CAUTION: After a fire many trees are weakened from burning around the base of the trunk. The trees can fall over or blow down without warning. Shallow-rooted trees can also fall. Therefore be extremely alert when around burned trees.

What is a dike?

A dike is an earthen or rock berm or barrier of soil constructed to protect property from flooding.

When is a dike used?

A dike is used when increased storm runoff or debris flow from burned areas are likely to cause flooding or other damage to high value properties, such as a home site or business, and there are adequate space and soil available to construct a dike. They may be used in combination with a runoff diversion and other practices to accomplish this purpose. Dikes must be constructed of appropriate material and remain stable when exposed to flooding. When a sufficient quantity of suitable material is not available on site some other type of flood barrier should be considered. A poorly designed dike can create a false sense of security or contribute to increased erosion and flooding at other locations. Dikes should be planned and designed with the assistance of an experienced engineer.

How is an NRCS dike designed?

Location: Dikes are located so they can intercept flood water and direct it safely past the area being protected without causing other damage. The dike must utilize existing topographic features or completely encircle the area being protected, as necessary to prevent flood water from going around its ends.
After the Fire

Natural Resources Conservation Service

Note: Post-fire restoration practices are best designed by NRCS or other certified professionals to make sure they are placed and installed correctly within the landscape, so that they do not cause off-site issues. Maintenance is essential for any practice to function properly. Practices have a limited life expectancy after which they should be repaired, upgraded or removed. Improper maintenance can worsen erosion and cause unintended problems. Permanent practices may require approvals and permits from regulatory agencies including the county in which the property is located.

How is an NRCS dike designed?

Height: The top of the dike is set to prevent overtopping from a storm frequency consistent with the hazard involved, but should not be less than a 25-year frequency, 24-hour duration storm. Dikes protecting major structures, homes, school buildings and high capacity roads should have enough height to prevent overtopping from a 100-year frequency 24-hour duration storm. A hydrological analysis should be completed to account for the burned acres within the watershed.

Cross Section: The dike cross section will be trapezoidal, and shall accommodate the equipment to be used for constructing it. (See Figure 1) The dike must have stable side slopes, generally not be steeper than 3:1. The dike top width, base width and core trench dimensions are selected based on the design height, as shown in Table 1.

Erosion Protection: The dike and other disturbed areas should be seeded and mulched. If the soils or climatic conditions preclude the use of vegetation for erosion protection, non vegetative linings such as gravel, rock riprap, or cellular block may be used.

What maintenance is required?

Vegetation or other erosion protection must be kept in good condition. The dike should be checked after each flood event, and repaired as necessary. Temporary dikes should be removed when they have served their purpose.

![Diagram of dike design](image)

<table>
<thead>
<tr>
<th>Height, H</th>
<th>Minimum Dike Top Width, W</th>
<th>Dimensions Core Depth, D</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 3 ft</td>
<td>4 ft</td>
<td>1 ft</td>
</tr>
<tr>
<td>3 - 5 ft</td>
<td>6 ft</td>
<td>2 ft</td>
</tr>
<tr>
<td>5 - 10 ft</td>
<td>8 ft</td>
<td>3 ft</td>
</tr>
<tr>
<td>> 10 ft</td>
<td>Not recommended</td>
<td></td>
</tr>
</tbody>
</table>

USDA is an equal opportunity provider, employer, and lender.