Wetland Peat Accumulation and Carbon Crediting for Coastal Socio-Ecological System Resilience

Brian A. Needelman
University of Maryland
Integrating social and ecological research to increase marsh and community resilience

Brian A. Needelman, Dorothea Lundberg, Katherine Jo Johnson, Michael Paolisso, Lisa Wainger, Andrew Baldwin, Paul Leisnham, Diane Leason and Robert Tjaden Jr.

Funded by the NERRS Science Collaborative Program
Situating the Project
The Socio-Ecological System of the Deal Island Peninsula

Chesapeake Bay Watershed
Why this Project: The Challenges

- Future health of marshes and communities
- Marsh degradation and loss
- Sea-level rise, flooding, storms, ditching, socio-economic change
- Weak relationships among stakeholders
- Lack of scientific knowledge of socio-ecological system function
Human Impacts on Marshes
An ever-growing team of stakeholders...

- Skipjack Heritage Inc.
- Somerset County Board of Commissioners
- Somerset County Planning and Zoning
- Somerset Soil Conservation District
Integrated socio-ecological research + Collaborative Learning = INCREASED RESILIENCE OF SOCIO-ECOLOGICAL SYSTEM (MARSHES AND COMMUNITIES)
Integrated collaborative research projects: Heritage, Flooding, and Marsh Restoration
Restoration of ditch-drained marshes
Soils and the Socio-ecological System

- Accretion and sustainability
- Water quality improvement
- Carbon sequestration and greenhouse gases
- Wildlife habitat
- Hunting and fishing
- Erosion protection
- Storm surge protection
Soils and the Socio-ecological System

• Accretion and sustainability
• Water quality improvement
• Carbon sequestration and greenhouse gases
• Wildlife habitat
• Hunting and fishing
• Erosion protection
• Storm surge protection
Soil survey

• 3000 hectares Transquaking and Mispillion
 – Euic, mesic Typic Sulfihemists
 – Loamy, mixed, euic, mesic Terric Sulfihemists
 – >41 cm peat

• 2000 hectares Tangier and Sunken
 – Fine-silty, mixed, mesic Typic Endoaqualfs
 – <20 cm peat
Ditch-drained marsh restoration study sites

Site Pair 1

Site Pair 2
Peat Depth at Deal Island Sites
Summer 2012

- Unditched 2
- Ditched 2
- Unditched 1
- Ditched 1

Peat Depth (cm)
International Tidal Wetland and Seagrass Accounting Methodologies for the Verified Carbon Standard

Brian Needelman, University of Maryland
Igino Emmer, Silvestrum
Steve Emmett-Mattox, Restore America’s Estuaries
Steve Crooks, Environmental Science Associates
Pat Megonigal, SERC
Doug Myers, Chesapeake Bay Foundation
Matthew Oreskay and Karen McGlathery, Univ. of VA

Joint Aquatic Sciences Meeting
May 18-23, 2014
Portland, OR
Verified Carbon Standard

The Gold Standard

Verified Carbon Standard and Blue Carbon

- Wetland requirements: approved 2013
- Coastal wetland creation: approved 2014
 - Focused on Louisiana
- Tidal wetland restoration: undergoing validation
- Tidal wetland conservation: in prep
Land use scope of methodology

- Tidal Marshes
- Mangroves
- Seagrasses
- Tidal swamps
Greenhouse gases in methodology

• GHG’s: carbon dioxide, methane, and nitrous oxide
• Baseline and with-project scenarios
 – Including stop-loss
Scientific and policy challenges

• Methane emission estimation in fresh and brackish systems
• Allochthonous carbon
• Carbon fate following submergence
• Additionality: Principle that GHG reductions must be a result of the C funding
Thank you

Brian Needelman
bneed@umd.edu
301-405-8227

Funding
Maryland Department of Natural Resources Power Plant Research Program
Restore America's Estuaries
Goals and principles used in developing methodology

- Scientifically credible
- Feasible to implement
- Flexible
- Insufficient science -> onus upon project proponents
Marshes and storm surge

• Weak rule of thumb: 4 km of marsh dampens 0.3 m of storm surge
Observations

• Soils do matter in this system
 – Accretion rates

• Long-term perspective
 – Mapping of future marsh loss and transgression zones
 – Management and restoration options to increase elevation/accretion

• Transdisciplinary Research
More information:

Dive into our project website for more information!

www.DealIslandMarshandCommunityProject.org

General Project:
- Brian Needelman at bneed@umd.edu
- Michael Paolisso at mpaoliss@umd.edu

Ecology:
- Brian Needelman at bneed@umd.edu

Anthropology:
- Michael Paolisso at mpaoliss@umd.edu

Economics:
- Lisa Wainger at wainger@umces.edu
Rubbed Fiber at Deal Island Sites
Summer 2012
(0-20 cm)

- Unditched 2
- Ditched 2
- Unditched 1
- Ditched 1

Rubbed Fiber (%)

(*)
Greenhouse gas accounting options

- Published data
- Default values
- Field-collected data
- Proxies
- Validated models
Greenhouse gas accounting: Soil carbon

• Default value:
 – 1.4 Mg C per ha per year for non-seagrass (Chmura et al. 2003)
Greenhouse gas accounting: Allochthonous Carbon

- “Allochthonous” carbon = carbon photosynthesized outside of the project area and deposited into it.
- Should only count if it would have been returned to atmosphere without the project.
Greenhouse gas accounting: Allochthonous Carbon

- Estimated from soil carbon concentrations
- Assumptions:
 - All mineral material deposited as sediment with 1.5% refractory C (Andrews et al. 2011)
 - 100% of this C retained in system
Alloch C % (of total accumulated C)

\[y = 179.62x^{-1.195} \]
Methane

• Default values only for salinity > 18 ppt
Salinity versus methane flux

Poffenbarger, Needelman & Megonigal, Wetlands, 2011
Climate Benefits of Sequestration Offset by Methane

Offset by Methane

Poffenbarger, Needelman & Megonigal, Wetlands, 2011

Log methane flux (g m$^{-2}$ yr$^{-1}$)

Salinity

Δ Radiative Forcing from Soil Carbon Sequestration

Poffenbarger, Needelman & Megonigal, Wetlands, 2011
Number of sampling plots

![Graph showing the relationship between sample size per strata and coefficient of variation (CV). The graph indicates a positive correlation, with sample size increasing as the coefficient of variation increases.]

Sample size per strata

Coefficient of Variation (CV)
Greenhouse gas accounting: Methane

- Default values
 - Only for salinity > 18 ppt
- Field-collected data
- Published data
- Proxies
- Validated models