Part 614.4 Conservation Corridor Planning at the Landscape Level
Managing For Wildlife Habitat

NRCS Watershed Science Institute - Wildlife Habitat Management Institute

(190-vi-NBH, August 1999)
Acknowledgements

Natural Resources Conservation Service (NRCS)

Writing this manual required the collaborative input of many individuals. NRCS design team members played a major role; their thoughts, suggestions, and constructive criticism contributed to the manual’s organization, context, and its focus on practical applications. Team members included:

Mike Anderson - NRCS National Biologist, NHQ, Washington, D.C.
Craig Englehard - NRCS, Biologist, KS
Wendell Gilbert - NRCS, Wildlife Biologist, Wildlife Habitat Management Institute, CO
Hank Henry - NRCS, Terrestrial Ecologist, Watershed Science Institute, NC
Barry Isaacs - NRCS, State Biologist, PA
Michele Schoeneberger - USFS, Research Project National Leader, Agroforestry Center, NE

Bob Sennett - NRCS, State Biologist, UT
Bianca Streif - NRCS, State Biologist, OR
Lynn Townsend - NRCS, Forest Ecologist, Watershed Science Institute, WA
Ray Toor - NRCS, Biologist, KY
Ron Tuttle - NRCS, National Landscape Architect, Washington, D.C.
Gary Valentine - NRCS, State Biologist, TX
Bill White - Missouri Dept. of Conservation / NRCS Area Biologist, MO

NRCS and outside reviewers made numerous insightful recommendations. Their insistence on accuracy and concise communication of the concepts that underpin the art and science of conservation corridor planning were most helpful. NRCS reviewers included: Carolyn Adams - NRCS, Director, Watershed Science Institute, WA; Dr. Larry Bulter - Grazing Lands Institute, TX; Mary Cressel - NRCS, Public Affairs Officer, NHQ, Washington, D.C.; Pete Heard - Director, Wildlife Habitat Management Institute, MS; Dr. Thomas Makowski - Social Science Institute, OR; Robyn Myers - NRCS, Landscape Ecologist, CA; Max Schnepf - NRCS, National Coordinator, Conservation Buffers Initiative, NE; and Gary Wells - USFS National Agroforestry Center, NE.

Outside reviewers included: Barth Crouch - Pheasants Forever; Ray Evans - International Association of Fish and Wildlife Agencies; Dr. Barrie Gilbert - Wildlife Biologist, Utah State University (USU); Dr. George Hess - North Carolina State University; Dr. David Howell - Quail Unlimited Inc.; Dr. Richard Knight - Colorado State University; Dr. James MacMahon - Dean, College of Science, USU; Lee Nellis - Planning Consultant, ID; Dr. Jack Payne - Ducks Unlimited Inc.; George Peoples - National Wild Turkey Federation; Dr. Karen Polani - Landscape Ecologist, The Nature Conservancy; Dr. Terry Riley - Wildlife Management Institute, SD; Steven Schmauch - Bat Conservation International Inc.; and Dr. David Smith - USFS - NRCS.

Don Anderson - USFWS, Biologist, LA; John Anderson - Hedgerow Farms, CA; Dave De Geus - Coordinator, Iowa River Corridor Project, IA; Gary Finstad - NRCS Community Planner, CO; Dave Hulse - Professor of Landscape Architecture, University of Oregon; Franc Lucas - NRCS, District Conservationist, PA; and Gary Valentine - NRCS, State Biologist, TX provided the materials for the case studies. The research, planning studies, and implemented projects illustrated in the case studies validate the concept of area-wide planning for wildlife and the habitat value of systems of corridors. We also wish to acknowledge our indebtedness to the researchers and authors whose work we referenced extensively. They are listed in the bibliography and references cited.

Numerous individuals provided photographs. They are credited in the manual. We are particularly indebted to Dennis Anderson - Pheasants Forever; Lynn Betts - NRCS, IA; Jerry Fuhriman - USU; Kate Grandison - UT; Frank Lucas - NRCS, PA; Ron Nichols - NRCS; Kristen Roi - UT; Jill Schroeder - USU; Michael Timmons - USU; Bill White - NRCS, Area Biologist; and Bruce Wight - NRCS, Agroforester, National Agroforestry Center, NE. Dick Roi and Gary Bentrup artfully integrated the graphic materials and text in laying out the manual.
The landscape of rural America is changing. Wildlife habitats are being converted to agricultural uses, corridors (linear patches that differ from their surroundings) are removed to expand fields and urban development spreads across farms, forests, deserts, and prairies. The result is a fragmented landscape that exports significant quantities of sediment and chemical pollutants into waterways, lakes, and wetlands. This still evolving landscape has fewer, smaller, less connected patches of habitat and frequently degraded water quality that stresses aquatic ecosystems. Its capacity to sustain a diversity of plant, animal, and aquatic species is declining at an accelerating rate. The loss of biodiversity has become a national concern.

Land managers have turned to corridors to perform a more central role in the conservation of soil, water, fish and wildlife in fragmented rural landscapes. The Natural Resources Conservation Service (NRCS) is committed to assisting in the revitalization and linkage of the nation's landscape corridors to construct sustainable landscapes.

The NRCS is the United States Department of Agriculture (USDA) agency charged with providing assistance to private landowners who voluntarily adopt and implement conservation practices. It offers a variety of programs, recommends conservation practices, and in many cases, assists landowners in the design and implementation of corridors and other conservation measures.

The types of conservation corridor practices in the NRCS toolbox include:

- Riparian/stream buffers
- Wetland, lake, and reservoir buffers
- Field borders
- Field buffers
- Filter strips
- Grassed waterways
- Vegetated ditches
- Grassed terraces and diversions
- Windbreak/shelterbelts
- Hedgerows

When these practices and other NRCS programs are combined, they can create significant systems of conservation corridors and land management activities to improve habitat and enhance landscape functions. Many of the ecological functions of corridors operate at scales larger than an individual property or corridor. The prospect for optimizing the functions of conservation corridors in combination with other practices is highest when they are planned at a watershed or landscape scale.
The NRCS, Soil and Water Conservation Districts and other USDA Service Center staff are also key partners. They direct farmers, ranchers, landowners, and communities to sources of technical and financial assistance for corridor development. Sources include USDA, state, and local programs offered through local conservation districts. The NRCS will develop general planning and design guidelines and regional-specific details. Field personnel will provide on-site technical assistance to farmers and ranchers. They will also advise landowners on how to optimize corridor benefits by combining them with other NRCS conservation initiatives.

Partnerships and cooperation among all those committed to land, water, and wildlife conservation are vital. But the real key to success will be the farmers, ranchers, and suburban landowners willing to participate in conservation corridor projects.

This handbook has been prepared for NRCS field office personnel and their partners in wildlife conservation. It is intended to help facilitate conservation corridor planning for wildlife at the watershed scale (the terms “area-wide” and “watershed” are used interchangeably when referring to planning scales larger than a site, farm, or ranch). It is primarily directed at corridors in agriculturally dominated landscape. The handbook is a source book for ideas, examples, and wildlife corridor planning principles. It is also a technical guide for wildlife corridor planning at both watershed and conservation plan scales. However, the real value of this handbook will be realized only when area-wide wildlife corridor plans are implemented and wildlife habitat is an integral part of every conservation practice.
Conservation Corridor Planning at the Landscape Level: Managing For Wildlife Habitat

Principal Investigator
Professor Craig W. Johnson
Department of Landscape Architecture and Environmental Planning
Utah State University

Research Assistants
Gary Bentrup
Dick Rol

USGS Biological Resources Division
Utah Cooperative Fish and Wildlife Research Unit Coordinator
Thomas C. Edwards

Administrative Units
The Environmental Field Service Program
Department of Landscape Architecture and Environmental Planning
Utah State University

Graphic Layout and Design
Dick Rol
Gary Bentrup

Editor
Carla D. Calhoun

Funded by and Coordinated with
USDA Natural Resources Conservation Service
Watershed Science Institute
Hank Henry - Coordinator
and
USDA Natural Resources Conservation Service
Wildlife Habitat Management Institute

August 1999

Cover photo credits: John Anderson, Gary Bentrup, Lynn Betts, Craig Johnson, Dick Rol, and Bill White.
Table Of Contents

Preface

Chapter 1: Introduction

BACKGROUND .. 1-1

 THE PROBLEM ... 1-2
 PLANNING AREA-WIDE SOLUTIONS ... 1-2
 A PLANNING TOOL ... 1-3
 TRUST, COOPERATION, IMPLEMENTATION .. 1-4

CASE STUDY: POSSIBLE FUTURES FOR THE MUDDY CREEK WATERSHED 1-5

Chapter 2: Habitat Fragmentation

INTRODUCTION ... 2-1

HABITAT FRAGMENTATION .. 2-2

 LOSS OF ORIGINAL HABITAT .. 2-3
 REDUCED HABITAT PATCH SIZE ... 2-3
 INCREASED EDGE ... 2-3
 INCREASED ISOLATION .. 2-4
 MODIFIED DISTURBANCE REGIMES .. 2-4
 CUMULATIVE EFFECTS .. 2-4
 CORRIDOR CONNECTIONS .. 2-4

Chapter 3: Corridors - An Overview

INTRODUCTION ... 3-1

 TYPES OF CORRIDORS .. 3-1
 Environmental Corridors. .. 3-2
 Remnant Corridors. ... 3-2
 Introduced Corridors. ... 3-2
 Disturbance Corridors. .. 3-2
 Regenerated Corridors. .. 3-2
 CORRIDOR FUNCTION ... 3-2
 Habitat. ... 3-3
 Conduit .. 3-3
 Filter/Barrier. ... 3-3
 Sink .. 3-3
 Source ... 3-3
 CORRIDOR STRUCTURE ... 3-3
 CHANGE ... 3-4
 EXPANDING PERSPECTIVE .. 3-5
 WHAT IS THE CURRENT STATUS OF CORRIDORS? 3-5

SUMMARY ... 3-8

CASE STUDY: LOUISIANA BLACK BEAR USE OF CORRIDORS 3-9

Chapter 4: Corridor Benefits

INTRODUCTION ... 4-1

ENVIRONMENTAL BENEFITS .. 4-1

 ENVIRONMENTAL SERVICES ... 4-1
 ENVIRONMENTAL SERVICES: VALUE-ADDED BENEFITS OF CONNECTIVITY .. 4-3
 HABITAT ... 4-3
Chapter 6: Area-Wide Planning Process

INTRODUCTION ... 6-1

PLANNING PROCESS .. 6-2

GETTING STARTED ... 6-2

PREPLANNING: AREA-WIDE/WATERSHED SCALE... 6-2

Preconditions .. 6-2
Identify Stakeholders .. 6-4
Generate Local Support for Watershed Planning ... 6-5
Establishing Trust ... 6-6
Organizing the Planning Effort .. 6-6
Products ... 6-8

SUMMARY ... 6-8

PHASE 1 COLLECTION AND ANALYSIS AT THE WATERSHED SCALE 6-9

STEP 1 IDENTIFY PROBLEMS AND OPPORTUNITIES ... 6-9

Planning Standard ... 6-9
Discussion ... 6-9
Delineate Planning Area ... 6-9
Create a Base Map ... 6-10
Problem and Opportunity Identification .. 6-12
Documentation .. 6-14
Products ... 6-14

STEP 2 DETERMINE OBJECTIVES .. 6-14

Planning Standard ... 6-14
Discussion ... 6-14
Develop a Vision Statement ... 6-14
Determine Objectives ... 6-16
Documentation .. 6-16
Products ... 6-16

STEP 3 INVENTORY RESOURCES ... 6-16

Planning Standard ... 6-16
Discussion ... 6-16
Inventory Responsibilities .. 6-16
Data Collection .. 6-17
Documentation .. 6-17
Products ... 6-20

STEP 4 ANALYZE RESOURCES ... 6-20

Planning Standard ... 6-20
Discussion .. 6-20
Analysis Questions .. 6-20
Documentation ... 6-21
Products ... 6-21

PHASE 2 DECISION SUPPORT AT THE WATERSHED SCALE 6-22

STEP 5 FORMULATE ALTERNATIVES. ... 6-22
Planning Standard .. 6-22
Discussion .. 6-22
First Layer – Function .. 6-22
Second Layer – Existing Habitat Resource Recommendations 6-23
Third Layer – Potential Habitats and New Wildlife Plantings 6-23
Fourth Layer - Synthesis .. 6-27
Planning Habitat Concepts and Principles .. 6-27
Develop Alternatives .. 6-28
Documentation .. 6-28
Products .. 6-28

STEP 6 EVALUATE ALTERNATIVES. ... 6-31
Planning Standard .. 6-31
Discussion .. 6-31
Evaluation Procedure ... 6-31
Documentation .. 6-31
Products .. 6-31
Area-Wide/Watershed Plan Alternative Evaluation Worksheet A 6-32
Area-Wide/Watershed Plan Alternative Comparison Worksheet B 6-33

STEP 7 MAKE DECISION. .. 6-34
Planning Standard .. 6-34
Discussion .. 6-34
Documentation .. 6-34
Products .. 6-34

PHASE 3 APPLICATION AT THE WATERSHED SCALE 6-34

STEP 8 IMPLEMENT PLAN. .. 6-35
Planning Standard .. 6-35
Discussion .. 6-35
Documentation .. 6-36
Products .. 6-36

STEP 9 EVALUATE PLAN. .. 6-36
Planning Standard .. 6-36
Discussion .. 6-36
Evaluation Techniques ... 6-37
Dissemination of Evaluation Data .. 6-37
Adaptive Management ... 6-37
Documentation .. 6-37
Products .. 6-37

CASE STUDY: IOWA RIVER CORRIDOR PROJECT ... 6-39

CASE STUDY: LOWER RIO GRANDE VALLEY WILDLIFE CORRIDOR 6-42

Chapter 7: Conservation Planning Process

INTRODUCTION .. 7-1

PLANNING PROCESS ... 7-1

GETTING STARTED .. 7-1

PREPLANNING: CONSERVATION Plan SCALE .. 7-1
PHASE 1 COLLECTION AND ANALYSIS AT THE CONSERVATION PLAN SCALE

STEP 1 IDENTIFY PROBLEMS AND OPPORTUNITIES.

<table>
<thead>
<tr>
<th>Planning Standard</th>
<th>7-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discussion</td>
<td>7-2</td>
</tr>
<tr>
<td>Documentation</td>
<td>7-3</td>
</tr>
<tr>
<td>Products</td>
<td>7-3</td>
</tr>
</tbody>
</table>

STEP 2 DETERMINE OBJECTIVES.

<table>
<thead>
<tr>
<th>Planning Standard</th>
<th>7-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discussion</td>
<td>7-3</td>
</tr>
<tr>
<td>Documentation</td>
<td>7-4</td>
</tr>
<tr>
<td>Products</td>
<td>7-4</td>
</tr>
</tbody>
</table>

STEP 3 INVENTORY.

<table>
<thead>
<tr>
<th>Planning Standard</th>
<th>7-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discussion</td>
<td>7-4</td>
</tr>
<tr>
<td>Documentation</td>
<td>7-5</td>
</tr>
<tr>
<td>Products</td>
<td>7-8</td>
</tr>
</tbody>
</table>

STEP 4 ANALYZE RESOURCES.

<table>
<thead>
<tr>
<th>Planning Standard</th>
<th>7-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discussion</td>
<td>7-8</td>
</tr>
<tr>
<td>Analysis Questions</td>
<td>7-8</td>
</tr>
<tr>
<td>Documentation</td>
<td>7-10</td>
</tr>
<tr>
<td>Products</td>
<td>7-12</td>
</tr>
</tbody>
</table>

PHASE 2 DECISION SUPPORT AT THE CONSERVATION PLAN SCALE

STEP 5 FORMULATE ALTERNATIVES.

<table>
<thead>
<tr>
<th>Planning Standard</th>
<th>7-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discussion</td>
<td>7-12</td>
</tr>
<tr>
<td>First Layer – Existing Habitat Resources</td>
<td>7-13</td>
</tr>
<tr>
<td>Second Layer – Function</td>
<td>7-14</td>
</tr>
<tr>
<td>Third Layer – Existing Habitat Resource Management</td>
<td>7-14</td>
</tr>
<tr>
<td>Fourth Layer – Potential Habitats and New Wildlife Plantings</td>
<td>7-14</td>
</tr>
<tr>
<td>Fifth Layer - Synthesis</td>
<td>7-17</td>
</tr>
<tr>
<td>Develop Alternatives</td>
<td>7-21</td>
</tr>
<tr>
<td>Product</td>
<td>7-21</td>
</tr>
</tbody>
</table>

STEP 6 EVALUATE ALTERNATIVES.

<table>
<thead>
<tr>
<th>Planning Standard</th>
<th>7-21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discussion</td>
<td>7-21</td>
</tr>
<tr>
<td>Products</td>
<td>7-21</td>
</tr>
<tr>
<td>Conservation Plan Alternative Evaluation Worksheet</td>
<td>7-22</td>
</tr>
</tbody>
</table>

STEP 7 MAKE DECISIONS.

<table>
<thead>
<tr>
<th>Planning Standard</th>
<th>7-23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discussion</td>
<td>7-23</td>
</tr>
<tr>
<td>Products</td>
<td>7-23</td>
</tr>
</tbody>
</table>

PHASE 3 APPLICATION AT THE CONSERVATION PLAN SCALE

STEP 8 IMPLEMENT PLAN.

<table>
<thead>
<tr>
<th>Planning Standard</th>
<th>7-23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discussion</td>
<td>7-23</td>
</tr>
<tr>
<td>Products</td>
<td>7-24</td>
</tr>
</tbody>
</table>

STEP 9 EVALUATE PLAN.

<table>
<thead>
<tr>
<th>Planning Standard</th>
<th>7-24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discussion</td>
<td>7-24</td>
</tr>
<tr>
<td>Adaptive Management</td>
<td>7-25</td>
</tr>
<tr>
<td>Products</td>
<td>7-25</td>
</tr>
</tbody>
</table>

VISUAL SIMULATIONS

CASE STUDY: HEDGEROW FARMS
Chapter 8: Implementation

INTRODUCTION .. 8-1
IMPLEMENTATION PARTNERSHIPS .. 8-2

Appendix A: Corridor Inventory Worksheets

RIPARIAN/STREAM CORRIDOR TYPE .. A-2
REMNANT CORRIDOR TYPE .. A-3
GRASS/FORB DOMINATED CORRIDOR TYPE ... A-4
WINDBREAK, SHELTERBELT, HEDGEROW CORRIDOR TYPE A-5

Appendix B: Wildlife Corridor Checklist

Bibliography and References Cited

Glossary
BACKGROUND

Conservation corridors are linear strips of vegetation that differ from the adjacent surroundings and which function to conserve soil, water, plants, wildlife or fish resources. Natural corridors of woody and herbaceous riparian vegetation occurring along the edges of streams, rivers and lakes, are visually dominant in many landscapes. Windbreaks, field borders, roadsides, contour buffer strips and grassed waterways are introduced (planted) corridors found in agricultural landscapes. Corridors may also be created by disturbance, for example, a cleared powerline right-of-way. Both natural and planted corridors can be an ecological and aesthetic resource if properly managed and can yield significant benefits (value) to the landowner and society.

Corridors preserved or planted for soil and water conservation provide wildlife habitat for a variety of species. Riparian corridors are used by over 70% of all terrestrial wildlife species during some part of their life cycle, including many threatened and endangered (T&E) species. Corridors provide food and nesting, brooding, loafing, and protective cover for game and non-game wildlife. They also afford wildlife relatively safe access to adjacent resources and serve as travel ways for species dispersal and migration in our increasingly fragmented landscape.

Many birds and bats that either nest or roost in corridors are insectivorous, consuming thousands of insects that could damage crops and pester livestock. Others are important game species providing recreational opportunities and generating revenues that supplement rural economies.

Figure 1-1: The conservation corridors planted on this farm include field borders, vegetated terraces, grassed waterways, windbreaks, and forested riparian buffers. They have been carefully linked making this farm a haven for wildlife.
THE PROBLEM

The quality and quantity of our nation's conservation corridors have been on the decline for the last several decades. Natural corridors are frequently squeezed by adjacent land uses or severed by roads, utilities, dams or other types of human development. Narrow and segmented corridors are less effective as travel lanes for wildlife dispersal and other ecological functions. Hundreds of miles of fence rows, windbreaks, and other planted corridors are removed annually to accommodate changing agricultural practices and suburban sprawl. Long neglected shelterbelts and windbreaks planted in the 1930s are dying out; few have been replaced. Many contour buffer strips, grassed waterways, and roadsides are planted in one species of grass. Single-species stands of introduced grass provide few wildlife benefits and are of little value as winter cover. Untimely mowing, heavy grazing, repeated burning, and spraying further reduce their habitat value.

While corridors decline, remnant fragments or patches of relatively large undisturbed habitat are also becoming less common, smaller, and increasingly isolated. In some cases they are no longer capable of supporting viable populations of native plants or wildlife. The resulting threat to plant and wildlife species diversity in all regions of the country has become a national concern. Many ecologists believe that connecting remnant habitat patches with corridors should be one part of a comprehensive plan to address this growing problem.

PLANNING AREA-WIDE SOLUTIONS

The Natural Resources Conservation Service (NRCS) is committed to assisting in the revitalization and linkage of the nation's landscape corridors. The agency is actively promoting the preservation, enhancement, restoration, and reclamation and new plantings of conservation corridors at the watershed scale.

The following reasons are why the NRCS encourages establishment of conservation corridors:

- Corridors are a valuable resource to both the landowner and the public.
- The benefits of conservation corridors for wildlife habitat in particular are optimized when corridor systems are planned and established at a landscape or watershed scale.
- Corridors function most effectively when used in conjunction with other soil and water conservation measures in a conservation plan.
- Both ecological and economic principles must be applied to corridor planning, design, establishment, and management to optimize benefits and reduce negative impacts.

How corridors are arranged and connected within the larger landscape context determine their wildlife value. This principle provides land managers with a tool to effectively manage wildlife species diversity. It is the cumulative effect of corridor arrangement that influences wildlife population dynamics. Designing corridor systems is a task of creating strategic configurations across ownerships and land uses. The objective is to restore targeted ecological functions at watershed scales.

Opportunities exist in every state to plan, design and manage corridors, optimizing their multiple benefits. Thousands of acres of potential high quality habitat exist in roadsides, windbreaks, riparian areas, grassed waterways and other types of corridors.

Implementing a successful system of integrated corridors will require the cooperation of private landowners, local governments, private non-profit conservation organizations, and state and federal agencies working at both landscape and site-specific scales.
The NRCS is the USDA agency charged with providing technical assistance to private landowners who voluntarily wish to initiate an area-wide plan. NRCS conservationists play a key role in both promoting area-wide planning and facilitating the planning process once it is initiated. Landowners, farmers, ranchers, partnering agency personnel, and other proponents all share in the work. The NRCS National Planning Procedures Handbook provides a structure within which these tasks can be completed in an orderly and efficient way.

A Planning Tool
This handbook has been designed for NRCS conservationists and other partners as a complement to the National Planning Procedures Handbook. It is a source of information about conservation corridors and their benefits and a reference for use in the field. This handbook emphasizes planning, designing, and managing corridors to optimize wildlife habitat. In addition, the handbook includes general plant community guidelines to enhance the habitat value of each NRCS corridor-type conservation practice.

Becoming familiar with the material in this handbook will provide the conservationist with:

- A review of the causes and consequences of habitat fragmentation.
- An overview of the types and ecological functions of corridors.
- A summary of the benefits corridors provide landowners, communities, and the environment.
- Watershed scale wildlife corridor planning principles.
- Examples and case studies documenting the importance of planning systems of conservation corridors for wildlife at watershed scales.
- Illustrations and case studies showing how an individual farm, ranch, or community conservation corridor project can be knitted into an area-wide plan.
In addition, this handbook provides the conservationist with tools that facilitate conservation corridor planning at the area-wide, farm, ranch and community scales. As a field reference, the handbook includes:

Strategic Planning
- Strategies for organizing an area-wide planning team, establishing goals, and allocating responsibilities
- Procedures for preparing base maps
- A diagram of the National Planning Procedure process with emphasis on planning for wildlife
- Detailed descriptions of how to include wildlife conservation in each step of the planning process
- An area-wide inventory checklist that emphasizes wildlife habitat information
- A step by step description (with illustrations) of how to prepare plan alternatives
- A discussion of how to integrate individual farm, ranch, or community conservation corridor projects within an area-wide plan
- Lists of sources of watershed resource information

Technical
- Worksheets for evaluating the habitat condition of existing corridors
- Criteria for locating conservation corridors to optimize their habitat function
- Criteria for designing plant community structure for each conservation corridor type to enhance habitat value
- Procedures for evaluating the impact of conservation practices on wildlife populations

Partnerships are at the heart of all conservation initiatives linking land and people. They foster a cooperative environment promoting those factors necessary for success:

- Exchanging information, experience, and expertise
- Sharing responsibilities and tasks
- Involving a cross-section of community residents
- Planning and implementing projects across mixed ownership and jurisdictions
- Leveraging resources
- Building a sense of shared community

Trust, Cooperation, Implementation

Fundamentally, area-wide plans are templates delineating an integrated system of conservation corridors and practices at scales larger than an individual farm or corridor. They are seldom large single projects completed quickly. Rather, they are implemented incrementally one farm, ranch, or community open space at a time. The resulting cumulative effect contributes to the sustainability of the land and wildlife populations. Indeed many area-wide plans originated with an individual landowner or community that volunteered to work with a conservationist to plan, design, and install conservation corridors and employ conservation practices. Neighboring farmers or communities liked the conservation corridor projects they saw, sought NRCS assistance, and over time a system of conservation corridors spread across the watershed.

Building trust with landowners and community groups by working one-on-one is the traditional role of the conservationist and must remain at the very heart of the conservation corridor effort if it is to succeed.

Corridors are only one piece of the conservation puzzle. The other important pieces are the various land management practices applied by farmers, ranchers, and communities to the natural resources on their land. **The long-term value of corridors is highly dependent on the health of the adjacent landscape and large patches of native vegetation.** Landowners and communities participating in land and water conservation programs using sustainable agricultural and other land use practices enhance habitat quality and quantity. The puzzle can be completed through public and private landowner partnerships, passing on to future generations the rich wildlife and scenic heritage our nation has come to cherish.
Case Study: POSSIBLE FUTURES FOR THE MUDDY CREEK WATERSHED

Corridor Planning Principles discussed in Chapter 5 that are exhibited by this case study include:

Natural Connectivity Should Be Maintained or Restored.

Manage the Matrix With Wildlife In Mind.
This case study illustrates a process for planning at a watershed scale and the role that landowners and communities can play in developing alternative plans for land conservation and development.

This report documents a two year case study research endeavor exploring how human population growth and land use change in the Muddy Creek watershed of Benton County, Oregon may influence biodiversity and water quality. The case study illustrates a framework for helping local communities create alternative scenarios for land conservation and development. The project employed previously existing information and relied on the regular participation of local stakeholders to produce a series of mapped possible future scenarios depicting land use in the watershed in the year 2025 (Figure 1). The possible futures were evaluated for their effects on biodiversity and water quality using best available information, ecological and hydrological effect models.

The biodiversity evaluative model measured the change in potential habitat area for each of the 234 breeding species, in each future scenario and the past, by calculating the ratio of future or past habitat area to the present habitat area. The water quality evaluative model, a non-point pollutant source/geographic information system model, simulated a series of five storm events to calculate the mean pollutant load for each of the five possible futures, present and past. The model assessed volume of surface flows and levels of total suspended solids, phosphorus and nitrate, using field data collected from base line flows and two storm event flows monitored in 1996.

Results from the biodiversity model show that all native species have at least some habitat in all future land use scenarios. However, if land use trends in the watershed continue unchanged (Plan Trend Future) or become more highly developed over the next 30 years (Moderate and High Development Futures), there will be an increased risk to the abundance of the 212 existing species, particularly birds, mammals, and amphibians. Of the 220 species native to the watershed throughout its recent history, 26 species have lost more than half of their habitat since 1850. Under the High Development Future, 12 species are estimated to lose more than half of their present habitat in the next 30 years. Only 2 species – the California condor and marbled murrelet – are common to both lists. This acceleration and shifting of risk from one set of species to another suggests that the kinds of habitat changes from past to present are different than those envisioned in the possible futures (Figure 2).

Figure 1: Five mapped possible future scenarios depicting land use in the watershed in the year 2025.
Results from the water quality model show increases in volume of surface water runoff and total suspended solids under the Moderate and High Development Futures in sub-basins undergoing significantly increased residential development or having a high percentage of area in erosive soils on steep slopes (Figure 3). Crops located on steep slopes were the greatest contributors of total suspended solids and total phosphorus in the agricultural lowlands. Land uses on gentle slopes or in natural vegetation were the lowest contributors of total suspended solids and total phosphorus.

In summary, if the residents of the Muddy Creek watershed desire a future presenting no greater risk to biodiversity and water quality than the present pattern of land use, then they should plan toward a future with a land use pattern between the Plan Trend Future and the Moderate Conservation Future for biodiversity protection, and between the Moderate Conservation and the High Conservation Future for water quality protection.

Additional information can be obtained via the Internet at http://ise.uoregon.edu

This work was funded by cooperative agreement CR822930 between the U.S. Environmental Protection Agency and University of Oregon, cooperative research agreement PNW 92-0283 between the U.S. Forest Service and Oregon State University, interagency agreement DW 12935631 between the U.S. Environmental Protection Agency and the U.S. Forest Service, and the U.S. Department of Defense Strategic Environmental Research and Development Program Project #241-EPA.

These graphics are not intended for detailed scrutiny. Detailed information is available at the Internet address noted above.
INTRODUCTION

Fragmentation, the breaking up of large patches of native vegetation into smaller and increasingly isolated patches, is a process as old as civilization (Figure 2-1). It intensified as hunter/gatherer societies settled in permanent locations and began planting crops and herding livestock. Research suggests that the initial impacts on biodiversity were minimal, disturbed areas were small and regenerated when no longer cropped or grazed. But as human populations increased and technology became more sophisticated, the effects of fragmentation spread across the landscape. Archeological evidence suggests that many wildlife species were displaced and local populations eliminated.

Fragmentation continues today, driven by an exploding human population and growing demand to produce more food and fiber from a finite land resource. The contemporary rural landscape is the result of the cumulative impacts of past and present human land use practices including urbanization, agriculture, ranching, and logging.

Fragmentation of a landscape reduces the area of original habitat and increases the total lineal feet of edge, favoring species that inhabit edges at the expense of interior species that require large continuous patches. Ecologists, such as Wilcox and Murphy, believe that habitat fragmentation is the most serious threat to biological diversity and is the primary cause of the present extinction crisis.

"Not only have the fields become vast flat tracts of land exclusively devoted to a single crop, they have become devoid of many traditional features of the rural landscape. In the quest for large uniform farming surfaces, topographical irregularities such as gullies, washes, sloughs, rises, slopes, and knolls have succumbed to land remodeling. At the same time, features once essential to rural life such as woodlots, windbreaks, ponds, fences, country schools, rural churches, outlying farm buildings are systematically being removed or destroyed." (Carlson 1985)
HABITAT FRAGMENTATION

Prior to the age of mechanized agriculture (circa 1890), rural American landscapes were fine grained. Hedgerows often surrounded small fields of diverse crops while wetlands, steep slopes, swales, and rocky areas were left undisturbed (Figure 2-2). Fields of 40, 80 and 160 acres were common. With today’s mechanized agriculture, fragmentation occurs at a much coarser scale resulting in more homogenous landscapes (Figure 2-3). Small fields are combined to form larger tracts of land to accommodate farming with large machinery. Many fields are enlarged at the expense of windbreaks, fence rows and other valuable wildlife habitat. Several areas in the Midwest have lost over 60% of their windbreaks due to the declining health of windbreak trees, expanding field size, and urban sprawl. The resultant loss of habitat diversity in agricultural landscapes has adversely impacted wildlife populations. Wildlife biologists studying bobwhite quail (*Colinus virginianus*) in Nebraska discovered that a county with 5 times more acreage in hedgerows than a neighboring county also had an estimated population of quail almost 4 times greater.

For a species to survive in a landscape or watershed, it must have access to habitat resources sufficient to maintain a viable population. A minimum viable population (MVP) is the smallest number of individuals required to sustain a population for the long-term. A projected MVP is based on estimates of a population size that can counter the negative effects of genetic variation loss, population fluctuations, and environmental changes.

Maintenance of a MVP is often dependent on functioning metapopulations, wildlife populations that are spatially separated but interact through the dispersal of animals.

Metapopulations in small patches can “wink” on or off (experience local extinction) due to local variation in sex ratios, disturbance such as fire, and other local factors. A metapopulation is more likely to persist if immigration and colonization are facilitated by corridors or “stepping stone” patches. Linkage between patches is critical in sustaining healthy metapopulations in highly fragmented landscapes (see the Louisiana Black Bear Case Study, pp. 3-9).

Habitat fragmentation diminishes the landscapes' capacity to sustain healthy populations or metapopulations in four primary ways:

- Loss of original habitat
- Reduced habitat patch size
- Increased edge
- Increased isolation of patches
- Modification of natural disturbance regimes

For a species to survive in a landscape or watershed, it must have access to habitat resources sufficient to maintain a viable population. A minimum viable population (MVP) is the smallest number of individuals required to sustain a population for the long-term. A projected MVP is based on estimates of a population size that can counter the negative effects of genetic variation loss, population fluctuations, and environmental changes.

Maintenance of a MVP is often dependent on functioning metapopulations, wildlife populations that are spatially separated but interact through the dispersal of animals.

Metapopulations in small patches can “wink” on or off (experience local extinction) due to local variation in sex ratios, disturbance such as fire, and other local factors. A metapopulation is more likely to persist if immigration and colonization are facilitated by corridors or “stepping stone” patches. Linkage between patches is critical in sustaining healthy metapopulations in highly fragmented landscapes (see the Louisiana Black Bear Case Study, pp. 3-9).

Habitat fragmentation diminishes the landscapes' capacity to sustain healthy populations or metapopulations in four primary ways:

- Loss of original habitat
- Reduced habitat patch size
- Increased edge
- Increased isolation of patches
- Modification of natural disturbance regimes

For a species to survive in a landscape or watershed, it must have access to habitat resources sufficient to maintain a viable population. A minimum viable population (MVP) is the smallest number of individuals required to sustain a population for the long-term. A projected MVP is based on estimates of a population size that can counter the negative effects of genetic variation loss, population fluctuations, and environmental changes.

Maintenance of a MVP is often dependent on functioning metapopulations, wildlife populations that are spatially separated but interact through the dispersal of animals.

Metapopulations in small patches can “wink” on or off (experience local extinction) due to local variation in sex ratios, disturbance such as fire, and other local factors. A metapopulation is more likely to persist if immigration and colonization are facilitated by corridors or “stepping stone” patches. Linkage between patches is critical in sustaining healthy metapopulations in highly fragmented landscapes (see the Louisiana Black Bear Case Study, pp. 3-9).

Habitat fragmentation diminishes the landscapes' capacity to sustain healthy populations or metapopulations in four primary ways:

- Loss of original habitat
- Reduced habitat patch size
- Increased edge
- Increased isolation of patches
- Modification of natural disturbance regimes

Loss of Original Habitat

Perhaps the most significant adverse impact of fragmentation is simply the loss of original habitat. Research findings suggest loss of habitat has a much greater impact on wildlife populations than the change in spatial arrangement of habitat areas.

Over 90% of the grasslands east of the Mississippi River are gone, approximately 90% of Iowa’s wetlands have been removed and 80% of Indiana’s forests have been eliminated (Figure 2-4). Habitat losses of this magnitude will permanently displace many species and dramatically depress the population levels of others. It forces remaining species into the few remnant patches available, increasing competition, crowding, stress, and the potential for disease outbreaks. The number of currently listed federal and state threatened and endangered species suggests that many populations are at or near MVP levels.

Even in areas where fragmentation is not readily apparent, subtle but equally devastating effects of habitat loss can exist. A grassland invaded by exotic grasses may look natural but be functionally fragmented. For example grasslands infested by cheatgrass (*Bromus tectorum*) look similar to native grass patches, but provide no habitat of value for sensitive species such as the pronghorn (*Antilocapra americana*) and the greater prairie chicken (*Tympanuchus cupido*).

Reduced Habitat Patch Size

Reduction in habitat patch size is a principal consequence of fragmentation. Biologists MacArthur and Wilson suggested that the rate of species extinction in an isolated patch of habitat is inversely related to its size. As remnants of native habitats become smaller, they are less likely to provide food, cover and the other resources necessary to support the native wildlife community. Small patches are also more susceptible to catastrophic disturbance events such as fire or severe weather that can decimate local populations.

Fragmentation also decreases the area of interior habitat (Figure 2-5). Interior habitat is the area far enough from the edge to maintain communities of the original larger habitat. For example, when large tracts of sage/grassland are cleared and seeded into grasses or alfalfa, sage/grassland patch size and interior habitat are reduced. Not surprisingly, populations of an interior-dwelling cold desert species that require large patches of sage brush like the sage grouse (*Centrocercus urophasianus*) are in serious decline.

Increased Edge

Although an increase in edge (the boundary between two plant communities) due to fragmentation may benefit some species, some researchers believe that increasing edge may be detrimental to the protection of native biodiversity. Edges act as barriers causing some predators to travel along them. High predator densities along edges can result in higher mortality for edge dwelling prey species or species moving through narrow corridors. Nest parasitism by brown headed cowbirds (*Molothrus ater*) also appears to be higher in species nesting in edge habitat. Least bell’s vireo (*Vireo bellii pusillus*) is an endangered species that inhabits the edges of riparian corridors in southern California. Parasitism by cowbirds appears to be as significant as the loss of riparian habitat in the decline of the least bell’s vireo on Camp Pendleton, California.
Increased Isolation

Fragmentation leads to increased isolation of patches (Figure 2-6). Wildlife populations in isolated patches can be sustained by immigration of species from surrounding patches. However, as fragmentation continues, distances between patches get longer and dispersal and immigration rates decrease. The diversity of species moving between patches also decreases; small species with limited mobility are particularly distance sensitive. As immigration rates decrease, factors like inbreeding and catastrophic disturbances can cause the number of species in a patch to decline to zero over a long enough period of time.

Biologists studying chaparral bird species extinction rates in remnant patches in southern California found that on average, less than one chaparral bird species survived after 40 years of isolation in canyons less than 125 acres.

Modified Disturbance Regimes

Fragmentation and associated land management activities like fire suppression alter the flow of natural disturbances. For example, fire, a disturbance factor essential to the maintenance of tall grass prairies, has virtually been eliminated in the Midwest. Remnant prairie plant communities separated by miles of row crops and “protected” from fire are being overtaken by less fire tolerant woody species. Wildlife dependent on prairie ecosystems are being displaced.

Cumulative Effects

The cumulative impact of habitat fragmentation results from the combined incremental effects of habitat loss, reduced patch size, increased edge, and patch isolation. The impacts are cumulative across scales and over time affect populations of organisms as well as individuals. These impacts are not related linearly to the extent of original habitat. There are thresholds where local extinction for a species may be imminent even though only a small percentage of original habitat has been lost. Unfortunately, understanding of these thresholds is limited.

Corridor Connections

In many regions of the country agriculture and urbanization are dominant forces in land conversion; most land is in private ownership, habitat patches are small in size and number and they are often isolated. The probability of increasing the size of existing patches or creating new patches in these landscapes is remote. However, one realistic opportunity to begin to rebuild functional ecosystems and conserve biodiversity is to employ natural and introduced corridors that knit the landscape back together (Figure 2-7). An integrated system of conservation corridors will not only benefit wildlife but conserves soil, water, air, and plants as well.
INTRODUCTION

Landscape ecologists Forman and Godron suggest that a landscape is a heterogeneous land area consisting of three fundamental elements: patches, corridors, and a matrix (Figure 3-1). They define each element as follows:

Patch: Generally a plant and animal community that is surrounded by areas with different community structure; however, a patch may be devoid of life.

Corridor: A linear patch that differs from its surroundings.

Matrix: The background within which patches and corridors exist (the matrix defines the flow of energy, matter, and organisms).

Patches, corridors, and the matrix interact in ecologically significant ways. Consequently, this conceptual model is very useful in the study of function, structure, change, and the conservation potential of corridors in the landscape.

TYPES OF CORRIDORS

Corridors can be natural (a tree lined stream channel) or the result of human disturbance to the background matrix (a strip of native prairie left unplowed between two fields). Corridor structure may be very narrow (line) such as a hedgerow, wider than a line (strip) such as a multi-row windbreak, or streamside vegetation (riparian). Corridors may be convex, taller than the surrounding matrix like a shelterbelt between wheat fields; or concave, lower than the surrounding vegetation, such as a grass strip between two woodlots. Line or strip structure may be found in many different kinds of corridors. Five commonly used categories of corridor origin are:

- Environmental corridors
- Remnant corridors
- Introduced corridors
- Disturbance corridors
- Regenerated corridors

In recent years, engineered corridors such as overpasses and underpasses have been designed specifically to accommodate wildlife movement.
Environmental Corridors

Environmental corridors are the result of vegetation response to an environmental resource such as a stream, soil type, or geologic formation. They are typically winding (curvilinear) in configuration with widths that are highly variable. Sinuous strands of riparian vegetation paralleling stream courses are prominent examples in all regions of the country (Figure 3-2). Environmental corridors are frequently the most important habitats in the watershed.

Remnant Corridors

Remnant corridors are the most obvious products of disturbance to the adjacent matrix (Figure 3-3). Strips of vegetation on sites too steep, rocky, or wet to put into production are left as remnants after land is cleared for agriculture or other uses. Some remnants are line corridors left to identify property boundaries. The width and configuration of most remnant corridors vary considerably. Remnant corridors often contain the last assemblages of native flora and fauna in a watershed.

Introduced Corridors

Introduced (planted) corridors date back to circa 5000 BC. More corridors may have been planted between the 14th and 19th centuries in England than at any other time or place in history. Under the Statute of Merton, 1236, landlords were granted the right to enclose portions of woodland and pasture. Over the next 500 years, thousands of miles of hedgerows were planted. Some of these hedgerows persist to this day and are valued as national landscape treasures. In the United States the Shelterbelt Project of the 1930s was the largest conservation project of the Depression Era; over 200 million seedlings were planted into shelterbelts and many were maintained by Civilian Conservation Corps (CCC) work crews (Figure 3-4). In agriculturally dominated landscapes, introduced corridors have become critical habitat for many wildlife species.

Disturbance Corridors

Disturbance corridors are produced by land management activities that disturb vegetation in a line or strip; a mowed roadside or brush-hogged powerline right-of-way are examples (Figure 3-5). Continued disturbance of the strip is often required to maintain vegetation in the desired successional stage. The widths of disturbance corridors vary, but they tend to be more strip-like. Configuration is typically straight line. They may be sufficiently wide to constitute a barrier for some wildlife species, splitting a population into two metapopulations. Disturbance corridors are often important habitats for native species that require early successional habitat.

Regenerated Corridors

Regenerated corridors result when regrowth occurs in a disturbed line or strip (Figure 3-6). Regrowth may be the product of natural succession or revegetation via planting. Regrowth in abandoned roadways, trails, and railroad right-of-ways are examples. Corridor width and configuration are dependent upon the nature of the previous disturbance. Regenerated corridor vegetation is often dominated by aggressive weedy species during the early stages of succession. East of the Mississippi River, regenerated corridors occur as hedgerows along fence lines and roadside ditches. They are less common in the West. In highly fragmented landscapes, regenerated corridors are often important habitats for small mammals and songbirds.

Corridor Function

Corridors perform important ecological functions including:

- Habitat
- Conduit
- Filter/barrier
- Sink
- Source
These five functions operate simultaneously, fluctuate with changes in seasons and weather and change over time. Their interactions are often complex and in many cases are not well understood.

Habitat
A corridor may function as habitat or a component of habitat, particularly for those species with small home ranges and limited mobility, ruffed grouse (*Bonasa umbellus*) for example. For some species, large mammals for instance, a corridor may serve as transitional habitat during seasonal migrations between patches. The habitat function of corridors is discussed in greater detail in Chapter Four.

Conduit
A corridor functions as a conduit when it conveys energy, water, nutrients, genes, seeds, organisms, and other elements. Biologist Michael Soule has identified three general categories of animal need for the conduit function of corridors:

- Periodic migration to breeding or birthing sites; elk migration from wintering habitat to calving grounds, for example.
- Movement between patches within the animals home range to access food, cover, or other resources.
- Some populations must receive immigrants if they are to persist in isolated patches; for example, male cougars migrating from one metapopulation to another to breed.

Filter/Barrier
A corridor functions as a filter or barrier when it intercepts wind, wind blown particles, surface/subsurface water, nutrients, genes, and animals. Corridors may filter out sediments and agricultural chemicals from runoff that originates in the adjacent matrix. They may also act as barriers that reduce wind velocity and decrease erosion. Some artificial corridors like highways and canals are barriers to wildlife movement and may genetically isolate populations.

Sink
A corridor functions as a sink when it receives and retains (at least temporarily) objects and substances that originate in the matrix; soil, water, agricultural chemicals, seeds, and animals for example. Corridors can become sinks for wildlife, when the rate of mortality in the corridor from predation and other causes creates a net loss in the population of either corridor residents or migrant species.

Source
A corridor functions as a source when it releases objects and substances into the adjacent matrix. Corridors may be sources of weeds and “pest” species of wildlife. They may also be sources of predatory insects and insect eating birds that keep crop pests in check. High quality corridors are often a source of wildlife; reproduction in the corridor exceeds mortality and individuals are added to the population.

CORRIDOR STRUCTURE

The physical and biological characteristics of corridors such as width, connectivity, plant community, structure (architecture), edge to interior ratio, length, and configuration determine how corridors function (Figure 3-7). Corridor width, connectivity, and plant community architecture are both ecologically and visually the most important of these characteristics.
All five corridor functions are enhanced by increased width and connectivity. Corridors with the fewest number of gaps have the highest levels of connectivity. As gap width increases, the number of wildlife species for which the corridor functions as a conduit decreases. Biologist Michael Soule emphasizes the importance of connectivity for maintaining wildlife population viability in highly developed landscapes. Ecologist Richard Forman suggests that there is value in maintaining several parallel connecting corridors or patch “stepping stones” between large patches. Some ecologists caution that corridors can also be conduits for diseases, predators, exotic species, and fire which can threaten populations. However, corridors remain among the best options for maintaining biodiversity in agricultural landscapes.

The vertical and horizontal structural characteristics of vegetation within a corridor, its architecture, also influence ecological function. The vegetative structure of corridors may vary from a single layer in a grassed waterway to four or more layers in a remnant woodlot or riparian corridor. Vertical structure is a particularly important habitat characteristic for some species of birds. Horizontal structure within corridors also varies. Patchiness (the density of patches of all types) is most common in remnant and riparian corridors. Researchers report a direct correlation between an increase in plant spacing heterogeneity and an increase in bird species diversity. In general, the greater the structural diversity within a corridor, the greater the habitat value for an array of species (Figure 3-8).

Change

Plant communities change over time. Corridors typically have fewer plant species than larger patches but species diversity appears to increase with corridor age. Disturbance and consequent succession are the principal agents of change in corridor vegetation. Disturbance may be natural, wildfire for example, or induced by land management activities in or adjacent to the corridor such as mowing or grazing. Because most corridors have a high edge to interior ratio they are particularly prone to the effects of disturbance in the adjoining matrix. Human-induced disturbance has the potential to push corridor vegetation beyond the point where it can recover through natural processes. This may lead to degradation of the corridor ecosystem and a successional path that differs significantly from the norm.

Changes in plant community function and structure as a result of plant succession have significant effects on wildlife. Both species composition and density may be altered. However, mature corridors, with the exception of riparian corridors, seldom achieve the wildlife species diversity of large patches.

Wildlife biologists have advocated managing successional change in corridors to meet a variety of outcomes. Sensitivity to biodiversity is growing, however, even in situations driven by single species management.

Changes in plant community structure caused by disturbance or succession also affect other corridor functions. For example, windbreak efficiencies decline dramatically when the shrub layer is removed, a common occurrence when livestock are allowed to graze unmanaged in windbreaks.

Figure 3-8: The overstory, middlestory, and understory vegetation in this woodlot, its plant community architecture, provide a variety of niches for wildlife.
EXPANDING PERSPECTIVE

NRCS project-scale conservation practices capitalized on the function and structure of corridors. Windbreaks, grassed waterways, field borders and other conservation practices, functioning as filters, barriers, and sinks, have reduced soil erosion, improved water quality and increased crop and livestock production. Both native and introduced plants and wildlife have been the indirect beneficiaries of the habitats created by these practices.

Conservation corridors planned specifically for wildlife have tremendous potential to preserve and enhance biodiversity at a landscape scale. Land managers now realize that by emphasizing wildlife planning at these larger scales they can:

Maintain within the landscape or watershed diverse self-sustaining wildlife populations of both native and introduced species at population levels in harmony with the resource base and local social and economic values.

WHAT IS THE CURRENT STATUS OF CORRIDORS?

The limited information on the quantity and quality of the nation’s corridors suggests:

- A decline in the number, length, and area of some types of corridors.
- A significant degradation of the function and structure of many types of corridors, especially stream/riparian corridors.
- A general reduction in the value of corridors for human use and environmental services.

In 1992, the National Research Council completed an extensive study of aquatic ecosystems including stream corridors. They concluded that the function and structure of many stream/riparian corridors have been substantially altered and their ecological integrity compromised. Agricultural chemicals, feedlot effluent, urban runoff, and municipal sewage discharge were noted as major causes of water quality degradation. Increased sediment loading from urbanization, agriculture, grazing, and forestry and the construction of dams, channelization and water diversions have further compounded the problem.

In addition, the separation of many floodplains from their stream channels by levees, filling and channel entrenchment have disrupted natural cycles of plant succession (Figure 3-9). These stresses have reduced the value of many corridors for wildlife habitat and for recreation and other human activities. They have also eliminated or greatly curtailed the environmental services normally associated with riparian corridors; particularly flood management, pollution abatement, groundwater recharge, and floodwater dispersal.

Figure 3-9: This entrenched stream will no longer support the riparian vegetation (wildlife habitat) that lines its upper banks.

There are an estimated 3.2 million miles of rivers in the United States, yet only 2% of these meet the rigorous criteria for designation as a Wild and Scenic River. An estimated 75% of the nation’s streams are degraded to levels where they can only support a low level fishery; only 5% of the streams support a fishery of high quality. A 1995 National Biological Survey report stated that 85 to 95% of southwestern riparian forests have disappeared since the Spaniards first settled the area (Figure 3-10a). The lost scenic values and recreation opportunities are striking. However, these habitats can respond well to proper land management (Figure 3-10b).

Researchers conducting the NRCS Natural Resource Inventory (NRI) estimated there were approximately 160,000 miles of windbreaks in 1982. By 1992, the figure had decreased to roughly 150,000 miles, a reduction of over 6%. During that same 10 year period, the area in windbreaks was also reduced by an estimated 6%. Of equal concern is the decline in windbreak quality, the result of old age, neglect, and poor management practices. Grazing, herbicide damage, and excessive competition from introduced grasses in shelterbelts can contribute to degradation. Degraded shelterbelts are less efficient as filters, barriers, sediment traps, nutrient sinks, and as habitat for wildlife.
In addition to riparian buffers and windbreaks, the NRCS and others have long advocated the use of other types of conservation corridors including: contour buffers, filter strips, field borders, and grassed waterways. No national database is kept on these corridor types. However, based on a survey of NRCS State and field biologists in each region, a rough estimate of conditions and trends was made.

Questionnaires were sent to NRCS State and field biologists in each of the 50 states. Thirty usable questionnaires were returned; a return rate of 60%. At least three questionnaires were returned from each of the six NRCS regions. The results presented below estimate the general status of the nation’s corridors.

<table>
<thead>
<tr>
<th>Type</th>
<th>Increased</th>
<th>Same</th>
<th>Decreased</th>
<th>NA</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riparian/stream corridors on 1st & 2nd order streams</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>Riparian/stream corridors on 3rd and higher order streams</td>
<td>4</td>
<td>13</td>
<td>13</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Wetland, lake, and reservoir buffers</td>
<td>6</td>
<td>9</td>
<td>13</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>Field borders</td>
<td>7</td>
<td>3</td>
<td>18</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>Field buffers (in field)</td>
<td>11</td>
<td>10</td>
<td>7</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>Filter strips</td>
<td>21</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Grassed waterways</td>
<td>18</td>
<td>11</td>
<td>1</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Vegetated ditches</td>
<td>4</td>
<td>13</td>
<td>11</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>Grassed terraces and diversions</td>
<td>9</td>
<td>10</td>
<td>5</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>Windbreaks/shelterbelts</td>
<td>7</td>
<td>9</td>
<td>5</td>
<td>8</td>
<td>29</td>
</tr>
<tr>
<td>Hedgerows</td>
<td>1</td>
<td>8</td>
<td>16</td>
<td>3</td>
<td>28</td>
</tr>
</tbody>
</table>

Table 1: Estimated change in various conservation corridor types from 1988 - 1998. Data indicate the numbers of states responding.

NA - Not Applicable
N - Total Number of States Responding
Table 2: Estimated habitat value of various conservation corridor types. Data indicate the number of states responding.

<table>
<thead>
<tr>
<th>Type</th>
<th>Excellent</th>
<th>Good</th>
<th>Fair</th>
<th>Poor</th>
<th>NA</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riparian/stream corridors on 1st & 2nd order streams</td>
<td>2</td>
<td>10</td>
<td>11</td>
<td>6</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>Riparian/stream corridors on 3rd and higher order streams</td>
<td>2</td>
<td>8</td>
<td>13</td>
<td>7</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Wetland, lake, and reservoir buffers</td>
<td>2</td>
<td>10</td>
<td>12</td>
<td>6</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Field borders</td>
<td>0</td>
<td>5</td>
<td>12</td>
<td>13</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Field buffers (in field)</td>
<td>0</td>
<td>2</td>
<td>9</td>
<td>14</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>Filter strips</td>
<td>0</td>
<td>7</td>
<td>10</td>
<td>12</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>Grassed waterways</td>
<td>0</td>
<td>2</td>
<td>10</td>
<td>14</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>Vegetated ditches</td>
<td>0</td>
<td>4</td>
<td>11</td>
<td>11</td>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td>Grassed terraces and diversions</td>
<td>0</td>
<td>3</td>
<td>8</td>
<td>15</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>Windbreaks/shelterbelts</td>
<td>2</td>
<td>11</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>Hedgerows</td>
<td>2</td>
<td>8</td>
<td>9</td>
<td>4</td>
<td>6</td>
<td>29</td>
</tr>
</tbody>
</table>

NA - Not Applicable
N - Total Number of States Responding

Table 3: Estimated importance of four non-NRCS corridor types as habitat for wildlife. Data indicate the number of states responding.

<table>
<thead>
<tr>
<th>Type</th>
<th>Very Important</th>
<th>Important</th>
<th>Somewhat Important</th>
<th>Not Important</th>
<th>Don't Know</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roadsides</td>
<td>4</td>
<td>11</td>
<td>10</td>
<td>3</td>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td>Powerline ROW's</td>
<td>4</td>
<td>6</td>
<td>12</td>
<td>3</td>
<td>1</td>
<td>28</td>
</tr>
<tr>
<td>Railroad ROW's</td>
<td>1</td>
<td>10</td>
<td>15</td>
<td>2</td>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td>Pipeline ROW's</td>
<td>4</td>
<td>2</td>
<td>12</td>
<td>7</td>
<td>4</td>
<td>29</td>
</tr>
</tbody>
</table>

NA - Not Applicable
N - Total Number of States Responding
The literally millions of miles of roadside corridors in the United States represent a potentially rich habitat resource. Many roadsides are dominated by a single (often exotic) grass species that is of limited habitat value. Only 10% of the roadsides in Cache County, Utah were rated high quality habitat for pheasants and ground nesting songbirds in a recent study. Roadside management practices further reduce habitat value. Roadside mowing during the nesting season is a common practice that destroys nests, kills adult birds and small mammals and degrades roadside habitat. Roadsides that are disturbed frequently harbor numerous large patches of noxious weeds.

Some states have initiated integrated vegetation management or roadside wildflower programs that emphasize native plants and ecologically based management practices. However, the habitat and aesthetic benefits roadside corridors could provide generally go unrealized. The status of powerline, pipeline, canal, and railroad corridors is unknown. The quality of these corridor types may be similar to those of roadsides.

SUMMARY

The nation’s corridors are clearly in decline. Yet the need for conservation corridors as part of an integrated approach to conserving biodiversity has never been greater. Why the apparent indifference to the loss of some types of corridors? Biologist Allen Cooperider argues that the underlying causes of indifference toward environmental decline in general are perceptual and attitudinal. He suggests that we must begin to see, think, and act more holistically and reestablish an attachment to the land as an ecological system, of which we are an integral part, if we are to become good stewards.

Landscapes managed on cultural concepts of nature that embrace neatness and productivity can be quite different than those managed on scientific concepts of ecological function and structure.
Corridor Planning Principles discussed in Chapter 5 that are exhibited by this case study include:

Natural Connectivity Should Be Maintained or Restored.

Connected Reserves / Patches Are Better Than Separated Reserves / Patches.
Case Study: Louisiana Black Bear Use of Corridors

This case study illustrates the importance of conservation corridors in maintaining viable populations of large mammals in fragmented landscapes.

The Louisiana black bear (*Ursus americanus luteolus*) was once abundant in east Texas, southern Mississippi and all of Louisiana. Habitat loss and fragmentation have diminished the range of the black bear by 90 to 95%. In January 1992, the U.S. Fish and Wildlife Service designated the Louisiana black bear as threatened under authority of the Endangered Species Act.

In 1994, wildlife biologists at the University of Tennessee initiated a study of corridor use and feeding ecology of black bears in the Tensas River Basin in northern Louisiana. The 350 km2 privately owned study area contained four major isolated hardwood patches, some linked by wooded corridors. The patches were surrounded by agricultural fields of corn, soybeans, cotton, wheat, and other small grains.

Corridors in the study area are rivers, bayous, and ditches bordered by wooded strips 5 to 75 m wide. The corridors are typically linked to wooded tracts. Four major corridors in the study area ranged from 50 to 73 m in width. The height and density of vegetation in most corridors was sufficient to conceal bear movements.

Radio collars were placed on 19 Louisiana black bears, 6 males and 13 females and their movement was tracked over 18 months. Analysis of the telemetry data indicates that the bears were located in forested patches and corridors more than expected in proportion to their occurrence in the landscape. All 6 male bears in the study moved to a wooded patch other than the patch they were originally captured in; only 3 females moved to another patch. Fifty-two percent of the male bear patch-to-patch movement and 100% of all female bear movement were between patches connected by corridors. Adult male bears used the corridors most intensively in June and July, the breeding season. Sub-adult bears used the corridors for dispersal from their natal home range. Bears also used the corridors to access food resources outside wooded patches.

Figure 1: This cub will use corridors to access food resources outside of the wooded patches.

Figure 2: Wooded corridors become important conduits for bear movement between wooded patches, particularly during the mating season.
Researchers concluded that:

- Bears preferred corridors to agricultural fields when outside of a forest tract.
- Corridors allowed bears to move farther away from forested tracts.
- Bear movement between wooded patches connected by corridors was more frequent than between patches that were not connected.

This study demonstrates that wooded corridors between forested tracts were used by both male and female bears. Long-term management should include maintenance and enhancement of wooded corridors that link substantial forested patches and construction of new corridors.

Numerous research projects report black bears require large unbroken tracts of suitable habitat to sustain a population. This study suggests that corridors may be vital to the survival of Louisiana black bear in highly fragmented landscapes.

The material for this case study was abstracted with permission from Anderson, D.R. 1997, Corridor use, feeding ecology, and habitat relationships of black bears in a fragmented landscape in Louisiana, Masters thesis, University of Tennessee, Knoxville.

![Figure 3: The importance of wooded corridors in linking wooded patches in Louisiana is clearly illustrated in this diagram.](image)
INTRODUCTION

As habitats continue to be lost to various types of development and landscapes are increasingly fragmented, land managers are relying on the ecological functions of corridors to conserve soil, water, fish and wildlife. Conservation of these basic resources provides benefits for individual landowners and the larger community. The benefits associated with corridors can be grouped into three categories:

- ENVIRONMENTAL BENEFITS
- SOCIAL BENEFITS
- ECONOMIC BENEFITS

The last section of this chapter discusses the potential adverse impacts that also can be associated with corridors.

ENVIRONMENTAL BENEFITS

The environmental benefits of corridors come from those functions that improve the condition of the watershed. Two general kinds of environmental benefits are provided by corridors:

- **Environmental Services**
 - Reduced flooding
 - Reduced soil erosion
 - Improved water quality
 - Increased water quantity
 - Groundwater recharge
 - Bank stabilization
 - Improved air quality

- **Habitat**
 - Terrestrial
 - Aquatic

ENVIRONMENTAL SERVICES

Stream/riparian corridors and attendant wetlands in floodplains provide floodwater storage, desynchronize flood flows and slow flood velocities. Downstream flooding and the potential for flood damage are diminished when floodwater volume and velocity are reduced. Stream banks stabilized by the roots of riparian vegetation reduce bank erosion, a major source of sedimentation in some streams.
Stream corridors also function as sponges retaining soil moisture, and in some locations recharging ground water supplies. Water stored in soil is released slowly back into rivers and streams, which helps maintain stream flows and sustain aquatic life during dry seasons.

During the growing season, healthy riparian vegetation intercepts most of the sediments and agricultural chemicals in sheet and shallow subsurface flow originating in fields and pastures before they can reach streams or rivers. This filter function of riparian buffers protects many wetlands, lakes, and streams at a critical time when they are nutrient stressed and prone to eutrophication. In the fall some of the nutrients produced in riparian corridors are released when leaves, grass, needles and limbs fall or are washed into streams and rivers. This cycling of nutrients supplies the food energy required to support diverse populations of aquatic organisms throughout the stream system. Forested stream corridors are also an extremely important source of woody debris for fish habitat, bank armouring, and as natural grade control structures (Figure 4-1).

Continuously vegetated riparian corridors are more effective at maintaining both surface and subsurface water quality than those that are discontinuous. Water quality is strongly influenced by water temperature. A slight increase in water temperatures above 59°F will produce a substantial increase in the release of sedimentary phosphorus, which can result in eutrophication. Thus, a leafy canopy provided by woody riparian vegetation can reduce the adverse affects of pollutants. In addition, cool water, which has a higher oxygen content, is necessary to support populations of many game fish, particularly trout and salmon. A cool, moist microclimate, is also a requisite for many terrestrial species. For a more detailed discussion of the environmental services provided by stream/riparian corridors, see Stream Corridor Restoration: Principles, Processes, and Practices (www.usda.gov/stream_restoration).

Introduced upland conservation corridors are usually designed to function as barriers, filters and sinks. They reduce soil erosion caused by wind and water, conserve soil moisture, trap sediments and absorb agricultural chemicals. Shelterbelts reduce wind velocity for a distance of 8 to 10 times their height on the lee side.

When wind velocity is diminished it has less energy to dry out soil and plants and to dislodge and transport soil particles. Continuous windbreaks eliminate the problem of airflow through gaps or around the ends of windbreaks which can significantly diminish their effectiveness. A continuous windbreak or remnant corridor is also more effective at capturing and retaining snow in the field. Captured snow can represent over 20% of the annual soil moisture in north central agricultural areas (Figure 4-2).

Researchers report field barriers of tall wheat grass reduce potential wind erosion to nearly 7% of open field erosion. When the volume of airborne soil particles in the watershed is reduced, air quality is enhanced. Windbreaks, buffer strips, field borders, grassed waterways, and roadsides, like riparian corridors, are effective sediment traps and nutrient sinks. An estimated 95% of sediments from row crop fields were trapped in grassed waterways in an Iowa study area. In Illinois, grassed waterways and forest buffers reduced nitrates in subsurface water an estimated 80 to 90%. Corridor vegetation can, however, be overwhelmed by sediments and chemicals and absorption capabilities may be reduced significantly.

![Figure 4-1: The woody debris in this stream channel provides critical habitat for native trout and dampens erosion of the stream bank.](image1)

![Figure 4-2: This windbreak captures snow which increases soil moisture in adjacent fields and provides critical winter wildlife habitat.](image2)
ENVIRONMENTAL SERVICES: VALUE-ADDED BENEFITS OF CONNECTIVITY

A linked system of various conservation corridor types properly sited will optimize soil and water conservation in the watershed by:

- Increasing efficiencies
- Integrating ecological functions

When terraces, filter strips and other conservation management practices are linked to grassed waterways and riparian buffers, the value-added benefits include longer concentration times for overland water flows, increased infiltration, and increased retention time, which facilitates assimilation of nutrients.

Systems of upland corridors can make a significant contribution in reducing flood water volume, sedimentation, and pollutants in adjacent receiving streams. The Nutrient and Sediment Control System developed by the NRCS in Maine combines sediment basins, filter strips, constructed wetlands, and deep ponds into a single, connected system that has a 90% removal rate for sediment and phosphorus, even after extreme storm events.

HABITAT

Habitat is defined here as the ecosystem in which a species lives. Each species responds differently to physical variables in the ecosystem including the pattern of patches, corridors, and matrix. For example, wildlife differ in their ability to disperse. Some species like reptiles have physical limitations, others have behavioral or physiological limitations. Most species are not limited in their ability to use corridors but experience high levels of mortality dispersing across landscapes that do not have corridors.

Many species instinctively seek patterns, which meet their needs for food, cover, water, space, reproduction, and security; others learn this information (Figure 4-3). The high edge to interior ratio of most corridors makes them particularly attractive to edge habitat species. However, because corridors often do not provide all the requisite resources, the home range of many species extends beyond the corridor into adjacent patches and the matrix.

Researchers studying roadsides found several factors affected corridor use by wildlife:

- Type of vegetation in the corridor
- Type of vegetation adjacent to the corridor
- Surrounding land uses
- Corridor management
- Geographic location

Many wildlife species in agricultural landscapes have adapted to wooded corridors and expanded their range. Others that require large patches of forest or prairie have been displaced. The habitat value of corridors in highly fragmented landscapes is well documented. Riparian corridors, shelterbelts windbreaks, and roadsides have been extensively researched. Less research has been done on the habitat value of field buffer strips, grassed waterways, conservation terraces, powerline and other introduced corridors.

Stream/Riparian Habitat

Stream corridors are among the most productive habitats in all regions of the country. They are particularly important in arid and semi-arid landscapes. The vegetation in most riparian zones is structurally more diverse and biomass production is higher than the adjacent matrix providing an increased diversity of niches for wildlife to exploit. In addition, water, aquatic insects, and fish provide resources supporting wildlife species that require both aquatic and upland environments.

Wildlife species diversity and density are high in riparian zones. In a Blue Mountain study area in eastern Oregon, 75% of the terrestrial vertebrates were dependent upon or preferred riparian habitat. Biologists Stauffer and Best estimated an average of 500 breeding pairs of birds per 100 acres in riparian corridors in Iowa compared to 340 pairs in upland forests. Bird densities in riparian zones in Arizona were 66% higher than densities in the adjacent desert upland (Figure 4-4). Riparian corridors are also important travel lanes for many species. They may be important for dispersal as well as movement within species home ranges.

Figure 4-3: Many large mammals use traditional migration corridors between summer and winter range.

Figure 4-4: Many birds native to Arizona like this cardinal rely on riparian habitats for food and cover.
Windbreaks and Shelterbelts

The diversity of ecological niches and weather protection afforded wildlife by windbreaks are particularly important in agriculturally dominated landscapes. Windbreaks provide food, nesting, brooding, loafing, thermal, and escape cover for many species of birds and mammals (Figure 4-5). They are also used as travel lanes by both migratory and nonmigratory species. Windbreaks are important resting stops for songbirds during spring and fall migration. At least 108 species of birds are known to use shelterbelts for foraging, nesting, or resting.

In seven Minnesota windbreaks, a mean nest density of 36 nests per acre was reported. Researcher Shalaway reported higher nest success for low and mid-level nesting species in fencerows than in native shrub or woodlands.

Windbreaks are an important habitat component for many game species including: the ring-neck pheasant (*Phasianus colchicus*), northern bobwhite (*Colinus virginianus*), mourning dove (*Zenaida macroura*), wild turkey (*Meleagris spp.*), eastern cottontail rabbit (*Sylvilagus floridanus*), western cottontail rabbit (*Sylvilagus auduboni*), gray squirrel (*Sciurus carolinensis*), fox squirrel (*Sciurus niger*), and whitetail deer (*Odocoileus virginianus*). Windbreaks and remnant wooded corridors are used as travel lanes by carnivores like the gray fox (*Urocyon cinereoargenteus*) and other mid-sized predators.

Grassed Waterways and Buffer Strips

Grassed waterways and in-field buffer strips are typically seeded in a monoculture of exotic grasses and share similar locations embedded in the agricultural matrix (Figure 4-6). However, they are important habitats for many ground nesting species and species that prefer early successional vegetation. Fourteen bird species were observed nesting in grassed waterways in one Iowa study. Nest densities of over 1,100 nests per 250 acres of grassed waterways were reported. These nest densities exceed densities found in no-till and cropped fields. Dickcissels (*Spiza americana*) daily survival rates when nesting in grassed waterways were the same as those reported for old fields and prairie remnants. Researchers suggest grassed waterway habitats could be even more productive if seeded with a mix of native grasses and forbs.

Other Corridors

Roadsides and field borders also share common locational and structural characteristics. Although exceptions exist, they are typically on the edges of the agricultural matrix and are dominated by a few grass species. However, biologists working in Minnesota report that roadsides support over 300 species of plants and wildlife including some of the last remnant populations of native grass and forb species in the state.

Wildlife biologists have extensively researched the value of roadsides as habitat for wildlife, particularly game species (Figure 4-7). In intensively farmed landscapes, roadsides are a particularly important habitat component for ring-neck pheasants, gray partridge, cottontail rabbits, and a number of songbirds. Researcher Lars Anderson reported 27 species of birds using Utah roadsides from April to November; 12 of these species are known to nest in roadsides. Researchers reported relatively high levels of bird species richness in upper Midwest roadsides. An estimated 27% of the pheasants recruited into the fall population in Minnesota were produced in roadsides. Although losses to predation and parasitism for pheasants and songbirds nesting in roadsides are relatively high, they generally do not exceed those of the matrix.
WILDLIFE HABITAT: VALUE-ADDED BENEFITS OF CONNECTIVITY

Biologist Reed Noss notes that two effective ways to improve habitat quality while mitigating the effects of fragmentation are to increase effective habitat area and connectivity. Conservation corridors are one tool that can do both. In our highly fragmented landscapes, the value of connecting habitats far outweighs the potential disadvantages. Some of the potential value-added benefits of connecting patches with conservation corridors for wildlife include:

- Increased habitat area
- Increased opportunities for colonization
- Habitat accessibility
- Increased niche diversity
- Escape cover

Increased Habitat Area

Perhaps the most significant benefit of conservation corridors in urban or agriculturally dominated landscapes is increased habitat area. For instance, a continuous 30-foot wide windbreak that surrounds a quarter section of agricultural land can add over 3-1/2 acres of valuable wooded habitat. As Noss points out: “corridors, even narrow ones, provide habitat in which some kinds of organisms will live and reproduce.”

Additional habitat benefits can be realized if corridor width is increased (Figure 4-8). Wider corridors obviously increase total area but they also provide for the life requirements for a greater diversity of species. In addition, wider corridors if properly designed may mitigate some of the negative effects of edge and contain some forest interior habitat.

Increased Opportunities for Colonization

Properly located conservation corridors that connect with each other and adjacent patches may facilitate immigration and colonization of habitat patches within the watershed. Researchers studying white-footed mice (*Peromyscus leucopus*) in Ontario found that a network of corridors which connected shelterbelts to woodlots was beneficial for recolonization of vacant patches.

Corridors designed to meet the specific requirements of species vulnerable to local extinction can reduce their risk. Immigration may help sustain local populations and connected patches may facilitate recolonization of areas within the local species extinction.

When a network of several alternative corridors or “stepping stone” patches are provided within the landscape, additional value-added benefits may be achieved (Figure 4-9). A redundant network may increase dispersal opportunities in the event that one or more of the corridors are blocked, severed, or made temporarily dysfunctional by disturbance such as fire, drought, or insect outbreaks.
Habitat Accessibility

Corridors connecting patches increase overall habitat quality within the watershed. They provide wildlife relatively safe access to a diversity of habitat resources, which are typically dispersed across the landscape and may change with climate and seasons. Corridors facilitate dispersal among subpopulations increasing the growth rate and stability of these populations through recruitment and colonization. Researchers found corridors that connected drainageways to ridges supported greater species richness and abundance than corridors limited to a single topographic setting (Figure 4-10). Introduced corridors aligned perpendicular to stream corridors facilitate wildlife migration from uplands to riparian areas and wetlands during times of drought. When corridors are aligned with natural wildlife travel patterns, movement and access to different habitats are greatly enhanced; for wide-ranging species, effective foraging area also may be increased.

Increased Niche Diversity

Connected landscapes can facilitate natural ecological functioning, which in turn may increase niche diversity. Connectivity, perpendicular to the long axis of a corridor (lateral connectivity), can be as important as connectivity along the long axis.

Natural flooding, channel meandering, scouring, and sediment deposition all require lateral connectivity. Natural flooding, which creates conditions for plant succession, can reset forest stand age diversity and increase the diversity of niches. Indeed, some species like the least bell’s vireo (*Vireo bellii pusillus*) are highly dependent on the 3 to 5 year old riparian vegetation fostered by periodic flooding. Increased niche diversity may also increase wildlife species richness. Biologist Schroeder and others found breeding bird species richness increased in shelterbelts as niche diversification was improved by the addition of snags and increased foliage height diversity (Figure 4-11). The same is true for bats.

Escape Cover

Generalist carnivores and omnivores appear to benefit from fragmented landscapes and may be a strong factor in the decline of prey species in agricultural landscapes. Corridors connecting patches may bring prey/predator relationships into a better balance by allowing prey species more options to move with greater safety among patches.

Figure 4-10: This network of interconnected riparian and upland corridors will provide for greater wildlife diversity in this agricultural landscape.

Figure 4-11: Diverse vegetation types, heights, and spacing make this corridor a rich habitat for many species.
SOCIAL BENEFITS
Perhaps the most important social benefits are the environmental services corridors provide. After all, clear air, an adequate supply of clean water, and productive farm, forest and range lands are essential to all life including humans. Other significant social benefits that corridors provide include:

- Recreation
- Education
- Aesthetics

RECREATION
Outdoor recreation has always been a significant part of American social life. In today’s fitness conscious society, demands for outdoor recreation are increasing. Much of the demand has focused on the recreation opportunities corridors afford. The linear configuration of corridors makes them well suited for a variety of recreational activities, especially trail oriented sports. Trails provide a venue for:

- Hiking
- Walking
- Jogging
- In-line skating
- Cycling
- Cross-country skiing
- Horseback riding
- Nature photography
- Wildlife viewing

Riparian corridors are especially attractive locations for trails (Figure 4-12). The presence of water, diverse vegetation, moderated climate, and abundant wildlife enhances the recreation trail experience. Boating, rafting, kayaking, tubing, fishing, and hunting are popular non-trail activities in many corridors with perennial flowing water. Some riparian corridors have become so popular that demand frequently exceeds the social and ecological carrying capacity. Social conflicts between different types of users and degradation of the riparian resource often result.

Other types of corridors are used extensively by recreationists. The highly successful Rails-to-Trails program has converted thousands of miles of abandoned railroad ROWs into recreational trails. An excellent example is the 12-mile trail along the Wood River between Hailey and Ketchum, Idaho, used by commuters as well as recreational cyclists.

Shelterbelts, field borders, grassed waterways, canals, and other types of strip corridors become important recreational resources during the hunting season (Figure 4-13). Pheasant and quail hunters appear to be more successful in areas with shelterbelts and other types of woody cover. Research findings indicate Kansas hunters spent an average of 40% of their hunting time in or near shelterbelts, more than 80% spent at least some time hunting in shelterbelts during the season. These figures are particularly impressive given the small percentage of the Kansas landscape devoted to shelterbelts.

Figure 4-12: Walkers enjoy a cool spring afternoon in an urban greenway.

Figure 4-13: Three good friends enjoy a hunt in quality habitat.
Recreation: Value-Added Benefits of Connectivity

- Continuity of experience
- Safety

One of the value-added benefits of corridor connected landscapes for recreationists is the continuity of experience that connectivity provides. Hunters prefer to hunt in loops to and from the point where the hunt begins allowing continual hunting in promising habitat. A system of connected corridors and patches provides this opportunity. When rivers and streams are free of obstructions like culverts, dams, or diversions, water related recreationists can kayak, tube, and fish without having to continually get in and out of the water. In both cases, recreationists are free to concentrate on their recreational pursuit in an environment that adds richness to the experience.

A safe corridor can reinforce recreational experiences. Continuously linked corridors with trails are safer than corridors crossed by roads or railroads, pastures, fields or fences. The City of Boulder, Colorado installed expensive trail underpasses at all road crossings along Boulder Creek to minimize risks for recreationists. If road crossings and other barriers are minimized, costly retrofits can be avoided later.

Education

Rich in species diversity and typically accessible remnant, riparian, and regenerated corridors are ideally suited to outdoor education. Trails in corridors lend themselves to a variety of formal and self-guided interpretative nature programs and educational experiences including:

- Natural history
- Taxonomy
- Archeology
- History
- Environmental science
- Experimental design
- The arts

Increasing numbers of science teachers are taking their classes outdoors, often into corridors to collect specimens and conduct experiments (Figure 4-14). They have discovered that students learn more and retain concepts longer when involved in hands-on educational experience.

Perhaps more importantly, corridors afford opportunities to investigate nature on your own. Harvard historian John Stilgoe noted a strong correlation between adults with a strong environmental ethic and the opportunities they had at an early age to explore nature. Researchers Black and others found people living near riparian corridors were more knowledgeable about wildlife than those living only a few blocks away. The lessons learned in corridors may be extremely important in molding future generations of conservationists.

Archeological and cultural sites are often concentrated in riparian corridors. The juxtaposition of cultural and natural resources presents exciting opportunities to interpret the role societies past and present have played in the evolution of a landscape. These sites are also well suited to illustrating the importance of corridors in maintaining landscape health, stability and quality of life.

Some corridors are a valuable resource for research. National Resource Council researchers argue that ecologically stable stretches of riparian corridors should be preserved as research reference benchmarks. At a smaller scale, remnant plant communities and wildlife populations are occasionally found in roadsides, railroad ROWs and other types of corridors. They are a valuable source of information about the ecology of native plant communities. Remnant plants may also be a source of regionally adapted seed for restoration experiments and projects within a watershed.
Corridors, a great education resource, are even a greater resource when not bisected by roadways. Teachers can focus on teaching rather than worrying about students wandering across roadways. Corridors can be used to connect urban and rural areas. As our society becomes increasingly urbanized, people lose contact with natural ecosystems and the agricultural practices that sustain human life. Corridors that originate in cities and towns and pass through rural environments allow urban residents to experience natural and agrarian landscapes. Winding through a mosaic of hay fields, pastures, and farm buildings, greenways can provide exposure to agricultural environments (Figure 4-15). Such exposure may facilitate better understanding and appreciation of farming and ranching, increasing respect for landscapes that support these activities. Careful trail design is necessary to protect the property rights of landowners.

Many landscapes along the eastern seaboard, in the Midwest, and across the South are a rich mosaic of woody patches and open fields defined by corridors of uncut trees along property lines. On the Great Plains and westward, shelterbelts and windbreaks give a sense of place to homesteads and rootedness to communities. These unnantural blocks and baffles of vegetation punctuate and partition the prairie. They provide a visual structure and scale against which vastness can be measured. In the West, mountains dominate the background but it is the flowing lines of riparian corridors that give human scale to the foothills and valley floor. Place names like Wood River Valley, Verde Valley, and Snake River Plains attest to the impact of riparian corridors on the regional consciousness. Occasionally the visual richness of a riparian corridor is extended into the uplands by canals, ditches, and grassed waterways.

Corridors also enhance scenic quality at a more intimate scale. Roadsides, railroad ROWs, canal banks, and field borders vegetated with native plants add textural diversity and seasonal color that enrich our experience of the landscape. Corridors also screen unsightly areas and buffer noise from highways and other sources. They make a significant contribution to the quality of rural life.
AESTHETIC VALUE ADDED BENEFITS OF CONNECTIVITY

The added visual amenities provided by a system of connected corridors include:

- Enhanced sense of place
- Link to cultural resources

One lesson painting has taught us is that all things are connected. A composition is created by lines, forms, colors, and textures that knit the diverse elements of the painting together into a unified composition. As observers of paintings, humans are frequently fascinated with the skills the artist used to achieve unity.

Connected corridors, particularly wooded corridors are important lines and forms that unify diverse elements in the landscape. Research by Steven and Rachel Kaplan suggests that people prefer landscapes that exhibit coherence, complexity, legibility and mystery. Connected corridors can create these qualities. A landscape of linked corridors and patches is a legible landscape that humans can comprehend and appreciate.

The Minnesota Valley National Wildlife Refuge is a dominant visual element for those living in the Twin Cities metropolitan region (Figure 4-16). Similarly, the Big Sioux River riparian corridor in eastern South Dakota is a visual reference for residents in this rural area.

Linked remnant corridors of woody vegetation in the upper Midwest, east coast, and southeast are visual reminders of historic landscape. Because many of these corridors are still linked, they have a scale that projects an impression far more powerful than disconnected, isolated remnants.

Research has also shown that people appreciate rural settings that have a mixture of cultural and natural resources. Old roads, stone walls, canals, cemeteries and similar historic structures are often concentrated in corridors, and can be incorporated into a conservation corridor program that protects both biological diversity as well as historical character (Figure 4-17). A value-added benefit of connectivity is that we can protect the special sense of place that rural areas enjoy by protecting existing connections and by re-establishing historic linkages.

ECONOMIC BENEFITS

Natural corridors provide economic benefits and values because they satisfy human wants or needs. Often, these values are not readily apparent and are difficult to estimate because they are not traded on a market. Researchers Thibodeau and Ostro used cost/benefit analysis techniques to calculate the value of wetlands in the Charles River riparian corridor near Boston. They estimated the value of land cost increase, water supply, flood prevention, pollution reduction, and recreation at between $153,000 and $190,000 per acre. They noted that some of these benefits were realized by owners of wetlands in the corridor, however, the majority of benefits accrued to the larger community within the watershed.
Benefits from introduced corridors include:

- Environmental services
- Increased crop yields
- Increased crop quality
- Increased livestock production
- Improved livestock health
- Reduced energy consumption
- Increased property values
- Recreation revenues

ENVIRONMENTAL SERVICES

Productive topsoil is arguably this country’s most valuable resource. An estimated 240 million tons of topsoil are eroded annually from Iowa farms and washed into the Missouri River. In a 1992 report, the National Research Council suggested grassed waterways, field borders, buffer strips, conservation terraces, and other introduced corridors that reduce soil erosion and sedimentation can make a significant contribution to the long-term economy of rural watersheds.

Sediments deposited over river bottom sand and gravel beds are a major cause of decline in Midwest aquatic species diversity. Reduced levels of sedimentation improve fisheries and enhance their economic revenues. Lower sediment loads also reduce the rate of filling in reservoirs, canals, and drainage ditches prolonging their utility. The economic returns from these various environmental services can be substantial.

INCREASED YIELDS AND QUALITY

Corridors, like shelterbelts, grassed waterways, terraces, and other corridor type conservation practices generate economic returns exceeding the cost of installation and maintenance. In a study in Kansas and Nebraska, small grain production on the leeward side of windbreaks increased between 18 to 38% for a distance of 3 to 10 times the windbreak height. In a 6-year study in Nebraska, researchers estimated a 15% yield increase in winter wheat in fields protected by shelterbelts. They estimated that shelterbelts would pay for themselves within 15 years.

Increases in yield of 5 to 50% and improved crop quality were reported by agronomists for vegetable and specialty crops protected by windbreaks. Additionally, the climate modification produced by shelterbelts enhanced production of orchard and vineyard crops. Shelterbelts also produce microclimates that reduce stress and increase fitness in livestock and increase honeybee pollination and honey production.

Shelterbelts provide protection from wind and snow increasing survival of newborn sheep and cattle. These benefits are maximized when livestock are corralled outside the windbreak on the lee side.

REDUCED ENERGY CONSUMPTION

Home heating is a major consumer of energy in rural residences and small communities (Figure 4-18). Properly located and designed windbreaks are a cost-effective way of lowering home energy consumption by 10-25%. Windbreaks can also reduce the time and energy required to remove snow from around farm buildings and rural roads; saving money and improving farm efficiency. Windbreaks on the outskirts of small rural communities in the northern states protect structures and significantly reduce snow removal costs.

AGROFORESTRY PRODUCTS

Products obtained from windbreaks, riparian buffers, alley cropping, and woodlots are valued in billions of dollars, annually. Farmers, applying agroforestry principles, plant and manage tree and shrub species that bare edible fruits, nuts, and berries. These products are harvested and sold in local markets or to large commercial outlets. Trees in corridors are also harvested for fuel, pulp, posts, specialty woods like walnut, and for use in the horticultural industry. Mushrooms and medicinal plants like ginseng grown in the shade beneath corridor trees are high priced commodities marketed in many regions.

Marketable products can also be obtained from grass corridors. The seed of some native grass species is a high value commodity. In Iowa, for example, the 1998 price of switchgrass seed was $17.00 a pound. Statewide production was unable to meet demand. Wildflowers, native grass stalks, and dried forbs are also harvested in grass corridors and sold in local markets and craft outlets. Providing products for the craft industry is a growing enterprise.
Recreation Revenues

Trails along corridors can also be important generators of revenue. A 1988 study of the Elroy-Sparta bicycle trail in Wisconsin found that users spent approximately $15 per person per day for trail-related expenses for an overall annual economic impact of $1,257,000. In Minnesota, where trail networks are being expanded, the number of local bed and breakfast accommodations catering to trail users has exploded. The revenues these small businesses generate in rural towns can have a significant impact on the local economy and provide employment opportunities for the area's young people. Economic benefits are increased when corridors provide a variety of recreational options, from floating a river to hiking on a trail. In Montana, visitors to the upper Missouri Wild and Scenic River and Lewis and Clark National Historic Trail contribute $750,000 annually to the economy of the area.

The National Research Council estimated the annual economic value of fishing on flowing waters in the United States at $8 billion. Hunting also generates significant revenues. Researchers estimated an annual value for wooded draws in the Great Plains at $26 million for deer hunting and $1 million for turkey hunting. Kansas windbreaks generate an annual net value of $21.5 million for hunting. Many landowners realize direct economic benefits by charging rod or gun fees or leasing hunting or fishing rights on their property. Some landowners use a portion of these revenues to enhance habitat on their farm or ranch. Bird watchers and other non-consumptive users of wildlife resources also contribute to the local economy. Motel rooms in North Platte, Nebraska filled with bird watchers are at a premium during the spring sandhill crane migration. Economists estimated active birders spend between $1,500 and $3,400 on birding each year; often their activities are in or adjacent to corridors (Figure 4-20).

Increased Property Values

Land appraisal information and research findings suggest property adjacent to amenities like riparian corridors is valued higher than property without proximity to these amenities (Figure 4-19). In western states, river and stream frontage property is in high demand, short supply, and 25 to 50% more expensive than property without frontage. Economists Fausold and Lilieholm cited numerous examples of significant increases in property values for land abutting parks or stream corridors. A study of riparian greenbelts in Boulder, Colorado determined that the average value of property adjacent to the greenbelt would be 32% higher than those 3,200 feet away, all other variables being equal.

The influence of corridors on property values also applies to privately held greenbelt land without public access according to a study done near Salem, Oregon. The greenbelt land in the study was composed of rural farmland without trails. The study concluded that land adjacent to the greenbelt was worth approximately $1,200 more per acre than land located 1,000 feet away. The increased economic value these greenbelts generated was based on enhanced visual quality they provided.

In many cases, restoration or enhancement of corridors will be necessary to provide the economic benefits described. In California, homes situated near seven stream restoration projects had property values 3 to 13% higher than similar homes located on un-restored streams.

Figure 4-19: The increased value of homes in this Utah subdivision can be attributed to their proximity to this open space corridor.

Figure 4-20: This series of pictures depict some of the many recreational opportunities corridors can provide.
POTENTIAL ADVERSE IMPACTS

The list of benefits associated with corridors is impressive and well documented. There are however, potential adverse impacts that may originate in corridors:

- Crop damage
- Disease and weed infestations
- Predation/parasitism
- Social impacts
- Visual impacts

Many of these impacts can be mitigated through proper planning, design, and management.

CROP DAMAGE

There is a perception in rural America that untended vegetation in natural patches and corridors is a major source of insects that infest crops. Corridors do in fact provide habitat for both pest and beneficial species of insects. Occasionally pest populations in corridors erupt causing significant damage to adjacent crops. Researchers in Texas reported a $50 per acre reduction in cotton yields in fields adjacent to windbreaks that overwintered large populations of boll weevils (*Anthonmus grandis*). Alfalfa weevils (*Hypera postica*) which also overwinter in windbreak litter can cause similar reductions in alfalfa production.

Birds and mammals that inhabit or move through corridors can also damage crops in the adjacent matrix. Some evidence suggests that crop losses caused by birds is higher in fields adjacent to windbreaks. Damage to grain and forage crops by deer and elk is a significant problem in many states. In Wisconsin, most farmers report only a few hundred dollars worth of deer damage to corn and hay crops each year. However, in areas where deer densities approach 90 deer per square mile, damage claims average $9,000 per farm. Browsing deer, elk, rabbits, and rodents can also injure or kill nursery and orchard stock. Beaver frequently raise havoc with trees in urban greenways and decimate expensive stream restoration projects (Figure 4-21). However, in other settings, beaver can be important in watershed restoration and provide an important succession of snags for wildlife.

DISEASE AND WEED CONDUIT

Simberloff (in Mann and Plummer) noted that corridors can be conduits for diseases, predators, exotic species, and fire. Poorly managed roadside corridors are notorious conduits for noxious weeds (Figure 4-22). Seeds and suckers from corridors may spread into the adjacent matrix. For example, cheatgrass (*Bromus tectorum*) dominates many roadsides in the Great Basin and spreads rapidly into abutting rangeland. This early curing, flashy fuel is the ignition source for many range fires.

PREDATION / PARASITISM

Narrow corridors are prone to high levels of predation and parasitism. Biologist Best reported that 29% of the songbird nests in an Iowa study plots were parasitized by brown-headed cowbirds (*Molothrus ater*). Large ground nesting birds like the ring-necked pheasant and ducks may be particularly susceptible to predation in corridors. In one eastern Colorado study, an estimated 55% of roadside pheasant nests were terminated by predation. Biologists acknowledge high rates of pheasant mortality in roadsides but argue that roadsides and other types of strip cover are not sinks; production exceeds losses to predation.

Michael Soule suggests disease, predation, and parasitism concerns are most applicable for threatened and endangered species. In highly developed landscapes, he argues the benefits of corridors for most species far outweigh their potential adverse impacts.
SOCIAL IMPACTS

Riparian corridors seem to be particularly susceptible to adverse impacts from recreation (Figure 4-23). The high levels of recreation activity in some riparian corridors may be sufficient to displace some species of wildlife. Often the vacated habitat niches are occupied by less desirable species. Intense recreation activity may also lead to the degradation of the corridor’s ecosystem with potentially long-term adverse consequences.

VISUAL IMPACTS

The alignment and management of some corridors produce highly contrasting lines and forms in the landscape. Highway, pipeline and powerline corridors routed through forests frequently produce unsightly swaths. Power transmission lines that march across farmland and prairie are viewed as equally unattractive. In some cases, woody introduced corridors block desirable views.

OTHER POTENTIAL IMPACTS

Networks of corridors may not always be desirable. For example, two spatially separated populations of the same species may each have developed different genetic adaptations to their unique environmental condition. If these patches are linked and species move between them and interbreed, these adaptations could be lost. Both populations could decline or go extinct.

These potential adverse impacts may be inherent in corridors or the way society chooses to manage them. Many can be mitigated by consulting with biologists when planning, designing, and managing corridors.
Case Study: Pequea - Mill Creek Watershed

Corridor Planning Principles discussed in Chapter 5 that are exhibited by this case study include:

Natural Connectivity Should Be Maintained or Restored.

Manage The Matrix With Wildlife In Mind.

Native Species Are Better Than Introduced Species.
Case Study: Pequea - Mill Creek Watershed

This case study illustrates how an extensive watershed-wide partnership coordinated by NRCS has produced and implemented a plan for restoring 37 miles of stream corridor and adjacent uplands. The conservation project, an on-going effort, continues to provide economic, wildlife habitat, recreation, and aesthetic benefits to watershed residents.

The Pequea–Mill Creek watersheds are located in central Lancaster County in south-central Pennsylvania. The case study project area encompasses approximately 135,000 acres. Dairy farming is the dominant agricultural enterprise with 55,000 dairy cows distributed among 1,000 small farms located in the watershed.

The Pequea–Mill Creek Hydrological Unit Area Project, initiated in 1991, is focused on reducing potential nutrient, sediment, and bacterial losses from concentrated livestock areas around farmsteads and nutrient and pesticide management in crop fields. Barnyard management, streambank fencing, armored stream crossings, restoration of riparian plant communities, and grazing area management have been emphasized to reduce contamination from farmsteads.

These watersheds were selected under USDA’s Water Quality Initiative to coordinate and increase a voluntary approach reducing agricultural nonpoint source pollution. Partners in this effort include Cooperative Extension, NRCS, Farm Service Administration, Lancaster County Conservation District, Pennsylvania Game Commission, Pennsylvania Department of Environmental Quality and numerous other agencies working with farmers, township officials and homeowners.

A partial list of accomplishments to date includes:

- Improved water quality
- 538 farmers have installed at least one conservation practice
- 180 farmers have developed contracts to install conservation practices
- 37 miles of stream have been fenced to exclude livestock on 84 farms in cooperation with the Pennsylvania Game Commission, U.S. Fish and Wildlife Service, and Lancaster County Conservation District
- 25 rotational lot management systems have been implemented to reduce the amount of runoff from livestock exercise areas
- Demonstrations of stream crossings, livestock watering and shading options have been developed with the Lancaster County Conservation District
- Information and education programs have been focused on farmer participation with involvement from the private sector in water quality efforts

Figure 1: The impacts of large numbers of cattle concentrated in a riparian zone for long periods of time can be devastating.

Figure 2: The same reach of creek after exclosure fencing and revegetation.
There are many other benefits from streambank fencing and planting in riparian corridors in addition to improved water quality. In the Pequea–Mill Creek Project, many farmers have learned that streambank fencing is an integral part of an effective dairy management program. For example, one significant benefit of streambank fencing has been improved dairy herd health. As one local expert says: “There is nothing in the stream that is good for cows and there is nothing the cows do that is good for the stream.” The Pennsylvania Game Commission has stocked trout in restored sections of the creek providing future recreation benefits for area residents.

Participants in the project report that streambank fencing and other conservation practices have:

- Improved dairy herd health
- Stabilized streambanks and reduced soil erosion
- Provided wildlife habitat
- Improved water quality
- Improved fish habitat
- Promoted rotational grazing

Water is a shared resource. By improving a stream, downstream neighbors benefit. Fencing sets a good example, encouraging upstream neighbors to protect their streams. Well-kept streams also make a good impression and provide a positive image of farms to the public.

For more information contact:

Pequea–Mill Creek Project
307 B Airport Drive
Smoketown, PA 17576-0211
Tel. (717) 396 – 9423
Fax. (717) 396 – 9427

The information for this case study was abstracted with permission from Pequea–Mill Creek Information Series Bulletins 28 and 30 prepared by Pennsylvania State University, College of Agricultural Science, Cooperative Extension Service in cooperation with USDA Natural Resources Conservation Service.

Figure 3: Trout, songbirds, and butterflies inhabit this restored reach of Mill Creek.
Corridor Planning Principles discussed in Chapter 5 that are exhibited by this case study include:

Large Reserves / Patches Are Better Than Small Reserves / Patches.

Connected Reserves / Patches Are Better Than Separated Reserves / Patches.

Several Reserves / Patches (Redundancy) Are Better Than One Reserve / Patch.

Introduced Connectivity Should Be Studied Carefully.
Case Study: Jefferson County Open Space Plan

This case study illustrates the value of regional scale open space planning in rapidly urbanizing watersheds. Conservation, enhancement, and restoration of wildlife habitat is an integral part of the Jefferson County Open Space Plan. Conservation corridors are a key element in linking dispersed patches of wildlife habitat. NRCS plays a major role in providing technical assistance as the plan continues to evolve.

Jefferson County, a progressive and rapidly urbanizing county near Denver, Colorado, initiated an open space preservation program during the early 1970s (Figure 1). This program is funded by a one-half percent sales tax on retail sales in Jefferson County. The goal of the Jefferson County Open Space Program is to preserve open space as a living resource for present and future generations. The primary objectives of the program are to acquire and maintain lands, to ensure the quality of life in the county by providing open space for physical, psychological, and social enjoyment, and preserving the natural and unique landforms that define Jefferson County.

The Jefferson County Open Space planning process is inclusive and collaborative involving many different stakeholder groups. Specific goals and objectives were established through interviews with a variety of groups and extensive public scoping meetings, which provided guidance for the inventory process. Using a geographic information system, inventory maps were prepared and include:

- Existing and proposed open space, parks, and trails
- Key land uses and activities
- Wildlife, archeological, historic, and cultural features
- Vegetation, surface water, and floodplains
- Landforms and geologic hazards
- Existing and proposed roads and infrastructure
- Slopes and viewsheds

From the inception of the Open Space Program, the NRCS has played a valuable role in providing inventory data, data evaluation, and technical assistance. Specific NRCS assistance included:

- Soils information
- Vegetative inventories
- Revegetation plans (native, pasture, hayland, post-wildfire)
- Erosion control (gully, streambank, disturbed upland areas)
- Pasture/hayland management
- Grazing management for native grasslands
- Plant materials
- Pond/water development
- Wildlife habitat development/improvement

The planning process identified lands that should be preserved or managed to provide habitat for valued wildlife species (Figure 2). The proximity of critical habitat lands to urban development, roads, and other recreational resources helped determine the appropriate level and type of management necessary to protect wildlife populations. Mapping wildlife habitat provided a valuable point of discussion between the Open Space Department and appropriate wildlife agencies regarding management and acquisition options.
The plan identified five types of open space and trails. Regional preserves are the keystone elements for the protection of wildlife. They are generally large (> 500 acres) and intended to protect the natural resource or unique feature. Regional preserves are reserved primarily as open space/habitat with development limited to less than 20% of the site. They protect floodplains, breeding areas, relict plant communities, rare and endangered species habitat, and other sensitive resources. Corridors, some with trails, are being developed to connect these significant resource areas enhancing their value for both wildlife and recreation.

Over the 25 years of its existence, the Jefferson County Open Space Program has acquired approximately 32,000 acres and has constructed over 100 miles of trails (Figure 3). This program demonstrates successful protection of wildlife habitat can be combined successfully with other uses such as recreation and aesthetics in urban/suburban landscapes. The program also illustrates the importance of building diverse partnerships to accomplish program goals in an urban context.

For more information contact:
Jefferson County Open Space
18301 West 10th Avenue
Suite 100
Golden, CO 80401

The information for this case study was abstracted with permission from Jefferson County Open Space brochures prepared by the Department of Jefferson County Open Space and from The Jefferson County Open Space Master Plan, 1989, prepared by BRW, 4643 South Ulster St., Suite 1180, Denver, CO and Urban Edges, 1624 Humboldt St., Denver, CO.

Figure 2: Mapped critical habitat and wetlands within Jefferson County.

Figure 3: A map of existing protected habitat areas and proposed acquisition areas.
Chapter 5: Planning & Design Principles

INTRODUCTION

Landscape ecologists and conservation biologists have formulated several basic concepts and principles that can be used to guide wildlife planning at the watershed scale. They focus on the spatial relationships between patches, corridors, and the matrix. Developed for regional landscapes and large protected patches (national parks, wildlife refuges, etc.), they are equally effective at smaller scales. Understanding these concepts and principles can help land managers make informed decisions about how best to use corridors to recreate landscapes that are more functional.

CONCEPTS

Noss and Harris observed that areas of high conservation value occur as nodes in the landscape. These nodes can exist in varying forms at varying scales - for example: a “champion” tree, a remnant wetland complex, or a county park, national park, forest, or rangeland. The patterns of these nodes and related corridors strongly influence the presence or absence of wildlife species and their use of the landscape.

Planning and designing wildlife reserves and corridors at a watershed scale should be centered around preserving, linking and buffering high value nodes. Three basic concepts emerge:

- Core reserves (nodes)
- Buffer zones
- Linkages

CONCEPTS AND PRINCIPLES

An ideal pattern for wildlife conservation would preserve important nodes (core reserves), provide corridors (linkages) between nodes, and establish multiple use (buffer zones) around the nodes and corridor. This pattern satisfies wildlife needs and buffers potential adverse impacts originating in the matrix. It also provides opportunities for low-intensity human use of the buffer zones around the reserves (Figure 5-1).

Figure 5-1: Core Reserves, Buffer Zones, and Linkages (after Adams and Dove, 1989).
In addition to these three concepts, a number of ecological principles can be used by land managers to configure patterns of landscape elements most beneficial to wildlife.

PRINCIPLES

Patches
- Large reserves/patches are better than small reserves/patches.
- Connected reserves/patches are better than separated reserves/patches.
- Unified reserves/patches are better than fragmented reserves/patches.
- Several reserves/patches (redundancy) are better than one reserve/patch.
- Nearness is better than separation.

Corridors
- Continuous corridors are better than fragmented corridors.
- Wider corridors are better than narrow corridors.
- Natural connectivity should be maintained or restored.
- Introduced connectivity should be studied carefully.
- Two or more corridor connections between patches (redundancy) are better than one.

Matrix
- Manage the matrix with wildlife in mind.

Structure
- Structurally diverse corridors and patches are better than simple structure.
- Native plants are better than introduced plants.

Each of the concepts and principles presented in this section are applicable at various scales in the landscape. However, the relative importance of different patch, corridor, and matrix functions may change at different scales. For example, the habitat function of corridors at the conservation plan scale is typically more important than the conduit function. Similarly, the corridor components that provide structural diversity are scale dependent. A structurally diverse regional corridor would consist of a diversity of plant communities (forest, meadow, riparian, etc.), whereas a structurally diverse grassed waterway would include a variety of plant forms (grasses, forbs, and shrubs). The application of these concepts and principles needs to be evaluated on a project by project basis depending on the needs of specific species.
Large reserves typically capture and preserve a greater diversity and quality of habitats. They often serve as core reserves/patches. Large reserves/patches offer advantages that should be exploited in wildlife planning efforts. These advantages include:

- **Positive area effects are increased:** Wildlife species with large home ranges are more likely to survive in large patches. Larger population sizes are possible, decreasing the likelihood of local extinction due to disasters or inbreeding. Wildlife and plants are more likely to achieve a dynamic equilibrium. The potential for including all plant community/habitat types within the region or area is increased. Competition for resources within and between species may be diminished.
- **Edge effects are reduced:** A larger percentage of the reserve is interior habitat, benefiting interior species, which are often the most vulnerable to local extinction. Population sizes of edge species and potential associated negative effects may be reduced.
- **Diversity is increased:** Large reserves/patches typically have greater habitat diversity, which may result in greater wildlife species diversity.

Connected reserves/patches are superior to separated reserves/patches in several ways. They enhance the habitat, conduit, filter/barrier, and source functions of corridors.

- **Increased Habitat:** Connected reserves/patches provide wildlife populations access to larger total areas of habitat - increasing numbers, sizes, and viability of individual populations and metapopulations. Corridors are a significant habitat component for many species, particularly in highly fragmented landscapes. In addition, the connecting corridors often serve as transitional habitat for animals moving through them. Connected patches at the conservation plan scale allow individuals safe access to a variety of habitats within their home range.
- **Presence of Conduits:** Communities and populations can move in response to seasonal disturbance or long-term environmental change. Genetic material, plant seeds, and dispersing juveniles can move between connected reserves, increasing viability within ecosystems.
- **Filter/Barrier Functions:** Movement of exotic plant and animal species may be inhibited by connections between reserves/patches. Patches and corridors can block or filter the movement of wind, airborne particles, pollutants, and wildlife attempting to move perpendicular to the long axis of the corridor. However, corridors can also facilitate the movement of undesirable species and disease between patches.
- **Source Functions:** Several reserves/patches connected by corridors are more likely to serve as a source (adding individuals to the population) than separated reserves.
Unified Reserves / Patches Are Better Than Fragmented Reserves / Patches.

Of two reserves or patches having exactly the same area, one fragmented and one unified (as shown above), the unified reserve/patch will be of far greater value. Its increased value stems from the same factors that make larger reserves/patches better than small reserves/patches (see the SLOSS discussion on pp 5-5).

- Positive area effects are increased.
- Edge effects are reduced.
- Diversity is increased.

Several Reserves / Patches (Redundancy) Are Better Than One Reserve / Patch.

- Redundancy is an essential component of healthy ecosystems at all scales. Populations and individuals frequently rely on more than one patch to fulfill life requirements. If only one reserve/patch exists at either the regional, watershed, or conservation plan scale, population and community viability may decline. Also, if only one reserve/patch exists and it is degraded or destroyed through natural causes or management mistakes, the habitat for entire communities of organisms may disappear. If several reserves/patches exist in a watershed, one of those reserves can be lost without seriously threatening the integrity of wildlife communities within the watershed (see the SLOSS discussion on pp 5-5).
- Redundancy may also contribute to larger total numbers of individuals, greater genetic diversity, viable metapopulations, and the increased probability of recolonization after local extinction in one reserve/patch.

Nearness Is Better Than Separation.

- The chance that wildlife inhabiting reserves/patches will interact becomes disproportionately greater as the distance between patches decreases. Individuals or groups of individuals occasionally venture outside of their primary habitat. While that distance varies by species, they are more likely to encounter, and thus use, a nearer patch. Juvenile dispersal and recolonization are more likely to succeed between patches close to each other.
- Far-ranging movement patterns of individual species, shorter distances between patches, and less contrast between patch and matrix result in higher potential for movement between patches.
Reserve/Patch Size: Single Large or Several Small (SLOSS)?

Although conservation corridors are the focus of this manual, a brief discussion of issues relating to reserve/patch size is needed. Arguments among conservation biologists continue over whether a single large reserve or several smaller reserves (having the same total area) is best for preserving biological diversity at a regional level. Several small reserves may result in highest localized species richness, but this strategy may compromise the integrity of populations of area-sensitive species. Diamond (1976) suggests, “The question is not which refuge system contains more total species, but which contains more species that would be doomed to extinction in the absence of refuges.”

Conservation corridors become an important part of this debate. If regional or watershed scale corridors are impossible or unlikely to succeed, a single large reserve may be the best choice. Edge and area effects are diminished, population sizes can be larger, and species diversity higher, resulting in greater diversity within the ecosystem. If several small reserves can be created and connected by corridors, a greater diversity of habitats may be preserved and a larger geographic distribution of populations maintained. Separate populations can exist in each reserve, isolated from local disasters affecting survival in other reserves, but acting as a functional metapopulation capable of sustaining the species across the landscape. The fragmented nature of most agriculturally dominated landscapes suggests that the concept of several small reserves will be most applicable.

At the conservation plan scale, the planning and design issue is generally not reserves but patches. Large patches, like large reserves, tend to support a greater diversity of species. However, if several small patches can be preserved (or created) and connected, the wildlife resource may be equally well served.

Corridor Principles

Continuous Corridors Are Better Than Fragmented Corridors.

- **Conduit Functions:** Corridors facilitate movement of organisms through landscapes. Gaps in corridors disrupt movement, especially for interior-dwelling species. The ability of an individual to cross corridor gaps is dependent on its tolerance for edge conditions, its movement and dispersal characteristics (i.e., how fast it moves, and how far it moves at one time), the length of the gap, and the amount of contrast between the corridor and the gap.
- **Stepping Stones:** While a continuous corridor is better than a corridor with gaps, corridors with gaps may be preferable to no corridor at all. It is not an optimal situation, but a series of small patches between two larger patches can serve as a "stepping stone" corridor if the distance between patches is not too far (see "Nearness Is Better Than Separation" on pp. 5-4).
- **Filter/Barrier Functions:** Gaps in an otherwise solid corridor seriously diminish the effectiveness of the corridor as a filter or barrier. Gaps allow plants, animals, pollutants, wind, and wind-blown particles access across the corridor, and often result in localized concentration of these elements. However, in some instances passage through corridors may be desirable.
WIDER CORRIDORS ARE BETTER THAN NARROW CORRIDORS.

- *Habitat Functions:* Corridors at the regional and watershed scales typically serve as transitional habitat for populations moving through them. The longer it takes a species to move through the corridor, the more important its habitat function becomes. Wider corridors reduce area effects and edge effects within the corridor. Thus, a broader range of species, including interior species, is more likely to use the corridor. At the conservation plan scale, corridors often play an important role as habitat as well as a conduit. Wider corridors at this scale will thus increase the amount and diversity of habitat available and may accommodate interior species.

- *Conduit Functions:* Wider corridors reduce edge effects for individuals and populations moving through them. Optimum width is determined by the strength of the edge effect and species requirements. Corridor A above is too narrow – edge effects dominate the corridor and predation and parasitism may be increased. Some researchers suggest that corridor B may be too wide – edge effects are negligible, but animals may spend too much time “wandering” within the corridor, increasing overall mortality. This concern is generally not applicable in agricultural landscapes because landowners cannot afford to set aside overly wide blocks of land in corridors. Corridor C balances edge effects with navigability issues and represents a more desirable width.

- *Filter/Barrier Functions:* Wider corridors are more effective barriers to movement across them.

- *Source Functions:* Wider corridors are more likely to act as a population source (adding individuals) than as a sink (removing individuals).

NATURAL CONNECTIVITY SHOULD BE MAINTAINED OR RESTORED.

- Maintaining historical connections between patches is essential in maintaining species diversity and population viability within a watershed. Preventing fragmentation of existing corridors that connect patches is less expensive than restoring connections. In many cases, however, it may be necessary to restore historical connections between patches. Historical vegetation (the vegetation that existed prior to fragmentation) should be used in restoring corridor connections.

INTRODUCED CONNECTIVITY SHOULD BE STUDIED CAREFULLY.

- Connected is better than fragmented, but care must be taken to ensure that one is not linking historically disconnected patches. Long-separated populations of the same species often develop specialized genetic adaptations to their particular habitat conditions. Connecting such populations through a corridor could result in the loss of those adaptations. In agricultural landscapes, connectivity between corridors and patches benefits most endemic (native) species when historic vegetation is planted in the corridor.
Two or More Corridor Connections Between Patches Are Better Than One.

- **Alternate routes:** Redundancy should be built into the conservation corridor network, particularly at small scales. If multiple paths exist for an animal to get from one point to another, the animal is more likely to complete the journey. It is important to consider that animals may not recognize a corridor as a conduit to a destination. They recognize it as a continuation of attractive habitat, and once inside, their movement is restricted and channeled by the corridor’s linearity. It is usually a chance occurrence that they make it from one end of the corridor to the other. The more chances there are for that movement to occur, the more likely it is to occur.

- **Insurance:** Multiple corridor connections between patches safeguard the system from disturbances and disasters. If management mistakes or natural occurrences such as fire temporarily destroy one of the corridors, other corridors will maintain the link between the patches while the disturbed corridor regenerates. It should be noted that periodic burning of corridors may be necessary for management.

- **Stepping stones:** Closely spaced stepping stone patches can be effective in providing alternate routes between larger patches. Species movement behavior, distance between stepping stones, and contrast between patch and matrix determine movement between stepping stones.

Matrix Principles

Manage the Matrix With Wildlife in Mind.

The matrix is often an important source of food and seasonal cover in agricultural landscapes. The full habitat value of both corridors and patches can only be realized when the adjacent matrix is managed for wildlife. If it is not managed with wildlife in mind, the consequences can be disastrous.

- **Late spring mowing of forage crops** can destroy nests and kill adults of ground nesting species like the ring-neck pheasant.
- **Fall plowing** may eliminate important food resources, critical to some species during the winter months. Conservation tillage practices leave waste grain on the surface, where it is available to wildlife. However, some conservation tillage systems rely on chemical weed control and could present a significant threat to certain species.
- **Grazing practices** can have a significant impact on the value of the matrix to wildlife. Heavily grazed pastures provide very little food or cover. However, managed grazing can be an important tool for maintaining healthy, vigorous grass/forb communities.

Managing the matrix to benefit wildlife can be as simple as how a hay field is mowed. Mowing from the center to the edge (toward cover) is preferable. Other techniques, such as using flush bars, rotation grazing, leaving turn rows adjacent to cover, and similar practices, can improve wildlife survival. Well-planned and designed corridors, in conjunction with a matrix managed for wildlife, should result in a great deal of wildlife movement between corridors and the matrix. Species living in corridors lying within a matrix of low value to wildlife will be restricted to the corridor, increasing competition for corridor resources.
STRUCTURAL PRINCIPLES

STRUCTURALLY DIVERSE PATCHES AND CORRIDORS ARE BETTER THAN SIMPLE STRUCTURE.

- **Vertical structure** refers to the “layers” of different plant forms and sizes in the plant community. Complex forested plant communities may have five or more layers; from top to bottom they are the canopy, the understory, the shrub layer, the herbaceous layer, and the forest floor. At the other extreme, a wheat field, for example, usually has only one layer – wheat. These layers are best illustrated with a cross-section of the plant community (see diagram). Vertical structure has a significant influence on the diversity of wildlife species present in the community. Different layers offer food, water, cover, shelter, or breeding sites to different species, resulting in a rich diversity of wildlife utilizing one habitat type. Each species fills a niche or specialized position, in the habitat. However, some species that evolved in grassland habitat, like the lesser prairie chicken (*Tympanuchus pallidicinctus*), require simple vegetative structure with diverse plant species composition.

- **Horizontal structure**, at a watershed scale, refers to the arrangement of different habitat types as seen from above. Components of horizontal structure would include forests/woodlands, shrubby areas, grasslands, cropland, urban areas, lakes and streams, and wetlands. The intricacy with which these different features are woven together or interspersed affects the overall habitat quality of the landscape. For example, grasslands afford certain benefits to wildlife when they exist on their own. The same is true for a windbreak and a wetland. But when these three habitats are arranged in close proximity to each other, the overall habitat value for many species is greater than the sum of the parts. Wildlife can move safely between each habitat type, exploiting the benefits offered by each.

- **Additional benefits**: Both horizontal and vertical structure provide additional benefits on the agricultural landscape. For example, windbreaks are frequently employed to control wind erosion of soil. Maximizing the benefits of windbreaks employs proper spacing of windbreaks and rows within the windbreak (horizontal structure) and inclusion of several plant heights to block wind at ground level and direct it upward (vertical structure).

- **Native plants**: Corridors are usually intended to benefit native or desirable naturalized wildlife species. Native wildlife and plant species have co-evolved, each benefiting the other. If the goal is to provide habitat, for native wildlife species, as it often is, native plant species have the highest probability of providing their life requisites. There are other practical reasons to use native vegetation. For example, native grass communities, once established, are often better at preventing invasions of exotic weeds. Also, disturbances, such as plant diseases, are usually less damaging to native plant communities than they are to monocultures of introduced or cultivated species. They are also less water consumptive and are less likely to require expensive supplemental nutrients.
Applying Principles (An Overview)

A general approach to using these principles in a wildlife corridor planning project involves:

1. Review the historical pattern of patches and corridors, if available.
2. Study the existing pattern of patches and corridors in the landscape.
3. Identify locations where connectivity is both desirable and feasible.
4. Use the above principles to propose the most efficient means to reconnect the landscape in a way that produces the greatest benefits to wildlife while minimizing the land area taken out of production or suburban development.

Every landscape is unique. Land planners and managers should utilize those principles that apply to the specific conditions inherent in the area being planned. Applications of these principles within the NRCS planning process is discussed extensively in Chapters 6 and 7.
Corridors exist in the landscape at a variety of scales, from individual fencerows to continentally important migration routes. Several researchers have explored the issue of scale as it applies to conservation corridors and in principle agree that there are three different scales at which corridors function in the landscape. For example: Reed Noss describes corridors at 1) the Regional or Continental scale, 2) the Landscape Mosaic scale, and 3) the Fencerow scale. While these are descriptive, easily understood terms, it is useful to redefine them in terms directly applicable to NRCS planning directives. The three scales of interest thus become:

- Regional scale
- Watershed scale
- Conservation plan and practice scale

A successful overall wildlife conservation effort must encompass all scales.

Regional Scale

Conservation corridors at the regional scale are large, loosely defined areas that connect large wildlife preserves or areas of high biodiversity. They are typically a diverse mix of natural and artificial plant communities, often tens of miles in width, that facilitate the movement of individuals and groups of individuals from one reserve to another. For example, neotropical birds and waterfowl make extensive use of riparian corridors during spring and fall migrations.

Regional corridors provide for the long-term health of populations and ecosystems and preserve biodiversity within the region by:

- Providing opportunities for wildlife populations and communities to adapt to environmental stress or change.
- Supporting genetic health of wildlife populations through occasional immigration and emigration of individuals between populations.
- Preserving opportunities for wildlife to meet basic life requirements such as seasonal migrations for breeding, birthing, or feeding.

Regional corridors are generally more important for larger, more mobile animals. Corridor length, speed of travel, and space and resource requirements of individual species determine which species will use the full length of the corridor. Generally, the corridor needs of larger animals also encompass those of smaller, less mobile species. By providing for movement of cougars, bear, elk, or other large, highly mobile species, the needs of many other species may also be met.

In essence, regional corridors are narrower versions of reserves, often relatively devoid of human disturbances, which allow populations to move in response to environmental changes or other stimuli. Many regional corridors have been used by certain wildlife species for generations.

Mapping Scale and Methods

Wildlife conservation can be viewed at varying levels of detail. At the regional scale, a broad-brush approach or “coarse filter” can be used to identify wildlife problems and opportunities at the wildlife community level. Important types of information to map for “coarse filter” regional scale studies include:

- Ecoregions
- Regional soils
- Surficial geology
- Vegetation types
- Air basins
- Topography
- Hydrology
- Major migration routes
- Special areas (winter range, etc.)
- Land cover types
- Roads, highways, railroads, and utilities
- Land ownership
- Existing wildlife preserves

“Much of the discussion about corridors leaves the impression that we are constructing something new in the landscape. We talk of ‘establishing’ corridors rather than ‘maintaining’ corridors… But the corridor strategy is fundamentally an attempt to maintain or restore natural landscape connectivity, not to build connections between naturally isolated habitats.” - Noss (1991)
Map Scale
Common map scales for regional mapping vary from 1:100,000 to 1:1,000,000.

Methods
Mapping the necessary information can be completed either by hand or with the aid of computers. There is currently a strong push across the nation to inventory natural resources and make the information available in common digital formats. Geographic Information Systems (GIS) technology is being used as a tool to view, combine, and analyze large sets of spatial and tabular information. Much of these data are available for a small fee (often free) and are highly appropriate for use in regional corridor planning projects. Data are frequently interpreted from aerial photographs, aircraft-based sensors, or satellite imagery. GAP analysis is an excellent example of this approach (discussed below).

Computers allow for easier and more precise management of data. If a GIS is used for analysis and map generation, the habitat requirements of many species can be evaluated relatively quickly. If hand methods are used, a few key indicator species representing a broad cross-section of biodiversity in the region may be selected.

GAP Analysis
A GAP analysis is a “coarse filter” wildlife planning approach that provides a quick overview of the potential distribution and conservation status of wildlife species in a region or watershed.

GAP analysis is based on correlations between vegetation communities and potential wildlife distributions. It also considers land ownership and management practices. GAP is based on the premise that habitat for wildlife is generally related to vegetation composition and structure. Two products from this process are 1) a species richness map and 2) a GAP map. The species richness map highlights areas where there exists potential for rich diversity in wildlife species - “hot spots” of biodiversity. The GAP map compares the geographic location of biodiversity hot spots with the location of areas managed primarily for long-term maintenance of native populations; i.e. national parks, forests, rangelands, wildlife refuges, and wilderness areas. If the two layers do not coincide spatially, there is a “gap” in the protection of biodiversity. Action can then be taken to conserve currently unprotected habitats and hot spots. The next step is to examine connectivity between reserves. If they are fragmented, have they always been fragmented or is fragmentation a result of human activities? If the reserves were historically isolated, should they remain isolated? If they were historically connected, regional corridors should be considered to reestablish the link. A general outline for the GAP analysis process follows. Additional information can be found in “Gap Analysis: A Geographic Approach to Protection of Biological Diversity” in *Wildlife Monographs* 57 (1) 1993.

<table>
<thead>
<tr>
<th>Outline for GAP Analysis Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Determine those species that occur in the region that are of concern or interest.</td>
</tr>
<tr>
<td>2. Collect and compile habitat relationship and occurrence data for those species.</td>
</tr>
<tr>
<td>3. Create a map of where the habitats occur in the region based on existing vegetation.</td>
</tr>
<tr>
<td>4. Overlay the wildlife habitat data with the habitat map to determine areas of rich species diversity.</td>
</tr>
</tbody>
</table>

Product: Species Richness Map

1. Prepare a general land ownership map that classifies lands into public and private ownership.
2. Assign a management status of 1 to areas that are managed for wildlife such as wildlife refuges, Nature Conservancy lands, etc.
3. Assign a management status of 2 to areas that are managed for natural conditions such as USFWS refuges managed for recreational uses and BLM areas of Critical Environmental Concern.
4. Assign a management status of 3 to areas that are prevented from being permanently developed, including most BLM and USFS lands.
5. Assign a management status of 4 to private and public lands not managed for natural conditions.
6. Overlay this map with the habitat relationship data to determine habitats that are offered the least protection in the region, with 1 status lands providing the highest protection.

Product: GAP Map
This process can be completed by hand, but GIS software can add speed, flexibility, ease of duplication, and the ability to explore multiple alternatives. If the information produced will be used by many different people over a long period of time, GIS is clearly a superior choice.

Make full use of ecoregion GIS maps of soils, crop production, and other production oriented resources. This technology can be used to map wildlife corridors of significance at regional scales. These maps will be an invaluable resource for regional scale wildlife planning efforts. They would be an excellent complement to any GAP analysis study.

Watershed Scale

The width of corridors important to wildlife at the watershed scale tend to be measured in miles or fractions of miles; although an entire watershed or portion of a watershed may be part of a regional migration or dispersal corridor. Like regional corridors, watershed corridors facilitate seasonal migration and dispersal. Yearling beaver, for example, will use a stream corridor to disperse from the area in which they were born and reared into unoccupied habitat elsewhere in the watershed. Watershed corridors also connect populations and sub-populations into metapopulations. Many species use corridors in the watershed as travel lanes linking various habitat resources within their home range. Often these corridors are used primarily as habitat by some species, birds in particular. Bats often follow corridors to avoid predation from owls. The corridors’ conduit function is of limited importance to these species. Where GAP analysis information is available, it should be integrated into area-wide corridor planning.

Mapping Scale and Methods

Mapping watershed scale corridors is similar to regional corridor mapping; however, the “coarse filter” used for regional corridors often needs to include more detail. More detail may be needed in defining the placement and shape of corridors as well as more specific information describing the wildlife uses and quality uses of landscape elements. For example, a large farm may be defined on a regional corridor map as simply “agricultural.” On watershed scale maps, this same farm may be further categorized into “row crops,” “small grains,” and “pasture” to adequately plan for a particular species.

Important general types of information to be included on watershed scale corridor maps include:

- Soils
- Vegetation types by plant community
- Air basins
- Topography
- Hydrology
- Land use
- Migration and dispersal routes
- Special areas (winter range, etc.)
- Land cover types, including crops
- Roads, highways, railroads, and utilities
- Land ownership
- Locations of existing conservation practices or programs such as CRP, WRP, or CREP

For a more specific data list, see chapter 6, pp 6-17.

Map Scale

Depending on the size of the watershed planning area, mapping scales could vary considerably. For most projects, scales should fall between 1:24000 and 1:100,000. The 1:24000 scale was the overwhelming choice of NRCS biologists in a 1997 survey.

Figure 5-4: USGS 7.5 minute quad maps are frequently used for watershed scale corridor planning.

Methods

Both computer and hand mapping methods are appropriate at the watershed scale. High resolution satellite imagery, aerial photographs, and USGS Quadrangle maps may be useful. If a statewide GAP analysis has been completed, much of that information can be used; however, it should be used with caution. Some states may use a relatively coarse mapping resolution in their GAP analysis, missing smaller features important at the watershed scale.
This is the scale at which much conservation planning and technical assistance programs operate. The widths of corridors at the conservation plan scale (farm, ranch, or community) are typically measured in feet to hundreds of feet. However, a conservation plan would be more effective for some wildlife species if it were part of a watershed scale corridor or at a minimum the larger landscape context of the farm, ranch, or community were considered. The habitat function of corridors at the farm or ranch scale is often more important than the conduit function. For example, the cottontail rabbit may spend 80% of its time utilizing habitat resources within a windbreak. Corridors at this scale are, however, used by some species as travel lanes to access resources. Quail, pheasants, and turkeys, for example, will use hedgerows and fencelines to travel between cover types.

Mapping Scale and Methods

Mapping at the conservation plan scale includes many details that are not applicable at the regional or watershed scales. A “fine filter” approach is used to make sure that all data types and features needed to successfully design and install conservation practices are mapped.

Map Scale

Depending on the size of the farm or ranch, mapping scales could vary considerably. Typical scales will fall between 1" = 100' and 1" = 660'. Most conservation plans are drawn at a 1" = 660' scale. For small areas, a scale of 1" = 330' is typically used.

Figure 5-5: NRCS soil maps provide an excellent base for conservation plan and practice scale planning.

Methods

Patches and corridors at the conservation plan scale will be inventoried and verified in the field. In some states, initial mapping of these features is typically done by hand on graph paper or on photocopies of soil survey aerial photos. Field maps can be transferred to the computer at a later date if desired. NRCS offices have increasing access to digital data, including soil surveys and digital orthophoto quads (DOQs), and from these data an extremely powerful GIS database will be created. These maps will show the location of all conservation corridors in the landscape, their age, condition, wildlife species known to use them, etc. Over time, this database would become useful at the watershed scale and possibly even the regional scale. Ground level photographs may be beneficial, in addition to plan view maps. Important general types of information for conservation plan and practice scale maps include:

- Soils
- Vegetation types and condition (health)
- Topography
- Hydrology
- Migration and dispersal routes
- Special areas (winter range, etc.)
- Special features (snags, etc.)
- Land use
- Land cover types, including crops
- Roads and highways
- Land ownership
- Locations of existing conservation practices
- Aspect
- Airflow patterns

For a more specific data list, see Chapter 7 pp. 7-5.

SUMMARY

Corridors exist in the landscape at three distinct scales. Functions and benefits of corridors vary with scale. A successful wildlife conservation strategy will address corridor, patch, and matrix issues at all three scales. The general principles and scale issues discussed and illustrated in this section need to be adapted to the unique resource circumstances of each region, watershed, farm, or ranch. They also must meet the particular habitat needs of wildlife communities, populations, and individual organisms. Care should be taken that activities intended to benefit one group of species does not compromise the ecological integrity of the entire community. The next section provides specific recommendations for wildlife enhancement of NRCS Conservation Practices.
CONSERVATION PRACTICE DESIGN RECOMMENDATIONS

Several planning concepts and principles were discussed earlier in this chapter. They presented a set of general guidelines to follow in most wildlife planning projects. However, with wildlife benefits as a goal, a specific set of recommendations is needed when designing each individual conservation practice.

About 150 conservation practice standards are published in the National Handbook of Conservation Practices (NHCP). Each standard is designed for a specific purpose and has specific design criteria. Each state decides which standards it will use. They adapt the standards for use in their state, adding appropriate technical detail, and issue them as state conservation practice standards. (NHCP state standards can be obtained from NRCS Field Offices and national standards are available for download from the NRCS homepage at http://www.ncg.nrcs.usda.gov/index.html.

Most conservation corridor practices can be grouped into either grass dominant or woody species dominant structures. They can also be grouped by their function or placement in the landscape. The inventory sheets in Appendix A provide the following categorization:

1. **Planted Grass/Forb Corridors**
 - Field borders
 - Field buffers
 - Filter strips
 - Grassed waterways
 - Grassed terraces
 - Vegetated ditches

2. **Natural Remnant Upland Corridors**
 - Grass and woody types

3. **Introduced Woody Corridors**
 - Windbreaks
 - Shelterbelts
 - Hedgerows

4. **Stream/Riparian Corridors**

The sections that follow give an overview of these four categories and present a series of recommendations for each category aimed at increasing its wildlife value. It is extremely important to keep in mind that these are general recommendations; they will need further modification at the state level. Equally important, recommendations should not interfere with normal and proper farming practices.

Planted Grass/Forb Corridors

A planted grass/forb corridor is a linear landscape element consisting primarily or exclusively of herbaceous vegetation. Most are relatively narrow in comparison to other corridor types. They are often typified by monotypical plantings of non-native grasses, such as smooth brome (Bromus inermis) or tall fescue (Festuca ssp.). However, recent emphasis has been placed on using mixtures that include as many native species as possible.

Purposes

Planted grass/forb corridors are installed for a variety of reasons.

- Wildlife habitat.
- Grassed waterways and vegetated ditches safely convey water through fields.
- Manage snow.
- Terraces and filter strips reduce erosion and filter sediments and chemicals from runoff.
- Reduce wind erosion.
- Field borders and buffers reduce competition from adjacent woodlands and provide space for maneuvering equipment.
- Provide commercial products.

Traditional Design Criteria

Grass/forb corridors intended to convey water must respond to water quantity, velocity, depth, duration of flooding, and outlet characteristics. The filter and erosion reduction functions of grass corridors are dictated by numerous criteria including width, sediment and nutrient storage capacity, flow depth, slope, and grass strength. Field border and buffer design must be wide enough to achieve their desired filter and sink effects. See appropriate national or state standards for specific criteria.

Recommendations to Enhance Wildlife Habitat

Planted grass/forb corridors generally constitute a relatively small proportion of the total acreage in agricultural regions, but their value per unit area to
wildlife far exceeds that of adjacent cropland. There are several ways to protect and enhance the wildlife value of this type of corridor.

Add tall residual grasses and forbs in proposed seed mixes.

Most grassed waterways (and other types of introduced grass corridors) are currently planted in only introduced grass species such as smooth brome. Habitat quality could be enhanced with the addition of tall, persistent grasses and forbs. Biologists Bryan and Best found that tall, residual grasses are necessary or extremely beneficial for nesting for some species. The most appropriate grass mixes for wildlife will vary by region.

Bryan and Best also found that nests were 1.8 times more likely to occur in grassed waterways with greater forb coverage. In their study, more nests were built in forbs than in grasses. Inclusion of a variety of forb species (with grasses) should increase the value of all introduced grass corridors to nesting birds.

Plant trees and shrubs in grass/forb corridors.

Current NRCS practice standards specify removal of all trees, stumps, shrubs, rocks, and other objects that would impede channel flow or compete with adjacent crops. Retaining or planting occasional clumps of trees, shrubs, or forbs would enhance the habitat value of grass corridors by providing a wider variety of cover types and a diversified food supply. Careful thought should be given to placement or retention of woody vegetation so that it does not interfere with normal farming operations, water flow, or crop vigor. Generally, trees and shrubs should be located in the periphery of grassed waterways, field borders, and vegetated ditches.

Manage vegetation to retain plant community vigor.

Grasses and forbs may need to be mowed, burned, or disked periodically to maintain plant vigor. The most appropriate management technique, and the timing of its application, will vary from region to region. Untimely mowing, burning, or disking can decrease nesting densities, destroy nests, and kill adult birds and mammals. Mowing lowers the height and density of vegetation, reducing habitat value accordingly. As stated in NRCS job sheet #412, mowing should occur at a time when nesting and brooding will not be disturbed. Mowing should occur early enough so that new growth will exist for spring nesters, but late enough to avoid peak spring and summer nesting periods. For maximum wildlife benefit, only a portion of a patch or corridor should be treated in any one year. Unmowed corridors become even more important in late summer as other types of habitat, like roadsides,

are mowed. State biologists will have region-specific information about the most appropriate management techniques.

Adopt farming practices that result in minimal disturbance of grass/forb corridors.

Unless absolutely necessary, avoid establishing cropping patterns that require farming equipment to be driven through grassed corridors. Bryan and Best found nesting to be more likely in grassed waterways that were not disturbed by farming activities. In general, avoid unnecessary travel through field buffers, field borders, and other grassed corridor types.

Increase corridor width as much as possible.

Increased corridor width directly increases the quantity of nesting sites, winter cover, escape cover, and food available to wildlife. It may also decrease overall edge effects, increasing the likelihood that the corridor will function as an effective travel route (Figure 5-6). The width of conservation practices will have to be balanced with the economics of crop production.
Strive for connectivity.
Opportunities usually exist to connect different types of planted grass corridors. Grassed waterways frequently serve as outlet structures for grassed terraces. Waterways may flow through several field borders and field buffers before they terminate in filter strips or vegetated ditches, both of which continue across the landscape. What can result, with proper planning, is a network of connected habitat and travel routes for a variety of species across a large area.

Connections should be made to other types of natural and planted corridors, patches, or management practices such as constructed wetlands, natural wooded draws, riparian corridors, wetland complexes, and CRP land.

Introduced Woody Corridors

A planted woody corridor is a linear element in the upland landscape consisting primarily or exclusively of woody vegetation. Woody corridor width varies considerably, from narrow hedgerows to multi-row shelterbelts. Planted woody corridors are used by numerous species of wildlife for food, nesting, winter cover, escape cover, and travel.

Purposes
Planted woody corridors provide a variety of benefits to wildlife, including:

- protective cover from adverse weather
- escape cover
- foraging and loafing sites
- reproductive / nesting habitat
- travel corridors for dispersing juveniles, travel between home range resources, and movement between larger natural habitats
- stepping stones for migrating birds

They also provide numerous other environmental services:

- reduce wind erosion
- protect and provide moisture for growing crops
- manage snow
- provide shelter for structures and livestock
- provide tree or shrub products
- provide living screens
- improve farm aesthetics
- improve irrigation efficiency

Natural Remnant Upland Corridors

Preserve the existence and health of natural remnant corridors.

Natural upland remnant corridors may be herbaceous, wooded, or a mixture of both. Size and configuration are highly variable. Whatever form they take, they are extremely important components of a corridor network. Natural remnant upland corridors often represent the last remaining patches of a pre-development ecosystem and are often crucial to the survival of native flora and fauna.

Appropriate management techniques for remnant patches will depend upon the composition of the plant community, patch size, and other site specific variables. Management recommendations should be coordinated with the NRCS field biologists from partnering agencies.

“Shelterbelts may be important habitats to species of wildlife that are dependent on permanent, woody vegetation in an area otherwise comprised of extensive fields of monoculture crops and pastures.” (Yahner 1983)
Traditional Design Criteria

The design of planted woody corridors is influenced by desired benefits. A windbreak designed to provide only wind protection is fairly simple; however, as additional benefits are added, the complexity of the design increases. The following is a brief discussion of the most important design elements.

- For all applications of windbreaks, one of the most important design elements is orientation. The windbreak should be oriented perpendicular to the direction of the troublesome winds (Figure 5-7).
- The area protected by the windbreak is generally agreed to be 10h (10 times the mature height of the tallest row in the windbreak). Due to the dynamics of wind patterns, the area protected is actually triangular in shape. This has important implications for design height, density, and length of the windbreak.
- Choice of plant species is based on desired function, wildlife needs, and other factors including: climate, soil, wind-firmness, density, height, crown spread, competitiveness, compatibility with adjacent crops, and pest and chemical resistance.

Forty-eight percent of farmers surveyed by Dishongh in six Midwestern states responded that one of the main reasons they planted windbreaks was enhancement of wildlife habitat.

Recommendations to Enhance Wildlife Habitat

Considerable research has been done on the habitat potential of windbreaks and hedgerows. Standard design criteria usually create a basic horizontal and vertical structure that produces valuable wildlife habitat. Several approaches can enhance woody corridor value as both habitat and travel corridor.

Increase corridor width as much as possible. Modern windbreak planting practices are producing narrower windbreaks. Wildlife value is improved with greater width. Wider windbreaks provide a greater diversity of habitats, larger quantities of food and shelter, and greatly improved winter cover.

Design a complex vertical and horizontal structure.

Planting a variety of deciduous trees and shrubs provides a habitat structure with a large selection of vertical and horizontal nesting and foraging sites. Conifers should be added to provide additional nesting and foraging sites and winter wind protection.

In multiple-row woody corridors, more complex vertical and horizontal structure are possible. Structural diversity can be achieved in the following ways:

- Plant a core of tall deciduous and evergreen trees, tapered to small trees and shrubs on either side.
- Plant a mixture of grasses, forbs, and low shrubs to form a diverse understory after trees and shrubs are established.
- Add one or more shrub rows approximately 30 feet to either side of windbreaks.
- Add a wide band of herbaceous vegetation on either side of the windbreak outside the shrub row.
- Clump groups of shrubs on the lee side of woody corridors. Edge, cover, and food will be increased.
- Add vines to the planting. Choose species that do not harm the plants on which they climb.

Figure 5-7a: Cross-section of a multi-row windbreak enhanced with diverse species composition, complex structure, windward and leeward shrub rows, and herbaceous vegetation.

Single row corridors such as field windbreaks and hedgerows typically have a simple structure. The structural diversity of these types of corridors can be enhanced in several ways:

- Alternate tree species within the row.
- Alternate deciduous and coniferous species within the row (consider alternating clusters).
- Alternate different forms (vase shaped, oval, or pyramidal) of trees within the row.
- Add a low row of shrubs beneath the tree row.
- Add a band of herbaceous vegetation beneath and on either side of the tree row out to the drip line after trees and shrubs are established.
- Add vines to the planting. Choose species that do not harm the plants on which they climb.
- Match growth rates of deciduous and evergreen trees.

Figure 5-7b: Above: longitudinal section of a single-row windbreak enhanced by above recommendations. Left: cross-section of the same single-row windbreak.
Keep wildlife needs in mind in the design phase.
Specific habitat components of corridors must be a deliberate design consideration.

- Provide food and cover over all seasons, especially during the winter months. Place herbaceous food plots or fruit bearing shrubs in the lee of a windbreak in areas with severe winters.
- Generally, native plant species should be used instead of introduced species. Occasionally, introduced species with high value to wildlife are appropriate. Always select species that provide food and/or cover for wildlife, but keep in mind that some introduced species highly valued by wildlife such as Russian Olive (*Eleagnus angustifolia*) may be targeted by state and local governments for removal. Special efforts should be made to insure that recommendations for introduced or adapted species are not in conflict with local regulations.
- The design should not cause snow to fill the entire windbreak. Snow covers food and habitat. Living snow fences can be planted 50 feet windward to prevent excessive snow accumulation within the windbreak.
- Perimeter and length are more important than area. Given limited available land, a long narrow windbreak would be preferable to a short, blocky one.
- Consider adding nest boxes and supplemental winter feeding stations.

Manage vegetation to promote plant vigor and longevity.
- Habitat quality increases dramatically with age. Stress longevity in the management of woody corridors.
- Manage livestock grazing within the windbreak. Grazing animals can severely damage ground vegetation as well as the trunks and lower branches of trees and shrubs. However, when managed properly, grazing can improve wildlife habitat within the windbreak by maintaining the desired plant community structure.
- Leave snags for cavity nesting birds and bats and insect eating species. If necessary, snags can be topped at approximately 20-25 feet to allow more light penetration for understory plant growth.

Manage the matrix as a complement to woody corridors.
Adjacent habitat and food resources are important. Minimum-till cropland provides sources of food and cover, while heavily grazed rangeland has little to offer most wildlife species. Fall plowing of croplands diminishes wildlife food and cover resources and should be avoided. Late spring mowing of forage crops can destroy nests and kill adults of ground nesting species like the ring-neck pheasant.
STREAM/RIPARIAN CORRIDORS

Riparian corridors are composed of streams and the vegetation found on either side of them. Undisturbed, they normally include the entire floodplain and a portion of the upland at the edge of the floodplain. Width is extremely variable, depending on the width of the stream, flow characteristics, and topography.

Many riparian corridors naturally contain large amounts of woody vegetation. Introduced riparian corridors in the form of riparian forest buffers should be heavily planted to woody species as well.

Traditional Design Criteria

NRCS specifications for three-zone riparian forest buffers provide an excellent framework for quality wildlife corridors (Figure 5-8). Research conducted in Iowa by Schultz and colleagues supports these specifications and adds some detail:

Zone 1 is closest to the water and consists of water-loving tree and shrub species. Willows are used frequently because of their fast growth and tendency to sprout from the roots.

Zone 2 starts at the edge of zone 1 and extends further upland. It is planted with slower-growing hardwood tree species interspersed with shrubs.

Zone 3 is essentially a grass filter strip on the upland side of zone 2 and must conform to NRCS conservation practice specifications. Schultz and colleagues recommend that this zone be dominated by tall residual grasses like switchgrass (*Panicum virgatum*), though other grass and forb species can be included. This zone is essential for agricultural settings - crops next to streams. It may also be important in forested or urban settings.

See NRCS NHCP #391a for further information.

Figure 5-8: Cross-section of a three-zone riparian forest buffer.

Purposes

Riparian corridors are perhaps the most valuable type of wildlife corridor per unit area. Most of the resources needed for a species to survive are located in and adjacent to the corridor. NRCS practice standards for riparian forest buffers state the following purposes:

- Create shade to lower water temperatures and improve habitat for aquatic organisms.
- Provide a source of detritus and large woody debris for aquatic organisms and habitat for wildlife.
- Reduce excess sediment, organic material, nutrients and pesticides in surface runoff and reduce excess nutrients and other chemicals in shallow ground water flow.

Recommendations

Because most riparian corridors are composed mainly of woody vegetation, most of the recommendations cited in the Introduced Woody Corridors section will apply to riparian corridors as well. However, riparian corridors also require periodic flooding to maintain stand viability. Likewise, the recommendations in the Planted Grass/Forb Corridors section will apply to the grass zone on the outer edge of riparian buffer strips. For specific management directions reference the federal interagency publication *Stream Corridor Restoration: Principles, Processes, and Practices.*
Riparian corridors are highly vulnerable to adverse impacts caused by upland management practices. The best place to address these impacts is not at the edge of the riparian corridor, but at the point of origin - in the uplands.

Conservation practices that reduce the amounts of sediments, fertilizers, and other pollutants leaving the field in runoff and erosion will support healthy riparian corridors. They will vary by region and landuse, but usually include the following recommendations:

- Cease cultivation of highly erodible soils on steep slopes.
- Use contour farming, strip cropping, etc. to reduce erosion on long slopes.
- Be flexible with crop choices - match the crop with a suitable soil type.
- Employ minimum tillage systems - no-till, mulch-till, ridge-till, for example.
- Practice crop rotation.
- Use rest-and-rotation grazing systems.
- Promote selective logging.
- Use effective waste management practices.

SUMMARY

Several planning concepts and principles are appropriate for use in wildlife corridor planning projects. They can be broken down into wildlife planning principles for patches, corridors, and matrices, and can be interpreted and used differently at different scales. In addition, design of NRCS conservation practices can be modified slightly to enhance wildlife habitat. High levels of connectivity, diverse vegetative structure, proper management and maintenance, and use of native plant species are key components of agricultural landscapes highly valuable to wildlife.
Chapter 6: Area-Wide Planning Process

Natural Resources Conservation Service (NRCS)

INTRODUCTION
Landscapes are complex assemblages of interactive patches, corridors, and matrices. They are continually being modified by humans to produce goods and services to meet social demands. The ecological and social dimensions of landscape function, structure, and change require an interdisciplinary approach to planning at an area-wide scale. The terms area-wide and watershed are used interchangeably when referring to planning scales larger than a site, farm, or ranch.

The NRCS planning process, a product of that evolution, as described in the *National Planning Procedures Handbook* (NPPH) affirms Hugh Hammond Bennett’s 1947 soil and water conservation principles:

- Consider the needs and capabilities of each acre within the plan.
- Consider the farmer’s facilities, machinery, and economic situation.
- Incorporate the farmer’s willingness to try new practices.
- Consider the land’s relationship to the entire farm, ranch, or watershed.
- Ensure the conservationist’s presence out on the land.

The NRCS planning process, a product of that evolution, as described in the *National Planning Procedures Handbook* (NPPH) affirms Hugh Hammond Bennett’s 1947 soil and water conservation principles:

- Consider the needs and capabilities of each acre within the plan.
- Consider the farmer’s facilities, machinery, and economic situation.
- Incorporate the farmer’s willingness to try new practices.
- Consider the land’s relationship to the entire farm, ranch, or watershed.
- Ensure the conservationist’s presence out on the land.
Bennett’s principles acknowledged a need to understand natural ecosystems and cultural activities at both area-wide and conservation plan scales. The vast majority of conservation projects are at the farm, ranch, or community plan scale. However, it is increasingly important to address conservation issues on a watershed and ecoregion planning scale. A watershed is typically larger than 5,000 acres and smaller than 1 million acres.

There are several ways in which conservationists become involved in large-scale area-wide planning efforts, often referred to as the Coordinated Resource Management Process:

- Partnering with other federal agencies who have authorization to initiate watershed planning, for example, the Army Corps of Engineers, U.S. Forest Service, or U.S. Fish and Wildlife Service.
- Partnering with various state agencies, soil and water conservation districts, regional planning commissions, counties, or other governmental entities, which have legal authority to plan at large scales.
- Partnering with private conservation organizations or land trusts, such as Ducks Unlimited or The Nature Conservancy.
- Providing information and technical assistance to planning agencies and private consultants involved in large scale planning.
- Facilitating the planning process for developing watershed plans for individual landowners, groups of landowners, communities, watershed councils, or similar groups who request technical assistance.

PLANNING PROCESS

Coordinating planning projects at both the conservation plan scale and watershed scale requires a flexible planning process. The NRCS planning process described in the NPPH provides a useful framework for guiding the planning process at both large and small scales.

The iterative planning process identifies nine steps carried out in three phases. In the NPPH, each step specifies a planning standard, list of inputs, and a list of products. The planning standard sets the minimum quality level for each step. The list of inputs recommends information sources while the list of products describes the outputs of each step.

The area-wide planning process diagram (Figure 6-1) demonstrates how the planning process can be used for wildlife conservation at the area-wide planning scale. Because the focus of this publication is on wildlife, wildlife concerns will be emphasized in each planning step. The existing NPPH standards, inputs, and products for each of the planning steps will be referenced; however, the primary focus is on providing information necessary for applying this process to wildlife conservation.

GETTING STARTED

PREPLANNING: AREA-WIDE/WATERSHED SCALE

The NPPH provides an outline of how to proceed with preplanning activities at an area-wide scale. The National Watershed Planning Manual is also a useful reference. In addition, the planning facilitator should:

- Understand preconditions that can lead to watershed planning.
- Identify stakeholders.
- Generate local support for watershed planning.
- Establish trust among stakeholders.
- Organize an interdisciplinary, interagency, public/private planning team.
Figure 6-1: Area-Wide Planning Process Diagram
Preconditions

Sociologists have identified several different preconditions that can lead to planning projects. Some of the more common preconditions include:

- Crisis
- Mandate
- Incentives
- Leadership

Crisis is often the factor that initiates conservation planning. In the Midwest, the devastating floods of the mid-1990s created a public awareness of the role that wetlands play in reducing flooding. This new insight prompted numerous watershed scale efforts to restore natural hydrological functions. Plans proposed that filled and tiled wetlands be restored and conservation easements be acquired in floodplains.

Mandates, typically regulatory, require watershed or project scale planning to address specific issues or problems. For instance, water quality standards mandated by another federal agency may require farmers to address confined animal waste problems. NRCS field conservationists often use such mandates as an opportunity to create support for a comprehensive planning approach addressing water quality issues at a watershed scale.

Incentives are used extensively by the NRCS to promote the voluntary adoption of conservation practices. In a recent survey, NRCS biologists ranked incentives as the most important factor influencing a landowner’s decision to participate in a conservation program. The USDA Wildlife Habitat Incentives Program (WHIP) provides cost-share assistance for private landowners to implement wildlife habitat development plans. Incentive programs are a useful tool for encouraging planning projects.

Leadership can come from public agencies, by private citizens, influential landowners, or conservation organizations. Area-wide planning may be promoted by a strong leader whose energy, personality, and vision can mobilize others to participate. In many cases, local conservationists will provide technical support to qualified leaders in other agencies or groups spearheading conservation planning in the watershed. In some cases, the conservationist may serve in this leadership role. District or NRCS Conservationists are often effective leaders because of the trust she or he has developed with many of the stakeholders in the watershed.

A combination of preconditions often will create the necessary climate for watershed conservation corridor planning. As preconditions become more conducive to watershed planning, the potential partners should take a proactive role by initiating a comprehensive planning effort.

Identify Stakeholders

Successful wildlife conservation planning at the area-wide scale depends upon bringing together interested stakeholders: landowners, citizen groups, Native American tribes, and government agencies to form a collaborative-based planning group. Collaboration-based planning is simply people pooling their resources to solve problems they could not address individually. A collaborative planning approach offers several benefits:

- Improve relationships between stakeholders
- Broad analysis of the problem improves the quality of the solution
- Parties retain ownership in the solutions
- Participation enhances acceptance of the solutions and willingness to implement
- Risk of impasse is minimized
- Cost-effectiveness is improved
- Potential for innovative solutions increases

(Gray 1989)

Successful area-wide planning and implementation often depends on voluntary participation and cooperation, thus initial identification, recruitment, and involvement of the stakeholders is critical. Care must be taken not to overlook potential participants. Overlooking a particular stakeholder group can create animosity and eliminate some of the support necessary for plan approval and implementation.
Stakeholder groups, which may be involved in watershed planning, include:

- Landowners
- State conservation agencies
- Federal land agencies
- State wildlife/fish & game agencies
- U.S. Fish and Wildlife Service
- Farm Bureau
- Resource conservation and development councils
- Conservation and environmental groups
- State extension service
- County commissioners
- Native American tribes
- Local citizens
- Municipal and county planning agencies
- Soil and water conservation districts
- Recreation groups
- Developers and realtors

Identifying and recruiting stakeholders is an ongoing process. The initial group of stakeholders can be used to help recruit other parties that should be involved in the planning effort.

Generate Local Support for Watershed Planning

The leader of a watershed planning effort needs to build a foundation of local support. He or she should visit key representatives of each stakeholder group to generate support. Several aspects of the watershed scale planning process should be ensured during each visit:

- It is a locally driven collaboration-based process.
- It improves cost-effectiveness through partnering.
- It produces multiple benefits. (See Chapter 4)
- It is a proactive approach to problems and opportunities.

Locally Driven Process

General support for planning is enhanced when it is clear that the process will be locally driven and collaborative in nature. All of the stakeholders will be involved in helping shape plan alternatives. Local control of the process is the fundamental underlying concept.

Cost-effectiveness

Another benefit of collaborative planning is cost-effectiveness. Limited financial and personnel resources can be leveraged by partnering with other agencies and conservation groups.

Corridor Benefits

Support for watershed planning can be created by promoting the variety of benefits that area-wide planning in general and conservation corridors in particular provide (See Chapter 4). Different sets of benefits are important to different stakeholder groups. Explain the plant and wildlife conservation benefits that a watershed plan could provide to conservation groups and the increased crop yields and reduced soil erosion to landowners.

Proactive Approach

Potential participants in a planning effort should also understand that planning is a proactive approach that can be used to manage the impacts of current and future human development on watershed resources, wildlife populations in particular. More importantly, proactive watershed planning can optimize the conservation of natural, cultural, social, and economic resources in the watershed.
Establishing Trust

Skepticism and distrust among various stakeholders with differing values are commonly the result of stereotyping or previous negative experiences. Stakeholders must trust each other if the planning process is to move forward. Conservationists should consider utilizing a qualified facilitator to bring divergent groups together to negotiate a plan in good faith. Facilitators can increase trust among the stakeholders by:

- Being a good listener
- Being respectful of others’ concerns
- Avoiding the use of unnecessary jargon
- Allowing each participant to share concerns and issues

The conservationist, whether facilitator or not, must be a good listener, respectful of all stakeholders’ concerns. Good communication is essential to building trust. The conservationist should encourage stakeholders to use common terms in their presentations and discussions. The introduction of technical terms or jargon may confuse or alienate participants and should be avoided.

Trust among the various parties can also be developed during the planning process. All stakeholders should be encouraged to discuss their concerns in a group setting. This process can dissolve misleading stereotypes and build greater trust.

Organizing the Planning Effort

The project leader’s next task will be to prepare for the initial planning meeting. Several key items need to be considered for organizing an effective planning effort.

- Meeting time and location
- Agenda
- Formalizing the planning effort
- Group structure
- Ground rules for meetings

Meeting Time and Location

Select a time for planning meetings that will allow the largest number of stakeholders an opportunity to attend. Ask each stakeholder about the dates and times most convenient for them. Match schedules and determine the best day and time. Typically, meetings will be held in the evening.

The meeting location is also important; it should be easily accessible for all participants. Agency offices should be avoided as meeting sites in areas where wildlife or other resource issues are controversial. A neutral meeting location like a library or school facility is usually a good alternative.

Agenda

A printed agenda, handed out to the participants at the beginning of the meeting is probably the most important tool for facilitating efficient meetings. An agenda helps keep the meeting focused and suggests to the participants that their valuable time will not be wasted. When participants feel that the process is unorganized, enthusiasm fades quickly.

In developing the agenda, the leader should have a clear understanding of what needs to be accomplished as well as realistic expectations of what can be achieved. It is often a good idea to establish time limits, in order to keep the meeting duration to a reasonable length. As a rule of thumb, initial meetings should not exceed 2 hours.
Formalizing the Planning Effort

Research on collaborative planning efforts suggest effective groups typically adopt some formal structure. A formal charter is not necessary but the group should have a clear mission statement. A mission statement outlines the broad purpose of the group so that it is clear what issues the group is going to address and what issues are outside its purview. In many cases, it may be appropriate to prepare a memorandum of understanding (MOU), outlining roles and responsibilities of the different participating groups. In addition, the group should have a title people can identify with, the Willow Creek Watershed Planning Committee, for example. There should be only one or two official points of contact that the public can call upon if there are any questions about the planning group. This helps prevent miscommunication. Groups also may wish to develop ways of reporting progress. Newsletters, mail-out brochures and web sites are examples of successfully used media.

Formalizing the planning process serves several key purposes:

- It demonstrates to the general public that this is an organized group of stakeholders with a specific function.
- It generates a sense of responsibility and commitment to the planning process; such that participants tend to feel an obligation to accomplish objectives.
- It is often necessary to acquire grants and other sources of funding.

Group Structure

Various models exist for structuring partnerships, but the following are some common elements found in many watershed planning groups:

- Coordinator
- Facilitator
- Steering committee
- Technical advisory committee
- Task groups

Coordinator

The coordinator serves as the leader of the planning effort and as a point of contact for the general public. The coordinator’s main responsibilities are day to day administrative functions including funding coordination.

Facilitator

A neutral facilitator can often assist planning efforts where some issues are highly controversial. A facilitator can sometimes overcome the barriers of mistrust among the stakeholders. A good facilitator should also be skilled in planning and guiding meetings.

Steering Committee

The steering committee consists of individuals and organizations representing the range of viewpoints of those residing in the watershed. The steering committee often provides the main direction for the group.

Technical Advisory Committee

The technical advisory committee is usually made up of government representatives, private individuals, and organizations with technical expertise to advise the steering committee and answer technical questions.

Task Groups

Task groups are often employed in efforts that involve several resources or many stakeholders. For instance, different task groups might be assigned to address wildlife, water quality, agricultural resources or other specific issues.

In some situations, it may be useful to build upon existing planning structures and institutions. As an example, existing Resource Conservation and Development Councils (RC&D) offer an effective structure for watershed planning. Where local perception of existing institutions is negative, it may be advisable to begin with a new, independent organization. Whatever approach is taken, an effective group structure should be open, flexible, stable, and credible.
Ground Rules for Meetings
Area-wide planning will invariably touch on some sensitive and controversial issues and ground rules for meetings are frequently needed to guide participant conduct. Ground rules promote honest but diplomatic dialogue that does not threaten stakeholder relationships. There are different lists of ground rules that facilitators use in conducting meetings. The project leader should be familiar with Robert’s Rules of Order and should have a copy on hand at each meeting. They will be needed when formal decisions are made. For general meetings and working sessions, it is probably best to keep the rules simple so they promote the free exchange of information and ideas.

Summary
Activities in the preplanning phase are important steps for laying a solid foundation in the watershed planning process. The NPPH offers some guidance on working with individuals and groups.

In addition, the NRCS Social Sciences Institute is currently producing a series of publications to assist conservationists involved in planning partnerships. The series entitled People, Partnerships, and Communities includes information sheets on listening skills, running effective public meetings, conflict management, community leadership, etc. The conservationist can find out more about this valuable resource at http://people.nrcs.wisc.edu/SocSciInstitute/. A selection of other potentially useful resources can also be found in the Planner’s Toolbox.
PHASE 1 COLLECTION AND ANALYSIS AT THE WATERSHED SCALE

Phase 1 involves:

- Identifying problems and opportunities
- Determining objectives
- Inventorying resources
- Analyzing resources

In Phase 1, the planning group works to reach consensus on the problems, opportunities, and objectives for the watershed plan. Frequently, a watershed planning project produces potentially significant environmental or social impacts affecting an endangered species, for example. In these cases, planning falls under the purview of the National Environmental Policy Act (NEPA). It is beyond the scope of this manual to discuss NEPA; however, numerous references are available.

The following discussion applies to those area-wide planning projects that do not require an EA or EIS. However, becoming familiar with the material in this Chapter will help the conservationists and the planning team in preparing an EA or EIS for a watershed plan, if it is needed.

STEP 1 IDENTIFY PROBLEMS AND OPPORTUNITIES

Planning Standard

The stakeholders’ wildlife and wildlife habitat problems, opportunities, and concerns are identified and documented.

Discussion

The NPPH provides an outline for identifying problems and opportunities at a watershed scale. This section focuses on several of the key tasks:

- Delineating a planning area
- Creating a base map
- Identifying wildlife and wildlife habitat problems and opportunities in the planning area

Delineate Planning Area

Numerous criteria can be used to delineate a planning area. Each criterion has its advantages and disadvantages for wildlife conservation planning.

Political or Resource Administrative Criteria

Advantages

- **Political Boundaries**
 - Familiar boundaries for landowners; they suggest local control
 - Reflect how many land-use decisions are made
 - Define regulations and regulatory procedures
 - May include functioning planning agencies and adopted plans

- **Water District Boundaries**
 - Familiar boundaries for landowners; they suggest local control
 - Reflect how many water use decisions are made
 - May include active planning committees and adopted plans

- **Conservation District Boundaries**
 - Familiar boundaries for NRCS
 - Familiar boundaries for landowners and suggest local control
 - Include active planning committees and adopted plans

Disadvantages

- Do not relate to physical landscape structure or ecological function
- Habitats may not conform to political or resource administrative boundaries
- Wildlife home ranges, migration, and dispersal do not conform to political or resource administrative boundaries
- Existing plans and regulations may not have adequately considered wildlife and wildlife habitat
Biological or Geographic Criteria

Advantages

Wildlife Species Ranges
- Reflect wildlife use of the landscape
- Critical for planning for wide-ranging species such as cougars and bears
- Emphasize values of landscape level planning for wildlife

Watersheds
- Define hydrological processes within the boundary
- Management practices are reflected throughout the watershed
- Define the location of critical riparian corridors
- State wildlife management units are often based on watersheds

Disadvantages
- Watersheds may cross several political boundaries
- Home ranges of many species are not well-known and would be time consuming and expensive to generate
- Home ranges of some species may include several watersheds
- Seldom is a single planning, administrative, or regulatory mechanism operative
- The necessary planning, administrative, and regulatory mechanism could be complex, cumbersome, and often conflicting
- Boundaries could be unfamiliar and confusing to landowners
- Suggest regional or state control; an unpopular concept with most landowners

Create a Base Map

Scale
During the process of delineating a planning project boundary, a base map should be prepared to help participants visualize the planning area. USGS 7.5-minute quadrangles at 1:24000 are often an appropriate scale for watershed planning projects. Large watersheds will require splicing together several maps. It should be noted that some quadrangle maps do not reflect current conditions, particularly in rapidly urbanizing areas and may need to be updated.

Context
The NPPH provides some guidance for preparing a base map. Key elements to include on the base map are:

- Topography
- Hydrology
- Political boundaries
- Transportation and utilities
- General land ownership (public/private)

These elements should be displayed in simple graphic form maintaining clarity even when additional information is added or overlaid later during inventory and plan preparation steps. Figure 6-2 provides an example of a watershed base map. The planning boundary follows a watershed boundary except at the upper and lower ends where political boundaries were used. This was necessary because two counties in the study area chose not to participate in the planning project, a common problem in many watershed planning efforts.

The team will need to decide if it will produce hand drawn or computer-generated base maps to record inventory information and prepare plans. This decision will depend on resources available such as personnel, funding, and computer hardware and software.
Computer Generated Maps

Computers can be an extremely useful tool for large scale planning because of their capabilities for storing, manipulating, and displaying large quantities of data. A Geographic Information System (GIS) is a particularly valuable computer tool for watershed planning. GIS is a collection of computer hardware and software designed to efficiently store, update, manipulate, analyze, and display all forms of geographically referenced information. GIS can be used to organize information in layers such as hydrology, topography, wildlife distribution patterns, and critical habitat areas. Unlike manual mapping systems, the drawing scale can be adjusted and data layers can be easily updated. The example base map was completed using GIS (Figure 6-2). Although the base map was printed on an 8-1/2” by 11” sheet, it could be printed on a larger sheet format to facilitate the placement of additional information. In many states, existing resource data are being converted to GIS formats. Planning team members from resource agencies should check availability of existing GIS data. For instance, the Automated Geographic Reference Center (AGRC) in Utah is consolidating data from various state and federal agencies and is organizing it into a GIS format. GIS maps are then made available to the public for planning purposes.

Hand Drawn Maps

If computer resources are not available, it will be necessary to prepare the base maps by hand. Hand drawn maps should be prepared using indelible ink on durable mylar or drawing film, so that blueprints or large format photocopies can be made and used during the planning process.

Problem and Opportunity Identification

The NPPH outlines a general process for identifying problems and opportunities. The key steps in this process include:

- Scoping
- Reviewing existing data
- Gathering preliminary expert opinion
- Verifying field data
- Making recommendations for studies (if necessary)
- Documenting of problems and opportunities

Scoping

Scoping involves direct communication with various publics and dialogue among planning team members. The purpose of scoping is the preliminary identification of problems and opportunities for wildlife conservation in the watershed. During scoping, it may become evident that the planning project warrants further environmental evaluation as required by NEPA. Other references should be consulted for preparing NEPA documents using proper procedures and formats.

Interdisciplinary Approach

Wildlife conservation at a watershed scale is complex and involves many interrelated resource issues. Consequently, identification of problems and opportunities requires an interdisciplinary approach that addresses ecological, cultural, social, and economic issues. It is particularly important that wildlife issues are addressed by a knowledgeable team with backgrounds in wildlife biology, terrestrial and aquatic ecology, and conservation biology. Together, they can identify the problems and opportunities of greatest significance to the wildlife resource. However, biologists and ecologists must interact with other team members; interdisciplinary planning is effective only when all participants work across disciplines to achieve a plan that is directed toward the conservation of desired resources. It is the planning coordinator’s responsibility to keep the group focused on problem identification and not on premature solutions.

Problem Identification

During scoping meetings, the public and different stakeholders are given an opportunity to describe problems and opportunities from their perspective. This includes listening to experts, long-time residents, the general public, and various stakeholders. Scoping is an important time to interact with each other, identify issues of concern, and to build solid working relationships.

Public involvement from stakeholder groups that may seem reluctant to directly participate on the planning team must be nurtured. Input from these groups and the general public may be gained through surveys, informal one-on-one meetings, meetings with special interest groups, and open public meetings. Often perceived problems are identified in this process. These problems are real to the stakeholder and must be addressed. Research reports, studies, and expert testimony are tools that can be used to clarify the facts surrounding many of these concerns.
Opportunity Identification

In addition to identifying problems, the group should take a proactive approach and identify opportunities to enhance wildlife habitat and biodiversity. Unlike problems, opportunities do not place blame on any particular group within the watershed. Sometimes, an opportunity becomes the factor that rallies and sustains group support for a project. The group should reference Chapter 5 for ideas on identifying opportunities for improving conservation of wildlife in the watershed.

Group Watershed Tour

A watershed tour is a valuable scoping tool for identifying problems and opportunities. It provides an opportunity for team members to discuss perceptions of problems and possibilities in the watershed. It is best to schedule the tour after the initial planning meeting so that the public’s concerns identified during scoping can also be addressed in the field.

The NRCS Social Science Institute has developed Rapid Resource Appraisal (RRA), a format for a daylong field trip and a set of activities that planning groups can use to quickly learn about the problems and opportunities in a watershed. The RRA (SSI 1997), which can be specifically tailored for wildlife issues, should be done shortly after scoping so all participants become familiar with the issues and their complexity. Field notes, photos, videos, etc. should be compiled during the tour to record conditions for future reference. A useful brochure on RRA can be found at the NRCS Social Sciences Institute web page described previously in this chapter.

Review Existing Data

The planning team should reference any previous work done in the watershed such as environmental impact statements, environmental assessments, planning reports, wildlife research projects, and thesis. Reference librarians can assist in locating these resources. In some states, GAP analysis data (as described in Chapter 5) may be available and should be utilized in identifying problems and opportunities.

Preliminary Expert Opinion

Biologists and ecologists on the planning team will be responsible for identifying the wildlife related problems and opportunities inherent in the pattern of patches, corridors, and matrix in the watershed. Although the pattern of these landscape features will be different in each watershed, there are relationships and land use practices common to most watersheds that should be identified including:

- How do wildlife utilize the pattern of landscape elements? Note in particular, patches with high biodiversity and corridors important for dispersal or migration.
- What existing patches or corridors are being managed for biodiversity?
- What land uses or management practices may be adversely impacting the habitat or conduit functions of existing patches and corridors?
- What land uses or management practices may be limiting wildlife species diversity or abundance?
- What patches could be linked with corridors to enhance biodiversity?
- What locations in the watershed have the potential to be restored as patches or corridors?

Biologists and ecologists should consolidate the information gathered during the scoping process and watershed tour and prepare a preliminary report of their findings.

In-field Verification

The planning team should schedule additional field trips to verify problems and opportunities identified in the preliminary expert opinion report. This provides another opportunity to refine the group’s findings.

Recommendations for Studies

In many cases, existing data on wildlife populations and habitat for a particular watershed is limited. Field studies may be required before the team can begin preliminary documentation of the problems and opportunities. Additional data may be collected during the inventory step of this phase. Problems and opportunities will not be finalized until the resource data are analyzed in planning step 4.
Documentation

After problems and opportunities have been identified, they should be documented on the base map (Figure 6-3). The value of mapping the results is that it ties issues to specific locations within the planning area. Short reports should be prepared to supplement mapped data. The team should also document problem and opportunity areas with photographs for future reference. Photographs of the existing condition can also be extremely valuable during the evaluation of the implemented plan.

Products

- Mapping format, scale, precision, and role of technology
- Base map with planning boundary
- Preliminary identification of wildlife and wildlife habitat problems and opportunities documented on base maps and short reports

Develop a Vision Statement

The main reason that stakeholders initiate watershed planning is because they wish to change the existing conditions in the watershed to some desired future condition. The desired future condition defines the focus for the inventory, the benchmark for the analysis of existing conditions, criteria for formulating and evaluating alternatives and guidance for what conditions to evaluate and monitor. Often the planning team will develop a vision statement; a short description of what they believe the future condition should be for the watershed. This vision must be shared among all stakeholders and agreed upon by everyone in the planning effort.

The vision statement may be one general statement for all resources in the watershed or the group may decide to craft individual statements for each resource. In the later model, a specific statement would be prepared for the wildlife resource. A vision statement should clearly define the final destination of the planning effort. It will be the touchstone throughout the entire planning process.

The following is the vision statement for wildlife conservation from the Edisto River Basin Project in South Carolina:

A Vision for Wildlife in the Edisto River Basin

Wildlife and wildlife habitat are important to enhancing the quality of life of people both inside and outside of the basin area. Because there is an abundance of good quality habitat, the committee sees that conservation of natural habitats and prevention of degradation is a significant opportunity within the Edisto Basin....Connectivity is believed to be essential for the long-term viability of a number of native species. For these reasons, maintaining and enhancing both large blocks of habitat and connectivity among habitats are important for sustaining regional wildlife diversity. (Beasely et al. 1996: pp. 186)

Step 2 Determine Objectives

Planning Standard

The planning group’s objectives are clearly stated and documented.

Discussion

The NPPH provides an outline of how to determine objectives at a watershed scale. In addition, the planning group should:

- Develop a vision statement
- Establish objectives (desired future condition) for wildlife conservation and biodiversity
Figure 6-3
Determine Objectives

Objectives are road maps to desired future conditions expressed in the vision statement. Objectives are specific statements describing how the desired future will be achieved. The following are common attributes of an objective:

- Start with an action verb
- Specify a specific outcome
- Specify a time frame to reach the desired outcome
- Frame objectives in positive terms
- Make objectives specific and measurable for later evaluation
- Phrase objectives in a way that describes what is desired without prescribing a specific solution

Objectives for wildlife should respond to the wildlife conservation problems and opportunities identified in Step 1. Objectives may be revised as new information is generated during the inventory and analysis steps. The planning group should also be aware of any federal, state, or local laws related to wildlife that could affect the plan concepts and objectives.

When developing objectives, the principles discussed in Chapter 5 should be consulted. In addition, the following list of categories can serve as a guide for the development of a comprehensive set of objectives. The planning team may want to develop objectives for each category.

Objective Categories:

Habitat
- Matrix
- Patch
- Corridor

Wildlife
- Non-game
- Game
- Vulnerable

Other
- Educational
- Policy

It is important to develop both short and long-term objectives. To maintain stakeholder commitment to watershed planning efforts, some tangible objectives need to be achieved in a short time as well as results that may be realized 10 to 20 years in the future.

Documentation

The vision statement and objectives for the planning project should be recorded in a short report. It may be useful to prepare a brochure with highlighted objective statements, photographs, drawings, charts and other graphics depicting the desired future condition of the watershed. The brochure can be used for both promotional and educational purposes.

Products

- A vision statement (desired future condition)
- Measurable objectives for wildlife and wildlife habitat

STEP 3 INVENTORY RESOURCES

Planning Standard

Sufficient data and information are gathered to analyze and understand wildlife and wildlife habitat conditions in the planning area.

Discussion

The general intent of the resource inventory is to describe existing (benchmark) conditions within the project planning boundary. The wildlife resource section of an inventory should include a wildlife species component and a habitat component. When watershed plans require preparation of an EIS or EA, NEPA guidelines must be followed for inventorying wildlife. The wildlife resource inventory at a watershed scale should:

- Investigate in greater detail each problem and opportunity identified in Step 1
- Collect additional data as necessary in response to the vision statement and specific objectives established in Step 2
- Describe wildlife resources including: species diversity and abundance, threatened or endangered species and vulnerable populations
- Describe wildlife use of existing patches, corridors, and the matrix
- Describe general habitat conditions in patches, corridors, and the matrix
Information generated in the watershed inventory is useful for further defining the problems and opportunities identified in Step 1. Inventory information may also suggest the group’s objectives need to be altered to more accurately reflect conditions within the project boundary.

Inventory Responsibilities

In many instances, the technical advisory committee or a similar subgroup of the planning effort will be responsible for the wildlife and wildlife habitat inventory. Participants on these committees generally have the best access to wildlife resource data since many will be biologists or other resource professionals. However, it is also important to involve other stakeholders when possible in the inventory process. Many long-term residents, local biology teachers, bird watchers, or environmental groups can offer valuable insight. Involving all of the stakeholders creates a sense of ownership in the process, leads to better input of information, and establishes a better group understanding of the wildlife resource.

Data Collection

The NPPH provides a general outline for inventorying resources at a watershed scale. Ecologists and biologists in consultation with other team members will specify the kinds of data required to adequately plan for the wildlife resource. Each watershed is unique, hence most data requirements will be watershed or area specific. However, some basic data needs relate to most watershed scale projects:

Wildlife Species Data Needs

- Wildlife present in the planning area
- Non-game species
- Game species
- Threatened and endangered species (federal and state listed species)
- GAP data (where available)
- Vulnerable populations of a species
- Historical species (once present but no longer reside in the watershed)
- Population characteristics for species of concern
- Culturally important species (especially those tied to Native Americans or valuable to limited income groups for subsistence)

Wildlife Habitat Data Needs

- GAP data (where available)
- Existing vegetation
- Historical vegetation
- Wildlife species/plant communities relationships
- Land cover types
- Land ownership
- Habitat features
 - Patches with high biodiversity
 - Patches with vulnerable populations
 - Migration and dispersal corridors
 - Special areas (e.g., calving sites)
- Potential habitats
- Species ranges for species of concern
- Water availability and historical hydrology

The goals of the inventory process for watershed planning are to identify the most important elements of wildlife habitat at the landscape scale and determine the level to which they are protected. These key elements will form the basic structure of the conservation plan alternatives developed in later steps. A GAP analysis (described in Chapter 5) is useful for this purpose. The GAP map identifies areas with high levels of biodiversity that are currently not being managed for wildlife conservation (Figure 6-4).

Documentation

All inventory data should be mapped at the same scale as the base map (Figure 6-5). This may require enlarging or reducing mapped information from different sources. For a watershed inventory, a convenient mapping scale is the 1:24000 USGS quadrangle map. It should also be noted that some data features such as corridors may have to be exaggerated in scale to be visible on the base map.

The biologists and resource specialists on the planning team should determine the specific types of inventory maps that need to be generated to depict the wildlife resource in the watershed. The categories and level of detail on the maps will vary depending on the regional context. A short report summarizing inventory results may also be appropriate.
Figure 6-5
Products
- Detailed inventories of the planning unit
- Information on human considerations
- Identification of other ecological concerns, including wildlife issues
- Identification of cultural resources
- Identification of infrastructure physical features, such as roads, houses, fences, power lines, and other utilities
- Benchmark data for the planning area

Analysis of resources at the watershed scale

Analysis of resources at the watershed scale is complex. An interdisciplinary team approach is necessary to conduct a thorough analysis that describes the interrelationships between resources. Biologists, ecologists, and other resource specialists should provide specific guidance for analysis of wildlife and wildlife habitat. Again, all stakeholders should be involved in the analysis process to the extent possible. Group involvement promotes better understanding of the wildlife resources, which will facilitate development of plan alternatives in Step 5.

Results of the analysis may suggest that some previously defined objectives may need to be eliminated or modified; some new objectives may be added. At the completion of Step 4 and Phase I the planning group should be in agreement on problems, opportunities, and objectives for the watershed plan.

The analysis of watershed wildlife resources will focus on the community level. Major issues include wildlife species diversity and abundance, critical habitat reserves/patches, linkages between major corridors and reserves/patches, and attributes of the matrix detrimental or beneficial to wildlife.

The intent of the analysis of wildlife resources at the watershed level is to:

- Locate key reserves/patches, corridors, and special areas with high levels of species diversity
- Describe the general status of wildlife populations or metapopulations of species of concern
- Describe the general factors limiting species diversity or species abundance
- Identify gaps in key corridors
- Identify which reserves/patches or corridors may be at risk
- Describe factors creating at risk conditions
- Identify other wildlife related issues based on project objectives

Analysis Questions

The analysis of wildlife related resources should answer the following key questions. Additional specific questions may be developed by the planning team based on objectives established by the group.

- Depict the current condition of wildlife and habitat resources in the planning area
- Compare existing conditions with potential conditions
- Identify the causes of resource problems
Wildlife Species Component

- What factors are limiting game and non-game wildlife species diversity and abundance?
- What wildlife populations are vulnerable to local extinction? What are the limiting factors for these vulnerable populations?
- Are there any threatened or endangered species? What are the limiting factors for these species?

Wildlife Habitat Component

- Which reserves/patches have the greatest species diversity?
- Which reserves/patches that have the greatest species diversity are in public ownership?
- Which corridors are essential to species migration or dispersal?
- Where are gaps in corridors that limit migration/dispersal?
- What existing corridors are at risk and for what reasons?
- Where should new corridors be placed?
- Where are potential habitats?
- What attributes of the matrix management or land use are detrimental or beneficial to wildlife? Where are they located?
- What natural disturbance factors have been altered (fire, grazing, insect control)?

Products

- Reserves/patches with threatened and endangered species or vulnerable populations
- Reserves/patches, corridors, special areas and special features at risk
- Potential habitats for restoration
- Reserve/patches with high biodiversity not presently being managed to preserve or enhance biodiversity (GAPS)
- Corridors used by wildlife for migration and dispersal
- Gaps in existing corridors
- Potential corridor locations that could facilitate dispersal between patches
- Special sites and features
- Field management practices detrimental or beneficial to wildlife

An example of a watershed composite analysis map is presented in Figure 6-5. The value of mapping the results of the analysis is that it ties the conclusions to specific locations within the planning area. The participants can see direct links to the inventory, analysis, and real resources, which will facilitate Step 5, formulating alternatives.

Documentation

The answers to these questions should be documented in a short analysis report and on a composite map. It is important to synthesize the analysis information into concise, accurate, and easy to understand tables, graphs, and maps. A concise presentation of information will facilitate group discussion.

The composite map would document the habitat condition for significant reserves/patches, corridors and the matrix in the watershed. It would also locate:

- A complete statement of objectives
- An analysis of the benchmark condition of the planning unit and related areas
- A complete analysis of all resources inventoried
- Environmental evaluation
- Cultural resources evaluation
- Other program and legal evaluations
- Identification of the causes or conditions that resulted in the resource problems
- A complete definition of problems, opportunities, and concerns
PHASE 2 DECISION SUPPORT AT THE WATERSHED SCALE

Phase 2 involves:

- Formulate alternatives
- Evaluate alternatives
- Make decisions

In Phase 2, the planning team’s task is to develop a range of plan alternatives that address the problems, opportunities, and objectives identified in Phase 1. At the completion of Phase 2, the planning group will select a watershed plan that will be put forward for broader public review.

STEP 5 FORMULATE ALTERNATIVES

Planning Standard

| Alternative plans (treatments) are developed to meet quality criteria and objectives of the watershed planning team. |

Discussion

The NPPH outlines a general process for formulating watershed scale plan alternatives. The purpose of this section is to provide guidance for formulating alternatives that address wildlife conservation. The wildlife component of the watershed plan should be prepared by the entire planning team. It is assembled as a series of map overlays or layers. The base layer is the composite analysis map, which depicts existing habitat resources in the watershed. Subsequent layers illustrating proposed solutions to specific problems or opportunities are overlaid on the analysis composite base maps. Layers typically included:

Existing Habitat Resources – This base is a copy of the composite analysis map prepared in Step 4.

Function – This layer delineates the location of functional issues that need to be addressed by the watershed plan (i.e., wildlife habitat, floodplain management, erosion control, water quality issues).

Existing Habitat Resource Management – This layer delineates recommendations for preservation, enhancement, or restoration of existing habitat resources.

Potential Habitat and New Wildlife Plantings – This layer delineates major sites in the watershed that could be developed into wildlife habitat (new plantings for wildlife are shown on this layer).

Synthesis – This layer uses the concepts and principles discussed in Chapter 5 to integrate the three previous layers into an ecologically sound wildlife plan that responds to the unique resources of the watershed and the planning team’s objectives.

First Layer – Function

Many references on planning theory recommend that initial planning studies focus on functional issues. Functional issues at the watershed scale usually include flooding, erosion control, and air and water quality protection; rarely do projects focus on wildlife resources alone. Typically functional issues are what motivated landowners and communities within a watershed to initiate the project. The problems and opportunities identified in Steps 1 through 4 reflect the issues of concern. The recommended process for addressing functional issues is:

- Review the group’s objectives related to flood control, erosion control, air and water quality protection, etc.
- Identify the ecological functions of corridors or other conservation practices or combinations of practices that can be used to solve the problem or capitalize on the opportunity.
- Identify existing corridors that could be preserved, enhanced or restored to meet program objectives, solve functional problems, or capitalize on opportunities.
- Select new corridor types or management practices or combination of practices that provide necessary functions to meet objectives, solve problems or realize opportunities not addressed by existing corridors.
- Locate and map new corridor types, management practices or combinations of practices on the watershed base map.
- Repeat this procedure for each objective, functional problem, or opportunity.
When all the conservation practices and systems of practices necessary to meet the group’s objectives have been located on the base map, a preliminary functional plan will have been completed (Figure 6-6). Starting plan development by addressing functional issues does not mean that wildlife issues are any less important; they are simply addressed more completely later in the process. Often wildlife habitat and corridor recommendations explored in layers 3 - 5 will suggest necessary changes to the functional plan. The planning team will resolve potential conflicts by working toward compromise.

Second Layer – Existing Habitat Resource Recommendations

The general condition of critical patches, corridors, potential patches, and special areas and features was documented in the watershed analysis. The causes of the conditions were also identified. Both conditions and causes should be addressed in each plan. The following procedure for addressing habitat quality issues is suggested:

- Review the current condition of each patch, corridor, special area, or special feature as described in the analysis
- Review the wildlife analysis report to identify factors degrading these habitats or limiting species diversity or abundance
- Recommend ways to alleviate the cause or causes of habitat degradation or other factors limiting species diversity or abundance

General recommendations to preserve, enhance, or restore patches, corridors, or other habitat resources should be noted on the base map and linked directly to that resource (Figure 6-7). Specific management techniques for meeting these objectives should be keyed to the habitat resources on the map and discussed in detail in the implementation report (Step 8).

Third Layer – Potential Habitats and New Wildlife Plantings

The planning team should review the areas of potential habitat delineated on the analysis map and assess the possibilities of enhancing or restoring these areas. Consider the function that these areas could perform in addition to habitat. For example, farming in floodplains is common in many regions of the country. During wet years, crop production on these areas is marginal. Many farmers are either voluntarily selling these marginal lands to conservation organizations or participating in easement programs that return these sites to wildlife habitat. (See Iowa River case study pp. 6-39). Not only have these practices restored habitat for wildlife; they have also restored other hydrological functions that help mitigate downstream flooding.

Easement corridors for railroads, highways, powerlines, pipelines, and other utilities provide real possibilities to link patches and other corridors across the watershed. If properly planted and managed, easement corridors can provide excellent habitat for many species. Similar habitat and linkage potential can reside in steep slopes, damaged soils, “waste” areas, and disturbed sites. Locate potential habitats worthy of development on the area-wide/watershed base map (Figure 6-8).

New wildlife corridor plantings at any area-wide scale should emphasize reconnecting reserves/patches within the watershed that were historically linked. They often will be located in riparian or upland corridors or areas that have been degraded over time. Occasionally large wildlife corridor plantings may be proposed in areas previously devoid of corridors to provide habitat or facilitate wildlife migration or dispersal. Plantings of this type are increasingly important because agriculture and urbanization have drastically altered the presettlement landscape pattern (See the Iowa River and Tensas case studies for examples). All new plantings should be based on the principles discussed in Chapter 5. Care should be exercised so that new plantings are compatible with normal farming or ranching practices. Locate all proposed new plantings on this layer.
Figure 6-6
Figure 6-7
Figure 6-8: Potential Habitats & New Wildlife Plantings

Willow Creek Watershed Planning Project
Natural Resources Conservation Service

Basemap Information
- Planning Boundary
- Urban
- Highways
- Streams

Resource Recommendations
- Preserve high quality corridors & habitat patches
- Restore degraded corridors
- Enhance degraded habitat patches
- Restore wetlands

Potential Habitats
- New corridors
- Rehabilitated gravel pits
Planning Habitat Concepts and Principles

The concepts and principles discussed in Chapter 5 are guidelines that the planning team can use to synthesize the three previous layers into an integrated wildlife habitat plan. They suggest locations, configurations, and linkages for corridors and patches in the watershed that would provide the greatest benefit for wildlife. These concepts and principles are applicable regardless of project scale and have been rephrased as planning directives to employ in this phase of the planning process.

Patches

- Preserve all large reserves/patches or introduce new large patches where practical
- Connect all reserves/patches, large or small, that were historically connected
- Do not subdivide existing reserves/patches
- Preserve clusters of small patches
- Preserve reserves/patches that are near each other
- Introduce new patches in areas devoid of habitat

Corridors

- Preserve continuous corridors; plant gaps in discontinuous corridors
- Preserve existing corridors that connect existing patches; pay particular attention to migration and dispersal corridors
- Introduce, where practical, corridor plantings to connect reserves/patches that were historically connected
- Preserve or introduce multiple corridor or "stepping stone" connections between reserves/patches that were historically connected
- Design new corridors to be as wide as practical; widen existing corridors where practical

Special Areas and Features

- Preserve all reserves/patches, corridors, special areas or special features inhabited by threatened and endangered species or vulnerable populations
- Preserve other special areas and features

Potential Habitats

- Develop potential habitats where practical
- Consider artificial structures to provide habitat when natural habitat has been degraded or destroyed (a watershed wide bluebird nestbox or bat house program for example)

Other Principles

- Address key impacts that create at-risk conditions for habitat in the watershed
- Recommend matrix management principles that benefit wildlife
- Recommend structural diversity in reserve/patch and corridor plant communities
- Recommend native plant communities

The planning team should adapt concepts and principles as necessary to meet project resource conditions and needs of specific wildlife species.
Develop Alternatives

The team is responsible for considering various alternatives. Alternatives should focus on conservation functions, wildlife (diversity or target species) or other corridor benefits. However, each alternative must meet the objectives identified in Phase I. Some examples of alternatives are:

- A plan alternative or several alternatives using various conservation implementation strategies, management practices and recommendations to address functional problems and opportunities
- A plan alternative to optimize for wildlife species diversity
- A plan alternative to increase populations of a particular species, guild, or suite of species
- A plan alternative to optimize recreation, economic, or other corridor benefits
- A no-action alternative (required by NEPA)

The NPPH requires that a no-action plan alternative also be considered. The purpose of this plan is to estimate the future condition of the watershed if no action is taken to conserve resources. New corridors would be planted and existing corridors would be removed at current rates. Trends in the condition of corridors and habitat patches would be assumed to continue. Proposed plans for roads, bridges, community development and other landscape modification would be assumed to be constructed. This alternative often depicts the worst case scenario for wildlife (Figure 6-10).

The planning team must agree that each alternative meets the group’s objectives, with the exception of the no-action alternative. In addition, each alternative must comply with all relevant federal, state, and local regulations.

Documentation

Any plan recommendations that can be shown graphically should be drawn on the watershed base map. Include other recommendations in a brief report. At least two alternatives for the wildlife component of the plan should address wildlife and wildlife habitat problems and opportunities identified in the analysis. Each wildlife alternative must meet the goals and objectives specified in Step 2.

Products

- A range of alternative plans developed by the planning team
- A short report summarizing the different plans

Wildlife and conservation biologists and other resource specialists on the planning team should play key roles in making sure that each plan alternative addresses wildlife issues.

Some alternatives may emphasize wildlife. For instance, a wildlife biodiversity alternative may emphasize the preservation, enhancement, and restoration of habitats for all species native to the watershed. Other plans may choose to optimize a particular species. For example, one alternative could emphasize bobwhite quail. Such a plan would focus on factors limiting quail populations and would propose landscape scale habitat modifications to reduce limiting factors. Caution is required in preparing single species plans or other single focus alternatives. Without careful consideration of the entire plant and animal community in the watershed, implementing a single species plan could jeopardize overall biodiversity.
Leks destroyed by development.
Regional migration corridor interrupted by development.
Riparian habitat degraded.
Wildlife refuge impacted by adjacent ORV use.
Increased erosion from conventional tillage.
STEP 6 EVALUATE ALTERNATIVES

Planning Standard

The effects of each alternative are evaluated and impacts are described. The alternatives are compared to benchmark conditions to evaluate their ability to solve problems, meet quality criteria, and meet the stakeholders' objectives.

Discussion

The planning team must now evaluate the watershed plan alternatives developed in Step 5. The NPPH outlines the basic procedures for evaluating alternatives.

Often, watershed planning projects address a variety of resource issues such as flooding, water quality, soil erosion, as well as wildlife conservation. Resource experts on the planning team will develop criteria to evaluate each resource issue for each of the plan alternatives. The purpose of this section is to focus on evaluating alternatives for the wildlife component of the watershed plan.

- Compare the wildlife component of the watershed plan alternatives against the habitat benchmark conditions as described in the analysis
- Compare the effectiveness of each alternative in meeting the stakeholders' wildlife related objectives
- Verify compliance with federal, state, and local statutes regulating wildlife or wildlife habitat

Evaluation Procedure

The following page offers an example of a watershed alternative plan evaluation worksheet that may be used for quantifying the potential impacts of each alternative on wildlife and wildlife habitat. This worksheet is similar in concept to the conservation effects for decision-making (CED) worksheet used by the NRCS to evaluate conservation plans. The Alternative Evaluation Worksheet A (pp 6-32) is based on principles and recommendations outlined in Chapter 5. Biologists and ecologists on the planning team can add other evaluation criteria as necessary to examine the unique wildlife aspects of each watershed. Results of the evaluation should be illustrated with graphs and matrices so the entire planning group can understand evaluation results and participate in the evaluation process.

Habitat

The length and area of habitat patches and corridors in each plan are approximated and compared against the existing benchmark condition in the watershed. Linkages between patches and corridors are also evaluated. Plans that preserve, enhance, restore, or create the most linear feet of corridors, area of reserves/patches, and number of on and off-site linkages in the planning area would be ranked the highest for wildlife conservation.

Wildlife

Estimating the effects of habitat change on species diversity and abundance will require input from wildlife and conservation biologists on the planning team. A rough estimate of species abundance may be made by selecting a species as an indicator for each general habitat type (grassland, woodland, etc). Using the home range of indicator species as a unit of measure, abundance for this particular species can be roughly estimated. The area of patches and corridors that correlate to the species required habitat type would be divided by the home range size to determine the potential population of the species in the watershed. Species diversity can be assessed by using the GAP analysis process described Chapter 5. Plans that provide the greatest abundance and diversity of wildlife are given a higher ranking for wildlife conservation. Although these approaches do not take into account the quality of the habitat, they can provide a coarse assessment of the alternatives at a watershed scale.

After each alternative is evaluated, these can be compared against each other using the Alternative Evaluation Worksheet B (pp 6-33). This worksheet allows the group to quickly assess and discuss the strengths and weaknesses of each plan alternative. In planning projects that involve other resources, an overall evaluation matrix can be created that includes other ecological, social, and economic criteria in addition to wildlife.

Documentation

Documentation of Step 6 should include the evaluation matrices and a short report summarizing advantages and disadvantages of each alternative for wildlife conservation.

Products

- A set of practical plan alternatives compatible with planning group's objectives
- Graphs and matrices displaying the effects and impacts of various plan alternatives
Completing this form will provide a general evaluation of the impact of each alternative on wildlife habitat and wildlife populations.

INSTRUCTIONS: Enter the alternative name or number in the space provided. Using a scale, measure the length or calculate the area for each criterion and record them in the matrix. Where requested check whether these figures have increased, remained the same, or decreased relative to the existing condition (benchmark). The last two criteria require the planning team to estimate the alternative’s impact on wildlife. Each state is encouraged to develop criteria for making these estimates.

NAME OF PLANNING TEAM:

PLANNING AREA LOCATION:

PLANNING COORDINATOR:

ALTERNATIVE NAME:

<table>
<thead>
<tr>
<th>EVALUATION</th>
<th>Increase</th>
<th>No Change</th>
<th>Decrease</th>
<th>Acres</th>
<th>Length</th>
<th>Number</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criteria *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total area of corridors in watershed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of linkages to adjacent patches or corridors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total length of corridors in watershed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length of existing corridors in watershed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enhanced</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restored</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Removed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total area of patches by plant community in watershed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grass shrub</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riparian wooded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riparian shrub</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riparian grass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upland wooded (natural)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upland wooded (introduced)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special areas preserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other conservation measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Specify)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated effects on species diversity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated effects on species abundance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Specify species)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Area and length measurements are approximate.

Comments:

Completing this evaluation form will provide a general comparison between alternatives.

INSTRUCTIONS: Review Evaluation Worksheet A for each alternative. Based on the review and discussion with team members, rate each of the first 9 criteria as excellent (green), good (blue), fair (yellow), or poor (red) for each alternative. The team needs to document the criteria used to develop the ratings. Place the appropriate color in the rectangle opposite the criteria and beneath each alternative. Repeat the process for the last 5 criteria - increase (green), remain the same (yellow), or decrease (red). States are encouraged to develop specific criteria for each of the general criteria categories on the worksheet. These criteria should accurately reflect habitat conditions in each state. In general, the alternative with the most green and blue rectangles will be the best overall alternative. Clearly, the relative importance of criteria will vary with each project. The planning team can proceed from this general evaluation to a more sophisticated and weighted numerical evaluation if sufficient quantifiable data are available.

<table>
<thead>
<tr>
<th>NAME OF PLANNING TEAM:</th>
<th>PLANNING AREA LOCATION:</th>
<th>PLANNING COORDINATOR:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EVALUATION

<table>
<thead>
<tr>
<th>Criteria *</th>
<th>Alternatives</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alt. A</td>
</tr>
<tr>
<td>Meeting project wildlife objectives</td>
<td></td>
</tr>
<tr>
<td>Protection of patches with high levels of biodiversity</td>
<td></td>
</tr>
<tr>
<td>Protection of migration or dispersal corridors</td>
<td></td>
</tr>
<tr>
<td>Corridor connections between patches</td>
<td></td>
</tr>
<tr>
<td>New patches planted</td>
<td></td>
</tr>
<tr>
<td>Corridors preserved, enhanced, or restored</td>
<td></td>
</tr>
<tr>
<td>Special areas and features protected</td>
<td></td>
</tr>
<tr>
<td>Potential habitats developed</td>
<td></td>
</tr>
<tr>
<td>Matrix management benefiting wildlife</td>
<td></td>
</tr>
<tr>
<td>* Estimated effects on species richness</td>
<td></td>
</tr>
<tr>
<td>* Estimated effects on species abundance</td>
<td></td>
</tr>
<tr>
<td>* Protection of threatened or endangered species</td>
<td></td>
</tr>
<tr>
<td>* Protection of vulnerable populations</td>
<td></td>
</tr>
<tr>
<td>* Other area-wide/watershed specific wildlife objectives (specify)</td>
<td></td>
</tr>
</tbody>
</table>

KEY

<table>
<thead>
<tr>
<th>Excellent</th>
<th>Good</th>
<th>Fair</th>
<th>Poor</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Blue</td>
<td>Yellow</td>
<td>Red</td>
<td>NA</td>
</tr>
</tbody>
</table>

* Apply to last 5 categories

<table>
<thead>
<tr>
<th>Increase</th>
<th>Remain the same</th>
<th>Decrease</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Yellow</td>
<td>Red</td>
<td>NA</td>
</tr>
</tbody>
</table>

INSTRUCTIONS: Review Evaluation Worksheet A for each alternative. Based on the review and discussion with team members, rate each of the first 9 criteria as excellent (green), good (blue), fair (yellow), or poor (red) for each alternative. The team needs to document the criteria used to develop the ratings. Place the appropriate color in the rectangle opposite the criteria and beneath each alternative. Repeat the process for the last 5 criteria - increase (green), remain the same (yellow), or decrease (red). States are encouraged to develop specific criteria for each of the general criteria categories on the worksheet. These criteria should accurately reflect habitat conditions in each state. In general, the alternative with the most green and blue rectangles will be the best overall alternative. Clearly, the relative importance of criteria will vary with each project. The planning team can proceed from this general evaluation to a more sophisticated and weighted numerical evaluation if sufficient quantifiable data are available.

INSTRUCTIONS: Review Evaluation Worksheet A for each alternative. Based on the review and discussion with team members, rate each of the first 9 criteria as excellent (green), good (blue), fair (yellow), or poor (red) for each alternative. The team needs to document the criteria used to develop the ratings. Place the appropriate color in the rectangle opposite the criteria and beneath each alternative. Repeat the process for the last 5 criteria - increase (green), remain the same (yellow), or decrease (red). States are encouraged to develop specific criteria for each of the general criteria categories on the worksheet. These criteria should accurately reflect habitat conditions in each state. In general, the alternative with the most green and blue rectangles will be the best overall alternative. Clearly, the relative importance of criteria will vary with each project. The planning team can proceed from this general evaluation to a more sophisticated and weighted numerical evaluation if sufficient quantifiable data are available.
STEP 7 MAKE DECISION

Planning Standard

A watershed plan alternative is selected based on the planning group's clear understanding of the impacts of each alternative.

Discussion

Decision making at the watershed planning level may be the responsibility of:

- A particular stakeholder or agency
- The group as a whole

Those responsible for selecting an alternative for the area or watershed often depend on who initiated the planning process. In some cases, the group funding the project retains final decision making authority. In other cases, mandates or laws may require a certain agency to select the preferred alternative, for example the USFWS is responsible for alternative selection and approval where federally listed threatened and endangered species are involved.

In some cases, the decision making responsibility will be shared by the planning group as a whole. A group decision is particularly common in planning projects that do not have regulatory requirements. The only way these types of plans will be implemented is if a majority of stakeholders support the selected plan.

To avoid confusion and misunderstanding, the entire planning team should agree upon which decision making process will be used at the beginning of the watershed planning project. Some watershed planning groups use a majority vote system to select final plans. This democratic form of decision making is both familiar and comfortable to many planning participants. Problems can arise, however, when a minority within the group is adamantly opposed to the plan selected. Often compromise and revisions to the preferred plan are required before an acceptable plan emerges.

More and more groups are exploring consensus-based decision making. Consensus is reached when participants agree on a single alternative plan. The participants may not agree with all aspects of the plan, but they do not disagree enough to warrant opposition to the overall plan selected. Each party retains the right to veto a plan but that party assumes a responsibility to provide alternative components for the plan.

The goal of consensus decision making is to select a plan supported by everyone. This in turn increases the probability that the plan can be successfully implemented. Plan selection by consensus also has its share of problems; it can lead to a stalemate or result in a weak, compromised plan. Frequently, wildlife are given a low priority in a consensus plan because wildlife issues are often controversial and difficult to arbitrate.

Documentation

The NPPH provides general guidance for preparing necessary products for this step. Documentation should include a short report with the final plan and a description of how the plan was selected. This report may also include potential program or implementation strategies. In cases where an EIS or EA is needed, formal NEPA documentation of the decision making process will be required.

Products

- The plan document with the selected alternative, including potential program or implementation opportunities
- Schedule of plan implementation
- NEPA documentation (when required)

PHASE 3 APPLICATION AT THE WATERSHED SCALE

Phase 3 involves:

- Implement plan
- Evaluate plan

In Phase 3, the planning team, agencies, private conservation organizations, communities, and others individually or collectively may be involved in the implementation of the plan. They may also be involved in the ongoing evaluation of the implemented plan and, where necessary, propose adaptive management.
STEP 8 IMPLEMENT PLAN

Planning Standard

The planning team has adequate information and understanding to implement a watershed plan.

Discussion

Strategies for implementing a watershed plan will vary with each project. For example, planning projects initiated by a crisis often have substantial financial support from federal and state programs; implementation proceeds rapidly. The Iowa River Project is a good case in point. Within 1 year of a major flood, land parcels or conservation easements within the Iowa River floodplain were purchased to allow natural restoration of riparian wetlands.

However, in general, watershed plans are implemented one farm, ranch, or community open space at a time. Frequently the key to implementing large scale farm, ranch, or community projects is outside assistance in the form of funding, materials, and volunteer help.

The value of a watershed plan is that it offers coherent landscape structure and logical recommendations for integrating conservation plans at the landowner level. Over time, the watershed plan becomes reality with completion of numerous individual conservation plans. The NPPH and Chapter 7 provide some guidance on how to proceed with the implementation process at the conservation plan scale.

There are a variety of options for implementing a watershed scale plan including:

- Land acquisition
- Conservation easements
- Federal and state programs
- Zoning
- Voluntary participation

Land Acquisition

Land acquisition is among the best tools for protecting critical habitat areas identified in the watershed plan. Land can be acquired by federal and state agencies, private conservation organizations, and communities through programs, grants and other sources of funding. The acquired parcels can then be managed for wildlife by either private conservation organizations or government agencies. This approach offers a high level of protection for wildlife resources; it is especially valuable for protecting critical habitats that may not be protected by other means. However, adequate funding for acquisition and particularly for long term management often limits this approach.

Conservation Easements

Conservation easements involve purchase of development rights for land parcels with significant habitat value. To many landowners, easements are preferable over fee simple sale of their land. With a conservation easement, the owner retains title to the land and can maintain previous land uses. Some conservation easements can be more restrictive and specify both acceptable land uses and land management practices for the parcel.

In exchange for not developing the land or for modifying land management practices, the owner receives cash payments and tax benefits. If the land is sold, the easement remains in place. For example, an easement along a riparian corridor may still allow the rancher to use the area; however, the corridor may never be developed into homes or other built structures. Purchasing easements may allow funding resources to be used more efficiently than outright acquisitions; however, management control over the area is usually reduced.

Federal, State, & Other Incentive Programs

A wide range of federal and state programs, such as the USFWS Partners in Wildlife Program, offer assistance for protection and restoration of wildlife habitat on private lands. This includes USDA programs such as Wildlife Habitat Incentive Program, Wetland Reserve Program, and the Conservation Reserve Program. Many of these programs are directed at individual landowners and offer incentives such as cost sharing. They are often cost effective ways of preserving, enhancing, and restoring habitat for wildlife. NRCS and other agency personnel should be consulted on programs available for wildlife conservation.

Voluntary Participation

Voluntary participation in wildlife conservation projects should be a component of every implementation plan. The effectiveness of this approach depends upon demonstrating the benefits of conservation practices to landowners and communities. Demonstration projects and field tours are ways to demonstrate success and influence individuals to participate in conservation projects.

One of the main purposes of a large-scale wildlife planning effort is to consolidate resources and to share responsibility for wildlife conservation. All stakeholders can participate in implementing the plan. Sharing responsibility also can lead to creative funding
opportunities. Many private foundations base their funding on evidence the project has involved public participation and has broad based support. Potential funding and assistance partners are covered in Chapter 8.

Zoning
Zoning controls location and management of land uses. It is a power given to local governments only. It can be a useful and cost-effective tool for protecting wildlife habitat over a large area. For instance, zoning may protect critical riparian habitat by restricting development in floodplains. An advantage of this approach is reduced costs for the county or community. Local governments are challenged to create publicly acceptable zoning plans. In addition, coordinating zoning regulations across several political boundaries can be extremely difficult. Enforcement of regulations, particularly those related to resource management, can also be troublesome and expensive.

Documentation
Communication and coordination between stakeholders should be documented in a short report so each stakeholder group is clear about their responsibilities for implementing the plan. Funding sources should also be identified and secured.

Products

- Communication and coordination between the stakeholders
- A description of tasks to be completed by the various stakeholders
- Funding sources documented

STEP 9 EVALUATE PLAN

Planning Standard

The planning group determines if implementation results are meeting the ecological, economic, and social objectives and resolving conservation issues in a satisfactory manner. Resource impacts that are different than those predicted are fed back into the watershed planning process.

Discussion

Evaluation of the implemented plan is an often overlooked but necessary component of the watershed planning process. The purposes for evaluating the watershed plan as implemented include:

- To ensure that wildlife habitat in the watershed is functioning as intended
- To estimate wildlife response to the watershed plan
- To disseminate evaluation data and inform stakeholders
- To initiate adaptive management where resource responses are different from predicted

Evaluation of the watershed plan occurs at two levels; the watershed and conservation plan levels. Many components of the watershed plan will be implemented through individual conservation plans (see Chapter 7). The cumulative evaluations of conservation plans will provide a partial assessment of the watershed plan.

An evaluation at the watershed scale also is necessary. This evaluation can provide a valuable overview of the condition of wildlife resources in the watershed. Otherwise, positive results from a few individual conservation plans may bias overall results if other watershed areas are experiencing significant negative impacts to wildlife. Evaluations of both watershed and conservation plans will provide the most realistic picture of the condition of wildlife resources.
Evaluation Techniques

Evaluation strategies should be based on objectives established in Step 2. In many cases, the objectives will include wildlife species and habitat components. Biologists on the team will be responsible for designing an evaluation scheme addressing these components. Habitat condition evaluation will determine the ability of the resource to support wildlife. Specific techniques should be developed by the planning team to evaluate different habitat types. Biologists also should develop approaches for evaluating wildlife populations at a watershed scale. These techniques can be expensive and it is best to take advantage of ongoing surveys. Federal and state wildlife agencies conduct game and non-game species inventories. Much of these data are collected based on wildlife management units (often watersheds are used for unit boundaries) that can be correlated directly to the project area. Participants on the planning team from these agencies can provide more information. Although these sources of data may not reflect specific responses to the plan, they can illustrate overall trends of different wildlife populations in the watershed.

Other long term wildlife surveys often exist, for example, postal carriers in Kansas have voluntarily counted wildlife during 4 weeks every year for the past 30 years. The Audubon Society conducts an annual Christmas Day bird count and high school students have successfully monitored invertebrate populations in streams. Other conservation organizations also conduct informal wildlife surveys.

Dissemination of Evaluation Data

Data collected in the evaluation can be used to educate the public about the value of planning at a watershed scale and benefits to wildlife of implementing conservation practices. For example, a watershed planning group in Idaho holds an annual watershed conference and celebration open to the public. This event provides an excellent opportunity to inform the public about wildlife in the watershed and to demonstrate the value of conservation practices to the wildlife resource. Events like this can stimulate landowners to initiate wildlife conservation plans on their farm or ranch or in their community. It is important to report failures as well as successes and indicate what adaptive management practices are being employed to alleviate problems.

Adaptive Management

Several years of evaluation data may indicate wildlife responses to the watershed plan are different than predicted. Adjustments to the plan may be necessary. It is important for the planning team to emphasize that wildlife planning is an ongoing process and that modifications will be necessary. Once the plan has been implemented and evaluation procedures are in place, the planning group can probably meet on a less frequent basis. However, the group should continue to function so that adaptive management can be implemented as necessary. It also is important that the entire stakeholder group remain involved in the evaluation process. Not only does this reinforce ownership in the overall planning process, it also lessens the chance stakeholders will disagree over results.

Documentation

Evaluation data should be compiled into a short report with most of the data presented in easy-to-understand graphs and charts. The final portion of the report should address any necessary adaptive management recommendations. The report should be distributed to the entire planning group and should be available to the public.

Products

- Evaluation report summarizing results of the wildlife monitoring
- Recommendations for changes
- Updated area-wide/watershed plan
Case Study:

IOWA RIVER CORRIDOR PROJECT

Corridor Planning Principles discussed in Chapter 5 that are exhibited by this case study include:

Natural Connectivity Should Be Maintained or Restored.

Continuous Corridors Are Better Than Fragmented Corridors.
This project initiated by the NRCS illustrates the effectiveness of combining USDA programs and technical assistance with the expertise of diverse conservation partners. The planning team produced a conservation corridor plan that benefits wildlife and will dampen the adverse impacts of future flooding events.

The Iowa River runs from north-central Iowa to southeastern Iowa where it joins the Mississippi River. Row crop agriculture and livestock production are the dominant land uses within the floodplain of the Iowa River. In 1993, unprecedented flooding occurred along many midwest rivers including the Iowa River (Figure 1). Damages to floodplain landowners were estimated at $6.9 million. Flooding is not a new problem for this area. On some of the farmland within the floodplain, landowners are lucky to harvest a crop 2 to 3 years out of 5. The estimated 10-year cost for disaster and subsidy payments along the Iowa River averaged between $750 and $1000 per acre. In many cases, the cumulative cost of repeated payments on agricultural land in the floodplains was greater than the land’s value.

The Iowa River Corridor Project was initiated by the Natural Resources Conservation Service (NRCS) in 1993 at the request of landowners in the project area. Many landowners expressed dissatisfaction with traditional flood recovery methods (field and levee repair); they were interested in exploring other land use options. As a result, the Iowa River Corridor Project was formed as a partnership between landowners, private organizations, and local, state, and federal governments. The project’s purpose was to develop and implement a plan of land use alternatives that represent sound floodplain management. The project area encompasses approximately 50,000 floodplain acres along nearly 50 miles of the Iowa River in central Iowa (Figure 2).

Partners in the project envisioned the floodplain corridor as a mosaic of private and public land held together by the common thread of flood tolerant uses. The NRCS Emergency Wetlands Reserve Program (EWRP) and Wetlands Reserve Program (WRP), which give landowners the option to restore damaged cropland to wetlands, were key to implementing the area-wide plan. Through EWRP and WRP, landowners with flood damaged cropland are offered a one time payment that is roughly equal to the value of their crop rights. In return, they grant a permanent easement and restore their cropland to its original wetland condition. The landowner maintains title and control of the land, holds the right to harvest timber, forage from the area, and use the land for recreational purposes (Figure 3).

In addition to providing economic benefits for area farmers, EWRP and WRP also benefit wildlife. The project area supports a variety of wildlife including two active bald eagle nesting sites, and the state listed sandhill crane and river otter. These species and others will benefit from the increase in habitat area and connectivity provided by restoration of floodplain wetlands (Figure 4).
Accomplishments to date include:

- Ninety-one of 250 landowners have enrolled 11,600 acres in EWRP and WRP easement programs.
- Wetland restorations are underway. Earthwork is 75% complete and grass seedings should be completed in 1998.
- Thirty-five landowners have agreed to sell over 9,400 acres to the USFWS, making the Corridor Project the largest USFWS refuge in Iowa outside of the Upper Mississippi River NWR.
- The Soil and Water Conservation Districts and the project coordinator have formed a non-profit corporation to assist in wetland restoration and future conservation and development efforts.
- Over 25 project partners are assisting with project monitoring efforts, providing needed supplies, equipment, (e.g., GIS assistance, nesting structures, grain drills), and assistance in project planning.

As the floodplain wetlands are restored, the project should provide the following benefits:

- Improved water quality in the Iowa River for citizens using the river for drinking water and recreation
- Additional flood storage, thereby lowering flood peaks and damage
- Additional recreational/tourism opportunities for residents of central and eastern Iowa
- Increased habitat available for game and non-game wildlife
- Opportunities to stimulate economic development and tourism

The project partners realize floodplain management is an ongoing process and additional options should be available for landowners. The partners are sharing resources, ideas, and personnel to develop additional options for sustainable management of floodplain lands, including improved grazing systems, forage and timber management, and alternative crops such as crayfish, native grasses, flowers, and willows for baskets and furniture. The Iowa River Corridor Project clearly demonstrates a sustainable system of floodplain land use can achieve both economic and ecological goals.

For more information on the project, contact:

Dave De Geus
Iowa River Corridor Project Office
Iowa County SWCD
435 N. Highland, Box 210
Williamsburg, Iowa 52361
Tel. (319) 668 – 2359

The information for this case study was abstracted with permission from the Iowa River Corridor Project Information Series, prepared by the Iowa River Corridor Project Partnership.
Case Study:

LOWER RIO GRANDE VALLEY WILDLIFE CORRIDOR

Corridor Planning Principles discussed in Chapter 5 that are exhibited by this case study include:

1. **Natural Connectivity Should Be Maintained Or Restored.**

2. **Continuous Corridors Are Better Than Fragmented Corridors.**
Case Study: Lower Rio Grande Valley Wildlife Corridor

This case study illustrates how the NRCS in cooperation with other government agencies and private non-profit conservation organizations have collaborated to develop a 275-mile long conservation corridor plan. A variety of wildlife species including several threatened or endangered species will be some of the beneficiaries of this exciting project.

The lower Rio Grande River from Falcon Dam to the Gulf of Mexico is the only source of drinking and irrigation water for more than 1 million people (Mexican and U.S. residents) and 0.5 million acres of U.S. agricultural land. Unfortunately, rapid human population growth and intensive development for international trade and agriculture on the lower 275 miles have severely degraded the riparian ecosystem.

The lower Rio Grande twists and turns; each river bend alternates from high, sloughing, vertical banks to gently sloping stretches with remnants of floodplain forests. Most of this stretch has banks, which have been severely damaged by intensive grazing or cleared for bridges, homesites and industrial parks. Refuse and sewage are dumped into the river in numerous locations.

Although less than 5% of the original habitat of the lower Rio Grande Delta remains, species diversity in the region continues to be high (1100 plants and 600 vertebrates). Habitat connectivity is critical for many of these species, including the federally listed endangered ocelot and jaguarundi.

To conserve this unique area, the U.S. Fish and Wildlife Service (USFWS) established the Lower Rio Grande Valley National Wildlife Refuge. The refuge’s goal is to create a continuous wildlife corridor along the 275-mile stretch of river. In addition, the USFWS, Texas Parks and Wildlife Department (TPWD), National Audubon Society, and the Nature Conservancy of Texas (TNC) have acquired tracts for protection.

In 1996, the Natural Resources Conservation Service (NRCS), USFWS, and National Fish and Wildlife Foundation (NFWF) entered into an agreement to use funds from the USDA’s Wetland Reserve Program (WRP) and a NFWF grant to purchase permanent easements along riparian areas and wetlands on private lands. These easements will link areas owned by public agencies and private conservation organizations.

Under WRP eligibility criteria, wetlands currently in agricultural production and riparian corridors up to 600 feet wide can be accepted. Cropland will be planted to species of trees and shrubs that USFWS, TPWD, and TNC are using in their restoration programs. Riparian areas already in desirable vegetation may only require fencing, or as a minimum, placement of WRP boundary signs.

The easement acquisition process is ongoing and expected to continue throughout the life of WRP. Land ownership patterns along the river dictate that several easements must be acquired in succession to link any two existing protected areas. All partners are attempting to identify interested landowners with eligible lands and encouraging them to participate in this program to increase and improve wildlife corridors along the Rio Grande River.

For additional information contact:

Larry Ditto, Project Leader
Lower Rio Grande Valley NWR Complex
U.S. Fish and Wildlife Service
320 N. Main St., Rm 225
McAllen, TX 78501
(210) 630-4636

This case study was written by Gary Valentine (NRCS) and has been included in this document with his permission.
INTRODUCTION
The NRCS has provided conservation planning, design, and implementation assistance to farmers, ranchers, and communities for decades. Thousands of conservation management practices have been installed across the country. The habitat created by these practices has been a significant factor in maintaining wildlife populations and species diversity in agriculturally dominated landscapes. However, more can be done to benefit wildlife. This chapter illustrates ways to integrate the concepts and principles discussed in Chapter 5 into the conservation planning process to provide more, higher quality connected habitat for wildlife.

PLANNING PROCESS
The phases and steps outlined in the NPPH for preparing conservation plans are identical to those used in preparing a watershed plan (Figure 6-1). The principal difference is more detailed site-specific information must be collected, analyzed, and synthesized for a conservation plan.

GETTING STARTED
PREPLANNING: CONSERVATION PLAN SCALE
The preconditions that initiate conservation planning on an individual farm, ranch or community open space are often the same as those that trigger area-wide planning efforts: crisis, mandate, incentives, or leadership. Planning may be recommended by the conservationist or NRCS assistance sought by a landowner or community. Regardless of who initiates the project, it is important to obtain basic information and assemble the necessary tools to start the planning process. The National Planning Procedures Handbook (NPPH) provides a detailed outline of how to proceed with preplanning activities. In addition to the preplanning procedures, tools, and materials discussed in the NPPH, the conservationist should also have available:

- The area-wide plan - if available
- The “Corridors In Our Landscape” brochure
- This handbook - Conservation Corridor Planning at the Landscape Level: Managing for Wildlife Habitat
- USGS 7.5 minute quadrangle maps that include the client’s property
- Copies of the NRCS 1:660 soil survey maps that include the client’s property and immediately adjacent properties
- Any existing wildlife reports, research studies, EA or EIS reports or similar wildlife information specific to the watershed within which the client’s property resides
- Photo prints, plans, or reports of completed projects within the District that have preserved, created, enhanced, or restored wildlife habitat. Consider putting together a "scrapbook" of these materials to take into the field

Having these materials available for the first formal client meeting will help the conservationist promote wildlife conservation as an integral part of the conservation plan. In addition, these materials will comprise a reference resource available when needed to answer client’s questions.
PHASE 1 COLLECTION AND ANALYSIS AT THE CONSERVATION PLAN SCALE

Phase 1 involves:

- Identification of problems and opportunities
- Determine objectives
- Inventory resources
- Analyze resources

In Phase 1, the client and conservationist work to reach agreement on the problems, opportunities, and objectives for the conservation plan.

STEP 1 IDENTIFY PROBLEMS AND OPPORTUNITIES

Planning Standard

The client’s resource problems, opportunities and concerns are identified and documented.

Discussion

The first on-site visit with the client may be the most important step in the planning process at the farm, ranch, or community scale. Building trust begins with the first meeting. The client trusts the conservationist to provide the best advice and technical assistance possible in addressing his or her concerns. The conservationist trusts the client to properly implement recommended conservation practices and maintain them into the future. Both parties are committing time, money, and other resources necessary to successfully complete a conservation plan. Both parties understand that the conservation dividends resulting from their investment will accrue some time in the future.

The first on-site meeting affords the conservationist an opportunity to listen to the client’s concerns and see the problems and possibilities in the field. It also provides an opportunity to involve the client in the planning process; asking them questions about wildlife and wildlife habitat on his/her property can produce important insights. Equally important, is the conservationist has the chance to discuss wildlife habitat opportunities from an experienced perspective gained working throughout the surrounding landscape.

The NPPH provides a detailed outline on how to proceed with Step 1 activities. In addition to these procedures, the conservationist should:

- Use the wildlife informational materials listed in the Preplanning section as aids when discussing wildlife concerns, problems, and opportunities with the client.
- Document wildlife and habitat related problems and opportunities on the client’s property or on the soil survey aerial photo maps.
- Record these problems and opportunities with photographs.
- Emphasize opportunities to link habitats on the client’s property with habitats on adjacent property. Document these opportunities on maps and with photographs.
- Record on maps and with photographs large areas (>80 acres) devoid of habitat and discuss with the client new possibilities to provide wildlife habitat or enhance the habitat value of some other existing conservation management practices.
If the client’s property is within the boundaries of an existing area-wide plan, additional procedures include:

- Locate the client’s property within the area-wide plan and review the plan with the client. Emphasize wildlife habitat related elements of the plan that could affect the client’s property and the immediate environs.
- Visit any locations on the client’s property where habitat recommendations or other features have been delineated on the area-wide plan.
- Discuss with the client the value-added benefits of incorporating these area-wide wildlife habitat plan recommendations on their property. This manual provides some excellent examples to share with the client.

Additional problems and possibilities invariably emerge later in the planning process. The planning process’s inherent flexibility makes it possible to accommodate new information, when it emerges. Once the client and conservationist have completed the identification of problems and opportunities, they will have produced the products specified in the NPPH.

Documentation
Problems and opportunities are typically documented in a short report. This information can be recorded in Notes and Resource Inventory, a GIS data base, or other agency tracking systems. The report should include field notes, photographs, and any sketch maps that were prepared.

Products

- Identification and documentation of wildlife and wildlife habitat problems, opportunities, and concerns in the case file
- Communication with the client

STEP 2 DETERMINE OBJECTIVES

Planning Standard

The client’s objectives are clearly stated and documented.

Discussion

Clients initiate conservation projects because they wish to change existing conditions to some desired future condition. Often the project is intended to eliminate a particular problem, stabilize an eroding swale in a field for example or explore some alternative resource use. It is important that the conservationist fully understand the client’s objectives and values related to resource management. The conservationist can also assist the process of determining objectives by offering advice and suggestions. It is often helpful in clarifying objectives to go over field notes from the first on-site meeting with the client. By working together, the client and conservationist can formalize meaningful and realistic objectives for the wildlife resource as well as other resources.

Objectives should be stated so they describe what is desired without prescribing a specific solution. This allows client and conservationist opportunities to explore alternative plans in Step 4 of the process.

The NPPH includes an extensive list of items the client and conservationist should discuss and agree upon as part of the objective setting process. To ensure wildlife are fully considered in this important step, the conservationist should:

- Explain to the client how their objectives may affect the site’s resources and ecology, and alert them to any specific impacts, positive or negative that may affect wildlife.
- Notify the client of any federal, state, or local laws related to wildlife or other resources that could affect the client’s objectives so planning proceeds in a proactive way.
- Encourage the client to consider an overall objective of preserving, enhancing and restoring existing and potential (historical) habitats for diverse populations of desirable species.
- Encourage the client to establish, as an objective, linking habitats on his/her property with those on adjacent properties where applicable.
• Encourage the client to consider as an objective new conservation practices for wildlife in large areas (>80 acres) devoid of habitat.

• Use the checklist in this manual (Appendix B) as a tool for getting landowner input on specific wildlife species important to them; providing habitat for the client’s preferred species can become an objective.

• If the client’s property is within an existing area-wide plan, review the plan with the client.

• Encourage the client to incorporate into his/her conservation plan objective statement those recommendations in the area-wide plan, which apply to the property.

When the client and the conservationist come to an agreement on conservation plan objectives, they will have produced the products described in the NPPH.

Documentation

Objectives are typically documented in a short report.

Products

- A list of the client’s objectives including specific wildlife and wildlife habitat objectives - as an objective note in the case file.

STEP 3 INVENTORY

Planning Standard

Sufficient data and information are gathered to analyze and understand the natural resource conditions in the planning area.

Discussion

The basic intent of the conservation plan inventory is to describe existing (benchmark) condition on the client’s property. The wildlife resource section of the inventory has both a wildlife species component and a habitat component. The specific intent of the wildlife resource inventory at the conservation plan scale is to:

- Identify wildlife species that do or could inhabit the client’s property
- Map plant community types
- Map wildlife species occurrence as associated with plant community types
- Map important corridors, habitat patches, and site features
- Map potential habitats
- Map general land cover types
- Provide life history information for those species of special interest to the client, threatened or endangered species or species of vulnerable populations
- Emphasize inventory of wildlife resources related specifically to objectives of the individual landowner

The client’s involvement in the inventory process is essential; they are generally knowledgeable about the property’s history and its resources. However, the conservationist should also take advantage of every opportunity to educate the client about wildlife and habitat while they work together in the field. An informed landowner is more likely to make decisions benefiting the wildlife resource. Information generated in the inventory is useful for further defining problems and opportunities identified in Step 1; it may also suggest that some of the client’s original objectives be altered or eliminated or new objectives added.

The NPPH provides a general outline of basic inventory inputs. Inventory tools and procedures are also detailed. Discipline handbooks are useful references, providing additional inventory procedures. The *Habitat Evaluation Procedure* (HEP) manual is the recommended reference for evaluating the food, cover, and shelter components of wildlife habitat. In addition, a set of corridor inventory forms is included in Appendix A.
Documentation

All inventory data should be mapped at a common scale. This may require enlarging or reducing mapped information from different sources. For conservation plan scale projects, a scale of 1:660’ or the scale of NRCS aerial photo soil maps, is the most convenient for planning purposes. The following maps, lists, and short reports should be prepared. Use aerial photos as a base for mapping (Figures 7-1 and 7-2).

Wildlife Species Data Needs

- List of species observed or whose presence is inferred from indirect evidence on the site
- List of federal or state listed threatened or endangered species (if any)
- List of species breeding on the site
- List of potential species (species typically associated with plant community types on the site) but not observed or inferred
- List of nuisance species (if any)
- Estimate of species abundance

Wildlife Habitat Data Needs

Existing Vegetation Map

- Grass plant community type
- Grass shrub plant community type
- Riparian wooded plant community type
- Riparian shrub plant community type
- Riparian grass plant community type
- Upland wooded plant community type (natural)
- Upland wooded plant community type (introduced)
- Wetland type

Land Use or Cover Type

- Cropland
- Pastureland
- Rangeland
- Conservation Reserve (indicate type)
- Parks/Open Space
- Urban
- Wetland Reserve Program (WRP)
- Wildlife Habitat Incentive Program (WHIP)

Habitat Features Map

Special patches
- Large remnant upland patches
- Large introduced patches

Special corridors
- Riparian corridors
- Migration corridors
- Dispersal corridors

Special areas
- Patches or corridors inhabited by threatened or endangered species or vulnerable populations
- Leks or other breeding sites
- Calving/birthing sites
- Winter range
- Winter cover
- Summer range
- Thermal cover
- Irreplaceable sources of food or water
- Other - (specify)

Special features
- Snags
- Dens
- Burrows
- Talus or rock piles
- Cliffs
- Caves and abandoned mines
- Other - (specify)

Potential Habitat Maps

- Steep slopes
- Poorly drained soils
- Damaged soils
- Disturbed sites (borrow pits, etc.)
- Easement corridors
- “Waste” areas
- Other - (specify)
Figure 7-2
If the client’s property is within an existing area-wide plan boundary, many of these maps will have been completed but at the scale of a USGS quad sheet 1:24000. The information relevant to the client’s property can be taken off the area-wide plan, rescaled to 1:660 and drawn on the appropriate inventory sheet. Ground-truthing will be required to verify the accuracy of conversion from one map scale to another; additional detail may be required.

Other wildlife related data needs will vary depending on the client’s objectives and the project site characteristics. Generally this information does not need to be mapped; for example, life history information for threatened or endangered species, vulnerable species, or species of special interest to the client. When the inventory is completed, the client and the conservationist will have produced the products described in the NPPH.

Products

- List of wildlife species on the client’s property with estimates of abundance and diversity
- A set of maps depicting the components of wildlife habitat on the client’s property
- Short wildlife related reports where necessary to elaborate on the mapped information

STEP 4 ANALYZE RESOURCES

Planning Standard

The benchmark condition for the planning area is documented. Results are displayed in easily understood formats depicting current natural resource conditions, physical characteristics of the planning unit, and comparisons between existing and potential conditions. The causes of the resource problems are identified.

Discussion

The conservationist must now interpret the inventory data. Discipline handbooks, manuals, and inventory worksheets are critical references in the analysis process. In some cases, consulting with experts may be required, for example when threatened or endangered species or locally vulnerable wildlife populations are issues.

The reports and maps prepared in the analysis phase should:

- Depict current wildlife and wildlife habitat conditions
- Compare current conditions with potential conditions
- Identify causes of wildlife and wildlife habitat problems

The NPPH outlines the basic procedures for the analysis. Results of the analysis may suggest that some previously defined objectives be eliminated or modified, some new objectives may be added. At the completion of Step 4 and Phase 1, the conservationist and client should be in agreement on problems, opportunities, and objectives for the conservation plan.

The wildlife component of the analysis should focus on wildlife and wildlife habitat; specifically species diversity, population dynamics, and habitat conditions, causes of conditions, and potential conditions in the patches, corridors, and matrix on the client’s property. The analysis must draw cause and effect relationship between what occurs in the matrix and the condition of habitat in patches and corridors. It should also describe what if any effects patches and corridors exert on the matrix.

Analysis Questions

It is important to synthesize wildlife and wildlife habitat inventory information acquired in Step 3 into concise, accurate and easy to understand tables, graphs, and maps. Maps, either hand drawn or computer generated, are important in helping the client fully appreciate the wildlife-related problems and opportunities inherent on his/her property (Figure 7-3). The analysis of wildlife and wildlife habitat should answer the following questions:

Wildlife

- What wildlife populations are vulnerable to local extinction? (threatened and endangered species are a special case)
- What are the principal causes of the populations’ or species’ vulnerable status?
- What is the potential condition of these vulnerable populations?
- What factors are limiting non-game species diversity or game species abundance?
- What factors enhance populations of nuisance or pest species?
Threatened and endangered (T&E) species listed under the Endangered Species Act are the responsibility of the USFWS. States may also have T&E species or species of concern lists. Any T&E species habitat on the client’s property must be managed to comply with USFWS standards or state standards. Vulnerable populations, although not technically threatened or endangered, could experience local extinction. These populations are typically listed with the State Natural Heritage Program which can specify a general area where a vulnerable species may be present. If the client’s property falls within the general area, a survey should be conducted to determine the presence or absence of the species. If present, a biologist specializing in the species and a conservation biologist should be consulted to determine the causes of vulnerability and the potential of the population to persist.

Wildlife diversity is strongly influenced by plant community diversity, patch size, amount of edge, connectivity and presence or absence of water. The conservationist can compare the property’s habitat characteristics and wildlife species to similar site locations in the watershed. The comparison may suggest general habitat characteristics limiting wildlife diversity on the client’s property. The conservationist may request assistance and additional information from field biologists.

Most states have detailed models of the habitat requirements of game species. The USFWS also has Habitat Suitability Models for many game and non-game species. The conservationist can compare the habitat conditions described in the models with those identified in the inventory for a general idea of what factors may be limiting abundance or diversity. Unfortunately, information for many non-game species is limited. State or field biologists can provide more detailed information concerning limiting factors.

Habitat

- What is the current condition of habitat in existing patches, corridors, potential patches, special areas, and special features?
- What causes these conditions?
- What is the habitat potential of existing patches, corridors, potential patches, special areas, and special features?
- What patches, corridors, potential patches, special areas, and special features are of greatest value or potential value to wildlife?
General high value habitat resources include:

- Relatively undisturbed patches of remnant vegetation (large patches are particularly valuable)
- Stream/riparian corridors
- Migration and dispersal corridors
- Wetlands
- Lakes, ponds, springs, seeps, and other water features
- Irreplaceable sources of food, water, cover, or sites for reproduction

The conservationist can expand on this list to include habitats or resources considered most important in his or her region. Documentation of these important resources on the composite analysis map is critical to the next step in the planning process.

At Risk Habitats

- What patches, corridors, special areas or special features are at risk?
- What are the causes of risk to these habitat resources?
- What is the potential for mitigating or eliminating threats to wildlife or wildlife habitat?

A habitat component at risk is defined as a patch, corridor, special area or feature, or other wildlife resource whose continued ecological function is threatened by some internal or external factor. For example, an unbuffered wetland receiving excessive amounts of silt and agricultural chemicals would be classified at risk. At some point the level of pollutants will cause eutrophication and significantly degrade the wetlands functional capabilities including habitat for wildlife. NRCS biologists reported matrix management practices, increasing field size, water development projects, and urbanization as primary factors in creating at risk conditions in wildlife habitat. At risk habitats should be delineated on the base map.

Matrix

- What current field management practices or other land use activities adversely impact wildlife or wildlife habitat?
- What specific attributes of management practices or land uses cause the adverse impacts?
- What potential wildlife or wildlife habitat benefits could be realized if field management practices or land uses were altered?

The condition and management of the matrix has a significant impact on wildlife. The client and conservationist should evaluate both elements in the field. NRCS biologists reported in a recent survey that the timing of haying and mowing, fall plowing, spring ditch burning, spraying, and unmanaged grazing were among the more common management practices that adversely impact wildlife. Indirect adverse impacts on wildlife include soil erosion, sedimentation, and chemical laden runoff. Matrix management practices adversely impacting wildlife should be delineated on the base map.

Documentation

All patches, corridors, and the matrix will have been mapped in Step 3 inventory. Duplicate these maps and note the existing condition, causes of the condition, and potential condition. Relating this information to real locations on the property is useful for preparing alternatives. It is also important to note problems on the client’s property, the causes of which originate off-site. These off-site problems are frequent in riparian corridors due to downstream flow.

Most of the analysis information will be recorded in short reports. However, it is also useful to develop a composite resource analysis map at the same scale as the inventory maps (1”=660’) (Figure 7-3). This map documents the general habitat condition on the client’s property. The map would locate:

- Threatened or endangered species habitat
- Patches with vulnerable populations
- The condition of all patches, corridors, potential patches, special areas, and special features
Figure 7-3

Analysis
Hank Henry Farm
Natural Resources Conservation Service

Tilled natural drainage channel.
Frequently flooded. Poor yields.
Highly erodible land. Gap in habitat.
Degraded riparian habitat
Overutilized pasture
"Wasted" space

Sediments & chemical runoff entering wetlands
Fields subject to wind erosion. Limited available habitat.

Basemap Information
- Planning Boundary
- 100 Year Floodplain

Existing Features
- Windbreak
- Field Border
- Terraces
- Wetland Complex
- Riparian
- Upland Remnant

Proposed Practices

500 0 500 1000 Feet

Figure 7-3
The value of mapping the analysis results is it ties the conclusions to specific locations on the client’s property. The client can see direct links between the inventory, analysis, and resources. If other information is needed, the conservationist and client can refer to written reports documenting the analysis.

Discussion

Two general conservation plan scales involve participation of the conservationist:

- Small scale conservation plans that address one to several localized problems or opportunities; installing a grassed waterway for example
- Large scale comprehensive farm/ranch or community conservation plans that could involve the installation of numerous conservation practices or combinations of practices across the entire property

Small Scale Projects

Small-scale projects, one to several conservation practices on a farm or ranch, have historically comprised the majority of requests for assistance. Fortunately, each conservation practice has inherent potential to benefit wildlife in some way. The challenge for the conservationist is to enhance the habitat potential of each conservation practice (regardless of location), to design practices that produce habitat functional values greater than the practice itself, and to educate the client about increased benefits from planning on a broader scale. Reference Chapter 5 - Conservation Plan/Practice section for ways to enhance habitat value for each conservation practice. Before the project can proceed, all options to enhance habitat value must also meet the client’s objectives for initiating the project.

Large Scale Projects

A large-scale, comprehensive, conservation plan for an entire farm, ranch, or community open space presents a more difficult challenge, but the benefits for wildlife can be significant if the challenge is met. The planning task is more challenging because it must address problems and opportunities on the entire property, not just a few specific locations. The opportunities to benefit wildlife are greater because the planning area is large; it may include a diversity of plant community types and ecosystems, and the number of opportunities to link patches and corridors with adjacent properties generally increases. There may also be greater flexibility in the location of conservation corridors and more opportunities to develop integrated systems of conservation practices both on and off-site.
Process

The wildlife component of the conservation plan is prepared in direct consultation with the client. The basic wildlife plan from which all alternatives are derived is assembled as a series of map overlays or layers (Figure 7-4). The base layer is the composite analysis map, prepared in Step 4, which depicts existing habitat resources on the client’s property. Subsequent layers illustrating proposed solutions to specific problems or opportunities are overlaid on the analysis composite base maps.

Layers typically included are:

Existing Habitat Resources – This base is a copy of the composite analysis map prepared in Step 4 (Figure 7-3).

Function – This layer delineates the location of conservation practices or systems of practices required to meet the client’s objectives and comply with NRCS standards. Note: Wildlife functions are considered specifically in the Potential Habitat and New Plantings layer and the Synthesis layer.

Existing Habitat Resource Management – This layer delineates recommendations for preservation, enhancement, or restoration of all existing habitat resources on the client’s property.

Potential Habitat and New Plantings – This layer delineates sites on the client’s property that could be developed into wildlife habitat.

Synthesis – This layer uses the concepts and principles discussed in Chapter 5 to integrate the three previous layers into an ecologically sound wildlife plan that responds to the unique resources of the client’s property and his or her program objectives.

First Layer – Existing Habitat Resources

The conservationist should make a copy of the composite analysis map that delineates the pattern of existing habitat components including:

- Threatened or endangered species habitat
- Patches with vulnerable populations
- The condition of all patches, corridors, potential patches, special areas, and special features
- High value patches and corridors, special areas and features
- Gaps in corridor connectivity
- Potential corridor connections, both on-site and off-site
- Patches, corridors, special areas and special features at risk
- Field management practices, both on-site and off-site, detrimental to wildlife
- Potential habitats
Second Layer – Function
Many conservation plan projects will involve the location and design of new conservation corridors to solve functional problems. Clients have specific objectives in mind, often addressing a specific soil or water conservation problem. The location of the problem in the field dictates the location of the conservation practices or systems of practice. The recommended process for locating and designing new corridor plantings to achieve functional objectives should proceed as follows:

- Review the client’s objectives related to field management practices, wildlife habitat, erosion control, and air/water quality protection.
- Identify which ecological functions of corridors or other conservation practices or combinations of practices could be used to solve the problem or capitalize on the opportunity.
- Consider possible solutions such as fencing, grading, bioengineering, modified management systems, etc.
- Select corridor types or management practices or combination of practices that provide functions necessary to solve the problem or realize the opportunity, and are most beneficial to wildlife.
- Specify plant community structure and native plant species for the management practice, appropriate for wildlife species in the region (reference Chapter 5).
- Locate the corridor type, practice or combinations of practices where they would be installed in the field on the 1”=660’ base map.
- Repeat this procedure for each problem or opportunity.

When all conservation practices and systems of practices necessary to meet the client’s objectives have been located on the base map, a preliminary functional plan will have been completed. Starting plan development by addressing functional issues first does not mean wildlife issues are any less important; they are simply addressed later in the process. The final plan must integrate all objectives including wildlife objectives into an operational and ecologically unified whole (Figure 7-5).

Third Layer – Existing Habitat Resource Management
The condition of patches, corridors, potential patches, and special areas/features was documented in the analysis Step 4. Causes of the conditions were also identified. Both conditions and causes should be addressed in the plan. The following procedure for addressing existing habitat resource issues is suggested:

- Review the current condition of each patch, corridor, special area, or special feature as described in the analysis.
- Review the wildlife analysis report to identify factors degrading these habitats or limiting species diversity or abundance.
- Recommend ways to alleviate the cause or causes of habitat degradation or other factors limiting species diversity or abundance.
- Include recommendations for problems or opportunities unique to the client’s property.

General recommendations to preserve, enhance, or restore patches, corridors, or other habitat resources should be noted on the base map and linked directly to that resource (Figure 7-6). Specific management techniques for meeting these objectives should be keyed to habitat resources on the map and discussed in detail in the implementation report (Step 8).

Fourth Layer – Potential Habitats and New Wildlife Plantings
The conservationist should review the areas of potential habitat delineated on the analysis map and assess possibilities of enhancing or restoring these areas. Consider the function these areas could perform in addition to habitat. For example, tiled wetlands are common in many regions of the country. During wet years, crop production on these areas is marginal. Many farmers are voluntarily crushing drain tiles, restoring these wetlands. Not only have these practices restored habitat for wildlife, they have also restored other wetland functions helping mitigate downstream flooding and reduce water pollution.
Figure 7-5
Figure 7-6

- Restore degraded segments of riparian habitat with appropriate techniques.
- Enhance existing upland patches.
- Preserve high quality wetland complex.
- Enroll land in CRP to restore/enhance habitat.
- This CRP patch identified on the Function map also has significant wildlife value.
Easement corridors for powerlines, pipelines, and other utilities provide real possibilities to link patches and other corridors across a site. If properly planted and managed, easements can provide excellent habitat for many species. Similar habitat and linkage potentially exist in steep slopes, damaged soils, “waste” areas, and disturbed sites. Locate potential habitats worthy of development on the base map.

New wildlife corridor plantings offer exciting opportunities (see the Hedgerow Farms case study for example - pp. 7-27). New wildlife corridor plantings should be located to provide other ecological functions in addition to habitat thus maximizing their utility. When appropriate, the conservationist should propose corridor locations that serve as major connecting structures for wildlife on the farm, ranch, or community. In many respects, new plantings offer more design flexibility than any other plan activity. New plantings may include habitat patches as well as corridors. Look for opportunities to plant even small areas of new habitat within those large areas (>80 acres) outlined on the inventory map as being devoid of habitat.

It is important to make sure all proposed new plantings do not interfere with the client’s normal farming or ranching operations. For example, an Iowa State University extension publication Stewards of Our Streams - Buffer Strip Design, Establishment and Maintenance recommends streamside/riparian plantings to “square up” fields converting the area adjacent to stream meanders into habitat. If these recommendations were implemented, they would provide important riparian habitat and increase farm equipment operating efficiency (Figure 7-7). Locate all potential habitats proposed for enhancement or restoration and all new proposed plantings on this layer (Figure 7-8).

Figure 7-7: Before “squaring up” fields, habitat is limited to small isolated patches. After “squaring up” fields, habitat is increased 5-fold and farming efficiency is enhanced.

Fifth Layer - Synthesis

Synthesis involves combining the mapped information from all three previously developed layers. The pattern that emerges from overlaying all layers is often disconnected. It is a collection of conservation practices and management recommendations, not yet a plan. The challenge for the conservationist and the client is to convert this collection of practices and recommendations into a plan. They need to identify practical opportunities to connect patches, corridors, potential habitat patches, special areas, and special features into an integrated pattern. The intent is to optimize the value-added benefits of connectivity. Reference the concepts and principles on page 7-19 to help guide the plan development process.

Optimizing connectivity and modifying the other plan elements in response to planning principles may involve:

- Extending a corridor
- Changing corridor location, width, or configuration, where practical
- Adding corridors or patches
- Proposing additional structural, mechanical, or management practices
- Reinroducing natural mechanisms to manage vegetation

In some instances, there will not be a practical way to link patches or corridors; they will remain disconnected from the overall structure of the conservation plan but are still valuable as habitat.

The wildlife component of the conservation plan that emerges from the synthesis process should optimize habitat resources on the client’s property. The conservationist and client should take the preliminary synthesis plan into the field and evaluate each recommendation on location. Adjustments to the plan should be made as necessary in response to on-site conditions. The conservationist will prepare a final plan once all adjustments have been made (Figure 7-9).
Potential Habitats
Hank Henry Farm
Natural Resources Conservation Service

Figure 7-8
Planning Habitat Concepts and Principles

The concepts and principles discussed in Chapter 5 are guidelines the planning team can use to synthesize the four previous layers into an integrated wildlife habitat plan. They suggest locations, configurations, and linkages for corridors and patches providing the greatest benefit for wildlife. These concepts and principles are applicable regardless of project scale and have been rephrased as planning directives to use in this phase of the planning process.

Patches

- Preserve all large patches or introduce new ones where practical
- Connect all patches, large or small, that were historically connected
- Do not subdivide existing patches
- Preserve clusters of small patches
- Preserve patches that are near each other
- Introduce new patches in areas devoid of habitat

Corridors

- Preserve continuous corridors; plant gaps in discontinuous corridors
- Preserve existing corridors connecting existing patches; pay particular attention to migration and dispersal corridors
- Introduce, where practical, corridor plantings to connect patches that were historically connected
- Preserve or introduce multiple corridor or “stepping stone” connections between patches that were historically connected
- Design new corridors to be as wide as practical; widen existing corridors where practical

Special Areas and Features

- Preserve all patches, corridors, special areas or special features inhabited by threatened or endangered species or vulnerable populations
- Preserve other special areas and features

Potential Habitats

- Develop potential habitats where practical
- Consider artificial structures to provide habitat when natural habitat has been degraded or destroyed

Other Principles

- Address key impacts that create at-risk conditions for habitat
- Recommend matrix management principles that benefit wildlife
- Recommend structural diversity in patch and corridor plant communities
- Recommend native plant communities

The conservationist should adapt concepts and principles as necessary to meet project resource conditions and the needs of specific wildlife species.
Figure 7-9
Develop Alternatives

The NPPH requires preparation of viable alternative conservation plans. There are a number of ways to develop alternatives to the base plan. Alternatives can focus on conservation function, wildlife (diversity or target species) or other corridor benefits. Some examples are:

- Alternative plans using different management practices to address a particular soil or water conservation problem
- A plan to optimize wildlife species diversity
- A plan to increase populations of a particular species, guild, or suite of species
- A plan to optimize recreation, economic, or other corridor benefits
- A plan of conservation practices without enhancement for wildlife
- A no-action alternative (required)

The conservationist and client must agree that each alternative meets the client’s objectives and NRCS standards. In addition, each alternative must comply with all relevant Federal, state, and local regulations.

Product

A description of wildlife habitat alternatives available to the client

STEP 6 EVALUATE ALTERNATIVES

Planning Standard

The effects of each alternative are evaluated and impacts are described. Alternatives are compared to benchmark conditions to evaluate their ability to solve problems, meet quality criteria, and the client’s objectives.

Discussion

The conservationist and client must evaluate the conservation plan alternatives developed in Step 5. The NPPH outlines the basic procedures for evaluating alternatives. The intent of evaluating the wildlife habitat component of the conservation plan is to:

- Compare the wildlife habitat component of conservation plan alternatives against habitat benchmark conditions as described in the analysis
- Compare the wildlife habitat benefits of each alternative
- Compare the effectiveness of each alternative in meeting the client’s objectives
- Verify compliance with federal, state, and local statutes regulating wildlife or wildlife habitat

The Conservation Plan Alternative Evaluation Worksheet (pp. 7-22) provides a format for quantifiable comparisons between alternatives. Most of the data needed to fill out the form can be scaled from each plan alternative. However, estimated changes in species diversity will require input from a biologist. Because state wildlife agencies and the USFWS manage wildlife populations, they should be invited to review plan alternatives and make recommendations.

Computer simulations constructed on oblique aerial photographs are effective in depicting what different alternatives would look like if implemented on the client’s property. This valuable tool can help the client and conservationist visualize each alternative (pp. 7-26).

Products

- A set of practical conservation management system (CMS) alternatives compatible with client and NRCS objectives.
- A conservation effects for decision-making (CED) worksheet, for each alternative, displaying effects and impacts for the client to consider and use as a basis for making conservation decisions.
- Technical assistance notes reflecting discussions between the planner and the client.
Completing this form will provide a general evaluation of the impact of each alternative on wildlife habitat and wildlife populations.

INSTRUCTIONS: Enter the alternative name or number in the space provided. Using a scale, measure the length or calculate the area for each criterion and record them in the matrix. Where requested, check whether these figures have increased, remained the same, or decreased relative to the existing condition (benchmark). The last 2 criteria require the planning team to estimate the alternative’s impact on wildlife. Each state is encouraged to develop criteria for making these estimates.

LOCATION

County:
Township:
Range:
Section:
Subsection:
Landowner:
Phone #: Day:

ADDRESS

mailing rural post or fire code number

ALTERNATIVE NAME:

EVALUATION

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Increase</th>
<th>No Change</th>
<th>Decrease</th>
<th>Acres</th>
<th>Length</th>
<th>Number</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total area of corridor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linkage to adjacent patches or corridors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total length of corridor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length of existing corridor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enhanced</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restored</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total area of patches by plant community</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grass shrub</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riparian wooded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riparian shrub</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riparian grass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upland wooded (natural)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upland wooded (introduced)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acres of farm or ranch land managed in ways</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>that benefit wildlife</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acres of farm or ranch land taken out of</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>production</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special areas preserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special features preserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other conservation measures (Specify)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated effects on species diversity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated effects on species abundance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Specify species)
Phase 3 Application at the Conservation Plan Scale

Phase 3 involves:
- Implement plan
- Evaluate plan

In Phase 3, the client and the conservationist cooperate in implementing the conservation plan. Installed management practices are evaluated and adaptive management is applied where necessary.

Step 8 Implement Plan

Planning Standard

The client has adequate information and understanding to implement, operate and maintain the planned conservation systems. Practices implemented with NRCS technical assistance will be installed according to agency standards and specifications.

Discussion

Implementing a conservation plan is the process of installing practices that make up the planned conservation management system. The plan may be implemented by the client with or without NRCS technical assistance. Implementation also includes operation and maintenance after installation to insure proper future functioning. It is only after habitat enhancing conservation corridors and practices are installed that wildlife benefit. Wildlife will continue to benefit as long as the corridors are maintained with their needs in mind.

The NPPH provides detailed instructions on how to proceed with the implementation process. One area that requires additional discussion for wildlife focused plans is permitting. A number of wildlife, wildlife habitat, and water quality related resources are regulated by federal, state, or local law. Conservationists should be familiar with the types of required permits and permitting agencies. All necessary permits must be acquired before the plan can be implemented.

Step 7 Make Decisions

Planning Standard

A conservation management system is selected based on the client’s clear understanding of the impacts of each alternative. The selected alternative is recorded in the client’s plan.

Discussion

The conservationist assists the client to understand his or her options in selecting an alternative. The NPPH provides general guidelines for helping the client consider plan alternatives. It is important to review objectives established in Step 2 at this point in the decision making process. They should be basic criteria upon which the final decision is made. Also review the 1” =660’ drawings of each alternative using the Plan Alternative Evaluation Worksheets to compare habitat advantages and disadvantages of each alternative. A rigorous evaluation of each plan alternative will help the client understand the advantages and disadvantages for the wildlife resource and make an informed decision.

The conservationist prepares the final plan document once the client has selected an alternative. General guidance for preparing plan documents is provided in the NPPH.

Once the conservation plan is completed it is delivered to the client and a date is set for follow up or application assistance to coordinate funding and activities with state agencies, conservation groups, or others involved in plan implementation.

Products

- The plan document with the selected alternative, including potential program or implementation opportunities, and operation and maintenance
- Schedule of conservation system and practice implementation
- NEPA documentation (if required)
- Revised CED worksheet for a conservation plan
One of the most critical aspects of implementation is funding, particularly where wildlife habitat is concerned. Clients, for good reason, pursue the most cost-effective solution to a particular soil or water conservation problem. For example, in the upper Midwest, smooth brome (*Bromus inermis*) is the most common species planted in grass waterways. Farmers and ranchers prefer smooth brome because it is easy to establish and provides good inexpensive erosion control. However, pure stands of smooth brome have limited value as habitat for wildlife. Alternative grass/forb seed mixes that produce high quality habitat are more expensive and difficult to establish. Fortunately, numerous private conservation organizations in the upper Midwest and other regions are seeking partnership opportunities with landowners to enhance the habitat value of grassed waterways and other conservation practices. They have programs that contribute funds, native seed mixes, trees, shrubs, seeding and planting equipment, and labor. Support of this kind makes it possible for landowners to install appropriate conservation practices beneficial to wildlife at no additional cost. The reduced long-term costs of managing native plant communities are an additional benefit for the landowner.

Partnerships of this type result in enhanced wildlife habitat and a strengthened social structure in rural communities. Partnering with federal and state agencies and county and local governmental departments can produce similar results. Chapter 8 is devoted to the topic of implementation.

Products

- Conservation practices applied
- Conservation management systems applied
- Communication with the clients
- Updated plan document
- Conservation plan revision notes
- Technical assistance notes
- Conservation contract where applicable

Step 9 Evaluate Plan

Planning Standard

The planner maintains contact with the client to determine whether the implementation results are meeting ecological, economic, and social objectives and solving conservation problems in a manner satisfactory to the client and beneficial to the resources. Resource impacts different from those predicted are fed back into the planning process and adaptive management strategies employed.

Discussion

The purposes for evaluating wildlife and wildlife habitat components of the conservation plan as implemented include:

- To ensure wildlife habitat is functioning as intended
- To estimate wildlife response to conservation practices
- To initiate adaptive management where wildlife responses are different than those predicted

Evaluation of the implemented plan effects on wildlife is an on-site activity. The client, conservationist, and NRCS biologist should work together to observe, measure, discuss, and record the wildlife and wildlife habitat data. The conservationist should use the plan evaluation step as an opportunity to discuss the results with the client. Habitat benefits of the conservation practices implemented and the importance of vegetation management in the perpetuation of those benefits should be emphasized. The NPPH outlines the general procedures necessary to complete a plan evaluation.

Evaluating (estimating) the effects of the conservation plan on wildlife can be a difficult task. The very nature and behavior of some species afford little opportunity for assessment. In addition, the effects of conservation practices will not be immediate. Plants take time to grow; the results of fencing may require several years to be reflected in rejuvenated plant communities. The wildlife that inhabits these changing plant communities will also change over time in response to changing plant structure. Further, local and regional populations of wildlife are affected annually by weather and other natural factors. Consequently, changes in species...
In addition, numerous species specific inventory and monitoring techniques can be used as needed. It is beyond the scope of this manual to detail each technique. The *Research and Management Techniques for Wildlife and Habitat* (The Wildlife Society 1994) is a useful reference. If threatened or endangered species or a vulnerable population is an issue, it may be necessary to enlist the help of other wildlife and conservation biologists in conducting an evaluation.

Adaptive Management

The accumulation of several years of evaluation data may suggest that a particular wildlife species or population may be responding in ways different than predicted to the implemented conservation practices. The plan should be reviewed by the conservationist and a biologist to determine the nature of the problem. Conservation practices should be modified as necessary to rectify the problem. In some cases, additional practices may need to be installed or species populations management employed.

Products

- O & M reports
- Outline of maintenance needs or other changes
- A decision to update or revise the plan, if needed
- Technical assistance notes indicating the effectiveness of the plan
- Case studies, if appropriate, following the guidance provided in the FOTG, Sec. V.
- Recommendations for changes in practice designs or specifications
- Recommendations for changes in FOTG materials
- A decision to revise or expand implementation strategies
- Updated conservation plan effects

Annual wildlife inventory information collected after implementation can be compared with data collected in the inventory Step 3. The data can be recorded on a simple bar graph to illustrate trends.

There are a number of well-established inventory and monitoring techniques in the wildlife biology literature. NRCS biologists and state wildlife agencies are well versed in these techniques, which include:

- Trapping
- Fecal pellet counts
- Call counts
- Harvest data (game species)
- Flush counts
- Roadside counts
- Number of artifacts (nests, burrows, tracks, etc.)
- Aerial counts

abundance from year to year may not be responses to implemented management practices but rather responses to other external factors.

Nevertheless, conducting a wildlife inventory over a period of years is worthwhile because it does illustrate trends. Inventories should be coordinated with state wildlife agencies and the USFWS. The types of information generated from a wildlife inventory that reflect the effects of the implemented conservation practice include:

- A list of species observed on the site
- A list of species that breed on the site
- Species abundance - estimated number of individuals present on the site
- Diversity - estimated number of species present on the site
Visual Simulations

A. This photograph depicts existing conditions on the farm. Note the engineered stream channel and dark gray wet soils adjacent to the stream.

B. This simulation shows the installation of a shelterbelt around the farm buildings, a grassed waterway, riparian buffer along the stream and a wooded patch on the wet soils.

C. In this simulation, grassed terraces have been installed and the riparian buffer widened in several locations. Terraces are connected to riparian buffers and grassed waterways.

D. The stream has been allowed to meander naturally within the floodplain and many floodplain functions are restored in this simulation. This fully integrated set of conservation practices maximizes wildlife habitat benefits.

E. This photograph depicts existing conditions. Note the lack of connectivity between the wetland and wooded patch and the larger landscape.

F. Shelterbelts installed in this simulation link wetlands, riparian woodlands, and wooded patches, providing wildlife corridors and habitat across a large area.

Computer simulations constructed on oblique aerial photographs are effective in depicting what different conservation alternatives would look like if implemented on the client’s property. Simulations were prepared by Gary Wells, U.S. Forest Service, Agroforestry Center, Lincoln, NE. and were reproduced with permission.
Corridor Planning Principles discussed in Chapter 5 that are exhibited by this case study include:

TWO OR MORE CORRIDOR CONNECTIONS BETWEEN PATCHES ARE BETTER THAN ONE.

MANAGE THE MATRIX WITH WILDLIFE IN MIND.

NATIVE SPECIES ARE BETTER THAN INTRODUCED SPECIES.

STRUCTURALLY DIVERSE PATCHES AND CORRIDORS ARE BETTER THAN SIMPLE STRUCTURE.
Case Study: Hedgerow Farms

This case study illustrates how a private landowner partnering with federal, state and local agencies and groups can develop an effective conservation plan at the farm or ranch scale. Conservation corridors form the essence of the plan and function both as habitat and conduit for the 110 species that have been recorded on the property. Hedgerow Farms is also a teaching and research facility for farmers and ranchers in the region.

Hedgerow Farms, owned and operated by John Anderson and family, is a 600 acre row crop and grass seed production facility located 20 miles northwest of Davis, CA in the southern Sacramento Valley. Nestled in a 200,000-acre watershed at the base of the Vaca Hills, the farm is surrounded by other row crop farms and orchards. For the past 18 years, Hedgerow Farms has been pioneering methods for restoring and revegetating field borders, canal edges and berms, drainage ditches and riparian corridors with native California vegetation.

Intensive farming practices in the Sacramento Valley have essentially eliminated wildlife habitat and ecosystem functions on the majority of farmland. Most farmers routinely keep nonfarmed areas devoid of vegetation through a costly and labor-intensive combination of tillage and herbicides. Most of the major drainages that served historically as riparian corridors for wildlife have been channelized and stripped of vegetation.

In addition to eliminating wildlife habitat and biodiversity, this so-called “clean farming” has exacerbated soil erosion, sediment deposition, and flooding. It also locks farmers into a never-ending cycle of seasonal weed abatement. Left alone for even a short period, traditionally clean-farmed areas become a complex of non-native invasive weeds unacceptable to farmers that can choke water delivery systems.

The owners of Hedgerow Farms have developed and demonstrated the use of on-farm vegetation practices that completely reverse the concept of “clean farming.” Rather than eliminating vegetation, they have restored and cultivated native California vegetation on roadsides, irrigation canals, drainage ditches, field borders, and along a natural riparian corridor. Every non-farmed area is a complex of native plants (including perennial grasses, sedges, rushes, forbs, shrubs, vines and trees) competitively suppressing invasive weeds while providing a biologically diverse community of plants and animals.

Today, Hedgerow Farms supports multiple, interconnected corridors that have eliminated erosion, reduced the need for tillage and herbicides, and may even be assimilating agricultural nutrient run-off. The benefits to wildlife are tremendous. Over 110 species of birds have been recorded on the property. Game species are now regularly harvested and include dove, pheasant, quail, turkey, wood ducks, and mallards. Reptile and amphibian populations have made dramatic recoveries. A myriad beneficial insects and spiders inhabit the
The success and innovation of Hedgerow Farms has heightened local awareness and interest in conservation practices on farmland. The farm hosts an average of two tours each month attended by other farmers, agency representatives, and conservationists eager to learn more about farmland ecosystem management. The Yolo County Resource Conservation District together with NRCS works with Hedgerow Farms to provide education and outreach to expand these and similar programs throughout the watershed.

For additional information, contact:

John H. Anderson
Hedgerow Farms
21740 Co. Rd. 88
Winters, CA 95616

This case study was written by John Anderson and Jeannie Wirka and is printed in this document with their permission.
Chapter 8: Implementation

INTRODUCTION

Implementing a watershed conservation corridor plan is a long, diplomatic process of collaborative problem-solving. All stakeholders have a role to play. Key implementation issues include:

- Landowner participation
- Funding and other forms of support
- Compliance with federal, state, and local regulations

Voluntary commitment of land resources by landowners is the key to implementing any watershed scale conservation corridor plan. Landowners participate in conservation corridor projects for many reasons but two stand out, increased economic returns and somewhat surprisingly, increased wildlife. It is assumed that all landowners are well aware of these and other benefits conservation corridors provide. Yet NRCS biologists cite a lack of knowledge of the value of conservation corridors as one reason that landowners are reluctant to participate in corridor projects. Landowners need to be informed about and constantly reminded of the value of conservation corridors. Chapter 4 in this manual provides numerous examples of corridor benefits that can be shared with landowners. This information needs to be disseminated beyond the NRCS office through a variety of outlets to reach the largest possible audience. It can be incorporated into newspaper articles, feature pieces in trade journals, extension service fact sheets, TV spots, FFA and 4H educational programs, and a variety of other information sources.

Ideally many landowners and communities in the watershed will participate in an area-wide planning process. In reality, some will voluntarily agree to commit land resources to conservation corridors and others will decline to participate. Having participating landowners speak publicly on behalf of projects can help increase participation. Neighbors talking to neighbors have greater potential for convincing their peers to cooperate in a corridor project than any group or organization. Consequently, it is essential participating landowners be kept informed and involved as the project progresses. Cultivating their enthusiasm by publishing their successes, answering their questions, and advising them on long-term corridor management will go a long way toward maintaining their continued support and willingness to talk about corridor benefits with their neighbors.
In the 1997 survey, NRCS biologists estimated that only 15% of farmers and ranchers nationwide have participated in a conservation corridor project. They estimated that an additional 20% would be willing to participate at some level. The same biologists report that lack of sufficient financial support is the number one reason the remaining 65% may not participate in conservation corridor projects. Clearly, adequate financial resources are critical to implementation of any watershed plan.

IMPLEMENTATION PARTNERSHIPS

In today’s political environment, public, private, and non-profit partnerships are absolutely necessary to assemble the support necessary to implement watershed scale projects. Each of the case studies presented in this manual relied on partnerships. The following partners are actively involved in projects according to NRCS biologists.

- Landowners
- State agencies
- Federal agencies
- Local government
- Soil and water conservation districts
- Private non-profit conservation organizations
 - Nature Conservancy
 - Quail Unlimited
 - Pheasants Forever
 - Trout Unlimited
 - National Wild Turkey Federation
 - Rocky Mountain Elk Foundation
 - Ducks Unlimited
 - Audubon Society
- Extension services
- Farm bureaus
- Community groups

This list is not comprehensive but does suggest the wide range of agencies and organizations willing to contribute to conservation corridor planning and implementation. The conservationist’s charge is to build the partnerships necessary to convert plans into corridor habitat.

Before an area-wide or conservation plan can be implemented, all necessary titles, easements, permits and other types of authorization must be acquired. These legal aspects of the project, whether federal, state, or local, are identified in the inventory phase of the planning process and tracked through each succeeding phase. They will vary from state to state and with each project. However, a number of federal regulations should be reviewed for each project to determine if they apply.

States, regional planning authorities, counties, municipalities and special use or resource districts may also have regulations that require compliance and project approval. An excellent publication on plan implementation entitled Conservation Partnerships: A Field Guide to Public-Private Partnering for Natural Resource Conservation is available from:

U.S. Fish and Wildlife Service
Office of Training and Education
4401 North Fairfax Drive
Arlington, VA 22203
(703) 358-1711

or

National Fish and Wildlife Foundation
1120 Connecticut Avenue, NW, Suite 900
Washington, DC 20036
(202) 857-0166
Appendix A: Corridor Inventory Worksheets

Natural Resources Conservation Service (NRCS)
EXISTING CORRIDOR INVENTORY WORKSHEET

Natural Resources Conservation Service - Conservation Corridor

Riparian/Stream Corridor Type

LOCATION
- County: ____________________________
- Township: _________________________
- Range: ____________________________
- Section: __________________________
- Subsection: ________________________

ADDRESS
- Landowner: ________________________ mailing
- Subdivision: ______________________
- Rural post office box: ____________
- Fire code number: _______________

CORRIDOR INFORMATION
- Corridor Type: ____________________
- Corridor Location: ________________
- Surveyed by: _____________________
- Length: ______________ Width: ______

<table>
<thead>
<tr>
<th>Measure</th>
<th>Yes</th>
<th>No</th>
<th>Few or none</th>
<th>Occasional</th>
<th>Numerous</th>
<th>Excellent</th>
<th>Good</th>
<th>Poor</th>
<th>Don’t Know</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural hydrological processes operate across the site</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A complement of plant species normally associated with community type is present</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All layers of vegetation normally associated with community type are present</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potential source of large woody debris is within 100 feet of streambank *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adequate vegetation to protect banks during high flows is present</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range of age classes of dominant native tree or shrub species is present *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Known migration or dispersal corridor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invasive, exotic species</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduced gaps (clearings, roads, etc.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obstructions in or across stream channel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank collapse or bare spots</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connected to adjacent patches or corridors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General plant community vigor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Apply only to naturally forested or shrub dominated riparian corridors. If answer to any * question is no, please describe the problem in the comment section.

Comments: __

States are encouraged to weight the measures in the matrix and add other criteria where necessary to describe local conditions and to improve the accuracy of corridor ratings and management objectives.

Corridor Rating:
- Excellent
- Good
- Fair
- Poor

Corridor Management Objective:
- Preservation
- Enhancement
- Restoration
- Other

New Plantings Recommended:
- Yes
- No
EXISTING CORRIDOR INVENTORY WORKSHEET

Natural Corridor

Remnant Corridor Type

Remnant wetland should be inventoried as outlined in Section 404 B1 Guidelines.

LOCATION

<table>
<thead>
<tr>
<th>County:</th>
<th>Landowner: mailing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Township:</th>
<th>Rural post</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Range:</th>
<th>Fire code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>number</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section:</th>
<th>Subsection: number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phone #</th>
<th>Day:</th>
<th>Evening:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ADDRESS

CORRIDOR INFORMATION

<table>
<thead>
<tr>
<th>Corridor Type:</th>
<th>Corridor Location:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surveyed by:</th>
<th>Length:</th>
<th>Width:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measure</th>
<th>Yes</th>
<th>No</th>
<th>Few or none</th>
<th>Occasional</th>
<th>Numerous</th>
<th>Excellent</th>
<th>Good</th>
<th>Poor</th>
<th>Don't Know</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural disturbances still occur (i.e., fire)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A complement of plant species normally associated with community type is present</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All layers of vegetation normally associated with community type are present</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range of age classes of dominant native tree or shrub species is present</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Known migration or dispersal corridor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invasive, exotic species</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduced gaps (clearings, roads, etc.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bare spots</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eroded areas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connected to adjacent patches or corridors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General plant community vigor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:

* Apply only to naturally forested or shrub remnant corridors. If answer to any * question is no, please describe the problem in the comment section.

Corridor Rating:

Corridor Management Objective:

New Plantings Recommended:

Yes

No
EXISTING CORRIDOR INVENTORY WORKSHEET

Introduced Corridor

Grass/Forb Dominated Cover Type:
Field borders, field buffers, filter strips, grassed waterways, grassed terraces, and vegetated ditches

LOCATION

<table>
<thead>
<tr>
<th>County:</th>
<th>Landowner:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Township:</td>
<td>mailing</td>
</tr>
<tr>
<td>Range:</td>
<td>rural post</td>
</tr>
<tr>
<td>Section:</td>
<td>or fire code</td>
</tr>
<tr>
<td>Subsection:</td>
<td>number</td>
</tr>
<tr>
<td>Phone #:</td>
<td>Day:</td>
</tr>
</tbody>
</table>

CORRIDOR INFORMATION

<table>
<thead>
<tr>
<th>Corridor Type:</th>
<th>Corridor Location:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surveyed by:</td>
<td>Length:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measure</th>
<th>Yes</th>
<th>No</th>
<th>Dominant</th>
<th>Co-dominant</th>
<th>Few or none</th>
<th>Occasional</th>
<th>Numerous</th>
<th>Excellent</th>
<th>Good</th>
<th>Poor</th>
<th>Don't Know</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native grasses</td>
<td></td>
</tr>
<tr>
<td>Introduced grasses</td>
<td></td>
</tr>
<tr>
<td>Weeds</td>
<td></td>
</tr>
<tr>
<td>Native shrubs</td>
<td></td>
</tr>
<tr>
<td>Native forbs</td>
<td></td>
</tr>
<tr>
<td>Bare spots</td>
<td></td>
</tr>
<tr>
<td>Eroded areas</td>
<td></td>
</tr>
<tr>
<td>Connected to adjacent patches or corridors</td>
<td></td>
</tr>
<tr>
<td>Known migration or dispersal corridor</td>
<td></td>
</tr>
<tr>
<td>Plant community vigor</td>
<td></td>
</tr>
</tbody>
</table>

Comments:

States are encouraged to weight the measures in the matrix and add other criteria where necessary to describe local conditions and to improve the accuracy of corridor ratings and management objectives.

Corridor Rating:

Excellent
Good
Fair
Poor

Corridor Management Objective:

Preservation
Enhancement
Restoration
Other

New Plantings Recommended:

Yes
No

Natural Resources Conservation Service - Conservation Corridor

A-4
Existing Corridor Inventory Worksheet

Introduced Corridor

Windbreak, Shelterbelt, Hedgerow Corridor Type

Location

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>County:</td>
<td></td>
</tr>
<tr>
<td>Township:</td>
<td></td>
</tr>
<tr>
<td>Range:</td>
<td></td>
</tr>
<tr>
<td>Section:</td>
<td></td>
</tr>
<tr>
<td>Subsection:</td>
<td></td>
</tr>
</tbody>
</table>

Address

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landowner:</td>
<td></td>
</tr>
<tr>
<td>Phone # Day:</td>
<td></td>
</tr>
<tr>
<td>Phone # Evening:</td>
<td></td>
</tr>
</tbody>
</table>

Corridor Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corridor Type:</td>
<td></td>
</tr>
<tr>
<td>Corridor Location:</td>
<td></td>
</tr>
<tr>
<td>Surveyed by:</td>
<td></td>
</tr>
<tr>
<td>Length:</td>
<td></td>
</tr>
<tr>
<td>Width:</td>
<td></td>
</tr>
</tbody>
</table>

Measure Table

<table>
<thead>
<tr>
<th>Measure</th>
<th>Yes</th>
<th>No</th>
<th>Few or None</th>
<th>Occasional</th>
<th>Numerous</th>
<th>Excellent</th>
<th>Good</th>
<th>Poor</th>
<th>Don't Know</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corridor is 30 feet or wider</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrubs present on outer edge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrubs present in the understory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grasses present in the understory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evidence of grazing in corridor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Known migration or dispersal corridor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connected to adjacent patches or corridors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standing dead, down, or trees missing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduced gaps, (clearings, roads, etc.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General plant community vigor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seeding/sapling survival*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:

* Apply only to recently planted corridors.

States are encouraged to weight the measures in the matrix and add other criteria where necessary to describe local conditions and to improve the accuracy of corridor ratings and management objectives.

Corridor Rating

<table>
<thead>
<tr>
<th>Rating</th>
<th>Preservation</th>
<th>Enhancement</th>
<th>Restoration</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fair</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Corridor Management Objective

<table>
<thead>
<tr>
<th>Objective</th>
<th>New Plantings Recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preservation</td>
<td>Yes</td>
</tr>
<tr>
<td>Enhancement</td>
<td></td>
</tr>
<tr>
<td>Restoration</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>
Appendix B: Wildlife Corridor CheckList
A Guide for the Field Conservationist

Natural Resources Conservation Service (NRCS)

Modified from a document prepared by: State of Illinois Division of Wildlife Resources, Private Land Program, Acres for Wildlife Inventory.
Wildlife Corridor Checklist:
A Guide for the Field Conservationist

Natural Resources Conservation Service (NRCS)

The following discussion topics will help you, the conservationist, develop a wildlife corridor plan for the cooperator’s farm or ranch. Aerial photographs and site maps will be required to complete the planning process.

I. COOPERATOR:
Name ___________________________ Date ________________

Please answer the following questions. (Circle or write in.)
1) Does the cooperator own the land? Yes No
 If not, who does? ________________
2) Does the cooperator operate the farm? Yes No
 If not, who does? ________________
3) Does anyone reside on the property? Yes No
4) Is the property within a village or city? Yes No

II. PROPERTY: Record information about the location and current use of the property.

<table>
<thead>
<tr>
<th>County Name</th>
<th>Township Name</th>
<th>Township #</th>
<th>Range #</th>
<th>Section #</th>
</tr>
</thead>
</table>

Please estimate the acreage of the property in each of the following land uses.

<table>
<thead>
<tr>
<th>Land Use</th>
<th>ACRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Row crops, small grains, or annual set-aside</td>
<td></td>
</tr>
<tr>
<td>2) Grassland – grazed or cut for hay</td>
<td></td>
</tr>
<tr>
<td>3) Grassland – not used for forage</td>
<td></td>
</tr>
<tr>
<td>4) Woodland – used for pasture</td>
<td></td>
</tr>
<tr>
<td>5) Woodland – not grazed</td>
<td></td>
</tr>
<tr>
<td>6) Brush (fence rows, field borders, odd areas)</td>
<td></td>
</tr>
<tr>
<td>7) Wetlands (ponds, streams, marshes)</td>
<td></td>
</tr>
<tr>
<td>8) Building site (house, barn, shed, etc., lawn and surrounding area)</td>
<td></td>
</tr>
</tbody>
</table>

Total property acreage (sum of #1 through #8) ___________
Number of acres the cooperator will consider developing or improving ___________
III. CONSERVATION INTERESTS: Please assist the cooperator in assessing his/her general wildlife interests by considering the following activities.

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>Not Interested</th>
<th>Somewhat Interested</th>
<th>Very Interested</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Hunting or trapping for sport</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2) Viewing wildlife (nature walks, bird watching, maintaining nest boxes or feeders)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3) Procuring wildlife for food or fur</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4) Knowing wildlife exists in the balance of nature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5) Photographing wildlife</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6) Reading wildlife articles and viewing photos and films in magazines and on TV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7) Other (write in)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IV. SPECIES INTEREST: Please assist the cooperator in assessing his/her interest in each of the following wildlife groups.

<table>
<thead>
<tr>
<th>GROUP</th>
<th>Not Interested</th>
<th>Somewhat Interested</th>
<th>Very Interested</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Upland game (rabbits, pheasant, quail)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2) Forest game (deer, turkey, squirrels)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3) Songbirds (cardinal, bluebird, house wren)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4) Furbearers (muskrat, raccoon, fox)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5) Waterfowl (mallard, wood duck, Canada goose)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6) Raptors (horned owl, red-tailed hawk, kestrel)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7) Other (write in)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8) All wildlife (the complete wildlife community)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If the cooperator wishes to manage for 1 or 2 featured species, please note:

--

--

--
V. CONSERVATION GOALS: Please evaluate the importance of these possible goals for the cooperator.

<table>
<thead>
<tr>
<th>GOAL</th>
<th>Not Important</th>
<th>Somewhat Important</th>
<th>Very Important</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Provide game for hunting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2) Attract wildlife for viewing pleasure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3) Manage woods for lumber or firewood</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4) Restore native plant and animal communities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5) Provide a home for local native wildlife</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6) Create an attractive landscape</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7) Protect streams and prevent soil erosion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8) Other (write in)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VI. EQUIPMENT: List items the cooperator has available that might help with planting, mowing, etc. This is not intended to be a detailed inventory (Write in or circle appropriate answer).

<table>
<thead>
<tr>
<th>Tractors: Make</th>
<th>Model</th>
<th>3 Pt. Hitch</th>
<th>Category</th>
<th>Hydraulics</th>
<th>Horsepower</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Yes No 1 2 3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mowers: Type (sickle bar, bush hog, etc.)</th>
<th>Width</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tillage equipment: Type (plow, disc, harrow, etc.)</th>
<th>Width</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VII. GENERAL COMMENTS, QUESTIONS, OR SPECIFIC ITEMS OF INTEREST:

__
__
__

Crossely, A. and T. Peterson. 1990. Wildlife and Roadsides: A Review of the Literature Wisconsin Department of Natural Resources, Madison, WI.

Sandoz, M. 1935. *Old Jules*. University of Nebraska, Lincoln, NE.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area effect</td>
<td>A distinct species composition or abundance in the interior of a patch. The number of species increases with an increase in patch size to a minimum area point beyond which few species are added with increased area.</td>
</tr>
<tr>
<td>Biodiversity</td>
<td>The variety of life forms, number of species but also including ecosystem types and genetic variation within a species.</td>
</tr>
<tr>
<td>Connectivity</td>
<td>A measure of the connectedness or continuity of a corridor.</td>
</tr>
<tr>
<td>Consensus</td>
<td>A collective agreement.</td>
</tr>
<tr>
<td>Conservation corridor</td>
<td>A linear strip of vegetation natural or planted that differs from the adjacent surroundings and which functions to conserve soil, water, plants, wildlife, or fish resources.</td>
</tr>
<tr>
<td>Corridor</td>
<td>A linear patch that differs from its surroundings.</td>
</tr>
<tr>
<td>Dispersal</td>
<td>A one way movement of an animal from one home range to a new home range.</td>
</tr>
<tr>
<td>Ecoregion</td>
<td>An area with similar biological, physical, and climatic characteristics that differs from adjacent areas, frequently used for large scale planning studies.</td>
</tr>
<tr>
<td>Edge effect</td>
<td>A distinct species composition or abundance in the outer border of a patch.</td>
</tr>
<tr>
<td>Edge to interior ratio</td>
<td>The ratio of the linear feet of the periphery of a patch to the area of the patch.</td>
</tr>
<tr>
<td>Eutrophication</td>
<td>Nutrient enrichment of waterbodies resulting in luxurious organic growth and depletion of dissolved oxygen.</td>
</tr>
<tr>
<td>Fragmentation</td>
<td>The breaking up of large patches of vegetation into smaller patches.</td>
</tr>
<tr>
<td>GAP analysis</td>
<td>A wildlife planning process that provides a quick overview of the potential distribution and conservation status of wildlife species in the region or watershed.</td>
</tr>
<tr>
<td>Habitat</td>
<td>The ecosystem where a species lives.</td>
</tr>
<tr>
<td>Heterogeneous</td>
<td>Consisting of dissimilar elements.</td>
</tr>
<tr>
<td>Homogeneous</td>
<td>Consisting of similar elements.</td>
</tr>
<tr>
<td>Horizontal structure</td>
<td>The horizontal spacing of plants within a plant community. For a single species, the spacing may be regular, clumped, or random.</td>
</tr>
<tr>
<td>Interior species</td>
<td>Species found primarily or only distant from borders.</td>
</tr>
<tr>
<td>Interspersion</td>
<td>The level of integration of plant communities both natural and introduced.</td>
</tr>
<tr>
<td>Juxtaposition</td>
<td>The proximity of plant communities to each other; contiguity.</td>
</tr>
<tr>
<td>Lek</td>
<td>A traditional area where certain species of grouse (sharptail and sage grouse, for example) gather to breed.</td>
</tr>
<tr>
<td>Limiting factor</td>
<td>An environmental factor limiting the growth of an individual or a population.</td>
</tr>
<tr>
<td>Matrix</td>
<td>The background component of landscapes within which patches and corridors exist.</td>
</tr>
<tr>
<td>Metapopulation</td>
<td>Wildlife populations that are distributed as spatially separated populations linked by dispersal.</td>
</tr>
<tr>
<td>Minimum viable population</td>
<td>The smallest number of individuals required to sustain a population for the long term.</td>
</tr>
<tr>
<td>Niche</td>
<td>The actions of an animal; its occupation.</td>
</tr>
<tr>
<td>Parasitism</td>
<td>An action that allows an animal to survive by dependence on and at the expense of another animal.</td>
</tr>
<tr>
<td>Patch</td>
<td>Generally a plant and animal community that is surrounded by areas with different community structure; however, a patch may be devoid of life.</td>
</tr>
<tr>
<td>Patchiness</td>
<td>The density of patches of all types.</td>
</tr>
<tr>
<td>Protected reserve</td>
<td>A large patch managed for biodiversity, a wildlife refuge for example.</td>
</tr>
<tr>
<td>Stepping stone patch</td>
<td>A patch that is colonized or used seasonally in migration by a species.</td>
</tr>
<tr>
<td>Succession</td>
<td>A species replacement process often through a sequence of recognizable stages.</td>
</tr>
<tr>
<td>Vertical structure</td>
<td>The distinct strata (layers) of vegetation, the size and number of which depend on the life forms present.</td>
</tr>
<tr>
<td>Vulnerable population</td>
<td>Species that are generally rare and have high variability in population size. Often large species with large home ranges.</td>
</tr>
<tr>
<td>Watershed</td>
<td>An area drained by a stream or river and its tributaries.</td>
</tr>
</tbody>
</table>