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EXECUTIVE SUMMARY 
This project was funded through the funding category: Mississippi River Basin. The 

funds were spent as anticipated according to the relevant laws and regulations. This project 
targeted the NRCS designated priority: nutrient management: demonstrate new and innovative 
advances in precision farming technologies related to low disturbance fertilizer injection and 
document the effects on nutrient losses and producer risk. 

Twenty nine field demonstration trials were conducted on cotton (Gossypium hirsutum 
L.) mostly on private farms with EQIP eligible producers in West Tennessee, the Delta region of 
Mississippi, Missouri, and North Louisiana within the Mississippi River Basin during 2011 to 
2014. Felds representative of land used for cotton production were used for this project. 
Historical cropping information was collected from the cooperative producers. The in-season 
sensor-based variable-rate nitrogen (N) management systems were demonstrated in comparison 
with the local farmer’s uniform-rate N application systems in large strip plots under a 
randomized complete block design with three replicates. A variety of Extension and outreach 
activities were conducted to show the demonstration sites and precision equipment, and to 
disseminate the results to cotton producers and other interested groups. This project used 
seasonal fertilizer N consumption, fertilizer N use efficiency (lint yield/fertilizer N applied), and 
post-harvest residual N levels in the soil profile to estimate its potential impacts on water quality 
in the Mississippi River Basin, which is scientifically sound and very cost-effective.  

The goal of this project was to encourage producers’ adoption of optical sensing and 
variable-rate application technologies and the related precision N management systems on their 
farms to reduce N fertilizer consumption and potential N losses, improve cotton productivity, 
and thus improve water quality and grower profitability in the Mississippi River Basin. The 
specific objectives for this project were to demonstrate to producers and other interested groups 
the integration of sensor-based variable-rate N fertilization into their current production systems, 
demonstrate the impacts of variable-rate precision N management systems based on optical 
sensing of crop canopy compared with the current uniform-rate N application systems in terms of 
fertilizer N use efficiency, post-harvest residual soil N subject to loss, potential improvements to 
water quality, cotton yield, and grower profitability, and show the benefits of incorporating yield 
maps and other field and soil information into the optical sensor-based variable-rate precision N 
management systems. The goal and objectives of this project were fully met be the successful 
completion of this project. 

In Louisiana, a total of nine demonstration trials were completed from 2012 to 2014 in 
Tensas Parish, Louisiana to evaluate the performance of farmer standard N management practice 
and variable-rate applicator/optical sensor systems (VRT/sensor systems) in cotton production 
using yield and net return from N fertilization as performance metrics. Six out of the nine site-
years benefitted from using VRT/sensor systems with an average of $34.14/ac higher net return 
than the farmer’s standard N practice; the savings incurred from using lesser amount of N 
fertilizer offset the minimal dollar losses for having lower lint yield still resulting in higher net 
profit. In some cases, both increased in lint yield and savings from fertilizer cost contributed to 
higher profit. While the VRT/sensor systems N recommendation incurred lower net profit than 
the farmer’s standard N practice at three site-years, the reduction was relatively low averaging 
only $8.93/ac. Refining the VRT/sensor systems N recommendation based on soil productivity 
zoned worked better than farmer’s standard N practice in four out of the nine site-years with an 
average higher net return of $30.87/ac.  The results of this project demonstrated the potential of 
VRT/sensor systems as an effective N decision tool in cotton production in Louisiana. This 
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project has allowed the investigators to understand some of the aspects of the technology that 
need to be addressed: the 2nd N application requirement is a challenge to accomplish by 
producers because of the lack of time; and that the narrow window to accomplish 2nd N 
application can also limit the timely application of midseason N to cotton. For future project, it is 
ideal to have the participating producers operate and implement the VRT/sensor systems 
themselves, and some economic factors should be considered for evaluation of economic return 
using this technology. 

In Missouri, from 2012 to 2014, variable-rate nitrogen applications to cotton were 
demonstrated in three fields of EQIP-eligible farmers per year.  Demonstrations covered the 
entire field; total area for the nine fields was 525 acres.  Six EQIP-eligible cotton growers 
participated (two each year). Variable-rate nitrogen fertilizer applications were compared to a 
uniform application of nitrogen fertilizer at the rate normally used by the farmer.  These 
approaches were alternated in strips across the entire field.  For the variable-rate approach, 
fertilizer rate was controlled by an optical sensor that would sense the color of the cotton plants 
and adjust the fertilizer rate accordingly.  Adjustments were made once per second.  Conversion 
of optical sensor readings to nitrogen fertilizer rates was based on previous research at the 
University of Missouri.  In four fields, a third approach was also used:  sensor-based rate 
recommendations which were adjusted according to soil zones. Over eight of the fields, use of 
sensors reduced nitrogen fertilizer rate by 6 pounds N per acre and increased cotton yield by 7 
pounds lint per acre.  Combined value of the fertilizer savings and yield increase were $9 per 
acre.  Yield data was lost from one of the demonstration fields. When combined with six similar 
demonstrations in 2009-2010 from a previously-funded project, use of sensors reduced nitrogen 
fertilizer rate by 6 pounds N per acre and increased cotton yield by 19 pounds lint per acre.  
Combined value of the fertilizer savings and yield increase were $19.50 per acre, averaged over 
14 fields. Using soil zones in combination with optical sensors had no effect on fertilizer rate or 
yield in the four fields in which this approach was tested. Sensors cost about $20,000 for a set.  
Based on the results from the eight demonstration fields in this project, the sensors would pay for 
themselves by the time they were used on 2,200 acres.  Results from all 14 demonstration fields 
conducted in Missouri are more favorable, indicating payback after just over 1,000 acres.  Either 
way, the economics seem viable for many cotton growers. We helped farmers to overcome the 
technical aspect of getting optical sensors installed and running.  This remains a key barrier to 
adoption.  Consultants or technical representatives from the sensor companies could fill this role. 

In Mississippi, sensor based adjustment of fertilizer N rates utilizing a vegetation index 
with known sensitivity to plant N status shows great promise to improve accuracy across 
spatially variable fields as compared to the standard practice of applying a constant rate. 
Although post-harvest available soil N was not sampled in this study it was obvious from the 
samples taken near planting that considerable variability in soil nitrate and ammonium existed in 
the fields utilized.  Recommendations are to further refine the technology in terms of script 
writing to more easily facilitate the data processing steps and turnaround time from data 
acquisition to fertilization. Greater testing and development of algorithms is needed to make 
applicable across more regions.     

In Tennessee, leaf N concentrations and canopy vegetation index were generally 
comparable under the in-season sensor-based variable-rate N management systems relative to the 
current uniform-rate N application systems during early square to mid-bloom in the eight field 
trials on EQIP eligible farms. The in-season variable-rate N management systems produced 
higher cotton lint yield at one location-year, similar lint yield at six location years, but lower lint 
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yield at one location-year than the current uniform-rate N application systems. The in-season 
variable-rate N management systems did not affect post-harvest residual N levels in top 60 cm of 
the soil profile relative to the current uniform-rate N application systems. Averaged over the eight 
location-years, the in-season variable-rate N management systems had significantly lower seasonal 
N fertilizer consumption, but higher N use efficiency than the current uniform-rate N application 
systems. Specifically, the in-season variable-rate N management systems reduced the seasonal N 
fertilizer consumption by 9.3 to 14.8% (9.8 to 15. 6 kg N ha-1), but increased N use efficiency by 
9.2 to 11.0% compared with the current uniform-rate N application systems. No significant 
positive effect of in-season variable-rate N management systems was observed on post-harvest 
residual N levels in the top 60 cm of soil. The benefits of incorporating yield maps of previous 
years into the in-season sensor-based variable-rate precision N management systems were 
generally not noticeable in terms of cotton yield, seasonal N fertilizer consumption, N sue 
efficiency, and post-harvest residual soil N level. Our results suggest that in-season sensor-based 
variable-rate N management systems via side-dress use less N fertilizer to produce comparable 
cotton yield via increasing N use efficiency relative to the current uniform-rate N application 
systems. The in-season sensor-based variable-rate N management systems are viable tools that 
can be used by producers on their farms to manage variations within the field.   

This project addresses USDA NRCS priority to accelerate conservation in the Mississippi 
River Basin (MRB) to continue to reduce nutrient and sediment loading to local and regional 
water bodies and to improve efficiency in using water supplies, particularly in the southern 
states. The goal of this project was to encourage producer adoption of new precision N 
management technologies and systems on their farms to reduce N fertilizer consumption and 
potential N losses, improve cotton productivity, and thus improve water quality and grower 
profitability in the MRB states of Louisiana, Missouri, Mississippi, and Tennessee. Precision 
agriculture (PA) may benefit cotton farms in the MRB by reducing the amount of excess N from 
cotton production released into the environment, increasing net returns to the grower, and 
reducing the risk of profit losses due to spatial and temporal variability. The objectives of the 
demonstration project economic analysis were to determine the profitability, risk management 
potential, and N production use efficiency of using real-time optical sensing and variable-rate 
technologies (VRT) to manage spatial variability in cotton production. Data collected from 29 
field demonstration trials in Tennessee, Louisiana, Mississippi, and Missouri from 2011 to 2014 
included lint yields harvested and N rates calculated from three N rate management strategies. 
The first N treatment was the existing farmer practice, the second was a VRT treatment using 
optical sensing technology information, and the third was a VRT treatment using optical sensing 
and yield monitor information. The two PA strategies were compared to the existing farmer 
practice. In addition, soil properties, landscape, and weather were examined to determine their 
effects on lint yields, net returns, N rates, and N production use efficiency. Three statistical 
models were used in the project to evaluate the lint yields, N rates, net returns, and N production 
use efficiency from the strip-plots on the 29 fields. The first model was an analysis of variance 
(ANOVA) model used to identify treatment mean differences while controlling for soil, 
landscape, and weather factors. The second model was an ANOVA model that measured soil and 
climate effects on mean differences between the optical sensing and VRT technologies and the 
farmer practice. The third model was a logistic model to determine the risk (probability) of lint 
yield and net return losses using optical sensing and VRT relative to the current farmer practice. 
The statistical and economic analysis with the models was used to identify conditions where 
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optical sensing and VRT was profitable, provided potential risk management benefits, and 
improved N production use efficiency.   

The two key findings of the statistical and economic analysis were as follows. First, the 
real-time optical sensing and VRT treatments indicated some N fertilizer savings but were not 
more profitable on average than the existing farmer N management practices. There was some 
evidence of significantly higher mean net returns using VRT to manage N compared to the 
current practice at the sub-plot level, but the field level showed no difference. Second, there were 
risk management benefits identified at the field level using VRT compared to the farmer 
practice. Fields with lower lint yields tended to produce higher net returns with optical sensing 
and VRT than with the farmer practice which may help farmers manage risk on fields with this 
characteristic. Three additional inferred conclusions may aid in cotton farmers’ decisions about 
the precision N management technologies evaluated in this project. First, the optical sensing and 
VRT treatments may not apply enough N to significantly increase lint yields relative to the 
existing farmer practice. Second, changes in the N rate for optical sensing and VRT relative to 
the farmer practice were field/farm specific. Four locations (Tensas Middle, LA, Gibson, TN, 
Lauderdale, TN, and Leflore, MS) realized significantly lower N rates applied in at least one 
form of VRT N fertilizer application. Four locations had higher N rates with optical sensing and 
VRT (Madison North, TN, Adams, MS, Tensas North, LA, and Tensas South, LA). Finally, the 
N rates across the 29 field demonstrations were not low enough to increase N use efficiency and 
encourage environmental benefits. Even though the fields in the demonstration project 
represented a range of soils, landscapes, and weather in the southern MRB locations used in the 
project, there was likely not enough spatial and temporal variability within the fields that optical 
sensing VRT treatments did not make a difference in field level mean net returns.  

Overall, cotton and other crop producers, private consultants, university Extension 
agents, government personnel, and industry agronomists in the four participating states and other 
adjacent states within the Mississippi River Basin are the customers that benefit from this grant. 
The sensor-based variable-rate N management systems via side-dress during the early growing 
season are reliable to be used to implement precision N management on cotton with 
environmental or/and economic benefits.  

This project requested for one-year (Jan. 1, 2015 -- Dec. 31, 2015) extension with no cost 
due to the following reason. Dr. James Larson, a professor in the Agricultural and Resource 
Economics Department at University of Tennessee was doing the economic and risk analyses for 
this project as what was proposed in the original proposal. Since the year of 2014 data were not 
available to him until November or December of 2014 or even later (cotton is usually harvested 
in Sept. and Oct. in the Mid-South. Each state needed to compile all the data together before they 
could be sent to James), then there would not be enough time for him to run the models to 
analyze the data and write the summary report relating to the economic and risk analyses 
accordingly by the ending date of this project (Dec. 31, 2014). Therefore, we had to ask for a no-
cost one-year extension for this project to allow him to have enough time to do the economic and 
risk analyses on the 3-year data (2012-2014). This request was approved by the CIG Program 
Manager immediately after the receipt of the request.   
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EXECUTIVE SUMMARY 
A total of nine demonstration plots were completed from 2012 to 2014 in Tensas Parish, 

Louisiana to evaluate the performance of farmer standard N management practice and variable-
rate applicator/optical sensor systems (VRT/sensor systems) in cotton production using yield and 
net return from N fertilization as performance metrics. Six out of nine site-years benefitted from 
using VRT/sensor systems with an average of $34.14/ac higher net return than the farmer’s 
standard N practice; the savings incurred from using lesser amount of N fertilizer offset the 
minimal $ losses for having lower lint yield resulting still in higher net profit. In some cases, 
both increased in lint yield and savings from fertilizer cost contributed to higher profit. While the 
VRT/sensor systems N recommendation incurred lower net profit than the farmer’s standard N 
practice at three site-years, the reduction was relatively low averaging only $8.93/ac. Refining 
the VRT/sensor systems N recommendation based on soil productivity zoned worked better than 
farmer’s standard N practice in four out of nine site-years with an average higher net return of 
$30.87/ac.  The results of this project demonstrated the potential of VRT/sensor systems as an 
effective N decision tool in cotton production in Louisiana. This project has allowed the 
investigators to understand some of the aspects of the technology that need to be addressed: the 
2nd N application requirement is a challenge to accomplish by producers because of the lack of 
time; and that the narrow window to accomplish 2nd N application can also limit the timely 
application of midseason N to cotton. For future project, it is ideal to have the participating 
producers operate and implement the VRT/sensor systems themselves and some economic 
factors should be considered for evaluation of economic return using this technology. 
 

INTRODUCTION 
This project was led by Frank Yin of the University of Tennessee where Louisiana State 

University Agricultural Center (LSU AgCenter) in Baton Rouge, LA is one of the collaborating 
institutions. The LSU AgCenter team was led by Dr. Brenda S. Tubana in cooperation with Dr. 
John Kruse, two extension agents (Dennis Burns and Ralph Frazier), and three EQIP-eligible 
cotton-corn producers whose fields are located in Tensas Parish (Jay Hardwick, Allan Crigler, 
and Ben Guthrie). Brenda Tubana is an Associate Professor of Soil Fertility. She has over ten 
years of experience in soil fertility and precision agriculture and was in-charge of the 
experimental design, trial establishment, data collection, conducting demonstration activities, 
writing summary reports and extension publications, and delivering extension talks. Dr. John 
Kruse (now with Koch Company) was a Cotton and Small Grain Agronomist at the LSU 
AgCenter Dean Lee Research Station. He worked closely with Dr. Tubana in executing all the 
activities to achieve the goal and objectives of this project. Dennis Burns and Ralph Frazier 
worked closely with the participating producers in establishing the demonstration plots and 
training them on the logistics of mid-season N application via the VRT/sensor systems. They 
were also responsible in generating field maps and recording field data (sensor readings and 
yield data). 

The project overall goal was to show producers and other interested groups the method 
and benefits for the utilization of innovative technologies – optical sensing and variable-rate 
applications to manage spatial variability within individual fields of cotton. Specific objectives 
included: 

1) To demonstrate to producers and other interested groups the procedures and entire 
process of how to use the GreenSeeker® optical sensing data collection and mapping 
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systems to generate canopy NVDI maps and variable-rate N algorithms which can be 
used to guide variable-rate N applications within field; 

2) To show how to integrate the two new but commercially available technologies – optical 
sensors and a variable-rate applicator into a variable tool for the on-going real-time 
diagnosis of cotton N status and variable-rate applications of N simultaneously during the 
season. 

3) To demonstrate impacts of the variable-rate precision N management system based on 
optical sensing of crop canopy compared with the current uniform-rate N application 
system in terms of N fertilizer use, lint yield, net return from N fertilizer, and inorganic N 
distribution in the soil profile; and 

4) To show the benefits of incorporating soil productivity maps (soil type and electrical 
conductivity) into the optical sensor-based variable-rate precision N management system 
based on NDVI indices  

 
The scope of project tasks encumbered work both in research (field and laboratory) and 

extension. Works involved in the field included establishment of demonstration plots, treatment 
application (involved operation of variable-rate applicator/sensor systems), collection of field 
data (sensor readings, plant tissue samples, deep core soil samples) whereas in the laboratory, the 
analysis for plant total N content, and soil inorganic N content were among the tasks. Data 
analysis and interpretation were requirements for communicating the results in field day 
demonstration, visitation with the participating farmers, and presentations at conference and 
workshop meetings.  

There were two LSU AgCenter investigators (B. Tubana and J. Kruse) who provided 
leverage (direct support). There was no other funding support for this project other than the 
Conservation Innovation Grants through NRCS.  

 
BACKGROUND 

As the largest source of natural fiber, increasing cotton (Gossypium hirsutum L.) 
productivity and competitiveness in the global textile market remains a big challenge to the U.S. 
cotton industry. The recent decline in acreage due to competition from grain crops and the 
increase in public concerns on environment degradation necessitate the cotton industry to be 
more productive under sustainable, environment-friendly production systems. Nitrogen (N) 
fertilizer is one of the major agricultural inputs and considered as the most expensive plant 
nutrient in cotton production. Apart from large expenses for N fertilizers, the perennial growth 
habit of cotton requires an effective and refined fertilizer-N management system (Gerik et al., 
1998). Deficiency results in poor vegetative and reproductive growth, premature senescence, and 
reduced yields (McConnell et al., 1993) while excessive amounts of N can inhibit fruit formation 
and retention (Boquet and Breitenbeck, 2000), and pose serious threats to the environment 
(Prasad and Power 1995). When N is unnecessarily applied, productivity is also reduced due to 
higher expenses for N fertilizers, and additional maintenance costs for controlling pests 
(Cisneros and Godfrey, 2001) and for applications of growth regulators. Majority of the soils in 
Louisiana under cotton production are diverse and it is therefore imperative that a robust 
management scheme for N fertilizer is implemented to reflect these spatial differences in soil 
productivity. In 2008, collection of sensor data was initiated to build the database for developing 
sensor N-based decision tool for cotton. The objective of this project was to evaluate the 
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performance of an on-site decision tool for N consisting of variable-rate application and optical 
sensor systems, and N reference strip. A reference strip is a plot in a field applied with high 
amount of N for gauging the probability of in-season response of cotton to N fertilization. 
Performance measures will include yield level, N fertilizer use efficiency and net return from N 
fertilizer.   
The use of VRT/sensor systems and N reference strip as a decision tool for N fertilizer 
recommendation is the first precision agriculture-based approach in the region (Louisiana). 
Currently, N recommendation is based on optimum rate established from many years of 
calibration trials. So far, there has been no attempt made on altering this N recommendation 
approach until this project was initiated. The project documented the performance of this 
technology in cotton production thus will provide an overview and guidance to farmers and 
consultants to this rather new N decision tool. For researchers, the outcomes of this project 
highlighted the areas that can be or need to be improved to facilitate full-scale adoption of this N 
decision tool.   
 

REVIEW OF METHODS 
This project was conducted to evaluate the performance of an on-site N decision tool in 

cotton in the form VRT/sensor systems in comparison with the farmer’s standard N practice. The 
farmer’s standard N practice is generally described as a one-time application of N fertilizer at 
early growth stage of cotton using optimum rate (120-150 lbs N/ac, depending on soil type, i.e. 
heavy vs. light-textured soils) established for Louisiana cotton production area. The technology 
introduced the implementation of split application of N fertilizer wherein the first application is 
done at planting or few days after planting while the second application is done at early bloom 
using the VRT/sensor systems. Another treatment included VRT/sensor systems 
recommendation that was further refined based on soil productivity zone. For this project, soil 
type or electrical conductivity map was used to adjust the rate such that:  low soil productivity 
zone - the recommended rate was scaled down by 30 lbs N/ac; medium soil productivity zone – 
no adjustment; and high soil productivity zone – recommended rate was scaled up by 30 lbs 
N/ac. 
With the use of VRT/sensor systems, N fertilizer was applied on-a-need-basis where it was 
needed in the field. The ability of this technology compared with farmer’s standard N practice 
enable farmers to use N in a more accurate manner. While generally, the overall rate applied was 
lower than what the farmer’s standard N practice, the proper distribution of right rate of N 
maximize cotton N use efficiency subsequently reducing the amount of N in the soil that is 
subject to different lost pathways to bodies of water. This technology require on additional trip to 
the field (second application at mid-bloom) which incurs additional expenses to pay fuel and 
labor. It is expected that this additional cost can be offset by the savings made from applying 
lesser amount of N fertilizer and/or increase in gross profit due to higher lint yield.  

Producers needed to set aside about 10 acres of their field each year to accommodate the 
project. As participants, producers were asked that all cultural management practices were 
implemented similarly within this 10 acres field (except N management). They were also the 
ones who applied or treated the plots under the farmer’s standard N practice. 

The implementation of technology involved running the VRT/sensor systems on N 
reference strip (or N ramp) to determine in-season response of cotton to N fertilization. After this 
procedure, the VRT/sensor system went off to treating corresponding plots four rows at a time. 
Implementing this technology during the project period showed no major problems to hinder its 
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operation in the field. However, there were situations that could potentially reduce the 
probability by which the recommended N distributed by the VRT/sensor systems maximizes 
yield and return. Rain prevented a number of the 2nd application of N at early flowering on a 
timely manner. Essentially, this growth period lasts for only one week and this is quite a narrow 
period of time to accomplish this task when rain interferes even for two days only within a week. 
Rain immediately after the 2nd application also reduced the benefits of implementing this 
technology. It is important to take note that such interference (rain) can happen anytime, 
anywhere regardless of N management systems. Just like any new technology, producers, 
consultants or end-users of the technology are recommended to undergo training on the use of 
equipment and associated software. The proficiency on the technology is required such that in 
future projects, participating producers should try operating the VRT/sensor systems themselves 
repeatedly or for the entire duration of the projects. This means that the involvement of 
participating producers is expected to be substantial which will serve as an additional metric to 
gauge how this technology will fare in the real world. This will be perhaps what the team should 
have done differently if given the opportunity to start the project today. This will also increase 
the familiarity of the participating producers to minimize or completely eliminate errors during 
the implementation of the treatments. One site was dropped out due to fertilizer errors. One 
important challenge posted by the VRT/sensor system to producers is the 2nd application 
requirement; they expressed the difficulty in terms of time to do a second application of N 
fertilizer despite of the clear benefits of using this technology in terms of increasing yield and 
profits. Thus, this is another aspect of the VRT/sensor system that needs to be addressed.  
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Figure 1. Tensas Parish in Louisiana (yellow shaded region) and locations of the demonstration 
plots within the parish from 2012 to 2014.  
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Table 1. Schedule of activities from 2012 to 2015, Tensas Parish, Louisiana. 
Year  Month Activities 
2012 Jan – March Meetings with collaborators and participating farmers to plan the establishment of 

the demonstration plots 
Locating the sites and collection of composite soil samples for characterization 
Installation of the variable-rate applicator and optical sensor system on high-
clearance tractor (spider) 

April Pre-planting deep core sampling 
Planting 
N application (1st dose for VRT/sensor systems; farmer’s standard practice) 

May – June N application (2nd dose for VRT/sensor systems at early bloom) 
Sensor reading collection 
Plant tissue sampling (early square, early bloom) 

June – July Sensor reading collection and plant tissue sampling (mid-bloom) 
Aug – Sep Processing and analysis of soil and plant tissue samples collected  
Sep – Oct Harvesting 

Post-harvest deep core sampling 
2013 January Presentation at the National Conservation Systems Cotton & Rice Conference 

April Pre-planting deep core sampling 
Planting 
N application (1st dose for VRT/sensor systems; farmer’s standard practice) 

May – June N application (2nd dose for VRT/sensor systems at early bloom) 
Sensor reading collection 
Plant tissue sampling (early square, early bloom) 

June – July Sensor reading collection and plant tissue sampling (mid-bloom) 
Aug – Sep Processing and analysis of soil and plant tissue samples collected  
Sep – Oct Harvesting 

Post-harvest deep core sampling 
Nov Presentation at the ASA-CSSA-SSSA Annual International Meetings 

2014 April Pre-planting deep core sampling 
Planting 
N application (1st dose for VRT/ sensor systems; farmer’s standard practice) 

May – June N application (2nd dose for VRT/ sensor systems at early bloom) 
Sensor reading collection 
Plant tissue sampling (early square, early bloom) 

June – July Sensor reading collection and plant tissue sampling (mid-bloom) 
Aug – Sep Processing and analysis of soil and plant tissue samples collected  
Sep – Oct Harvesting 

Post-harvest deep core sampling 
 Nov Presentation at the ASA-CSSA-SSSA Annual International Meetings 
2015 Jan – Sep  Finish analysis of the soil and plant tissue samples 

Reports were made on a semi-annual basis; extension requested were made to finish analysis of all the 
soil (total: 4,050) and plant tissue (total: 2,430) samples collected. 
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DISCUSSION OF QUALITY ASSURANCE 
All demonstration plots were located in Tensas Parish of Louisiana (Figure 1). All the 

soils types at the sites are generally classified as alluvial soils with texture as either silt loam or 
clay. These locations were selected since these are the areas in Louisiana that are cultivated for 
cotton production. The soil types in these fields are diverse thus in each of these fields, the 
possibility of having multiple soil productivity management zones was high. The plot size was 
large almost equivalent to an acre, thus for three replications combined together, the total area of 
one treatment could represent at least a small field management zone.  

Each plot consisted of 12 40-inch x 1000-ft long rows divided into 10 subplots (100-ft 
long). At early square, early flowering, and mid-bloom stage, 20 to 30 leaf tissue samples from 
each subplot were collected, oven-dried, processed (to pass a 1 mm sieve), and analyzed for total 
N (%) content using dry combustion method with an Elementar CN analyzer.  Deep core samples 
were taken up to 3-ft deep before planting and post-harvest using a hydraulic probe attached to a 
pick-up truck. Core samples were divided into 6-inch sections, placed in a Ziploc plastic bags 
then stored in cooler containing ice. A total of five cores (evenly spaced) were taken from each 
plot.  It is important to keep the temperature low while the samples were being transported to the 
laboratory. After arriving to the destination, soil samples were immediately dried using a forced-
air convection oven at 50 to 65°C for at least four days, ground to pass a 2-mm sieve then 
analyzed for ammonium and nitrate content (mg/kg) using a Lachat QuickChem® 8500 series 
flow injection analysis (FAI) system. Soil samples were extracted with 1 M KCl solution and 
filtered using a Whatman filter paper no. 42. Sample extracts were analyzed using FAI following 
the Salicylate method for ammonium and cadmium reduction column method for nitrate. For 
these analyses, reference samples, blanks, and water samples (spiked with known concentration 
– for soil samples only) were included along with repeats of randomly selected samples as 
quality control procedures. Table 2 shows the different field data collected and the corresponding 
data processing conducted. 
 
Table 2. Data collected from the demonstration plots and processing approach.  
Data Processing/Presentation Unit 
Lint yield Lint yield data for each subplot was determined. Lint yield was 

averaged per plot and per treatment 
lbs/ac 

Total N applied For the VRT/sensor systems treated plot, the amount of N applied at 
the 2nd application at early flowering stage for each subplot was 
recorded; data was also presented per plot and average per treatment 

lbs/ac 

NDVI readings For all the plots, normalized difference vegetation (NDVI)  readings 
for each subplot was recorded 

unitless 

Soil ammonium Data was computer as concentration (mg/kg) and content (lbs/ac) for 
each depth (0-6, 6-12, 12-18, 18-24, and > 24 inches) of each core. 

mg/kg 
lbs/ac 

Soil nitrate Data was computer as concentration (mg/kg) and content (lbs/ac) for 
each depth (0-6, 6-12, 12-18, 18-24, and > 24 inches) of each core. 

mg/kg 
lbs/ac 

Inorganic N Expressed as total content or sum of soil ammonium and nitrate 
content for each depth. 

lbs/ac 

Leaf tissue N For all plots and each subplot, total N content was determined using 
dry combustion method 

% 
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Collection, analysis, and storage of both soil and plant samples were done under the 
supervision of Drs. Brenda Tubana and John Kruse while the collection of sensor reading, 
creation maps, and maintenance of the VRT/sensor systems were accomplished by Dennis Burns 
and Ralph Frazier (extension agents). 
 

FINDINGS 
The analysis of return based on lint yield and N fertilizer used from 2012 to 2014 

demonstration plots is shown on Tables 3, 4, and 5. There was a fertilizer application error 
incurred in field administered by one of the participating producers (Hardwick 2014) thus this 
was removed from the list and replaced by the demonstration plots established near the LSU 
AgCenter Research Station in 2012.  

In most cases, VRT/sensor systems recommended lower average N fertilizer rate than the 
farmer’s standard N practice. Because the N rates were selectively applied by the VRT/sensor 
systems to the right place in the field, the reduction in overall N applied did not result in notable 
decline in lint yield. The losses in profit due to lower lint yield were offset by the savings 
incurred from applying lesser amount of N fertilizer, for example at Crigler (2012 and 2014) and 
Guthrie in 2012. On the other hand, there were cases that VRT/sensor systems recommended 
higher N rate such as Hardwick in 2012 and 2014 which resulted in higher lint yield which then 
offset the extra cost of N invested by the producers resulting in still a positive net profit. A larger 
return was noted in Guthrie 2014 where both increase in yield and savings from fertilizer were 
combined to improve the net profit by as much as $69/ac. All in all, six out of nine site-years 
benefited from using VRT/Sensor systems with an average of $34.14/ac higher net return than 
farmer’s standard N practice. The three site-years incurred $8.93/ac lower net profit than the 
farmer’s standard N practice. Our results showed also that further refinement of VRT/Sensor 
systems with the use of soil productivity zone, resulted in positive outcome on yield and profit in 
some fields and year (e.g. Crigler in 2013, and all fields in 2014). Average profit was $30.87/ac 
higher than the farmer’s standard N practice. 
 
Table 3. Results of 2012 demonstration plots conducted at Tensas Parish of Louisiana. 

Treatment N Rate Lint Yield Difference from FS Difference from FS Net N Rate Lint Yield N Rate Lint Yield 
lbs/ac lbs/ac lbs/ac lbs/ac $/ac $/ac $/ac 

Crigler 
FS 98 1078 ----- ----- ----- ----- ----- 
VRT/Sensor 72 1072 -26 -6 +17.42 -4.20 +13.22 
VRT/Sensor† 93 1059 -5 -19 +3.35 -13.30 -9.95 
        
Guthrie 
FS 130 1576 ----- ----- ----- ----- ----- 
VRT/Sensor 88 1552 -42 -24 +28.14 -16.80 +11.34 
VRT/Sensor† 118 1543 -12 -33 +8.04 -23.1 -15.06 
        
Hardwick 
FS 42 1284 ----- ----- ----- ----- ----- 
VRT/Sensor 142 1360 -82 +76 -54.94 +53.20 -1.74 
VRT/Sensor† 150 1326 -108 +42 -72.36 +29.40 -42.96 
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Table 4. Results of 2013 demonstration plots conducted at Tensas Parish of Louisiana. 

Treatment N Rate Lint Yield Difference from FS Difference from FS Net N Rate Lint Yield N Rate Lint Yield 
lbs/ac lbs/ac lbs/ac lbs/ac $/ac $/ac $/ac 

Crigler 
FS 100 1772 ----- ----- ----- ----- ----- 
VRT/Sensor 88 1802 -12 +30 +8.04 +21.00 +29.04 
VRT/Sensor† 105 1841 +5 +69 -3.35 +48.30 +44.95 
        
Guthrie 
FS 130 1653 ----- ----- ----- ----- ----- 
VRT/Sensor 125 1636 -5 -17 +3.35 -11.90 -8.55 
        
Hardwick 
FS 75 1117 ----- ----- ----- ----- ----- 
VRT/Sensor 147 1242 +72 +125 -48.24 +87.50 +39.26 

 
 
 
Table 5. Results of 2014 demonstration plots conducted at Tensas Parish of Louisiana. 

Treatment N Rate Lint Yield Difference from FS Difference from FS Net N Rate Lint Yield N Rate Lint Yield 
lbs/ac lbs/ac lbs/ac lbs/ac $/ac $/ac $/ac 

Crigler 
FS 100 1519 ----- ----- ----- ----- ----- 
VRT/Sensor 116 1595 +16 +76 -10.72 +53.20 +42.48 
VRT/Sensor† 120 1572 +20 +53 -13.40 +37.10 +23.70 
        
Guthrie 
FS 130 1335 ----- ----- ----- ----- ----- 
VRT/Sensor 89 1395 -41 +60 +27.47 +42.00 +69.47 
VRT/Sensor† 85 1353 -45 +18 +30.15 +12.60 +42.75 
        
Hardwick‡ 
FS 70 948 ----- ----- ----- ----- ----- 
VRT/Sensor 104 957 -34 +9 -22.78 +6.30 -16.48 
VRT/Sensor† 99 993 -29 +45 -19.43 +31.50 +12.07 

 
Footnotes apply for Tables 2, 3, and 4: 
FS – farmer’s standard N practice; based on LSU AgCenter recommendation. 
VRT/Sensor – variable rate applicator and optical sensor system + N algorithm 
 † - VRT/Sensor recommendation on-the-go but further adjust (+ or – 30 lbs/ac or no change) based on soil 
productivity management zone; In Hardwick and Guthrie, this was not implemented since there were no factors to 
use to divide the field based on productivity zone since these fields have the same soil type. 
‡ - replaced by another site near the Northeast Research Station which was conducted in 2012 
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CONCLUSIONS AND RECOMMENDATIONS 
The results obtained from this project thus far demonstrated that VRT/Sensor systems as another 
effective approach in managing N in cotton production in the region. For future projects, it will 
be ideal to have the participating producers to implement the VRT/Sensor systems themselves. 
For this team, the three producers involved in this project alone can significantly contribute in 
extending this technology to other producers. This is under the stipulation that they (producers) 
are convinced about the use of this technology. In addition to this, bringing this technology to the 
field can be enhanced with continued extension and education outreach program through field 
day demonstrations, workshops, and even personal visit by the researchers and extension agents 
with the producers.  
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TECHNOLOGY REVIEW CRITERIA 

 
Description of the Technology 
The technology is a variable-rate applicator and optical sensor systems utilizing the N algorithm 
specifically established for the cotton production in Louisiana. The N rate recommended by this 
technology is on a plant need basis using optical sensor (GreenSeeker®) readings of the target 
plots, N reference strip (plots applied with high N rate), and N algorithm (serving as a 
communicator between sensor and computer interface with spray controller). The N algorithm 
(proprietary item) is convertible to program format which is compatible to most on-board 
computer systems interface with controller in a variable rate fertilizer applicator which takes 
place in millisecond to obtain the N rate recommendation from the time the sensor reading is 
taken thus sensing and application can happen on-the-go. The application can be done on a 
working resolution as high as 3 ft2 (or 1 meter).  
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EXECUTIVE SUMMARY 
From 2012 to 2014, variable-rate nitrogen applications to cotton were demonstrated in three 
fields of EQIP-eligible farmers per year.  Demonstrations covered the entire field; total area for 
the nine fields was 525 acres.  Six EQIP-eligible cotton growers participated (two each year). 

Variable-rate nitrogen fertilizer applications were compared to a uniform application of nitrogen 
fertilizer at the rate normally used by the farmer.  These approaches were alternated in strips 
across the entire field.  For the variable-rate approach, fertilizer rate was controlled by an optical 
sensor that would sense the color of the cotton plants and adjust the fertilizer rate accordingly.  
Adjustments were made once per second.  Conversion of optical sensor readings to nitrogen 
fertilizer rates was based on previous research at the University of Missouri.  In four fields, a 
third approach was also used:  sensor-based rate recommendations which were adjusted 
according to soil zones. 

Over eight of the fields, use of sensors reduced nitrogen fertilizer rate by 6 pounds N per acre 
and increased cotton yield by 7 pounds lint per acre.  Combined value of the fertilizer savings 
and yield increase were $9 per acre.  Yield data was lost from one of the demonstration fields.   

When combined with six similar demonstrations in 2009-2010 from a previously-funded project, 
use of sensors reduced nitrogen fertilizer rate by 6 pounds N per acre and increased cotton yield 
by 19 pounds lint per acre.  Combined value of the fertilizer savings and yield increase were 
$19.50 per acre, averaged over 14 fields. 

Using soil zones in combination with optical sensors had no effect on fertilizer rate or yield in 
the four fields in which this approach was tested. 

Sensors cost about $20,000 for a set.  Based on the results from the eight demonstration fields in 
this project, the sensors would pay for themselves by the time they were used on 2,200 acres.  
Results from all 14 demonstration fields conducted in Missouri are more favorable, indicating 
payback after just over 1,000 acres.  Either way, the economics seem viable for many cotton 
growers. 

We helped farmers to overcome the technical aspect of getting optical sensors installed and 
running.  This remains a key barrier to adoption.  Consultants or technical representatives from 
the sensor companies could fill this role. 
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INTRODUCTION 
Half or more of the nitrogen (N) fertilizer application to cotton in southeast Missouri is normally 
made during crop growth.  I believe that this is typical for cotton production across the 
southeastern U.S. 

This practice means that adoption of real-time optical sensing to control N fertilizer rate for 
cotton in this region would be relatively straightforward. 

Relative to current practice of putting the same N fertilizer rate across whole fields and often 
whole farms, optical sensor-based management offers the potential to tailor the fertilizer rate in 
each part of each field to meet its needs more precisely.  Cutting back fertilizer rate in areas 
where current management is applying more than is needed reduces the potential for N to escape 
from cotton fields to rivers and to air. 

Nitrogen escape from agriculture to rivers is a major contributing factor in low-oxygen zones in 
coastal waters where the rivers deliver the N.  In poorly-drained soils, agricultural N is also 
prone to loss to the air.  Some of this lost N is in the form of nitrous oxide, a very efficient heat-
trapping gas. 

Optimizing N fertilizer rate also can potentially increase crop yield.  Cotton yield can be reduced 
by either too little or too much N.  Too much N can also lead to rank growth, leading the farmer 
to spend more money on growth regulator and/or defoliant. 

BACKGROUND 
Cotton response to N fertilizer 
Cotton yields are often very responsive to N fertilizer, thus it is almost universally used as a 
production input.  Insufficient N leads to yield limitation and loss of income.  Excess N causes 
lush vegetative growth, which is undesirable because it diverts the plant’s resources away from 
boll production and because it makes harvest preparation and harvest more difficult.   

Variability in soil N contribution 
Previous research has established that soil contributions to the N needs of the plant often vary 
widely from place to place within a field.  Techniques that can leverage this fact to put less 
fertilizer N where the soil is contributing more will save money and reduce the amount of N that 
is vulnerable to loss. 

The amount of N that is available from the soil does not necessarily follow a consistent pattern 
from one year to the next.  This is because weather interactions with soil properties have a large 
influence on how much N is released from soil organic matter, and on how much of that N is lost 
before crop uptake.  Release of N from soil organic matter is highest when both water and air are 
plentiful in the soil, and is limited by both lack of air (too wet) and lack of water (too dry).  
Nitrogen is also prone to loss from areas that are too wet.  Areas that are too wet one year, and 
thus need high rates of N, may have ideal moisture the next and thus need low rates of N. 
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Approaches to vary N fertilizer rate 
The factors mentioned in the previous paragraph mean that the most successful approaches to 
vary N fertilizer rate will be able to respond to weather.  Zone approaches that do not allow 
different management in different weather years are limited in this regard. 

In-season soil and plant samples can be used to guide N fertilizer rate in a way that is specific to 
the year’s weather.  However, even getting one good sample per field during the season is 
difficult due to the labor required and the time constraints.  Managing spatial variability of N 
need with these tools is much more labor-intensive and could only be accomplished in a small 
minority of fields with the personnel currently available. 

Optical sensors allow N rate decisions that are responsive to the weather conditions up to the 
time of fertilizer application.  They can assess how weather has interacted with landscape and 
soil properties to influence soil N availability, and manage N accordingly.  Everything is 
automated, so the labor limitations on other methods of managing spatial variability in fields are 
avoided. 

REVIEW OF METHODS 
Demonstrations were conducted in fields of EQIP-eligible cotton growers from 2012 to 2014.  
Each year, three fields using optical sensors for variable-rate nitrogen applications to cotton were 
carried out.  Demonstrations covered the entire field; total area for the nine fields was 525 acres.  
All fields were on alluvial soils in the Mississippi River Delta. 

All management practices except in-season N fertilizer applications were carried out using the 
farmer’s equipment and normal practices.  This includes pre-plant nitrogen fertilizer source and 
rate.  All fields were furrow-irrigated. 

A small high-N reference area was created in each demonstration field shortly after planting by 
hand-spreading ammonium nitrate at a rate of 150 pounds N per acre. 

Only one of the cooperating farmers had a cotton picker with a yield monitor.  On all of the other 
fields, each ‘plot’ on which a nitrogen management system was carried out was sized so that 
approximately one module of cotton would be produced on that plot (about 5 to 6 acres).  Plots 

with different 
nitrogen 
management 
systems were 
alternated across 
the whole field.  
Module weights 
from the gin, along 
with turnout 
measurements, 
were then used to 
calculate cotton lint 



25 
 

yield from each plot.  This allowed us to compare the yield outcomes of optical sensor-based 
nitrogen management to the farmer’s normal nitrogen management. 

In-season nitrogen fertilizer applications were carried out at the mid-square stage (about halfway 
between early square and early bloom) using fertilizer applicators owned either by the 
cooperating farmer or his service provider.  A system for dribbling liquid nitrogen is shown 
below.  Three Holland Scientific ACS-210 optical sensors (the small white objects in the photo 
below) were temporarily installed on a bar on the front of the applicator, and a tablet computer 
with custom software was mounted in the cab.  Sensors were positioned directly over a cotton 
row and 20 inches above the canopy. 

Before starting the in-season N fertilizer application, sensor measurements were taken from the 
high-nitrogen reference area and from bare soil in the demonstration field.  The measurement 
from the high-nitrogen reference area served as a ‘yardstick’ for the appearance of cotton that 
was not N-limited.  Cotton being fertilized was compared to this ‘yardstick’ to determine its level 
of N-sufficiency.  The bare soil measurement allowed the computer to identify and discard 
sensor measurements from areas with skips in the cotton stand. 

Nitrogen fertilizer rate was calculated once per second based on the measurements from the 
optical sensors, which were converted to nitrogen fertilizer rate using the equation published in 
the Soil Science Society of America Journal, volume 77, pages173-183.  Calculated nitrogen 
fertilizer rates were sent to the applicator’s controller, which activated the mechanism to make 
fertilizer rates go up and down as called for by the sensors. 

Nitrogen management systems tested were: 
1. Farmer’s normal rate 
2. Rate determined once per second by optical sensors 
3. Rate determined once per second by optical sensors and modified by soil zone 

Soil zones were chosen to be soil map units.  Depending on the field, the soil zone adjustment 
was either: 

1. Lower rate in soils with higher organic matter levels, or 
2. Higher rate in soils with substantial amounts of clay 

FINDINGS 
Yield and N rate outcomes for sensor-based N management are shown in the table below.  Our 
objectives in this project were both to demonstrate the use of the sensors to cotton growers, and 
to compare the performance of sensor-based N management with the farmer’s current N 
management program. 

Six similar demonstrations conducted on a previous project are also included in this table (fields 
1-6). 

Year Field 
N rate (pounds/acre) with: Yield (pounds lint/acre) with: 

Sensor 
rate 

Farmer 
rate 

Sensor + 
zone rate Sensor rate Farmer 

rate 
Sensor + 
zone rate 

2009 1 88 105  1334 1265  
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2009 2 94 88  1310 1091  2009 3 72 88  1140 1206  2010 4 63 46  1167 1196  2010 5 77 90  1439 1370  2010 6 74 90  1320 1364  2012 7 65 70 67 1174 1191 1166 
2012 8 67 70 66 1122 1105 1116 
2012 9 76 70 78 942 897 952 
2013 10 63 100  1092 1047  2013 11 85 100  952 969  2013 12 85 101 80 771 844 762 
2014 13 105 85  1063 1044  2014 14 90 85  1011.2 974  

average all fields 79 85  1131 1112  
average 8 project 

fields 80 85  1016 1009  

average 4 fields with 
soil zones 73 78 73 1002 1009 999 

 

Yield levels were generally good in the demonstration fields, with an average of over 1000 
pounds of lint per acre. 

Yield data were lost from one of the 2014 demonstration fields.  Over the other 8 project fields, 
sensor-based N management resulted in small improvements in both N rate and yield:  N rate 
was reduced by 6 pounds N per acre (appears to be 5 in the table due to rounding) and cotton lint 
yield was increased by 7 pounds per acre.  These are modest improvements that are not going to 
motivate rapid and widespread adoption, but they are nonetheless a step in the right direction.  
They are also economically feasible.  Using a N price of $0.65 per pound of N and a cotton price 
of $0.80 per pound of lint, the lower N rate and higher yield with sensor-based management 
produced an average value of slightly over $9 per acre.  Given that the sensors cost roughly 
$20,000 for a set, they would be paid for after 2,200 acres with results similar to the 8 project 
fields.  Most cotton farmers would reach this level of use after 1 to 5 years; sensor life is 
expected to be considerably greater than that, so they would begin accruing profit after that 
point. 

When the 6 prior demonstration fields are included in the overall average, the estimated yield 
impact of sensor-based N management goes up to 19 pounds of lint per acre, and effect on N rate 
does not change.  This larger yield response increases the estimated economic benefit of sensor-
based N management to $19.50 per acre.  Because more fields are included in this estimate, it is 
more robust and dependable than the estimate based on only the fields funded by this project.  
Sensors would be paid for after about 1000 acres of management with results like these, and 
acres above that would accrue profit. 
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Combining soil zones with sensors resulted in the same N rate as sensors alone, and 3 pounds 
lower lint yield.  Use of soil zones did not improve sensor performance. 

CONCLUSIONS AND RECOMMENDATIONS 
Variable-rate N applications for cotton based on optical sensor readings were successfully 
carried out in 9 farm fields, demonstrating that this technology can reliably be deployed at the 
farm scale.   

Compared to current N rates used by farmers, optical sensors gave small improvements in both N 
rate (lower) and cotton lint yield (higher).  We estimate that, at current prices, it will take 
between 1,000 and 2,200 acres of use to reach the point at which the cost of the sensors has been 
covered, and after that profit will begin accruing. 

Overall lower N use with optical sensors, and particularly lower N use targeted to areas of the 
field where soil N availability is high, will reduce the amount of N lost from cotton fields to 
water and air and reduce the proportion of the cotton crop that is too lush.  Farmers may be able 
to save money on growth regulator and/or defoliant, and may sometimes have easier harvest 
conditions. 

Technical, economic, and environmental outcomes are all modestly positive for the use of optical 
sensors to control variable-rate N applications on cotton.  Based on our results, we endorse this 
approach for use by cotton growers in Missouri. 

APPENDIX: Maps of nitrogen fertilizer rates in demonstration fields 
The maps of N rate applied in demonstration fields give a sense of the scale of these 
demonstrations and the variability encountered in these fields.  Adjacent rows of all one color are 
the places where the farmer’s chosen N fertilizer rate was applied uniformly.  Rows with 
multiple colors have N fertilizer rate based on optical sensor measurements alone, or sensor 
measurements combined with soil zones. 
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Figure 1. Demonstration field 10 (in 
table) from 2013.  The farmer’s uniform N 
rate was applied about a week earlier and 
is not shown. 
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Figure 3. Demonstration field 8 (in table) from 2012 

Figure 2. Demonstration field 9 (in table) 
from 2012. 
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Figure 4.  Demonstration field 7 (in table) from 2012. 
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Figure 5. Demonstration field 11 (in table) from 2013.  The 
farmer’s uniform N rate was applied a week earlier and is not 
shown.  Dark lines across the middle are a water leak from the 
irrigation pump; this area was excluded from the yield analysis. 
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Figure 6. Demonstration field 12 (in 
table) from 2013. 
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Figure 7. Demonstration field 13 (in table) from 
2014. 
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Figure 8.  Third demonstration field in 2014.  
Yield data for this field was lost, so it is 
not presented in the table. 
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Figure 9. Demonstration field 14 (in table) 
from 2014. 
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REVIEW OF METHODS 
For the reported period, cotton was grown by producers while allowing the testing of a novel 
sensor based fertilizer N prescription application to four different fields. In 2012, the field was 
located south of Natchez Miss. in an alluvial bottom with mapped Convent and Morganfield 
soils and was not irrigated. In 2013, two experiments were set up in the same field northwest of 
Greenwood, Miss. with mapped soils of Dubbs-Dundee complex, Tensas and Alligator. In 2014, 
the field was located at Money, Miss. with mapped soils of Dubbs, Tensas, Alligator, and 
Tutwiler. Fields were grid soil sampled prior to cotton to determine spatial variations in residual 
soil N to a depth of 2 ft. The YARA N Sensor was mounted to a tractor 3-point hitch at each 
location and cotton canopy reflectance was collected with cotton at 4-5 nodes or pinhead square 
to first week of squaring. Based on a historically derived model, canopy reflectance data was 
converted using the Canopy Chlorophyll Content Index (CCCI) and a fertilizer application map 
was generated using the model with some grower adjustments. Treatments included comparison 
to the grower’s established practice which was CEC soil test based VRN in 2012, and a constant 
rate of 120 lb N/acre in 2013 and 2014. A sensor based treatment adjusted for either crop 
productivity zones of low, medium, and high, derived from a previous year corn yield map was 
included in 2012, or zones differentiated with soil electrical conductivity of low, medium, and 
high were used in 2013. Each treatment was applied along a transect which ranged from 500 to 
greater than 1000 ft. depending on the field. All sites had 12 rows of cotton and treatments were 
replicated three to four times. Where available, the cooperators current liquid N applicator and 
in-cab technology were used (2012 and 2014) or a university owed 4-row rig equipped with the 
Capstan Nject LF system coupled to an Raven Envizio Pro field computer was used in 2013. In 
2014, a Raven Envizio Pro was coupled to the grower’s Raven SCS 440 rate controller console 
and 12 row liquid fertilizer N applicator. A GIS database was created for each field and variable 
rate prescriptions were generated by making shapefiles to be uploaded to the field computers 
attached to the liquid fertilizer N applicators. This system facilitated the capability of applying 
liquid fertilizer N at continuously variable rates as determined by a prescription based on canopy 
reflectance and perceived needs on spatially variable landscapes. Traditionally growers have 
applied fixed rates of fertilizer N across spatially variable landscapes resulting in both excess and 
less than optimum N rates applied. Each of the growers supplied yield monitor data for fields 
both current and the previous year, soil EC data collected by an independent provider, and 
conversion of the prescription on grower’s software (first year only), and tractor drivers  for 
fertilization and harvesting operations. Leaf samples were collected at four to five sub-plot 
locations within each treatment plot at early squaring, early flowering, and peak flowering to 
evaluate based on leaf tissue N sufficiency levels the performance of sensor based variable rate 
fertilization. All sites/fields were harvested with a 6-row spindle picker equipped with a round 
bale module builder. Lint yields were acquired both through weighing harvested modules and 
extracted from yield monitor data where available. 
 
 
General schedule of events: 
 
Prior to planting: 
Soil EC and yield monitor data requested 
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Field grid sampled, plots delineated 
 
At early cotton squaring: 
Farmer tractor used to collect YARA canopy reflectance data 
Data processed to a variable rate fertilizer N prescription 
Variable rate prescription applied using grower’s equipment (2011) or a combination of grower’s 
equipment and university equipment. 
 
A problem with coupling of grower’s equipment to university equipment resulted in 2014 that 
negated a treatment of sensor based adjusted soil EC due to mis-application to designated plots. 
Yield monitor data was not produced on a second field in 2013 and it was not possible to 
determine as to why. 
 
Better planning in terms of having a stated protocol or checklist to perform each operation may 
have helped facilitate a greater success rate in terms of data collection. 
 
With thorough knowledge of equipment and technical skills or assistance all equipment worked 
as designed.  
 

DISCUSSION OF QAULITY ASSURANCE  
Each field was delineated using DGPS and soil samples were taken at accurate depths using 
probes with depth markings. Field maps to identify potential soil differences were acquired 
through the Soil Web. Requirements of the site were that soils were alluvial in nature. Part of the 
rationale for selecting sites was related to the co-operators ability to provide logistic support as 
well as have the necessary equipment and know-how to conduct somewhat controlled operations 
or field tests.  
 
Each study site was performed in a grower’s production field and row patterns or any other 
management strategy other than fertilization was not changed to simulate as closely as possible 
current production practices. Transects were used as what is referred to as “plots” and within 
each transect 4 to 5 sampling point were acquired to identify long range variability that occurred 
within these designated “plots.” This includes multiple soil measurements which can be used to 
further sort out results and possible inferences as to why treatment differences or lack thereof 
differences were observed. Leaf tissue samples were collected from early squaring to peak bloom 
at locations marked during soil sampling with DGPS and flags. Six soil samples were collected 
to a depth of 2 ft in 6 in. increments for the surface ft. and 1 ft. for the second depth. Samples 
were immediately placed on ice in a cooler and stored frozen until analysed to preserve field 
levels of nitrate and ammonium. Six recently matured leaves (fifth node on main stem) were 
collected around marked sampling points and placed on ice in a cooler until they were put in a 
dryer at 65 oC to preserve the total N content for later analysis. All sample collection bags were 
labelled prior to field work and doubled checked at each sampling point. In general, all field 
work was conducted under my supervision while sample handling was performed by the same 
individuals from field, to freezer/dryers, to lab, sample preparation, and analysis. Data sheets 
with lab numbers are used and all samples are accounted for by checking data sheets and for 
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their presence. Samples collected are never out of the custody of my lab personnel. All lab 
equipment is calibrated every time it is used with known analytical standards; field equipment 
was calibrated as need to compare rates indicated on controllers with actual rates applied. All 
total N analyses on leaf samples are run in duplicate and when the standard error of the mean 
exceeds 3% two more samples are run to improve accuracy. A standard method for extracting 
moist soil was used to determine nitrate and ammonium concentrations. As much as possible, 
once moist soil samples are defrosted they are physically crushed and homogenized to obtain the 
most representative results. All data is reviewed and periodically selected soil samples are re-
extracted and analysed to ensure accuracy of the methods. All standards are lab certified and 
quality assurance is achieved by running quality control samples throughout all analytical 
procedures used in this study. Standard international units are used throughout this study but 
inevitably English units come into play when discussing results with growers. Leaf tissue values 
are accurate to 0.1% and extractable ammonium and nitrate values are accurate to 0.01 µg/g-soil. 
In general, sample point data was averaged across locations within designated “plots” and further 
averaged across replications. All data was subjected to an analysis of variance and regression 
analysis was used to determine response trends and the Least Significant Difference was 
calculated. All data is reviewed upon entry into spreadsheets and proofed for accuracy. Data are 
handled only by graduate students and myself. Final review and presentation of data is done by 
the PI, while graduate students are instructed on statistical analysis and provide initial synopsis.  
 
 

FINDINGS 
Sensor based variable rate fertilization resulted in multiple scenarios which suggest the method 
was flexible for different situations. For example, sensor based fertilization reduced fertilizer N 
use 21 lb N/acre, while increasing yield 60 lb lint/acre in 2012 when compared to the grower’s 
soil cation exchange capacity (CEC) based fertilization. Two different scenarios were tested in 
2013 whereby one area of a field did not receive any pre-fertilizer N application while a 2nd area 
received the grower’s broadcast 70 lb N/acre 39 days prior to planting. The sensor based rate 
averaged 92 lb N/acre compared to the grower constant rate of 120 lb N/acre, while lint was 
slightly less at 1576 lb/acre compared to 1609 lb/acre, respectively. Where a pre-N fertilization 
was practiced, sensor based resulted in 92 lb lint/acre more while applying an average of 10 lb 
N/acre more. These results suggested significant fertilizer N loss when applied 39 days prior to 
planting due to the high rainfall received during this period. In 2014, average fertilizer rate 
applied was 14 lb N/acre greater, while yield was increased 28.9 lb lint/acre. This was an 
important test of the sensitivity of the method as initial leaf  samples taken at early square 
showed that a majority of the sites were highly deficient which caused the model to increase 
fertilizer N rates beyond the grower’s constant rate. Overall, sensor based variable fertilization 
maintained leaf tissue N levels equal to or greater than the grower standard practice suggesting 
spatial adjustments in fertilizer N rate were effective. 
 
Available soil N sampled to a depth of 1-2 ft. showed widely varying results suggesting the need 
for spatially adjusted N fertilization. In 2012 south of Natchez, Miss. available N varied from 43 
to 179 lb N/acre in the surface 2 ft. In 2013, available soil N to a depth of 2 ft. ranged from 11 to 
167 lb N/acre with no pre-fertilization and 18 to 156 lb N/acre in the surface 1 ft. only where a 
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pre-fertilization of 70 lb N/acre had been applied. In 2014, available soil N varied from 14 to 86 
lb N/acre.  
 
These results support the goals of adjusting fertilizer N rates across spatially variable fields to 
more closely match the soil supply and crop demand. Yield results demonstrate the potential for 
this technology to result in greater accuracy in meeting the fertilizer N needs to maximize crop 
yield across spatially variable fields. 
 

CONCLUSIONS AND RECOMMENDATIONS 
Sensor based adjustment of fertilizer N rates utilizing a vegetation index with known sensitivity 
to plant N status shows great promise to improve accuracy across spatially variable fields as 
compared to the standard practice of applying a constant rate. Although post-harvest available 
soil N was not sampled in this study it was obvious from the samples taken near planting that 
considerable variability in soil nitrate and ammonium existed in the fields utilized.  
Recommendations are to further refine the technology in terms of script writing to more easily 
facilitate the data processing steps and turnaround time from data acquisition to fertilization. 
Greater testing and development of algorithms is needed to make applicable across more regions.     
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APPENDICES 
 

 
 

Figure 1.1 Mapped transects for 2012 research site south of Natchez, MS. White circles 
represent 5-m buffered points for data extraction centered on each soil and plant 
sampling site. Soil series are delineated. 

 

 

Figure 1.2 Soil N variability in 2012 near Natchez, MS. 
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Figure 1.3 Map showing N treatments and three replications along with buffered sampling 
points south of Natchez, MS in 2012. 

 

 
 

Figure 1.4 Mapped transects for 2013 research site northwest of Money, Miss. White circles 
represent 5 m buffered points for data extraction centered on each soil and plant 
sampling site. Soil series are delineated. 
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Figure 1.5 Soil N variability in 2012 near, Money, Miss. 

 
 

 
 

Figure 1.6 Map showing N treatments and four replications along with buffered sampling 
points northwest of Money, MS in 2013. 
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EXECUTIVE SUMMARY 
Ten field demonstration trials were conducted on cotton mostly on private farms with 

EQIP eligible producers in West Tennessee within the Mississippi River Basin during 2011 to 
2014. Fields representative of land used for cotton production were used for this project. Four 
sensor-based variable-rate N management systems via side-dress during the early growing 
season were demonstrated in comparison with the local farmer’s uniform-rate N application 
systems in large strip plots under a randomized complete block design with three replicates. Each 
strip plot was divided into various split-plots which received different N application rates under 
the in-season variable-rate N management systems but received the uniform N rate under the 
current uniform-rate N application systems. Initial soil inorganic N levels, leaf N concentrations , 
canopy Normalized Differential Vegetation Index (NDVI), lint yield and quality, seasonal  
fertilizer N consumption, fertilizer N use efficiency, and post-harvest residual soil N levels were 
determined on a sub-plot basis. This project used seasonal fertilizer N consumption, fertilizer N 
use efficiency (lint yield/fertilizer N applied), and post-harvest residual N levels in the soil 
profile to estimate its potential impacts on water quality in the Mississippi River Basin, which is 
scientifically sound and very cost-effective.  

The goal of this project was to encourage producers’ adoption of the in-season sensor-
based variable-rate precision N management technologies and systems on their farms to reduce 
N fertilizer consumption and potential N losses, increase cotton productivity, and thus improve 
water quality and grower profitability in the Mississippi River Basin. The specific objectives for 
this project were to demonstrate to producers and other interested groups the integration of 
sensor-based variable-rate N fertilization into their current production systems, demonstrate the 
impacts of variable-rate precision N management systems based on optical sensing of crop 
canopy compared with the current uniform-rate N application systems in terms of fertilizer N use 
efficiency, post-harvest residual soil N subject to loss, potential improvements to water quality, 
cotton yield, and grower profitability, and show the benefits of incorporating yield maps and 
other field and soil information into the optical sensor-based variable-rate precision N 
management systems.  

In the eight field trials on EQIP eligible farms, leaf N concentrations were generally 
comparable under the in-season sensor-based variable-rate N management systems relative to the 
current uniform-rate N application systems during early square to mid-bloom. Similarly, rare 
significant differences in canopy NDVI were observed because of in-season variable-rate N 
applications over the uniform-rate N applications. The in-season variable-rate N management 
systems via side-dress produced higher cotton lint yield at one location-year, similar lint yield at 
six location years, but lower lint yield at one location-year than the current uniform-rate N 
application systems. The in-season variable-rate N management systems did not affect post-
harvest residual N levels in top 60 cm of the soil profile relative to the current uniform-rate N 
application systems. Averaged over the eight location-years, all the in-season variable-rate N 
management systems had significantly lower seasonal N fertilizer consumption, but higher N use 
efficiency than the current uniform-rate N application systems. Specifically, the in-season variable-
rate N management systems reduced seasonal N fertilizer consumption by 9.3 to 14.8% (9.8 to 15. 
6 kg N ha-1), but increased higher N use efficiency by 9.2 to 11.0% compared with the current 
uniform-rate N application systems. No significant positive effect of in-season variable-rate N 
management systems was observed on post-harvest residual N levels in the top 60 cm of soil. The 



47 
 

benefits of incorporating yield maps of previous years into the optical sensor-based variable-rate 
N management systems were generally not noticeable in terms of cotton yield, seasonal N 
fertilizer consumption, N use efficiency, and post-harvest residual soil N level. Our results 
suggest that in-season sensor-based variable-rate N management systems use significantly less N 
fertilizer to produce comparable cotton yield via increasing N use efficiency relative to the 
current uniform-rate N application systems. The in-season sensor-based variable-rate N 
management systems are viable tools that can be used by producers on their farms to manage 
variations within the field. A variety of Extension and outreach activities were conducted to 
show the demonstration sites and precision equipment, and to disseminate the results to cotton 
producers and other interested groups.   

Overall, the in-season sensor-based variable-rate management systems are reliable to be 
used to implement precision N management on cotton mostly with environmental or/and 
economic benefits. Cotton and other crop producers, private consultants, university Extension 
agents, government personnel, and industry agronomists in the four participating states and other 
adjacent states within the Mississippi River Basin are the customers that benefit from this grant.  
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INTRODUCTION 
Twenty nine field demonstration trials were conducted on cotton (Gossypium hirsutum 

L.) mostly on private farms with EQIP eligible producers in West Tennessee, the Delta region of 
Mississippi, Missouri, and North Louisiana within the Mississippi River Basin during 2011 to 
2014. Felds representative of land used for cotton production were used for this project. 
Historical cropping information was collected from the cooperative producers. The in-season 
sensor-based variable-rate N management systems were demonstrated in comparison with the 
local farmer’s uniform-rate N application systems in large strip plots under a randomized 
complete block design with three replicates. A variety of Extension and outreach activities were 
conducted to show our demonstration sites and precision equipment, and to disseminate the 
results to cotton producers. This project used seasonal N fertilizer consumption, fertilizer N use 
efficiency (lint yield/fertilizer N applied), and post-harvest residual N levels in the soil profile to 
estimate its potential impacts on water quality in the Mississippi River Basin, which is 
scientifically sound and very cost-effective.   

This project successfully demonstrated to producers and other interested groups the 
integration of sensor-based variable‐rate N fertilization into their current production systems, the 
impacts of variable‐rate precision N management systems based on optical sensing of crop 
canopy compared with the current uniform‐rate N application systems in terms of fertilizer N use 
efficiency, post‐harvest residual soil N subject to loss, potential improvements to water quality, 
cotton yield, and grower profitability; and the benefits of incorporating yield maps and other 
field and soil information into the optical sensor‐based variable‐rate precision N management 
systems.     

The University of Tennessee, Mississippi State University, University of Missouri, and 
Louisana State University have strong teams of faculty working on precision agriculture, and 
have the optical sensing and variable-rate application equipment of commercial production scale. 
The researchers from different disciplines worked closely as an integrated team to carry out this 
project. The project team met and had conference calls frequently as needed to discuss the 
project progress and make improvements if necessary. Two semi-annual progress reports were 
developed and submitted each year. At the end of this project, a final report is developed.   

Xinhua (Frank) Yin, Associate Professor of Systems Agronomy, University of 
Tennessee-Knoxville (UTK). Ph.D., Purdue University. He has over 20 years of experience in 
agronomic research and extension including precision agriculture. He was in charge of project 
coordination among the four states, and responsible for experimental design, trial establishment, 
data collection, conducting demonstration activities, writing summary reports and Extension 
publications and delivering extension talks in Tennessee.  

Jac J. Varco, Professor of Agronomy, Mississippi State University. Ph.D., University of 
Kentucky. He has over 30 years of experience in nutrient management including precision 
agriculture utilizing remote sensing and canopy reflectance. For Mississippi locations, he was in 
charge of site selection and grower collaboration, experimental design, trial establishment, data 
collection, conducting demonstration activities, writing summary reports and Extension 
publications, and delivering extension talks.  

Peter Scharf, Professor of Nutrient Management, University of Missouri. Ph.D., Virginia 
Tech University. He has over 30 years of experience in nutrient management and precision 
agriculture, and was in charge of site selection and grower collaboration, experimental design, 
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trial establishment, data collection, conducting demonstration activities, writing summary reports 
and extension publications, and delivering Extension talks in Missouri.  

Brenda S. Tubaña, Associate Professor of Soil Fertility, Louisiana State University. 
Ph.D., Oklahoma State University. She has over 10 years of experience in soil fertility and 
precision agriculture, and was in charge of experimental design, trial establishment, data 
collection, conducting demonstration activities, writing summary reports and Extension 
publications, and delivering extension talks in Louisiana.  

James Larson, Professor of Ag. Economics, UTK. Ph.D., Oklahoma State University. He 
has 20 years of experience in production economics, farm management, and risk analysis, and 
was in charge of the economic analysis for this project.  

David Verbree, Assistant Professor in Crop Physiology, UTK. Ph.D., Texas A and M 
University. He has over 5 years of experience in crop physiology research and Extension, and 
conducted Extension and outreach activities in Tennessee.  

David Dunn, Professor of Soil Science, University of Missouri. Ph.D., University of 
Missouri. He has over 30 years of experience in soil testing and precision agriculture, and 
participated in demonstration and Extension activities in Missouri.  

Hugh Savoy, Associate Professor in Soil Fertility Extension, UTK. Ph.D. University of 
Tennessee. He has 30 years of experience in soil fertility Extension and research, and conducted 
extension and outreach activities in Tennessee.  

Michael Buschermohle, Professor and Extension Precision Agriculture Specialist, UTK. 
Ph.D., Clemson Univ. He has over 30 years of experience in conducting precision agriculture 
educational programs, and conducted Extension and outreach activities in Tennessee.   

Don Tyler, Professor of Soil Science, University of Tennessee. Ph.D., University of 
Kentucky. He has about 40 years of experience in no-till production and precision farming, and 
participated in experimental design and trial evaluations in Tennessee.   

Approximately fifteen EQIP eligible producers directly participated in this project from 
Tennessee, Mississippi, Missouri, and Louisiana. All these EQIP eligible producers were 
involved in the selection of trial locations, trial establishment and management, uses of the 
precision equiptment including optical sensors and variable-rate N applicators, data collection, 
and Extension and outreach activities.  

Representatives of the local USDA NRCS offices in each state monitored and evaluated 
the results of this project. They were invited to visit the demonstration sites, participate in major 
Extension and outreach activities, and read semi-annual progress reports and the final report.   

The purpose of this project was to demonstrate to producers and other interested groups 
the procedures and benefits of utilizing the innovative precision technologies: optical sensing and 
variable-rate application, to manage spatial variability within individual fields of cotton. The 
goal of this project was to encourage producers’ adoption of these new precision N management 
technologies and systems on their farms to reduce N fertilizer consumption and potential N 
losses, improve cotton productivity, and thus improve water quality and grower profitability in 
the Mississippi River Basin. The specific objectives for this project included the follows: 
1)  To demonstrate to producers and other interested groups the integration of sensor-based 

variable-rate N fertilization into their current production systems;  
2)  To demonstrate the impacts of variable-rate precision N management systems based on 

optical sensing of crop canopy compared with the current uniform-rate N application systems 
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in terms of fertilizer N use efficiency, post-harvest residual soil N subject to loss, potential 
improvements to water quality, cotton yield, and grower profitability; and 

3)  To show the benefits of incorporating yield maps and other field and soil information into the 
optical sensor-based variable-rate precision N management systems.    

 There were 3,065,000 acres of cotton in 2006, and 1,375,000 acres in 2010 planted in 
Tennessee, Missouri, Mississippi, and Louisiana. Cotton is a major field crop in these four states. 
The majority of these cotton acres are located within the Mississippi River Basin. In addition, the 
results of this project can also be used in some other states such as Arkansas with some 
modifications. This project targeted thousands of cotton producers in the four participating states 
within the Mississippi River Basin via a variety of Extension and outreach activities.  

This project adopted an innovative approach in several aspects. Firstly, it addressed 
fertilizer N use efficiency and related water quality issues by using the integration of two new 
precision technologies -- optical sensing and variable-rate application. No similar demonstrations 
had been conducted on cotton in the Mississippi River Basin. Secondly, it involved producers 
directly and meaningfully. Thirdly, the need for the project was identified through surveys 
among producers, county Extension agents, and private consultants at Extension events such as 
the Tennessee Cotton Focus Meeting. And finally, some producers and organizations had already 
been contacted, and the project was highly supported in the agricultural community.  

This project was funded by the CIG proejct at less than 50% of the total costs. The 
University of Tennessee, Mississippi State University, University of Missouri, and Louisana 
State University funded this porject via providing scientists and supporting staff, optical snsors 
and variable-rate applicators, and analytical labs for soil testing and plant analyses. The 
participating producers provided land, seeds, chemicals, etc. for implementing this project. In 
addition, local relevant companies also provided support in various aspects to this project.   
 

BACKGROUND 
During the past several decades, the largest increase in the use of agricultural inputs was 

fertilizer N (Johnston, 2000). Nitrogen fertilization is a key production practice in most crops 
including cotton. Fertilizer N is one of the greatest cost inputs in cotton production. It is also the 
most difficult nutrient to manage, and has large potential adverse impacts on the environment. 
Due to substantially increased environmental concern and rising N prices (up to $1.00/lb N in 
2008) during the last decade, there is an urgent need to develop and demonstrate innovative 
technologies and systems that can apply N more precisely so as to increase N use efficiency 
reduce N losses, enhance water quality, and increase crop yields and profitability.   

Cotton is the largest source of natural fiber. Increasing cotton productivity and 
competitiveness in the global textile market remains a big challenge to the U.S. cotton industry. 
The recent decline in cotton acreage due to competition from grain crops and an increase in 
public concerns on environmental degradation necessitate greater productivity, improved 
sustainability, and environmentally-friendly cotton production systems. Apart from large input 
costs, the perennial growth habit of cotton requires an effective and refined fertilizer N 
management system. Under-application of N on cotton results in poor vegetative and 
reproductive growth, premature senescence, and reduced yields; while over-application can 
inhibit boll formation and retention, pose serious threats to the environment (Prasad and Power 
1995), and reduce grower profitability due to greater expenses on fertilizer N, etc.  
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Due to security concern, urea and ammonium nitrate (UAN) and urea have been 
increasingly used to replace ammonium nitrate as the N source for cotton production in 
Tennessee. Presently, UAN is usually injected into the soil, while ammonium nitrate is broadcast 
on the soil surface. Traditionally, N fertilizer is applied around cotton planting, but split 
applications (a small portion of N as pre-plant plus a large portion of N as side-dress) have 
recently gained grower’s attention. No-tillage systems are being widely used by producers in 
cotton production in Tennessee and throughout the southeastern USA. Under no-tillage, N 
fertilizer is often broadcast on soil surface without incorporation into the soil, while it is 
generally incorporated after surface application under conventional tillage systems (Howard et 
al., 2001). Overall, information on cotton responses to the application rate, timing, and method of 
alternate N sources such as UAN and urea is limited under no-till production systems.  

Furthermore, current fertilizer N recommendations were developed by individual states 
on small fields where spatial variances were minimal. Although recommendations may account 
for soil variations, growers did not have the technology to manage spatial variability within 
individual fields. Under the current systems, producers use a uniform N fertilizer rate across the 
entire field, which often results in over- and under-applications of N because crop responses to N 
fertilization are often variable within an individual field (Vetch et al., 1995), and on some parts 
of the field more N should be applied or much less to none on other parts of the field (Raun and 
Johnson, 1999). Therefore, the presence of spatial variability within individual fields is a critical 
issue demanding careful management. In order to solve this problem, it is essential to develop 
and adopt innovative technologies and management systems that can generate and implement 
variable-rate fertilizer N recommendations based on spatial variances within individual fields.  

Measuring crop N nutrition status during the growing season by optically sensing crop 
canopy has been developed into a viable precision N management tool during the past fifteen 
years (Raun et al., 2001, 2002). Researchers utilize on-vehicle, real-time optical sensing of crop 
canopy reflectance which can be used to develop indices such as the Normalized Difference 
Vegetation Index (NDVI) to assess crop growth, health, and/or N nutritional status and use these 
indices to adjust the fertilizer N rate accordingly. Integration of optical sensing and variable-rate 
application technologies enables on-the-go non-destructive diagnoses of crop N deficiency, 
sufficiency, or excesses without soil or plant tissue diagnostic testing, real-time application of N 
fertilizer at variable rates to correct those deficiencies or excesses, and precisely treating each 
part of the field sensed. Since this is real-time sensing, it is done without pre-processing of data 
or determining location within field beforehand. This innovative precision technology allows 
variable application of N fertilizers at very high resolutions. So far this system is the most 
efficient technology for precision N management as it can change uniform-rate N application to 
variable-rate N applications, minimizing time, labor, and cost of implementing variable-rate N 
applications (Raun et al., 2002; Tubaña et al., 2008), which is vastly different from the traditional 
N management system of uniform-rate N application across entire fields.  

Investigations have shown significant environmental or/and economic benefits with 
optical sensor-based variable-rate precision N management technologies and systems. Research 
on corn and winter wheat have shown 10-15% increases in N use efficiency and some significant 
yield increases with these precision N management systems relative to the current uniform-rate 
N application systems (Raun and Johnson, 1999; Raun et al., 2002). Biermacher et al. (2006) in 
Oklahoma even reported as high as 59–82% reductions in N fertilizer use by winter wheat under 
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the optical sensor-based variable-rate N management systems. Ortiz-Monasterio and Raun 
(2007) showed that optical sensor-based precision N management systems can save 63 lb/acre N 
on spring wheat and increase grower profitability by $60/acre. However, investigations on cotton 
responses to variable-rate N applications based on canopy NDVI were limited. 

Overall, the optical sensing and variable-rate technologies were studied sufficiently by 
scientists at the four participating universities. Each participating state had adequate (at least 
three years of) research data of optical sensing on cotton to develop algorithms for variable-rate 
N applications in this project. However, these cutting-edge precision technologies were new to 
cotton producers. The delivery of these technologies to producers was highly needed. Since the 
total costs for purchasing the integrated optical sensing and variable-rate N application 
equipment for commercial production are approximately $30,000 to $40,000, and the equipment 
can be used on different crops for many years, and can also be rented to other producers, we 
believe this equipment is affordable for most producers and is a great investment tool.  

This project was able to quantitatively determine seasonal fertilizer N consumption, 
fertilizer N use efficiency based on lint yield/fertilizer N applied (partial factor analysis), and 
post-harvest residual N level in the soil profile (2 to 3 ft. deep) for the variable-rate precision N 
management systems based on optical sensing, etc. and for the current N application systems of 
uniform-rate N application across entire fields as well in each year and on the averages of the 
three-year data. The three measurements mentioned above could all be used to estimate the 
potential impacts of this project on the environment, such as water quality. The uses of seasonal 
fertilizer N consumption, fertilizer N use efficiency, and post-harvest residual soil N level are 
scientifically sound and very cost-effective in estimating the impacts of this project on water 
quality in the Mississippi River Basin. Because we are able to calculate how many lbs/acre of 
fertilizer N that could be saved from using the variable-rate precision N management systems 
compared with the current uniform-rate N application systems, and if we know the total acreage 
of cotton fields using the variable-rate precision N management systems in the Mississippi River 
Basin, then we are able to figure out how many tons of fertilizer N will be saved each year in the 
Mississippi River Basin due to the use of these new precision technologies. The reduction in 
fertilizer N consumption is an estimate of the potential impacts of this project on the 
environment such as water quality in the Mississippi River Basin. Since cotton is a major crop 
with a total acreage ranging from 1,400,000 to 3,000,000 acres each year in Tennessee, Missouri, 
Mississippi, and Louisiana, the potential of using these new precision technologies in cotton 
production would be substantial in the Mississippi River Basin. In addition, the results of this 
project can also be used in some other states such as Arkansas with some modifications.    

This project provides significant positive environmental or/and economical benefits of 
reducing fertilizer N consumption, lowering N losses, increasing crop yield, and thus improving 
water quality and grower profitibility. As cotton producers have realized the benefits of and 
shifted to these innovative sensor-based N management systems, the above benefits will be 
realized in the four participating states. Futhermore, the results of this project could be used by 
cotton producers in the other regions of the U.S. with some modifications. Producers will receive 
greater economic returns from cotton production using these innovative technologies and 
systems. Water quality in local streams and the Mississippi River could be gradually improved 
by reducing nitrate leaching from cotton fields to water because of the adoption of these new 
technologies and systems in all the states with cotton production in the Mississippi River Basin.   
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Overall, the optical sensor-based variable-rate precision N management technologies and 
systems have the potential to reduce fertilizer N consumption, lower N losses to water and 
atmosphere, and improve water and air quality in the Mississippi River Basin. Furthermore, the 
improved water quality with these innovative precision technologies will improve the conditions 
for fish production, tourism, and recreation in the region. There is no adverse impact of this 
project on the environment or society.  
 

REVIEW OF METHODS 
 

FIELD TRIALS ON EQIP ELIGIBLE FAMRS (2012-2014) 
Eight field demonstration trials were conducted on cotton of private farms with EQIP 

eligible producers in west Tennessee within the Mississippi River Basin during 2012-2014. 
Fields representative of land used for cotton production were used for this project. Historical 
cropping information was collected from the cooperative producers. Although only three N 
management systems were proposed to be compared in the original proposal, the following five 
different N management systems were demonstrated and compared in large strip plots (about 40-
ft wide run the entire field length, each strip plot was divided into various 100-ft long sub-plots) 
under a randomized complete block design with three replicates at all the eight location-years:  
1. The current N application system -- uniform-rate application of granular or liquid N fertilizer 

within a field. Under this system, the N fertilizer rate was determined based on farmer 
experience and input, and was the same across the entire strip plot and all three replications. 
This system represents the current state of technology integrated with grower intuitive 
knowledge of field fertilizer N requirements.   

2. A variable-rate precision N injection system utilizing canopy optical sensing (NDVI or other 
vegetation indices) and a fertilizer rate algorithm derived from multiple years of previous 
research data. The basic principle of the N management system is that the lower the 
vegetation index value was, the higher the amount of N fertilizer was applied, and vice versa. 
The N application algorithm for this treatment was developed using research data of previous 
years.     

3. A variable-rate precision N injection system based on canopy optical sensing but adjusted for 
soil productivity zones derived from bare soil imagery and historical yield monitor data or 
aerial imagery of mid-season crop health. The N application algorithm for this system was 
developed as follows: The yield potentials of all sub-plots in the field were assessed using the 
methods mentioned above, and divided into three categories: low, medium, and high. For the 
medium yield potential category, the algorithm used in Treatment 2 was used without any 
adjustment. For the low and high yield potential categories, the algorithm used in Treatment 
2 was used after adjusting for yield potentials. For instance, when cotton yield potential was 
in the low category, the N rate recommendation based on NDVI or other vegetation indices 
were scaled down by 30 lb N/acre; when the yield potential was high, the N rate 
recommendation was scaled up by 30 lb N/acre.      
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4. This treatment was the same as Treatment 2 but the in-season sensor-based variable N 
application rate ranged from 40 to 80 lb N/acre.     

5. This treatment was the same as Treatment 3 but the in-season sensor-based variable N 
application rate ranged from 20 to 100 lb N/acre.     

The above five N management systems were compared side by side on the same field. A 
uniform N rate was applied to all the sub-plots based on producer’s current practice in Treatment 
1. In Treatment 2, a uniform N rate of 30 lb N/acre was applied to each sub-plot at planting, and 
the in-season N application in late June to early July for each sub-plot was variable (ranging 
from 30 to 90 lb N/acre) based on the actual vegetation index from that sub-plot using the 
GreenSeeker® RT200 Data Collection and Mapping System (NTech Industries, Inc., CA) or the 
Yara® N sensing system. In Treatment 3, a uniform N rate of 30 lb N/acre was applied to each 
sub-plot at planting, and the in-season N application for each sub-plot was at a variable rate 
(ranging from 0 to 120 lb N/acre) according to the actual vegetation index but adjusted to the 
yield potential of that sub-plot.  

The P and K fertilizers were broadcast applied uniformly across the entire test based on 
the soil testing results at each location-year. The soil types, dates of cotton planting, N treatment 
implementation, and other major field operations for these trials are presented in Table 1. The 
following sampling and measurements were taken on a sub-plot basis at each location-year for 
developing education materials: A composite soil sample was collected at a depth of 60-cm for 
nitrate N and ammonium N in the soil profile prior to treatment initiation. Canopy NDVI data 
were recorded at the early square, early bloom, and mid-bloom growth stages using the 
GreenSeeker® RT 200 Data Collection and Mapping System (NTech Industries, Inc., CA). A 
composite leaf sample (10 blades + 10 petioles) was collected three times at about the same dates 
when NDVI data were collected. All leaf samples were analyzed for N concentrations using a 
LECO Tru-Spec Analyzer. Pre-plant applied N, in-season applied N, and the total seasonal 
fertilizer N consumption were recorded for each sub-plot. Cotton harvest was completed timely 
for lint yield and gin turnout by harvesting the center 6 rows. In addition, fiber quality attributes 
were determined on a strip plot basis at each location-year. A post-harvest soil sample was taken 
for soil nitrate N and ammonium N at a 60-cm depth to estimate residual N levels in soil profile 
after harvest. Fertilizer N use efficiency based on lint yield/fertilizer N applied (partial factor 
analysis) was calculated. Both are good indices which could be used to estimate the potential 
impacts of this project on water quality. An economic analysis including grower profitability and 
risks with use of these new precision technologies was conducted. The procedures and benefits 
of utilizing optical sensor-based canopy reflectance, residual soil nitrate N analysis, and leaf 
tissue analysis to improve N management in cotton production on spatially variable soils were 
demonstrated to the producers.  

Analysis of variance was conducted on each measurement with a randomized complete 
block model for each location-year and the combined data of the eight location-years using SAS 
statistical software (SAS Institute, Cary, NC). Treatment means were separated with the Fisher’s 
protected LSD method if the F test was significant. Probability levels lower than 0.05 were 
designated as significant for all the analyses.   

This project adopted an innovative approach in several aspects. Firstly, it addressed 
fertilizer N use efficiency and related water quality issues by using the integration of two new 
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precision technologies -- on-vehicle, real-time optical sensing and variable-rate application. 
Integration of optical sensing and variable-rate application technologies enables on-the-go non-
destructive diagnoses of crop N deficiency, sufficiency, or excesses without soil or plant tissue 
diagnostic testing, real-time application of N fertilizer at variable rates to correct those 
deficiencies or excesses, and precisely treating each part of the field sensed. Since this is real-
time sensing, it is done without pre-processing of data or determining location within field 
beforehand. This innovative precision technology allows variable application of N fertilizers at 
very high resolutions. So far this system is the most efficient and cutting-edge technology for 
precision N management as it can change uniform-rate N application to variable-rate N 
applications, minimizing time, labor, and cost of implementing variable-rate N applications, 
which is vastly different from the traditional N management system of uniform rate N 
application across the entire field. No similar demonstrations were conducted on cotton in the 
Mississippi River Basin. Secondly, this project changed cotton N application timing form pre-
planting and at-planting to in-season N application. Thirdly, a thorough economic analysis was 
conducted by agricultural economists. Fourthly, it involved producers directly and meaningfully. 
Fifthly, the need for the project was identified through surveys among producers, county 
Extension agents, and private consultants. And finally, the project was highly supported in the 
agricultural community.  

The producers did not need to do much differently to accommodate this project since all 
the equipment for this project was provided the universities. However, if they want to adopt 
these technologies on their farms themselves, they need to buy the optical sensors and variable-
rate applicators, and get the variable N rate algorithms for cotton from the universities or develop 
their own variable N rate algorithms.   
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Table 1. Major field operations performed on the trials of EQIP eligible farms during 2012-2014. 
 
Year  Major Operations Performed Date Performed 
2012 Lauderdale Farmer applied 30 lb N a-1, 20 lb S a-1 and 1 lb B a-1 plus a uniform rate of P and K 

to all plots 
05/08/12 

  Planted DPL 912 05/11/12 
  Collected pre-treatment soil samples to 60 cm deep (2 cores sub-plot-1) 05/17/12 
  Recorded canopy NDVI prior to N treatment 06/28/12 
  Side-dressed fluid N treatments by sub-plot 07/06/12 
  Collected early square canopy NDVI and leaf samples (10 leaves sub-plot-1) 07/10/12 
  Collected early bloom canopy NDVI and leaf samples (10 leaves sub-plot-1) 07/19/12 
  Collected mid-bloom canopy NDVI and leaf samples (10 leaves sub-plot-1) 07/27/12 
  Hand-picked seed cotton samples from 50 open bolls sub-plot-1 for gin turnout and 

fiber quality 
10/22/12 

  Harvested center 6 rows of each 12 row sub-plot & collected seed cotton samples 
by strip plot 

10/30/12 

  Collected post-harvest soil samples to 60 cm deep (2 cores plot-1) 11/02/12 
    
 Madison Planted PHY 499  04/26/12 
  Collected pre-treatment soil samples to 60 cm deep (2 cores sub-plot-1) 05/16/12 
  Farmer applied 30 lb N a-1, 40 lb P2O5 a-1, and 80 lb K2O a-1 to all plots plus 60 lb 

N a-1 to Treatment 1 
05/25/12 

  Recorded canopy NDVI prior to N treatment 06/15/12 
  Side-dressed fluid N treatments by sub-plot 06/29/12 
  Collected early square canopy NDVI and leaf samples (10 leaves sub-plot-1) 07/11/12 
  Collected early bloom canopy NDVI and leaf samples (10 leaves sub-plot-1) 07/25/12 
  Collected mid-bloom canopy NDVI and leaf samples (10 leaves sub-plot-1) 08/08/12 
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  Hand-picked seed cotton samples from 50 open bolls sub-plot-1 for gin turnout and 
fiber quality 

10/08/12 

  Harvested center 6 rows of each 12 row plot & collected seed cotton samples by 
strip plot  

10/19/12 

  Collected post-harvest soil samples to 60 cm deep (2 cores sub-plot-1) 11/05/12 
    
 Tipton Farmer applied 30 lb N a-1, 40 lb P2O5 a-1, 100 lb K2O a-1, and 10 lb S a-1 to all 

plots  
04/07/12 

  Planted DPL 912  05/18/12 
  Collected pre-treatment soil samples to 60 cm deep (2 cores sub-plot-1) 06/14/12 
  Recorded canopy NDVI prior to N treatment 07/05/12 
  Collected early square canopy NDVI and leaf samples (10 leaves sub-plot-1) 07/11/12 
  Side-dressed fluid N treatments by sub-plot 07/12/12 
  Collected early bloom canopy NDVI and leaf samples (10 leaves sub-plot-1) 07/23/12 
  Collected mid-bloom canopy NDVI and leaf samples (10 leaves sub-plot-1) 07/30/12 

  Hand-picked seed cotton samples from 50 open bolls sub-plot-1 for gin turnout and 
fiber quality 

10/09/12 

  Harvested center 6 rows of each 12 row plot & collected seed cotton samples by 
strip plot 

10/23/12 

  Collected post-harvest soil samples to 60 cm deep (2 cores sub-plot-1) 11/05/12 
    

2013 Lauderdale Farmer applied 30 lb N a-1, 20 lb S a-1 and 1 lb B a-1 plus a uniform rate of P and K 
to all plots 

NR† 

  Planted DPL 1321  06/04/13 
  Collected pre-treatment soil samples to 60 cm deep (2 cores sub-plot-1) 06/14/13 
  Collected early bloom canopy NDVI and leaf samples (10 leaves sub-plot-1) 07/26/13 
  Side-dressed fluid N treatments by sub-plot 07/27/13 
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  Collected mid-bloom canopy NDVI and leaf samples (10 leaves sub-plot-1) 08/14/13 
  Collected late bloom canopy NDVI and leaf samples (10 leaves sub-plot-1) 08/27/13 

  Hand-picked seed cotton samples from 50 open bolls sub-plot-1 for gin turnout and 
fiber quality 

11/27/13 

  Harvested center 6 rows of each 12 row plot & collected seed cotton samples by 
strip plot 

11/29/13 

  Collected post-harvest soil samples to 60 cm deep (2 cores sub-plot-1) 12/02/13 
    
 Madison Planted PHY 499  05/14/13 
  Farmer applied 30 lb N a-1 and a uniform rate of P and K to all plots plus 60 lb N a-

1 to Treatment 1 
06/14/13 

  Collected early square canopy NDVI and leaf samples (10 leaves sub-plot-1) 07/10/13 
  Side-dressed fluid N treatments by sub-plot 07/18/13 
  Collected early bloom canopy NDVI and leaf samples (10 leaves sub-plot-1) 07/24/13 
  Collected mid-bloom canopy NDVI and leaf samples (10 leaves sub-plot-1) 08/07/13 

  Hand-picked seed cotton samples from 50 open bolls sub-plot-1 for gin turnout and 
fiber quality 

11/04/13 

  Harvested center 6 rows of each 12 row plot & collected seed cotton samples by 
strip plot  

11/14/13 

  Collected post-harvest soil samples to 60 cm deep (2 cores sub-plot-1) 11/15/13 
    
2014 Lauderdale Farmer applied 30 lb N a-1, 20 lb S a-1 and 1 lb B a-1 plus a uniform rate of P and K 

to all plots 
NR 

  Planted DPL 1321 05/10/14 
  Collected early square canopy NDVI and leaf samples (10 leaves sub-plot-1) 07/11/14 
  Side-dressed fluid N treatments by sub-plot 07/17/14 
  Collected early bloom canopy NDVI and leaf samples (10 leaves sub-plot-1) 07/28/14 
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  Collected mid-bloom canopy NDVI and leaf samples (10 leaves sub-plot-1) 08/11/14 
  Hand-picked seed cotton samples from 50 open bolls sub-plot-1 for gin turnout and 

fiber quality 
10/31/14 

  Harvested center 6 rows of each 12 row plot & collected seed cotton samples by 
strip plot 

11/12/14 

  Collected post-harvest soil samples to 60 cm deep (2 cores sub-plot-1) 11/19/14 
    
 Madison Farmer applied 30 lb N a-1 plus a uniform rate of P and K to all plots pre-plant plus 

60 lb N a-1 to Treatment 1 
NR 

  Planted PHY 499  05/05/14 
  Collected pre-treatment soil samples to 60 cm deep (2 cores sub-plot-1) 05/21/14 
  Collected early square canopy NDVI and leaf samples (10 leaves sub-plot-1) 07/08/14 
  Side-dressed fluid N treatments by sub-plot 07/10/14 
  Collected early bloom canopy NDVI and leaf samples (10 leaves sub-plot-1) 07/21/14 
  Collected mid-bloom canopy NDVI and leaf samples (10 leaves sub-plot-1) 08/01/14 

  Hand-picked seed cotton samples from 50 open bolls sub-plot-1 for gin turnout and 
fiber quality 

10/01/14 

  Harvested center 6 rows of each 12 row plot & collected seed cotton samples by 
strip plot 

10/21/14 

  Collected post-harvest soil samples to 60 cm deep (2 cores sub-plot-1) 10/24/14 
    
 Carroll Farmer applied 30 lb N a-1 plus a uniform rate of P and K to all plots pre-plant NR 
  Planted PHY 333  05/05/14 
  Collected pre-treatment soil samples to 60 cm deep (2 cores sub-plot-1) 05/22/14 
  Collected early square canopy NDVI and leaf samples (10 leaves sub-plot-1) 07/02/14 
  Side-dressed fluid N treatments by sub-plot 07/07/14 
  Collected early bloom canopy NDVI and leaf samples (10 leaves sub-plot-1) 07/18/14 
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  Collected mid-bloom canopy NDVI and leaf samples (10 leaves sub-plot-1) 07/30/14 
  Hand-picked seed cotton samples from 50 open bolls sub-plot-1 for gin turnout and 

fiber quality 
10/09/14 

  Harvested center 6 rows of each 12 row plot & collected seed cotton samples by 
strip plot 

10/22/14 

  Collected post-harvest soil samples to 60 cm deep (2 cores sub-plot-1) 10/23/14 
 
NR: Date not recorded.
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FIELD TRIALS ON A UNIVERSITY RESEARCH AND EDUCATION CENTER  
(2011-2012) 

Another two field trials were conducted on cotton on the University of Tennessee 
Research and Education Center at Milan in 2011 and 2012 with the following six in-season side-
dress UAN treatments evaluated in strip plots. Each strip plot was divided into 8 sub plots (7.5 m 
wide × 15 m long). 

1. Zero N 
2. Low uniform-rate N application of 56 kg N ha-1 (50 lb N a-1) over each strip plot 
3. High uniform-rate N application rate of 78.4 kg N ha-1 (70 lb N a-1) over each strip 

plot 
4. Ordinary variable-rate N application algorithm in the range of 33.6 to 100.8 kg ha-1 
(30 to 90 lb a-1) of N for each sub plot based on the average NDVI value in that sub plot  
5. Reversed variable-rate N application algorithm in the range of 33.6 to 100.8 kg ha-1 
(30 to 90 lb a-1) of N for each sub plot based on the average NDVI value in that sub plot  
6. Nitrogen application rate based on the average NDVI value in each strip plot 
 
No side-dress UAN fertilizer was applied in any strip or sub plot in Treatment 1.  

Nitrogen fertilizer of 56 kg N ha-1 was applied to all sub plots in each strip plot in Treatment 2.  
Nitrogen fertilizer at 78.4 kg N ha-1 was applied to all sub plots in each strip plot in Treatment 3. 
The N applicate rates in Treatments 2 & 3 roughly represented the lower and higher limits of 
side-dress N applications used by cotton producers after approximately 22 to 34 kg N ha-1 (20 to 
30 lb N a-1) was pre-plant applied as monoammonium phosphate or diammonium phosphate. 
Nitrogen applications in Treatments 4 to 6 were based on NDVI readings. In Treatment 4, when 
the NDVI reading was lower, more N fertilizer was applied. However, in Treatment 5, when the 
NDVI reading was lower, less N fertilizer was applied. In-season fluid N application rate ranged 
from 33.6 to 100.8 kg ha-1 for both Treatments 4 and 5. In Treatment 6, the N application rate 
was identical for all sub-plots within a strip plot, but it might be different among the three strip 
plots of the three replicates since it was based on the average NDVI value in each strip plot. 
Fluid N fertilizer UAN (32-0-0) was injected 3.8 cm deep into the soil and 25.4 cm to one side of 
the row with a KBH 8-row pull-type coulter injector for all the in-season applied N treatments 
(Treatments 2 to 6). In addition to the above in-season N treatments, all the plots received 26 kg 
N ha-1 and 67 kg P2O5 ha-1 as diammonium phosphate and 67 kg K2O ha-1 as muriate of potash 
regardless of treatment in fall 2010.  In March 2012, 26 kg N ha-1, 67 kg P2O5 ha-1, and 101 kg 
K2O ha-1 were applied to all the plots irrespective of the treatment. The P and K fertilizers were 
broadcast applied uniformly on the soil surface across the test based on the soil testing results 
each year. 

The test field had four different soil types: Calloway, Falaya, Grenada, and Lexington. 
The initial soil nitrate- and ammonium-N content within the top 60 cm of soil varied 
substantially ranging from 3 to 57 mg kg-1. All these suggest that the test field is spatially 
variable.  

The dates of cotton planting, N treatment implementation, and other major field 
operations for these two trials are presented in Table 2. The following sampling and 
measurements were taken from each sub-plot each year: A composite soil sample was collected 
at a depth of 60-cm for nitrate N and ammonium N in the soil profile on a sub-plot basis prior to 
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treatment initiation. Canopy NDVI data were recorded at the early square and early, mid, and 
late bloom growth stages using the GreenSeeker® RT 200 Data Collection and Mapping System 
(NTech Industries, Inc., CA). A composite leaf sample (10 blades + 10 petioles) was collected 
four times at about the same dates when NDVI data were taken. All leaf samples were analyzed 
for N concentrations using a LECO Tru-Spec Analyzer. Cotton harvest was completed timely for 
lint yield and gin turnout by harvesting the center 4 rows. In addition, fiber quality attributes 
were determined on a strip plot basis each year. A post-harvest soil sample was taken for soil 
nitrate N and ammonium N at a 60-cm depth.  

Analysis of variance was conducted for each measurement with a randomized complete 
block model using SAS statistical software (SAS Institute, Cary, NC). Treatment means were 
separated with the Fisher’s protected LSD method. In addition, nonorthogonal contrasts were 
conducted in order to compare means of treatment combinations. Probability levels lower than 
0.05 were designated as significant for all analyses.   
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Table 2. Major field operations performed on the trials on a university research and education center in 2011 and 2012. 
 
 Year  Operations Performed Date Performed 
 2011  Planted DPL 0912 with a 8-row planter 05/11/11 
   Collected pre-treatment soil samples to 60 cm deep (2 cores sub-plot-1) 05/26/11 
   Recorded canopy NDVI prior to N treatment 06/24/11 
   Side-dressed fluid N treatments by sub-plot 07/12/11 
   Collected early square leaf samples (10 leaves sub-plot-1) 07/12/11 
   Recorded canopy NDVI at early bloom 07/21/11 
   Collected early bloom leaf samples (10 leaves sub-plot-1) 07/22/11 
   Recorded canopy NDVI at mid-bloom 08/01/11 
   Collected mid bloom leaf samples (10 leaves sub-plot-1) 08/02/11 
   Recorded canopy NDVI at late bloom 08/15/11 
   Collected late bloom leaf samples (10 leaves sub-plot-1) 08/12/11 
   Harvested center 4 rows of each 8 row plot & collected seed cotton samples by strip plot 10/11/11 
   Collected post-harvest soil samples to 60 cm deep (2 cores sub-plot-1) 11/07/11 
     
 2012  Planted DPL 0912 with a 8-row planter 05/10/12 
   Recorded canopy NDVI prior to N treatment 07/11/12 
   Collected early square leaf samples (10 leaves sub-plot-1) 07/11/12 
   Side-dressed fluid N treatments by sub-plot 07/18/12 
   Recorded canopy NDVI at early bloom 07/19/12 
   Collected early bloom leaf samples (10 leaves sub-plot-1) 07/19/12 
   Recorded canopy NDVI at mid bloom 07/26/12 
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   Collected mid bloom leaf samples (10 leaves sub-plot-1) 07/26/12 
   Recorded canopy NDVI at late bloom 08/08/12 
   Collected late bloom leaf samples (10 leaves sub-plot-1) 08/08/12 
   Harvested center 4 rows of each 8 row plot & collected seed cotton samples by strip plot 10/25/12 
   Collected post-harvest soil samples to 60 cm deep (2 cores sub-plot-1) 11/09/12 
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DISCUSSION OF QUALITY ASSURANCE  
All ten field demonstration trials were conducted in west Tennessee within the 

Mississippi River Basin. Fields representative of land used for cotton production were used for 
this project. Historical cropping information was collected from the collaborators.  

All the field demonstration trials were conducted under a randomized complete block 
design with three replicates. Except the N treatments, all other field operations for this project 
were based on the standard practices for no-till cotton production recommended by University of 
Tennessee Extension Service.  

Almost all sampling and measurements were taken on a sub-plot basis from each 
location-year for developing education materials based on the normal sampling and measuring 
procedures.  

A post-harvest soil sample was taken for soil nitrate N and ammonium N at a 60-cm 
depth to estimate residual N levels in soil profile after harvest. Fertilizer N use efficiency based 
on lint yield/fertilizer N applied (partial factor analysis) was calculated. Both are good indices 
which could be used to estimate the potential impacts of this project on water quality.   

The analyses of soil, plant, and fiber samples were conducted by licensed commercial 
laboratories with the standardized procedures.  

Analysis of variance was conducted on each measurement with a randomized complete 
block model for each location-year and the combined data of the eight location-years using SAS 
statistical software (SAS Institute, Cary, NC). Treatment means were separated with the Fisher’s 
protected LSD method if the F test was significant. Probability levels lower than 0.05 were 
designated as significant for all the analyses. All the statistical methods used in this project are 
widely used for technology and development projects.   
 

FINDINGS 
 

FIELD TRIALS ON EQIP ELIGIBLE FAMRS (2012-2014) 
Initial Soil N Fertility 

In 2012, the initial inorganic NO3
--N, NH4

+-N, and total N (NO3
--N + NH4

+-N) contents 
in the top 60 cm of soil did not differ among the 15 strip plots which were assigned to the five 
treatments randomly within each replicate before the N treatments were implemented at 
Lauderdale, Madison, and Tipton except the total N content at Tipton (Table 3). The total N 
content was higher under the plots assigned to Treatments 1 and 4 than those with Treatments 2 
and 3 at Tipton in 2012. The identical plots and treatment layout on the field used in 2012 was 
also used for 2013 and 2014 at Lauderdale. The same plots and treatment layout on the field used 
in 2012 was also used in 2013 at Madison. No significant differences were observed in soil 
initial inorganic N contents on the two new fields that were used at Madison and Carroll in 2014 
(Table 3). Obviously some of the fields used for this study had high initial inorganic N levels in 
the soil profile from the previous crop production. High initial inorganic N levels in the soil 
profiles have been increasingly observed in cotton and corn production in Tennessee and other 
states.     

     
 



66 
 

Table 3. Initial soil NO3
--N, NH4

+-N, and total N (NO3
--N + NH4

+-N) contents in top 60 cm in 
the field trials of EQIP eligible farms during 2012-2014. 

 
Year Location Treatment NO3

--N  NH4
+-N Total N  

   kg ha-1 kg ha-1 kg ha-1 

2012, 2013, & 2014 Lauderdale 1 102.8 91.5 194.3 

  2 102.3 102.2 204.5 

  3 116.9 109.4 226.3 

  4 109.4 127.4 236.8 

  5 115.7 116.0 231.7 

  Significance 0.5382 0.4740 0.3195 

      

2012 & 2013 Madison 1 44.7 52.7 97.4 

  2 43.8 33.5 77.3 

  3 46.0 82.4 128.4 

  4 42.3 155.9 198.2 

  5 47.8 229.9 277.7 

  Significance 0.8418 0.6525 0.6519 

      

2012 Tipton 1 53.6 39.8 93.4a† 

  2 41.1 30.6 71.7b 

  3 43.6 27.0 70.7b 

  4 51.5 35.4 86.9a 

  5 43.6 37.9 81.6ab 

  Significance 0.4623 0.2207 0.0325 

      

2014 Madison 1 38.2 39.9 78.1 

  2 41.6 39.5 81.1 
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  3 37.8 34.0 71.8 

  4 37.9 34.0 71.9 

  5 34.8 36.6 71.4 

  Significance 0.7470 0.2366 0.4616 

      

2014 Carroll 1 60.3 202.4 262.7 

  2 45.2 90.2 135.5 

  3 45.7 85.3 131.0 

  4 41.3 86.6 127.9 

  5 42.4 64.3 106.7 

  Significance 0.3305 0.4301 0.4095 

      

Average Average 1 59.4 82.0 141.4 

  2 53.9 58.2 112.2 

  3 57.8 65.3 123.0 

  4 56.6 84.7 141.4 

  5 55.9 93.5 149.5 

  Significance 0.7624 0.7946 0.7800 

      
 

† Values in a column within each location-year or the averages of the location-years followed by 
the same letter are not significantly different with Fisher’s protected LSD at the 0.05 probability 
level. 
 
Effects of In-season Variable-rate N Applications on Leaf N Concentrations 

In 2012, leaf N concentrations were statistically similar among Treatments 1, 2, 3, 4, and 5 
at early square shortly after the in-season N treatments were applied at Lauderdale, Madison, and 
Tipton (Table 4). No significant differences were observed in leaf N levels among the five 
treatments at the early or mid-bloom stage either at any location (Table 4), which meant leaf N 
nutrition was not improved by the variable-rate N treatments based on NDVI only or NDVI and 
yield maps relative to the uniform-rate N treatment at any of the three locations in 2012. 

In 2013, leaf N concentrations were similar at Lauderdale but different at Madison among 
the plots assigned to the five treatments at early square before the in-season N treatments were 
imposed (Table 4), which indicated there were some variations in initial leaf N levels at Madison. 
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Leaf N levels at early square were higher in the plots assigned to Treatment 1 than those allocated 
to the other four treatments. Leaf N concentrations did not differ among the five treatments at the 
early and mid-bloom stages at either location after the imposition of the N treatments (Table 4), 
which suggests leaf N nutrition is improved by the variable-rate N treatments compared with the 
uniform-rate N application system. 

In 2014, leaf N concentrations did not differ among the plots allocated to Treatments 1, 2, 
3, 4, and 5 at early square before the in-season N treatments were implemented at Lauderdale, 
Madison, and Carroll (Table 4). After the implementation of the N treatments, the differences in 
leaf N levels were not significantly different among the five treatments at the early or mid-bloom 
stage (Table 4), which meant leaf N concentrations were not improved by the variable-rate N 
treatments relative to the uniform-rate N treatment at any location. 

Overall, the variable-rate N applications generally resulted in comparable cotton N 
nutrition relative to the uniform-rate N applications in this study.    

 
Table 4. Effects of in-season variable-rate N applications on leaf N concentrations at major growth 
stages in the field trials of EQIP eligible farms during 2012-2014. 

 
Year Location Treatment Early 

Square  
Early  

Bloom  
Mid-

Bloom  

   g kg-1 g kg-1 g kg-1 

2012 Lauderdale 1 39.1  41.4  41.6  

  2 40.0  41.1  41.6  

  3 39.5  42.1  42.1  

  4 39.3  41.5  40.5  

  5 39.7  40.9  41.7  

  Significance 0.7920  0.5050  0.7100  

      

 Madison 1 43.3  47.1  43.5 

  2 40.8  47.3  43.4 

  3 38.4  45.4  42.7 

  4 38.6 46.2  43.6 

  5 41.0 46.1  42.2 

  Significance 0.0694 0.0690  0.5952  
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 Tipton 1 40.3 44.3 44.8 

  2 40.5 42.9 44.7 

  3 41.2 44.0 43.3 

  4 41.0 43.3 44.3 

  5 41.2 44.4 44.6 

  Significance 0.6504  0.5981 0.7480  

      

2013 Lauderdale 1 39.2 40.1 39.2 

  2 39.4 40.1 39.0 

  3 39.1 38.6 38.4 

  4 38.7 39.9 37.6 

  5 40.1 40.0 38.6 

  Significance 0.5911 0.2306 0.4561 

      

 Madison 1 43.6a† 43.7 44.0 

  2 34.9b 39.8 47.9 

  3 35.3b 39.9 48.5 

  4 34.0b 39.6 47.5 

  5 34.7b 39.9 49.3 

  Significance <0.0001  0.1215  0.2013  

      

2014 Lauderdale 1 42.1 43.9 51.0 

  2 43.0 43.7 48.0 

  3 42.2 44.6 48.3 

  4 42.7 44.0 47.3 

  5 42.5 44.5 47.9 

  Significance 0.9718  0.9161 0.3292  
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 Madison 1 40.4 39.6 41.6 

  2 39.2 38.8 41.3 

  3 36.8 39.7 41.9 

  4 35.9 39.2 41.6 

  5 38.6 38.8 43.2 

  Significance 0.7266 0.9864 0.6819 

      

 Carroll 1 40.2 38.4 39.3 

  2 40.2 38.2 40.1 

  3 40.6 38.9 41.7 

  4 39.5 37.5 39.5 

  5 38.6 37.0 41.8 

  Significance 0.4071  0.5455 0.2202  

      

Average Average 1 41.0a 42.3 43.1 

  2 39.8b 41.5 43.2 

  3 39.2b 41.6 43.3 

  4 38.7b 41.4 42.7 

  5 39.6b 41.4 43.7 

  Significance 0.0046 0.4214 0.4522 
 

  
† Values in a column within each location-year or the averages of the location-years followed by 
the same letter are not significantly different with Fisher’s protected LSD at the 0.05 probability 
level. 

 
Leaf N concentration was adequate under the uniform-rate N systems regardless of growth 

stage, which might relate to the fact that initial inorganic N levels were high in the top 60 cm of 
soil profiles before cotton planting at most location-years in this study. All these suggest that 
variable-rate N treatments may not increase cotton N nutrition and yields compared with the 
current uniform-rate N application systems in this study. 
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The sensitivity of cotton leaf N to N application is greater at early bloom than at any 
other growth and developmental stages (Bell et al., 2003; Fritschi et al., 2004). This trend 
indicates monitoring of leaf N nutrition status at early bloom is especially helpful in deciding 
whether supplemental N application is required. Campbell and Plank (2011) recommended that 
the range of adequate leaf N concentration be 30 to 45 g kg-1 at early bloom for cotton grown in 
the southern United States. According to this criterion, leaf N concentration at early bloom was 
obviously greater than the lower limit of the sufficiency range in the uniform-rate N treatments at 
all the eight location-years of this study. Similarly, the range of adequate leaf N concentration is 
recommended to be 30 to 45 g kg-1 at mid-bloom for cotton (Campbell and Plank, 2011). 
According to this standard, leaf N at mid-bloom was also above the lower limit of the sufficiency 
range in the uniform-rate N treatment. Therefore, cotton yield responses to variable-rate N 
applications might not be expected, based on the adequate leaf N nutrition under the uniform-rate 
N treatment, if the recommended sufficiency leaf N ranges during early to mid-bloom are 
indicative of final cotton yield since the in-season variable-rate N applied treatments mostly did 
not result in higher N concentrations than the uniform-rate N treatment in this study.  
 
Effects of In-season Variable-rate N Applications on Canopy NDVI Readings 

Canopy NDVI is a viable vegetation index that can be used to assess plant N nutrition and 
plant growth status. In 2012, NDVI readings were statistically similar among the five treatments at 
early square shortly after the in-season N treatments were implemented at Lauderdale, Madison, 
and Tipton (Table 5). No significant difference was observed in NDVI among the five treatments 
at early or mid-bloom stage except early bloom at Madison (Table 5), where NDVI readings were 
lower under Treatments 2, 4, and 5 than that with Treatment 1. 

In 2013, NDVI readings were similar at Lauderdale but different at Madison among the 
five treatments at early square prior to the imposition of the in-season N treatments (Table 5). No 
significant difference was observed in NDVI among the five treatments at early or mid-bloom 
stage except early bloom at Madison (Table 5). NDVI readings were lower under Treatments 2, 3, 
and 4 than Treatment 1at both early square and early bloom at Madison. 

In 2014, NDVI readings did not differ among the five treatments at early square before the 
N treatments were implemented at Lauderdale, Madison, or Carroll (Table 5). No significant 
difference was observed in NDVI among the five treatments at early or mid-bloom stage regardless 
of location (Table 5).  
 
Table 5. Effects of in-season variable-rate N applications on canopy NDVI at major growth stages 
in the field trials of EQIP eligible farms during 2012-2014. 
 

Year Location Treatment Early 
Square  

Early  
Bloom  

Mid-
Bloom  

      

2012 Lauderdale 1 0.860  0.859  0.874  

  2 0.861  0.857  0.880  
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  3 0.860 0.855  0.883  

  4 0.857  0.855  0.877  

  5 0.863  0.857  0.875  

  Significance 0.8539  0.9810  0.6746  

      

 Madison 1 0.756  0.796a† 0.807 

  2 0.715 0.732b 0.785 

  3 0.742 0.767ab 0.824 

  4 0.731 0.757b 0.812 

  5 0.723 0.748b 0.809 

  Significance 0.5351  0.0403 0.7623 

      

 Tipton 1 0.799 0.833 0.862 

  2 0.797 0.836 0.872 

  3 0.780 0.832 0.872 

  4 0.775 0.829 0.869 

  5 0.769 0.827 0.863 

  Significance 0.4262  0.8216 0.3657  

      

2013 Lauderdale 1 0.826 0.881 0.870 

  2 0.800 0.888 0.882 

  3 0.843 0.885 0.879 

  4 0.846 0.884 0.875 

  5 0.849 0.876 0.866 

  Significance 0.5227 0.5733 0.3128 

      

 Madison 1 0.748a 0.855a 0.885 
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  2 0.684b 0.810b 0.855 

  3 0.671b 0.819b 0.862 

  4 0.665b 0.825b 0.862 

  5 0.722a 0.836ab 0.871 

  Significance 0.0027 0.0386 0.2574 

      

2014 Lauderdale 1 0.771 0.840 0.847 

  2 0.788 0.828 0.838 

  3 0.762 0.825 0.864 

  4 0.777 0.830 0.843 

  5 0.776 0.834 0.851 

  Significance 0.4046  0.5016 0.2183  

      

 Madison 1 0.755 0.826 0.850 

  2 0.725 0.807 0.833 

  3 0.775 0.838 0.859 

  4 0.756 0.842 0.859 

  5 0.749 0.808 0.833 

  Significance 0.6028 0.3339 0.4268 

      

 Carroll 1 0.791 0.871 0.848 

  2 0.774 0.874 0.853 

  3 0.795 0.875 0.853 

  4 0.795 0.868 0.853 

  5 0.785 0.864 0.851 

  Significance 0.4627  0.7927  0.9632  

      



74 
 

Average Average 1 0.788 0.845 0.856 

  2 0.768 0.829 0.850 

  3 0.779 0.837 0.862 

  4 0.775 0.836 0.856 

  5 0.780 0.831 0.852 

  Significance 0.2783 0.1193 0.4665 
 

† Values in a column within each location-year or the averages of the location-years followed by 
the same letter are not significantly different with Fisher’s protected LSD at the 0.05 probability 
level. 

 
Effects of In-season Variable-rate N Applications on Lint Yield, Gin Turnout, and Fiber 
Quality 

In 2012, lint yield responses to in-season variable-rate N treatments were not significant at 
Lauderdale or Madison, but significant at Tipton (Table 6). Lint yields were higher under 
Treatments 4 and 5 than that with Treatment 1 at Tipton. In 2013, lint yield did not respond 
significantly to the in-season N treatments at Lauderdale but responded significantly at Madison 
(Table 6). Lint yields were lower under Treatments 2, 3, 4, and 5 than with Treatment 1 at 
Madison. In 2014, lint yield responses to in-season variable-rate N treatments were not significant 
at Lauderdale, Madison, or Carroll (Table 6). Averaged over the eight location-years, lint yields 
were statistically similar among the five treatments (Table 6). Gin turnout was not significantly 
affected by the in-season N treatments regardless of location and year in this study (Table 6).  

 
Table 6. Effects of in-season variable-rate N applications on lint yield and gin turnout in the field 
trials of EQIP eligible farms during 2012-2014. 

 
Year Location Treatment Yield  Gin turnout 

   kg ha-1 % 

2012 Lauderdale 1 1605.6  37.2 

  2 1517.3  37.3 

  3 1525.3  37.2 

  4 1566.6  37.4 

  5 1594.8  37.1 

  Significance 0.5963  0.8161 
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 Madison 1 997.2  40.4 

  2 956.0  40.9 

  3 1047.9  40.9 

  4 1026.8  41.0 

  5 1020.5  40.7 

  Significance 0.8165  0.1273 

     

 Tipton 1 1301.3bc† 37.9 

  2 1312.4ab 37.8 

  3 1250.4c 37.7 

  4 1372.4a 38.0 

  5 1369.1a 38.0 

  Significance 0.0084 0.7888  

     

2013 Lauderdale 1 890.7 38.0 

  2 892.6 38.2 

  3 1001.7 38.6 

  4 924.4 38.8 

  5 826.5 38.9 

  Significance 0.6639 0.5319 

     

 Madison 1 1562.3a 42.0 

  2 1270.0b 42.5 

  3 1279.3b 41.9 

  4 1244.0b 42.3 

  5 1347.6b 42.4 

  Significance 0.0204  0.5212 
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2014 Lauderdale 1 715.4 41.0 

  2 763.4 40.9 

  3 690.7 40.6 

  4 763.7 40.6 

  5 762.4 40.7 

  Significance 0.4745  0.7536  

     

 Madison 1 1241.0 40.6 

  2 1157.3 40.8 

  3 1175.4 40.6 

  4 1262.9 41.0 

  5 1183.3 40.8 

  Significance 0.6432 0.8481 

     

 Carroll 1 782.6 41.2 

  2 813.3 44.7 

  3 917.7 41.6 

  4 970.1 41.9 

  5 950.3 41.4 

  Significance 0.3397  0.4369  

     

Average Average 1 1137.0 39.8 

  2 1085.3 40.5 

  3 1111.0 39.9 

  4 1141.4 40.1 

  5 1131.8 41.3 
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  Significance 0.4724 0.5412 
 

 
† Values in a column within each location-year or the averages of the location-years followed by 
the same letter are not significantly different with Fisher’s protected LSD at the 0.05 probability 
level. 
 

In 2012, fiber quality attributes were statistically similar among the five treatments at 
Lauderdale, Madison, and Tipton except fiber strength at Lauderdale and fiber micronair at 
Madison (Table 7). Fiber strength was greater under Treatments 1, 2, and 4 than that with 
treatment 5 at Lauderdale. Fiber micronair was higher with Treatment 3 than Treatments 1, 2 and 5 
at Madison. In 2013 or 2014, none of the fiber quality attributes was affected by the in-season 
variable-rate N treatments at any location (Table 7). Averaged over the eight location-years, the 
staple, length, and uniformity of fiber responded significantly to the in-season variable-rate N 
treatments (Table 7). Treatment 5 had greater staple, length, and uniformity then Treatment 1 on 
the averages over the eight location-years.   
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Table 7. Effects of in-season variable-rate N applications on fiber quality in the field trials of EQIP eligible farms during 2012-2014. 
 

Year Location Treatment Micronair  Strength Staple  Length  Uniformity 

    g tex-1 32nds of an 
inch 

inch % 

2012 Lauderdale 1 5.43  31.9a† 36.7  1.14 84.3 

  2 5.43  32.0a  36.7  1.15 84.0 

  3 5.53  31.3 ab 36.7  1.14 84.1 

  4 5.40  31.8 a 36.7  1.14 84.2 

  5 5.33  30.9 b 37.3  1.16 85.1 

  Significance 0.1610  0.0372  0.5977 0.4609 0.3712 

        

 Madison 1 5.17bc  33.2 36.0 1.12 83.6 

  2 5.10c  34.9 36.3 1.13 83.6 

  3 5.30a  33.9 36.7 1.14 84.8 

  4 5.27ab  33.3 35.7 1.12 83.6 

  5 5.13c  34.7 36.3 1.13 84.3 

  Significance 0.0170  0.2447  0.4609 0.7659 0.3551 

        

 Tipton 1 5.47 31.0 35.3 1.10 83.3 
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  2 5.50 31.9 35.3 1.10 83.7 

  3 5.50 32.3 35.7 1.12 84.3 

  4 5.57 32.7 35.7 1.11 83.6 

  5 5.50 33.3 35.7 1.10 84.2 

  Significance 0.8386 0.2644  0.9018 0.6976 0.5253 

        

2013 Lauderdale 1 4.40 29.3 38.0 1.20 84.5 

  2 4.27 29.1 38.3 1.20 85.6 

  3 4.43 28.5 38.0 1.19 84.7 

  4 4.50 29.1 38.3 1.19 85.3 

  5 4.20 29.2 39.3 1.23 86.1 

  Significance 0.1444 0.9143 0.3521 0.2293 0.1705 

        

 Madison 1 5.13 29.7 36.3 1.13 84.6 

  2 5.27 30.4 36.7 1.13 84.9 

  3 5.07 30.5 36.0 1.12 85.6 

  4 5.07 30.3 36.3 1.13 85.5 

  5 5.10 29.9 36.7 1.14 85.6 

  Significance 0.1976  0.8223  0.8714 0.8454 0.2435 
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2014 Lauderdale 1 5.37 32.1 37.7 1.17 86.3 

  2 5.37 32.1 37.3 1.16 86.2 

  3 5.37 32.4 37.0 1.16 85.6 

  4 5.40 32.9 37.0 1.16 86.2 

  5 5.33 31.5 37.0 1.16 86.2 

  Significance 0.9357  0.0960 0.4609 0.7892 0.2397 

        

 Madison 1 5.00 34.8 38.0 1.19 86.3 

  2 5.17 35.4 38.3 1.19 86.0 

  3 5.10 35.2 38.0 1.18 85.6 

  4 5.20 34.5 37.7 1.19 85.8 

  5 5.17 35.1 38.7 1.21 86.4 

  Significance 0.0639  0.8783 0.2115  0.2677 0.4128 

        

 Carroll 1 4.70 32.6 37.7 1.18 82.8 

  2 4.97 32.0 38.0 1.20 84.0 

  3 4.83 32.9 38.3 1.20 83.8 

  4 4.70 32.0 37.7 1.18 84.1 
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  5 4.77 32.0 38.7 1.21 84.5 

  Significance 0.5454  0.9261 0.4204  0.1506 0.4187 

        

Average Average 1 5.08 31.8 37.0b 1.15b 84.5b 

  2 5.13 32.2 37.1ab 1.16ab 84.8b 

  3 5.14 32.1 37.0b 1.16ab 84.8b 

  4 5.14 32.1 36.9b 1.15b 84.8b 

  5 5.07 32.1 37.5a 1.17a 85.3a 

  Significance 0.1614 0.7724 0.0401 0.0199 0.0040 
 

  
† Values in a column within each location-year or the averages of the location-years followed by the same letter are not significantly 
different with Fisher’s protected LSD at the 0.05 probability level. 
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Effects of In-season Variable-rate N Applications on In-season Side-dress N Fertilizer 
Consumption, Total Seasonal N Fertilizer Consumption, and N Use Efficiency    

In 2012, both in-season side-dress N and total seasonal N fertilizer (pre-plant N + in-season 
side-dress N) consumptions were similar among the five treatments at Lauderdale but statistically 
different at Madison and Tipton (Table 8). In-season side-dress N fertilizer consumption was 
higher under Treatments 2, 3, 4, and 5 than that with Treatment 1 at Madison. Treatment 3 
consumed less in-season side-dress N and total seasonal N fertilizer than Treatment 1 at Tipton. 

In 2013, in-season side-dress N and total seasonal N consumptions differed significantly 
among the five treatments at Lauderdale (Table 8), where in-season and total seasonal N 
consumptions were lover under Treatments 2, 3, 4, and 5 than with Treatment 1. In-season side-
dress N consumption was different among the five treatments at Madison (Table 8), where 
Treatment 1 had lower in-season side-dress N consumption than the other four treatments. 

In 2014, in-season side-dress N and total N seasonal fertilizer consumptions were 
statistically different among the five treatments at Lauderdale and Carroll (Table 8). In-season and 
total seasonal N consumptions were lower under Treatments 2, 3, 4, and 5 than that with Treatment 
1 at Lauderdale. Treatment 4 had lower in-season side-dress N and total seasonal N consumptions 
than Treatment 1 at Carroll. 

Averaged over the eight location-years, all the variable-rate N management systems 
(Treatments 2, 3, 4, and 5) had lower total seasonal N fertilizer consumption, but higher N use 
efficiency than the current uniform-rate N application systems (Treatment 1) (Table 8). 
Specifically, the four variable-rate N application systems reduced the total seasonal N fertilizer 
consumption by 9.3 to 14.8% (9.8 to 15. 6 kg N ha-1), but increased higher N use efficiency by 9.2 
to 11.0% compared with the current uniform-rate N application systems.   

 
Table 8. Effects of in-season variable-rate N applications on in-season side-dress N consumption, 
total seasonal N consumption, and N use efficiency in the field trials of EQIP eligible farms 
during 2012-2014. 

 
Year Location Treatment In-season N 

Consumption 
Total N 

Consumption 
N Use 

Efficiency 

   kg ha-1 kg ha-1 kg kg-1 

2012 Lauderdale 1 78.5  112.1  14.3  

  2 77.3  111.0  13.7  

  3 86.3  119.9  12.8 

  4 77.0  110.6  14.2  

  5 93.0  126.7 12.7  

  Significance 0.0832  0.0824  0.3130  
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 Madison 1 0.0b†   100.9  9.9  

  2 53.3a  86.9  11.2  

  3 45.4a  79.0  13.6  

  4 56.1a  89.7  11.6  

  5 46.3a  79.9  12.8  

  Significance 0.0019  0.2269  0.2406  

      

 Tipton 1 67.3a  100.9a 12.9 

  2 60.8ab  94.4ab 13.9 

  3 53.3b  86.9b 14.5 

  4 68.7a 102.9a 13.4 

  5 62.6a 96.2a 14.3 

  Significance 0.0283 0.0285 0.2976 

      

2013 Lauderdale 1 78.5a 112.1a 7.9 

  2 62.0b 95.7b 9.4 

  3 53.8c 87.5c 11.5 

  4 67.3b 100.9b 9.2 

  5 63.9b 97.5b 8.5 

  Significance 0.0006 0.0006 0.1677 

      

 Madison 1 0.0c 100.9a 15.5 

  2 51.8b 85.5b 14.9 

  3 65.9a 99.5a 12.8 

  4 58.9ab 92.5ab 13.5 

  5 56.1ab 89.7ab 15.0 

  Significance <0.0001 0.0718  0.1428 
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2014 Lauderdale 1 78.5a 112.1a 6.4b 

  2 40.0c 73.6c 10.4a 

  3 59.0b 92.3b 7.5b 

  4 50.1bc 83.7bc 9.1a 

  5 49.3bc 82.9bc 9.2a 

  Significance 0.0005  0.0005 0.0008  

      

 Madison 1 67.3 100.9 12.3 

  2 54.7 88.3 13.2 

  3 51.4 85.0 13.9 

  4 53.7 87.4 14.5 

  5 60.3 93.9 12.8 

  Significance 0.1009 0.0997 0.6038 

      

 Carroll 1 67.3a 100.9a 7.8 

  2 50.4b 84.1b 9.7 

  3 61.7a 95.3a 9.6 

  4 50.9b 84.6b 11.5 

  5 62.2a 95.8a 9.9 

  Significance 0.0032  0.0033  0.1357 

      

Average Average 1 54.7c 105.1a 10.9b 

  2 56.3bc 89.5c 12.0a 

  3 59.6ab 93.2bc 12.0a 

  4 60.3a 94.0b 12.1a 

  5 61.7a 95.3b 11.9a 
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  Significance 0.0021 <0.0001 0.0224 
 

 
† Values in a column within each location-year or the averages of the location-years followed by 
the same letter are not significantly different with Fisher’s protected LSD at the 0.05 probability 
level. 
 
Effects of In-season Variable-rate N Applications on Post-harvest N Contents in the Soil 
Profile   

An important focus of N management strategies should be the reduction of soil residual 
N. Reducing N application rates for cotton, when appropriate, likely will reduce post-harvest 
residual N levels in the soil profile, and thus decrease the potential of N losses from soil to 
ground and surface waters.  

No significant difference was observed in post-harvest residual N (NO3
--N + NH4

+-N) 
level in the top 60 cm soil profile among the five treatments at any location-year or on the 
averages of the eight location-years (Table 9). Overall, our results suggest that the imposition of 
in-season variable-rate N applications do not significantly affect the post-harvest residual N levels 
in soil compared with the current uniform-rate N application systems, which may relate to the 
possibility that the applied N was either taken up by cotton plants, lost out of the soil via nitrate 
leaching to deeper layers, or/and lost via ammonium volatilization to the atmosphere during the 
growing season. Therefore, regardless how large the differences were in the N application rates 
among the five N management systems, the post-harvest residual N levels were similar among the 
treatments in the top 60 cm soil profile.     

Similarly, Boquet and Breitenbeck (2000) reported that N fertilization on cotton for 
optimal yield was exceptionally efficient and probably did not result in N losses to nearby 
surface and ground waters. In contrast, soil samples collected after 3 years of continuous N 
fertilization resulted in a significant increase in NO3

--N concentration at the 15-45 cm depth only 
in the plots treated with the highest N rate of 224 kg N ha-1 annually (McConnell et al., 1993). 
Results of a 5-yr study showed excessive N buildup in many California cotton soils due to the 
high N application rates for previous cotton or other rotational crops (Hutmacher et al., 2004). 
Bronson et al. (2001) found that residual soil NO3

--N accumulated to high levels in the low 
irrigation, high N fertilizer treatments, but remained stable in the high irrigation, low N 
treatments.  
 
Table 9. Effects of in-season variable-rate N applications on post-harvest residual soil N contents 
(0-60 cm) in the field trials of EQIP eligible farms during 2012-2014. 

 
Year Location Treatment NO3

--N  NH+-N Total N  

   kg ha-1 kg ha-1 kg ha-1 

2012 Lauderdale 1 21.0 38.3 59.3 

  2 40.0 49.3 89.3 
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  3 34.9 37.4 72.3 

  4 17.3 36.8 53.8 

  5 23.3 41.9 65.2 

  Significance 0.4275 0.2090 0.0812 

      

 Madison 1 14.9 24.1 39.0 

  2 40.4 34.1 74.5 

  3 17.4 23.8 41.2 

  4 43.0 26.1 69.1 

  5 32.4 23.9 56.3 

  Significance 0.3218 0.6238 0.2850 

      

 Tipton 1 29.3 34.6 63.9 

  2 19.3 30.6 49.9 

  3 13.1 31.7 44.8 

  4 17.9 31.3 49.2 

  5 12.8 30.0 42.7 

  Significance 0.6341 0.9193 0.7182 

      

2013 Lauderdale 1 29.6 25.2 54.8 

  2 34.7 22.8 57.5 

  3 30.2 24.0 54.2 

  4 29.1 21.4 50.5 

  5 26.7 24.7 51.4 

  Significance 0.7988 0.9755 0.9581 

      

 Madison 1 16.4 14.3 30.7 
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  2 23.3 13.2 36.5 

  3 17.0 13.4 30.4 

  4 23.3 12.3 35.6 

  5 23.6 13.1 36.7 

  Significance 0.6304 0.9795 0.8952 

      

2014 Lauderdale 1 24.6 37.8 62.4 

  2 18.8 33.0 51.8 

  3 18.1 13.2 31.3 

  4 21.1 21.4 42.5 

  5 26.8 48.0 74.8 

  Significance 0.2166 0.4432 0.3233 

      

 Madison 1 16.9 17.5 34.4 

  2 15.2 18.1 33.3 

  3 15.1 12.9 28.0 

  4 14.5 14.1 28.6 

  5 15.7 17.5 33.2 

  Significance 0.9235 0.3836 0.6283 

      

 Carroll 1 27.0 12.6 39.6 

  2 28.7 8.8 37.5 

  3 25.6 15.5 41.1 

  4 27.6 11.2 38.8 

  5 29.3 12.3 41.6 

  Significance 0.9456 0.1551 0.9019 
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Average Average 1 22.5 25.6 48.1 

  2 27.6 26.2 53.8 

  3 21.4 21.5 42.9 

  4 24.2 21.8 46.0 

  5 23.8 26.4 50.2 

  Significance 0.5834 0.4194 0.3326 
 

 
 

FIELD TRIALS ON A UNIVERSITY RESEARCH AND EDUCATION CENTER  
(2011-2012) 

 
Initial Soil N Fertility 

Initial inorganic N (NO3
--N + NH4

+-N) content in the top 60 cm of soil varied 
substantially among the 144 sub plots with a range of the minimum 3 mg kg-1 to the maximum 
57 mg kg-1 prior to treatment imposition in spring 2011 in this study (data not presented).  These 
variations might relate to the soil types in this field. The average initial  inorganic N level in the 
top 60 cm of soil was 6.8, 7.4, 9.8, 8.0 10.4, and 8.8 mg kg-1, equivalent to 60.8, 66.4, 88.0, 71.6, 
93.2 and 78.8 kg ha-1, for the plots allocated to Treatments 1, 2, 3, 4, 5, and 6, respectively, 
before treatment application in spring 2011. Obviously this field had pretty high residual 
inorganic N level in the soil profile from the previous crop production. High residual inorganic N 
level in soil profile has been increasingly observed in cotton and corn production in Tennessee 
and other states.     

     
Effects of In-season Variable-rate N Applications on Leaf N Concentrations 

Leaf N concentrations were similar among the plots allocated to Treatments 1, 2, 3, 4, 5, 
and 6, respectively, at early square before the in-season side-dress N treatments were applied when 
the results of 2011 and 2012 were combined (Table 10). However, significant differences in leaf N 
were observed among the six treatments at the early, mid, and late bloom stages (Table 10). Leaf N 
concentrations were mostly significantly higher under the five N applied treatments than that with 
the zero N treatment (Treatment 1) during early bloom to late bloom. Treatments 3, 4, and 5 had 
significantly higher leaf N concentrations than Treatment 1, and significantly or numerically higher 
leaf N levels than Treatments 2 and 6 at the early, mid, and late bloom stages.  

Under nonorthogonal contrasts, Applied N, Uniform N, and Variable N all resulted in 
significantly higher leaf N concentrations than Zero N at the early, mid, and late bloom stages 
(Table 10). However, Variable N had similar leaf N level as Uniform N regardless of growth 
stage.  

Both ANOVA and nonorthogonal contrast analyses of this study indicate that in-season 
side-dress N application improve cotton N nutrition irrespective of the application method 
(uniform-rate or variable-rate); but variable-rate N applications do not improve cotton N 
nutrition compared with the uniform-rate N applications on this upland field with high initial soil 
N fertility.    
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Table 10. Effects of in-season variable-rate N applications on leaf N concentrations at major 
growth stages on a university research and education center averaged over 2011 and 2012. 

 
Treatment Early Square  Early  Bloom  Mid-Bloom  Late Bloom  

 g kg-1 g kg-1 g kg-1 g kg-1 

1 40.5  38.3c†  35.8c  34.4b  

2 40.4  40.8ab  36.8bc  36.9ab  

3 40.7  41.7ab  38.4a  38.8a  

4 41.3  41.4ab  37.6ab  37.3a  

5 41.8  42.3a  37.7ab  38.4a  

6 39.6  40.2bc  37.0bc  36.5ab  

Significance ns‡  **  **  *  

     

Contrast     

Applied N vs. Zero N§  ns *** ** ** 

Uniform N vs. Zero N ns ** ** ** 

Variable N vs. Zero N ns ** ** ** 

Variable N vs. Uniform 
 

ns ns ns ns 
 

  

 
† Values within a column followed by the same letter are not significantly different with Fisher’s 
protected LSD at the 0.05 probability level. 
‡*, significant at P<0.05; **, significant at P<0.01; ***, significant at P<0.001; ns, not 
significant at P<0.05. 
§ Applied N vs. Zero N refers to the comparison of average over the five N applied treatments 
(Treatments 2, 3, 4, 5, and 6) with the zero N treatment (Treatment 1);  Uniform N vs. Zero N 
refers to the comparison of average over the two uniform-rate N treatments (Treatments 2 and 3) 
with the zero N treatment; Variable N vs. Zero N refers to the comparison of average over the 
three variable-rate N treatments (Treatments 4, 5, and 6) with the zero N treatment;  Variable N 
vs. Uniform N refers to the comparison of average over the three variable-rate N treatments with 
the two uniform-rate N treatments. 

 
It was expected that leaf N concentration was pretty high under the zero N treatment 

regardless of growth stage, which might relate to the fact that the initial inorganic N level was high 
in the top 60 cm of soil profile and 26 kg N ha-1 was applied across the treatments as diammonium 
phosphate before cotton planting in both years. 
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Campbell and Plank (2011) recommended that the range of adequate leaf N concentration 
be 30 to 45 g kg-1 at early bloom for cotton grown in the southern United States. According to 
this criterion, leaf N concentration at early bloom was greater than the lower limit of the 
sufficiency range in the zero N treatment of this study. Similarly, the range of adequate leaf N 
concentration is recommended to be 30 to 45 g kg-1 at late bloom for cotton (Campbell and 
Plank, 2011). According to this standard, leaf N at late bloom was also above the lower limit of 
the sufficiency range in zero N. Therefore, cotton yield responses to N applications might not be 
expected, based on the adequate leaf N nutrition under the zero N treatment, if the recommended 
sufficiency leaf N ranges during early to late bloom are indicative of final cotton yield, although 
the in-season N applied treatments mostly resulted in higher N concentrations than the zero N 
treatment in this study.  
 
Effects of In-season Variable-rate N Applications on Canopy NDVI Readings 

Canopy NDVI readings were statistically similar among the six treatments at early square 
before the N treatments were implemented averaged over 2011 and 2012 (data not presented). 
Unlike leaf N concentrations, no significant difference in NDVI was observed among the six 
treatments at early, mid, or late bloom stage (data not presented). Similarly, nonorthogonal 
contrasts did not show any beneficial effect of Applied N, Uniform N, or Variable N on NDVI 
over  Zero N at any growth stage (data not presented).   
 
Effects of In-season Variable-rate N Applications on Lint Yield, Gin Turnout, and Fiber 
Quality 

Lint yield responses to in-season side-dress N treatments were not significant on the 
averages of 2011 and 2012 (Table 11). Numerically, lint yields were higher under Treatments 2 
and 5 than those with the other treatments. Gin turnout was not significantly affected by the N 
treatments (data not presented). None of the fiber quality attributes was influenced by the N 
treatments (Table 11).  

 
Table 11. Effects of in-season variable-rate N applications on lint yield, gin turnout, and fiber 
quality on a university research and education center averaged over 2011 and 2012. 

 
Treatment Yield  Micronair

 
Strength Length Uniformity 

 kg ha-1  g tex-1 cm % 

1 1037.0 4.95 32.9 2.84 83.2 

2 1127.7 4.90 33.3 2.82 83.3 

3 1076.4 4.95 32.2 2.77 82.3 

4 1089.2 4.95 33.0 2.82 82.9 

5 1155.5 4.85 33.1 2.82 83.7 

6 1075.5 5.00 32.2 2.77 82.7 

Significance ns† ns ns ns ns 
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Contrast      

Applied N vs. Zero‡ 
 

ns ns ns ns ns 

Uniform N vs. Zero N ns ns ns ns ns 

Variable N vs. Zero N ns ns ns ns ns 

Variable N vs. 
  

ns ns ns ns ns 
 

 
† ns, not significant at P<0.05. 
‡ Applied N vs. Zero N refers to the comparison of average over the five N applied treatments 
(Treatments 2, 3, 4, 5, and 6) with the zero N treatment (Treatment 1);  Uniform N vs. Zero N 
refers to the comparison of average over the two uniform-rate N treatments (Treatments 2 and 3) 
with the zero N treatment; Variable N vs. Zero N refers to the comparison of average over the 
three variable-rate N treatments (Treatments 4, 5, and 6) with the zero N treatment;  Variable N 
vs. Uniform N refers to the comparison of average over the three variable-rate N treatments with 
the two uniform-rate N treatments. 
 

Similarly, Main et al. (2013) [15] reported only 11 of 20 site-years across the Cotton Belt 
region in which there was a cotton lint yield response to applied N. They observed when 45 kg N 
ha–1 was applied, yields were greater than when no N was applied, but were less than yields 
where 90 to 134 kg N ha–1 was applied on the N responsive site-years; however, when all the 
site-years, both N responsive and non-responsive, were considered, 45 kg N ha–1 increased yields 
above no applied N, but additional N above 45 kg N ha–1 did not improve lint yield.  
 
Effects of In-season Variable-rate N Applications on In-season N Fertilizer Consumption    

The in-season side-dress N fertilizer consumption was 0, 56.0, 78.4, 68.7, 63.5, and 67.2 kg 
N ha-1 for Treatments 1 to 6, respectively, averaged over 2011 and 2012 in this study (Table 12). 
The three variable-rate N application algorithms (Treatments 4, 5, and 6) consumed 7.8 to 12.3 
kg ha-1 more N than the low uniform-rate application of 56.0 kg N ha-1, but used 10.1 to 14.6 kg 
ha-1 less of N than the high uniform rate application of 78.4 kg N ha-1. Under nonorthogonal 
contrasts, Applied N, Uniform N, and Variable N all consumed more in-season side- dress N 
fertilizer than the Zero N treatment, but Variable N used similar in-season side-dress N fertilizer 
as Uniform N (Table 12).  
 
Table 12. Effects of in-season variable-rate N applications on in-season side-dress N consumption 
and post-harvest soil residual N (0-60 cm) on a university research and education center averaged 
over 2011 and 2012. 

 
Treatment Side-dress N Consumption Soil Residual N 

 kg ha-1 mg kg-1 

1 0c† 7.65 
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2 56.0b 7.28 

3 78.4ab 8.58 

4 68.7ab 8.95 

5 63.5ab 9.36 

6 67.2ab 7.78 

Significance ***‡ ns 

   

Contrast   

Applied N vs. Zero N§ *** ns 

Uniform N vs. Zero N *** ns 

Variable N vs. Zero N *** ns 

Variable N vs. Uniform N ns ns 
 

 
† * Values within a column followed by the same letter are not significantly different with 
Fisher’s protected LSD at the 0.05 probability level. 
‡ ***, significant at P<0.001; ns, not significant at P<0.05. 
§ Applied N vs. Zero N refers to the comparison of average over the five N applied treatments 
(Treatments 2, 3, 4, 5, and 6) with the zero N treatment (Treatment 1);  Uniform N vs. Zero N 
refers to the comparison of average over the two uniform-rate N treatments (Treatments 2 and 3) 
with the zero N treatment; Variable N vs. Zero N refers to the comparison of average over the 
three variable-rate N treatments (Treatments 4, 5, and 6) with the zero N treatment;  Variable N 
vs. Uniform N refers to the comparison of average over the three variable-rate N treatments with 
the two uniform-rate N treatments. 
 
Effects of In-season Variable-rate N Applications on Post-Harvest Soil Residual N Contents 

An important aspect of N management strategies should be the reduction of soil residual 
N. Reducing N application rates for cotton, when appropriate, will reduce post-harvest residual N 
levels in the soil profile, and thus decrease the loss of N from soil to ground and surface waters.  

No significant differences were observed in post-harvest soil residual N (NO3
--N + NH4

+-
N) level in the top 60 cm soil profile among the six treatments on the averages of 2011 and 2012 
(Table 12). Numerically, soil residual N level was higher under Treatments 3, 4, and 5 than those 
with the other treatments after cotton harvest. Overall, our results suggest that the application of 
in-season side-dress N ranging from 0 to 78.4 kg N ha-1 do not significantly affect the post-harvest 
residual N levels in the soil profile, which may relate to the possibility that applied N was either 
taken up by cotton plants or lost out of the soil via nitrate leaching to deeper layers or ammonium 
volatilization to the atmosphere during the growing season.     

 
CONCLUSIONS AND RECOMMENDATIONS 
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In the eight field trials on EQIP eligible farms, leaf N concentrations were generally 
comparable under the in-season sensor-based variable-rate N management systems relative to the 
current uniform-rate N application systems during early square to mid-bloom. Similarly, rare 
significant differences in canopy NDVI were observed because of in-season variable-rate N 
applications over the uniform-rate N applications. The in-season variable-rate N management 
systems via side-dress produced higher cotton lint yield at one location-year, similar lint yield at 
six location-years, but lower lint yield at one location-year than the current uniform-rate N 
application systems. The in-season variable-rate N management systems did not affect post-
harvest residual N levels in top 60 cm of the soil profile relative to the current uniform-rate N 
application systems. Averaged over the eight location-years, the in-season sensor-based variable-
rate N management systems had significantly lower seasonal N fertilizer consumption, but higher 
N use efficiency than the current uniform-rate N application systems. Specifically, the in-season 
variable-rate N management systems reduced the seasonal N fertilizer consumption by 9.3 to 
14.8% (9.8 to 15. 6 kg N ha-1), but increased higher N use efficiency by 9.2 to 11.0% compared 
with the current uniform-rate N application systems. No significant positive effect of in-season 
variable-rate N management systems was observed on post-harvest residual N levels in the top 60 
cm of soil. The benefits of incorporating yield maps of previous years into the in-season sensor-
based variable-rate N management systems were generally not noticeable in terms of cotton 
yield, seasonal N fertilizer consumption, N sue efficiency, and post-harvest residual soil N level. 
Our results suggest that in-season sensor-based variable-rate N management systems use less N 
fertilizer to produce comparable cotton yield via increasing N use efficiency relative to the 
current uniform-rate N application systems. The in-season sensor-based variable-rate N 
management systems are viable tools that can be used by producers on their farms to manage 
variations within the field.   
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EXECUTIVE SUMMARRY 
This project addresses USDA NRCS priority to accelerate conservation in the Mississippi River 
Basin (MRB) to continue to reduce nutrient and sediment loading to local and regional water 
bodies and to improve efficiency in using water supplies, particularly in the southern states. The 
goal of this project was to encourage producer adoption of new precision nitrogen (N) 
management technologies and systems on their farms to reduce N fertilizer consumption and 
potential N losses, improve cotton productivity, and thus improve water quality and grower 
profitability in the MRB states of Louisiana, Missouri, Mississippi, and Tennessee. Precision 
agriculture (PA) may benefit cotton farms in the MRB by reducing the amount of excess N from 
cotton production released into the environment, increasing net returns to the grower, and 
reducing the risk of profit losses due to spatial and temporal variability. The objectives of the 
demonstration project economic analysis were to determine the profitability, risk management 
potential, and N production use efficiency of using real-time optical sensing and variable-rate 
technologies (VRT) to manage spatial variability in cotton production.  

Data collected from 29 field demonstration trials in Tennessee, Louisiana, Mississippi, 
and Missouri from 2011 to 2014 included lint yields harvested and N rates calculated from three 
N rate management strategies. The first N treatment was the existing farmer practice, the second 
was a VRT treatment using optical sensing technology information, and the third was a VRT 
treatment using optical sensing and yield monitor information. The two PA strategies were 
compared to the existing farmer practice. In addition, soil properties, landscape, and weather 
were examined to determine their effects on lint yields, net returns, N rates, and N production 
use efficiency. Three statistical models were used in the project to evaluate the lint yields, N 
rates, net returns, and N production use efficiency from the strip-plots on the 29 fields. The first 
model was an analysis of variance (ANOVA) model used to identify treatment mean differences 
while controlling for soil, landscape, and weather factors. The second model was an ANOVA 
model that measured soil and climate effects on mean differences between the optical sensing 
and VRT technologies and the farmer practice. The third model was a logistic model to 
determine the risk (probability) of lint yield and net return losses using optical sensing and VRT 
relative to the current farmer practice. The statistical and economic analysis with the models was 
used to identify conditions where optical sensing and VRT was profitable, provided potential risk 
management benefits, and improved N production use efficiency.   

The two key findings of the statistical and economic analysis were as follows. First, the 
real-time optical sensing and VRT treatments indicated some N fertilizer savings but were not 
more profitable on average than the existing farmer N management practices. There was some 
evidence of significantly higher mean net returns using VRT to manage N compared to the 
current practice at the sub-plot level, but the field level showed no difference. Second, there were 
risk management benefits identified at the field level using VRT compared to the farmer 
practice. Fields with lower lint yields tended to produce higher net returns with optical sensing 
and VRT than with the farmer practice which may help farmers manage risk on fields with this 
characteristic. Three additional inferred conclusions may aid in cotton farmers’ decisions about 
the precision N management technologies evaluated in this project. First, the optical sensing and 
VRT treatments may not apply enough N to significantly increase lint yields relative to the 
existing farmer practice. Second, changes in the N rate for optical sensing and VRT relative to 
the farmer practice were field/farm specific. Four locations (Tensas Middle, LA, Gibson, TN, 
Lauderdale, TN, and Leflore, MS) realized significantly lower N rates applied in at least one 
form of VRT N fertilizer application. Four locations had higher N rates with optical sensing and 
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VRT (Madison North, TN, Adams, MS, Tensas North, LA, and Tensas South, LA). Finally, the 
N rates across the 29 field demonstrations were not low enough to increase N use efficiency and 
encourage environmental benefits. Even though the fields in the demonstration project 
represented a range of soils, landscapes, and weather in the southern MRB locations used in the 
project, there was likely not enough spatial and temporal variability within the fields that optical 
sensing VRT treatments did not make a difference in field level mean net returns.  
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INTRODUCTION 
This project addressed the USDA NRCS priority to accelerate conservation in the Mississippi 
River Basin (MRB) to continue to reduce nutrient and sediment loading to local and regional 
water bodies and to improve efficiency in using water supplies, particularly in the southern 
states. The goal of this project was to encourage producer adoption of new precision nitrogen (N) 
management technologies and systems on their farms to reduce N fertilizer consumption and 
potential N losses, improve cotton productivity, and thus improve water quality and grower 
profitability in the Mississippi River Basin (MRB). The overall project objectives were:  

1) To demonstrate to producers and other interested groups the integration of sensor based 
variable rate technology (VRT) N fertilization into their current production systems; 
 

2) To demonstrate the impacts of VRT precision N management systems based on 
optical sensing of crop canopy compared with the current uniform-rate N application 
system in terms of fertilizer N use efficiency, post-harvest residual soil N subject to loss, 
and potential improvements to water quality, cotton yield, and grower profitability; and 
 

3) To show the benefits of incorporating yield maps and other field and soil information into 
an optical sensor-based VRT precision N management system based on vegetation 
indices.  

 
Therefore, the purpose of this project was to demonstrate to producers and other 

interested groups the procedures and benefits of utilizing these innovative precision 
technologies: optical sensing and VRT N application, to manage N spatial variability within 
individual fields of cotton. The two specific objectives related to the statistical and economic 
evaluation of the optical sensing and VRT N technologies demonstrated in the project were:  

1) To determine the profitability and risk management potential of using real-time optical 
sensing and VRT to manage spatial variability in N in cotton fields in the MRB states 
(Louisiana, Mississippi, Missouri, and Tennessee), and  
 

2) To ascertain how real-time optical sensing and VRT affect N use and N production use 
efficiency in cotton production. 
 
To accomplish the aforementioned project goals and objectives, twenty-nine cotton N 

fertilizer field demonstration trials were conducted from 2011 to 2014 in Tennessee, Mississippi, 
Louisiana, and Missouri. Ten of the trials occurred in Tennessee, four in Mississippi, nine in 
Louisiana, and six in Missouri. The county/parish locations of the farmer fields in each state that 
were used in the project are presented in Figure 1. The trials on each cotton field tested the 
existing farmer practice (FP) N application versus two VRT N applications based on optical 
sensing and optical sensing and yield monitoring information. Each EQIP eligible farmer planted 
cotton across nine strip-plots containing 10 sub-plots each that measure roughly 30.5 meters by 
11.6 meters with the exception of Missouri where the data was collected by plot. Lint yields and 
N rates for each treatment for the 29 site-years were used for the statistical and economic 
analysis. The farm field dataset was augmented with soil, landscape, and weather data collected 
to determine differences within and between fields that may influence the profitability, risk 
management, and N use efficiency of the alternative N management practices. The soils, 
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landscape, and weather characteristics included elevation, soil texture, soil erosion factors, soil 
water holding capacity, organic matter, soil depth, and growing degree days. 

Three statistical models were developed to evaluate the lint yields, N rates, net returns, 
and N production use efficiency from the strip-plots on the 29 fields. The first model was an 
analysis of variance (ANOVA) model used to identify treatment mean differences while 
controlling for soils, landscape, and weather factors. The second model was an ANOVA model 
that measured soils, landscape, and weather effects on mean differences between the optical 
sensing and VRT technologies and FP. The third model was a logistic model to test for the risk 
(probability) of lint yield and net return losses using optical sensing and VRT relative to the 
current FP. The statistical and economic analysis with the models was used to identify field 
conditions where optical sensing and VRT was profitable, provided risk management benefits, 
and provided improvements in N production use efficiency.   

The key personnel who implemented the farmer field demonstrations and conducted the 
statistical and economic analyses and the descriptions of their qualifications are as follows. 

• Frank Yin, Associate Professor of Systems Agronomy, University of Tennessee Institute 
of Agriculture (UTIA). Ph.D., Purdue University. He has over 20 years of experience in 
agronomic research and extension including precision agriculture. He was in charge of 
project coordination among the four states, and was responsible for experimental design, 
trial establishment, data collection, and conducting demonstration activities in Tennessee. 

 
• Jac J. Varco, Professor of Agronomy, Mississippi State University. Ph.D., University of 

Kentucky. He has over 30 years of experience in nutrient management including 
precision agriculture utilizing remote sensing and canopy reflectance. For Mississippi 
locations, he was in charge of site selection and grower collaboration, experimental 
design, trial establishment, data collection, and conducting demonstration activities. 

 
• David Dunn, Professor of Soil Science, University of Missouri. Ph.D., University of 

Missouri. He has over 30 years of experience in soil testing and precision agriculture, and 
was in charge of site selection and grower collaboration, experimental design, trial 
establishment, data collection, and conducting demonstration activities in Missouri. 

 
• Brenda S. Tubaña, Assistant Professor of Soil Fertility, Louisiana State University. Ph.D., 

Oklahoma State University. She has over 10 years of experience in soil fertility and 
precision agriculture, and was in charge of experimental design, trial establishment, data 
collection, and conducting demonstration activities in Louisiana. 

 
• James A. Larson, Professor of Ag. Economics, UTIA. Ph.D., Oklahoma State 

University. He has over 20 years of experience in production economics, farm 
management, and risk analysis, and he was responsible for the statistical and economic 
analysis for this project. Dr. Larson supervised the Master’s thesis project 
(http://trace.tennessee.edu/utk_gradthes/3515/) by Melissa Stefanini (MS degree awarded 
August 2015) that analyzed the lint yield and nitrogen application data from the field 
demonstrations supported by the project. 
 

http://trace.tennessee.edu/utk_gradthes/3515/
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• Chris Main, Associate Professor in Cotton and Wheat Extension, UTIA. Ph.D., 
University of Tennessee. He has over 10 years of experience in cotton and wheat 
extension and research, and conducted Extension and outreach activities in Tennessee. 

 
• Peter Scharf, Professor of Nutrient Management, University of Missouri. Ph.D., Virginia 

Tech University. He has over 30 years of experience in nutrient management and 
precision agriculture, and participated in demonstration and extension activities in 
Missouri. 

• Hugh Savoy, Associate Professor in Soil Fertility Extension, UTIA. Ph.D. University of 
Tennessee. He has 30 years of experience in soil fertility Extension and research, and  
conducted Extension and outreach activities in Tennessee. 

 
• Michael Buschermohle, Professor and Extension Precision Agriculture Specialist, UTIA. 

Ph.D., Clemson Univ. He has over 15 years of experience in conducting precision 
agriculture educational programs, and conducted Extension and outreach activities in 
Tennessee. 

 
• Don Tyler, Professor of Soil Science, UTIA. Ph.D., University of Kentucky. He has over 

forty years of experience in no-till production and precision farming, and participated in 
experimental design and trial evaluations in Tennessee. 

 
The project was funded using a combination of USDA NRCS CIG funds, in-kind 

matches by the participating university institutions in Louisiana, Missouri, Mississippi, and 
Tennessee, cotton producer contributions (Missouri), and a match from Cotton Incorporated 
(Missouri). For the statistical and economics analysis objectives, USDA NRCS CIG funds 
helped support a half-time graduate research assistantship for Melissa Stefanini. The University 
of Tennessee provided a 50% match for Dr. James A. Larson who supervised the statistical and 
economic analysis of the field data in a Master’s thesis project by Melissa Stefanini. 
 

BACKGROUND 
Fertilizer N is an expensive and important input in the production of crops such as upland cotton.  
Crop nutrient N consumption more than doubled, from 6.0 million to 13.7 million short tons, 
from 1967 to 2007 in the United States (USDA 2013). The United States Department of 
Agriculture (USDA) estimated that farmers spent $7.2 billion on anhydrous ammonia and N 
solutions in 2011 (USDA 2013). The increased use of N fertilizer has raised concerns about high 
production cost and potential environmental damages due to that N can be dispersed into the 
surrounding environment in different ways. N is unstable after it is applied (Raun and Johnson 
1999) and can be lost into the environment through gaseous emissions, leaching, runoff, and soil 
denitrification (Peng et al. 2006). Waterways such as the Mississippi River and the Chesapeake 
Bay have experienced changes in water quality due to increased fertilizer use (Turner and 
Rabalais 1991; Roberts and Prince 2010).   
It is very difficult for farmers to handle the excess lost N. However, they can apply the fertilizer 
more efficiently to limit the amount of N released to the environment and reduce the cost. 
Conventional rates of fertilizer N used by growers were developed in small individual fields with 
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little spatial variability (Isik and Khanna 2003). Uniform N rates were applied across entire fields 
that likely varied in soils and other field factors, resulting in more or less N fertilizer (i.e., over- 
or under-application) to the crop than necessary (Scharf et al. 2005; Scharf et al. 2011; Vetsch et 
al. 1995; Isik and Khanna 2003). Compared with economically optimal rates, over-application 
can increase production cost and excess N released into the environment, and under-application 
can decrease crop yield and revenue. Both over- and under- application reduces profits (Lambert, 
Lowenberg-DeBoer, and Malzer 2006).  

Precision agriculture (PA) technology can help farmers more efficiently apply the 
fertilizer, avoiding over- or under- application. PA was defined by the National Research 
Council (1997) as “a management strategy that uses information technologies to bring data from 
multiple sources to bear on decisions associated with crop production (p. 17),” growers can 
utilize several technologies to better manage N fertilizer application. PA allows producers to use 
within-field, site-specific information about soil and plant input requirements to apply the right 
amount of input in the right place at the right time (Bongiovanni and Lowenber-Deboer, 2004). 
PA technologies have been developed to identify variability within a field and provide site-
specific input applications that match varying crop and soil needs (Cochran et al., 2006; Roberts 
et al., 2004; Zhou et al., 2015). VRT manifests the concept of PA and accomplishes those goals. 
For example, switching N application from a uniform rate technology (URT) to a variable rate 
technology (VRT) by varying the rate based on variable field factors (Sawyer 1994) can reduce 
the amount of wasted N, costs, labor (Raun et al. 2002; Tubaña et al. 2008), excess N pollution 
leaching in the groundwater (Biermacher et al. 2009b; Raun and Johnson 1999; Roberts et al. 
2002; Watkins, Lu, and Huang 1998), and surface N runoff contributing to water pollution 
(Larkin et al. 2005; Raun and Johnson 1999; Scharf et al. 2005; Isik and Khanna 2003). A 
literature summary is in Appendix Table 1.  

Managing N using PA technologies has the potential to increase profits and decrease N 
losses to the environment as well as risk in cotton production. The pertinent literature has 
progressed over time along with the technology. Early literature begins with simulation analysis 
using the Environmental Policy Integrated Climate (EPIC) model to estimate the economic and 
environmental benefits from VRT (Roberts et al. 2002; Watkins, Lu, and Huang 1998). Their 
studies found positive environmental impacts of adopting VRT N application but no economic 
benefits.  

Later studies analyzed the impacts of VRT (N, phosphorus, and lime) compared to URT 
on production of rice (Oryza sativa L.) (Hu et al. 2007; Peng et al. 2006), corn (Bongiovanni and 
Lowenberg-DeBoer, 2000; Lambert et al. 2004; Lambert et al. 2006; Maine et al. 2010; Wang et 
al. 2003), and wheat (Biermacher et al. 2006; Biermacher et al. 2009b; Raun et al. 2002; Raun et 
al. 2005) using experiments and farm field trial data. Peng et al. (2006) and Hu et al. (2007) used 
experimental data on irrigated rice in four Chinese provinces to compare current farming 
practices with alternative N management systems to evaluate the potential of N efficiency 
improvement. Peng et al. (2006) compared current practices with two site specific management 
systems: real-time N management and fixed-time adjustable-dose N management. Their study 
found that site specific N management systems reduced N applied, increased NUE (nitrogen use 
efficiency), and produced similar or higher yields than current farming practices. Hu et al. (2007) 
had similar findings using three N application management techniques: current N practices, site 
specific management, and a modified site specific management plan. Both Peng et al. (2006) and 
Hu et al. (2007) found that NUE increased by reducing the N rate applied without reducing 
yields.  



104 
 

In corn production, Lambert et al. (2004), Lambert et al. (2006), Wang et al. (2003), and 
Maine et al. (2010) examined the economic benefits of adopting VRT. Lambert et al. (2004) did 
an economic analysis of VRT in corn response to N by comparing four spatial regression 
methods on data from an experiment conducted in 1999 in Cόrdoba Province, Argentina. Their 
study found that net returns to N use were found to be $1 to $2 ha−1 more profitable using VRT 
compared to URT. Lambert et al. (2006) did a spatial analysis on yield response to VRT using N 
and/or phosphorus on a 5 year corn-soybean rotation in Windom, Minnesota. Their results found 
that average returns to VRT (including both N and phosphorus) were $28 ha−1 more profitable 
than the URT management system. Wang et al. (2003) found profitability and environmental 
benefits through VRT N application versus two different URT N applications using data 
collected from four claypan soil fields in Missouri. Bongiovanni and Lowenberg-DeBoer (2000) 
estimated the profitability of VRT lime application to corn and soybean production in 18 sites 
spanning the Eastern and Midwestern United States and one in Canada. Their results found that 
using VRT increased profits. Maine et al. (2007) and Maine et al. (2010) analyzed the 
profitability of VRT phosphorus and N fertilizer applications on corn production in South Africa 
and found that VRT was more profitable over conventional methods. 

The most recent literature involves optical sensing, sensor based technology such as 
GreenSeeker™, with VRT for analysis of profitability, NUE, and environmental benefits for 
production of wheat (Triticum aestivum L.) and corn (Zea mays L.) in experiments and farm 
field trials (Biermacher et al. 2006; Biermacher et al. 2009b; Butchee, May, and Arnall 2011; 
Ortiz-Monasterio and Raun 2007; Raun et al. 2002; Raun et al. 2005; Scharf et al. 2011). Scarf et 
al. (2011) assessed sensor based, VRT N application versus current farmer uniform N rates in 
corn production in Missouri. Their study found that VRT N fertilizer applications increased 
yields by 110 kg ha−1, reduced N by 15 kg ha−1, and increased partial profits (value of corn grain 
minus cost of N applied) by $42 ha−1 over producer chosen uniform N rates. Raun et al. (2002) 
analyzed optical sensing and VRT compared with URT for winter wheat production in 
Oklahoma. They found that NUE on average increased by at least 15% with extra income ($4.00 
to $5.00 ha−1) for VRT compared with URT and optical sensing would be most beneficial in 
areas of high spatial variability. Also, Raun et al. (2005) found N reductions and an increase of 
15% in NUE through the adoption of optical sensing. Biermacher et al. (2006) estimated net 
returns of adopting sensor based precision agriculture in wheat production using 30 years of data 
in Oklahoma. Their study found that the adoption reduced pre-plant N by 59% to 82% and 
achieved an average profitability of $21.80 to $24.30 ha−1. Ortiz-Monasterio and Raun (2007) 
assessed VRT using N-rich strips with GreenSeeker™ sensing technology compared with 
conventional practices for wheat production in an eight-field-trial experiment in Yaqui Valley, 
Mexico. Their study found that using optical sensing technologies achieved an average saving of 
69 kg ha−1 of N without reducing yields and an average increase by $56 ha−1 in profitability. 
Butchee, May, and Arnall (2011) utilized the same GreenSeeker™ optical sensing technology 
for wheat production in Oklahoma and found a reduction of N by 22 kg ha−1 without yield 
reduction relative to conventional practices. 

In addition to increasing profitability and reducing N loss to environments, PA has the 
potential to reduce production risk by creating a more homogenous growing environment within 
the farm field (Lowenberg-DeBoer and Swinton 1997; Lowenberg-DeBoer 1999; Larson et al., 
2002). Production risks usually involve in yield and net return affected by anomalous factors 
such as rainfall and temperature causing yields to rise or fall (Bullock and Bullock 1994; Isik and 
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Khanna 2003; Elms, Green, and Johnson 2001; Carr et al. 1991; Vetsch et al. 1995; Wibawa et 
al. 1993).  

Several articles have assessed the risk management benefits of VRT including 
Lowenberg-DeBoer (1999), Isik and Khanna (2003), and Larson et al. (2002). Lowenberg-
DeBoer (1999) examined risk management benefits of using VRT application of phosphorus and 
potassium using data from on-farm trials in Indiana, Ohio, and Michigan from 1993 to 1995 on 
either corn-soybean or corn-soybean-wheat crop rotations. Their study found a reduction in the 
probability of low net returns and VRT application of fertilizer preferred by risk-averse farmers. 
Larson et al. (2002) conducted a simulation model for VRT N application using soil management 
zones for three soil types. They found that VRT could provide risk management benefits on corn 
fields with large spatial variability but URT would be preferred by risk-averse farmers. 
Lowenberg-DeBoer (1999) found that human implementation or interpretation error or risk of 
technology obsolescence on VRT could cause yield and net return losses and prevent the 
adoption.  

Previous research showed mixed results in terms of profitability from the adoption of PA. 
A lack of information in cotton production utilizing real-time optical sensing technologies and 
VRT N fertilization application need experiment studies especially in the Mississippi River 
Basin (MRB) states (Tennessee, Louisiana, Mississippi, and Missouri). Also, research based on 
the field data in MRB need to conducted to assess whether these technologies can reduce losses 
of N to the environment. The need for a cotton N utilization study using PA technologies in the 
MRB area was identified through surveys among producers in twelve southern states (Mooney et 
al. 2010). If cotton growers had access to information/studies specific to the MRB region, they 
could make more informed decisions about adoption of real-time optical sensing and VRT in N 
fertilization with regard to soil types, reduced fertilizer costs, increased profitability, increased 
labor/application efficiency, and decreased excess N reaching groundwater (Biermacher et al. 
2009b).  

Policy makers, crop insurance companies, and technology manufacturers can also use 
economic information about PA technology to assist producers. Policy makers would have the 
resources to create incentive programs for farmers to adopt site-specific technologies like VRT. 
Externalities can be examined to determine a program that would either reduce N by charging a 
tax of sorts on excess fertilizer use or incentivize growers to adopt VRT with a subsidy for the 
technology (Larkin et al. 2005; Roberts et al. 2002; Zhang, Wang, and Wang 2002). This 
information is useful for crop insurance companies because they could potentially provide lower 
rates to those who adopt a site-specific technology (Lowenberg-DeBoer 1999). Technology 
manufacturers could better pinpoint a target cost for the technology for the end consumer 
(Biermacher et al. 2009a).  

 
REVIEW OF METHODS 
Conceptual Framework 

Treatment Effect for Net Returns and N Production Use Efficiency 
A risk-neutral, profit-maximizing producer will adopt VRT N application if the profitability of 
VRT is greater than the profitability of the current FP N application. The typical FP is to apply 
the same rate of N across the farm field. The profitability of VRT involves tradeoffs among: 1) 
cost of information, 2) cost of VRT application, 3) changes in yield, and 4) changes in N use 
(Biermacher et al. 2009a; Lowenberg-DeBoer 1999). In addition, site-specific factors, such as 
soil variability within fields and weather can influence the producer’s decisions of how much N 
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to apply and whether to use a new technology (Bullock and Bullock 1994; Isik and Khanna 
2003; Lowenberg-DeBoer 1999; Whelan and McBratney 2000; Zhang, Wang, and Wang 2002).  

The profit equations for FP N application and VRT N application include the tradeoff 
between the factors listed above. The profit equation for FP N application decision for cotton is: 

𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹 = 𝑃𝑃 × 𝑌𝑌𝐹𝐹𝐹𝐹 − 𝑟𝑟𝐵𝐵 × 𝑁𝑁𝐹𝐹𝐹𝐹𝐵𝐵 − 𝑟𝑟𝑇𝑇 × 𝑁𝑁𝐹𝐹𝐹𝐹𝑇𝑇 − 𝐼𝐼𝐼𝐼𝐼𝐼𝐹𝐹𝐹𝐹 − 𝑂𝑂𝑂𝑂𝑂𝑂, (1) 
where NR is cotton net returns ($ ha−1), P is cotton lint price ($ kg−1), Y is cotton lint yield (kg 
ha−1), 𝑟𝑟𝐵𝐵 is the pre-plant N price ($ kg−1), 𝑁𝑁𝐵𝐵 is the pre-plant N fertilization rate (kg ha−1), rT is 
the top (or side) dress N price ($ kg−1), 𝑁𝑁𝑇𝑇 is the top (or side) dress N fertilization rate (kg ha−1), 
IAC is the information and application cost used in the FP N fertilization process ($ ha−1) 
including labor and equipment, and OCP represents the other costs of cotton production ($ ha−1) 
that do not change across N application technologies. 

The profit equation for the VRT N application decision for cotton is: 
𝑁𝑁𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑃𝑃 × 𝑌𝑌𝑉𝑉𝑉𝑉𝑉𝑉 + 𝐼𝐼𝐼𝐼𝑉𝑉𝑉𝑉𝑉𝑉 − 𝑟𝑟𝐵𝐵 × 𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵 − 𝑟𝑟𝑇𝑇 × 𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉𝑇𝑇 − 𝐼𝐼𝐼𝐼𝐼𝐼𝑉𝑉𝑉𝑉𝑉𝑉 − 𝑂𝑂𝑂𝑂𝑂𝑂,(2) 

where IP is an incentive payment received from a government agency, such as the USDA 
Natural Resource Conservation Service (NRCS) Environmental Quality Incentives Program 
(EQIP)1, to adopt VRT, and information costs (IC) include the ownership and labor costs of 
VRT. USDA (NRCS) and the Environmental Protection Agency are interested in reducing the 
amount of N applied by incentivizing the adoption of conservation practices such as VRT N 
application (USDA 2014b). Considering the incentive payments in net returns allows the 
effectiveness of these incentives in adoption of VRT N application to be determined.  

Using the profit equations for FP (1) and VRT (2), 𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹 R can be set equal to 𝑁𝑁𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉  and 
the terms rearranged to analyze the sensitivity of changes in prices to profitability in VRT N 
application. The left-hand side of the equation is the change in the cost of the technology (cost of 
machinery ownership, fertilizer application, and labor): 

𝐼𝐼𝐼𝐼𝐼𝐼𝑉𝑉𝑉𝑉𝑉𝑉 − 𝐼𝐼𝐼𝐼𝐼𝐼𝐹𝐹𝐹𝐹 = 
𝑃𝑃 × (𝑌𝑌𝑉𝑉𝑉𝑉𝑉𝑉−𝑌𝑌𝐹𝐹𝐹𝐹) + 𝐼𝐼𝐼𝐼𝑉𝑉𝑉𝑉𝑉𝑉 + 𝑟𝑟𝐵𝐵 × (𝑁𝑁𝐹𝐹𝐹𝐹𝐵𝐵 − 𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵 ) + 𝑟𝑟𝑇𝑇 × (𝑁𝑁𝐹𝐹𝐹𝐹𝑇𝑇 − 𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉𝑇𝑇 ).(3) 
Equation 3 yields a partial budgeting net returns relationship, a common way to analyze the 
economic benefits of a technology (Boehlje and Eidman 1984; Thrikawala et al. 1999; Koch et 
al. 2004; Biermacher et al. 2009a; Boyer et al. 2011).   

Equation 3 assumes that the VRT costs are more expensive than FP. The costs of VRT 
(𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉) on the left-hand side of Equation 3 can be denoted as 

𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉 = 𝐼𝐼𝐼𝐼𝐼𝐼𝑉𝑉𝑉𝑉𝑉𝑉 − 𝐼𝐼𝐼𝐼𝐼𝐼𝐹𝐹𝐹𝐹(4) 
and Equation 3 can be rewritten as an inequality: 

𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉 < 
𝑃𝑃 × (𝑌𝑌𝑉𝑉𝑉𝑉𝑉𝑉−𝑌𝑌𝐹𝐹𝐹𝐹) + 𝑟𝑟𝐵𝐵 × (𝑁𝑁𝐹𝐹𝐹𝐹𝐵𝐵 − 𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵 ) + 𝑟𝑟𝑇𝑇 × (𝑁𝑁𝐹𝐹𝐹𝐹𝑇𝑇 − 𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉𝑇𝑇 ) + 𝐼𝐼𝐼𝐼𝑉𝑉𝑉𝑉𝑉𝑉,(5) 

where the cost of using VRT ($ ha−1) is on the left-hand side and three sources of potential cash 
inflows to offset the cost are on the right-hand side, i.e., higher yields, N savings, and incentive 
payments. If 𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉 is less than the cash flows on the right-hand side, VRT is profitable; 
otherwise, not.  

Based on the implications drawn from Equation 5, changes in yields and N rates are the 
driving factors influencing technology profitability holding lint cotton and N prices constant. 
Changes in net returns and N use efficiency due to changes in yields and N rates with the 
adoption of VRT are of interest to the farmer. Given that crop production is affected by 
managerial and growing environment factors such soils and weather (Bullock and Bullock 1994; 

                     
1 NRCS precision nutrient management practice code number 590 used for incentive payment in Equation 2. 
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Isik and Khanna 2003; Lowenberg-DeBoer 1999; Whelan and McBratney 2000; Zhang, Wang, 
and Wang 2002), yield for the N fertilizer management decision can be written as a function of 
crop management and exogenous environment factors:    

𝑌𝑌𝑎𝑎,𝑑𝑑 = 𝑓𝑓(𝑁𝑁𝑑𝑑 ,𝑍𝑍𝑑𝑑 ,𝑊𝑊𝑑𝑑 , 𝑆𝑆𝑑𝑑 ,𝑂𝑂𝑑𝑑),(6) 
where Y is yield (kg ha−1) , a is the N fertilizer management strategy (FP or VRT), d is a sub-
field area (e.g., management zone) within a field used to apply N at the rate (kg ha−1) determined 
by management strategy a, Z is a vector of other crop inputs applied by the farmer, W is a vector 
of weather parameters such as precipitation and temperature, S is a vector of farm field soil 
properties and landscape characteristics, and O is a vector of other random factors affecting 
production such as pests. The N management decision can be written as a function of the 
previously mentioned exogenous environmental factors: 
𝑁𝑁𝑎𝑎,𝑑𝑑 = 𝑔𝑔(𝑍𝑍𝑑𝑑 ,𝑊𝑊𝑑𝑑 , 𝑆𝑆𝑑𝑑 ,𝑂𝑂𝑑𝑑).  (7) 
Average yields and N rates at the field level for the FP and VRT N management strategies are: 
𝑌𝑌𝐹𝐹𝐹𝐹 = ∑ 𝑌𝑌𝑑𝑑,𝐹𝐹𝐹𝐹 𝐷𝐷⁄𝐷𝐷

𝑑𝑑=1 ,   and 𝑁𝑁𝐹𝐹𝐹𝐹 = ∑ 𝑁𝑁𝑑𝑑,𝐹𝐹𝐹𝐹 𝐷𝐷⁄𝐷𝐷
𝑑𝑑=1 , and(8) 

 𝑌𝑌𝑉𝑉𝑉𝑉𝑉𝑉 = ∑ 𝑌𝑌𝑑𝑑,𝑉𝑉𝑅𝑅𝑅𝑅 𝐷𝐷⁄𝐷𝐷
𝑑𝑑=1 ,   and 𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉 = ∑ 𝑁𝑁𝑑𝑑,𝑉𝑉𝑉𝑉𝑉𝑉 𝐷𝐷⁄𝐷𝐷

𝑑𝑑=1 ,(9) 
where D is the total number of management zones in the field as indicated by the N management 
studies.  

In this research, the effects of optical sensing and VRT on average yields, N rates, and 
net returns relative to the FP are evaluated at the field level. In addition, the effects of exogenous 
weather, soil properties, and landscape characteristics on differences in yields, N rates, and net 
returns for VRT versus the FP are evaluated at the sub-field level.  

VRT NUE has been measured in several ways, most of which comprise a zero-N applied 
plot (omission plot) or N-rich plot for comparison purposes. Butchee et al. (2011) found the N 
rate using the NUE factor: 𝑁𝑁 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = {(𝑌𝑌𝑌𝑌𝑌𝑌 ×  𝑅𝑅𝑅𝑅) − 𝑌𝑌𝑌𝑌𝑌𝑌}  ×  %𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑁𝑁 ×  𝑁𝑁𝑁𝑁𝑁𝑁 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 
where YPO represents the yield potential for zero N, RI represents response index measured by a 
sensor based N-rate calculator, and the grain is winter wheat. Cassman et al. (1998) and Cassman 
et al. (1996) employed partial factor productivity (PFP) as a measure of nutrient-use efficiency: 
𝑃𝑃𝑃𝑃𝑃𝑃 = (𝑌𝑌0+∆𝑌𝑌)

𝑁𝑁𝑡𝑡
 where 𝑌𝑌0 is the yield from a N omission plot, ∆Y represents the change in yields 

from zero-N applied, and 𝑁𝑁𝑡𝑡 is the N rate applied per treatment (t). Raun et al. (2002) measured 
NUE by subtracting N removed (grain yield times total N) in the grain in zero-N plots from that 
found in plots receiving added N, divided by the rate of N applied. 

A nitrogen production use (NPU) efficiency is used here to measure N use by 
normalizing the yield for a given technology (Y) by dividing by the corresponding N rate applied 
(N) such that:  

𝑁𝑁𝑁𝑁𝑁𝑁𝑎𝑎 = 𝑌𝑌𝑎𝑎
𝑁𝑁𝑎𝑎

,(10) 
where a is N management strategy used (VRT or FP). This variable is a proxy for the 
environmental benefits from using VRT. The effects of VRT on average NPU relative to the FP 
are evaluated at the field level. In addition, the effects of exogenous weather, soil properties, and 
landscape characteristics on differences in NPU for VRT versus the FP is evaluated at the sub-
field level.   
Risk Management Benefits 
Besides expected profit, farmers may be interested in the potential risk management benefits of 
VRT fertilizer management. Assuming farmers are risk-averse, the potential for yields and net 
returns to fall below a target value is a main concern; i.e., farmers are particularly concerned 
about reducing the probability of yields and NR in the lower tail of the probability distribution 
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(Binswanger 1981; Selley 1984; Antle 1987; Lowenberg-DeBoer 1999; Chavas 2004). Physical 
soil properties (e.g., soil organic matter content and depth) and topography (e.g., slope and 
elevation) of farm fields that can limit yields remain relatively fixed over time (Larson, Roberts, 
and English 2002). One potential risk management benefit of VRT is reducing the variability of 
growing environment factors across a field, making the field more homogenous (Lowenberg-
DeBoer and Swinton 1997). Another potential risk management benefit may come from reducing 
the field average temporal yield variability across soil types under VRT compared to applying 
the same rate of inputs across the farm field (Larson, Roberts, and English 2002).   
Stochastic dominance and lower partial moment criteria can be useful for evaluating the risk 
management benefits of optimal sensing and VRT fertilizer management. The risk-neutral farmer 
will choose the treatment that produces the highest mean net return. The decision cannot solely 
be made on mean net returns when there is a level of risk involved. Stochastic dominance is a 
helpful tool in evaluating the decision between random variables (Post and Kopa 2013; 
Dhompongsa, Nguyen, and Sriboonchita 2010). When making a decision between VRT and FP, 
for instance, first degree stochastic dominance states that VRT would dominate FP if 
𝐹𝐹𝑉𝑉𝑉𝑉𝑉𝑉(𝑁𝑁𝑁𝑁) ≤ 𝐹𝐹𝐹𝐹𝐹𝐹(𝑁𝑁𝑁𝑁) for all observations (𝜋𝜋) where 𝐹𝐹𝑉𝑉𝑉𝑉𝑉𝑉(𝑁𝑁𝑁𝑁) is some function of VRT and 
𝐹𝐹𝐹𝐹𝐹𝐹(𝑁𝑁𝑁𝑁) represents a function of FP (Dhompongsa, Nguyen, and Sriboonchita 2010), here 
cumulative distribution functions.  

Lower partial moment measures the downside risk, i.e., yields, N rates, net returns, and 
NPU that fall below a target level (Fishburn 1977): 
𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛 = 1

𝑚𝑚
∑ 𝑀𝑀𝑀𝑀𝑀𝑀[0,𝑌𝑌𝐹𝐹𝐹𝐹,𝑖𝑖 − 𝑌𝑌𝑉𝑉𝑉𝑉𝑉𝑉,𝑖𝑖)]𝑛𝑛𝑚𝑚
𝑖𝑖=1 , (11) 

𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛 = 1
𝑚𝑚
∑ 𝑀𝑀𝑀𝑀𝑀𝑀[0,𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉,𝑖𝑖 − 𝑁𝑁𝐹𝐹𝐹𝐹,𝑖𝑖)]𝑛𝑛𝑚𝑚
𝑖𝑖=1 ,(12) 

𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛 = 1
𝑚𝑚
∑ 𝑀𝑀𝑀𝑀𝑀𝑀[0,𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹,𝑖𝑖 − 𝑁𝑁𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉,𝑖𝑖)]𝑛𝑛𝑚𝑚
𝑖𝑖=1 , (13) 

𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛 = 1
𝑚𝑚
∑ 𝑀𝑀𝑀𝑀𝑀𝑀[0,𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹,𝑖𝑖 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉,𝑖𝑖)]𝑛𝑛𝑚𝑚
𝑖𝑖=1  (14) 

where LPM is the lower partial moment, m is the number of observations (i), FP, VRT, Y, N, NR, 
and NPU were defined previously, and n is the degree of the moment. The classifications of the 
degree of the moment (n) are n = 0 is the probability of a loss, n = 1 is the target shortfall, n = 2 
is the target semi-variance, and n = 3 is the target skewness. The probability of a loss, where n = 
0, provides the probability of VRT yields, net returns, and N use efficiency being lower than the 
current FP.  
Hypothesis Testing 
Given the potential effects of optical sensing and VRT on crop yields, N rates, net returns, NPUs, 
and crop risk management, the three hypotheses that are tested in this study are: 

1) Optical sensing and VRT treatments versus the FP: The null hypothesis is that using optical 
sensing and VRT for N management do not generate yields, N rates, NPU, and net returns that 
are different from FP yields, N rates, net returns, and NPUs. The alternate hypothesis is that the 
aforementioned factors differ with N management using optical sensing and VRT when 
compared with the FP. 

 
2) Weather, soil, and landscape characteristic effects on optical sensing and VRT versus FP: The 

null hypothesis is that yields, N rates, net returns, and NPUs from N management using optical 
sensing and VRT relative to the FP are not influenced by weather and farm field soil and 
landscape characteristics. The alternative hypothesis is that weather and farm field soil 
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properties and landscape characteristics influence differences in the aforementioned factors 
when using optical sensing and VRT as compared with the FP. 

 
3) Risk management benefits of optical sensing and VRT: The null hypothesis is that optical 

sensing and VRT do not provide a higher (lower for N rates) probability of yields, N rates, net 
returns and NPU being in the lower tail compared to the respective FP yields and net returns as 
influenced by weather and farm field soil properties and landscape characteristics. The 
alternative hypothesis is that optical sensing and VRT do provide a higher (lower for N rates) 
probability of yields, N rates, net returns and NPU above FP yields and net returns as 
influenced by weather and farm field soil properties and landscape characteristics. 

 
 

Data and Methodology 
Data 
Twenty-nine cotton N fertilizer field demonstration trials were conducted from 2011 to 2014 in 
Tennessee, Mississippi, Louisiana, and Missouri. Ten of the trials occurred in Tennessee, four in 
Mississippi, nine in Louisiana, and six in Missouri. The county/parish locations of the farmer 
fields in each state that were used in the study are presented in Figure 1. The trials tested FP N 
application versus two VRT N applications on each cotton field. Each EQIP eligible farmer 
planted cotton across nine strip-plots (referred to as plot for the remainder of this report) 
containing 10 sub-plots each that measure roughly 30.5 meters by 11.6 meters with the exception 
of Missouri where the data was collected by plot, Figure 2.  

The experiment was planned as a randomized complete block design with three N 
fertilizer treatments and three replications. The FP treatment (1) was a uniform-rate N 
application based on the farmer’s current practice. Treatment 2 was a VRT N application 
calculated using the normalized difference vegetation index (NDVI) via canopy optical-sensing 
with the Greenseeker™ RT200 Data Collection and Mapping System (NTech Industries, Inc., 
CA). Treatment 3 was a VRT N application based on actual NDVI readings via canopy optical-
sensing with the Greenseeker™ RT200 Data Collection and Mapping System but adjusted based 
on any combination of historical yield productivity zones, soil imagery, and/or aerial imagery of 
mid-season crop health. A uniform blanket rate ranging from 33.6 to 78.4 kg N ha−1 was applied 
at (or before) planting to the entire field (covering all three treatment areas) depending on the 
experiment. Each location provided lint yields harvested, N rates applied, type of N fertilizer 
used, and latitude and longitudes at the sub-plot level for every participating year. Table 2 
includes the average N rate, lint yield, NPU, and net returns by location and year.  

To evaluate the net returns inequality in Equation 5, price data, information costs, and 
application costs were used. Price and budget data are in real 2013 dollars ($), referred to as real 
dollars, and were indexed using the Bureau of Economic Analysis annual Gross Domestic 
Product Price Deflator Index (U.S. Department of Commerce 2014). Price data included national 
average marketing year (August 1-July 31) cotton lint prices received, marketing years 2011 
through 2014 (USDA 2014a), adjusted to real $ kg−1, $1.84 kg−1 in 2014. National prices paid for 
N fertilizer urea (32% N) were collected for 2011 through 2014 marketing years (USDA 2014d), 
adjusted to real $ kg−1, $0.91 kg−1 in 2014. EQIP cost-share payment rates were collected for 
each of the four states in the experiments for the precision nutrient management payment code 
590 for 2011 through 2014 adjusted to real $ ha−1. Payments for 2014 included $68.21 ha−1 in 
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Mississippi, $68.46 ha−1 in Louisiana, $65.85 ha−1 in Tennessee, and $32.64 ha−1 in Missouri 
(personal communication with Patricia Turman, Tennessee State Agronomist, 2014, Chris 
Coreil, Louisiana NRCS Conservation Agronomist, 2014, and Jodie Reisner, Missouri NRCS 
Conservation Agronomist, 2014; USDA 2014c).   

Information and application costs (IAC), including equipment/technology, labor, and 
other costs, were estimated using partial budgeting methods (Larson et al. 2005) as demonstrated 
in Equations 4 and 5, Table 3. Two budgets were developed to account for information and 
application costs: 1) for Greenseeker™ technology (treatment 2) and 2) for Greenseeker™ plus 
yield monitor information systems (YMIS) (treatment 3). Greenseeker™ was assumed to be 
retrofitted to an existing boom sprayer measuring 24.7 meters wide and the YMIS was assumed 
to be retrofitted to an existing 6-row cotton picker measuring 5.8 meters wide. Ownership costs 
(OC) of equipment/technology for inclusion in IAC for treatments 2 and 3 were estimated using 
the standards of the American Society of Agricultural and Biological Engineers (ASABE) 
(ASABE 2011) similar to Biermacher et al. (2009a), the Agricultural and Applied Economics 
Association (AAEA) Commodity Costs and Returns Estimation Handbook (AAEA 2000), and 
equipment costs calculation techniques (Boehlje and Eidman 1984). OC were estimated in Table 
3 using the equation: 

𝑂𝑂𝑂𝑂𝑖𝑖 = [𝐶𝐶𝐶𝐶𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 + 𝑅𝑅𝑅𝑅𝑖𝑖] × 𝐻𝐻𝑖𝑖, (15) 
where ownership costs ($ ha−1) by treatment (i = 2 or 3) were composed of hourly capital 
recovery (𝐶𝐶𝐶𝐶𝑖𝑖) by treatment ($ hour−1), hourly taxes, insurance, and housing (𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖) by treatment 
($ hour−1), hourly repairs and maintenance (𝑅𝑅𝑅𝑅𝑖𝑖) by treatment ($ hour−1), and hours ha−1 (𝐻𝐻𝑖𝑖) by 
treatment. For Greenseeker™, the useful life was assumed to be 5 years or 1500 hours 
(Gandonou et al. 2006) and the yield monitor information system assumed a useful life of 5 years 
or 3000 hours (Gandonou et al. 2006; Biermacher et al. 2009a), Table 3. Total Greenseeker™ 
OC was multiplied by 1.02 to account for calibration using N rich strips (Biermacher et al. 
2009a). Information and application cost (real $ ha−1) for treatment 2 in 2014 was $2.32 ha−1. 

Information and application costs for treatment 3 included the estimated OC for 
Greenseeker™, estimated OC for yield monitor information system, the cost of a computer, and 
a consulting fee for technical advice ($ ha−1), Table 3. The computer was assumed 100% use for 
the yield monitor system, GPS signal was assumed to be free, and a $687.08 (2013 real dollars) 
custom installation fee for retrofitting each technology to existing machinery was assumed for 
both Greenseeker™ and the yield monitor system (Larson et al. 2005; Gandonou et al. 2006). 
Computer list price costs were an average of costs for a desktop computer with 8GB memory, 
1TB hard drive, and 21" to 23" screen (informal internet survey 2014). In partial budgeting, if 
information costs were not available ha−1 (such as the cost of a computer), costs were spread 
across the size of a field (Swinton and Lowenberg-DeBoer 1998). Here, the cost of a computer 
was allocated across the size of a cotton enterprise in each state (USDA 2012), Table 3. The 
consulting fee was included due the necessary technical assistance to correctly implement and 
interpret the technology (McBratney, Whelan, and Ancev 2005). To account for such assistance, 
an average of 2009 cotton technical advice fees including yield monitor, grid soil sampling, zone 
soil sampling, and soil survey map fees (Mooney et al. 2010) was normalized to real 2013 
dollars, $12.63 ha−1 and added to all years of applicable data. Costs for treatment 3 were $18.00 
ha−1 in Tennessee, $18.06 ha−1 in Mississippi, $18.12 ha−1 in Louisiana, and $17.94 ha−1 in 
Missouri. The 2011, 2012, 2013, and 2014 partial budgets were in real 2013 dollars, 2013 budget 
example in Table 3. 
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VRT requires more skilled labor to correctly interpret the technology and compute 
appropriate N rates. Thus, labor costs for VRT treatments were estimated using custom rate 
surveys produced by their respective agricultural extension offices (Bowling 2013; Mississippi 
State University Extension Services 2013; University of Missouri Extension 2012). The 2013 
precision fertilizer application labor cost was determined by taking the difference between 
precision fertilizer application in Tennessee and the average dry bulk fertilizer application in 
Tennessee, Missouri, and Mississippi2 (precision fertilizer application such as VRT costs $6.60 
more ha−1 in labor to apply dry bulk than FP). The 2013 labor costs were applied to all years of 
data, 2011-2014. Application costs as well as the other pieces to Equation 5 are included in a 
partial net returns summary in Table 4. 

For each location-year, soil and climate characteristics were collected to determine 
differences within and between fields (variable names, definitions, and units can be found in 
Table 5). Soil water holding capacity, organic matter, soil texture, soil depth, field slope, and soil 
erosion factors were collected from the SSURGO database (USDA 2014f) at the center point of 
each sub-plot (plot for Missouri locations) using ArcGIS 10.1. A soil erosion index (SEI) was 
estimated using a modified universal soil loss equation to account for the physical factors of the 
fields: 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐾𝐾𝐾𝐾×𝐿𝐿𝐿𝐿×𝑅𝑅
𝑇𝑇𝑇𝑇

,(15) 
where KF is erodibility factor due to water (USDA 2014f) , LS is a soil length (L) and slope 
steepness (S) factor, calculated as 𝐿𝐿𝐿𝐿 = (0.065 + 0.0456 × 𝑆𝑆 + 0.006541 ×  𝑆𝑆2) at the standard 
slope length of 22.1 meters (Stone and Hilborn 2012) and percent slope steepness (S) (USDA 
2014f). R is the rainfall and runoff factor from USDA RUSLE2 version 2.5.2.11 (2014), and TF 
is a soil tolerance factor (USDA 2014f). Soil texture percent sand, silt, and clay from SSURGO 
(USDA 2014f) were used to find the general soil texture name via the USDA soil texture 
calculator (USDA 2014e). Textures were then narrowed down to four major soil textures and 
ranked by coarseness: clay (finest), silt, loam, and sand (coarsest). Field elevation was collected 
from the National Elevation Dataset (U.S. Geology Survey 2014). Climate was measured by 
temperature (PRISM 2014) as seasonal growing degree days (April 1 through October 31) 
(Larson et al. 2007; Wright et al. 2011). To calculate seasonal growing degree days, the daily 
average temperature minus 15.6 degrees Celsius was summed over April 1 through October 31 
per location-year if the daily calculation was greater than zero. Mean farm soil and climate 
characteristics are presented in Table 6.  
Methodology 
In addition to soil and weather fixed effects, Equations 16-19 included random variables based 
on the Schabenberger and Pierce (2002) on-farm experimentation model. Due to the 
experimental design, Equations 20-23 and 28-31 were each treated like as a meta-analysis similar 
to Tolliver et al. (2012).  
Treatment Effects 
The farmer’s decision to change his N application technology from FP to VRT is measured by 
evaluating two aspects of the production decision: 1) net returns per location-year by treatment 
as driven by yields and N rates and 2) the NPU efficiency.  

The following models are estimated with an (ANOVA) using SAS 9.2 (SAS Institute Inc. 
2014): 

                     
2 Tennessee, Mississippi, and Missouri rates were averaged and applied to all locations because Louisiana State 
University extension office does not produce a custom rate survey. 
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𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 
𝜇𝜇 + 𝛿𝛿𝑡𝑡 + 𝜆𝜆𝑘𝑘 + 𝜏𝜏𝑖𝑖 + 𝜌𝜌(𝑗𝑗)𝑘𝑘 + (𝜆𝜆𝜆𝜆)𝑖𝑖𝑖𝑖 + 𝜔𝜔𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 +  𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝛾𝛾𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 +
𝜑𝜑𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝛽𝛽𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝜓𝜓𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝜒𝜒𝑘𝑘𝑘𝑘 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 

(16) 

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 
𝜇𝜇 + 𝛿𝛿𝑡𝑡 + 𝜆𝜆𝑘𝑘 + 𝜏𝜏𝑖𝑖 + 𝜌𝜌(𝑗𝑗)𝑘𝑘 + (𝜆𝜆𝜆𝜆)𝑖𝑖𝑖𝑖 + 𝜔𝜔𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 +  𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝛾𝛾𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 +
𝜑𝜑𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝛽𝛽𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝜓𝜓𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝜒𝜒𝑘𝑘𝑘𝑘 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 

(17) 

𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 
𝜇𝜇 + 𝛿𝛿𝑡𝑡 + 𝜆𝜆𝑘𝑘 + 𝜏𝜏𝑖𝑖 + 𝜌𝜌(𝑗𝑗)𝑘𝑘 + (𝜆𝜆𝜆𝜆)𝑖𝑖𝑖𝑖 + 𝜔𝜔𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 +  𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝛾𝛾𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 +
𝜑𝜑𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝛽𝛽𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝜓𝜓𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝜒𝜒𝑘𝑘𝑘𝑘 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,  

(18) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 
𝜇𝜇 + 𝛿𝛿𝑡𝑡 + 𝜆𝜆𝑘𝑘 + 𝜏𝜏𝑖𝑖 + 𝜌𝜌(𝑗𝑗)𝑘𝑘 + (𝜆𝜆𝜆𝜆)𝑖𝑖𝑖𝑖 + 𝜔𝜔𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 +  𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝛾𝛾𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 +
𝜑𝜑𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝛽𝛽𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝜓𝜓𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝜒𝜒𝑘𝑘𝑘𝑘 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. 

(19) 

The following is consistent for all models included for the remainder of this report: 
Dependent Variables: 
 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is cotton lint yield (kg ha−1),  

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is N rate applied (kg ha−1), 
𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is net returns ($ ha−1), 
𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is NPU efficiency, 

Explanatory Variables: 
𝜇𝜇 is the overall mean, 

Random Effects: 
𝛿𝛿𝑡𝑡 is the effect of the tth year (t=2011, 2012, 2013, 2014), 
𝜆𝜆𝑘𝑘 is the effect of the kth farm location (k=1,…,21), 
𝜌𝜌(𝑗𝑗)𝑘𝑘 is the jth replication (or block) effect nested within kth farm, 
(𝜆𝜆𝜆𝜆)𝑖𝑖𝑖𝑖 is the effect of the interaction between the kth farm and the ith treatment, 
Fixed Effects: 
𝜏𝜏𝑖𝑖 is the effect of the ith treatment (i=1, 2, 3),𝜔𝜔𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 is effect of water holding 

capacity (cm cm−1) by kth farm, jth replication, ith treatment, and dth sub-
plot, 

𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 is effect of organic matter (%) by kth farm, jth replication, ith treatment, and 
dth sub-plot, 

𝛾𝛾𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 is the effect of soil erosion index by kth farm, jth replication, ith treatment, 
and dth sub-plot, 

 𝜑𝜑𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 is the effect of soil depth (cm) by kth farm, jth replication, ith treatment, and 
dth sub-plot, 

𝛽𝛽𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 is the effect of soil texture by kth farm, jth replication, ith treatment, and dth 
sub-plot, 

𝜓𝜓𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 is the effect of elevation (meters) by kth farm, jth replication, ith treatment, 
and dth sub-plot, 

𝜒𝜒𝑘𝑘𝑘𝑘 is the effect of seasonal growing degree days by kth farm and tth year, 
𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the random error associated with the kth farm, jth replication, ith treatment, tth 

year, and dth sub-plot, 
𝛿𝛿𝑡𝑡~𝑖𝑖𝑖𝑖𝑖𝑖(0,𝜎𝜎𝛿𝛿2) (iid refers to independent and identical distribution), 
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𝜆𝜆𝑘𝑘~𝑖𝑖𝑖𝑖𝑖𝑖(0,𝜎𝜎𝜆𝜆2), 
𝜌𝜌(𝑗𝑗)𝑘𝑘~𝑖𝑖𝑖𝑖𝑖𝑖�0,𝜎𝜎𝜌𝜌2�, 
(𝜆𝜆𝜆𝜆)𝑖𝑖𝑖𝑖~𝑖𝑖𝑖𝑖𝑖𝑖(0,𝜎𝜎𝜆𝜆𝜆𝜆2 ), 
𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖~𝑖𝑖𝑖𝑖𝑖𝑖(0,𝜎𝜎𝜀𝜀2). 
The fixed effects are N treatment, soil attributes, and weather, and the random effects are 

location, year, replication nested in location, and location-treatment interaction.  Location was 
hypothesized to have a significant effect on the dependent variables because every farm was 
physically different from the next, time in years because the data spans more than one year, 
treatment because the treatments differ within a farm and between farms, and effects that are 
within the same farm due to the physical difference between sub-plots from farm to farm. The 
location-treatment interaction term was expected to be significant but to mask the treatment 
differences.  

The null hypothesis for Equation 16 is that expected lint yields from the VRT N 
application treatments (i = 2 or 3) per trial will be equal to the expected lint yields from the FP 
trials was tested in Equation 16. Alternatively, expected VRT lint yields will be greater than 
expected FP lint yields. 
VRT N applications were expected to reduce N use compared to FP. In the special case that the 
yields are not significantly different across treatments per location-year, revenues (price of 
cotton times lint yield) will no longer be a factor in net revenues, Equations 1 and 2. The cost 
side of the equation becomes the driver, as seen in Equation 5. The null hypothesis that VRT by 
treatment generated no additional N use savings compared to FP, was tested in Equation 17. 
Alternatively, expected N applied using FP is greater than expected N applied using VRT 
application. 
If yields were not significantly different across treatments per location, N applied was the driving 
factor. In this case, net returns can be estimated in a similar way to Equations 4 and 5. The null 
hypothesis that expected net returns from VRT N applications by treatment were the same as 
expected net returns from FP N application was tested in Equation 18. Alternatively, expected 
net returns from VRT N applications were greater than expected net returns from FP application.  

N rate was also the driver in N use efficiency if yields did not differ. For the same cotton 
lint yield, a lower N rate would increase the NPU efficiency. The null hypothesis that the 
expected NPU for VRT N application treatments were equal to expected NPU efficiency for the 
FP treatment was tested using Model 4. Alternatively, expected NPU efficiency for VRT N 
application was expected to be greater than NPU for FP N application.  

Equations 16, 17, 18, and 19 were first estimated with only treatment as the explanatory 
variable and again with added soil and weather characteristics. The better fitting models were 
chosen based on the Akaike information criterion (AIC) and Bayesian information criterion 
(BIC). Multicollinearity was checked by estimating the variance inflation factor (VIF) using SAS 
9.2. The Satterthwaite approximation was used to deal with degrees of freedom. 

To determine if the treatments produced significantly different lint yields, N rates, net 
returns, and NPUs, Dunnett’s tests were estimated using SAS 9.2 for Equations 16-19 (Littell et 
al. 2006). This two-tailed test is useful because multiple treatments can simultaneously be 
compared to one control while holding the familywise error rate at or below alpha; here, if VRT 
treatment 2 is significantly different than FP (control) and if VRT treatment 3 is significantly 
different than FP. This test performs multiple comparisons while holding the familywise error 
rate at or below an alpha level. 
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Because the interaction term is random, contrasts between farms were estimated via best 
linear unbiased predictions using SAS 9.2 for Equations 16-19 to measure the treatment effect at 
the farm level (Schabenberger and Pierce 2002; Littell et al. 2006). Both VRT treatments were 
measured separately against FP to see if technology outperformed the current practice. The null 
hypothesis is that VRT treatments do not differ from FP at the farm level. Alternatively, 
treatments do differ at the farm level. A Bonferroni correction is a conservative way to handle 
multiple comparisons and deal with the familywise error rate. Because there are 21 farms, there 
are 21 separate hypotheses to test for VRT treatment 2 versus FP and VRT treatment 3 versus 
FP. At a 10% confidence level, the Bonferroni correction is calculated as 𝛼𝛼 =  0.10

21
= 0.0047. 

Alpha becomes 0.0047 for each hypothesis; at the field level.  
Soil, Landscape, and Weather Impacts on Mean Treatment Differences 
The soil and climate impacts on mean differences were evaluated by estimating a mixed model 
ANOVA using SAS 9.2. The mean difference models are: 

𝑌𝑌Δ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 
𝜇𝜇 + 𝛿𝛿𝑡𝑡 + 𝜆𝜆𝑘𝑘 + 𝜌𝜌(𝑗𝑗)𝑘𝑘 + (𝜆𝜆𝜆𝜆)𝑖𝑖𝑖𝑖 + 𝜔𝜔𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 +  𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝛾𝛾𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝜑𝜑𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 +
𝛽𝛽𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝜓𝜓𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝜒𝜒𝑘𝑘𝑘𝑘 + 𝜈𝜈𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

(20) 

𝑁𝑁Δ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 
𝜇𝜇 + 𝛿𝛿𝑡𝑡 + 𝜆𝜆𝑘𝑘 + 𝜌𝜌(𝑗𝑗)𝑘𝑘 + (𝜆𝜆𝜆𝜆)𝑖𝑖𝑖𝑖 + 𝜔𝜔𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 +  𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝛾𝛾𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝜑𝜑𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 +
𝛽𝛽𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝜓𝜓𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝜒𝜒𝑘𝑘𝑘𝑘 + 𝜈𝜈𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

(21) 

𝑁𝑁𝑁𝑁Δ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 
𝜇𝜇 + 𝛿𝛿𝑡𝑡 + 𝜆𝜆𝑘𝑘 + 𝜌𝜌(𝑗𝑗)𝑘𝑘 + (𝜆𝜆𝜆𝜆)𝑖𝑖𝑖𝑖 + 𝜔𝜔𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 +  𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝛾𝛾𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝜑𝜑𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 +
𝛽𝛽𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝜓𝜓𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝜒𝜒𝑘𝑘𝑘𝑘 + 𝜈𝜈𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

(22) 

𝑁𝑁𝑁𝑁𝑁𝑁Δ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 
𝜇𝜇 + 𝛿𝛿𝑡𝑡 + 𝜆𝜆𝑘𝑘 + 𝜌𝜌(𝑗𝑗)𝑘𝑘 + (𝜆𝜆𝜆𝜆)𝑖𝑖𝑖𝑖 + 𝜔𝜔𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 +  𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝛾𝛾𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝜑𝜑𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 +
𝛽𝛽𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝜓𝜓𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝜒𝜒𝑘𝑘𝑘𝑘 + 𝜈𝜈𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

(23) 

where 𝜈𝜈𝑖𝑖 is a dummy variable by treatment (i); if N management strategy treatment 3 was used in 
that sub-plot (d), then 1; otherwise, 0. Refer to Equations 16-19 for all other explanatory 
variables. The dependent variable was defined as the difference between VRT and FP in terms of 
yields, N rates, NR, and NPU: 

𝑌𝑌Δ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑌𝑌𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖 − 𝑌𝑌𝐹𝐹𝐹𝐹(24) 
𝑁𝑁Δ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖 − 𝑁𝑁𝐹𝐹𝐹𝐹 (25) 
𝑁𝑁𝑁𝑁Δ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑁𝑁𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖 − 𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹(26) 
𝑁𝑁𝑁𝑁𝑁𝑁Δ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖 − 𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹(27) 

where YΔ is the mean difference in cotton lint yields (kg ha−1), NΔ represents the mean 
difference in total N rates (kg ha−1), NRΔ is the mean difference in net returns ($ ha−1), and 
NPUΔ is the mean difference in NPU efficiencies, each between VRT technology treatment 2 or 
3 and FP by the dth sub-plot, ith treatment, jth replication, kth location, and tth year. 

The manner in which Equations 20-23 were estimated did not take the FP sub-plot soil 
explanatory variables into consideration. If the soil characteristics differ from the optical sensing 
and VRT treatment sub-plots, the integrity of the model may be compromised and what is being 
measured may not be accurate. To account for this, Equations 20-23 were estimated using a 
restructured database where a balanced set of replicates for the FP and VRT treatments were 
used. For example, if the soil texture differed across field 1, replication 1, and sub-plot 1 in 
treatment 2 versus sub-plot 1 in treatment 1, Figure 1, then the observation was omitted from the 
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dataset; if not, the original observation was used. The models in Equations 20-23 were estimated 
using the original and restructured datasets and the outputs were evaluated using AIC and BIC 
statistics to choose the better fitting model.  The number of observations omitted ranged from 42 
to 105 depending on the variable.  

The models were checked for multicollinearity by estimating a regression using SAS 9.2 
(PROC REG) and the VIFs. The random effects listed for Equations 16-19 apply here as well. 

Models in Equations 20-23 tested the null hypotheses that mean yields, N rates, net 
returns, and NPUs do not differ between VRT N management strategies and FP due to variability 
in soils characteristics and climate. Alternatively, soils and climate do generate differences using 
optical sensing and VRT when compared to FP. 
Risk Management Benefits 
First degree stochastic dominance of N management treatments was evaluated using the 
cumulative probability distributions of each treatment. The distributions were calculated by 
ordering the yields, N rates, NRs, and NPUs from lowest to highest by treatment. The histogram 
feature in Microsoft Office Excel 2010 was then used to count the number of observations in 
each pre-determined bin category for every treatment which were used to calculate the respective 
cumulative probability distributions.  

The Kolmogorov-Smirnov (KS) test is a nonparametric test based on the empirical 
cumulative distribution function and can be used to compare two distributions. The KS statistic 
D represents the goodness of fit and is based on the vertical difference between the two 
cumulative probability distributions (Chakravarti et al., 1967). The KS test was estimated using 
SAS 9.2 as a supplement to the first degree stochastic dominance results due to the criteria that at 
least one point has to be to the right to show dominance (all others could be equal). The null 
hypotheses for the KS tests are that the treatment distributions are similar. 

Risk management benefits were also assessed using the lower partial moment to evaluate 
how soil and weather factors affected the probability of the outcomes from the optical sensing 
and VRT N management treatments being different from the FP N management. The probability 
of a loss, n = 0, Equations 11-14, was measured using a mixed logistic model, and estimated 
using SAS 9.2: 

𝑌𝑌𝑌𝑌𝑌𝑌𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 
𝜇𝜇 + 𝛿𝛿𝑡𝑡 + 𝜆𝜆𝑘𝑘 + 𝜌𝜌(𝑗𝑗)𝑘𝑘 + (𝜆𝜆𝜆𝜆)𝑖𝑖𝑖𝑖 + 𝜔𝜔𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 +  𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝛾𝛾𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝜑𝜑𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 +
𝛽𝛽𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝜓𝜓𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝜒𝜒𝑘𝑘𝑘𝑘 + 𝜈𝜈𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

(28) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 
𝜇𝜇 + 𝛿𝛿𝑡𝑡 + 𝜆𝜆𝑘𝑘 + 𝜌𝜌(𝑗𝑗)𝑘𝑘 + (𝜆𝜆𝜆𝜆)𝑖𝑖𝑖𝑖 + 𝜔𝜔𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 +  𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝛾𝛾𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝜑𝜑𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 +
𝛽𝛽𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝜓𝜓𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝜒𝜒𝑘𝑘𝑘𝑘 + 𝜈𝜈𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

(29) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 
𝜇𝜇 + 𝛿𝛿𝑡𝑡 + 𝜆𝜆𝑘𝑘 + 𝜌𝜌(𝑗𝑗)𝑘𝑘 + (𝜆𝜆𝜆𝜆)𝑖𝑖𝑖𝑖 + 𝜔𝜔𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 +  𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝛾𝛾𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝜑𝜑𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 +
𝛽𝛽𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝜓𝜓𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝜒𝜒𝑘𝑘𝑘𝑘 + 𝜈𝜈𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

(30) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 
𝜇𝜇 + 𝛿𝛿𝑡𝑡 + 𝜆𝜆𝑘𝑘 + 𝜌𝜌(𝑗𝑗)𝑘𝑘 + (𝜆𝜆𝜆𝜆)𝑖𝑖𝑖𝑖 + 𝜔𝜔𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 +  𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝛾𝛾𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝜑𝜑𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 +
𝛽𝛽𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝜓𝜓𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝜒𝜒𝑘𝑘𝑘𝑘 + 𝜈𝜈𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

(31) 

where Yprob is the estimated probability of a VRT treatment producing lower yields than FP, 
Nprob is the estimated probability of the VRT treatment calculating higher N rates than FP, 
NRprob is the probability of VRT net returns being lower than FP, and the NPUprob is the 
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probability of VRT treatments calculating lower NPUs than FP. The binary dependent variables 
are defined in Table 5 as: 

If 𝑌𝑌𝑉𝑉𝑉𝑉𝑉𝑉 − 𝑌𝑌𝐹𝐹𝐹𝐹 < 0, then 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 = 1; else, 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 = 0; (32) 
If 𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉 − 𝑁𝑁𝐹𝐹𝐹𝐹 > 0, then 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 1; else, 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 0; (33) 
If 𝑁𝑁𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉 − 𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹 < 0, then 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 1; else, 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 0;(34) 
If 𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉 − 𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹 < 0, then 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 1; else, 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 0; (35) 
where 𝑌𝑌𝑉𝑉𝑉𝑉𝑉𝑉 is the VRT yield, 𝑌𝑌𝐹𝐹𝐹𝐹 is the current practice yield, 𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉 is the VRT N rate 

applied, 𝑁𝑁𝐹𝐹𝐹𝐹 is the current practice N rate applied, 𝑁𝑁𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉 is the VRT net return, 𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹 is the 
current practice net return, 𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉 is the VRT N use efficiency, and 𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹 is the current 
practice N use efficiency. If VRT lint yields, net returns, or NPU by treatment (i), replication (j), 
farm (k), year (t), and sub-plot (d) were less than the respective FP value, the dependent variable 
was represented by a 1; otherwise, 0. N rates applied were represented by a 1 if the VRT value 
was greater than FP; otherwise 0.  Equations 28-31 were estimated using the restructured 
database. Multicollinearity was checked for the models by estimating the VIF using SAS 9.2. 
The random variables for these models are specified for Equations 16-19. 

A proxy for the estimated marginal probability for each explanatory variable was 
calculated using the respective odds ratio parameter estimates from SAS 9.2 code ODDSRATIO. 
The proxy formula used was 100 × [𝑒𝑒𝑒𝑒𝑒𝑒(𝑂𝑂𝑂𝑂) − 1] where 𝑒𝑒𝑒𝑒𝑒𝑒 is the exponential and 𝑂𝑂𝑂𝑂 is the 
odds ratio parameter estimate.  

Odds ratios were estimated at the restructured database means of the significant variables 
using the following equation: 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = exp [𝜂𝜂0� + 𝜂𝜂1�𝑋𝑋1 + 𝜂𝜂2�𝑋𝑋2 + ⋯+ 𝜂𝜂𝑒𝑒�𝑋𝑋𝑒𝑒](36) 
where ODDs is the yield, N rate, net return, or NPU odds ratio, exp represents exponential, 𝜂̂𝜂 
represents the expected coefficient, X is the significant explanatory variable, and e  is the  last 
significant explanatory variable for that odds ratio. The odds ratios estimates are used to predict 
the probability of downside risk, measured by: 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑎𝑎 = 1) = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
1+𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

(37) 
where VRTprob is the probability of VRT lint yields, N rates, net returns, or NPU having a 
higher chance of being in the lower tail when compared to FP. 

The null hypotheses for Equations 28-31 are that N management strategy does not 
provide yields, N rates, net returns, and NPUs that differ due to soil properties and temperature. 
Alternatively, soils and temperature do have an effect on yields, N rates, net returns, and NPUs. 

 
DISCUSSION OF QUALITY ASSURANCE 

A total of 21 farm field sites and 29 total site-years were used for the demonstration of 
optical sensing and VRT management of N in the project (Table 6). The county/parish locations 
of the farmer fields in in Missouri, Mississippi, and Tennessee that were used in the project are 
presented in Figure 1. Soil, landscape, and weather of each farm field are summarized in Table 6. 
The soil, landscape, and weather variables used to describe the characteristics of each field site 
include elevation, soil texture, soil erosion potential, soil water holding capacity, organic matter, 
soil depth, and growing degree days. The summary of mean field characteristics suggest that a 
diversity of geographic locations within the southern MRB and a range of soil properties, 
landscape, and weather were attained for the demonstration of the optical sensing and VRT N 
management technologies.  

The lint yield and N fertilization data for each treatment in the project were used for a 
statistical and economic analysis developed in a Master’s thesis project by Melissa Stefanini: 
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Stefanini, Melissa Reynolds, "Effects of Optical Sensing and Variable Rate Technology 
on Nitrogen Fertilizer Use, Lint Yields, and Profitability in Cotton Production. " Master's 
Thesis, University of Tennessee, 2015 (http://trace.tennessee.edu/utk_gradthes/3515).  
 

The statistical and economic analysis by Ms. Stefanini was supervised Dr. James A. Larson and 
is the basis for this final project report. The data, methods, results, and conclusions of her 
analysis were critically reviewed and approved by her Master’s thesis committee that included 
three economists who were not co-principal investigators on the grant project. The thesis 
committee members were Dr. Christopher N. Boyer (Farm Management and Production 
Economist, University of Tennessee, Knoxville), Dr. Seong-Hoon Cho (Spatial Econometrics 
Economist, University of Tennessee, Knoxville), Dr. Dayton Lambert (Spatial Econometrics 
Economist, University of Tennessee, Knoxville), Dr. Xinhua (Frank) Yin (Systems Agronomist), 
and Dr. James A. Larson (Major Professor). 
 

FINDINGS 
Treatment Effects 

Using VIF as a measure of multicollinearity, all variables in Equations 16-19 were under a VIF 
value of five. Equations 16, 17, 18, and 19 were first estimated with only treatment as the 
explanatory variable. The added soil and climate characteristics generated models that were 
better fitting using the Akaike information criterion (AIC) and Bayesian information criterion 
(BIC) best fit criteria without compromising the integrity of the estimation, i.e., the treatment 
effect for each model did not change when soil properties and temperature were added. 
Lint Yields, N Rates, and Net Returns 
The estimated cotton lint yield model, Equation 16, produced a better fitting model based on best 
fit criteria (AIC and BIC), Table 7, than re-estimating the model without the location-treatment 
interaction term (Schabenberger and Pierce 2002). This indicated that the interaction term was 
significant. Neither estimation suggested treatment effects. A contrast comparison of the 
treatments indicated FP lint yields (treatment 1) were not significantly different than VRT 
treatment 2 or 3, Table 8. A Dunnett’s test with the interaction term indicated that treatment 3 
was significantly different than the control (FP) but there were no differences in either VRT 
treatment versus FP with the interaction term, Table 9.  

Soil and climate attributes were significant, Table 10. All else equal, soils with a higher 
percentage of organic matter, greater water holding capacity, coarser soil texture, or deeper soils 
were positively associated with lint yields. Layers of soil below the surface are more fertile, 
carrying more organic matter and N available to the plant (Tiessen, Cuevas, and Chacon 1994), 
and potentially increase yields. Warmer temperatures (i.e., higher growing degree days) were 
negatively associated with lint yields. Soil texture significantly impacted yields, meaning that 
coarser soils were positively related to yields.  

The mixed model for N rates applied, Equation 17, showed no significant differences 
between treatments but indicated that the variance between farms (𝜎𝜎𝜆𝜆2 = 242.33) was 
substantially higher than the variance within farms (𝜎𝜎𝜆𝜆2 = 86.83). This means that there was more 
N rate variation between farms than within farms. Model 2 was re-estimated without the 
interaction term to see if any effects were being masked, and a Dunnett’s test indicated that the 
VRT treatment 3 was significantly different from the FP treatment, Table 9. Based on the 
model’s best fit criteria, Table 7, the interaction term was significant to the model.  

http://trace.tennessee.edu/utk_gradthes/3515
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Estimates of VRT treatments (2 and 3) versus FP by location revealed masked treatment 
effects. Results demonstrated treatments 2 and 3 had significantly lower N rates applied in 
Lauderdale, TN, Gibson County, TN, and Middle Tensas Parish, LA, using a Bonferroni 
correction of 0.0047. Northern Leflore County, MS, had N rates lower than FP for only treatment 
2. Northern Madison County, TN, and both the northern and southern locations in the Tensas 
Parish, LA, had estimated N rates that were significantly lower using FP than either VRT 
treatment (2 and 3). Adams County, MS, experienced lower N rates with FP than VRT treatment 
3, Table 8.  

The current FP was to apply less N in the locations where FP was significantly lower than 
VRT by respective state. Tennessee and Louisiana fields have less organic matter as a percentage 
of the soil where N rates were lower using FP. This could potentially mean that optical sensing 
of the plant canopy was associated with low organic matter areas in the field and applied more N 
to the soil. Organic matter, however, was not significant to the N rate model, Table 10. Holding 
all else constant, soils that were more erodible or had warmer temperatures were positively 
associated with N rates. All else equal, more erodible soils or warmer average temperatures had 
more applied N. Warmer temperatures are correlated with less precipitation (Madden and 
Williams 1978) and fields with these conditions may get more wind exposure, erosion, and have 
the potential to lose applied N.  Holding all else constant, fields at higher elevations or with 
coarser soil textures were negatively related to N rates. 

On average, farms requiring significantly higher VRT N rates relative to FP (northern 
Madison County, TN, Adams County, MS, and the northern and southern Tensas Parish 
locations, LA) had lower elevations, had higher SEI, higher percentages of organic matter, 
deeper soils, and warmer temperatures than those that had lower VRT N rates (middle Tensas 
Parish, LA, Gibson and Lauderdale Counties, TN, and northern Leflore County, MS), Table 11. 
Fields with more erodible soils and warmer temperatures likely require more N because they 
have the potential to lose N more easily. Fields requiring significantly lower N rates using VRT 
compared to FP were on average at higher elevations and had lower SEI indexes, lower water 
holding capacity, lower percentage organic matter, shallower soils, and cooler temperatures.  

The net returns Equation 18 estimated with and without the interaction term identified 
significant treatment differences between net returns, Table 12. Estimating the difference 
between treatments by farm, however, indicated no treatment differences at Bonferroni 
correction of 0.0047, Table 8. A Dunnett’s test showed net returns to be different between VRT 
treatment 2 and FP when estimating Equation 18. When re-estimating the model without the 
interaction term, the Dunnett’s test revealed significant differences between VRT treatment 2 
versus the control (FP) and VRT treatment 3 versus control, Table 9.  

All else equal, coarser soil textures, soils with a higher percentage of organic matter, or 
deeper soils were positively associated with net returns. The significant and positive soil texture 
coefficient estimate indicates that coarser soil textures had a positive effect on net returns. 
Greater water holding capacity was negatively associated with net returns. Ceteris paribus, fields 
with higher percentages of organic matter, coarser soils, or deeper soils had positive associations 
with yields and, in turn, profits. In the same respect, fields at higher elevations or that were 
warmer had negative associations with yields and profits.  
N Production Use Efficiency 
Results from the NPU mixed model, Equation 19, indicated that the treatment means were not 
significantly different, Table 12. The variation between farms (𝜎𝜎𝜆𝜆2 = 131.75) was greater than 
within the farms (𝜎𝜎𝜆𝜆2= 0.92). Equation 19 was re-estimated without the interaction term to 
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determine if farm effects were being masked and results indicated treatment differences, Table 
12. NPU means were significantly different between both VRT treatments and the control FP 
treatment as estimated by the Dunnett’s test, Table 9. The AIC and BIC criteria indicated that the 
original model was a better fit than dropping the interaction term, Table 7. Thus, the interaction 
term was significant to the model but was masking the treatment effect.  

Estimating the mean treatment differences at the farm level resulted in significantly 
higher FP N use efficiency than either of the VRT treatments in northern Madison County, TN, 
and northern Tensas Parish, LA. Adams County, MS, experienced a FP N use efficiency that was 
significantly higher than VRT treatment 3. These three farms experienced more efficient N use 
when determining their own rates than when using VRT. No farms exhibited more efficient N 
use with VRT when compared to FP, Table 8.  

Elevation, water holding capacity, organic matter, soil texture, soil depth, and growing 
degree days had significant effects on NPU, Table 10. Fields at higher elevations, with greater 
water holding capacity, or warmer temperatures, all else equal, were negatively associated with 
N use efficiency. Fields with a higher percentage of organic matter, coarser soil textures, or 
deeper soils had positive effects on N use efficiency. Soil texture also had a positive association 
with NPU, meaning that coarser soils in reference to sand promoted more efficient use of N. 
Holding all else constant, soils with relatively more organic matter, coarser soils, and deeper 
soils were associated with low enough N rates to increase N efficiency. Ceteris paribus, high 
elevation fields with greater water holding capacity, or warmer average days had a negative 
relationship with N use efficiency. Soils with these conditions may have higher tendencies for 
erosion and, therefore, may require more N applied. 

Soil, Landscape, and Weather Impacts on Mean Treatment Differences 
The VIF test for multicollinearity indicated all factors were under a value of five when estimated 
for equations 20-23. In each case, the model estimated from the restructured database was the 
better fitting model than using the entire database, i.e. had lower AIC and BIC values. 
Lint Yields, N Rates, and Net Returns 
Several soil attributes were statistically significant in the lint yield mean difference model, 
Equation 20 and Table 13. Soils classified as having a silt or loam soil texture relative to sand 
(intercept) were negative in relation to VRT yields when compared to FP. Deeper soils or more 
erodible soils were positively associated with VRT yields relative to FP. Higher temperatures or 
fields at higher elevations had a negative relationship with VRT yields compared to FP. Coarser 
soils, fields at higher elevations, or fields in locations with warmer temperatures were negatively 
associated with VRT yields when compared to FP, all other factors being equal. Thus, VRT may 
not be a good option on fields with these conditions. Soils that have a higher percentage of 
organic matter, deeper soils, and more erodible soils had positive associations with lint yields 
using VRT compared to FP, all else equal. This could be due to organic matter carrying natural 
N and has nutrients available to the plant (Tiessen, Cuevas, and Chacon 1994). Soils with a 
higher erosion index had a positive association to lint yields potentially because more N was 
applied, Table 13.  
Many of the soil attributes had a significant impacts on N rate differences between technology 
generated N rates and FP, Equation 21. N rate differences were significantly and negatively 
associated with sand (intercept), silt, or loam soil textures and positively with clay when VRT 
was compared to FP. Finer textured soils tend to need more N applied due to the lack of natural 
N while coarser soils need less applied N. Greater water holding capacity, more erodible soils, 
and higher growing degree days were positive in relation to VRT N rates. Deeper soils had a 
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negative association to VRT N rate compared to FP. All else equal, more N was applied using 
VRT compared to FP on fields with a greater water holding capacity, more erodible soil, or 
warmer temperatures. The estimated VRT treatment 3 dummy variable indicated significantly 
higher N rates, indicating that Greenseeker™ plus YMIS calculated higher mean N rates than FP.  
While soil attributes had significant impacts on mean differences in lint yields and N rates 
between N management strategies, they had less of an impact on net returns Equation 22. Silt 
soil textures had a negative impact on VRT net returns when compared to FP. As noted above, 
the silt texture also had a negative association to VRT yields and VRT N rates. The N rates 
savings may not have been enough to increase the net return for that soil type, holding all else 
constant. The soil texture reference variable sand, however, experienced positive associations 
with VRT net returns compared to FP, Table 13. A higher percentage of organic matter or deeper 
soils were positively associated with VRT net returns compared to FP.  Higher elevation fields 
had a negative association with VRT net returns compared to FP. Higher elevations may be more 
exposed to wind and rain and therefore have more erosion. Higher temperatures had a negative 
relation to VRT net returns. All else equal, warmer climates were negatively associated with 
VRT yields compared to FP, positively with N rates and, thus, negatively with NR. Warmer 
temperatures are correlated with dryer climates, particularly during the summer months in the 
United States (Madden and Williams 1978), which may cause the need for higher N rates. N 
applied was not high enough to increase yields such that net returns were increased.  
N Production Use Efficiency 
Results from Equation 23 indicated that soil and climate characteristics play a significant role in 
N use efficiency. NPU was negatively associated with clay soil texture compared to sand and 
positively associated with loam soil texture.  Soils that were richer in organic matter had a 
positive association with VRT N use efficiency compared to FP. More erodible soils or fields 
with warmer temperatures had negative associations to VRT N efficiency. While a higher 
percentage of organic matter had a positive relation to N use efficiency of VRT compared to FP, 
all else equal, the more erodible fields and warmer climates had negative associations to N use 
efficiency, likely due to the need for higher N rates. 
 

Risk Management Benefits 
Stochastic Dominance 
Results presented above for mean differences among the N management treatments are 
applicable to risk-neutral producers who makes decisions based on expected net returns. Risk 
averse farmers are not only concerned about expected net returns but also the dispersion of net 
returns—particularly net returns that fall below the expected value. The cumulative probability 
distributions for net return displayed at the sub-plot level and at the location-year (also referred 
to as field) level in Figure 2 were used to evaluate the risk management benefits of optical 
sensing and VRT for N management in cotton. In addition, cumulative probability distributions 
for yield, N rate, and N use efficiency at the sub-plot and field levels are presented in Figures 3-
10.  

At the sub-plot level, the net return distributions crossed when all treatments were 
examined together, but treatment 2 compared to FP exhibited first degree stochastic dominance, 
Figure 7. However, the net return distribution for treatment 2 was not first degree stochastic 
dominant over the FP at the field level. Thus, a farmer using first degree stochastic dominance as 
the decision rule for field level data could not make a decision on whether to adopt VRT based 
on first degree stochastic dominance criterion. At the sub-plot and field levels, yield, N rate, and 
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NPU distributions crossed at least once, indicating that VRT did not provide consistently higher 
yields, lower N rates, or higher NPU across the different field locations in the study, respective 
Figures 3-4, 5-6, and 9-10. 

Based on the mean-variance rule, the farmer could not make a decision as the highest 
mean net return occurred in treatment 2 and the lowest variance occurred in treatment 3, Table 
14. Further investigation was needed to know if the treatments were significantly different. The 
lint yield KS statistics indicated that the treatments did not differ at the sub-plot or field level, 
Table 15. Both VRT net return distributions were respectively different when compared to the 
FP at the sub-plot level. When tested to see if the two VRT treatments were different from each 
other, the KS results indicated that net return distributions were not significantly different 
between the two VRT treatments at both the sub-plot and field levels. 
Downside Risk – Lint Yields, N Rates, and Net Returns 

When equations 28-31 were tested for multicollinearity, the VIF for each variable was 
under a value of five. The significant explanatory variables were evaluated at their means to 
determine the potential risk management benefit of using VRT. Table 16 includes the estimated 
coefficients for Equations 28-31. Marginal effects of soil characteristics and weather on VRT 
risk management benefits are shown in Table 17. 

The significant soil and weather factors associated with lint yields in the estimated logit 
model were silt soil texture (Pr≤0.01), loam soil texture (Pr≤0.01), water holding capacity 
(Pr≤0.10), organic matter (Pr≤0.05), soil depth (Pr≤0.05), and growing degree days (Pr≤0.01). 
Yield marginal changes indicate coarser soils or warmer temperatures are positively attributed 
with the probability of lower VRT yields than FP. Greater water holding capacity, higher 
percentages of organic matter, or deeper soils are negatively associated with the probability of 
lower VRT yields than FP. All else equal, increases in organic matter could potentially lower the 
probability of yield loss enough to warrant VRT adoption for some.    

Odds ratios were evaluated at the means of the significant variables in the cotton lint 
yield model for the two significant soil texture variables, Equation 36. At the silt soil texture, the 
lint yields odds ratio indicated that VRT treatment yields were 3.6 times as likely to be lower 
than FP yields under these conditions. There was a 78.11% probability of VRT yields being 
lower than FP yields, Equation 37. A field with a silt soil texture had a high probability of lower 
yields with VRT and could potentially benefit from a keeping the farmer’s current practice N 
rate. 

Estimating the odds ratio at the loam soil texture indicated that VRT treatments on loam 
fields were 2.3 times as likely to have lower yields than with FP. Evaluating Equation 36 for the 
loam soil texture, there was a 69.44% probability that VRT yields were lower than FP yields. 
Loamy fields with the same mean soil conditions and climate would also likely benefit from FP 
in terms of yields.  
The significant soil and weather variables related with N rates in the estimated logit model were 
silt soil texture (Pr≤0.01), loam soil texture (Pr≤0.01), elevation (Pr≤0.01), water holding 
capacity (Pr≤0.01), treatment 3 dummy variable (Pr≤0.01), and soil erosion index (Pr≤0.01). 
Evaluating the marginal changes in soil and weather attributes at the means indicated that coarser 
soils or soils at higher elevations are negatively associated with the probability that FP generates 
lower N rates than VRT, Table 17. Greater water holding capacity, more erodible soils, or 
treatment 3 were positively associated with the probability that FP generates lower N rates than 
VRT.  
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N rate odds ratios were estimated at the means of the significant variables for the soil textures silt 
and loam. N rate odds ratio for silt indicated that FP N rates were 0.32 times as likely to be lower 
than VRT N rates. There was a 24.21% probability that the FP N rates were lower than VRT N 
rates. Silt fields with the mean soil conditions would likely benefit from VRT in terms of N cost 
savings and environmental benefits due to the 75.79% chance of VRT generating lower N rates 
than FP.  
Evaluating the odds ratio at the loam soil texture indicated that the FP N rates were 0.27 as likely 
to be lower than the VRT N rates, Equation 36. The probability of FP N rates being lower than 
VRT N rates, Equation 37, was 26.68%. Under these conditions, there was a relatively small 
chance that FP was applying less N than the VRT technology calculated as necessary. A field 
with these conditions may benefit from VRT use for environmental benefits.  
Parameter estimates from the net returns logit model Equation 30 are in Table 16. The significant 
soil and weather variables associated with net returns in the estimated logit model were silt soil 
texture (Pr≤0.01), loam soil texture (Pr≤0.06), organic matter (Pr≤0.10), and growing degree 
days (Pr≤0.01). Evaluating soil property and weather marginal changes in relation to net returns 
indicated that coarser soil textures and warmer temperatures were positively associated with the 
probability of lower net returns using VRT compared to FP, Table 17.   
Evaluating the NR odds ratio at the means of the significant variables for the soil texture silt 
indicated that VRT net returns were 3.3 times as likely to be lower than FP net returns There was 
a 76.6% chance that VRT had lower net returns than FP. Field with these conditions would not 
benefit from VRT adoption in terms of profits. 
 The odds ratio evaluated at the loam soil texture indicated that VRT net returns were 3.0 times 
as likely to be less than FP. The probability of downside risk under these conditions was 74.91%, 
Equation 27. Fields with these soil conditions would be better suited to continue using the 
current FP N management in place.  
Downside Risk – N Production Use Efficiency 
Significant soil and weather variables related with N production use were sand soil texture 
(Pr≤0.10), clay soil texture (Pr≤0.01), loam soil texture (Pr≤0.05), soil depth (Pr≤0.05), soil 
erosion index (Pr≤0.05), and growing degree days (Pr≤0.01).The marginal changes in soil 
properties and weather in relation to NPU indicated that finer soil textures or warmer 
temperatures were positively associated with the probability of a lower VRT N use efficiency 
compared to FP, Table 17. Deeper soils or coarser soil textures were negatively related to the 
probability of lower N use efficiency of VRT compared to FP.  
 NPU efficiency odds ratio estimated at the clay soil texture indicated that VRT N use 
efficiency was 79.9 times as likely to be lower than FP. There was a 98.76% probability of VRT 
NPU being lower than FP, Equation 37. Using VRT on clay fields with the mean depth, erosion 
index, and temperature such as these would be inefficient in terms of N use relative to the FP.  
 At soil texture loam the odds ratio indicated that VRT N use efficiency was 0.5 times as 
likely to be lower than FP. Evaluating Equation 37 at this odds ratio, there was a 32.08% 
probability that VRT N efficiency was lower than FP on loam fields with these conditions. This 
means there is a 67.92% chance of higher N use efficiency using VRT compared to FP.  

 
CONCLUSIONS AND RECOMMENDATIONS 

Two main conclusions were drawn from this study. First, the real-time optical sensing 
and variable rate technologies (VRT) treatments indicated some N savings but were not more 
profitable on average compared to the existing farmer practices. There was some evidence of 
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significantly higher mean net returns using optical sensing and VRT to manage N compared to 
the current practice at the sub-plot level, but the field level showed no difference. Second, there 
were risk management benefits identified at the field level using optical sensing and VRT 
compared to the farmer practice. Fields with lower lint yields were found to likely produce 
higher net returns with optical sensing and VRT than with the farmer practice which may help 
farmers manage risk on fields with this characteristic, Figure 5. 

Other inferred conclusions that can aid in the cotton farmer’s decision making are: 1) the 
VRT treatments may not apply enough N to significantly increase lint yields; 2) four locations 
realized significantly lower N rates applied in at least one form of VRT N fertilizer application 
(Tensas Middle, LA, Gibson, TN, Lauderdale, TN, and Leflore, MS) and four had higher N 
rates(Madison North, TN, Adams, MS, Tensas North, LA, and Tensas South, LA), Table 11; and 
3) N rates were not low enough to increase N use efficiency and encourage environmental 
benefits. The farm fields used in this demonstration project represented a range of soils and 
climates in the MRB, Table 6; however, the fields tested in the experiments likely had limited 
enough spatial and temporal variability within the field that VRT treatments did not make a 
difference in field level mean net returns.  

Cotton farmers in Tennessee, Louisiana, Mississippi, and Missouri states can use this 
information as a decision aid when considering switching to VRT. Mean net returns were 
positive across locations (for all technologies), Table 2, but N savings and EQIP incentive 
payments did not offset the cost of the technology enough to justify the adoption of VRT based 
on mean net returns alone in the MRB states. Policy makers are also interested in these results as 
EQIP payments did not increase net returns enough to justify the adoption of VRT. This can be 
considered when deciding nutrient management cost-share payments for the future in Tennessee, 
Mississippi, Missouri and Louisiana. 
Areas for potential further research on net returns with this data include incentive payments and 
price sensitivity. Determining the precision nutrient management EQIP payment that would 
make optical sensing and VRT more profitable than FP by state would be of interest to policy 
makers.  Additional studies on fields with more in field spatial variability could also be evaluated 
to further identify the conditions under which optical sensing a VRT may provide profitability, 
risk management, and nitrogen production use efficiency benefits. 
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APPENDICES 

Tables 

Table 1. Literature review summary 

    
Profitability Excess N 

Risk Management 
Benefits 

Author Year Fertilizer Crop VRT URT FP VRT URT FP VRT 
Watkins, Lu, and Huang 1998 N seed potato $1 per ha $2 per ha  same to reduced same to reduced   
Roberts et al. 2002 N corn    reduced more Reduced   
Hu et al. 2007 N rice $63 to $82 per ha   +NUE    
Peng et al. 2006 N rice similar to higher  X - N/+ NUE  X  
Lambert, Lowenberg-DeBoer, 
and Bongiovanni 

2004 N corn 0 or $1 to $2 per ha X      

Wang et al.  2003 N corn ++ X  reduced X   
Maine et al.  2010 N corn ++ overall X      
Biermacher et al.  2006 N winter wheat $21.80 to $24.30 

per ha 
X  N by -59% by -82% X   

Biermacher et al.  2009 N winter wheat $16 per ha $9 per ha      
Butchee, May, and Arnall 2011 N spring wheat    -22.4 kg N per ha  X  

Ortiz-Monasterio and Raun 2007 N spring wheat $56 per ha  X -69 kg N per ha  X  

Raun et al.  2002 N winter wheat $4 to $5 per ha   NUE +15%    
Raun et al.  2005 N winter wheat    NUE +15%    
Scharf et al.  2011 N corn $42 per ha X  - 15 kg N per ha X   
Lowenberg-DeBoer 1999 P&K corn*       X 
Isik and Khanna 2003 N&P corn       X 
Larson, English, and Roberts 2002 N corn       X 
*Corn-soybean or corn-soybean-wheat rotation. 
X represents VRT in relation to either URT or FP. 
++ represents that VRT was overall more profitable than either URT or FP. 
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Table 2. Mean cotton lint yields (kg ha−1), N rates (kg ha−1), NPU efficiency, and  
net returns ($ ha−1) by location and year 

County/Parish State Year N 

Cotton Lint 
Yield  

(kg ha−1) 
N rates 

(kg ha−1) 
NPU 

Efficiency 
Net Returns 

($ ha−1) 
Research Station   LA 2012 89 941.14 101.65 9.44 1476.63 
Tensas Parish Middle  LA 2012 90 1742.67 122.48 14.63 2787.45 

  
2013 90 1850.73 142.23 13.06 3162.93 

Tensas Parish Middle 
low 

LA 2014 90 1524.16 113.43 14.00 2675.18 

Tensas Parish North  LA 2012 90 2307.38 102.33 28.33 3789.34 

  
2013 100 1329.18 132.35 10.97 2235.61 

Tensas Parish South  LA 2012 90 1197.45 135.29 9.07 1835.10 

  
2013 90 1980.03 109.57 18.23 3463.60 

  
2014 80 1755.68 125.27 13.92 3077.85 

Dunklin   MO 2013 12 887.22 99.29 9.29 1484.72 
New Madrid East  MO 2012 24 1318.00 75.12 17.68 2151.04 
New Madrid North  MO 2012 33 1247.82 75.62 16.67 2031.05 
New Madrid South  MO 2012 12 1042.00 83.33 12.55 1665.04 
Pemiscot North  MO 2013 6 1313.41 91.08 15.46 2273.55 
Pemiscot South  MO 2013 6 1180.49 103.58 11.58 2007.44 
Adams  MS 2012 107 1010.71 78.49 14.86 1647.00 
Leflore East  MS 2014 35 1761.77 143.45 12.33 3047.17 
Leflore North  MS 2013 60 1742.37 119.19 15.23 3013.67 
Leflore South  MS 2013 48 1952.37 142.55 13.93 3437.51 
Carroll   TN 2014 72 836.96 93.32 9.25 1451.90 
Gibson   TN 2011 72 760.35 179.23 4.82 1570.31 

  
2012 88 1160.80 93.96 13.00 1849.92 

Lauderdale   TN 2012 90 1485.86 114.22 13.09 2369.38 

  
2013 90 869.03 98.29 23.37 1474.07 

  
2014 90 722.41 92.69 8.28 1242.81 

Madison North  TN 2012 72 959.41 88.81 11.77 1543.11 

  
2013 72 1168.91 72.79 55.53 2068.93 

Madison South  TN 2014 72 1189.96 91.29 13.61 2104.08 
Tipton   TN 2012 72 1286.63 93.94 13.93 2077.64 
N represents the number of observations. 
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Table 3. 2013 Ownership Cost Budgets for Greenseeker™, Yield Monitor Information 
Systems (YMIS), a Computer, and Technical Assistance 

 

 Green-
seeker™ YMIS Computer 

Technical 
Advice10 

Ownership Cost 
 

Dollars Dollars Dollars 
Cost by 

State Dollars 
Capital Recovery (annual) 2  $13,622.38   $ 3,232.99   $ 224.90  

 
 

 
Purchase/list price1,6,7 (2013 dollars) $60,684.08  $14,421.08  $1,001.24  

 

 

 
Salvage value3 (2013 dollars)  $      48.27   $      34.52   $     -    

 
 

 
Capital recovery factor 0.22 0.22 0.22 

 
 

 
Real interest rate4 (%) 4% 4% 4% 

 
 

 
Useful life (years)5 5 5 3 

 
 

 
Average hours of use per year5 300 600 

  
 

Taxes, Insurance, and Housing2  $    606.36   $    143.87   $   10.01  
 

 

 
Interest rate (%) 2% 2% 2% 

 
 

Repairs and Maintenance2  $42,478.86   $11,536.86   $     0.00 
 

 

 
Repairs as % of list price3 (%) 70% 80% 

  
 

 
Useful life5 (hours) 1500 3000 

  
 

Hectares per Hour2 16.86 1.82 
  

 

 
Speed (km hour−1)3 10.5 4.5 

  
 

 
Width (m)3 24.7 5.7912 

  
 

 
Meters per kilometer (m km−1) 1,000 1,000 

  
 

 
Efficiency (%)3 65% 70% 

  
 

 
Meters2 ha−1 10,000 10,000 

  
 

Hours ha−1 0.059 0.548 
  

 

Cotton Enterprise Size8 
    

 

 
Tennessee farm (ha) 

  
279.42  $  0.28   

 
Mississippi farm (ha) 

  
231.10  $  0.34   

 
Louisiana farm (ha) 

  
196.47  $  0.40   

 Missouri farm (ha)   347.08  $  0.23   
Total ownership costs hour−1  $    37.81   $        4.97   $   78.31  

 
 

Total costs (2013 dollars ha−1)  $      2.25   $        2.73  
  

$  12.63 
Greenseeker™ costs * 1.029 $       2.29     
1Includes $500 (684.08 in 2013 dollars) to retrofit (Larson et al. 2005) 

2Formula given in Boehlje and Eidman (1984) 

3ASABE Standards (2011) 

4American Agricultural Economics Association (2000) 

5Gandonou et al. (2006) 

6List Price for Yield Monitoring is the average of Case IH and John Deere plus $500 (684.08 in 2013 dollars) (Larson et al. 
2005) 

7Average cost for desktop computer and color printer (informal survey 2014) 

8Average area (ha) in cotton on a farm categorized as a cotton farm per state as given by 2012 Census of Agriculture (USDA 
2012) 

9Greenseeker™ multiplied by 1.02 to account for N rich strip calibration (Biermacher et al. 2009a). 
10Mooney et al. 2010 
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Table 4. Partial budget summary for VRT treatments: Greenseeker™ (treatment 2) 
and Greenseeker™ plus YMIS (treatment 3) 

Net Return Component Treatment 2 Treatment 3 
Revenue ($ ha−1) 

  
 

Cotton Revenue ($ ha−1)  $       2,530.27   $       2,509.08  

  
Cotton lint price1 ($ kg−1)  $              1.86   $              1.86  

  
Cotton lint yield1 (kg ha−1) 1360.36 1348.97 

 
2013 EQIP Payment ($ ha−1) 

 
  

  
Tennessee  $             63.99   $             63.99  

  
Louisiana  $             66.53   $             66.53  

  
Mississippi  $             66.28   $             66.28  

  
Missouri  $             33.61   $             33.61  

     
     Costs ($ ha−1) 

  
 

N applied ($ ha−1)  $             66.55   $             71.51  

  
Urea N price1 ($ kg−1)  $               0.93   $               0.93  

  
In-season N rate1 (kg ha−1) 71.56 76.89 

 
N fertilizer application3 ($ ha−1)  $               6.60   $               6.60  

 
Information/operating costs2 ($ ha−1) 

 
  

Tennessee  $               2.29   $             12.91  

  
Louisiana  $               2.29   $             13.03  

  
Mississippi  $               2.29   $             12.97  

  
Missouri  $               2.29   $             12.86  

     Net Returns ($ ha−1) 
 

  

 
Tennessee  $       2,518.82   $       2,508.20  

 
Louisiana  $       2,521.36   $       2,510.62  

 
Mississippi  $       2,521.11   $       2,510.43  

 
Missouri  $       2,488.44   $       2,477.87  

1Prices, yields, and N rates are averages of the years included in this study (2013 real $). 
2Operating costs for treatment 3 include cost of computer and technical assistance (see table 3). 
3N fertilizer application is the labor cost for dry bulk only. 
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Table 5. Dependent and explanatory variable names, definitions, and means  

Variable Name Variable Definition Mean Min Max N 
Dependent Variable 

 
   

Y Cotton lint yields (kg ha−1) 1347.07 133.25 2585.06 1942 

N Total nitrogen rates applied (kg ha−1) 109.74 33.59 252.83 1953 

NR Net returns ($ ha−1) 2268.57 239.25 4232.64 1942 

NPU Nitrogen production use efficiency (Y/N) 13.43 0.61 119.56 1942 

Y∆ VRTi-FP yields (kg ha−1) 37.05 -1941.20 2077.53 1263 
N∆ VRTi-FP N rates (kg ha−1) 4.95 -67.59 125.36 1263 
NR∆ VRTi-FP NR ($ ha−1) 102.37 -3630.32 3668.06 1263 
NPU∆ VRTi-FP NPU  -3.21 -96.52 20.18 1263 
Yprob If VRTi<FP, 1; otherwise, 0 0.45 0 1 1263 
Nprob If VRTi>FP, 1; otherwise, 0 0.55 0 1 1263 
NRprob If VRTi<FP, 1; otherwise, 0 0.37 0 1 1263 
NPUprob If VRTi<FP, 1; otherwise, 0 0.47 0 1 1263 

   
   

Explanatory Variables 
 

   

Treatment  Treatment dummy  
 

  

 
1 Farmer practice 

 
  

 
2 VRT GreenseekerTM 

 
  

 
3 VRT GreenseekerTM + yield monitor information systems (YMIS)1 

Soil texture index Soil texture ranked by coarseness (4 being the 
coarsest) 

2.13 1 4 1935 

 
1 Clay 

 
   

 
2 Silt 

 
   

 
3 Loam 

 
   

 
4 Sand1 

 
   

Elevation  Vertical distance above sea-level (meters) 64.40 21.64 136.36 1953 
Water holding 
capacity2 

Water holding capacity (cm cm−1) – “the 
amount of water that an increment of soil 
depth, inclusive of fragments, can store that is 
available to plants” 

0.21 0.08 0.23 1935 

Organic matter2  Organic matter (%) – “the amount by weight 
of decomposed plant and animal residue 
expressed as a weight percentage of the less 
than 2 mm soil material” 

1.84 0.52 2.50 1935 

Soil erosion index  Soil erosion index  7.35 0.21 39.13 1935 
Depth2  Soil depth (cm) – “Distance from the top of 

the soil to the base of the soil horizon” 
21.53 8.00 64.00 1935 

Growing degree 
days  

Seasonal growing degree days (Celsius) 1574.3 1025.93 1943.27 1953 

Treatment 3  If treatment 3 (GreenseekerTM plus YMIS), 
then 1; otherwise, 0 

0.33 0 1 1953 

1Reference variable  
 

   
2Definition taken directly from SSURGO (USDA 2014f).     
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Table 6. Mean elevation (meters), soil texture(s), mean SEI, mean water holding capacity (cm cm−1), mean organic matter (%), 
mean soil depth, and mean growing degree days (Celsius) by county/parish and state 

County/Parish State N 
Elevation 
(meters)4 

Soil 
Texture(s)2 SEI 

Water Holding 
Capacity  

(cm cm−1)1 
Organic 

Matter (%)1 
Soil Depth 

(cm)1 
Growing Degree 
Days (Celsius)3 

Research Station LA 90 21.64 Sand 7.53 0.22 2.20 18.00 1938.34 
Tensas Middle LA 180 21.64 Silt 3.59 0.21 2.23 22.29 1846.54 
Tensas Middle low LA 90 21.64 Silt 3.69 0.22 2.20 28.00 1346.87 
Tensas North LA 190 23.46 Clay; Silt 3.15 0.18 2.15 15.96 1830.56 
Tensas South LA 270 21.64 Clay; Silt 7.26 0.22 2.20 28.00 1731.71 
Dunklin MO 12 82.09 Loam; Sand 0.31 0.09 1.01 19.67 1439.52 
New Madrid East MO 24 92.99 Loam; Sand 2.06 0.21 1.35 22.75 1682.86 
New Madrid North MO 33 89.74 Loam 1.92 0.21 1.23 19.61 1682.86 
New Madrid South MO 12 89.74 Sand 1.00 0.17 0.75 20.00 1682.86 
Pemiscot North MO 6 85.12 Silt; Sand 2.53 0.19 1.13 17.33 1377.81 
Pemiscot South MO 6 83.86 Silt 3.85 0.23 2.00 18.00 1377.81 
Adams MS 107 55.17 Silt 6.87 0.22 1.89 27.03 1856.31 
Leflore East MS 

35 
43.07 Clay; Silt; 

Loam 
6.91 0.20 1.49 20.00 1211.69 

Leflore North MS 60 43.07 Silt; Loam 6.59 0.19 1.75 23.00 1648.79 
Leflore South MS 48 43.07 Silt; Loam 6.86 0.20 1.60 21.54 1648.79 
Carroll  TN 72 123.22 Silt 11.41 0.21 1.45 17.49 1025.93 
Gibson  TN 160 130.72 Silt 19.60 0.22 1.38 21.32 1464.16 
Lauderdale  TN 270 90.32 Silt 3.22 0.21 1.93 13.18 1337.34 
Madison North TN 144 117.25 Silt 16.12 0.22 1.33 20.06 1404.96 
Madison South TN 72 136.36 Silt 12.79 0.22 1.41 18.72 1063.23 
Tipton  TN 72 89.70 Silt 5.02 0.22 1.25 40.51 1584.43 
1 Source: SSURGO (USDA 2014f). 
2 Source: Soil texture triangle (USDA 2014e). 
3 Source: PRISM (PRISM 2014). 
4 Source: National Elevation Data (U.S. Geology Survey 2014). 

N represents number of observations. 
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Table 7. Best fit criteria for treatment effect models, Equations 16-19 
 Yields N Rate NPU NR 
 With Without With Without With Without With Without 
-2 LL 27181.0 27187.8 17617.0 18274.3 12695.8 12886.7 29433.0 29435.2 
AIC 27195.0 27199.8 17625.0 18280.3 12709.8 12898.7 29447.0 29447.2 
BIC 27190.7 27196.1 17629.2 18283.5 12705.5 12895.0 29442.7 29443.6 
N used 1924 1924 1935 1935 1924 1924 1924 1924 
N represents number of observations. 
AIC is the Akaike information criterion, BIC is the Bayesian information criterion, and the -2LL is the -2 Log 
Likelihood. 
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Table 8. Treatment effect estimates of VRT treatments 2 and 3 versus FP by location on lint yield (kg ha−1),  
N rate (kg ha−1), NPU, and net returns (NR) ($ ha−1) 

  

  Cotton Lint Yield  
(kg ha−1) 

Total N Rates  
(kg ha−1) 

NPU Efficiency 
(kg kg-1) 

Net Returns 
($ ha−1) 

County/Parish State N 2 vs 1 3 vs 1 2 vs 1 3 vs 1 2 vs 1 3 vs 1 2 vs 1 3 vs 1 
Research Station   LA 30 211.71 271.85 37.54 32.26 -1.11 -0.33 339.48 446.59 

  
 (284.71) (237.62) (17.91) (16.69) (3.66) (2.76) (471.11) (394.46) 

Tensas Middle  LA 60 -26.53 -42.19 -26.10 -14.23 2.91 1.18 73.13 15.77 

  
 (183.39) (171.05) (21.71)* (13.73)* (2.95) (2.06) (335.51) (313.35) 

Tensas Middle low  LA 30 67.05 19.65 -45.90 -50.52 5.45 5.72 276.87 195.90 

  
 (103.57) (126.16) (5.90) (6.06) (1.21) (1.40) (190.26) (232.52) 

Tensas North  LA 60 153.95 120.37 79.22 84.33 -17.15 -17.91 163.19 90.22 

  
 (119.97) (181.58) (12.57)* (19.52)* (11.69)* (12.43)* (226.68) (332.13) 

Tensas South  LA 90 234.03 219.22 9.50 24.69 1.50 -0.08 452.83 390.41 

  
 (593.14) (574.53) (16.89)* (24.76)* (4.93) (5.22) (1031.12) (1010.62) 

Dunklin   MO 4 -82.30 -92.51 -18.48 -23.80 0.95 1.88 -84.03 -94.68 

 
   (44.57) (73.65) (13.11) (21.10) (1.18) (3.39) (62.69) (136.49) 

New Madrid East  MO 8 -18.59 -27.52 -6.02 -3.78 1.33 0.67 8.23 -14.94 

 
   (37.84) (35.32) (6.69) (6.80) (1.43) (1.56) (59.65) (63.17) 

New Madrid North  MO 11 19.02 12.00 -3.97 -4.72 1.28 1.45 67.30 54.11 

 
   (71.34) (81.91) (9.26) (10.46) (2.27) (2.26) (121.03) (132.36) 

New Madrid South  MO 4 51.00 61.57 6.44 8.40 -0.29 -0.50 98.01 108.52 

 
   (26.14) (34.75) (7.94) (5.67) (1.53) (1.10) (60.66) (66.31) 

Pemiscot North  MO 3 55.27  -41.81  7.95  212.60  

 
   (129.95)  (8.40)  (4.06)  (250.70)  

Pemiscot South  MO 3 -20.94  -16.80  1.89  23.61  

 
   (288.35)  (16.95)  (3.07)  (510.74)  

Adams   MS 29 117.77 57.66 17.25 26.71 -6.74 -8.58 222.35 96.12 

  
 (58.26) (75.84) (39.40) (54.08)* (8.87) (11.30)* (27.51) (30.40) 

Leflore East  MS 17 20.10  17.38  -1.33  64.03  

  
 (306.27)  (6.85)  (2.09)  (559.30)  
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Table 8. Continued 

  

  Cotton Lint Yield  
(kg ha−1) 

Total N Rates  
(kg ha−1) 

NPU Efficiency 
(kg kg−1) 

Net Returns 
($ ha−1) 

County/Parish State N 2 vs 1 3 vs 1 2 vs 1 3 vs 1 2 vs 1 3 vs 1 2 vs 1 3 vs 1 
Leflore North  MS 20 -22.93 -54.22 -31.07 -14.47 4.16 2.04 81.82 -11.77 

  
 (54.67) (132.68) (18.95)* (25.57) (3.06) (3.82) (101.80) (236.09) 

Leflore South  MS 16 103.06 38.91 11.27 13.24 -0.14 -0.61 223.42 100.24 

  
 (98.79) (92.19) (18.12) (23.81) (2.18) (2.80) (177.21) (193.01) 

Carroll  TN 24 30.69 134.90 -16.80 -5.60 2.31 2.16 149.39 315.32 

  
 (246.94) (150.60) (15.84) (20.36) (3.60) (2.87) (462.84) (285.18) 

Gibson   TN 48 -11.03 -4.42 -14.65 -16.42 1.20 1.56 -2.92 -15.29 

  
 (303.57) (286.92) (19.42)* (22.30)* (3.94) (3.04) (576.54) (532.59) 

Lauderdale   TN 90 -12.88 45.84 -18.66 -12.07 2.45 2.86 76.83 165.33 

  
 (391.78) (360.03) (18.84)* (20.85)* (5.03) (5.54) (718.42) (657.46) 

Madison North  TN 48 -360.74 -286.99 18.90 21.93 -32.88 -34.34 -641.41 -521.44 

  
 (608.74) (533.45) (38.80)* (49.86)* (37.10)* (40.98)* (1148.18) (1010.12) 

Madison South  TN 24 -83.65 -65.59 -12.60 -15.86 1.33 2.59 -68.93 -32.30 

  
 (301.44) (231.69) (15.60) (21.88) (4.33) (5.00) (573.11) (424.55) 

Tipton   TN 24 11.04 -50.89 -6.53 -14.00 1.20 1.89 92.83 1.70 

  
 (182.06) (194.22) (10.40) (14.11) (2.15) (3.05) (305.61) (327.91) 

* Significant differences using the Bonferroni correction to deal with multiple comparisons.  
Standard errors are in parentheses. 
N is the number of observations; the Pemiscot, MO, locations did not have a treatment 3. 
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Table 9. Differences of least squares means and Dunnett’s test results, with  
(With) and without (Without) the location-treatment interaction term 

  F Observed Estimate 
Variable Effect With Without 
Yield Treatment 2 vs 1 29.96 28.68 

  
(21.50) (15.69) 

Yield Treatment 3 vs 1 38.39 35.82 

  
(21.92) (15.84)++ 

N rate Treatment 2 vs 1 -2.20 2.32 

  
(5.50) (1.46) 

N rate Treatment 3 vs 1 1.35 7.95 

  
(5.73) (1.50)+++ 

NPU Treatment 2 vs 1 -1.86 -3.21 

  
(1.72) (0.67)+++ 

NPU Treatment 3 vs 1 -2.15 -3.70 

  
(1.77) (0.66)+++ 

Net Returns Treatment 2 vs 1 90.73 89.59 

  
(34.33)++ (28.27)+++ 

Net Returns Treatment 3 vs 1 76.03 72.09 

  
(34.92)+ (28.56)++ 

Note: Standard error in parentheses.  
+,++,+++ Dunnett’s adjusted probability significant at the 10%, 5%, or  1% level. 
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Table 10. Treatment, soil attribute, and climate effects on lint yields (kg ha−1),  
N rates (kg ha−1), NPU, and net returns (NR) ($ ha−1) 

 

Cotton lint yields  
(kg ha−1) 

N rates 
(kg ha−1) 

NPU 
 

NR  
($ ha−1) 

N 1924 1935 1924 1924 
Intercept1 (𝜇𝜇) 1872.41 133.85 159.15 2730.60 
 (467.32)*** (15.82)*** (14.68)*** (739.26)*** 
Treatment 1 (𝜏𝜏1) -38.39 -1.35 2.15 -76.86 

 
(21.92)* (5.73) (1.77) (48.83)** 

Treatment 2 (𝜏𝜏2) -8.42 -3.55 0.29 -14.27 

 
(21.62) (5.73) (1.66) (34.67) 

Elevation (𝜓𝜓) -5.53 -0.35 -0.27 -8.30 

 
(2.66)* (0.12)*** (0.07)*** (4.62)* 

WHC2 (𝜔𝜔) 29.72 0.98 -0.51 -53.20 

 
(5.10)*** (0.38)*** (0.09)*** (9.19)*** 

OM3 (𝜃𝜃) 1.64 -0.05 0.03 3.01 

 
(0.36)*** (0.03)* (0.01)*** (0.65)*** 

Soil Texture4,1 (𝛽𝛽) 26.44 -1.52 0.69 48.64 

 
(3.78)*** (0.27)*** (0.72)*** (6.78)*** 

SEI (𝛾𝛾) 0.78 0.87 -0.04 1.33 

 
(2.18) (0.18)*** (0.04) (3.93) 

Depth (𝜑𝜑) 5.33 -0.01 0.05 9.58 

 
(1.01)*** (0.08) (0.02)*** (1.83)*** 

GDD (𝜒𝜒) -0.44 0.01 -0.09 -0.52 

 
(0.21)** (0.00)*** (0.00)*** (0.32) 

*,**,*** Significant at the 10%, 5%, and 1% level. 
Standard error in parentheses. 
WHC is water holding capacity, OM is organic matter, SEI is soil erosion index, GDD is growing 
degree days, and N is number of observations. 
1Treatment 3 and soil texture ‘sand’ are in intercept. 
2 WHC scaled by 100 cm cm−1. 
3 OM scaled by 100%. 
4 Soil texture scaled by 10% 
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Table 11. Soil and climate property means by farm with significant N rate differences using VRT versus FP 

N Rate County/Parish State 
Elevation 
(meters)4 

Soil 
Texture(s)2 SEI 

Water Holding 
Capacity  

(cm cm−1)1 
Organic 

Matter (%)1 
Soil Depth 

(cm)1 

Growing 
Degree Days 

(Celsius)3 

VRT<FP 

Tensas Middle LA 21.64 Silt 3.59 0.21 2.23 22.29 1846.54 
Gibson  TN 130.72 Silt 19.6 0.22 1.38 21.32 1464.16 
Lauderdale  TN 90.32 Silt 3.22 0.21 1.93 13.18 1337.34 
Leflore North MS 43.07 Silt; Loam 6.59 0.19 1.75 23.00 1648.79 

 Average   71.44   8.25 0.21 1.82 19.95 1574.21 

VRT>FP 

Madison North TN 117.25 Silt 16.12 0.22 1.33 20.06 1404.96 
Adams MS 55.17 Silt 6.87 0.22 1.89 27.03 1856.31 
Tensas North LA 23.46 Clay; Silt 3.15 0.18 2.15 15.96 1830.56 
Tensas South LA 21.64 Clay; Silt 7.26 0.22 2.20 28.00 1731.71 

 Average   54.38   8.35 0.21 1.89 22.76 1705.89 
1 Source: SSURGO (USDA 2014f). 

      2 Source: Soil texture triangle (USDA 2014e). 
     3 Source: PRISM (PRISM 2014). 

      4 Source: National Elevation Data (U.S. Geology Survey 2014). 
   

Table 12. Type 3 fixed effects, Equations 16-19, (With) and without  
(Without) the location-treatment interaction term 

 Treatment F Value Estimate 
Variable With Without 
Yield1,2 1.71 2.84* 
N rate1 0.2 14.8*** 
NPU1,2 0.86 16.44*** 
Net Returns1,2 3.90** 5.52*** 
*** Significant at the 1% level. 
1Model included Satterthwaite approximation to deal with degrees of freedom.  
2Model included a repeat statement with group treatment to deal with unequal variances. 
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Table 13. Soil and climate attribute effects on lint yield (kg ha−1), N  
rate (kg ha−1), net returns (NR) ($ ha−1), and NPU mean differences 

 Effect 
Yield 

(kg ha1) 
N rate 

(kg ha1) 
NR 

($ ha1) 
NPU 

Intercept1,2 (𝜇𝜇) 32.54 -7.77 856.58 -9.87 

 
-20.83 (1.91)*** (372.90)** (8.78) 

Clay2 (𝛽𝛽1) -4.63 6.33 -195.82 -12.41 

 
-6.61 (0.61)*** (118.31)* (2.77)*** 

Silt2 (𝛽𝛽2) -24.45 -1.68 -376.13 -2.67 

 
(4.92)*** (0.45)*** (87.97)*** (2.08) 

Loam2 (𝛽𝛽3) -14 -2.41 -190.16 6.19 

 
(6.15)** (0.56)*** (110.02)* (2.59)** 

Elevation (𝜓𝜓) -1.98 -0.05 -3.80 0.03 

 
(0.53)*** -0.05 (0.95)*** (0.02) 

WHC2 (𝜔𝜔) 6.74 1.92 929.64 6.54 

 
-6.41 (0.59)*** (1148.78) (26.80) 

OM3 (𝜃𝜃) 1.71 -0.03 297.60 8.39 

 
(0.48)*** -4.44 (86.15)*** (2.01)*** 

Depth (𝜑𝜑) 3.76 -0.27 6.58 0.08 

 
(1.26)*** (0.12)** (2.27)*** (0.05) 

VRT3 (𝜈𝜈) 24.82 5.81 26.02 0.02 

 
-20.59 (1.91)*** (36.90) (0.86) 

SEI (𝛾𝛾) 5.89 0.90 6.62 -0.43 

 
(2.09)*** (0.19)*** (3.75)* (0.09)*** 

GDD (𝜒𝜒) -0.34 0.04 -0.71 -0.01 

 
(0.05)*** (0.00)*** (0.09)*** (0.00)*** 

*,**,*** 10, 5, and 1 percent significance. 
Standard error in parentheses. 
WHC is water holding capacity, OM is organic matter, VRT3 is the variable rate dummy 
for treatment 3, SEI is soil erosion index, and GDD is growing degree days. 
The number of observations for each model is 1140. 
1 Intercept contains soil texture sand. 
2 Textures scaled by 10%. 
3 WHC scaled by 100 cm cm−1. 
4 OM scaled by 100%. 
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Table 14. Treatment summary statistics for lint yields (kg ha−1), N  
rates (kg ha−1), net returns (NR) ($ ha−1), and NPU efficiency 

 
Summary 
Statistics 

Treatment 
Variable 1 2 3 
Lint Yield (kg ha−1) 

   
 

Max 2,397 2,585 2,565 

 
Min 226 133 204 

 
Mean 1,332 1,360 1,349 

 
Std Dev 463 472 457 

 
CV 34.75 34.72 33.91 

 N 649 658 635 
N Rate (kg ha−1) 

   
 

Max 244 226 253 

 
Min 34 54 34 

 
Mean 107 109 114 

 
Std Dev 35 31 35 

 
CV 32.48 28.73 30.93 

 N 660 659 635 
NR ($ ha−1) 

   
 

Max 4,081 4,233 4,167 

 
Min 481 239 333 

 
Mean 2,226 2,315 2,264 

 
Std Dev 805 816 782 

 
CV 36.14 35.25 34.56 

 N 649 658 635 
NPU 

    
 

Max 120 54 40 

 
Min 1 1 1 

 
Mean 18 14 14 

 
Std Dev 19 7 6 

 
CV 107.38 46.07 44.86 

 N 649 658 635 
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Table 15. Kolmogorov-Smirnov Statistics, D Statistic (D Stat) and P value (P) by lint yield, 
N rate, net returns (NR), and NPU and treatment at the sub-plot and field levels 

 
 

 Cotton Lint Yield  N Rate NR NPU 

Comparison 
Level 

Treatment 
Comparison N D Stat P value D Stat P value D Stat P value D Stat P value 

Sub-plot 
2 versus 1 1307 0.0576 0.2275 0.2128 <0.0001 0.0852 0.0173 0.1107 0.0007 
3 versus 1 1284 0.0675 0.1075 0.1895 <0.0001 0.0798 0.0334 0.0832 0.0235 
2 versus 3 1293 0.0392 0.7035 0.0849 0.0190 0.0692 0.0906 0.0946 0.0062 

Field 
2 versus 1 58 0.1379 0.9455 0.3103 0.1224 0.1379 0.9455 0.1724 0.7818 
3 versus 1 55 0.1896 0.7075 0.2626 0.3009 0.1605 0.8719 0.1631 0.8589 
2 versus 3 55 0.0981 0.9994 0.1260 0.9815 0.1256 0.9815 0.1552 0.8961 

Note: The null hypothesis is that the treatments are similar. 
N represents the number of observations. 
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Table 16. Soil and climate attribute effects on lint yield, N rate, net 
returns (NR), and NPU, logistic coefficient estimates 

 Effect 
Yield 

(kg ha−1) 
N rate 

(kg ha−1) 
NR 

($ ha−1) 
NPU 

Intercept1,2 (𝜇𝜇) -0.91 -1.19 -1.31 -2.51 

 
(1.22) (1.48) (1.30) (1.30)* 

Clay2 (𝛽𝛽1) -0.27 1.91 0.10 4.15 

 
(0.47) (1.18) (0.45) (1.06)*** 

Silt2 (𝛽𝛽2) 1.75 -3.86 0.98 -0.13 

 
(0.36)*** (0.69)*** (0.35)*** (0.30) 

Loam2 (𝛽𝛽3) 1.29 -3.72 0.88 -0.98 

 
(0.39)*** (0.65)*** (0.41)** (0.39)** 

Elevation (𝜓𝜓) 0.00 -0.02 0.00 0.00 

 
(0.00) (0.00)*** (0.00) (0.00) 

WHC2 (𝜔𝜔) -7.00 17.71 -3.21 3.29 

 
(3.93)* (5.30)*** (4.01) (4.50) 

OM3 (𝜃𝜃) -0.61 0.41 -0.51 -0.38 

 
(0.29)** (0.38) (0.29)* (0.31) 

Depth (𝜑𝜑) -0.02 0.00 -0.01 -0.02 

 
(0.01)** (0.01) (0.01) (0.01)** 

VRT3 (𝜈𝜈) 0.11 0.46 0.14 0.03 

 
(0.12) (0.14)*** (0.13) (0.13) 

SEI (𝛾𝛾) -0.02 0.12 0.00 0.03 

 
(0.01) (0.02)*** (0.01) (0.01)** 

GDD (𝜒𝜒) 0.00 0.00 0.00 0.00 

 
(0.00)*** (0.00) (0.00)*** (0.00)*** 

1 Intercept contains soil texture category ‘sand’ 
*,**,*** 10, 5, and 1 percent significance 
Standard error in parentheses. 
Number of observations per model is 1140. 
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Table 17. Marginal effects of soil and climate properties in  
yields, N rates, net returns (NR), and NPU 

 
Lint Yield N Rate NR NPU 

Effect Estimate Estimate Estimate Estimate 
Intercept1,2 -5.9623 -6.9554 -7.2956 -9.1885* 
Clay2 -2.3616 57.4634 1.1004 622.3134*** 
Silt2 47.2877*** -9.7883*** 16.5568*** -1.2462 
Loam2 26.4844*** -9.7566*** 14.1669** -6.2626** 
Elevation 0.4425 -1.75443*** 0.498338 -0.24969 
WHC2 -0.9991* 0.0000*** -0.9596 25.8859 
OM3 -0.4567** 0.5132 -0.4017 -0.3185 
Depth -1.8546** 0.3996 -1.2057 -1.7200** 
VRT3 11.9184 59.0423*** 14.7746 3.2590 
SEI -1.7672 12.9867*** 0.0348 3.0898** 
GDD 0.1248*** 0.0249 0.0965*** 0.1845*** 
*,**,*** 10, 5, and 1 percent significance to logit models. 
1 Intercept contains soil texture category sand. 
2 Texture scaled by 10%. 
3 WHC scaled by 100 cm cm−1. 
4 OM scaled by 100%. 
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Figure 10. County/Parish locations of the experiment fields designated by color 
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  Plot 
  1 2 3 4 5 6 7 8 9 

Su
b-

pl
ot

 

10          
9          
8          
7          
6          
5          
4          
3          
2          
1          

Treatment 1 2 3 2 1 3 3 2 1 
   

 Replication 1 Replication 2 Replication 3 

Figure 11. Example of a location’s randomized complete block design: 9 plots,  
10 sub-plots per plot (totaling 90), and 3 replications of random treatments 
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Figure 12. Sub-plot level cotton lint yields (kg ha−1) cumulative probability distributions 

 

 
Figure 13. Field level cotton lint yields (kg ha−1) cumulative probability distributions 
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Figure 14. Sub-plot level total N rate (kg ha−1) cumulative probability distributions  

 

 
Figure 15. Field level total N rates (kg ha−1) cumulative probability distributions 
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Figure 16. Sub-plot level net return ($ ha−1) cumulative probability distributions 

 

 
Figure 17. Field level net return ($ ha−1) cumulative probability distributions 
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Figure 18. Sub-plot level NPU efficiency cumulative probability distributions 

 

 
Figure 19. Field level NPU efficiency cumulative probability distributions 
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CONCLUSIONS AND RECOMMENDATIONS 
This project involved four states of TN, LA, MO, and MS.  Twenty nine field 

demonstration trials were conducted on cotton mostly on private farms with EQIP eligible 
producers in West Tennessee, the Delta region of Mississippi, Missouri, and North Louisiana 
within the Mississippi River Basin during 2011 to 2014. The in-season sensor-based variable-
rate N management systems were demonstrated in comparison with the local farmer’s uniform-
rate N application systems in large strip plots under a randomized complete block design with 
three replicates. The conclusions and recommendations from each state and the economic 
analyses on all the data from the four participating states are summarized as follows. 

In Louisiana, the results obtained from this project thus far demonstrated that 
VRT/Sensor systems as another effective approach in managing N in cotton production in the 
region. For future projects, it will be ideal to have the participating producers to implement the 
VRT/Sensor systems themselves. For this team, the three producers involved in this project alone 
can significantly contribute in extending this technology to other producers. This is under the 
stipulation that they (producers) are convinced about the use of this technology. In addition to 
this, bringing this technology to the field can be enhanced with continued extension and 
education outreach program through field day demonstrations, workshops, and even personal 
visit by the researchers and extension agents with the producers.  

In Missouri, variable-rate N applications for cotton based on optical sensor readings were 
successfully carried out in 9 farm fields, demonstrating that this technology can reliably be 
deployed at the farm scale. Compared to current N rates used by farmers, optical sensors gave 
small improvements in both N rate (lower) and cotton lint yield (higher).  We estimate that, at 
current prices, it will take between 1,000 and 2,200 acres of use to reach the point at which the 
cost of the sensors has been covered, and after that profit will begin accruing. Overall lower N 
use with optical sensors, and particularly lower N use targeted to areas of the field where soil N 
availability is high, will reduce the amount of N lost from cotton fields to water and air and 
reduce the proportion of the cotton crop that is too lush.  Farmers may be able to save money on 
growth regulator and/or defoliant, and may sometimes have easier harvest conditions. Technical, 
economic, and environmental outcomes are all modestly positive for the use of optical sensors to 
control variable-rate N applications on cotton.  Based on our results, we endorse this approach 
for use by cotton growers in Missouri. 

In Mississippi, sensor based adjustment of fertilizer N rates utilizing a vegetation index 
with known sensitivity to plant N status shows great promise to improve accuracy across 
spatially variable fields as compared to the standard practice of applying a constant rate. 
Although post-harvest available soil N was not sampled in this study it was obvious from the 
samples taken near planting that considerable variability in soil nitrate and ammonium existed in 
the fields utilized.  Recommendations are to further refine the technology in terms of script 
writing to more easily facilitate the data processing steps and turnaround time from data 
acquisition to fertilization. Greater testing and development of algorithms is needed to make 
applicable across more regions.     

In Tennessee, the sensor-based variable-rate N management systems via side-dress 
during the early growing season produced higher cotton lint yield at one location-year, similar 
lint yield at six location years, but lower lint yield at one-location-year than the current uniform-
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rate N application systems. The in-season variable-rate N management systems did not affect 
post-harvest residual N levels in top 60 cm of the soil profile relative to the current uniform-rate N 
application systems. Averaged over the eight location-years on EQIP eligible farms, all the four in-
season variable-rate N management systems had significantly lower seasonal N fertilizer 
consumption, but higher N use efficiency than the current uniform-rate N application systems. 
Specifically, the in-season variable-rate N management systems reduced the seasonal N fertilizer 
consumption by 9.3 to 14.8% (9.8 to 15. 6 kg N ha-1), but increased higher N use efficiency by 9.2 
to 11.0% compared with the current uniform-rate N application systems. No significant effect of 
in-season variable-rate N management systems was observed on post-harvest residual N levels in 
the top 60 cm of soil. The benefits of incorporating yield maps of previous years into the optical 
sensor-based variable-rate precision N management systems were generally not noticeable in 
terms of cotton yield, seasonal N fertilizer consumption, N sue efficiency, and post-harvest 
residual soil N level. Our results suggest that in-season sensor-based variable-rate N 
management systems via side-dress use significantly less N fertilizer to produce comparable 
cotton yield via increasing N use efficiency relative to the current uniform-rate N application 
systems. The in-season sensor-based variable-rate N management systems are viable tools that 
can be used by producers on their farms to manage variations within the field.   

Two main conclusions were drawn from the economic analyses of the data from all the 
four states in this study. First, the real-time optical sensing and variable rate technologies (VRT) 
treatments indicated some N savings but were not more profitable on average compared to the 
existing farmer practices. There was some evidence of significantly higher mean net returns 
using optical sensing and VRT to manage N compared to the current practice at the sub-plot 
level, but the field level showed no difference. Second, there were risk management benefits 
identified at the field level using optical sensing and VRT compared to the farmer practice. 
Fields with lower lint yields were found to likely produce higher net returns with optical sensing 
and VRT than with the farmer practice which may help farmers manage risk on fields with this 
characteristic. Other inferred conclusions that can aid in the cotton farmer’s decision making are: 
1) the VRT treatments may not apply enough N to significantly increase lint yields; 2) four 
locations realized significantly lower N rates applied in at least one form of VRT N fertilizer 
application (Tensas Middle, LA, Gibson, TN, Lauderdale, TN, and Leflore, MS) and four had 
higher N rates (Madison North, TN, Adams, MS, Tensas North, LA, and Tensas South, LA), and 
3) N rates were not low enough to increase N use efficiency and encourage environmental 
benefits. The farm fields used in this demonstration project represented a range of soils and 
climates in the MRB; however, the fields tested in the experiments likely had limited enough 
spatial and temporal variability within the field that VRT treatments did not make a difference in 
field level mean net returns. Cotton farmers in Tennessee, Louisiana, Mississippi, and Missouri 
states can use this information as a decision aid when considering switching to VRT. Mean net 
returns were positive across locations (for all technologies), but N savings and EQIP incentive 
payments did not offset the cost of the technology enough to justify the adoption of VRT based 
on mean net returns alone in the MRB states. Policy makers are also interested in these results as 
EQIP payments did not increase net returns enough to justify the adoption of VRT. This can be 
considered when deciding nutrient management cost-share payments for the future in Tennessee, 
Mississippi, Missouri and Louisiana. Areas for potential further research on net returns with this 
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data include incentive payments and price sensitivity. Determining the precision nutrient 
management EQIP payment that would make optical sensing and VRT more profitable than the 
farmer’s practice (FP) by state would be of interest to policy makers.  Additional studies on 
fields with more in field spatial variability could also be evaluated to further identify the 
conditions under which optical sensing a VRT may provide profitability, risk management, and 
nitrogen production use efficiency benefits. 
 
 


	EXECUTIVE SUMMARY
	INTRODUCTION
	BACKGROUND
	Cotton response to N fertilizer
	Variability in soil N contribution
	Approaches to vary N fertilizer rate

	REVIEW OF METHODS
	FINDINGS
	CONCLUSIONS AND RECOMMENDATIONS
	APPENDIX: Maps of nitrogen fertilizer rates in demonstration fields
	Treatment Effect for Net Returns and N Production Use Efficiency
	Risk Management Benefits
	Data and Methodology
	Data

	Methodology
	Treatment Effects
	Soil, Landscape, and Weather Impacts on Mean Treatment Differences
	Risk Management Benefits

	Treatment Effects
	Lint Yields, N Rates, and Net Returns
	N Production Use Efficiency

	Soil, Landscape, and Weather Impacts on Mean Treatment Differences
	Lint Yields, N Rates, and Net Returns
	N Production Use Efficiency

	Risk Management Benefits
	Stochastic Dominance
	Downside Risk – Lint Yields, N Rates, and Net Returns
	Downside Risk – N Production Use Efficiency



