**INTRODUCTION**

The controlling regulations to the Wetland Conservation (WC) provisions of the Food Security Act of 1985, as amended, are provided in 7 CFR Part 12, “Highly Erodible Land and Wetland Conservation.” These regulations define a FW (in part) as

“a wetland that prior to December 23, 1985, was manipulated and used to produce an agricultural commodity at least once before December 23, 1985, and on December 23, 1985, did not support woody vegetation, and met the following hydrologic criteria: (i) If not a playa, pocosin, or pothole, experienced inundation for 15 consecutive days or more during the growing season or 10 percent of the growing season, whichever is less, in most years (50 percent chance or more), which requisite inundation is determined through:…”

To effectively make the decision if an area supports the required long-term inundation for a FW that is not identified as a playa, pocosin, or pothole, the regulations then provide three options. They are:

A. “Observation of wetland hydrology indicators as identified in the local NRCS Field Office Technical Guide;

B. Procedures identified in State Off-Site Methods for wetland identification set forth in the local NRCS Field Office Technical Guide; or

C. The use of analytic techniques, such as the use of drainage equations or the evaluation of monitoring data.”

When Option A is utilized, this document provides indicators of long-term inundation (ponding or flooding) to be used by NRCS in the assignment of the FW exemption (or label).

**OVERVIEW OF THE NRCS WETLAND DETERMINATION PROCESS**

The regulations also explain the three-step wetland determination process used by NRCS:

- Step 1: Wetland Identification
- Step 2: Determination of Wetland Type, via the assignment of WC labels
- Step 3: Determination of Size

---

1 For farmed wetlands (FW) that are playas, pocosins or potholes, the regulations provide that their hydrology criteria (which includes saturation as well as inundation) are met if they are found to support wetland hydrology through Step 1 of the wetland determination process. The same is true for farmed wetland pasture (FWP).

2 When referring to farmed wetland hydrology indicators for areas that are not playas, pocosins, or potholes, the use of the term “long-term inundation” means inundation that lasts 15 consecutive days or more during the growing season or 10 percent of the growing season, whichever is less, in most years.
Step 1: Wetland Identification. During this step, NRCS determines if the area under consideration, or sampling unit, supports each of the three wetland diagnostic factors; a prevalence of hydrophytic vegetation, a predominance of hydric soils, and wetland hydrology under normal circumstances (NC). The consideration of NC, as detailed in the Food Security Act Wetland Identification Procedures (FSA Procedures, National Food Security Act Manual Part 514.8) paragraphs (3-3) to (3-5), is two-pronged. The first is disturbance-based and the second is climate-based. Both are critical in the evaluation of wetland hydrology.

Regarding disturbance-based considerations, NRCS must evaluate hydrology (under NC) in the context of the drainage history of the site and the best drained condition, if applicable. Best drained condition is defined in the regulation as “the hydrologic conditions with respect to depth, duration, frequency, and timing of soil saturation or inundation resulting from drainage manipulations that occurred prior to December 23, 1985, and that exist during the wet portion of the growing season during normal climatic conditions.” In summary:

- If drainage occurred prior to December 23, 1985 and the area did not support woody vegetation on that date, the NC include the hydrologic conditions (depth, duration, frequency and timing of inundation or soil saturation) resulting from the pre-1985 drainage.
- If drainage occurred after December 23, 1985, the NC include the hydrologic conditions, without the effect of the post-1985 drainage action.
- If the area is not impacted by drainage, such as areas cleared of woody vegetation but not drained, then the NC include the contemporary hydrologic conditions.

Regarding climate-based considerations, NRCS must evaluate hydrology (under NC) in the context of normal environmental conditions (NEC). The FSA Procedures provide that hydrology under NEC consists of the hydrologic conditions or characteristics that would exist in a typical situation on a site during the wet portion of the growing season in a normal climatic year. To aid in determining what those conditions or characteristics are, the regulations define normal climatic conditions as “the normal range of hydrologic inputs on a site as determined by the bounds provided in the Climate Analysis for Wetlands Tables or methods posted in the Field Office Technical Guide.” In summary, NRCS must make a decision on each of the three wetland diagnostic factors based on the hydrologic conditions expected to normally occur during

---

3 A sampling unit, as defined in the Food Security Act Wetland Identification Procedures, is the smallest portion of the area subject to the wetland determination. Sampling units are identified based on having (or would have under normal circumstances) similar plant communities resulting from similar soil properties, hydrologic regimes, and landscape positions. Each sampling unit differs (landscape position, hydrology, soils, and vegetation) from other sampling units within the subject area.

4 The regulations provide that “[w]hen a wetland is affected by drainage manipulations that occurred prior to December 23, 1985, and did not support woody vegetation on December 23, 1985, such that production of an agricultural commodity on that date was possible, wetland hydrology shall be identified on the basis of the best-drained condition resulting from such drainage manipulations.”

5 Drainage is defined in the FSA Procedures as “any human-induced, onsite or offsite, activity that results in an altered depth, duration, frequency, or timing of the hydrologic condition (inundation or saturation by surface or ground water) of the site.”

6 The regulations also provide that “[w]hen making a decision on wetland hydrology, NRCS will utilize a fixed precipitation date range of 1971-2000 for determining normal climatic conditions.”
the wet portion of the growing season when recent weather has not created abnormally wet or dry conditions.

Preliminary data gathering and synthesis is helpful in determining the conditions that best represent NC, and NRCS is required by policy in the FSA Procedures, FSA Variance (5-9), to conduct preliminary data gathering and synthesis to determine whether a typical or atypical situation exists.

The wetland identification decision from Step 1 is documented on the wetland determination base map, delineating different areas (sampling units) as either wetland or non-wetland (meeting all three wetland diagnostic factors or not).

Step 2: Determination of Wetland Type. During this step, information discovered during preliminary data gathering and synthesis regarding past drainage actions and other land use history will also be utilized when assigning the appropriate WC label. Particularly, the findings from the hydrology portion of Step 1 may aid in the Step 2 decision if the area under NC meets the specific FW hydrology criteria. It is important to note that wetlands, meeting the hydrology factor in Step 1 but not supporting long-term inundation, would fail to meet the FW hydrology criteria for wetlands that are not a playa, pocosin, or pothole. These areas would normally receive the prior converted cropland (PC) exemption (or label) if all other conditions of the label are met.

NRCS must consider the possibility of false positives and false negatives when evaluating wetland hydrology in both Step 1 and Step 2. Guidance for identifying false positives and negatives is provided for in the user cautions section of each FW hydrology indicator. Also, care should be exercised to ensure that the FW hydrology indicators be applied to the inundation type (e.g. ponding of closed depressions and surface flooding by out of bank floodwater) described in the criteria section of each FW indicator.

Step 3: Determination of Size. NRCS determines the size of each area delineated as a sampling unit on the wetland determination base map. Those delineations and sizing are then used to determine the size of areas with different WC labels identified on the certified wetland determination map.

---

7 The regulations state that wetland hydrology shall be identified on the basis of the best-drained condition resulting from any pre-1985 drainage manipulations. This includes the wetland hydrology decisions made in both Step 1 and Step 2.

8 False positives and negatives are discussed in the Regional Supplements to the Corps of Engineers Wetland Delineation Manual. A false positive occurs when an indicator is observed, but it is not indicative of conditions under NC. A false negative occurs when an indicator is not observed, but the area supports wetland hydrology under NC.

9 As used here, the term closed depressions are depressional landscape features that pond water following precipitation events, snow melt, or over-bank flooding of a nearby stream or river. Closed depressions can occur in upland landforms and floodplains.
FARMED WETLAND HYDROLOGY INDICATORS

When conducting Step 2 on areas not in a playa, pocosin, or pothole landform, and when the area meets all other FW label criteria (i.e. was manipulated prior to December 23, 1985, used to produce an agricultural commodity at least once before December 23, 1985, and on December 23, 1985, did not support woody vegetation), NRCS must determine if the sampling unit(s), identified as wetland under NC in Step 1, supports long-term inundation. NRCS in Louisiana will use the following Farmed Wetland Hydrology Indicators to make or assist in making this decision:

FW-LA01: Surface Water
FW-LA07: Evidence of Long-Term Ponding Visible on Aerial Imagery
FW-LA12: Stream Gage Data

Adoption Date: X-X-2021
Farmed Wetland (FW) Hydrology Indicator: FW-LA01 Surface Water

General Description: This indicator consists of onsite observation of inundation (flooding or ponding).

Criteria: Observation of surface water at a depth of ≥3 inches at the representative observation point (ROP) during normal environmental conditions (NEC), or ≥2 inches when the sampling unit is experiencing drier conditions than expected under NEC. This indicator will not be used when the sampling unit is experiencing wetter conditions than expected under NEC. The observed surface water indicates the area would experience long-term inundation under NEC as defined in the Food Security Act Wetland Identification Procedures (National Food Security Act Manual Part 514.8).

User Notes:
1) It would be common to also find Group B (Evidence of Recent Inundation) hydrology indicators from the regional supplement to the Corps Manual in conjunction with this indicator as further supporting evidence.
2) Recent precipitation data should be reviewed to support that the observed inundation would be expected to occur under NEC.
3) Observation of out of bank flooding is best supported by flood-gauge data or other information to assure the observed flooded conditions indicate long-term inundation would occur under NEC.

User Cautions:
a) Observation of inundation outside of NEC can create false positives. These can be due to frozen soil acting as an aquitard, evaporation/transpiration rates being lower than what would occur under NEC, or simply from unusual weather events. When relying on observations made outside of NEC, the landform, soils, and climate should support that the observed inundation would be expected to occur under NEC for long durations.
b) Under traditional row-crop agriculture (e.g. corn, cotton, or soybeans), building of rows (hipping) pulls soil from the borrow area between the rows and deposits that soil at the row center to create a raised bed. Ponding observed between the rows can create a false positive, and lack of ponding at the row center can create a false negative. The ROP location should consider the borrow and filling associated with hipping.
c) Surface water may be the result of recent significant precipitation or other climatic events that cause conditions wetter than those that occur under NEC. Caution should be used so that such observations are not false positives.
d) If surface water is observed on soils that have a high saturated hydraulic conductivity, such as sandy soils, care should be taken so that such observations are not false positives.
e) For sites with drainage features where surface water is observed, care should be taken to ensure that water would not normally be removed by the drainage. Drainage function can be verified using analytic techniques such as procedures found in Title 210, Part 650, Engineering Field Handbook, Chapter 19.
f) Under traditional row-crop agriculture, natural infiltration can be impaired by compaction, resulting in artificial ponding. Care should be taken in ROP placement and that observations of surface water is not a false positive.
g) Particularly in arid regions, irrigation water can move down gradient for long distances increasing the water regime of down gradient depressions. Observations of surface water due to irrigation flow would be considered a false positive.

Figure 1  Observation of surface water, such as ponding in this cropped field in Indiana, is often observed in conjunction with other indicators of long-term inundation such as sparsely vegetated concave surface.
**Farmed Wetland (FW) Hydrology Indicator: FW-LA07 Evidence of Long-Term Ponding Visible on Aerial Imagery**

**General Description:** This indicator consists of ponding observed on aerial imagery taken during the growing season. The imagery indicates the area would experience long-term inundation (ponding) under normal environmental conditions (NEC) as defined in the Food Security Act Wetland Identification Procedures (National Food Security Act Manual Part 514.8).

**Criteria:** Observation of ponding on greater than 50% of at least 5 years of aerial imagery taken during the growing season. Only imagery that reflects normal or drier than normal climatic conditions will be used.

**User Notes:**
1) Procedures found in Title 210, Part 650, Engineering Field Handbook, Chapter 19, can be used to evaluate normal climatic conditions prior to the photo date.
2) This indicator will not be applied to flood irrigated fields, as such observations are likely to be false positives.
3) This indicator will not be applied with the use of aerial photography taken during the dormant season, as such observations are likely to be false positives.
4) Confidence in this indicator is increased when the site does not have a drainage outlet, and all water must be removed by infiltration or evaporation. LiDAR can be used to verify if an outlet exists.

**User Cautions:**
- Care must be used in applying this indicator because short-term ponding may be present on a wetland immediately after a heavy rain or during periods of unusually high precipitation, runoff, or river stages.
- Because observed water due to flooding may be present for short durations, care should be taken to ensure that such observations due to flooding are not false positives.
- Long-term ponding normally present under NEC may be absent from a wetland during the normal dry season or during extended periods of drought.
- Shallow ponding, particularly in semi-arid and arid regions can be short-lived during the growing season. Consideration of hydrologic inputs (watershed size, groundwater influence, frequency and amount of normal precipitation events), evaporation-transpiration rates, and depth of ponding observed in the field can assist with the application of this indicator.
Figure 2  An aerial image showing ponded areas during the growing season on a field that was manipulated and converted to cropland prior to 1985.
**Farmed Wetland (FW) Hydrology Indicator: FW-LA12 Stream Gage Data**

**General Description:** This indicator utilizes stream gage data to document the hydroperiod (timing, duration, and frequency of inundation) of areas adjacent to streams and rivers. Procedures for gathering stream gage data and computing water surface profiles are found in the NRCS National Engineering Handbook, Title 210, Part 650, Engineering Field Handbook, Chapter 19 - “Hydrology Tools for Wetland Identification and Analysis.”

**Criteria:** This indicator requires analysis of flood gage data and elevational data (Light Detection and Ranging (LiDAR) data or onsite elevational data) that finds 15-consecutive days of inundation occurs during the growing season in most years (50 percent chance or more).

**User Notes:**
1) Growing season for the site will be determined by the Climate Analysis for Wetlands Tables (WETS tables) data (50% probability of 28 degrees) to ensure the metric for this indicator is days flooded during the growing season.
2) A representative observation point (ROP) will be selected that best represents the elevation of the sampling unit. For areas with significant topography (e.g. ridge-slough), care must be exercised to assure the ROP accurately represents the elevation of the sampling unit.
3) A minimum of 10 years of data will be used in the analysis.
4) A water surface profile is used to interpolate gage data between gage locations and determine the water depth elevation at the site.
5) LiDAR data or onsite survey data will be used to accurately determine elevation of site as compared to flood elevation data.
6) Do not use gage data that is incomplete if the missing data occurs during the flood event being analyzed, unless the missing data does not impact the determination of the duration of the flood event (e.g. missing data when the capacity of the gage is exceeding during extreme high flows).

**User Cautions:**
 a) Levees, spoil piles, flood gates, and similar structures will change flow patterns. If present the use of this indicator may not be appropriate.
 b) A natural levee, particularly on larger rivers, can impact flood frequency, depth, and duration on adjacent areas.
 c) An area’s connectivity to the stream or river may change at different flood elevations.