (annual & mixed); Crop (perennial)

RESOURCE CONCERN ADDRESSED: Air Quality Impacts

ENHANCEMENT LIFE SPAN: 1 year

Enhancement Description

Nutrient management encompasses managing the amount, source, placement, and timing of the application of plant nutrients and soil amendments. Nutrients are currently being applied on the farm based on the 4R nutrient stewardship principles. Enhanced nutrient use efficiency strategies or technologies are utilized to improve nutrient use efficiency and reduce risks to air quality by reducing emissions of greenhouse gases (GHGs).

Criteria

• Documentation of producer’s record of nutrient management meeting all Conservation Practice Standard Nutrient Management (CPS 590) general criteria and additional criteria to minimize agricultural nonpoint source pollution of surface and groundwater.

• For Nitrogen, Phosphorus, and Potassium (N-P-K), rates of application are to be agronomic application rate (based on soil test and yield goal).

• Minimize soil surface disturbance during fertilizer placement.

• Utilize two or more nitrogen use efficiency strategies or technologies to reduce nitrogen loss risk and improve nutrient use efficiency. Select two or more of the strategies and technologies below:
Use Enhanced Efficiency Fertilizer (EEF) products with 1 or more nutrient applications.

- Nitrogen EEF products recommended by state Land Grant University (LGU) and concurred with by NRCS on all treatment acres to supply at least 50% of the pre-emergent and early post emergent LGU recommended nitrogen requirements for the crop(s) grown.

Use in-season soil nitrate sampling.

- Use pre-sidedress soil nitrate test (PSNT) to determine the need and/or amount of additional nitrogen to be applied during sidedress/topdress N application. Conduct a PSNT on a selected crop (e.g. corn) to test if additional N fertilizer is needed.

Use in-season plant tissue sampling and analysis as a complement to soil testing.

- Follow local LGU and/or laboratory guidelines for interpretations of the results and appropriate adjustments in the application of N and other nutrients. *End of season stalk nitrate testing is not applicable if the enhancement is only contracted for one year, as results must be used to evaluate and adjust nutrient management in the following year, as needed.*

Split nitrogen applications.

- Apply no more than 50% of total crop nitrogen needs within 30 days prior to planting (or in the case of hay or pasture after green up of dormant grasses). Apply the remaining nitrogen after crop emergence (or green up).

- Post emergent nitrogen may be reduced based on crop scouting, in-season soil sampling/analysis, or plant tissue sampling/analysis.

Time nitrogen application timing to match nitrogen uptake timing.

- Apply nitrogen no more than 30 days prior to planting date of annual crops.

Nutrient application placement below soil surface.
Fertilizer is injected or incorporated at time of application.

- Use of nitrification inhibitors to delay the nitrification process, by eliminating the bacteria *Nitrosomonas* in the area where ammonium is to be present.
 - Materials must be defined by the Association of American Plant Food Control Officials (AAPFCO) and be accepted for use by the State fertilizer control official, or similar authority, with responsibility for verification of product guarantees, ingredients (by AAPFCO definition) and label claims.
 - Application timing, method, N source, soil texture, and tillage regime are all factors that should be evaluated to determine where nitrification inhibitors should be used. Before buying an inhibitor make sure scientific evidence backs up all claims. Producers and/or consultants should be wary of any product that does not have solid scientific data demonstrating that the inhibitor activity matches the advertised benefit.

- Use of urease inhibitors to temporarily reduce the activity of the urease enzyme and slow the rate at which urea is hydrolyzed.
 - Materials must be defined by the Association of American Plant Food Control Officials (AAPFCO) and be accepted for use by the State fertilizer control official, or similar authority, with responsibility for verification of product guarantees, ingredients (by AAPFCO definition) and label claims.
 - Application timing, method, N source, soil texture, and tillage regime are all factors that should be evaluated to determine where urease inhibitors should be used. Before buying an inhibitor make sure scientific evidence backs up all claims. Producers and/or consultants should be wary of any product that does not have solid scientific data demonstrating that the inhibitor activity matches the advertised benefit.
Documentation and Implementation Requirements

Participant will:

☐ Prior to implementation, provide documentation for review by NRCS showing a record of implementing nutrient management meeting all NRCS Conservation Practice Standard Nutrient Management (CPS 590) general criteria and additional criteria to minimize agricultural nonpoint source pollution of surface and groundwater.

☐ Prior to implementation, develop and document a planned nutrient budget, yield goal, and applications (pounds/acre active ingredient, nutrients must include at a minimum N-P-K).

☐ Prior to implementation, select two or more of the nutrient use efficiency strategies or technologies. Selections:___

☐ During implementation, keep records to document actual nutrient applications (pounds/acre active ingredient, nutrients must include at a minimum N-P-K).

☐ During implementation, minimize soil surface disturbance during fertilizer placement.

☐ During implementation, notify NRCS of any planned changes to verify the planned system meets the enhancement criteria.

☐ During implementation, additional record keeping requirements for specific strategy or technology:
 ☐ In-season soil nitrate sampling. Records and documentation must include results (including reference strips) and adjustments in nutrient management based on results.
 ☐ In-season plant tissue sampling and analysis. Records and documentation must include type of test used (stalk, leaf, chlorophyll, infrared, or other plant tissue), results (including reference strips), and adjustments in nutrient management based on results.
 ☐ Nutrient application placement below soil surface. Records and documentation must include method of injection or incorporation and depth.

☐ After implementation, make documentation and records available for review by NRCS to verify implementation of the enhancement.
NRCS will:

☐ As needed, provide technical assistance to meet the criteria of the enhancement.

☐ Prior to implementation, provide and explain NRCS Conservation Practice Standard Nutrient Management (CPS 590) as it relates to implementing this enhancement.

☐ Prior to implementation, review documentation to verify a record of implementing nutrient management meeting all NRCS Conservation Practice Standard Nutrient Management (CPS 590) general criteria and additional criteria to minimize agricultural nonpoint source pollution of surface and groundwater.

☐ Prior to implementation, verify the development of a planned nutrient budget, yield goal, and planned nutrient applications.

☐ Prior to implementation, verify the selection of two or more nutrient use efficiency strategies or technologies.

☐ During implementation, evaluate any planned changes to verify the planned system meets the enhancement criteria.

☐ After implementation, review documentation and records to verify implementation of the enhancement.

NRCS Documentation Review:

I have reviewed all required participant documentation and have determined the participant has implemented the enhancement and met all criteria and requirements.

Participant Name ______________________________ Contract Number _______________

Total Amount Applied _____________________ Fiscal Year Completed ____________

____________________________________ ____________________________

NRCS Technical Adequacy Signature Date
IOWA SUPPLEMENT TO
CONSERVATION ENHANCEMENT ACTIVITY

E590130Z

Improving nutrient uptake efficiency and reducing risks to air quality – emissions of greenhouse gases (GHGs)

Additional Criteria for Iowa

- For documentation complete the Iowa Nutrient Management (590) Conservation Practice Standard Job Sheet or provide equivalent documentation from existing records.

- Use the Iowa Nutrient Management (590) conservation practice standard’s General Criteria Applicable for All Purposes and Additional Criteria to Minimize Agricultural Nonpoint Source Pollution of Surface and Groundwater.

- Additional criteria to “Utilize two or more nitrogen use efficiency strategies or technologies.”
 - Use Enhanced Efficiency Fertilizer (EEF) products with 1 or more nutrient applications. Only use products that have been adequately tested under agronomic conditions and their efficacy has been concurred with by Iowa State University, e.g.
 - Nitrification inhibitor products which are agronomically appropriate containing nitrapyrin or Dicyandiamide (DCD). Use nitrification inhibitors with preplant nitrogen application on sandy (excessively drained) soils prone to leaching or with fall nitrogen application on poorly drained soils subject to denitrification. (Source: Agricultural Nitrogen Management for Water Quality Management in the Midwest, 2006).
 - Urease inhibitor products containing N-(n-butyl) thiophosphoric triamide (NBPT), or a polymer coated urea. Use urease inhibitors to reduce volatilization of surface applied urea fertilizers in high residue or high pH soils, and when a substantial rainfall or irrigation event is unlikely for several days after application. (Source: Agricultural...

- Polymer coated urea (ESN was the product tested) has shown some promise with corn.

- **Use In-season soil nitrate test**
 - Use Iowa State University’s late Spring soil nitrate test as the in-season soil nitrate test as described in ISU publication CROP 3140: Use of the Late-Spring Soil Nitrate Test in Iowa Corn Production.

- **Use In-season plant tissue tests**
 - Use Iowa State University’s publication PM 2026: Sensing Nitrogen Stress in Corn for in-season leaf testing and nitrogen analysis.

- **Use split nitrogen applications**
 - Use Iowa State University’s late Spring soil nitrate test as the in-season soil nitrate test as described in ISU publication CROP 3140: Use of the Late-Spring Soil Nitrate Test in Iowa Corn Production or
 - Use Iowa State University’s publication PM 2026: Sensing Nitrogen Stress in Corn for in-season leaf testing and nitrogen analysis.

- **Nitrification Inhibitors:**
 - See Enhanced Efficiency Fertilizers, above.

- **Urease inhibitors**
 - See Enhanced Efficiency Fertilizers, above.

Additional Documentation Requirements for Iowa

- Complete the Iowa Nutrient Management (590) Conservation Practice Standard Job Sheet or provide equivalent documentation from existing records.