Note: Bottom width of pool is ~½ the bottom width of riffle.

Plan

Slope Riffle \(S_{RF} = \) _____ (~1.5\(S_0 \) to 2\(S_0 \))
Slope Run \(S_{RN} = \) _____ (~2\(S_0 \))
Slope Pool \(S_P = \) _____ (0 to \(\frac{1}{2} S_0 \))
Slope Glide \(S_G = \) _____ (~\(S_{RN} \))
(Slope from beginning of run to the end of the glide should be \(\frac{1}{2} \) of riffle slope)

Profile (centerline)

\(l_{RF} = \) _____
\(l_{RN} = \) _____ (~\(\frac{1}{2} l_{RF} \))
\(l_P = \) _____ (~\(l_{RF} \))
\(l_G = \) _____ (~\(l_{RN} \))
(Length of riffle ~\(\frac{1}{2} \) length of entire pool including run, pool and glide as shown on the plans)

\(l_{RF} + l_P + l_G\)

\(D_R = \) _____ (Bankfull depth)
\(D_p = \) _____ (~2 to 3\(D_R \))

Section A-A - Riffle

Section B-B - Pool

Note:
- Chute rock size to be stable at highest design discharge (use rock chute design and apply results to riffle slope)
- Minimum rock thickness shall not be less than 2\(D_50 \)
- Design was originally developed for a Rosgen C stream

Conceptual Plan - Not for Construction

NRCS
Natural Resources Conservation Service
United States Department of Agriculture

Step - Pool Rock Chute

File Name: Step-Pool Rock Chute.png
Designed: Fripp, Mueller 04/07
Drawing Name: Step-Pool Rock Chute
Checked: Renteria 04/07
Approved: 06/12/07
Sheet of