TALL FESCUE/ENDOPHYTE/ANIMAL RELATIONSHIPS

Tall fescue (Festuca arundinacea Schreb.) is a versatile perennial grass used for livestock feed, various turf purposes and for erosion control. Commonly referred to simply as "fescue," it is easy to establish, tolerant of a wide range of management regimens and a good forage yielder. Laboratory nutritive analyses of fescue compare favorably to those of other cool-season grasses.

Fescue was first planted on a widespread basis in the USA in the 1940's, and now occupies some 35 million acres. Since the discovery in the late 1970's that an endophyte (fungus) within this grass affects both grazing animals and the grass itself, attitudes toward fescue have changed greatly. This publication provides a review of current knowledge of the effects of endophyte infected (EF), as compared to endophyte free (EF) fescue and explains options livestock producers have for using this important grass.

LIVESTOCK DISORDERS
Fescue has numerous attributes, but three livestock disorders have come to be associated with it. A brief description of these problems is helpful in understanding the importance of fescue endophyte research.

Fescue Foot
"Fescue foot" is a dry, gangrenous condition of the extremities of the bodies of cattle consuming fescue. Usually it causes lameness or the loss of the tips of tails or ears, but may result in sloughing of hooves or feet. Animal gains also are reduced. Fescue foot is generally associated with cold weather.

Bovine Fat Necrosis
Bovine fat necrosis is characterized by the presence of masses of hard fat in the abdominal cavities of cattle. This fat can cause digestive or calving problems, but is likely to occur only where pastures are essentially pure fescue and have been heavily fertilized with poultry liver or nitrogen fertilizer.

Fescue Toxicity
The signs of fescue toxicity include: (1) reduced feed intake; (2) lower weight gains; (3) decreased milk production; (4) higher respiration rate; (5) elevated body temperature; (6) rough hair coat; (7) more time spent in water and/or shade; (8) less time spent grazing; (9) excessive salivation; (10) excessive blood serum prolactin levels; and (11) reduced reproductive performance. Some or all of these responses have been observed with dairy cattle, beef cattle and sheep consuming EF pasture, greenchop, hay and/or seed. Fescue foot and bovine fat necrosis can be important to individual producers, but are of relatively little consequence on a nationwide basis. However, fescue toxicity is of widespread occurrence and of much economic importance.

Horse Disorders
Reproductive difficulties of mares grazing fescue have been widely recognized. They include: abortions, prolonged pregnancy, foaling problems which can result in foal and/or mare deaths, thick or retained placenta and agalactia (poor milk production).

ENDOPHYTE DISCOVERY
It is remarkable that a detrimental agent could have been undetected for so long in such a widely grown forage species, but the fungal endophyte Acremonium coenophialum was not associated with animal disorders until the title 1970's. Since then our understanding of the potential of fescue in livestock production has increased greatly.

Two characteristic, of the endophyte have real practical importance. First, the fungus lives within fescue plants and does not affect the appearance of the grass. A laboratory analysis is required to detect its presence. Secondly, it is transmitted only by seed. Thus, once an EF stand is established, it will remain non-infected unless infected seed (either present before seeding EF Fescue or introduced later) germinate and become established.

ENDOPHYTE EFFECTS ON ANIMALS

Grazing Time
Several studies have shown that animals on EF pastures spend less time grazing during the day and more time grazing at night. In Maryland, grazing time was reduced by approximately 20% as compared to steers grazing EF fescue. (Table 1)

In a Georgia study in which steers were switched from EF (>95% infected) to EF (<1% infected) fescue steers on EF fescue spent 60% of the time between noon and 6:00 p.m. grazing, as compared to only 4 to 6% by steers on EI fescue. Steers switched to EF fescue showed a reduction in grazing time within two days, and intake for this group was depressed within one week. Forage intake for the group switched to EF fescue remained lower for at least 10 days following the switch, but was normal after 28 days. However, grazing time for those switched to EF was still reduced one month later.

Intake and Digestibility
Both on-farm observations and research have provided evidence that cattle prefer EF fescue. In Tennessee, steers had a preference for clover in EI pastures, but there were indications that they preferred fescue to clover in EF pastures. When heifers in Missouri were offered diets containing 60% fescue seed, either EF or 75% EI, 11 of 12 heifers avoided the EI diets. Much, but not all, of the reduction in livestock average daily gain (ADG) or gain per unit area of land on EI fescue is due to reduced intake.
EFFECTS ON BEEF COWS AND CALVES

Most of the fescue in the United States is used in commercial beef cow-calf operations. In several studies (Table 4, Page 5), cows grazing EF fescue lost weight and had lower pregnancy rates, and their nursing calves had slower gain, and reduced weaning weights compared to those grazing EF pastures.

It is known that a decline in body condition can affect reproduction, and cows that are thin before and at calving have a long interval between calving and first estrus. Therefore, cows entering the breeding season in a poor or negative gaining condition because of EF fescue probably will have a prolonged post-partum interval regardless of late endophyte effects.

In Kentucky and Missouri, supplementary feed (in the form of either, clover or grain) for cattle on EF fescue improved pregnancy rates, but not up to economically acceptable levels. Thus, it appears that factors other than nutrition are involved in the reduced pregnancy rates associated with EF fescue.

Table 2. Daily gains of steers as affected by low or high incidence of endophyte infection.

<table>
<thead>
<tr>
<th>Location</th>
<th>Low E %</th>
<th>High E %</th>
<th>Low E lb/Day</th>
<th>High E lb/Day</th>
<th>Feed</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>2</td>
<td>>90</td>
<td>1.83</td>
<td>0.99</td>
<td>Pasture</td>
<td>Hoveland et al., 1983</td>
</tr>
<tr>
<td>Alabama</td>
<td>0</td>
<td>>90</td>
<td>1.46</td>
<td>0.62</td>
<td>Hay</td>
<td>Schmidt et al., 1982</td>
</tr>
<tr>
<td>Arkansas</td>
<td>100</td>
<td>0</td>
<td>2.12</td>
<td>0.44</td>
<td>Seed</td>
<td>Schmidt et al., 1982</td>
</tr>
<tr>
<td>Georgia</td>
<td>0</td>
<td>76</td>
<td>1.30</td>
<td>0.99</td>
<td>Pasture</td>
<td>Stuedemann et al., 1986</td>
</tr>
<tr>
<td>Kentucky</td>
<td><1</td>
<td>87</td>
<td>5.74</td>
<td>5.99</td>
<td>Pasture</td>
<td>Boling et al., 1885</td>
</tr>
<tr>
<td>Mississippi</td>
<td>NR²</td>
<td>NR</td>
<td>1.50</td>
<td>1.01</td>
<td>Pasture</td>
<td>Evans et al., 1989</td>
</tr>
<tr>
<td>Missouri</td>
<td>3</td>
<td>83</td>
<td>1.37</td>
<td>0.46</td>
<td>Pasture</td>
<td>Crawford et al., 1989</td>
</tr>
<tr>
<td>Oklahoma</td>
<td><1</td>
<td>76</td>
<td>1.87</td>
<td>1.37</td>
<td>Pasture</td>
<td>McMurphy et al., 1990</td>
</tr>
<tr>
<td>Tennessee</td>
<td>2</td>
<td>71</td>
<td>1.48</td>
<td>1.06</td>
<td>Pasture</td>
<td>Chestnut et al., 1989</td>
</tr>
<tr>
<td>Texas</td>
<td>8</td>
<td>91</td>
<td>2.14</td>
<td>1.01</td>
<td>Pasture</td>
<td>Read and Camp, 1986</td>
</tr>
<tr>
<td>Virginia</td>
<td>0</td>
<td>77</td>
<td>1.43</td>
<td>0.90</td>
<td>Pasture</td>
<td>Tullay et al., 1989</td>
</tr>
</tbody>
</table>

1 Number of informed tillers per 100 tillers
2 Not reported

10% increase in infection rate.

Increased nitrogen (N) fertilization increases the incidence of bovine fat necrosis, but investigations have revealed that N fertilization does not affect steer ADG on EF fescue. However, N fertilization of EF fescue can increase gain per acre because of higher stocking rates.

EFFECTS ON BEEF HEIFERS

In an Alabama study, weaned beef heifers were assigned to pastures having low, medium or high levels of infection (Table 5, Page 6), and received hay of similar
infection levels during winter. Heifer ADG decreased as infection level increased. However, the later ADG of cattle fed hay was the opposite, with the high infection group having the fastest gains. All heifers were observed in estrus prior to their first breeding, but pregnancy rates decreased as infection level increased. Following first calf births, pregnancy rates were further reduced in heifers grazing pastures with medium and high infection level, but not in those grazing low-endophyte pastures. Initiation of the estrus cycle to heifers grazing EI fescue is not delayed, and cessation of the estrus cycle in animals already cycling does not occur. Research in Alabama indicates that conception is not affected by the endophyte. Reduced calving percentages of cattle on EI fescue appear to be due to early embryonic death. Experiments to date have not made clear whether the endophyte affects calf birth weights.

BRAHMAN VS BRITISH BREEDS OF CATTLE

Brahman cattle are known for their heat tolerance and may be better adapted to resist or tolerate the hyperthermia (high body temperature) observed during hot weather. In breed comparison, Angus and Brahman-Angus cross steers have exhibited decreased gains when grazing EI fescue, but the magnitude of the decrease was less for the Brahman-cross steers. Brahma-cross animals frequently gain better due to greater heterosis, thus reduced endophyte effects, if any, are difficult to detect.

FEEDLOT GAINS OF STEERS THAT PREVIOUSLY GRAZED FESCUE

Because of their unthriftiness appearance, steers, that have grazed EI fescue often bring reduced prices, making it important to determine whether there are carryover effect, on feedlot performance. Studies in Georgia, Arkansas, Oklahoma and Tennessee indicate that when steers grazed on EI fescue arrived at a feedlot during cooler weather, they gained faster than steers which had grazed EF fescue, especially during the first 28 days. Steer, arriving during hot weather did not show increased gains, but their gains were not reduced as a result of previous exposure to EI fescue.

EFFECTS ON MILK PRODUCTION

Consumption of EI fescue reduced milk production to as much as 45% in beef cows and 50% in beef heifers in Alabama, and by 60% in dairy cows in Kentucky. Milk production of lactating dairy cows can be sharply reduced even when fescue has low infection levels, but EF provides excellent nutrition for lactating animals. Milk production by dairy cow, consuming EF fescue was similar to those grazing alfalfa-orchardgrass in Kentucky, and the reduction in numbers of mares lactating, foals surviving and mares surviving (Figures 1 and 2, Pages 6 and 7) provide convincing evidence of the dangers associated with grazing pregnant mares on EI fescue.

A striking difference between horses and cattle is the lack of carryover effects when mares are removed from EI pastures. Test results show that horses respond rapidly to EF fescue and have a rapid turnover of toxicants, allowing them to quickly overcome the negative effects. Conversely, lactating mares moved onto EI fescue will cease lactating within a few days.

Mares removed from EI fescue one month before foaling can often recover from fescue toxicosis and have normal foals. The prevalent recommendation to producers, however, is that mares be removed from EI fescue 60 to 90 days before anticipated foaling. Grain supplementation to mares grazing EI fescue has no benefit with regard to endophyte effects.

EFFECTS ON THERMOGREGULATION

Cattle consuming EI fescue typically exhibit hyperthermia (abnormally high body temperature) as shown by increased rectal temperature. Studies in Kentucky have shown that EI fescue has the most detrimental effect on cattle when the ambient temperature exceeds 88°F.

In Alabama, steers were fed non-infected or infected hay and seed in controlled environments at 70°F (cool) and 90°F (hot). Feed intake was reduced 36% by steers fed the EI diets in the cool environment, but rectal temperatures and respiration rates were not affected. In the hot environment feed intake was reduced 60% in steers fed the EI diet, and rectal temperatures and respiration rates increased.

In the cool environment steers fed the EI diet exhibited reduced temperatures at the extremities (ear tips, tail tip, hooves). This hypothermia (reduced temperature) in animals consuming EI fescue is most likely a result of vasoconstriction caused by the toxicants. The vasoconstriction (constriction of the blood vessels) would decrease the animals ability to dissipate this increased heat load, and is further confounded by high air temperature. Reduced blood flow in the extremities due

<table>
<thead>
<tr>
<th>Table 3. Seasonal daily gains (lb) of steers grazing infected and non-infected fescue (3 year average)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Months</td>
</tr>
<tr>
<td>Nov. Dec Mar</td>
</tr>
<tr>
<td>Apr. May June</td>
</tr>
</tbody>
</table>
to vasoconstriction causal by fungus toxins could also be associated with the fescue foot syndrome.

It now appears that the toxicants in El fescue result in abnormal function of the thermoregulatory center many animals. This, coupled with high environmental temperature, could lead to the hyperthermia observed in cattle consuming infected fescue. Increased respiration rates (often evidenced by panting) probably helps animals to cool themselves and dissipate the increased heat load. Excessive salivation, also a sign of fescue toxicity, may be due to the panting.

ENDOPHYTE EFFECTS ON PLANTS

Several years ago, scientists in New Zealand found that the Argentine stem weevil would devastate EF, but not El, perennial ryegrass. This insect is not a pest in the United States, but this knowledge is of concern because the endophytes in the two grasses are closely related.

Greenhouse and environmental chamber work at several locations has shown that several insect species prefer and/or develop more rapidly on EF fescue. Kentucky studies provided evidence that alkaloids in El fescue are associated with increased resistance to insect feeding. A greenhouse study in Alabama revealed over three times as many spiral nematodes associated with the roots and soil of EF, than of El, plants.

A difference in vigor has been observed between El and EF fescue pastures in some environments. This has usually been seen only in new plantings, but in stressful environments in Louisiana and Texas (marginal areas for growing fescue), stand loss was greater in established EF pastures. El is also more drought tolerant than EF fescue. Drought tolerance seems to be associated with El plants having improved osmotic adjustment, greater sugar accumulation, better root growth and more leaf rolling to conserve water.

These finding have important implications. First, while fescue is regarded as a forage crop which is easy to establish, that may be less accurate when the fescue is El. Thus, when planting EF fescue, a producer should carefully follow all establishment recommendations. Overgrazing of EF fescue should be avoided, especially during the establishment year. Fields to which El fescue is only marginally adapted should not be planted to EF fescue.

Experience has shown that if overgrazing, severe drought or other highly stressful conditions occur, EF fescue will not persist as well as, El fescue. However, EF fescue stands at the Auburn University Black Bell Substation have persisted and remained non-infected for over 15 years though separated from infected fields only by a barb wire fence. Despite the need for higher management levels, the opportunities provided by EF fescue are great.

SEED PRODUCTION

The cool-season grasses are well adapted to the mild winters and harvest season found in the valley of the Pacific Northwest. Oregon has thus established a reputation as a dependable supplier of high-quality forage grass seed, and provides that seed for much of the forage production in the U.S.A.

The discovery of the role of the endophyte in reducing performance of animals grazing on tall fescue pastures resulted in the Oregon Department of Agriculture being assigned responsibility for testing and issuing the Oregon Forage Grass Seed Endophyte Test and tag for forage grass seed.

Results from the Oregon Department of Agriculture on endophyte testing of tall fescue seed from 1983-1989 show over 90% of Oregon's tall fescue contained 5% or less endophyte. Of 2,381 tall fescue seed lots tested, representing 111, million pounds of seed, 93% contained 5% or less endophyte-infected seeds. Of the seed lots tested, 1,271 were public cultivars (Alto, Fawn, Kentucky 31 and Kenhy) and 894 lots comprised 40 proprietary cultivars. Lots with 5% or less infection received a state endophyte tag for seed bags.

STRATEGIES FOR COPING WITH THE ENDOPHYTE

Livestock producers who have, or who plan to establish fescue fields should

Table 4. Effect of Endophyte-infected fescue on the performance of cows and nursing calves

<table>
<thead>
<tr>
<th>COWS</th>
<th>CALVES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Daily gain</td>
</tr>
<tr>
<td></td>
<td>Low E</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>lb./day</td>
<td>lb./day</td>
</tr>
<tr>
<td>1.01</td>
<td>.51</td>
</tr>
<tr>
<td>.46</td>
<td>.11</td>
</tr>
<tr>
<td>.44</td>
<td>.15</td>
</tr>
<tr>
<td>.09</td>
<td>.24</td>
</tr>
<tr>
<td>79</td>
<td>46</td>
</tr>
</tbody>
</table>

Notes:

1 Not determined or not reported.
2 Low E fescue was 21% INF as 77% for High E.
develop an intelligent "endophyte strategy" based on research findings. The following is a review of options available for avoiding or minimizing endophyte effects.

Establishing New Fescue Stands

When planting a new fescue field for livestock in an area where fescue is well adapted, a livestock producer should use non-infected seed, assuming overgrazing of the EF stand will be avoided.

In a new state, it is required that percent endophyte infection be stated on fescue seed tags. The importance of knowing the level of endophyte infection in seed can hardly be over-emphasized. The dramatically increased beef production on EF fescue can be expected every year for the life of the stand!

It is highly desirable to plant a legume companion species with fescue, especially with EF fescue. The optimum approach is to seed tall fescue in late summer/fall, then plant clover in late winter or the following late summer/fall. Legumes may dominate EF fescue if planted at the same time. Kentucky research indicates that clover in a EF stand will further increase young animal gains by 0.2 pounds per animal per day. However, the primary justification for planting a legume with EF fescue is to reduce N fertilizer expense.

White clover, seeded at the rate of 1 to 3 pounds per acre, is the best legume companion in most fescue pastures. However, red clover, at a rate of 10 to 15 pounds per acre broadcast or 8 pounds per acre drilled, is another good possibility, especially when fields are to be cut for hay. Other legumes such as birdsfoot trefoil or alfalfa may also be used.

Dealing With Existing Infected Stands

Producers with established fescue fields need to carefully assess their situation. Exiling fescue stands should be tested for endophyte infection on a field-by-field basis. Several states now have laboratories for determining endophyte level. County agricultural agents can provide information regarding cost, sampling methods, and laboratory addresses.

Once the endophyte level in existing

Table 5. Effect of endophyte-infected fescue on gains pregnancy rates and milk yield of heifers.

<table>
<thead>
<tr>
<th>Endophyte level</th>
<th>Initial weight</th>
<th>Daily gains winter</th>
<th>Post-calving</th>
<th>Milk produced</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>lb.</td>
<td>lb./day</td>
<td>%</td>
<td>lb./12 hr.</td>
</tr>
<tr>
<td>0-5</td>
<td>582</td>
<td>1.65</td>
<td>96</td>
<td>8.16</td>
</tr>
<tr>
<td>25-60</td>
<td>560</td>
<td>1.26</td>
<td>82</td>
<td>7.06</td>
</tr>
<tr>
<td>80-99</td>
<td>591</td>
<td>0.75</td>
<td>55</td>
<td>3.97</td>
</tr>
</tbody>
</table>

Danielson, D.A., S.P. Schmidt, C.C. King, L.A. Smith and W.B. Webster, 1986. Fescue quality is low. The level weight grazing winter. Therefore, it is required that endophyte. Endophyte spread can be prevented by overgrazing. Endophyte spread can be minimized with management practices.

Figure 1. Effects Of The Fungal Endophyte On Pregnant Mares And Foals Grazing Tall Fescue.

*Greater than 80% of plants testing positive for A. coenophialum in analyses conducted in the Auburn University Fescue Diagnostic Laboratory.

On average, the gestation period for mares grazing infected fescue was 20 days longer than for those grazing non-infected fescue (Figure 2). Evidence in foals of this longer gestation period was provided by overgrown hooves, poor and irregular incisor eruption, a long hair coat, poor muscling, large skeletal development, and heavier birth weights.

1. Manage to minimize the effect

Endophyte effects on animals can be minimized with management practices. Grazing and/or clipping management that keep plants young and vegetative will result in better animal performance. Likewise, if fescue is cut for hay in the boot stage, better annual performance will be obtained than from late-cut hay.

2. Avoid the Endophyte

Use of other forage species avoids the endophyte. Using EF fescue in spring and use of other grasses or grass-legume mixtures for summer grazing will avoid the endophyte during the summer when fescue forage quality is low. Because annual performance is adversely affected by consuming EF fescue hay, feeding of hay of another species also can be helpful.

3. Dilute the Endophyte

The endophyte or its products can be diluted through the use of other feeds in the diet. Growing legumes with EF fescue is a particularly attractive option. Many studies have shown greater liveweight gains, and improved (though sometimes still unacceptable) pregnancy rates when pastures are renovated to include legumes.

4. Kill infected stands and replant

EF seed is now readily available in most areas of the United States where fescue is grown. Careful consideration should be given to choosing new varieties. A new variety that is simply "endophyte-free" will be of little or no value if it is not well adapted. In view of reduced stress tolerance of EF fescue, the area of
adaptation may be slightly less than for EI fescue, and a higher level of inconvenient will be required for successful establishment and for long-term persistence. University trials are a good source of variety information.

In order to prevent later establishment of volunteer infected plants, any EI field which is to be replanted should not be allowed to produce seed during the reestablishment year. Seedhead formation should be prevented by heavy grazing, clipping or chemical application.

Under usual storage conditions, the endophyte will die in seed within one or two years. Thus, volunteer plants from old seed will usually be EF or have a very low level of infection. Unfortunately the germination level of fescue seed can drop sharply during long term storage, depending on temperature and humidity conditions. Furthermore, the vigor of seedlings resulting from planting old seed is likely to be reduced.

Methods of replacing EI stands Include:

A. Rotation - Rotating with other crops, followed by seeding EF, is an excellent approach. There are many options ranging from no-till corn or a summer annual forage such as pearl millet, to longer term rotations involving a perennial such as alfalfa or two or three annual crops.

B. Prepared Seedbed - Certain situations permit destroying the old sod through tillage, preparing a seedbed, and then replanting EF fescue. However, it is often difficult to completely destroy an old fescue sod by tillage.

C. Chemical Kill No-till - Where methods A and B are not feasible, chemical kill of EI fescue followed by no-tillage planting of EF is the only remaining option. This technique can be used to go directly from EI to EF fescue, or other forage crops can be used in a rotation. It is critical that chemicals be used effectively, thus killing all the existing EI fescue. Furthermore, in some cases there may be common bermudagrass or other species, which must also be killed, requiring the use of more than one herbicide or a higher herbicide rate. Effective sod kill requires attention to label instructions and striving for optimum environmental plant conditions that will permit greatest chemical effectiveness. Consult state recommendations on chemicals, rates, restrictions and time of application.

Best result from no-till tests have been found with late summer or early autumn seedings of fescue, except in the northern fescue belt where spring seedings are feasible. Although chemical kill has been satisfactory in spring, summer drought and weed competition often reduce stand, of spring-seeded fescue.

A particularly effective approach is to use no-till plantings of annual forages after killing EI fescue. For example, EI fescue can be chemically killed in the spring and a summer annual grass can be drilled into the killed sod followed by no-till planting of EF fescue in the fall. Similarly, fescue can be killed in the fall followed by sod planting of winter annuals, and, if desired, sod planting of a summer annual grass the next spring. Use of annuals, in this manner “smoth” fescue plants which were not killed, and also reduce, the likelihood of insects in the old fescue sod damaging young fescue seedlings.

Current Outlook

There are many studies in progress which may answer remaining questions relating to the fescue endophyte, and perhaps provide additional solutions. Without question, application of the existing and forthcoming technology relating to this breakthrough will have an immense impact on livestock production in the fescue growing region of the United States, and perhaps in many other parts of the world.

Prepared by Drs. Don Ball and Steve Schmidt, Extension Agronomist/Professor, are Associate Professor of Animal Science, respectively Auburn University: Dr. Garry Lacefield Extension Agronomist/Professor, University of Kentucky; Dr. Carl Howland, Terrell Distinguished Professor of Agronomy, University of Georgia, and Dr. William C. Young, III, Extension Seed Specialist/Assistant Professor. Oregon State University. Funding for this publication was provided by the Oregon Tall Fescue Commission, Salem, Oregon.