Ghosts of the red spruce forest: The need for an evolving soil survey for ecological sites

Travis W. Naumana,b, James A. Thompsona, Stephanie J. Connollyc, S. Jason Teetsd, James W. Belld

a West Virginia University, Division of Plant and Soil Sciences,
b USDA-NRCS-NSSC-GRU
c USDA-USFS Monongahela National Forest
d USDA-NRCS MLRA 127 FO
Evolving?

• Soils change
 – Spatially and temporally dynamic
 • ‘complex adaptive systems’ (Monger and Rachal, 2013)

• Paradigms change
 – Taxonomy
 – Soil series
 – Politics -> $$
 – ESDs in east
Investigation of red spruce (*Picea rubens*) ecotone

- Investigated ecological transition
 - Conifer-hardwood
- Typic Dystrudepts map units
- Found Spodosols
 - Wildell series (Haplorthod)
 - Mandy reclassified to spodic Dystrudept
Red Spruce – Spodic Connection
Red Spruce – Spodic Connection

- Spruce-Hemlock assoc. with higher spodic probabilities
 - Wilcoxon rank sum test w/ contin correction (p=0.0052)
 - Welch 2-sample t-test (p=0.0077)
 - Null: zero shift
 - Alt: spruce-hem > none

n = 1031 witness tree points

(data from Thomas-Van Gundy et al, 2012)
Pedoecological Map

– Contraction of red spruce
– Decrease in O-horizon depths
– Depodzolization
 • Erosion
 • Loss of E expression
 • Loss of B horizon humics
Soils Change

- Different features in the soil change at different rates

From: (Monger and Rachal, 2013)
Soil surveys should change

- Soil monitoring
- Management paradigm
- Ecological sites
- Soil series discrepancies
- Separately map contrasting soil processes
 - Temporal scale
 - Scale

Era of unprecedented change

• Land use change (disturbance), anthropogenic climate change, fire suppression, timber harvest, grazing

Wasteland after post-harvest fires on crest of Cabin Mountain, WV (from Clarkson, 1964; photo by H.A. Allard)

Prolific gullying on the Navajo reservation, AZ
Thanks!