Pearson Eddy Slough

drainage patterns
aerial background
aerial with land parcels shown
look closer at NRCS culvert crossing

zoom in
culvert improvements by NRCS
inundation scenario 1

no culvert fixes, assuming:

a) existing culverts fail
   and/or embankment breached

b) no interior rainfall or runoff

c) Snoqualmie River stage at 35,
   not overtopping natural berms
The river does not overtop berms.

Existing culverts fail.

No interior runoff or precipitation.
this is only due to the river backing up into the slough
inundation scenario 2:

no culvert fixes, assuming:

a) existing culverts function with flap gates

b) 5-year interior rainfall and runoff event

c) Snoqualmie river stage rising from elev 25 to 31 and receding,
   (typical event not overtopping berms)
local
5-year precip
& runoff
inundation scenario 3:

NRCS culvert upgrades, assuming:

a) side hinged flap gates

b) one fish-friendly gate, open until stage 28

c) no interior rainfall or runoff

d) Snoqualmie river stage rising from elev 25 to 31 and receding, (typical event not overtopping berms)
this is only due to the river backing up into the slough
inundation scenario 4:

NRCS culvert upgrades, assuming:

a) side hinged flap gates

b) one fish-friendly gate, open until stage 28

c) 5-year interior rainfall and runoff event

d) Snoqualmie river stage rising from elev 25 to 31 and receding, (typical event not overtopping berms)
local
5-year precip & runoff

All water surface elevations are the same as with the existing culverts.
end of slides