This publication is supported, in part, with funding from the Northeastern IPM Center (NortheastIPM.org) and the USDA National Institute of Food and Agriculture.

Mission of the Center: The Northeastern Integrated Pest Management Center focuses on developing and adapting IPM science-based approaches to managing pest problems that generate economic, environmental, and human health benefits. The Center works in partnership with stakeholders from agricultural, urban, and natural settings to identify and address regional priorities for research, education, and outreach.

CITED REFERENCES

PHOTO CREDITS

Aside from those taken from public domain, photos were used with permission from the following individuals, who maintain copyright privileges.

Pages:

Authors:
INTRODUCTION

There is no doubt that insect pollination is a vital service for agricultural systems. Without insect pollinators, roughly a third of the world’s crops would flower, only to fade and then lie barren. Pollinators ensure abundant fruits and vegetables. Of all insect pollinators, bees are the most important. In the US alone, the value of pollination services by bees is estimated to be $18 billion\(^{15}\), but these services are threatened and finding alternatives is crucial for long-term pollination success.

WHY CONSIDER WILD BEES AS POLLINATORS NOW?

Honey bees are the most widely used insect pollinator in agricultural systems, as they are easily managed. However, due to disease and competing demands, the cost of hive rentals continues to increase as supplies decrease. Farmers are aware of these challenges as evidenced by a 2009 mail survey where 65% of New York apple growers indicated that Colony Collapse Disorder of honey bees would negatively affect apple production\(^5\). For the same reason that diversified investing is safer than dependence on a single stock, relying on a single pollinator for this vital service may pose increasing risk. Honey bees will no doubt remain a key pollinator for agricultural systems, but research suggests more and more that wild bees are contributing to apple pollination.

WHAT ARE WILD BEES AND HOW DO THEY BENEFIT ME?

Besides honey bees, about 400 other bee species live in the eastern United States. Over 100 of these wild bees visit apple orchards. Most of these bees are native to the region, while at least one (the Bombus occidentalis, Common carpenter bee) was introduced for fruit pollination. Mail surveys of New York and Pennsylvania apple growers reveal that, when abundant, wild bees provide all the pollination an orchard needs—and they do so for FREE\(^5\). Further, careful pollination studies have shown that wild bees can be more effective pollinators than honey bees on a per visit basis\(^6\), meaning they do not need to be as abundant as honey bees to provide the same level of pollination. Wild bees are a valuable orchard asset whose contributions are only now beginning to be fully appreciated.

WHY SHOULD I CARE ABOUT DIVERSITY?

Bee diversity stabilizes pollination services through time. The more species in an area, the more likely there will be a species that can tolerate variable climate conditions, like a cold and wet spring, similarly when bee diversity is high, even if there is one species that is extinguished by disease, parasites, pesticides or habitat loss, other species continue to thrive and pollinate.
WIN-WIN FOR WILD BEES AND GROWERS?

Pollinators are declining worldwide, as are their pollination services. Eastern orchards have a unique opportunity to simultaneously conserve wild bee populations and to benefit from their contribution to fruit pollination. The mixed eastern landscape, comprised of orchard blocks interspersed with woodlots, fallow fields and hedgerows, provides bees with needed natural habitat in close proximity to orchards. Simply protecting bee resources that already exist on grower lands is an important first step in ensuring wild bee pollination. By encouraging wild bee abundance and diversity, agricultural growers may be able to buffer rising honey bee rental costs (a win for farmers), while creating an environment that better supports both wild and commercial bees (a win for all bees).

IN THIS BOOKLET YOU WILL FIND...

1. a photo guide to bees most important for apple production in the East;
2. steps to conserving, even optimizing, wild bee pollination in and around your orchard;
3. recommendations for plantings to enhance food for pollinators;
4. summary of bee toxicities for commonly used orchard pesticides;
5. links to other key resources for more information.
NOTES

BEE FACTS

WHY IS BEE POLLINATION SO IMPORTANT?

Apple is self-incompatible, meaning a tree's own pollen will not produce fertilized seeds or fruit. Because all trees within a variety are clones (i.e., genetically identical), pollinators move across varieties. Great flyers, adapted to collect pollen with their hairy bodies, bees cross-polinate flowers as they move throughout the orchard feeding on nectar and pollen.

WHAT DOES IT MEAN TO BE SOCIAL OR SOLITARY?

Honey bees and bumble bees live in social colonies with a queen - charged only with reproducing - and a force of workers, who take care of the colony. Only the workers forage outside the nest. In contrast, 90% of wild bee species live a solitary life. Each solitary female makes her own nest and forages for food for her young.

LIFE CYCLE OF A SOLITARY GROUND-NESTING BEE

Almost 90% of the world's 20,000 bee species are solitary, and 70% of them live underground. Adult solitary bees are active for a relatively short time (weeks to months). During the active period, females construct a nest, consisting of a tunnel and a series of chambers (cells). They provision these chambers with a mix of pollen and nectar, and then lay a single egg in each. The egg is then sealed in the chamber and develops into a larva and then a pupa without parental care. After months underground, when its flight period returns, the adult solitary bee will dig its way out of the nest and restart the cycle.
THE MOST COMMON BEES IN YOUR ORCHARD

GROUND-NESTERS

The most important wild pollinators of apple are ground-nesting bees. Ground-nesters excavate underground nests, comprised of tunnels and egg chambers where the young develop—a nesting strategy shared by 70% of bees worldwide. To avoid moisture-loving microbes that attack food and young, nests are built in well-drained soils. These nests are difficult to find because the entrance is normally a small hole in the ground, just big enough for the bee to move in and out.

Nest requirements: Well-drained soil with access to bare ground.
Threats: Tilling, mowing, toxic herbicides like Paraquat (trade name Gramoxone), and compaction.
Conservation: Protect nesting sites from above threats and improve access to bare soil; provide floral resources through the growing season.

KEY

FORAGING: SOCIALITY: FLIGHT RANGE:

<table>
<thead>
<tr>
<th>Ground</th>
<th>X Specialist</th>
<th>Solitary</th>
<th>Social</th>
</tr>
</thead>
<tbody>
<tr>
<td><500 yd</td>
<td>500-1,000 yd</td>
<td>1 mile</td>
<td>1 mile</td>
</tr>
</tbody>
</table>

LARGE MINING BEES (Andrena spp.)

At most sites, large mining bees are the most abundant and widespread native pollinators of apple. They deposit 2–3 times more pollen than honey bees per visit.

SMALL MINING BEES (Andrena spp.)

Flight ranges are often estimated from body size. The smaller the bee, the shorter the distance it can fly.

Both wild and commercial bee species would benefit from increased floral resources on your land. Choose combinations of plants, so that different flower types are available throughout the entire growing season. The species recommended below are all eastern native perennials.

Purple coneflower	Echinacea spp.	forb
Wild bergamot	Monarda fistulosa	forb
Joe Pye weed	Eupatorium purpureum	forb
Blue giant hyssop	Agastache foeniculum	forb
Giant sunflower	Helianthus giganteus	forb
White meadowsweet	Spiraea alba	shrub
New England aster	Symphyotrichum novae-angliae	forb

Summer

Fall
FORAGE PLANTS FOR WILD POLLINATORS

<table>
<thead>
<tr>
<th>COMMON NAME</th>
<th>SPECIES NAME</th>
<th>FORM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service berry</td>
<td>Amelanchier spp.</td>
<td>tree</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soilt: mesic</td>
</tr>
<tr>
<td>Pussy willow</td>
<td>Salix discolor</td>
<td>tree-shrub</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soilt: mesic</td>
</tr>
<tr>
<td>Lupine</td>
<td>Lupinus perennis</td>
<td>forb</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soilt: mesic</td>
</tr>
<tr>
<td>Basswood</td>
<td>Tilia americana</td>
<td>tree</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soilt: mesic</td>
</tr>
<tr>
<td>Lance-leaf coreopsis</td>
<td>Coreopsis lanceolata</td>
<td>forb</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soilt: mesic</td>
</tr>
<tr>
<td>Smooth penstemon</td>
<td>Penstemon digitalis</td>
<td>forb</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soilt: mesic</td>
</tr>
<tr>
<td>Milkweed</td>
<td>Asclepias spp.</td>
<td>forb</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soilt: mesic</td>
</tr>
</tbody>
</table>

GENERALIST OR SPECIALIST? These terms refer to the diet breadth of the bee. Generalists use many types of plants as a food source, while specialists only use a single species, genus or family of plants. Crop pollinators are typically generalists.

CELLOPHANE BEES
(Colletes inaequalis)

Named for the iridescent coating that lines their nest walls, cellophane bees are solitary but nest in large aggregations in grass covered, sandy soil.

DARK SWEAT BEES
(Lasio glossum spp., Halictus spp.)

BLUE-GREEN SWEAT BEES
(Augochlora pura, Agapostemon spp., Augochlora aurata)

Unlike the other bees in this group, Augochlora pura, pictured here, nests in rotting wood.
THE MOST COMMON BEES IN YOUR ORCHARD

CAVITY-NESTERS

This bee group is most familiar to us and includes honey bees and bumble bees. Such bees do not excavate their own nest, but find existing cavities to house their social colonies and honey supplies. Because these bees are active all summer long, they require constant (or at least long term) floral resources in the vicinity of the hive.

Nest requirements: CAVITIES in trees, in wooden structures or below-ground.

Threats: Habitat loss (i.e., inadequate nesting and food sites), pesticide drift.

Conservation: Protect or enhance adjacent, woody natural areas; provide floral resources through the growing season; establish 20-ft buffer for drift.

KEY

FORAGING:

GENERALIST \ SPECIALIST

SOCIALITY:

SOLITARY \ SOCIAL

FLIGHT RANGE:

<500 yds \ 1 mile \ 2 miles

actual size

BUMBLE BEES (Bombus spp.)

Queen bumble bees are, generally, the only individuals active during apple bloom. In the wild, workers are produced later once the colony is established. In contrast, commercial colonies are raised indoors and contain both queen and mature workers.

HONEY BEES (Apis mellifera)

Honey bee color ranges from the familiar orange-brown to black like the bee pictured here.

- Follow label guidelines.
- Minimize drift and direct exposure of chemicals to foraging bees. Apply sprays at night or very early when winds are usually calm and bees are not active. Non-toxic when dry, surfactants can physically drown pollinators if applied while bees are active.

In general, be mindful that wild bees are present on farms before and after the apple bloom and may even be nesting within tree rows. On pages 16 and 17, you will find a table that ranks bee toxicity of pesticides most commonly used in orchards.

MORE POLLINATOR CONSERVATION RESOURCES...

WEBSITES:

- The Xerces Society, www.xerces.org, provides a wealth of information on pollinator conservation, including downloadable fact sheets and publications, as well as links to other resources.
- Pollinator Partnership, www.pollinator.org, is an non-profit coalition dedicated to the conservation of North American pollinators. Check out their resources for farming.
- Penn State University’s Center for Pollinator Research, entomology.psu.edu/pollinators, conducts research and outreach for wild and managed pollinators. Listed here on OOD and outreach information are found here.
- Cornell University’s Wild Pollinator Program, entomology.cornell.edu/wildpollinators, serves as a portal to research and outreach about non-honey bee pollinators of New York crops and native plants.

RECOMMENDED PUBLICATIONS:

CONSERVATION

PROVIDE SAFE NESTING SITES

The best way to provide safe nesting is to maximize undisturbed areas around your farm. Ground nesters benefit most if areas with semi-bare, sandy soils are protected from compaction or tilling. Both tunnel- and cavity-nesters need in or at the edge of woody semi-natural or natural areas, as well as in old stone walls and sheds.

HOW TO CREATE NEW NESTING SITES

BEE GROUP

<table>
<thead>
<tr>
<th>NESTER TYPE</th>
<th>SITES/NESTS/DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUND-NESTERS</td>
<td>Shallow till well-drained areas once and maintain bare ground with glyphosate.</td>
</tr>
<tr>
<td>TUNNEL-NESTERS</td>
<td>Pile slot trees that are pulled near orchard. Place self-made or purchased stem nests made from tubes or drilled wood close to orchard but safe from pesticide drift. Start small to see if tunnel-nesters are in your area. See Mader et al. 2010 for further information.</td>
</tr>
<tr>
<td>SOCIAL CAVITY-NESTERS</td>
<td>Pile slot trees that are pulled near orchard. Do not destroy rodent holes.</td>
</tr>
</tbody>
</table>

PROTECT BEES FROM PESTICIDES

Pesticides, including fungicides and even some herbicides, are a general danger to bees, but wild bees are more impacted because they reproduce more slowly than honey bees and each wild bee is not only a worker but also a reproducer. Here are some general guidelines to protect bees from pesticides:

- If you have a choice, use the least hazardous formulation.
- Avoid dusts and microencapsulated sprays; bees easily pick them up on their hairs or mistake them for pollen.

TUNNEL-NESTERS

As their name implies, these bees either excavate tunnels in wood (e.g., carpenter bees) or use abandoned cavities, such as beetle burrows, or even cracks in masonry (e.g., mason bees). Among the most important native (and sometimes managed) pollinators are mason bees (genus Osmia). Mason bees are effective pollinators and populations can be increased through the use of artificial nesting materials. For more information on mason bee biology and management, see Bosch & Kemp 2001 (listed below under section entitled "MORE POLLINATOR CONSERVATION RESOURCES").

Nest requirements: Stems, trees, rotting logs, wooden structures or old masonry.

Threats: Habitat loss (i.e., not enough nesting sites) and pesticide drift.

Conservation: Protect or enhance adjacent, woody natural areas and old stone walls; provide nesting materials; maintain floral resources through the growing season; establish a 20-ft buffer for drift.

LARGE CARPENTER BEES *(Xylocopa virginica)*

- Often considered pests because they tunnel in structural wood, carpenter bees are effective pollinators of apple.

SMALL CARPENTER BEES *(Ceratina spp.)*

- Small carpenter bees excavate nests in pithy stems, such as bramble.

MASSIVE BEES *(Osmia spp.)*

- Mason bees use mud to partition cells within their nest. Out West, the blue orchard bee, *Osmia lignaria*, is managed for orchard pollination. In the East, the introduced homedeced bee, *O. cornifrons*, is a more common pollinator of apple.
CONSERVATION

IN ORDER FOR WILD BEES TO THRIVE, THREE BASIC NEEDS MUST BE MET:

1. adequate food,
2. safe nesting sites, and
3. protection from pesticides.

You may already take great care to provide these needs for honey bees, but wild bees are unique in that they cannot be taken in and out of the orchard at will, so they must be considered beyond the short bloom period. Moreover, wild bees are more vulnerable because, unlike honey bees that send workers to forage, wild bee foragers are the reproducing individuals for that population.

BEE & BLOOM PHENOLOGY*

<table>
<thead>
<tr>
<th>BLOOM</th>
<th>GROUND NESTERS</th>
<th>CAVITY NESTERS</th>
<th>TUNNEL NESTERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Red</td>
<td>Yellow</td>
<td>Pink</td>
</tr>
</tbody>
</table>

- **Apple**
- **Pear**
- **Cherry**

Timing is generalized for the eastern U.S. and will vary according to your latitude and microclimate.

PROTECT AND ENHANCE POLLINATOR FOOD SOURCES

Wild bees require a continuous and diverse source of pollen and nectar to sustain themselves and their young. Because they live longer than the short apple bloom, it is critical that other floral resources are available within flight distance from your orchard. Here's what you can do...

First step, protect floral resources already available on your land:

- wild blooming trees and shrubs, like willow, red maple, and basswood
- flowering weeds along roadsides and on lawns
- other early blooming plants, such as cherry, plum and raspberry
- hedges
- your home garden

Next step, increase floral resources on your property to build pollinator populations. Plantings come in various forms:

- strips or scattered blocks at orchard margins
- cover crops
- expanded home gardens

USDA Plant Materials Centers, Xerces Society and university researchers are developing region-specific plant mixes for pollinators. Funding is available for such plantings on farms (discussed below). Flip to pages 14 and 15 for a guide to plants that benefit orchard pollinators.

GOVERNMENT COST-SHARE PROGRAMS

USDA's Farm Service Agency (FSA) and Natural Resources Conservation Service (NRCS) provide funding opportunities for individual farmers to defray the costs of improving lands for pollinators.

1. Conservation Reserve Program (CRP) is a land retirement program that aims to enhance wildlife habitat.
 - Contact your local USDA FSA service center to apply.

2. Environmental Quality Incentives Program (EQIP) supports conservation practices that improve environmental quality of land.
 - See website for state-specific application instructions.

3. Wildlife Habitat Incentives Program (WHIP) funds establishment and improvement of wildlife habitat.
 - Contact your local USDA NRCS service center to apply.