Keys to Soil Taxonomy

Eleventh Edition, 2010
Keys to Soil Taxonomy

By Soil Survey Staff

United States Department of Agriculture
Natural Resources Conservation Service

Eleventh Edition, 2010
The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Cover: Profile of a Lamellic Quartzipsamment. Because of coatings of iron oxide, the part of the profile directly below the surface horizon is reddish. Lamellae of loamy sand, mostly less than 0.5 centimeter thick, are common in the lower part of the profile. The scale is in 15-centimeter increments. Photo by John Kelley, Soil Scientist (retired), Raleigh, North Carolina.
Table of Contents

Foreword ... 5
Chapter 1: The Soils That We Classify ... 6
Chapter 2: Differentiae for Mineral Soils and Organic Soils 10
Chapter 3: Horizons and Characteristics Diagnostic for the Higher Categories .. 16
Chapter 4: Identification of the Taxonomic Class of a Soil ... 92
Chapter 5: Alfisols .. 102
Chapter 6: Andisols ... 220
Chapter 7: Aridisols ... 276
Chapter 8: Entisols ... 350
Chapter 9: Gelisols .. 412
Chapter 10: Histosols .. 436
Chapter 11: Inceptisols .. 451
Chapter 12: Mollisols .. 551
Chapter 13: Oxisols ... 673
Chapter 14: Spodosols ... 714
Chapter 15: Ultisols ... 739
Chapter 16: Vertisols ... 800
Chapter 17: Family and Series Differentiae and Names ... 835
Chapter 18: Designations for Horizons and Layers ... 879
Appendix .. 898
Index ... 916
The publication Keys to Soil Taxonomy serves two purposes. It provides the taxonomic keys necessary for the classification of soils in a form that can be used easily in the field. It also acquaints users of the taxonomic system with recent changes in the system. The eleventh edition of the Keys to Soil Taxonomy incorporates all changes approved since the publication of the second edition of Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys (1999). One of the most significant changes in the eleventh edition is the addition of the suborders Wassents and Wassists for subaqueous Entisols and Histosols. We plan to continue issuing updated editions of the Keys to Soil Taxonomy as changes warrant new editions.

Since it was first published 35 years ago, Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys has been used to support soil survey efforts in many countries around the world. It has been translated into several languages. Soil scientists from many nations have contributed significantly to the development of the taxonomic system. The authors encourage the continued use of soil taxonomy internationally and look forward to future collaborations with the international soil science community so we can continue to make improvements. Through continued communication and collaboration, we hope that our efforts will eventually result in a truly universal soil classification system.

The authors of the Keys to Soil Taxonomy are identified as the “Soil Survey Staff.” This term is meant to include all of the soil classifiers in the National Cooperative Soil Survey program and in the international community who have made significant contributions to the improvement of the taxonomic system.

Micheal L. Golden
Director, Soil Survey Division
Natural Resources Conservation Service
The word “soil,” like many common words, has several meanings. In its traditional meaning, soil is the natural medium for the growth of land plants, whether or not it has discernible soil horizons. This meaning is still the common understanding of the word, and the greatest interest in soil is centered on this meaning. People consider soil important because it supports plants that supply food, fibers, drugs, and other wants of humans and because it filters water and recycles wastes. Soil covers the earth’s surface as a continuum, except on bare rock, in areas of perpetual frost, in deep water, or on the barren ice of glaciers. In this sense, soil has a thickness that is determined by the rooting depth of plants.

Soil in this text is a natural body comprised of solids (minerals and organic matter), liquid, and gases that occurs on the land surface, occupies space, and is characterized by one or both of the following: horizons, or layers, that are distinguishable from the initial material as a result of additions, losses, transfers, and transformations of energy and matter or the ability to support rooted plants in a natural environment. This definition is expanded from the 1975 version of Soil Taxonomy to include soils in areas of Antarctica where pedogenesis occurs but where the climate is too harsh to support the higher plant forms.

The upper limit of soil is the boundary between soil and air, shallow water, live plants, or plant materials that have not begun to decompose. Areas are not considered to have soil if the surface is permanently covered by water too deep (typically more than about 2.5 m) for the growth of rooted plants. The horizontal boundaries of soil are areas where the soil grades to deep water, barren areas, rock, or ice. In some places the
separation between soil and nonsoil is so gradual that clear distinctions cannot be made.

The lower boundary that separates soil from the nonsoil underneath is most difficult to define. Soil consists of the horizons near the earth’s surface that, in contrast to the underlying parent material, have been altered by the interactions of climate, relief, and living organisms over time. Commonly, soil grades at its lower boundary to hard rock or to earthy materials virtually devoid of animals, roots, or other marks of biological activity. The lowest depth of biological activity, however, is difficult to discern and is often gradual. For purposes of classification, the lower boundary of soil is arbitrarily set at 200 cm. In soils where either biological activity or current pedogenic processes extend to depths greater than 200 cm, the lower limit of the soil for classification purposes is still 200 cm. In some instances the more weakly cemented bedrocks (paralithic materials, defined later) have been described and used to differentiate soil series (series control section, defined later), even though the paralithic materials below a paralithic contact are not considered soil in the true sense. In areas where soil has thin cemented horizons that are impermeable to roots, the soil extends as deep as the deepest cemented horizon, but not below 200 cm. For certain management goals, layers deeper than the lower boundary of the soil that is classified (200 cm) must also be described if they affect the content and movement of water and air or other interpretative concerns.

In the humid tropics, earthy materials may extend to a depth of many meters with no obvious changes below the upper 1 or 2 m, except for an occasional stone line. In many wet soils, gleyed soil material may begin a few centimeters below the surface and, in some areas, continue down for several meters apparently unchanged with increasing depth. The latter condition can arise through the gradual filling of a wet basin in which the A horizon is gradually added to the surface and
becomes gleyed beneath. Finally, the A horizon rests on a thick mass of gleyed material that may be relatively uniform. In both of these situations, there is no alternative but to set the lower limit of soil at the arbitrary limit of 200 cm.

Soil, as defined in this text, does not need to have discernible horizons, although the presence or absence of horizons and their nature are of extreme importance in soil classification. Plants can be grown under glass in pots filled with earthy materials, such as peat or sand, or even in water. Under proper conditions all these media are productive for plants, but they are nonsoil here in the sense that they cannot be classified in the same system that is used for the soils of a survey area, county, or even nation. Plants even grow on trees, but trees are regarded as nonsoil.

Soil has many properties that fluctuate with the seasons. It may be alternately cold and warm or dry and moist. Biological activity is slowed or stopped if the soil becomes too cold or too dry. The soil receives flushes of organic matter when leaves fall or grasses die. Soil is not static. The pH, soluble salts, amount of organic matter and carbon-nitrogen ratio, numbers of microorganisms, soil fauna, temperature, and moisture all change with the seasons as well as with more extended periods of time. Soil must be viewed from both the short-term and long-term perspective.

Buried Soils

A buried soil is covered with a surface mantle of new soil material that either is 50 cm or more thick or is 30 to 50 cm thick and has a thickness that equals at least half the total thickness of the named diagnostic horizons that are preserved in the buried soil. A surface mantle of new material that does not have the required thickness for buried soils can be used to establish a phase of the mantled soil or even another soil series if the mantle affects the use of the soil.
Any horizons or layers underlying a plaggen epipedon are considered to be buried.

A surface mantle of new material, as defined here, is largely unaltered, at least in the lower part. It may have a diagnostic surface horizon (epipedon) and/or a cambic horizon, but it has no other diagnostic subsurface horizons, all defined later. However, there remains a layer 7.5 cm or more thick that fails the requirements for all diagnostic horizons, as defined later, overlying a horizon sequence that can be clearly identified as the solum of a buried soil in at least half of each pedon. The recognition of a surface mantle should not be based only on studies of associated soils.
CHAPTER 2

Differentiae for Mineral Soils\(^1\) and Organic Soils

Soil taxonomy differentiates between mineral soils and organic soils. To do this, first, it is necessary to distinguish mineral soil material from organic soil material. Second, it is necessary to define the minimum part of a soil that should be mineral if a soil is to be classified as a mineral soil and the minimum part that should be organic if the soil is to be classified as an organic soil.

Nearly all soils contain more than traces of both mineral and organic components in some horizons, but most soils are dominantly one or the other. The horizons that are less than about 20 to 35 percent organic matter, by weight, have properties that are more nearly those of mineral than of organic soils. Even with this separation, the volume of organic matter at the upper limit exceeds that of the mineral material in the fine-earth fraction.

Mineral Soil Material

Mineral soil material (less than 2.0 mm in diameter) *either*:

1. Is saturated with water for less than 30 days (cumulative) per year in normal years and contains less than 20 percent (by weight) organic carbon; *or*

2. Is saturated with water for 30 days or more (cumulative) in normal years (or is artificially drained) and, excluding live roots, has an organic carbon content (by weight) of:

 a. Less than 18 percent if the mineral fraction contains 60 percent or more clay; *or*

\(^1\) Mineral soils include all soils except the suborder Histels and the order Histosols.
b. Less than 12 percent if the mineral fraction contains no clay; or

c. Less than 12 + (clay percentage multiplied by 0.1) percent if the mineral fraction contains less than 60 percent clay.

Organic Soil Material

Soil material that contains more than the amounts of organic carbon described above for mineral soil material is considered organic soil material.

In the definition of mineral soil material above, material that has more organic carbon than in item 1 is intended to include what has been called litter or an O horizon. Material that has more organic carbon than in item 2 has been called peat or muck. Not all organic soil material accumulates in or under water. Leaf litter may rest on a lithic contact and support forest vegetation. The soil in this situation is organic only in the sense that the mineral fraction is appreciably less than half the weight and is only a small percentage of the volume of the soil.

Distinction Between Mineral Soils and Organic Soils

Most soils are dominantly mineral material, but many mineral soils have horizons of organic material. For simplicity in writing definitions of taxa, a distinction between what is meant by a mineral soil and an organic soil is useful. To apply the definitions of many taxa, one must first decide whether the soil is mineral or organic. An exception is the Andisols (defined later). These generally are considered to consist of mineral soils, but some may be organic if they meet other criteria for Andisols. Those that exceed the organic carbon limit defined for mineral soils have a colloidal fraction dominated by short-range-order minerals or aluminum-humus complexes. The mineral fraction in these soils is believed to give more control to the soil properties than the organic fraction. Therefore, the
soils are included with the Andisols rather than the organic soils defined later as Histosols and Histels.

If a soil has both organic and mineral horizons, the relative thickness of the organic and mineral soil materials must be considered. At some point one must decide that the mineral horizons are more important. This point is arbitrary and depends in part on the nature of the materials. A thick layer of Sphagnum has a very low bulk density and contains less organic matter than a thinner layer of well-decomposed muck. It is much easier to measure the thickness of layers in the field than it is to determine tons of organic matter per hectare. The definition of a mineral soil, therefore, is based on the thickness of the horizons, or layers, but the limits of thickness must vary with the kinds of materials. The definition that follows is intended to classify as mineral soils those that have both thick mineral soil layers and no more organic material than the amount permitted in the histic epipedon, which is defined in chapter 3.

In the determination of whether a soil is organic or mineral, the thickness of horizons is measured from the surface of the soil whether that is the surface of a mineral or an organic horizon, unless the soil is buried as defined in chapter 1. Thus, any O horizon at the surface is considered an organic horizon if it meets the requirements of organic soil material as defined later, and its thickness is added to that of any other organic horizons to determine the total thickness of organic soil materials. Plant materials at the soil surface must be at least slightly decomposed if they are to be considered part of an O horizon. Undecomposed plant litter is excluded from the concept of O horizons.

Definition of Mineral Soils

Mineral soils are soils that have *either*:

1. Mineral soil materials that meet *one or more* of the following:
a. Overlie cindery, fragmental, or pumiceous materials and/or have voids2 that are filled with 10 percent or less organic materials and directly below these materials have either a densic, lithic, or paralithic contact; or

b. When added with underlying cindery, fragmental, or pumiceous materials, total more than 10 cm between the soil surface and a depth of 50 cm; or

c. Constitute more than one-third of the total thickness of the soil to a densic, lithic, or paralithic contact or have a total thickness of more than 10 cm; or

d. If they are saturated with water for 30 days or more per year in normal years (or are artificially drained) and have organic materials with an upper boundary within 40 cm of the soil surface, have a total thickness of either:

(1) Less than 60 cm if three-fourths or more of their volume consists of moss fibers or if their bulk density, moist, is less than 0.1 g/cm3; or

(2) Less than 40 cm if they consist either of sapric or hemic materials, or of fibric materials with less than three-fourths (by volume) moss fibers and a bulk density, moist, of 0.1 g/cm3 or more; or

2. More than 20 percent, by volume, mineral soil materials from the soil surface to a depth of 50 cm or to a glacic layer or a densic, lithic, or paralithic contact, whichever is shallowest; and

a. Permafrost within 100 cm of the soil surface; or

b. Gelic materials within 100 cm of the soil surface and permafrost within 200 cm of the soil surface.

2Materials that meet the definition of the cindery, fragmental, or pumiceous substitute for particle-size class but have more than 10 percent, by volume, voids that are filled with organic soil materials are considered to be organic soil materials.
Definition of Organic Soils

Organic soils have organic soil materials that:

1. Do not have andic soil properties in 60 percent or more of the thickness between the soil surface and either a depth of 60 cm or a densic, lithic, or paralithic contact or duripan if shallower; and

2. Meet one or more of the following:
 a. Overlie cindery, fragmental, or pumiceous materials and/or fill their interstices and directly below these materials have a densic, lithic, or paralithic contact; or
 b. When added with the underlying cindery, fragmental, or pumiceous materials, total 40 cm or more between the soil surface and a depth of 50 cm; or
 c. Constitute two-thirds or more of the total thickness of the soil to a densic, lithic, or paralithic contact and have no mineral horizons or have mineral horizons with a total thickness of 10 cm or less; or
 d. Are saturated with water for 30 days or more per year in normal years (or are artificially drained), have an upper boundary within 40 cm of the soil surface, and have a total thickness of either:
 (1) 60 cm or more if three-fourths or more of their volume consists of moss fibers or if their bulk density, moist, is less than 0.1 g/cm³; or
 (2) 40 cm or more if they consist either of sapric or hemic materials, or of fibric materials with less than three-fourths (by volume) moss fibers and a bulk density, moist, of 0.1 g/cm³ or more; or
 e. Are 80 percent or more, by volume, from the soil surface to a depth of 50 cm or to a glacic layer or a densic, lithic, or paralithic contact, whichever is shallowest.
It is a general rule that a soil is classified as an organic soil (Histosol or Histel) if more than half of the upper 80 cm (32 in) of the soil is organic or if organic soil material of any thickness rests on rock or on fragmental material having interstices filled with organic materials.
CHAPTER 3

Horizons and Characteristics Diagnostic for the Higher Categories

This chapter defines the horizons and characteristics of both mineral and organic soils. It is divided into three parts—horizons and characteristics diagnostic for mineral soils, characteristics diagnostic for organic soils, and horizons and characteristics diagnostic for both mineral and organic soils.

The horizons and characteristics defined below are not in a key format. The “required characteristics” for horizons or features, however, are arranged as a key. Some diagnostic horizons are mutually exclusive, and some are not. An umbric epipedon, for example, could not also be a mollic epipedon. A kandic horizon with clay films, however, could also meet the definition of an argillic horizon.

Horizons and Characteristics Diagnostic for Mineral Soils

The criteria for some of the following horizons and characteristics, such as histic and folistic epipedons, can be met in organic soils. They are diagnostic, however, only for the mineral soils.

Diagnostic Surface Horizons: The Epipedon

The epipedon (Gr. epi, over, upon, and pedon, soil) is a horizon that forms at or near the surface and in which most of the rock structure has been destroyed. It is darkened by organic matter or shows evidence of eluviation, or both. Rock structure as used here and in other places in this taxonomy includes fine stratification (5 mm or less thick) in unconsolidated sediments (eolian, alluvial, lacustrine, or
(marine) and saprolite derived from consolidated rocks in which the unweathered minerals and pseudomorphs of weathered minerals retain their relative positions to each other.

Any horizon may be at the surface of a truncated soil. The following section, however, is concerned with eight diagnostic horizons that have formed at or near the soil surface. These horizons can be covered by a surface mantle of new soil material. If the surface mantle has rock structure, the top of the epipedon is considered the soil surface unless the mantle meets the definition of buried soils in chapter 1. If the soil includes a buried soil, the epipedon, if any, is at the soil surface and the epipedon of the buried soil is considered a buried epipedon and is not considered in selecting taxa unless the keys specifically indicate buried horizons, such as those in Thapto-Histic subgroups. A soil with a mantle thick enough to have a buried soil has no epipedon if the soil has rock structure to the surface or has an Ap horizon less than 25 cm thick that is underlain by soil material with rock structure. The melanic epipedon (defined below) is unique among epipedons. It commonly forms in deposits of tephra and can receive fresh deposits of volcanic ash. Therefore, this horizon is permitted to have layers within and above the epipedon that are not part of the melanic epipedon.

A recent alluvial or eolian deposit that retains fine stratifications (5 mm or less thick) or an Ap horizon directly underlain by such stratified material is not included in the concept of the epipedon because time has not been sufficient for soil-forming processes to erase these transient marks of deposition and for diagnostic and accessory properties to develop.

An epipedon is not the same as an A horizon. It may include part or all of an illuvial B horizon if the darkening by organic matter extends from the soil surface into or through the B horizon.
Anthropic Epipedon

Required Characteristics

The anthropic epipedon consists of mineral soil material that shows some evidence of disturbance by human activity. After mixing of the upper 18 cm of the mineral soil, or of the whole mineral soil if its depth to a densic, lithic, or paralithic contact, a petrocalcic horizon, or a duripan (all defined below) is less than 18 cm, the anthropic epipedon has the following properties:

1. When dry, *either or both*:
 a. Structural units with a diameter of 30 cm or less or secondary structure with a diameter of 30 cm or less; *or*
 b. A moderately hard or softer rupture-resistance class; *and*

2. Rock structure, including fine stratifications (5 mm or less thick), in less than one-half of the volume of all parts; *and*

3. One of the following:
 a. *Both* of the following:
 1. Dominant colors with a value of 3 or less, moist, and of 5 or less, dry; *and*
 2. Dominant colors with chroma of 3 or less, moist; *or*
 b. A fine-earth fraction that has a calcium carbonate equivalent of 15 to 40 percent and colors with value and chroma of 3 or less, moist; *or*
 c. A fine-earth fraction that has a calcium carbonate equivalent of 40 percent or more and a color value, moist, of 5 or less; *and*

4. An organic-carbon content of:
 a. 2.5 percent or more if the epipedon has a color value, moist, of 4 or 5; *or*
 b. 0.6 percent more (absolute) than that of the C horizon (if one occurs) if the mollic epipedon has a color value less than
1 unit lower or chroma less than 2 units lower (both moist and dry) than the C horizon; or
c. 0.6 percent or more and the epipedon does not meet the qualifications in 4-a or 4-b above; and

5. The minimum thickness of the epipedon is as follows:
 a. 25 cm if:
 (1) The texture class of the epipedon is loamy fine sand or coarser throughout; or
 (2) There are no underlying diagnostic horizons (defined below), and the organic-carbon content of the underlying materials decreases irregularly with increasing depth; or
 (3) Any of the following, if present, are 75 cm or more below the mineral soil surface:
 (a) The upper boundary of the shallowest of any identifiable secondary carbonates or a calcic horizon, petrocalcic horizon, duripan, or fragipan (defined below); and/or
 (b) The lower boundary of the deepest of an argillic, cambic, natric, oxic, or spodic horizon; or
 b. 10 cm if the epipedon has a texture class finer than loamy fine sand (when mixed) and it is directly above a densic, lithic, or paralithic contact, a petrocalcic horizon, or a duripan; or
 c. 18 to 25 cm and the thickness is one-third or more of the total thickness between the mineral soil surface and:
 (1) The upper boundary of the shallowest of any identifiable secondary carbonates or a calcic horizon, petrocalcic horizon, duripan, or fragipan; and/or
 (2) The lower boundary of the deepest of an argillic, cambic, natric, oxic, or spodic horizon; or
d. 18 cm if none of the above conditions apply; and

6. One or both of the following:
 a. Has a phosphate content of 1,500 or more milligrams per kilogram by citric-acid extraction; and
 (1) The phosphorus content decreases regularly with increasing depth below the epipedon; and
 (2) Phosphorus is not in the form of nodules; or
 b. All parts of the epipedon are moist for less than 90 days (cumulative) in normal years during times when the soil temperature at a depth of 50 cm is 5 °C or higher, if the soil is not irrigated; and

7. The n value (defined below) is less than 0.7.

Folistic Epipedon
Required Characteristics

The folistic epipedon is defined as a layer (one or more horizons) that is saturated for less than 30 days (cumulative) in normal years (and is not artificially drained) and either:

1. Consists of organic soil material that:
 a. Is 20 cm or more thick and either contains 75 percent or more (by volume) *Sphagnum* fibers or has a bulk density, moist, of less than 0.1; or
 b. Is 15 cm or more thick; or

2. Is an Ap horizon that, when mixed to a depth of 25 cm, has an organic-carbon content (by weight) of:
 a. 16 percent or more if the mineral fraction contains 60 percent or more clay; or
 b. 8 percent or more if the mineral fraction contains no clay; or
 c. 8 + (clay percentage divided by 7.5) percent or more if the mineral fraction contains less than 60 percent clay.
Most folistic epipedons consist of organic soil material (defined in chapter 2). Item 2 provides for a folistic epipedon that is an Ap horizon consisting of mineral soil material.

Histic Epipedon

Required Characteristics

The histic epipedon is a layer (one or more horizons) that is characterized by saturation (for 30 days or more, cumulative) and reduction for some time during normal years (or is artificially drained) and either:

1. Consists of organic soil material that:
 a. Is 20 to 60 cm thick and either contains 75 percent or more (by volume) *Sphagnum* fibers or has a bulk density, moist, of less than 0.1; or
 b. Is 20 to 40 cm thick; or

2. Is an Ap horizon that, when mixed to a depth of 25 cm, has an organic-carbon content (by weight) of:
 a. 16 percent or more if the mineral fraction contains 60 percent or more clay; or
 b. 8 percent or more if the mineral fraction contains no clay; or
 c. 8 + (clay percentage divided by 7.5) percent or more if the mineral fraction contains less than 60 percent clay.

Most histic epipedons consist of organic soil material (defined in chapter 2). Item 2 provides for a histic epipedon that is an Ap horizon consisting of mineral soil material. A histic epipedon consisting of mineral soil material can also be part of a mollic or umbric epipedon.

Melanic Epipedon

Required Characteristics

The melanic epipedon has *both* of the following:
1. An upper boundary at, or within 30 cm of, either the mineral soil surface or the upper boundary of an organic layer with andic soil properties (defined below), whichever is shallower; and

2. In layers with a cumulative thickness of 30 cm or more within a total thickness of 40 cm, all of the following:
 a. Andic soil properties throughout; and
 b. A color value, moist, and chroma of 2 or less throughout and a melanic index of 1.70 or less throughout; and
 c. 6 percent or more organic carbon as a weighted average and 4 percent or more organic carbon in all layers.

Mollic Epipedon

Required Characteristics

The mollic epipedon consists of mineral soil materials and, after mixing of the upper 18 cm of the mineral soil or of the whole mineral soil if its depth to a densic, lithic, or paralithic contact, a petrocalcic horizon, or a duripan (all defined below) is less than 18 cm, has the following properties:

1. When dry, either or both:
 a. Structural units with a diameter of 30 cm or less or secondary structure with a diameter of 30 cm or less; or
 b. A moderately hard or softer rupture-resistance class; and

2. Rock structure, including fine stratifications (5 mm or less thick), in less than one-half of the volume of all parts; and

3. One of the following:
 a. Both of the following:
 (1) Dominant colors with a value of 3 or less, moist, and of 5 or less, dry; and
 (2) Dominant colors with chroma of 3 or less, moist; or
 b. A fine-earth fraction that has a calcium carbonate
equivalent of 15 to 40 percent and colors with a value and chroma of 3 or less, moist; or

c. A fine-earth fraction that has a calcium carbonate equivalent of 40 percent or more and a color value, moist, of 5 or less; and

4. A base saturation (by NH$_4$OAc) of 50 percent or more throughout; and

5. An organic-carbon content of:
 a. 2.5 percent or more if the epipedon has a color value, moist, of 4 or 5; or
 b. 0.6 percent (absolute) more than that of the C horizon (if one occurs) if the mollic epipedon has a color value less than 1 unit lower or chroma less than 2 units lower (both moist and dry) than the C horizon; or
 c. 0.6 percent or more and the epipedon does not meet the qualifications in 5-a or 5-b above; and

6. The minimum thickness of the epipedon is as follows:
 a. 25 cm if:
 (1) The texture class of the epipedon is loamy fine sand or coarser throughout; or
 (2) There are no underlying diagnostic horizons (defined below) and the organic-carbon content of the underlying materials decreases irregularly with increasing depth; or
 (3) Any of the following, if present, are 75 cm or more below the mineral soil surface:
 (a) The upper boundary of the shallowest of any identifiable secondary carbonates or a calcic horizon, petrocalcic horizon, duripan, or fragipan (defined below); and/or
 (b) The lower boundary of the deepest of an argillic, cambic, natric, oxic, or spodic horizon; or
b. 10 cm if the epipedon has a texture class finer than loamy fine sand (when mixed) and it is directly above a densic, lithic, or paralithic contact, a petrocalcic horizon, or a duripan; or

c. 18 to 25 cm and the thickness is one-third or more of the total thickness between the mineral soil surface and:
 (1) The upper boundary of the shallowest of any identifiable secondary carbonates or a calcic horizon, petrocalcic horizon, duripan, or fragipan; and/or
 (2) The lower boundary of the deepest of an argillic, cambic, natric, oxic, or spodic horizon; or

d. 18 cm if none of the above conditions apply; and

7. Phosphate:
 a. Content less than 1,500 milligrams per kilogram by citric-acid extraction; or
 b. Content decreasing irregularly with increasing depth below the epipedon; or
 c. Nodules are within the epipedon; and

8. Some part of the epipedon is moist for 90 days or more (cumulative) in normal years during times when the soil temperature at a depth of 50 cm is 5 °C or higher, if the soil is not irrigated; and

9. The n value (defined below) is less than 0.7.

Ochric Epipedon

The ochric epipedon fails to meet the definitions for any of the other seven epipedons because it is too thin or too dry, has too high a color value or chroma, contains too little organic carbon, has too high an n value or melanic index, or is both massive and hard or harder when dry. Many ochric epipedons have either a color value of 4 or more, moist, and 6 or more, dry, or chroma of 4 or more, or they include an A or Ap horizon...
that has both low color values and low chroma but is too thin to be recognized as a mollic or umbric epipedon (and has less than 15 percent calcium carbonate equivalent in the fine-earth fraction). Ochric epipedons also include horizons of organic materials that are too thin to meet the requirements for a histic or folistic epipedon.

The ochric epipedon includes eluvial horizons that are at or near the soil surface, and it extends to the first underlying diagnostic illuvial horizon (defined below as an argillic, kandic, natric, or spodic horizon). If the underlying horizon is a B horizon of alteration (defined below as a cambic or oxic horizon) and there is no surface horizon that is appreciably darkened by humus, the lower limit of the ochric epipedon is the lower boundary of the plow layer or an equivalent depth (18 cm) in a soil that has not been plowed. Actually, the same horizon in an unplowed soil may be both part of the epipedon and part of the cambic horizon; the ochric epipedon and the subsurface diagnostic horizons are not all mutually exclusive. The ochric epipedon does not have rock structure and does not include finely stratified fresh sediments, nor can it be an Ap horizon directly overlying such deposits.

Plaggen Epipedon

The plaggen epipedon is a human-made surface layer 50 cm or more thick that has been produced by long-continued manuring.

A plaggen epipedon can be identified by several means. Commonly, it contains artifacts, such as bits of brick and pottery, throughout its depth. There may be chunks of diverse materials, such as black sand and light gray sand, as large as the size held by a spade. The plaggen epipedon normally shows spade marks throughout its depth and also remnants of thin stratified beds of sand that were probably produced on the soil surface by beating rains and were later buried by spading. A map unit delineation of soils with plaggen epipedons
would tend to have straight-sided rectangular bodies that are higher than the adjacent soils by as much as or more than the thickness of the plaggen epipedon.

Required Characteristics

The plaggen epipedon consists of mineral soil materials and has the following:

1. Locally raised land surfaces; *and* one or both of the following:
 a. Artifacts; *or*
 b. Spade marks below a depth of 30 cm; *and*
2. Colors with a value of 4 or less, moist, 5 or less, dry, and chroma of 2 or less; *and*
3. An organic-carbon content of 0.6 percent or more; *and*
4. A thickness of 50 cm or more; *and*
5. Some part of the epipedon is moist for 90 days or more (cumulative) in normal years during times when the soil temperature at a depth of 50 cm is 5 °C or higher, if the soil is not irrigated.

Umbric Epipedon

Required Characteristics

The umbric epipedon consists of mineral soil materials and, after mixing of the upper 18 cm of the mineral soil or of the whole mineral soil if its depth to a densic, lithic, or paralithic contact, a petrocalcic horizon, or a duripan (all defined below) is less than 18 cm, has the following properties:

1. When dry, *either or both*:
 a. Structural units with a diameter of 30 cm or less or secondary structure with a diameter of 30 cm or less; *or*
 b. A moderately hard or softer rupture-resistance class; *and*
2. Rock structure, including fine stratifications (5 mm or less thick), in less than one-half of the volume of all parts; and

3. Both of the following:
 a. Dominant colors with a value of 3 or less, moist, and of 5 or less, dry; and
 b. Dominant colors with chroma of 3 or less, moist; and

4. A base saturation (by NH$_4$OAc) of less than 50 percent in some or all parts; and

5. An organic-carbon content of:
 a. 0.6 percent (absolute) more than that of the C horizon (if one occurs) if the umbric epipedon has a color value less than 1 unit lower or chroma less than 2 units lower (both moist and dry) than the C horizon; or
 b. 0.6 percent or more and the epipedon does not meet the qualifications in 5-a above; and

6. The minimum thickness of the epipedon is as follows:
 a. 25 cm if:
 (1) The texture class of the epipedon is loamy fine sand or coarser throughout; or
 (2) There are no underlying diagnostic horizons (defined below) and the organic-carbon content of the underlying materials decreases irregularly with increasing depth; or
 (3) Any of the following, if present, are 75 cm or more below the mineral soil surface:
 (a) The upper boundary of the shallowest of any identifiable secondary carbonates or a calcic horizon, petrocalcic horizon, duripan, or fragipan (defined below); and/or
 (b) The lower boundary of the deepest of an argillic, cambic, natric, oxic, or spodic horizon; or
b. 10 cm if the epipedon has a texture class finer than loamy fine sand (when mixed) and it is directly above a densic, lithic, or paralithic contact, a petrocalcic horizon, or a duripan; or
c. 18 to 25 cm and the thickness is one-third or more of the total thickness between the mineral soil surface and:
 (1) The upper boundary of the shallowest of any identifiable secondary carbonates or a calcic horizon, petrocalcic horizon, duripan, or fragipan; and/or
 (2) The lower boundary of the deepest of an argillic, cambic, natric, oxic, or spodic horizon; or
d. 18 cm if none of the above conditions apply; and

7. Phosphate:
 a. Content less than 1,500 milligrams per kilogram by citric-acid extraction; or
 b. Content decreasing irregularly with increasing depth below the epipedon; or
 c. Nodules are within the epipedon; and

8. Some part of the epipedon is moist for 90 days or more (cumulative) in normal years during times when the soil temperature at a depth of 50 cm is 5 °C or higher, if the soil is not irrigated; and

9. The n value (defined below) is less than 0.7; and

10. The umbric epipedon does not have the artifacts, spade marks, and raised surfaces that are characteristic of the plaggen epipedon.

Diagnostic Subsurface Horizons

The horizons described in this section form below the surface of the soil, although in some areas they form directly below a layer of leaf litter. They may be exposed at the surface
by truncation of the soil. Some of these horizons are generally regarded as B horizons, some are considered B horizons by many but not all pedologists, and others are generally regarded as parts of the A horizon.

Agric Horizon

The agric horizon is an illuvial horizon that has formed under cultivation and contains significant amounts of illuvial silt, clay, and humus.

Required Characteristics

The agric horizon is directly below an Ap horizon and has the following properties:

1. A thickness of 10 cm or more and either:
 a. 5 percent or more (by volume) wormholes, including coatings that are 2 mm or more thick and have a value, moist, of 4 or less and chroma of 2 or less; or
 b. 5 percent or more (by volume) lamellae that have a thickness of 5 mm or more and have a value, moist, of 4 or less and chroma of 2 or less.

Albic Horizon

The albic horizon is an eluvial horizon, 1.0 cm or more thick, that has 85 percent or more (by volume) albic materials (defined below). It generally occurs below an A horizon but may be at the mineral soil surface. Under the albic horizon there generally is an argillic, cambic, kandic, natric, or spodic horizon or a fragipan (defined below). The albic horizon may lie between a spodic horizon and either a fragipan or an argillic horizon, or it may be between an argillic or kandic horizon and a fragipan. It may lie between a mollic epipedon and an argillic or natric horizon or between a cambic horizon and an argillic, kandic, or natric horizon or a fragipan. The albic horizon may separate horizons that, if they were together, would meet the requirements for a mollic epipedon. It may separate lamellae
that together meet the requirements for an argillic horizon. These lamellae are not considered to be part of the albic horizon.

Argillic Horizon

An argillic horizon is normally a subsurface horizon with a significantly higher percentage of phyllosilicate clay than the overlying soil material. It shows evidence of clay illuviation. The argillic horizon forms below the soil surface, but it may be exposed at the surface later by erosion.

Required Characteristics

1. All argillic horizons must meet both of the following requirements:
 a. *One* of the following:
 (1) If the argillic horizon meets the particle-size class criteria for coarse-loamy, fine-loamy, coarse-silty, fine-silty, fine, or very-fine or is loamy or clayey, including skeletal counterparts, it must be at least 7.5 cm thick or at least one-tenth as thick as the sum of the thickness of all overlying horizons, whichever is greater; *or*
 (2) If the argillic horizon meets the sandy or sandy-skeletal particle-size criteria, it must be at least 15 cm thick; *or*
 (3) If the argillic horizon is composed entirely of lamellae, the combined thickness of the lamellae that are 0.5 cm or more thick must be 15 cm or more; *and*
 b. Evidence of clay illuviation in at least *one* of the following forms:
 (1) Oriented clay bridging the sand grains; *or*
 (2) Clay films lining pores; *or*
 (3) Clay films on both vertical and horizontal surfaces of peds; *or*
(4) Thin sections with oriented clay bodies that are more than 1 percent of the section; or

(5) If the coefficient of linear extensibility is 0.04 or higher and the soil has distinct wet and dry seasons, then the ratio of fine clay to total clay in the illuvial horizon is greater by 1.2 times or more than the ratio in the eluvial horizon; and

2. If an eluvial horizon remains and there is no lithologic discontinuity between it and the illuvial horizon and no plow layer directly above the illuvial layer, then the illuvial horizon must contain more total clay than the eluvial horizon within a vertical distance of 30 cm or less, as follows:

a. If any part of the eluvial horizon has less than 15 percent total clay in the fine-earth fraction, the argillic horizon must contain at least 3 percent (absolute) more clay (10 percent versus 13 percent, for example); or

b. If the eluvial horizon has 15 to 40 percent total clay in the fine-earth fraction, the argillic horizon must have at least 1.2 times more clay than the eluvial horizon; or

c. If the eluvial horizon has 40 percent or more total clay in the fine-earth fraction, the argillic horizon must contain at least 8 percent (absolute) more clay (42 percent versus 50 percent, for example).

Calcic Horizon

The calcic horizon is an illuvial horizon in which secondary calcium carbonate or other carbonates have accumulated to a significant extent.

Required Characteristics

The calcic horizon:

1. Is 15 cm or more thick; and

2. Has one or more of the following:
a. 15 percent or more (by weight) CaCO$_3$ equivalent (see below), and its CaCO$_3$ equivalent is 5 percent or more (absolute) higher than that of an underlying horizon; or

b. 15 percent or more (by weight) CaCO$_3$ equivalent and 5 percent or more (by volume) identifiable secondary carbonates; or

c. 5 percent or more (by weight) calcium carbonate equivalent and:

 (1) Has less than 18 percent clay in the fine-earth fraction; and

 (2) Meets the criteria for a sandy, sandy-skeletal, coarse-loamy, or loamy-skeletal particle-size class; and

 (3) Has 5 percent or more (by volume) identifiable secondary carbonates or a calcium carbonate equivalent (by weight) that is 5 percent or more (absolute) higher than that of an underlying horizon; and

3. Is not cemented or indurated in any part by carbonates, with or without other cementing agents, or is cemented in some part and the cemented part satisfies one of the following:

 a. It is characterized by so much lateral discontinuity that roots can penetrate through noncemented zones or along vertical fractures with a horizontal spacing of less than 10 cm; or

 b. The cemented layer is less than 1 cm thick and consists of a laminar cap underlain by a lithic or paralithic contact; or

 c. The cemented layer is less than 10 cm thick.

Cambic Horizon

A cambic horizon is the result of physical alterations, chemical transformations, or removals or of a combination of two or more of these processes.
Required Characteristics

The cambic horizon is an altered horizon 15 cm or more thick. If it is composed of lamellae, the combined thickness of the lamellae must be 15 cm or more. In addition, the cambic horizon must meet all of the following:

1. Has a texture class of very fine sand, loamy very fine sand, or finer; and

2. Shows evidence of alteration in one of the following forms:
 a. Aquic conditions within 50 cm of the soil surface or artificial drainage and all of the following:
 (1) Soil structure or the absence of rock structure, including fine stratifications (5 mm or less thick), in more than one-half of the volume; and
 (2) Colors that do not change on exposure to air; and
 (3) Dominant color, moist, on faces of peds or in the matrix as follows:
 (a) Value of 3 or less and chroma of 0; or
 (b) Value of 4 or more and chroma of 1 or less; or
 (c) Any value, chroma of 2 or less, and redox concentrations; or
 b. Does not have the combination of aquic conditions within 50 cm of the soil surface or artificial drainage and colors, moist, as defined in item 2-a-(3) above, and has soil structure or the absence of rock structure, including fine stratifications (5 mm or less thick), in more than one-half of the volume and one or more of the following properties:
 (1) Higher chroma, higher value, redder hue, or higher clay content than the underlying horizon or an overlying horizon; or
 (2) Evidence of the removal of carbonates or gypsum; and

3. Has properties that do not meet the requirements for an
anthropic, histic, folistic, melanic, mollic, plaggen, or umbric epipedon, a duripan or fragipan, or an argillic, calcic, gypsic, natric, oxic, petrocalcic, petrogypsic, placic, or spodic horizon; and
4. Is not part of an Ap horizon and does not have a brittle manner of failure in more than 60 percent of the matrix.

Duripan

A duripan is a silica-cemented subsurface horizon with or without auxiliary cementing agents. It can occur in conjunction with a petrocalcic horizon.

Required Characteristics

A duripan must meet *all* of the following requirements:

1. The pan is cemented or indurated in more than 50 percent of the volume of some horizon; *and*
2. The pan shows evidence of the accumulation of opal or other forms of silica, such as laminar caps, coatings, lenses, partly filled interstices, bridges between sand-sized grains, or coatings on rock and pararock fragments; *and*
3. Less than 50 percent of the volume of air-dry fragments slakes in 1N HCl even during prolonged soaking, but more than 50 percent slakes in concentrated KOH or NaOH or in alternating acid and alkali; *and*
4. Because of lateral continuity, roots can penetrate the pan only along vertical fractures with a horizontal spacing of 10 cm or more.

Fragipan

Required Characteristics

To be identified as a fragipan, a layer must have *all* of the following characteristics:

1. The layer is 15 cm or more thick; *and*
2. The layer shows evidence of pedogenesis within the horizon or, at a minimum, on the faces of structural units; and
3. The layer has very coarse prismatic, columnar, or blocky structure of any grade, has weak structure of any size, or is massive. Separations between structural units that allow roots to enter have an average spacing of 10 cm or more on the horizontal dimensions; and
4. Air-dry fragments of the natural soil fabric, 5 to 10 cm in diameter, from more than 50 percent of the layer slake when they are submerged in water; and
5. The layer has, in 60 percent or more of the volume, a firm or firmer rupture-resistance class, a brittle manner of failure at or near field capacity, and virtually no roots; and
6. The layer is not effervescent (in dilute HCl).

Glossic Horizon

The glossic horizon (Gr. *glossa*, tongue) develops as a result of the degradation of an argillic, kandic, or natric horizon from which clay and free iron oxides are removed.

Required Characteristics

The glossic horizon is 5 cm or more thick and consists of:
1. An eluvial part (albic materials, defined below), which constitutes 15 to 85 percent (by volume) of the glossic horizon; and
2. An illuvial part, i.e., remnants (pieces) of an argillic, kandic, or natric horizon (defined below).

Gypsic Horizon

The gypsic horizon is a horizon in which gypsum has accumulated or been transformed to a significant extent. It typically occurs as a subsurface horizon, but it may occur at the surface in some soils.
Required Characteristics

A gypsic horizon meets all of the following requirements:

1. Is 15 cm or more thick; and
2. Is not cemented by gypsum, with or without other cementing agents; is cemented and the cemented parts are less than 5 mm thick; or is cemented but, because of lateral discontinuity, roots can penetrate along vertical fractures with a horizontal spacing of less than 10 cm; and
3. Is 5 percent or more (by weight) gypsum and has 1 percent or more (by volume) visible secondary gypsum that has either accumulated or been transformed; and
4. Has a product of thickness, in cm, multiplied by the gypsum content (percent by weight) of 150 or more. Thus, a horizon 30 cm thick that is 5 percent gypsum qualifies as a gypsic horizon if it is 1 percent or more (by volume) visible gypsum and any cementation is as described in 2 above.

Kandic Horizon

Required Characteristics

The kandic horizon:

1. Is a vertically continuous subsurface horizon that underlies a coarser textured surface horizon. The minimum thickness of the surface horizon is 18 cm after mixing or 5 cm if the textural transition to the kandic horizon is abrupt and there is no densic, lithic, paralithic, or petroferric contact (defined below) within 50 cm of the mineral soil surface; and
2. Has its upper boundary:
 a. At the point where the clay percentage in the fine-earth fraction, increasing with depth within a vertical distance of 15 cm or less, is either:
 (1) 4 percent or more (absolute) higher than that in the
surface horizon if that horizon has less than 20 percent total clay in the fine-earth fraction; or

(2) 20 percent or more (relative) higher than that in the surface horizon if that horizon has 20 to 40 percent total clay in the fine-earth fraction; or

(3) 8 percent or more (absolute) higher than that in the surface horizon if that horizon has more than 40 percent total clay in the fine-earth fraction; and

b. At a depth:

(1) Between 100 cm and 200 cm from the mineral soil surface if the upper 100 cm meets the criteria for a sandy or sandy-skeletal particle-size class throughout; or

(2) Within 100 cm from the mineral soil surface if the clay content in the fine-earth fraction of the surface horizon is 20 percent or more; or

(3) Within 125 cm from the mineral soil surface for all other soils; and

3. Has a thickness of either:

a. 30 cm or more; or

b. 15 cm or more if there is a densic, lithic, paralithic, or petroferric contact within 50 cm of the mineral soil surface and the kandic horizon constitutes 60 percent or more of the vertical distance between a depth of 18 cm and the contact; and

4. Has a texture class of loamy very fine sand or finer; and

5. Has an apparent CEC of 16 cmol(+) or less per kg clay (by 1N NH₄OAc pH 7) and an apparent ECEC of 12 cmol(+) or less per kg clay (sum of bases extracted with 1N NH₄OAc pH 7 plus 1N KCl-extractable Al) in 50 percent or more of its thickness between the point where the clay increase requirements are met and either a depth of 100 cm below that point or a densic, lithic, paralithic, or petroferric contact if shallower. (The
percentage of clay is either measured by the pipette method or estimated to be 2.5 times [percent water retained at 1500 kPa tension minus percent organic carbon], whichever is higher, but no more than 100); and

6. Has a regular decrease in organic-carbon content with increasing depth, no fine stratification, and no overlying layers more than 30 cm thick that have fine stratification and/or an organic-carbon content that decreases irregularly with increasing depth.

Natric Horizon

A natric horizon is an illuvial horizon that is normally present in the subsurface and has a significantly higher percentage of silicate clay than the overlying horizons. It shows evidence of clay illuviation that has been accelerated by the dispersive properties of sodium.

Required Characteristics

The natric horizon:

1. Meets *one* of the following thickness requirements:
 a. If the horizon meets the particle-size class criteria for coarse-loamy, fine-loamy, coarse-silty, fine-silty, fine, or very-fine or is loamy or clayey, including skeletal counterparts, it must be at least 7.5 cm thick or at least one-tenth as thick as the sum of the thickness of all overlying horizons, whichever is greater; or
 b. If the horizon meets sandy or sandy-skeletal particle-size class criteria, it must be at least 15 cm thick; or
 c. If the horizon is composed entirely of lamellae, the combined thickness of the lamellae that are 0.5 cm or more thick must be 15 cm or more; and

2. Has evidence of clay illuviation in at least *one* of the following forms:
 a. Oriented clay bridging the sand grains; or
b. Clay films lining pores; or
c. Clay films on both vertical and horizontal surfaces of peds; or
d. Thin sections with oriented clay bodies that are more than 1 percent of the section; or
e. If the coefficient of linear extensibility is 0.04 or higher and the soil has distinct wet and dry seasons, then the ratio of fine clay to total clay in the illuvial horizon is greater by 1.2 times or more than the ratio in the eluvial horizon; and

3. If an eluvial horizon remains and there is no lithologic discontinuity between it and the illuvial horizon and no plow layer directly above the illuvial horizon, then the illuvial horizon must contain more total clay than the eluvial horizon within a vertical distance of 30 cm or less, as follows:

 a. If any part of the eluvial horizon has less than 15 percent total clay in the fine-earth fraction, the illuvial horizon must contain at least 3 percent (absolute) more clay (10 percent versus 13 percent, for example); or

 b. If the eluvial horizon has 15 to 40 percent total clay in the fine-earth fraction, the illuvial horizon must have at least 1.2 times more clay than the eluvial horizon; or

 c. If the eluvial horizon has 40 percent or more total clay in the fine-earth fraction, the illuvial horizon must contain at least 8 percent (absolute) more clay (42 percent versus 50 percent, for example); and

4. Has either:

 a. Columnar or prismatic structure in some part (generally the upper part), which may part to blocky structure; or

 b. Both blocky structure and eluvial materials, which contain uncoated silt or sand grains and extend more than 2.5 cm into the horizon; and

5. Has either:
a. An exchangeable sodium percentage (ESP) of 15 percent or more (or a sodium adsorption ratio [SAR] of 13 or more) in one or more horizons within 40 cm of its upper boundary; or

b. More exchangeable magnesium plus sodium than calcium plus exchange acidity (at pH 8.2) in one or more horizons within 40 cm of its upper boundary if the ESP is 15 or more (or the SAR is 13 or more) in one or more horizons within 200 cm of the mineral soil surface.

Ortstein

Required Characteristics

Ortstein has all of the following:

1. Consists of spodic materials; and
2. Is in a layer that is 50 percent or more cemented; and
3. Is 25 mm or more thick.

Oxic Horizon

Required Characteristics

The oxic horizon is a subsurface horizon that does not have andic soil properties (defined below) and has all of the following characteristics:

1. A thickness of 30 cm or more; and
2. A texture class of sandy loam or finer in the fine-earth fraction; and
3. Less than 10 percent weatherable minerals in the 50- to 200-micron fraction; and
4. Rock structure in less than 5 percent of its volume, unless the lithorelicts with weatherable minerals are coated with sesquioxides; and
5. A diffuse upper boundary, i.e., within a vertical distance of 15 cm, a clay increase with increasing depth of:
a. Less than 4 percent (absolute) in its fine-earth fraction if the fine-earth fraction of the surface horizon contains less than 20 percent clay; or

b. Less than 20 percent (relative) in its fine-earth fraction if the fine-earth fraction of the surface horizon contains 20 to 40 percent clay; or

c. Less than 8 percent (absolute) in its fine-earth fraction if the fine-earth fraction of the surface horizon contains 40 percent or more clay); and

6. An apparent CEC of 16 cmol(+) or less per kg clay (by 1N NH₄OAc pH 7) and an apparent ECEC of 1 cmol(+) or less per kg clay (sum of bases extracted with 1N NH₄OAc pH 7 plus 1N KCl-extractable Al). (The percentage of clay is either measured by the pipette method or estimated to be 3 times [percent water retained at 1500 kPa tension minus percent organic carbon], whichever value is higher, but no more than 100.)

Petrocalcic Horizon

The petrocalcic horizon is an illuvial horizon in which secondary calcium carbonate or other carbonates have accumulated to the extent that the horizon is cemented or indurated.

Required Characteristics

A petrocalcic horizon must meet the following requirements:

1. The horizon is cemented or indurated by carbonates, with or without silica or other cementing agents; and

2. Because of lateral continuity, roots can penetrate only along vertical fractures with a horizontal spacing of 10 cm or more; and

3. The horizon has a thickness of:
 a. 10 cm or more; or
b. 1 cm or more if it consists of a laminar cap directly underlain by bedrock.

Petrogypsic Horizon

The petrogypsic horizon is a horizon in which visible secondary gypsum has accumulated or has been transformed. The horizon is cemented (i.e., extremely weakly cemented through indurated cementation classes), and the cementation is both laterally continuous and root limiting, even when the soil is moist. The horizon typically occurs as a subsurface horizon, but it may occur at the surface in some soils.

Required Characteristics

A petrogypsic horizon meets all of the following requirements:

1. Is cemented or indurated by gypsum, with or without other cementing agents; and
2. Because of lateral continuity, can be penetrated by roots only along vertical fractures with a horizontal spacing of 10 cm or more; and
3. Is 5 mm or more thick; and
4. Is 40 percent or more (by weight) gypsum.

Placic Horizon

The placic horizon (Gr. base of *plax*, flat stone; meaning a thin cemented pan) is a thin, black to dark reddish pan that is cemented by iron (or iron and manganese) and organic matter.

Required Characteristics

A placic horizon must meet the following requirements:

1. The horizon is cemented or indurated with iron or iron and manganese and organic matter, with or without other cementing agents; and
2. Because of lateral continuity, roots can penetrate only along vertical fractures with a horizontal spacing of 10 cm or more; and

3. The horizon has a minimum thickness of 1 mm and, where associated with spodic materials, is less than 25 mm thick.

Salic Horizon

A salic horizon is a horizon of accumulation of salts that are more soluble than gypsum in cold water.

Required Characteristics

A salic horizon is 15 cm or more thick and has, for 90 consecutive days or more in normal years:

1. An electrical conductivity (EC) equal to or greater than 30 dS/m in the water extracted from a saturated paste; and

2. A product of the EC, in dS/m, and thickness, in cm, equal to 900 or more.

Sombric Horizon

A sombric horizon (F. sombre, dark) is a subsurface horizon in mineral soils that has formed under free drainage. It contains illuvial humus that is neither associated with aluminum, as is the humus in the spodic horizon, nor dispersed by sodium, as is common in the natric horizon. Consequently, the sombric horizon does not have the high cation-exchange capacity in its clay that characterizes a spodic horizon and does not have the high base saturation of a natric horizon. It does not underlie an albic horizon.

Sombric horizons are thought to be restricted to the cool, moist soils of high plateaus and mountains in tropical or subtropical regions. Because of strong leaching, their base saturation is low (less than 50 percent by NH$_4$OAc).

The sombric horizon has a lower color value or chroma, or both, than the overlying horizon and commonly contains more organic matter. It may have formed in an argillic, cambic,
or oxic horizon. If peds are present, the dark colors are most pronounced on surfaces of peds.

In the field a sombric horizon is easily mistaken for a buried A horizon. It can be distinguished from some buried epipedons by lateral tracing. In thin sections the organic matter of a sombric horizon appears more concentrated on peds and in pores than uniformly dispersed throughout the matrix.

Spodic Horizon

A spodic horizon is an illuvial layer with 85 percent or more spodic materials (defined below).

Required Characteristics

A spodic horizon is normally a subsurface horizon underlying an O, A, Ap, or E horizon. It may, however, meet the definition of an umbric epipedon.

A spodic horizon must have 85 percent or more spodic materials in a layer 2.5 cm or more thick that is not part of any Ap horizon.

Diagnostic Soil Characteristics for Mineral Soils

Diagnostic soil characteristics are features of the soil that are used in various places in the keys or in the definitions of diagnostic horizons.

Abrupt Textural Change

An abrupt textural change is a specific kind of change that may occur between an ochric epipedon or an albic horizon and an argillic horizon. It is characterized by a considerable increase in clay content within a very short vertical distance in the zone of contact. If the clay content in the fine-earth fraction of the ochric epipedon or albic horizon is less than 20 percent, it doubles within a vertical distance of 7.5 cm or less. If the clay content in the fine-earth fraction of the ochric epipedon or the albic horizon is 20 percent or more, there is an increase of 20
percent or more (absolute) within a vertical distance of 7.5 cm or less (e.g., an increase from 22 to 42 percent) and the clay content in some part of the argillic horizon is 2 times or more the amount contained in the overlying horizon.

Normally, there is no transitional horizon between an ochric epipedon or an albic horizon and an argillic horizon, or the transitional horizon is too thin to be sampled. Some soils, however, have a glossic horizon or interfingering of albic materials (defined below) in parts of the argillic horizon. The upper boundary of such a horizon is irregular or even discontinuous. Sampling this mixture as a single horizon might create the impression of a relatively thick transitional horizon, whereas the thickness of the actual transition at the contact may be no more than 1 mm.

Albic Materials

Albic (L. *albus*, white) materials are soil materials with a color that is largely determined by the color of primary sand and silt particles rather than by the color of their coatings. This definition implies that clay and/or free iron oxides have been removed from the materials or that the oxides have been segregated to such an extent that the color of the materials is largely determined by the color of the primary particles.

Required Characteristics

Albic materials have *one* of the following colors:

1. Chroma of 2 or less; *and either*
 a. A color value, moist, of 3 and a color value, dry, of 6 or more; *or*
 b. A color value, moist, of 4 or more and a color value, dry, of 5 or more; *or*
2. Chroma of 3 or less; *and either*
 a. A color value, moist, of 6 or more; *or*
 b. A color value, dry, of 7 or more; *or*
3. Chroma that is controlled by the color of uncoated grains of silt or sand, hue of 5YR or redder, and the color values listed in item 1-a or 1-b above.

Relatively unaltered layers of light colored sand, volcanic ash, or other materials deposited by wind or water are not considered albic materials, although they may have the same color and apparent morphology. These deposits are parent materials that are not characterized by the removal of clay and/or free iron and do not overlie an illuvial horizon or other soil horizon, except for a buried soil. Light colored krotovinas or filled root channels should be considered albic materials only if they have no fine stratifications or lamellae, if any sealing along the krotovina walls has been destroyed, and if these intrusions have been leached of free iron oxides and/or clay after deposition.

Andic Soil Properties

Andic soil properties commonly form during weathering of tephra or other parent materials containing a significant content of volcanic glass. Soils that are in cool, humid climates and have abundant organic carbon, however, may develop andic soil properties without the influence of volcanic glass. A suite of glass and glass-coated minerals rich in silica is termed volcanic glass in this taxonomy. These minerals are relatively soluble and undergo fairly rapid transformation when the soils are moist. Andic soil properties represent a stage in transition where weathering and transformation of primary alumino-silicates (e.g., volcanic glass) have proceeded only to the point of the formation of short-range-order materials, such as allophane, imogolite, and ferrihydrite, or of metal-humus complexes. The concept of andic soil properties includes moderately weathered soil material, rich in short-range-order materials or metal-humus complexes, or both, with or without volcanic glass (required characteristic 2) and weakly
weathered soil, less rich in short-range-order materials with volcanic glass (required characteristic 3).

Relative amounts of allophane, imogolite, ferrihydrite, or metal-humus complexes in the colloidal fraction are inferred from laboratory analyses of aluminum, iron, and silica extracted by ammonium oxalate, and from phosphate retention. Soil scientists may use smeariness or pH in 1N sodium fluoride (NaF) as field indicators of andic soil properties. **Volcanic glass content** is the percent volcanic glass (by grain count) in the coarse silt and sand (0.02 to 2.0 mm) fraction. Most soil materials with andic soil properties consist of mineral soil materials, but some are organic soil materials with less than 25 percent organic carbon.

Required Characteristics

Soil materials with andic soil properties must have a fine-earth fraction that meets the following requirements:

1. Less than 25 percent organic carbon (by weight) and one or both of the following:
 a. Bulk density, measured at 33 kPa water retention, of 0.90 g/cm3 or less; and
 b. Phosphate retention of 85 percent or more; and
 c. Al + ½ Fe content (by ammonium oxalate) equal to 2.0 percent or more; or
2. All of the following:
 a. 30 percent or more of the fine-earth fraction is 0.02 to 2.0 mm in size; and
 b. Phosphate retention of 25 percent or more; and
 c. Al + ½ Fe content (by ammonium oxalate) equal to 0.4 percent or more; and
 d. Volcanic glass content of 5 percent or more; and
e. \[(\text{Al} + \frac{1}{2}\text{Fe content, percent}) \times (15.625)] + \text{[volcanic glass content, percent]} = 36.25 \text{ or more.}\]

The shaded area in figure 1 illustrates criteria 3c, 3d, and 3e.

Figure 1.—Soils that are plotted in the shaded area meet the andic soil properties criteria c, d, and e under item 3 of the required characteristics. To qualify as soils with andic properties, the soils must also meet the listed requirements for organic-carbon content, phosphate retention, and particle-size distribution.
Anhydrous Conditions

Anhydrous conditions (Gr. anydros, waterless) refer to the moisture condition of soils in very cold deserts and other areas with permafrost (often dry permafrost). These soils typically have low precipitation (usually less than 50 mm water equivalent per year) and a moisture content of less than 3 percent by weight. Anhydrous soil conditions are similar to the aridic (torric) soil moisture regimes (defined below), except that the soil temperature at 50 cm is less than 5 °C throughout the year in the soil layers with these conditions.

Required Characteristics

Soils with anhydrous conditions have a mean annual soil temperature of 0 °C or colder. The layer from 10 to 70 cm below the soil surface has a soil temperature of less than 5 °C throughout the year and this layer:

1. Includes no ice-cemented permafrost; and
2. Is dry (water held at 1500 kPa or more) in one-half or more of the soil for one-half or more of the time the layer has a soil temperature above 0 °C; or
3. Has a rupture-resistance class of loose to slightly hard throughout when the soil temperature is 0 °C or colder, except where a cemented pedogenic horizon occurs.

Coefficient of Linear Extensibility (COLE)

The coefficient of linear extensibility (COLE) is the ratio of the difference between the moist length and dry length of a clod to its dry length. It is \((L_m - L_d)/L_d\), where \(L_m\) is the length at 33 kPa tension and \(L_d\) is the length when dry. COLE can be calculated from the differences in bulk density of the clod when moist and when dry. An estimate of COLE can be calculated in the field by measuring the distance between two pins in a clod of undisturbed soil at field capacity and again after the clod has dried. COLE does not apply if the shrinkage is irreversible.
Durinodes

Durinodes (L. *durus*, hard, and *nodus*, knot) are weakly cemented to indurated nodules or concretions with a diameter of 1 cm or more. The cement is SiO₂, presumably opal and microcrystalline forms of silica. Durinodes break down in hot concentrated KOH after treatment with HCl to remove carbonates but do not break down with concentrated HCl alone. Dry durinodes do not slake appreciably in water, but prolonged soaking can result in spalling of very thin platelets. Durinodes are firm or firmer and brittle when wet, both before and after treatment with acid. Some durinodes are roughly concentric when viewed in cross section, and concentric stringers of opal are visible under a hand lens.

Fragic Soil Properties

Fragic soil properties are the essential properties of a fragipan. They have neither the layer thickness nor volume requirements for the fragipan. Fragic soil properties are in subsurface horizons, although they can be at or near the surface in truncated soils. Aggregates with fragic soil properties have a firm or firmer rupture-resistance class and a brittle manner of failure when soil water is at or near field capacity. Air-dry fragments of the natural fabric, 5 to 10 cm in diameter, slake when they are submerged in water. Aggregates with fragic soil properties show evidence of pedogenesis, including one or more of the following: oriented clay within the matrix or on faces of peds, redoximorphic features within the matrix or on faces of peds, strong or moderate soil structure, and coatings of albic materials or uncoated silt and sand grains on faces of peds or in seams. Peds with these properties are considered to have fragic soil properties regardless of whether or not the density and brittleness are pedogenic.

Soil aggregates with fragic soil properties must:
1. Show evidence of pedogenesis within the aggregates or, at a minimum, on the faces of the aggregates; *and*
2. Slake when air-dry fragments of the natural fabric, 5 to 10 cm in diameter, are submerged in water; and

3. Have a firm or firmer rupture-resistance class and a brittle manner of failure when soil water is at or near field capacity; and

4. Restrict the entry of roots into the matrix when soil water is at or near field capacity.

Free Carbonates

The term “free carbonates” is used in the definitions of a number of taxa, is used as a criterion for the isotic mineralogy class, and is mentioned in the discussion of chemical analyses in the Appendix. It refers to soil carbonates that are uncoated or unbound and that effervesce visibly or audibly when treated with cold, dilute HCl. The term “free carbonates” is nearly synonymous with the term “calcareous.” Soils that have free carbonates generally have calcium carbonate as a common mineral, although sodium and magnesium carbonates are also included in this concept. Soils or horizons with free carbonates may have inherited the carbonate compounds from parent materials without any translocation or transformation processes acting on them. There is no implication of pedogenesis in the concept of free carbonates, as there is in identifiable secondary carbonates (defined below), although most forms of secondary carbonates are freely effervescent.

Identifiable Secondary Carbonates

The term “identifiable secondary carbonates” is used in the definitions of a number of taxa. It refers to translocated authigenic calcium carbonate that has been precipitated in place from the soil solution rather than inherited from a soil parent material, such as calcareous loess or limestone residuum.

Identifiable secondary carbonates either may disrupt the soil structure or fabric, forming masses, nodules, concretions, or
spheroidal aggregates (white eyes) that are soft and powdery when dry, or may be present as coatings in pores, on structural faces, or on the undersides of rock or pararock fragments. If present as coatings, the secondary carbonates cover a significant part of the surfaces. Commonly, they coat all of the surfaces to a thickness of 1 mm or more. If little calcium carbonate is present in the soil, however, the surfaces may be only partially coated. The coatings must be thick enough to be visible when moist. Some horizons are entirely engulfed by carbonates. The color of these horizons is largely determined by the carbonates. The carbonates in these horizons are within the concept of identifiable secondary carbonates.

The filaments commonly seen in a dry calcareous horizon are within the meaning of identifiable secondary carbonates if the filaments are thick enough to be visible when the soil is moist. Filaments commonly branch on structural faces.

Interfingering of Albic Materials

The term “interfingering of albic materials” refers to albic materials that penetrate 5 cm or more into an underlying argillic, kandic, or natric horizon along vertical and, to a lesser degree, horizontal faces of peds. There need not be a continuous overlying albic horizon. The albic materials constitute less than 15 percent of the layer that they penetrate, but they form continuous skeletans (ped coatings of clean silt or sand defined by Brewer, 1976) 1 mm or more thick on the vertical faces of peds, which means a total width of 2 mm or more between abutting peds. Because quartz is such a common constituent of silt and sand, these skeletans are usually light gray when moist and nearly white when dry, but their color is determined in large part by the color of the sand or silt fraction.

Required Characteristics

Interfingering of albic materials is recognized if albic materials:
1. Penetrate 5 cm or more into an underlying argillic or natric horizon; *and*
2. Are 2 mm or more thick between vertical faces of abutting peds; *and*
3. Constitute less than 15 percent (by volume) of the layer that they penetrate.

Lamellae

A lamella is an illuvial horizon less than 7.5 cm thick. Each lamella contains an accumulation of oriented silicate clay on or bridging sand and silt grains (and rock fragments if any are present). A lamella has more silicate clay than the overlying eluvial horizon.

Required Characteristics

A lamella is an illuvial horizon less than 7.5 cm thick formed in unconsolidated regolith more than 50 cm thick. Each lamella contains an accumulation of oriented silicate clay on or bridging the sand and silt grains (and rock fragments if any are present). Each lamella is required to have more silicate clay than the overlying eluvial horizon.

Lamellae occur in a vertical series of two or more, and each lamella must have an overlying eluvial horizon. (An eluvial horizon is not required above the uppermost lamella if the soil is truncated.)

Lamellae may meet the requirements for either a cambic or an argillic horizon. A combination of two or more lamellae 15 cm or more thick is a cambic horizon if the texture class is very fine sand, loamy very fine sand, or finer. A combination of two or more lamellae meets the requirements for an argillic horizon if there is 15 cm or more cumulative thickness of lamellae that are 0.5 cm or more thick and that have a clay content of *either*:

1. 3 percent or more (absolute) higher than in the overlying eluvial horizon (e.g., 13 percent versus 10 percent) if any part
of the eluvial horizon has less than 15 percent clay in the fine-earth fraction; or

2. 20 percent or more (relative) higher than in the overlying eluvial horizon (e.g., 24 percent versus 20 percent) if all parts of the eluvial horizon have more than 15 percent clay in the fine-earth fraction.

Linear Extensibility (LE)

Linear extensibility (LE) helps to predict the potential of a soil to shrink and swell. The LE of a soil layer is the product of the thickness, in cm, multiplied by the COLE of the layer in question. The LE of a soil is the sum of these products for all soil horizons. Linear extensibility is a criterion for most Vertic subgroups in this taxonomy and is calculated as summed products from the mineral soil surface to a depth of 100 cm or to a root-limiting layer.

Lithologic Discontinuities

Lithologic discontinuities are significant changes in particle-size distribution or mineralogy that represent differences in lithology within a soil. A lithologic discontinuity can also denote an age difference. For information on using horizon designations for lithologic discontinuities, see the Soil Survey Manual (USDA, SCS, 1993).

Not everyone agrees on the degree of change required for a lithologic discontinuity. No attempt is made to quantify lithologic discontinuities. The discussion below is meant to serve as a guideline.

Several lines of field evidence can be used to evaluate lithologic discontinuities. In addition to mineralogical and textural differences that may require laboratory studies, certain observations can be made in the field. These include but are not limited to the following:
1. **Abrupt textural contacts.**—An abrupt change in particle-size distribution, which is not solely a change in clay content resulting from pedogenesis, can often be observed.

2. **Contrasting sand sizes.**—Significant changes in sand size can be detected. For example, if material containing mostly medium sand or finer sand abruptly overlies material containing mostly coarse sand and very coarse sand, one can assume that there are two different materials. Although the materials may be of the same mineralogy, the contrasting sand sizes result from differences in energy at the time of deposition by water and/or wind.

3. **Bedrock lithology vs. rock fragment lithology in the soil.**—If a soil with rock fragments overlies a lithic contact, one would expect the rock fragments to have a lithology similar to that of the material below the lithic contact. If many of the rock fragments do not have the same lithology as the underlying bedrock, the soil is not derived completely from the underlying bedrock.

4. **Stone lines.**—The occurrence of a horizontal line of rock fragments in the vertical sequence of a soil indicates that the soil may have developed in more than one kind of parent material. The material above the stone line is most likely transported, and the material below may be of different origin.

5. **Inverse distribution of rock fragments.**—A lithologic discontinuity is often indicated by an erratic distribution of rock fragments. The percentage of rock fragments decreases with increasing depth. This line of evidence is useful in areas of soils that have relatively unweathered rock fragments.

6. **Rock fragment weathering rinds.**—Horizons containing rock fragments with no rinds that overlie horizons containing rocks with rinds suggest that the upper material is in part depositional and not related to the lower part in time and perhaps in lithology.

7. **Shape of rock fragments.**—A soil with horizons containing angular rock fragments overlying horizons
containing well rounded rock fragments may indicate a discontinuity. This line of evidence represents different mechanisms of transport (colluvial vs. alluvial) or even different transport distances.

8. **Soil color.**—Abrupt changes in color that are not the result of pedogenic processes can be used as indicators of discontinuity.

9. **Micromorphological features.**—Marked differences in the size and shape of resistant minerals in one horizon and not in another are indicators of differences in materials.

Use of Laboratory Data

Discontinuities are not always readily apparent in the field. In these cases laboratory data are necessary. Even with laboratory data, detecting discontinuities may be difficult. The decision is a qualitative or perhaps a partly quantitative judgment. General concepts of lithology as a function of depth might include:

1. **Laboratory data—visual scan.**—The array of laboratory data is assessed in an attempt to determine if a field-designated discontinuity is corroborated and if any data show evidence of a discontinuity not observed in the field. One must sort changes in lithology from changes caused by pedogenic processes. In most cases the quantities of sand and coarser fractions are not altered significantly by soil-forming processes. Therefore, an abrupt change in sand size or sand mineralogy is a clue to lithologic change. Gross soil mineralogy and the resistant mineral suite are other clues.

2. **Data on a clay-free basis.**—A common manipulation in assessing lithologic change is computation of sand and silt separates on a carbonate-free, clay-free basis (percent fraction, e.g., fine sand and very fine sand, divided by percent sand plus silt, times 100). Clay distribution is subject to pedogenic change and may either mask inherited lithologic differences or produce differences that are not inherited from
lithology. The numerical array computed on a clay-free basis can be inspected visually or plotted as a function of depth.

Another aid used to assess lithologic changes is computation of the ratios of one sand separate to another. The ratios can be computed and examined as a numerical array, or they can be plotted. The ratios work well if sufficient quantities of the two fractions are available. Low quantities magnify changes in ratios, especially if the denominator is low.

n Value

The n value (Pons and Zonneveld, 1965) characterizes the relation between the percentage of water in a soil under field conditions and its percentages of inorganic clay and humus. The n value is helpful in predicting whether a soil can be grazed by livestock or can support other loads and in predicting what degree of subsidence would occur after drainage.

For mineral soil materials that are not thixotropic, the n value can be calculated by the following formula:

$$n = (A - 0.2R)/(L + 3H)$$

In this formula, A is the percentage of water in the soil in field condition, calculated on a dry-soil basis; R is the percentage of silt plus sand; L is the percentage of clay; and H is the percentage of organic matter (percent organic carbon multiplied by 1.724).

Few data for calculations of the n value are available in the United States, but the critical n value of 0.7 can be approximated closely in the field by a simple test of squeezing a soil sample in the palm of a hand. If the soil flows between the fingers with difficulty, the n value is between 0.7 and 1.0 (slightly fluid manner of failure class); if the soil flows easily between the fingers, the n value is 1 or more (moderately fluid or very fluid manner of failure class); and if no soil material flows through the fingers during full compression, the sample has an n value less than 0.7 (nonfluid manner of failure class).
Petroferric Contact

A petroferric (Gr. *petra*, rock, and L. *ferrum*, iron; implying ironstone) contact is a boundary between soil and a continuous layer of indurated material in which iron is an important cement and organic matter is either absent or present only in traces. The indurated layer must be continuous within the limits of each pedon, but it may be fractured if the average lateral distance between fractures is 10 cm or more. The fact that this ironstone layer contains little or no organic matter distinguishes it from a placic horizon and an indurated spodic horizon (ortstein), both of which contain organic matter.

Several features can aid in making the distinction between a lithic contact and a petroferric contact. First, a petroferric contact is roughly horizontal. Second, the material directly below a petroferric contact contains a high amount of iron (normally 30 percent or more Fe_2O_3). Third, the ironstone sheets below a petroferric contact are thin; their thickness ranges from a few centimeters to very few meters. Sandstone, on the other hand, may be thin or very thick, may be level-bedded or tilted, and may contain only a small percentage of Fe_2O_3. In the Tropics, the ironstone is generally more or less vesicular.

Plinthite

Plinthite (Gr. *plinthos*, brick) is an iron-rich, humus-poor mixture of clay with quartz and other minerals. It commonly occurs as dark red redox concentrations that usually form platy, polygonal, or reticulate patterns. Plinthite changes irreversibly to an ironstone hardpan or to irregular aggregates on exposure to repeated wetting and drying, especially if it is also exposed to heat from the sun. The lower boundary of a zone in which plinthite occurs generally is diffuse or gradual, but it may be abrupt at a lithologic discontinuity.

Plinthite may occur as a constituent of a number of horizons, such as an epipedon, a cambic horizon, an argillic
horizon, an oxic horizon, or a C horizon. It is one form of the material that has been called laterite. It normally forms in a horizon below the surface, but it may form at the surface in a seep area at the base of a slope.

From a genetic viewpoint, plinthite forms by segregation of iron. In many places iron probably has been added from other horizons or from the higher adjacent soils. Generally, plinthite forms in a horizon that is saturated with water for some time during the year. Initially, iron is normally segregated in the form of soft, more or less clayey, red or dark red redox concentrations. These concentrations are not considered plinthite unless there has been enough segregation of iron to permit their irreversible hardening on exposure to repeated wetting and drying.

Plinthite is firm or very firm when the soil moisture content is near field capacity and hard when the moisture content is below the wilting point. Plinthite occurs as discrete bodies larger than 2 mm that can be separated from the matrix. A moist aggregate of plinthite will withstand moderate rolling between thumb and forefinger and is less than strongly cemented. Moist or air-dried plinthite will not slake when submerged in water even with gentle agitation. Plinthite does not harden irreversibly as a result of a single cycle of drying and rewetting. After a single drying, it will remoisten and then can be dispersed in large part if one shakes it in water with a dispersing agent.

In a moist soil, plinthite is soft enough to be cut with a spade. After irreversible hardening, it is no longer considered plinthite but is called ironstone. Indurated ironstone materials can be broken or shattered with a spade but cannot be dispersed if one shakes them in water with a dispersing agent.

A small amount of plinthite in the soil does not form a continuous phase; that is, the individual redox concentrations or aggregates are not connected with each other. If a large amount of plinthite is present, it may form a continuous phase.
Individual aggregates of plinthite in a continuous phase are interconnected, and the spacing of cracks or zones that roots can enter is 10 cm or more.

If a continuous layer becomes indurated, it is a massive ironstone layer that has irregular, somewhat tubular inclusions of yellowish, grayish, or white, clayey material. If the layer is exposed, these inclusions may be washed out, leaving an ironstone that has many coarse, tubular pores.

Much that has been called laterite is included in the meaning of plinthite. Doughy and concretionary laterite that has not hardened is an example. Hardened laterite, whether it is vesicular or pisolitic, is not included in the definition of plinthite.

Resistant Minerals

Several references are made to resistant minerals in this taxonomy. Obviously, the stability of a mineral in the soil is a partial function of the soil moisture regime. Where resistant minerals are referred to in the definitions of diagnostic horizons and of various taxa, a humid climate, past or present, is always assumed.

Resistant minerals are durable minerals in the 0.02 to 2.0 mm fraction. Examples are quartz, zircon, tourmaline, beryl, anatase, rutile, iron oxides and oxyhydroxides, 1:1 dioctahedral phyllosilicates (kandites), gibbsite, and hydroxy-aluminum interlayered 2:1 minerals (Burt, 2004).

Slickensides

Slickensides are polished and grooved surfaces and generally have dimensions exceeding 5 cm. They are produced when one soil mass slides past another. Some slickensides occur at the lower boundary of a slip surface where a mass of soil moves downward on a relatively steep slope. Slickensides result directly from the swelling of clay minerals and shear failure. They are very common in swelling clays that undergo marked changes in moisture content.
Spodic Materials

Spodic materials form in an illuvial horizon that normally underlies a histic, ochric, or umbric epipedon or an albic horizon. In most undisturbed areas, spodic materials underlie an albic horizon. They may occur within an umbric epipedon or an Ap horizon.

A horizon consisting of spodic materials normally has an optical-density-of-oxalate-extract (ODOE) value of 0.25 or more, and that value is commonly at least 2 times as high as the ODOE value in an overlying eluvial horizon. This increase in ODOE value indicates an accumulation of translocated organic materials in an illuvial horizon. Soils with spodic materials show evidence that organic materials and aluminum, with or without iron, have been moved from an eluvial horizon to an illuvial horizon.

Definition of Spodic Materials

Spodic materials are mineral soil materials that do not have all of the properties of an argillic or kandic horizon; are dominated by active amorphous materials that are illuvial and are composed of organic matter and aluminum, with or without iron; and have both of the following:

1. A pH value in water (1:1) of 5.9 or less and an organic-carbon content of 0.6 percent or more; and
2. One or both of the following:
 a. An overlying albic horizon that extends horizontally through 50 percent or more of each pedon and, directly under the albic horizon, colors, moist (crushed and smoothed sample), as follows:
 (1) Hue of 5YR or redder; or
 (2) Hue of 7.5YR, color value of 5 or less, and chroma of 4 or less; or
(3) Hue of 10YR or neutral and a color value and chroma of 2 or less; or
(4) A color of 10YR 3/1; or

b. With or without an albic horizon and one of the colors listed above or hue of 7.5YR, color value, moist, of 5 or less, chroma of 5 or 6 (crushed and smoothed sample), and one or more of the following morphological or chemical properties:

(1) Cementation by organic matter and aluminum, with or without iron, in 50 percent or more of each pedon and a very firm or firmer rupture-resistance class in the cemented part; or
(2) 10 percent or more cracked coatings on sand grains; or
(3) Al + 1/Fe percentages (by ammonium oxalate) totaling 0.50 or more, and half that amount or less in an overlying umbric (or subhorizon of an umbric) epipedon, ochric epipedon, or albic horizon; or
(4) An optical-density-of-oxalate-extract (ODOE) value of 0.25 or more, and a value half as high or lower in an overlying umbric (or subhorizon of an umbric) epipedon, ochric epipedon, or albic horizon.

Volcanic Glass

Volcanic glass is defined herein as optically isotropic translucent glass or pumice of any color. It includes glass, pumice, glass-coated crystalline minerals, glass aggregates, and glassy materials.

Volcanic glass is typically a dominant component in relatively unweathered tephra. Weathering and mineral transformation of volcanic glass can produce short-range-order minerals, such as allophane, imogolite, and ferrihydrite.

Volcanic glass content is the percent (by grain count) of glass, glass-coated mineral grains, glass aggregates, and
glassy materials in the 0.02 to 2.0 mm fraction. Typically, the content is determined for one particle-size fraction (i.e., coarse silt, very fine sand, or fine sand) and used as an estimate of glass content in the 0.02 to 2.0 mm fraction.

Volcanic glass content is a criterion in classification of andic soil properties, subgroups with the formative element “vitr(i),” families with “ashy” substitutes for particle-size class, and the glassy mineralogy class.

Weatherable Minerals

Several references are made to weatherable minerals in this taxonomy. Obviously, the stability of a mineral in a soil is a partial function of the soil moisture regime. Where weatherable minerals are referred to in the definitions of diagnostic horizons and of various taxa in this taxonomy, a humid climate, either present or past, is always assumed. Examples of the minerals that are included in the meaning of weatherable minerals are all 2:1 phyllosilicates, chlorite, sepiolite, palygorskite, allophane, 1:1 trioctahedral phyllosilicates (serpentines), feldspars, feldspathoids, ferromagnesia mineral glasses, zeolites, dolomite, and apatite in the 0.02 to 2.0 mm fraction.

Obviously, this definition of the term “weatherable minerals” is restrictive. The intent is to include, in the definitions of diagnostic horizons and various taxa, only those weatherable minerals that are unstable in a humid climate compared to other minerals, such as quartz and 1:1 lattice clays, but that are more resistant to weathering than calcite. Calcite, carbonate aggregates, gypsum, and halite are not considered weatherable minerals because they are mobile in the soil. They appear to be recharged in some otherwise strongly weathered soils.
Characteristics Diagnostic for Organic Soils
Following is a description of the characteristics that are used only with organic soils.

Kinds of Organic Soil Materials
Three different kinds of organic soil materials are distinguished in this taxonomy, based on the degree of decomposition of the plant materials from which the organic materials are derived. The three kinds are (1) fibric, (2) hemic, and (3) sapric. Because of the importance of fiber content in the definitions of these materials, fibers are defined before the kinds of organic soil materials.

Fibers

Fibers are pieces of plant tissue in organic soil materials (excluding live roots) that:
1. Are large enough to be retained on a 100-mesh sieve (openings 0.15 mm across) when the materials are screened; and
2. Show evidence of the cellular structure of the plants from which they are derived; and
3. Either are 2 cm or less in their smallest dimension or are decomposed enough to be crushed and shredded with the fingers.

Pieces of wood that are larger than 2 cm in cross section and are so undecomposed that they cannot be crushed and shredded with the fingers, such as large branches, logs, and stumps, are not considered fibers but are considered coarse fragments (comparable to gravel, stones, and boulders in mineral soils).

Fibric Soil Materials
Fibric soil materials are organic soil materials that either:
1. Contain three-fourths or more (by volume) fibers after rubbing, excluding coarse fragments; or
2. Contain two-fifths or more (by volume) fibers after rubbing, excluding coarse fragments, and yield color values and chromas of 7/1, 7/2, 8/1, 8/2, or 8/3 (fig. 2) on white chromatographic or filter paper that is inserted into a paste made of the soil materials in a saturated sodium-pyrophosphate solution.

Figure 2.—Value and chroma of pyrophosphate solution of fibric and sapric materials.
Hemic Soil Materials

Hemic soil materials (Gr. hemi, half; implying intermediate decomposition) are intermediate in their degree of decomposition between the less decomposed fibric and more decomposed sapric materials. Their morphological features give intermediate values for fiber content, bulk density, and water content. Hemic soil materials are partly altered both physically and biochemically.

Sapric Soil Materials

Sapric soil materials (Gr. sapros, rotten) are the most highly decomposed of the three kinds of organic soil materials. They have the smallest amount of plant fiber, the highest bulk density, and the lowest water content on a dry-weight basis at saturation. Sapric soil materials are commonly very dark gray to black. They are relatively stable; i.e., they change very little physically and chemically with time in comparison to other organic soil materials.

Sapric materials have the following characteristics:

1. The fiber content, after rubbing, is less than one-sixth (by volume), excluding coarse fragments; and
2. The color of the sodium-pyrophosphate extract on white chromatographic or filter paper is below or to the right of a line drawn to exclude blocks 5/1, 6/2, and 7/3 (fig. 2). If few or no fibers can be detected and the color of the pyrophosphate extract is to the left of or above this line, the possibility that the material is limnic must be considered.

Humilluvic Material

Humilluvic material, i.e., illuvial humus, accumulates in the lower parts of some organic soils that are acid and have been drained and cultivated. The humilluvic material has a C$_{14}$ age that is not older than the overlying organic materials. It has very high solubility in sodium pyrophosphate and rewets very
slowly after drying. Most commonly, it accumulates near a contact with a sandy mineral horizon.

To be recognized as a differentia in classification, the humilluvic material must constitute one-half or more (by volume) of a layer 2 cm or more thick.

Limnic Materials

The presence or absence of limnic deposits is taken into account in the higher categories of Histosols but not Histels. The nature of such deposits is considered in the lower categories of Histosols. Limnic materials include both organic and inorganic materials that were either (1) deposited in water by precipitation or through the action of aquatic organisms, such as algae or diatoms, or (2) derived from underwater and floating aquatic plants and subsequently modified by aquatic animals. They include coprogenous earth (sedimentary peat), diatomaceous earth, and marl.

Coprogenous Earth

A layer of coprogenous earth (sedimentary peat) is a limnic layer that:

1. Contains many fecal pellets with diameters between a few hundredths and a few tenths of a millimeter; *and*
2. Has a color value, moist, of 4 or less; *and*
3. Either forms a slightly viscous water suspension and is nonplastic or slightly plastic but not sticky, or shrinks upon drying, forming clods that are difficult to rewet and often tend to crack along horizontal planes; *and*
4. Either yields a saturated sodium-pyrophosphate extract on white chromatographic or filter paper that has a color value of 7 or more and chroma of 2 or less (fig. 2) or has a cation-exchange capacity of less than 240 cmol(+) per kg organic matter (measured by loss on ignition), or both.
Diatomaceous Earth

A layer of diatomaceous earth is a limnic layer that:

1. If not previously dried, has a matrix color value of 3, 4, or 5, which changes irreversibly on drying as a result of the irreversible shrinkage of organic-matter coatings on diatoms (identifiable by microscopic, 440 X, examination of dry samples); and

2. Either yields a saturated sodium-pyrophosphate extract on white chromatographic or filter paper that has a color value of 8 or more and chroma of 2 or less or has a cation-exchange capacity of less than 240 cmol(+) per kg organic matter (measured by loss on ignition), or both.

Marl

A layer of marl is a limnic layer that:

1. Has a color value, moist, of 5 or more; and

2. Reacts with dilute HCl to evolve CO$_2$.

The color of marl usually does not change irreversibly on drying because a layer of marl contains too little organic matter, even before it has been shrunk by drying, to coat the carbonate particles.

Thickness of Organic Soil Materials (Control Section of Histosols and Histels)

The thickness of organic materials over limnic materials, mineral materials, water, or permafrost is used to define the Histosols and Histels.

For practical reasons, an arbitrary control section has been established for the classification of Histosols and Histels. Depending on the kinds of soil material in the surface layers, the control section has a thickness of either 130 cm or 160 cm from the soil surface if there is no densic, lithic, or paralithic contact, thick layer of water, or permafrost within the respective limit. The thicker control section is used if the surface layers
to a depth of 60 cm either contain three-fourths or more fibers derived from *Sphagnum, Hypnum*, or other mosses or have a bulk density of less than 0.1. Layers of water, which may be between a few centimeters and many meters thick in these soils, are considered to be the lower boundary of the control section only if the water extends below a depth of 130 or 160 cm, respectively. A densic, lithic, or paralithic contact, if shallower than 130 or 160 cm, constitutes the lower boundary of the control section. In some soils the lower boundary is 25 cm below the upper limit of permafrost. An unconsolidated mineral substratum shallower than those limits does not change the lower boundary of the control section.

The control section of Histosols and Histels is divided somewhat arbitrarily into three tiers—surface, subsurface, and bottom tiers.

Surface Tier

The surface tier of a Histosol or Histel extends from the soil surface to a depth of 60 cm if either (1) the materials within that depth are fibric and three-fourths or more of the fiber volume is derived from *Sphagnum* or other mosses or (2) the materials have a bulk density of less than 0.1. Otherwise, the surface tier extends from the soil surface to a depth of 30 cm.

Some organic soils have a mineral surface layer less than 40 cm thick as a result of flooding, volcanic eruptions, additions of mineral materials to increase soil strength or reduce the hazard of frost, or other causes. If such a mineral layer is less than 30 cm thick, it constitutes the upper part of the surface tier; if it is 30 to 40 cm thick, it constitutes the whole surface tier and part of the subsurface tier.

Subsurface Tier

The subsurface tier is normally 60 cm thick. If the control section ends at a shallower depth (at a densic, lithic, or paralithic contact or a water layer or in permafrost), however,
the subsurface tier extends from the lower boundary of the surface tier to the lower boundary of the control section. It includes any unconsolidated mineral layers that may be present within those depths.

Bottom Tier

The bottom tier is 40 cm thick unless the control section has its lower boundary at a shallower depth (at a densic, lithic, or paralithic contact or a water layer or in permafrost).

Thus, if the organic materials are thick, there are two possible thicknesses of the control section, depending on the presence or absence and the thickness of a surface mantle of fibric moss or other organic material that has a low bulk density (less than 0.1). If the fibric moss extends to a depth of 60 cm and is the dominant material within this depth (three-fourths or more of the volume), the control section is 160 cm thick. If the fibric moss is thin or absent, the control section extends to a depth of 130 cm.

Horizons and Characteristics Diagnostic for Both Mineral and Organic Soils

Following are descriptions of the horizons and characteristics that are diagnostic for both mineral and organic soils.

Aquic Conditions

Soils with aquic (L. *aqua*, water) conditions are those that currently undergo continuous or periodic saturation and reduction. The presence of these conditions is indicated by redoximorphic features, except in Histosols and Histels, and can be verified by measuring saturation and reduction, except in artificially drained soils. Artificial drainage is defined here as the removal of free water from soils having aquic conditions by surface mounding, ditches, or subsurface tiles
or the prevention of surface or ground water from reaching the soils by dams, levees, surface pumps, or other means. In these soils water table levels and/or their duration are changed significantly in connection with specific types of land use. Upon removal of the drainage practices, aquatic conditions would return. In the keys, artificially drained soils are included with soils that have aquatic conditions.

Elements of aquatic conditions are as follows:

1. Saturation is characterized by zero or positive pressure in the soil water and can generally be determined by observing free water in an unlined auger hole. Problems may arise, however, in clayey soils with peds, where an unlined auger hole may fill with water flowing along faces of peds while the soil matrix is and remains unsaturated (bypass flow). Such free water may incorrectly suggest the presence of a water table, while the actual water table occurs at greater depth. Use of well sealed piezometers or tensiometers is therefore recommended for measuring saturation. Problems may still occur, however, if water runs into piezometer slits near the bottom of the piezometer hole or if tensiometers with slowly reacting manometers are used. The first problem can be overcome by using piezometers with smaller slits and the second by using transducer tensiometry, which reacts faster than manometers. Soils are considered wet if they have pressure heads greater than -1 kPa. Only macropores, such as cracks between peds or channels, are then filled with air, while the soil matrix is usually still saturated. Obviously, exact measurements of the wet state can be obtained only with tensiometers. For operational purposes, the use of piezometers is recommended as a standard method.

The duration of saturation required for creating aquatic conditions varies, depending on the soil environment, and is not specified.
Three types of saturation are defined:

a. *Endosaturation.*—The soil is saturated with water in all layers from the upper boundary of saturation to a depth of 200 cm or more from the mineral soil surface.

b. *Episaturation.*—The soil is saturated with water in one or more layers within 200 cm of the mineral soil surface and also has one or more unsaturated layers, with an upper boundary above a depth of 200 cm, below the saturated layer. The zone of saturation, i.e., the water table, is perched on top of a relatively impermeable layer.

c. *Anthric saturation.*—This term refers to a special kind of aquic conditions that occurs in soils that are cultivated and irrigated (flood irrigation). Soils with anthraquic conditions must meet the requirements for aquic conditions and in addition have *both* of the following:

1. A tilled surface layer and a directly underlying slowly permeable layer that has, for 3 months or more in normal years, *both*:
 a. Saturation and reduction; *and*
 b. Chroma of 2 or less in the matrix; *and*

2. A subsurface horizon with *one or more* of the following:
 a. Redox depletions with a color value, moist, of 4 or more and chroma of 2 or less in macropores; *or*
 b. Redox concentrations of iron; *or*
 c. 2 times or more the amount of iron (by dithionite citrate) contained in the tilled surface layer.

2. The degree of reduction in a soil can be characterized by the direct measurement of redox potentials. Direct measurements should take into account chemical equilibria as expressed by stability diagrams in standard soil textbooks. Reduction and oxidation processes are also a function of soil pH. Obtaining accurate measurements of the degree of
reduction in a soil is difficult. In the context of this taxonomy, however, only a degree of reduction that results in reduced iron is considered, because it produces the visible redoximorphic features that are identified in the keys. A simple field test is available to determine if reduced iron ions are present. A freshly broken surface of a field-wet soil sample is treated with alpha, alpha-dipyridyl in neutral, 1N ammonium-acetate solution. The appearance of a strong red color on the freshly broken surface indicates the presence of reduced iron ions. A positive reaction to the alpha, alpha-dipyridyl field test for ferrous iron (Childs, 1981) may be used to confirm the existence of reducing conditions and is especially useful in situations where, despite saturation, normal morphological indicators of such conditions are either absent or obscured (as by the dark colors characteristic of melanic great groups). A negative reaction, however, does not imply that reducing conditions are always absent. It may only mean that the level of free iron in the soil is below the sensitivity limit of the test or that the soil is in an oxidized phase at the time of testing. Use of alpha, alpha-dipyridyl in a 10 percent acetic-acid solution is not recommended because the acid is likely to change soil conditions, for example, by dissolving CaCO₃.

The duration of reduction required for creating aquic conditions is not specified.

3. Redoximorphic features associated with wetness result from alternating periods of reduction and oxidation of iron and manganese compounds in the soil. Reduction occurs during saturation with water, and oxidation occurs when the soil is not saturated. The reduced iron and manganese ions are mobile and may be transported by water as it moves through the soil. Certain redox patterns occur as a function of the patterns in which the ion-carrying water moves through the soil and as a function of the location of aerated zones in the soil. Redox patterns are also affected by the fact that manganese is reduced more rapidly than iron, while iron oxidizes more
rapidly upon aeration. Characteristic color patterns are created by these processes. The reduced iron and manganese ions may be removed from a soil if vertical or lateral fluxes of water occur, in which case there is no iron or manganese precipitation in that soil. Wherever the iron and manganese are oxidized and precipitated, they form either soft masses or hard concretions or nodules. Movement of iron and manganese as a result of redox processes in a soil may result in redoximorphic features that are defined as follows:

a. *Redox concentrations.*—These are zones of apparent accumulation of Fe-Mn oxides, including:

 (1) Nodules and concretions, which are cemented bodies that can be removed from the soil intact. Concretions are distinguished from nodules on the basis of internal organization. A concretion typically has concentric layers that are visible to the naked eye. Nodules do not have visible organized internal structure. Boundaries commonly are diffuse if formed *in situ* and sharp after pedoturbation. Sharp boundaries may be relict features in some soils; *and*

 (2) Masses, which are noncemented concentrations of substances within the soil matrix; *and*

 (3) Pore linings, i.e., zones of accumulation along pores that may be either coatings on pore surfaces or impregnations from the matrix adjacent to the pores.

b. *Redox depletions.*—These are zones of low chroma (chromas less than those in the matrix) where either Fe-Mn oxides alone or both Fe-Mn oxides and clay have been stripped out, including:

 (1) Iron depletions, i.e., zones that contain low amounts of Fe and Mn oxides but have a clay content similar to that of the adjacent matrix (often referred to as albans or neoalbans); *and*
(2) Clay depletions, i.e., zones that contain low amounts of Fe, Mn, and clay (often referred to as silt coatings or skeletans).

c. Reduced matrix.—This is a soil matrix that has low chroma in situ but undergoes a change in hue or chroma within 30 minutes after the soil material has been exposed to air.

d. In soils that have no visible redoximorphic features, a reaction to an alpha,alpha-dipyridyl solution satisfies the requirement for redoximorphic features.

Field experience indicates that it is not possible to define a specific set of redoximorphic features that is uniquely characteristic of all of the taxa in one particular category. Therefore, color patterns that are unique to specific taxa are referenced in the keys.

Anthraquic conditions are a variant of episaturation and are associated with controlled flooding (for such crops as wetland rice and cranberries), which causes reduction processes in the saturated, puddled surface soil and oxidation of reduced and mobilized iron and manganese in the unsaturated subsoil.

Cryoturbation

Cryoturbation (frost churning) is the mixing of the soil matrix within the pedon that results in irregular or broken horizons, involutions, accumulation of organic matter on the permafrost table, oriented rock fragments, and silt caps on rock fragments.

Densic Contact

A densic contact (L. *densus*, thick) is a contact between soil and densic materials (defined below). It has no cracks, or the spacing of cracks that roots can enter is 10 cm or more.
Densic Materials

Densic materials are relatively unaltered materials (do not meet the requirements for any other named diagnostic horizons or any other diagnostic soil characteristic) that have a noncemented rupture-resistance class. The bulk density or the organization is such that roots cannot enter, except in cracks. These are mostly earthy materials, such as till, volcanic mudflows, and some mechanically compacted materials, for example, mine spoils. Some noncemented rocks can be densic materials if they are dense or resistant enough to keep roots from entering, except in cracks.

Densic materials are noncemented and thus differ from paralithic materials and the material below a lithic contact, both of which are cemented.

Densic materials have, at their upper boundary, a densic contact if they have no cracks or if the spacing of cracks that roots can enter is 10 cm or more. These materials can be used to differentiate soil series if the materials are within the series control section.

Gelic Materials

Gelic materials are mineral or organic soil materials that show evidence of cryoturbation (frost churning) and/or ice segregation in the active layer (seasonal thaw layer) and/or the upper part of the permafrost. Cryoturbation is manifested by irregular and broken horizons, involutions, accumulation of organic matter on top of and within the permafrost, oriented rock fragments, and silt-enriched layers. The characteristic structures associated with gelic materials include platy, blocky, or granular macrostructures; the structural results of sorting; and orbiculic, conglomeric, banded, or vesicular microfabrics. Ice segregation is manifested by ice lenses, vein ice, segregated ice crystals, and ice wedges. Cryopedogenic processes that lead to gelic materials are driven by the physical volume change of water to ice, moisture migration.
along a thermal gradient in the frozen system, or thermal contraction of the frozen material by continued rapid cooling.

Glacic Layer

A glacic layer is massive ice or ground ice in the form of ice lenses or wedges. The layer is 30 cm or more thick and contains 75 percent or more visible ice.

Lithic Contact

A lithic contact is the boundary between soil and a coherent underlying material. Except in Ruptic-Lithic subgroups, the underlying material must be virtually continuous within the limits of a pedon. Cracks that can be penetrated by roots are few, and their horizontal spacing is 10 cm or more. The underlying material must be sufficiently coherent when moist to make hand-digging with a spade impractical, although the material may be chipped or scraped with a spade. The material below a lithic contact must be in a strongly cemented or more cemented rupture-resistance class. Commonly, the material is indurated. The underlying material considered here does not include diagnostic soil horizons, such as a duripan or a petrocalcic horizon.

A lithic contact is diagnostic at the subgroup level if it is within 125 cm of the mineral soil surface in Oxisols and within 50 cm of the mineral soil surface in all other mineral soils. In Gelisols composed mainly of organic soil materials, the lithic contact is diagnostic at the subgroup level if it is within 50 cm of the soil surface in Folistels or within 100 cm of the soil surface in Fibristels, Hemistels, and Sapristels. In Histosols the lithic contact must be at the lower boundary of the control section to be recognized at the subgroup level.

Paralithic Contact

A paralithic (lithic-like) contact is a contact between soil and paralithic materials (defined below) where the paralithic
materials have no cracks or the spacing of cracks that roots can enter is 10 cm or more.

Paralithic Materials

Paralithic materials are relatively unaltered materials (do not meet the requirements for any other named diagnostic horizons or any other diagnostic soil characteristic) that have an extremely weakly cemented to moderately cemented rupture-resistance class. Cementation, bulk density, and the organization are such that roots cannot enter, except in cracks. Paralithic materials have, at their upper boundary, a paralithic contact if they have no cracks or if the spacing of cracks that roots can enter is 10 cm or more. Commonly, these materials are partially weathered bedrock or weakly consolidated bedrock, such as sandstone, siltstone, or shale. Paralithic materials can be used to differentiate soil series if the materials are within the series control section. Fragments of paralithic materials 2.0 mm or more in diameter are referred to as pararock fragments.

Permafrost

Permafrost is defined as a thermal condition in which a material (including soil material) remains below 0 °C for 2 or more years in succession. Those gelic materials having permafrost contain the unfrozen soil solution that drives cryopedogenic processes. Permafrost may be cemented by ice or, in the case of insufficient interstitial water, may be dry. The frozen layer has a variety of ice lenses, vein ice, segregated ice crystals, and ice wedges. The permafrost table is in dynamic equilibrium with the environment.

Soil Moisture Regimes

The term “soil moisture regime” refers to the presence or absence either of ground water or of water held at a tension of less than 1500 kPa in the soil or in specific horizons
during periods of the year. Water held at a tension of 1500 kPa or more is not available to keep most mesophytic plants alive. The availability of water is also affected by dissolved salts. If a soil is saturated with water that is too salty to be available to most plants, it is considered salty rather than dry. Consequently, a horizon is considered dry when the moisture tension is 1500 kPa or more and is considered moist if water is held at a tension of less than 1500 kPa but more than zero. A soil may be continuously moist in some or all horizons either throughout the year or for some part of the year. It may be either moist in winter and dry in summer or the reverse. In the Northern Hemisphere, summer refers to June, July, and August and winter refers to December, January, and February.

Normal Years

In the discussions that follow and throughout the keys, the term “normal years” is used. A normal year is defined as a year that has:

1. Annual precipitation that is plus or minus one standard deviation of the long-term (30 years or more) mean annual precipitation; and
2. Mean monthly precipitation that is plus or minus one standard deviation of the long-term monthly precipitation for 8 of the 12 months.

For the most part, normal years can be calculated from the mean annual precipitation; however, when catastrophic events occur during a year, the standard deviations of the monthly means should also be calculated. The term “normal years” replaces the terms “most years” and “6 out of 10 years,” which were used in the 1975 edition of Soil Taxonomy (USDA, SCS, 1975). When precipitation data are evaluated to determine if the criterion for the presence of aquic conditions, or number of days that the moisture control section is moist, or number of days that some part of the soil is saturated has been met, it is permissible to include data from periods with below normal
rainfall. Similarly, when precipitation data are evaluated to
determine if the criterion for the number of days that the
moisture control section is dry has been met, it is permissible
to include data from periods with above normal rainfall. It is
assumed that if the criteria are met during these periods, they
will also be met during normal years.

Soil Moisture Control Section

The intent in defining the soil moisture control section is
to facilitate estimation of soil moisture regimes from climatic
data. The upper boundary of this control section is the depth
to which a dry (tension of more than 1500 kPa, but not air-
dry) soil will be moistened by 2.5 cm of water within 24 hours.
The lower boundary is the depth to which a dry soil will be
moistened by 7.5 cm of water within 48 hours. These depths
do not include the depth of moistening along any cracks or
animal burrows that are open to the surface.

If 7.5 cm of water moistens the soil to a densic, lithic,
paralithic, or petroferric contact or to a petrocalcic or
petrogypsic horizon or a duripan, the contact or the upper
boundary of the cemented horizon constitutes the lower
boundary of the soil moisture control section. If a soil is
moistened to one of these contacts or horizons by 2.5 cm of
water, the soil moisture control section is the boundary of the
contact itself. The control section of such a soil is considered
moist if the contact or upper boundary of the cemented horizon
has a thin film of water. If that upper boundary is dry, the
control section is considered dry.

The moisture control section of a soil extends approximately
(1) from 10 to 30 cm below the soil surface if the particle-size
class of the soil is fine-loamy, coarse-silty, fine-silty, or clayey;
(2) from 20 to 60 cm if the particle-size class is coarse-loamy;
and (3) from 30 to 90 cm if the particle-size class is sandy.
If the soil contains rock and pararock fragments that do not
absorb and release water, the limits of the moisture control
section are deeper. The limits of the soil moisture control
section are affected not only by the particle-size class but also by differences in soil structure or pore-size distribution or by other factors that influence the movement and retention of water in the soil.

Classes of Soil Moisture Regimes

The soil moisture regimes are defined in terms of the level of ground water and in terms of the seasonal presence or absence of water held at a tension of less than 1500 kPa in the moisture control section. It is assumed in the definitions that the soil supports whatever vegetation it is capable of supporting, i.e., crops, grass, or native vegetation, and that the amount of stored moisture is not being increased by irrigation or fallowing. These cultural practices affect the soil moisture conditions as long as they are continued.

Aquic soil moisture regime.—The aquic (L. *aqua*, water) soil moisture regime is a reducing regime in a soil that is virtually free of dissolved oxygen because it is saturated by water. Some soils are saturated with water at times while dissolved oxygen is present, either because the water is moving or because the environment is unfavorable for micro-organisms (e.g., if the temperature is less than 1 °C); such a regime is not considered aquic.

It is not known how long a soil must be saturated before it is said to have an aquic soil moisture regime, but the duration must be at least a few days, because it is implicit in the concept that dissolved oxygen is virtually absent. Because dissolved oxygen is removed from ground water by respiration of micro-organisms, roots, and soil fauna, it is also implicit in the concept that the soil temperature is above biologic zero for some time while the soil is saturated. Biologic zero is defined as 5 °C in this taxonomy. In some of the very cold regions of the world, however, biological activity occurs at temperatures below 5 °C.

Very commonly, the level of ground water fluctuates with the seasons; it is highest in the rainy season or in fall, winter, or
spring if cold weather virtually stops evapotranspiration. There are soils, however, in which the ground water is always at or very close to the surface. Examples are soils in tidal marshes or in closed, landlocked depressions fed by perennial streams. Such soils are considered to have a peraquic soil moisture regime.

Aridic and torric (L. aridus, dry, and L. torridus, hot and dry) soil moisture regimes.—These terms are used for the same moisture regime but in different categories of the taxonomy.

In the aridic (torric) soil moisture regime, the moisture control section is, in normal years:

1. Dry in all parts for more than half of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is above 5 °C; and
2. Moist in some or all parts for less than 90 consecutive days when the soil temperature at a depth of 50 cm below the soil surface is above 8 °C.

Soils that have an aridic (torric) soil moisture regime normally occur in areas of arid climates. A few are in areas of semiarid climates and either have physical properties that keep them dry, such as a crusty surface that virtually precludes the infiltration of water, or are on steep slopes where runoff is high. There is little or no leaching in this soil moisture regime, and soluble salts accumulate in the soils if there is a source.

The limits set for soil temperature exclude from these soil moisture regimes soils in the very cold and dry polar regions and in areas at high elevations. Such soils are considered to have anhydrous conditions (defined earlier).

Udic soil moisture regime.—The udic (L. udus, humid) soil moisture regime is one in which the soil moisture control section is not dry in any part for as long as 90 cumulative days in normal years. If the mean annual soil temperature is lower than 22 °C and if the mean winter and mean summer soil temperature
temperatures at a depth of 50 cm below the soil surface differ by 6 °C or more, the soil moisture control section, in normal years, is dry in all parts for less than 45 consecutive days in the 4 months following the summer solstice. In addition, the udic soil moisture regime requires, except for short periods, a three-phase system, solid-liquid-gas, in part or all of the soil moisture control section when the soil temperature is above 5 °C.

The udic soil moisture regime is common to the soils of humid climates that have well distributed rainfall; have enough rain in summer so that the amount of stored moisture plus rainfall is approximately equal to, or exceeds, the amount of evapotranspiration; or have adequate winter rains to recharge the soils and cool, foggy summers, as in coastal areas. Water moves downward through the soils at some time in normal years.

In climates where precipitation exceeds evapotranspiration in all months of normal years, the moisture tension rarely reaches 100 kPa in the soil moisture control section, although there are occasional brief periods when some stored moisture is used. The water moves through the soil in all months when it is not frozen. Such an extremely wet soil moisture regime is called perudic (L. per, throughout in time, and L. udus, humid). In the names of most taxa, the formative element “ud” is used to indicate either a udic or a perudic regime; the formative element “per” is used in selected taxa.

Ustic soil moisture regime.—The ustic (L. ustus, burnt; implying dryness) soil moisture regime is intermediate between the aridic regime and the udic regime. Its concept is one of moisture that is limited but is present at a time when conditions are suitable for plant growth. The concept of the ustic soil moisture regime is not applied to soils that have permafrost (defined above).

If the mean annual soil temperature is 22 °C or higher or if the mean summer and winter soil temperatures differ by less than 6 °C at a depth of 50 cm below the soil surface, the soil
moisture control section in areas of the ustic soil moisture regime is dry in some or all parts for 90 or more cumulative days in normal years. It is moist, however, in some part either for more than 180 cumulative days per year or for 90 or more consecutive days.

If the mean annual soil temperature is lower than 22 °C and if the mean summer and winter soil temperatures differ by 6 °C or more at a depth of 50 cm below the soil surface, the soil moisture control section in areas of the ustic soil moisture regime is dry in some or all parts for 90 or more cumulative days in normal years, but it is not dry in all parts for more than half of the cumulative days when the soil temperature at a depth of 50 cm is higher than 5 °C. If in normal years the moisture control section is moist in all parts for 45 or more consecutive days in the 4 months following the winter solstice, the moisture control section is dry in all parts for less than 45 consecutive days in the 4 months following the summer solstice.

In tropical and subtropical regions that have a monsoon climate with either one or two dry seasons, summer and winter seasons have little meaning. In those regions the soil moisture regime is ustic if there is at least one rainy season of 3 months or more. In temperate regions of subhumid or semiarid climates, the rainy seasons are usually spring and summer or spring and fall, but never winter. Native plants are mostly annuals or plants that have a dormant period while the soil is dry.

Xeric soil moisture regime.—The xeric (Gr. xeros, dry) soil moisture regime is the typical moisture regime in areas of Mediterranean climates, where winters are moist and cool and summers are warm and dry. The moisture, which falls during the winter, when potential evapotranspiration is at a minimum, is particularly effective for leaching. In areas of a xeric soil moisture regime, the soil moisture control section, in normal years, is dry in all parts for 45 or more consecutive
days in the 4 months following the summer solstice and moist in all parts for 45 or more consecutive days in the 4 months following the winter solstice. Also, in normal years, the moisture control section is moist in some part for more than half of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C or for 90 or more consecutive days when the soil temperature at a depth of 50 cm is higher than 8 °C. The mean annual soil temperature is lower than 22 °C, and the mean summer and mean winter soil temperatures differ by 6 °C or more either at a depth of 50 cm below the soil surface or at a densic, lithic, or paralithic contact if shallower.

Soil Temperature Regimes

Classes of Soil Temperature Regimes

Following is a description of the soil temperature regimes used in defining classes at various categorical levels in this taxonomy.

Gelic (L. gelare, to freeze).—Soils in this temperature regime have a mean annual soil temperature at or below 0 °C (in Gelic suborders and Gelic great groups) or 1 °C or lower (in Gelisols) either at a depth of 50 cm below the soil surface or at a densic, lithic, or paralithic contact, whichever is shallower.

Cryic (Gr. kryos, coldness; meaning very cold soils).—Soils in this temperature regime have a mean annual temperature between 0 and 8 °C but do not have permafrost.

1. In mineral soils the mean summer soil temperature (June, July, and August in the Northern Hemisphere and December, January, and February in the Southern Hemisphere) either at a depth of 50 cm below the soil surface or at a densic, lithic, or paralithic contact, whichever is shallower, is as follows:

a. If the soil is not saturated with water during some part of the summer and

 (1) If there is no O horizon: between 0 and 15 °C; or
If there is an O horizon: between 0 and 8 °C; or
b. If the soil is saturated with water during some part of the summer and
 (1) If there is no O horizon: between 0 and 13 °C; or
 (2) If there is an O horizon or a histic epipedon: between 0 and 6 °C.

2. In organic soils the mean annual soil temperature is between 0 and 6 °C.

 Cryic soils that have an aquic soil moisture regime commonly are churned by frost.
 Isofrigid soils could also have a cryic soil temperature regime. A few with organic materials in the upper part are exceptions.
 The concepts of the soil temperature regimes described below are used in defining classes of soils in the low categories.

 Frigid.—A soil with a frigid soil temperature regime is warmer in summer than a soil with a cryic regime, but its mean annual temperature is between 0 and 8 °C and the difference between mean summer (June, July, and August) and mean winter (December, January, and February) soil temperatures is 6 °C or more either at a depth of 50 cm below the soil surface or at a densic, lithic, or paralithic contact, whichever is shallower.

 Mesic.—The mean annual soil temperature is 8 °C or higher but lower than 15 °C, and the difference between mean summer and mean winter soil temperatures is 6 °C or more either at a depth of 50 cm below the soil surface or at a densic, lithic, or paralithic contact, whichever is shallower.

 Thermic.—The mean annual soil temperature is 15 °C or higher but lower than 22 °C, and the difference between mean summer and mean winter soil temperatures is 6 °C or more either at a depth of 50 cm below the soil surface or at a densic, lithic, or paralithic contact, whichever is shallower.
Hyperthermic.—The mean annual soil temperature is 22 °C or higher, and the difference between mean summer and mean winter soil temperatures is 6 °C or more either at a depth of 50 cm below the soil surface or at a densic, lithic, or paralithic contact, whichever is shallower.

If the name of a soil temperature regime has the prefix iso, the mean summer and mean winter soil temperatures differ by less than 6 °C at a depth of 50 cm or at a densic, lithic, or paralithic contact, whichever is shallower.

Isofrigid.—The mean annual soil temperature is lower than 8 °C.

Isomesic.—The mean annual soil temperature is 8 °C or higher but lower than 15 °C.

Isothermic.—The mean annual soil temperature is 15 °C or higher but lower than 22 °C.

Isohyperthermic.—The mean annual soil temperature is 22 °C or higher.

Sulfidic Materials

Sulfidic materials contain oxidizable sulfur compounds (elemental S or most commonly sulfide minerals, such as pyrite or iron monosulfides). They are mineral or organic soil materials that have a pH value of more than 3.5 and that become significantly more acid when oxidized. Sulfidic materials accumulate as a soil or sediment that is permanently saturated, generally with brackish water. The sulfates in the water are biologically reduced to sulfides as the materials accumulate. Sulfidic materials most commonly accumulate in coastal marshes near the mouth of rivers that carry noncalcareous sediments, but they may occur in freshwater marshes if there is sulfur in the water. Upland sulfidic materials may have accumulated in a similar manner in the geologic past.

If a soil containing sulfidic materials is drained or if sulfidic materials are otherwise exposed to aerobic conditions, the
sulfides oxidize and form sulfuric acid. The pH value, which normally is near neutrality before drainage or exposure, may drop below 3. The acid may induce the formation of iron and aluminum sulfates. The iron hydroxysulfate mineral jarosite may segregate, forming the yellow redoximorphic concentrations that commonly characterize a sulfuric horizon. The transition from sulfidic materials to a sulfuric horizon normally requires only a few months and may occur within a few weeks. A sample of sulfidic materials, if air-dried slowly in shade for about 2 months with occasional remoistening, becomes extremely acid.

Required Characteristics

Sulfidic materials have *one or both* of the following:

1. A pH value (1:1 in water) of more than 3.5, and, when the materials are incubated at room temperature as a layer 1 cm thick under moist aerobic conditions (repeatedly moistened and dried on a weekly basis), the pH decreases by 0.5 or more units to a value of 4.0 or less (1:1 by weight in water or in a minimum of water to permit measurement) within 16 weeks or longer until the pH reaches a nearly constant value if the pH is still dropping after 16 weeks; or

2. A pH value (1:1 in water) of more than 3.5 and 0.75 percent or more S (dry mass), mostly in the form of sulfides, and less than three times as much calcium carbonate equivalent as S.

Sulfuric Horizon

Brackish water sediments frequently contain pyrite or other iron sulfide minerals or rarely elemental sulfur, which form sulfuric acid upon the oxidation of the sulfur forms they contain and/or upon the oxidation and hydrolysis of the iron in the iron sulfides. Pyrite is an iron sulfide mineral that forms as a result of the microbial decomposition of organic matter under anaerobic conditions. Pyrite forms after iron oxide and sulfate
from sea water (or other sources) become reduced to ferrous iron and sulfide, respectively, and then combine to form a very insoluble compound (see description of the sulfidization process given by Fanning and Fanning, 1989, or Fanning et al., 2002). Characteristically, the pyrite crystals occur as nests or framboids composed of bipyramidal crystals of pyrite. In an oxidizing environment, pyrite oxidizes and the products of oxidation (and the hydrolysis of the ferric iron produced) are iron oxides (and under sufficiently acidic and oxidizing conditions, jarosite and/or schwertmannite) and sulfuric acid. The jarosite has a straw-yellow color and frequently lines pores in the soil. Jarosite concentrations are among the indicators of a sulfuric horizon, but jarosite is not present in all sulfuric horizons.

The low pH and high amount of soluble sulfates, and/or underlying sulfidic materials, are other indicators of a sulfuric horizon. A quick test of sulfidic materials is a rapid fall in pH on drying or after treatment with an oxidizing agent, such as hydrogen peroxide.

A sulfuric horizon (L. sulfur) forms as a result of drainage (most commonly artificial drainage) and oxidation of sulfide-rich mineral or organic soil materials. It can form in areas where sulfidic materials have been exposed as a result of surface mining, dredging, or other earth-moving operations. A sulfuric horizon is detrimental to most plants and, if sufficiently acid at the soil surface, may prevent plant growth or limit it to certain plant species, such as Phragmites australis, that can tolerate the acidity under certain conditions.

Required Characteristics

The sulfuric horizon is 15 cm or more thick and is composed of either mineral or organic soil material that has a pH value (1:1 by weight in water or in a minimum of water to permit measurement) of 3.5 or less or less than 4.0 if sulfide or other S-bearing minerals that produce sulfuric acid upon their
oxidation are present. The horizon shows evidence that the low pH value is caused by sulfuric acid.

The evidence is one or both of the following:

1. The horizon has:
 a. Concentrations of jarosite, schwertmannite, or other iron and/or aluminum sulfates or hydroxysulfate minerals; or
 b. 0.05 percent or more water-soluble sulfate; or
2. The layer directly underlying the horizon consists of sulfidic materials (defined above).

Literature Cited

CHAPTER 4

Identification of the Taxonomic Class of a Soil

The taxonomic class of a specific soil can be determined by using the keys that follow in this and other chapters. It is assumed that the reader is familiar with the definitions of diagnostic horizons and properties that are given in chapters 2 and 3 of this publication and with the meanings of the terms used for describing soils given in the Soil Survey Manual. The Index at the back of this publication indicates the pages on which definitions of terms are given.

Standard rounding conventions should be used to determine numerical values.

Soil colors (hue, value, and chroma) are used in many of the criteria that follow. Soil colors typically change value and some change hue and chroma, depending on the water state. In many of the criteria of the keys, the water state is specified. If no water state is specified, the soil is considered to meet the criterion if it does so when moist or dry or both moist and dry.

All of the keys in this taxonomy are designed in such a way that the user can determine the correct classification of a soil by going through the keys systematically. The user must start at the beginning of the “Key to Soil Orders” and eliminate, one by one, all classes that include criteria that do not fit the soil in question. The soil belongs to the first class listed for which it meets all the required criteria.

In classifying a specific soil, the user of soil taxonomy begins by checking through the “Key to Soil Orders” to determine the name of the first order that, according to the criteria listed, includes the soil in question. The next step is to go to the page indicated to find the “Key to Suborders” of that particular order. Then the user systematically goes through the key to identify the suborder that includes the soil, i.e., the first in the list for which it meets all the required criteria. The same
procedure is used to find the great group class of the soil in the “Key to Great Groups” of the identified suborder. Likewise, going through the “Key to Subgroups” of that great group, the user selects as the correct subgroup name the name of the first taxon for which the soil meets all of the required criteria.

The family level is determined, in a similar manner, after the subgroup has been determined. Chapter 17 can be used, as one would use other keys in this taxonomy, to determine which components are part of the family. The family, however, typically has more than one component, and therefore the entire chapter must be used. The keys to control sections for classes used as components of a family must be used to determine the control section before use of the keys to classes.

The descriptions and definitions of individual soil series are not included in this text. Definitions of the series and of the control section are given in chapter 17.

In the “Key to Soil Orders” and the other keys that follow, the diagnostic horizons and the properties mentioned do not include those below any densic, lithic, paralithic, or petroferric contact. The properties of buried soils and the properties of a surface mantle are considered on the basis of whether or not the soil meets the meaning of the term “buried soil” given in chapter 1.

If a soil has a surface mantle and is not a buried soil, the top of the original surface layer is considered the “soil surface” for determining depth to and thickness of diagnostic horizons and most other diagnostic soil characteristics. The only properties of the surface mantle that are considered are soil temperature, soil moisture (including aquic conditions), and any andic or vitrandic properties and family criteria.

If a soil profile includes a buried soil, the present soil surface is used to determine soil moisture and temperature as well as depth to and thickness of diagnostic horizons and other diagnostic soil characteristics. Diagnostic horizons of the buried soil are not considered in selecting taxa unless
the criteria in the keys specifically indicate buried horizons, such as in Thapto-Histic subgroups. Most other diagnostic soil characteristics of the buried soil are not considered, but organic carbon if of Holocene age, andic soil properties, base saturation, and all properties used to determine family and series placement are considered.

If diagnostic horizons or characteristics are criteria that must be “within” a specified depth measured from the soil surface, then the upper boundary of the first subhorizon meeting the requirements for the diagnostic horizon or characteristic must be within the specified depth.

Key to Soil Orders
A. Soils that have:
 1. Permafrost within 100 cm of the soil surface; or
 2. Gelic materials within 100 cm of the soil surface and permafrost within 200 cm of the soil surface.

 Gelisols, p. 412

B. Other soils that:
 1. Do not have andic soil properties in 60 percent or more of the thickness between the soil surface and either a depth of 60 cm or a densic, lithic, or paralithic contact or duripan if shallower; and
 2. Have organic soil materials that meet one or more of the following:
 a. Overlie cindery, fragmental, or pumiceous materials and/or fill their interstices¹ and directly below these materials, have a densic, lithic, or paralithic contact; or

¹Materials that meet the definition of cindery, fragmental, or pumiceous but have more than 10 percent, by volume, voids that are filled with organic soil materials are considered to be organic soil materials.
b. When added with the underlying cindery, fragmental, or pumiceous materials, total 40 cm or more between the soil surface and a depth of 50 cm; or

c. Constitute two-thirds or more of the total thickness of the soil to a densic, lithic, or paralithic contact and have no mineral horizons or have mineral horizons with a total thickness of 10 cm or less; or

d. Are saturated with water for 30 days or more per year in normal years (or are artificially drained), have an upper boundary within 40 cm of the soil surface, and have a total thickness of either:

1. 60 cm or more if three-fourths or more of their volume consists of moss fibers or if their bulk density, moist, is less than 0.1 g/cm\(^3\); or

2. 40 cm or more if they consist either of sapric or hemic materials, or of fibric materials with less than three-fourths (by volume) moss fibers and a bulk density, moist, of 0.1 g/cm\(^3\) or more.

C. Other soils that do not have a plaggen epipedon or an argillic or kandic horizon above a spodic horizon, and have one or more of the following:

1. A spodic horizon, an albic horizon in 50 percent or more of each pedon, and a cryic or gelic soil temperature regime; or

2. An Ap horizon containing 85 percent or more spodic materials; or

3. A spodic horizon with all of the following characteristics:

 a. One or more of the following:

 1. A thickness of 10 cm or more; or

 2. An overlying Ap horizon; or
(3) Cementation in 50 percent or more of each pedon; or

(4) A particle-size class that meets the criteria for coarse-loamy, loamy-skeletal, or finer and a frigid temperature regime in the soil; or

(5) A cryic or gelic temperature regime in the soil; and

b. An upper boundary within the following depths from the mineral soil surface: either

 (1) Less than 50 cm; or

 (2) Less than 200 cm if the soil meets the sandy particle-size class criteria in at least some part between the mineral soil surface and the spodic horizon; and

b. A lower boundary as follows:

 (1) Either at a depth of 25 cm or more below the mineral soil surface or at the top of a duripan or fragipan or at a densic, lithic, paralithic, or petroferric contact, whichever is shallowest; or

 (2) At any depth,

 (a) If the spodic horizon meets the criteria for a coarse-loamy, loamy-skeletal, or finer particle-size class and the soil has a frigid temperature regime; or

 (b) If the soil has a cryic or gelic temperature regime; and

 d. Either:

 (1) A directly overlying albic horizon in 50 percent or more of each pedon; or

 (2) No andic soil properties in 60 percent or more of the thickness either:

 (a) Within 60 cm either of the mineral soil surface or of the top of an organic layer with andic soil properties,
whichever is shallower, if there is no densic, lithic, or paralithic contact, duripan, or petrocalcic horizon within that depth; or

(b) Between either the mineral soil surface or the top of an organic layer with andic soil properties, whichever is shallower, and a densic, lithic, or paralithic contact, a duripan, or a petrocalcic horizon.

Spodosols, p. 714

D. Other soils that have andic soil properties in 60 percent or more of the thickness either:

1. Within 60 cm either of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower, if there is no densic, lithic, or paralithic contact, duripan, or petrocalcic horizon within that depth; or

2. Between either the mineral soil surface or the top of an organic layer with andic soil properties, whichever is shallower, and a densic, lithic, or paralithic contact, a duripan, or a petrocalcic horizon.

Andisols, p. 220

E. Other soils that have either:

1. An oxic horizon within 150 cm of the mineral soil surface and no kandic horizon within that depth; or

2. 40 percent or more (by weight) clay in the fine-earth fraction between the mineral soil surface and a depth of 18 cm (after mixing) and a kandic horizon that has the weatherable-mineral properties of an oxic horizon and has its upper boundary within 100 cm of the mineral soil surface.

Oxisols, p. 673

F. Other soils that have:

1. A layer 25 cm or more thick, within 100 cm of the mineral soil surface, that has either slickensides or wedge-shaped
peds that have their long axes tilted 10 to 60 degrees from the horizontal; and

2. A weighted average of 30 percent or more clay in the fine-earth fraction either between the mineral soil surface and a depth of 18 cm or in an Ap horizon, whichever is thicker, and 30 percent or more clay in the fine-earth fraction of all horizons between a depth of 18 cm and either a depth of 50 cm or a densic, lithic, or paralithic contact, a duripan, or a petrocalcic horizon if shallower; and

3. Cracks that open and close periodically. Vertisols, p. 800

G. Other soils that:

1. Have:
 a. An aridic soil moisture regime; and
 b. An ochric or anthropic epipedon; and
 c. One or more of the following within 100 cm of the soil surface: a cambic horizon with a lower depth of 25 cm or more; a cryic soil temperature regime and a cambic horizon; a calcic, gypsic, petrocalcic, petrogypsic, or salic horizon; or a duripan; or
 d. An argillic or natric horizon; or

2. Have a salic horizon; and
 a. Saturation with water in one or more layers within 100 cm of the soil surface for 1 month or more during a normal year; and

2 A crack is a separation between gross polyhedrons. If the surface is strongly self-mulching, i.e., a mass of granules, or if the soil is cultivated while cracks are open, the cracks may be filled mainly by granular materials from the surface, but they are open in the sense that the polyhedrons are separated. A crack is regarded as open if it controls the infiltration and percolation of water in a dry, clayey soil.
b. A moisture control section that is dry in some or all parts at some time during normal years; and

c. No sulfuric horizon within 150 cm of the mineral soil surface.

H. Other soils that have either:

1. An argillic or kandic horizon, but no fragipan, and a base saturation (by sum of cations) of less than 35 percent at one of the following depths:
 a. If the epipedon meets sandy or sandy-skeletal particle-size class criteria throughout, either:
 (1) 125 cm below the upper boundary of the argillic horizon (but no deeper than 200 cm below the mineral soil surface) or 180 cm below the mineral soil surface, whichever is deeper; or
 (2) At a densic, lithic, paralithic, or petroferric contact if shallower; or
 b. The shallowest of the following depths:
 (1) 125 cm below the upper boundary of the argillic or kandic horizon; or
 (2) 180 cm below the mineral soil surface; or
 (3) At a densic, lithic, paralithic, or petroferric contact; or

2. A fragipan and both of the following:
 a. Either an argillic or a kandic horizon above, within, or below it or clay films 1 mm or more thick in one or more of its subhorizons; and
 b. A base saturation (by sum of cations) of less than 35 percent at the shallowest of the following depths:
 (1) 75 cm below the upper boundary of the fragipan; or
 (2) 200 cm below the mineral soil surface; or
(3) At a densic, lithic, paralithic, or petroferric contact.

Ultisols, p. 739

I. Other soils that have *both* of the following:

1. *Either:*

 a. A mollic epipedon; *or*

 b. *Both* a surface horizon that meets all the requirements for a mollic epipedon except thickness after the soil has been mixed to a depth of 18 cm *and* a subhorizon more than 7.5 cm thick, within the upper part of an argillic, kandic, or natric horizon, that meets the color, organic-carbon content, base saturation, and structure requirements of a mollic epipedon but is separated from the surface horizon by an albic horizon; *and*

2. A base saturation of 50 percent or more (by NH$_4$OAc) in all horizons *either* between the upper boundary of any argillic, kandic, or natric horizon and a depth of 125 cm below that boundary, *or* between the mineral soil surface and a depth of 180 cm, *or* between the mineral soil surface and a densic, lithic, or paralithic contact, whichever depth is shallowest.

Mollisols, p. 551

J. Other soils that do not have a plaggen epipedon and that have *either:*

1. An argillic, kandic, or natric horizon; *or*

2. A fragipan that has clay films 1 mm or more thick in some part.

Alfisols, p. 102

K. Other soils that have *either:*

1. *One or more* of the following:

 a. A cambic horizon that is within 100 cm of the mineral soil surface and has a lower boundary at a depth of 25 cm or more below the mineral soil surface; *or*
b. A calcic, petrocalcic, gypsic, petrogypsic, or placic horizon or a duripan within a depth of 100 cm of the mineral soil surface; or

c. A fragipan or an oxic, sombric, or spodic horizon within 200 cm of the mineral soil surface; or

d. A sulfuric horizon within 150 cm of the mineral soil surface; or

e. A cryic or gelic soil temperature regime and a cambic horizon; or

2. No sulfidic materials within 50 cm of the mineral soil surface; and both:

a. In one or more horizons between 20 and 50 cm below the mineral soil surface, either an \(n \) value of 0.7 or less or less than 8 percent clay in the fine-earth fraction; and

b. One or both of the following:

(1) A salic horizon or a histic, mollic, plaggen, or umbric epipedon; or

(2) In 50 percent or more of the layers between the mineral soil surface and a depth of 50 cm, an exchangeable sodium percentage of 15 or more (or a sodium adsorption ratio of 13 or more), which decreases with increasing depth below 50 cm, and also ground water within 100 cm of the mineral soil surface at some time during the year when the soil is not frozen in any part.

Inceptisols, p. 451

L. Other soils.

Entisols, p. 350
Key to Suborders

JA. Alfisols that have, in one or more horizons within 50 cm of the mineral soil surface, aquic conditions (other than anthraquic conditions) for some time in normal years (or artificial drainage) and have one or both of the following:

1. Redoximorphic features in all layers between either the lower boundary of an Ap horizon or a depth of 25 cm below the mineral soil surface, whichever is deeper, and a depth of 40 cm; and one of the following within the upper 12.5 cm of the argillic, natric, glossic, or kandic horizon:
 a. 50 percent or more redox depletions with chroma of 2 or less on faces of peds and redox concentrations within peds; or
 b. Redox concentrations and 50 percent or more redox depletions with chroma of 2 or less in the matrix; or
 c. 50 percent or more redox depletions with chroma of 1 or less on faces of peds or in the matrix, or both; or

2. In the horizons that have aquic conditions, enough active ferrous iron to give a positive reaction to alpha,alpha-dipyridyl at a time when the soil is not being irrigated.

Aqualfs, p. 103

JB. Other Alfisols that have a cryic or isofrigid soil temperature regime.

Cryalfs, p. 127

JC. Other Alfisols that have an ustic soil moisture regime.

Ustalfs, p. 169
JD. Other Alfisols that have a xeric soil moisture regime.
Xeralfs, p. 203

JE. Other Alfisols.
Udalfs, p. 138

Aqualfs

Key to Great Groups

JAA. Aqualfs that have a cryic soil temperature regime.
Cryaqualfs, p. 107

JAB. Other Aqualfs that have one or more horizons, at a depth between 30 and 150 cm from the mineral soil surface, in which plinthite either forms a continuous phase or constitutes one-half or more of the volume.
Plinthaqualfs, p. 126

JAC. Other Aqualfs that have a duripan.
Duraqualfs, p. 107

JAD. Other Aqualfs that have a natric horizon.
Natraqualfs, p. 125

JAE. Other Aqualfs that have a fragipan within 100 cm of the mineral soil surface.
Fragiaqualfs, p. 120

JAF. Other Aqualfs that have a kandic horizon.
Kandiaqualfs, p. 123

JAG. Other Aqualfs that have one or more layers, at least 25 cm thick (cumulative) within 100 cm of the mineral soil surface, that have 50 percent or more (by volume) recognizable bioturbation, such as filled animal burrows, wormholes, or casts.
Vermaqualfs, p. 126
JAH. Other Aqualfs that have an abrupt textural change between the ochric epipedon or albic horizon and the argillic horizon and have a saturated hydraulic conductivity of 0.4 cm/hr or slower (moderately low or lower Ksat class) in the argillic horizon.

Albaqualfs, p. 104

JAI. Other Aqualfs that have a glossic horizon.

Glossaqualfs, p. 121

JAJ. Other Aqualfs that have episaturation.

Epiaqualfs, p. 113

JAK. Other Aqualfs.

Endoaqualfs, p. 107

Albaqualfs

Key to Subgroups

JAHA. Albaqualfs that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic horizon at a depth of 50 cm or more below the mineral soil surface.

Arenic Albaqualfs

JAHB. Other Albaqualfs that have both of the following:

1. **One or both:**
 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
 b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower; and
2. Chroma of 3 or more in 40 percent or more of the matrix between the lower boundary of the A or Ap horizon and a depth of 75 cm from the mineral soil surface.

Aeric Vertic Albaqualfs

JAHC. Other Albaqualfs that have *both* of the following:

1. **One or both:**
 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; *or*
 b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower; *and*

2. An Ap horizon or materials between the mineral soil surface and a depth of 18 cm that, after mixing, have *one or more* of the following:
 a. A color value, moist, of 4 or more; *or*
 b. A color value, dry, of 6 or more; *or*
 c. Chroma of 4 or more.

Chromic Vertic Albaqualfs

JAHD. Other Albaqualfs that have *one or both* of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; *or*

2. A linear extensibility of 6.0 cm or more between the
mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Albaqualfs

JAHE. Other Albaqualfs that have *both*:

1. Chroma of 3 or more in 40 percent or more of the matrix between the lower boundary of the A or Ap horizon and a depth of 75 cm from the mineral soil surface; *and*
2. A mollic epipedon, or the upper 18 cm of the mineral soil meets all of the requirements for a mollic epipedon, except for thickness, after mixing.

Udollic Albaqualfs

JAHF. Other Albaqualfs that have chroma of 3 or more in 40 percent or more of the matrix between the lower boundary of the A or Ap horizon and a depth of 75 cm from the mineral soil surface.

Aeric Albaqualfs

JAHG. Other Albaqualfs that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, *one or more* of the following:

1. A fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0; *or*
2. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; *or*
3. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; *and*
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; *and*
 b. $[(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate})]$
times 60] plus the volcanic glass (percent) is equal to 30 or more.

Aquandic Albaqualfs

JAHH. Other Albaqualfs that have a mollic epipedon, or the upper 18 cm of the mineral soil meets all of the requirements for a mollic epipedon, except for thickness, after mixing.

Mollic Albaqualfs

Jahi. Other Albaqualfs that have an umbric epipedon, or the upper 18 cm of the mineral soil meets all of the requirements for an umbric epipedon, except for thickness, after mixing.

Umbric Albaqualfs

JAHJ. Other Albaqualfs.

Typic Albaqualfs

Cryaqualfs

Key to Subgroups

JAAA. All Cryaqualfs (provisionally).

Typic Cryaqualfs

Duraqualfs

Key to Subgroups

JACA. All Duraqualfs (provisionally).

Typic Duraqualfs

Endoaqualfs

Key to Subgroups

JAKA. Endoaqualfs that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or more of the following:

1. A fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al
plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0; or

2. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

3. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 b. $[(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60]$ plus the volcanic glass (percent) is equal to 30 or more.

Aquandic Endoaqualfs

JAKB. Other Endoaqualfs that have both of the following:

1. One or both:
 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
 b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower; and

2. An Ap horizon or materials between the mineral soil surface and a depth of 18 cm that, after mixing, have one or more of the following:
 a. A color value, moist, of 4 or more; or
 b. A color value, dry, of 6 or more; or
 c. Chroma of 4 or more.

Chromic Vertic Endoaqualfs
JAKC. Other Endoaqualfs that have one or both of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Endoaqualfs

JAKD. Other Endoaqualfs that have both:

1. Fragic soil properties:
 a. In 30 percent or more of the volume of a layer 15 cm or more thick that has its upper boundary within 100 cm of the mineral soil surface; or
 b. In 60 percent or more of the volume of a layer 15 cm or more thick; and

2. In one or more horizons between the A or Ap horizon and a depth of 75 cm below the mineral soil surface, one or a combination of the following colors:
 a. Hue of 7.5YR or redder in 50 percent or more of the matrix; and
 (1) If peds are present, chroma of 2 or more on 50 percent or more of ped exteriors or no redox depletions with chroma of 2 or less in ped interiors; or
 (2) If peds are absent, chroma of 2 or more in 50 percent or more of the matrix; or
 b. In 50 percent or more of the matrix, hue of 10YR or yellower and either:
(1) Both a color value of 3 or more (moist) and chroma of 3 or more (moist and dry); or
(2) Chroma of 2 or more if there are no redox concentrations.

Aeric Fragic Endoaqualfs

JAKE. Other Endoaqualfs that have fragic soil properties:

1. In 30 percent or more of the volume of a layer 15 cm or more thick that has its upper boundary within 100 cm of the mineral soil surface; or
2. In 60 percent or more of the volume of a layer 15 cm or more thick.

Fragic Endoaqualfs

JAKF. Other Endoaqualfs that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic horizon at a depth of 50 to 100 cm below the mineral soil surface.

Arenic Endoaqualfs

JAKG. Other Endoaqualfs that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic horizon at a depth of 100 cm or more below the mineral soil surface.

Grossarenic Endoaqualfs

JAKH. Other Endoaqualfs that have both:

1. A mollic epipedon, or the upper 18 cm of the mineral soil meets all of the requirements for a mollic epipedon, except for thickness, after mixing; and
2. In one or more horizons between the A or Ap horizon and a depth of 75 cm below the mineral soil surface, one or a combination of the following colors:
 a. Hue of 7.5YR or redder in 50 percent or more of the matrix; and
(1) If peds are present, chroma of 2 or more on 50 percent or more of ped exteriors or no redox depletions with chroma of 2 or less in ped interiors; or

(2) If peds are absent, chroma of 2 or more in 50 percent or more of the matrix; or

b. In 50 percent or more of the matrix, hue of 10YR or yellower and either:

(1) Both a color value of 3 or more (moist) and chroma of 3 or more; or

(2) Chroma of 2 or more if there are no redox concentrations.

Udollic Endoaqualfs

JAKI. Other Endoaqualfs that have both:

1. An umbric epipedon, or the upper 18 cm of the mineral soil meets all of the requirements for an umbric epipedon, except for thickness, after mixing; and

2. In one or more horizons between the A or Ap horizon and a depth of 75 cm below the mineral soil surface, one or a combination of the following colors:

a. Hue of 7.5YR or redder in 50 percent or more of the matrix; and

 (1) If peds are present, chroma of 2 or more on 50 percent or more of ped exteriors or no redox depletions with chroma of 2 or less in ped interiors; or

 (2) If peds are absent, chroma of 2 or more in 50 percent or more of the matrix; or

b. In 50 percent or more of the matrix, hue of 10YR or yellower and either:

 (1) Both a color value of 3 or more (moist) and chroma of 3 or more; or
(2) Chroma of 2 or more if there are no redox concentrations.

Aeric Umbric Endoaqualfs

JAKJ. Other Endoaqualfs that have, in one or more horizons between the A or Ap horizon and a depth of 75 cm below the mineral soil surface, in 50 percent or more of the matrix, one or a combination of the following colors:

1. Hue of 7.5YR or redder; and
 a. If peds are present, chroma of 2 or more (both moist and dry) on 50 percent or more of ped exteriors or no redox depletions with chroma of 2 or less (both moist and dry) in ped interiors; or
 b. If peds are absent, chroma of 2 or more (both moist and dry); or
2. Hue of 10YR or yellower and either:
 a. Both a color value of 3 or more (moist) and chroma of 3 or more (moist and dry); or
 b. Chroma of 2 or more (both moist and dry) and no redox concentrations.

Aeric Endoaqualfs

JAKK. Other Endoaqualfs that have a mollic epipedon, or the upper 18 cm of the mineral soil meets all of the requirements for a mollic epipedon, except for thickness, after mixing.

Mollic Endoaqualfs

JAKL. Other Endoaqualfs that have an umbric epipedon, or the upper 18 cm of the mineral soil meets all of the requirements for an umbric epipedon, except for thickness, after mixing.

Umbric Endoaqualfs

JAKM. Other Endoaqualfs.

Typic Endoaqualfs
Epiaqualfs
Key to Subgroups

JAJA. Epiaqualfs that have all of the following:

1. **One or both:**
 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
 b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower; and

2. In one or more horizons between the A or Ap horizon and a depth of 75 cm below the mineral soil surface, in 50 percent or more of the matrix, one or a combination of the following colors:
 a. Hue of 7.5YR or redder; and
 (1) If peds are present, chroma of 2 or more (both moist and dry) on 50 percent or more of ped exteriors or no redox depletions with chroma of 2 or less (both moist and dry) in ped interiors; or
 (2) If peds are absent, chroma of 2 or more (both moist and dry); or
 b. Hue of 10YR or yellower and either:
 (1) Both a color value of 3 or more (moist) and chroma of 3 or more (moist and dry); or
 (2) Chroma of 2 or more (both moist and dry) and no redox concentrations; and

3. An Ap horizon or materials between the mineral soil
surface and a depth of 18 cm that, after mixing, have *one or more* of the following:

a. A color value, moist, of 4 or more; *or*
b. A color value, dry, of 6 or more; *or*
c. Chroma of 4 or more.

Aeric Chromic Vertic Epiqualfs

JAJB. Other Epiqualfs that have both of the following:

1. *One or both:*

a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; *or*

b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower; *and*

2. In one or more horizons between the A or Ap horizon and a depth of 75 cm below the mineral soil surface, in 50 percent or more of the matrix, one or a combination of the following colors:

a. Hue of 7.5YR or redder; *and*

 (1) If peds are present, chroma of 2 or more (both moist and dry) on 50 percent or more of ped exteriors or no redox depletions with chroma of 2 or less (both moist and dry) in ped interiors; *or*

 (2) If peds are absent, chroma of 2 or more (both moist and dry); *or*

b. Hue of 10YR or yellower *and either:*
(1) Both a color value of 3 or more (moist) and chroma of 3 or more (moist and dry); or
(2) Chroma of 2 or more (both moist and dry) and no redox concentrations.

Aeric Vertic Epiaqualfs

JAJC. Other Epiaqualfs that have both of the following:

1. **One or both:**
 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
 b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower; and

2. An Ap horizon or materials between the mineral soil surface and a depth of 18 cm that, after mixing, have one or more of the following:
 a. A color value, moist, of 4 or more; or
 b. A color value, dry, of 6 or more; or
 c. Chroma of 4 or more.

Chromic Vertic Epiaqualfs

JAJD. Other Epiaqualfs that have one or both of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Epiaqualfs

JAJE. Other Epiaqualfs that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, *one or more* of the following:

1. A fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $^{1/2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0; *or*
2. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; *or*
3. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; *and*
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; *and*
 b. $[(\text{Al plus }^{1/2}\text{ Fe, percent extracted by ammonium oxalate}) \times 60]$ plus the volcanic glass (percent) is equal to 30 or more.

Aquandic Epiaqualfs

JAJF. Other Epiaqualfs that have *both*:

1. Fragic soil properties:
 a. In 30 percent or more of the volume of a layer 15 cm or more thick that has its upper boundary within 100 cm of the mineral soil surface; *or*
 b. In 60 percent or more of the volume of a layer 15 cm or more thick; *and*
2. In one or more horizons between the A or Ap horizon and a depth of 75 cm below the mineral soil surface, in 50 percent
or more of the matrix, one or a combination of the following colors:

a. Hue of 7.5YR or redder; *and*

 (1) If peds are present, chroma of 2 or more (both moist and dry) on 50 percent or more of ped exteriors or no redox depletions with chroma of 2 or less (both moist and dry) in ped interiors; *or*

 (2) If peds are absent, chroma of 2 or more (both moist and dry); *or*

b. Hue of 10YR or yellower *and either:*

 (1) Both a color value of 3 or more (moist) and chroma of 3 or more (moist and dry); *or*

 (2) Chroma of 2 or more (both moist and dry) and no redox concentrations.

Aeric Fragic Epiaqualfs

JAJG. Other Epiaqualfs that have fragic soil properties:

1. In 30 percent or more of the volume of a layer 15 cm or more thick that has its upper boundary within 100 cm of the mineral soil surface; *or*

2. In 60 percent or more of the volume of a layer 15 cm or more thick.

Fragic Epiaqualfs

JAJH. Other Epiaqualfs that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic horizon at a depth of 50 to 100 cm below the mineral soil surface.

Arenic Epiaqualfs

JAJI. Other Epiaqualfs that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from
the mineral soil surface to the top of an argillic horizon at a depth of 100 cm or more below the mineral soil surface.

Grossarenic Epiaqualfs

JAJJ. Other Epiaqualfs that have both:

1. An umbric epipedon, or the upper 18 cm of the mineral soil meets all of the requirements for an umbric epipedon, except for thickness, after mixing; and

2. In one or more horizons between the A or Ap horizon and a depth of 75 cm below the mineral soil surface, in 50 percent or more of the matrix, one or a combination of the following colors:

 a. Hue of 7.5YR or redder; and

 (1) If peds are present, chroma of 2 or more (both moist and dry) on 50 percent or more of ped exteriors or no redox depletions with chroma of 2 or less (both moist and dry) in ped interiors; or

 (2) If peds are absent, chroma of 2 or more (both moist and dry); or

 b. Hue of 10YR or yellower and either:

 (1) Both a color value of 3 or more (moist) and chroma of 3 or more (moist and dry); or

 (2) Chroma of 2 or more (both moist and dry) and no redox concentrations.

Aeric Umbric Epiaqualfs

JAJK. Other Epiaqualfs that have both:

1. A mollic epipedon, or the upper 18 cm of the mineral soil meets all of the requirements for a mollic epapedon, except for thickness, after mixing and

2. In 50 percent or more of the matrix in one or more horizons between the A or Ap horizon and a depth of 75 cm
below the mineral soil surface, one or a combination of the following colors:

a. Hue of 7.5YR or redder; and
 (1) If peds are present, chroma of 2 or more on 50 percent or more of ped exteriors or no redox depletions with chroma of 2 or less in ped interiors; or
 (2) If peds are absent, chroma of 2 or more in 50 percent or more of the matrix; or

b. Hue of 10YR or yellower and either:
 (1) Both a color value of 3 or more (moist) and chroma of 3 or more; or
 (2) Chroma of 2 or more if there are no redox concentrations.

Udollic Epiaqualfs

JAJL. Other Epiaqualfs that have, in one or more horizons between the A or Ap horizon and a depth of 75 cm below the mineral soil surface, in 50 percent or more of the matrix, one or a combination of the following colors:

1. Hue of 7.5YR or redder; and
 a. If peds are present, chroma of 2 or more (both moist and dry) on 50 percent or more of ped exteriors or no redox depletions with chroma of 2 or less (both moist and dry) in ped interiors; or
 b. If peds are absent, chroma of 2 or more (both moist and dry); or

2. Hue of 10YR or yellower and either:
 a. Both a color value of 3 or more (moist) and chroma of 3 or more (moist and dry); or
 b. Chroma of 2 or more (both moist and dry) and no redox concentrations.

Aeric Epiaqualfs
JAJM. Other Epiaqualfs that have a mollic epipedon, or the upper 18 cm of the mineral soil meets all of the requirements for a mollic epipedon, except for thickness, after mixing.

Mollic Epiaqualfs

JAJN. Other Epiaqualfs that have an umbric epipedon, or the upper 18 cm of the mineral soil meets all of the requirements for an umbric epipedon, except for thickness, after mixing.

Umbric Epiaqualfs

JAJO. Other Epiaqualfs.

Typic Epiaqualfs

Fragiaqualfs

Key to Subgroups

JA EA. Fragiaqualfs that have one or more layers, at least 25 cm thick (cumulative) within 100 cm of the mineral soil surface, that have 25 percent or more (by volume) recognizable bioturbation, such as filled animal burrows, wormholes, or casts.

Vermic Fragiaqualfs

JA EB. Other Fragiaqualfs that have, between the A or Ap horizon and a fragipan, a horizon with 50 percent or more chroma of 3 or more if hue is 10YR or redder or of 4 or more if hue is 2.5Y or yellower.

Aeric Fragiaqualfs

JA EC. Other Fragiaqualfs that have 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface.

Plinthic Fragiaqualfs

JA ED. Other Fragiaqualfs that have a color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 18 cm of the
mineral soil (unmixed) or between the mineral soil surface and a depth of 18 cm after mixing.

Humic Fragiaqualfs

JAEE. Other Fragiaqualfs.

Typic Fragiaqualfs

Glossaqualfs

Key to Subgroups

JAIA. Glossaqualfs that have a histic epipedon.

Histic Glossaqualfs

JAIB. Other Glossaqualfs that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic horizon at a depth of 50 cm or more below the mineral soil surface.

Arenic Glossaqualfs

JAIC. Other Glossaqualfs that have both:

1. Fragic soil properties:
 a. In 30 percent or more of the volume of a layer 15 cm or more thick that has its upper boundary within 100 cm of the mineral soil surface; or
 b. In 60 percent or more of the volume of a layer 15 cm or more thick; and

2. In one or more horizons between the A or Ap horizon and a depth of 75 cm below the mineral soil surface, one or a combination of the following colors:
 a. Hue of 7.5YR or redder in 50 percent or more of the matrix; and
 (1) If peds are present, chroma of 2 or more on 50 percent or more of ped exteriors or no redox depletions with chroma of 2 or less in ped interiors; or
(2) If peds are absent, chroma of 2 or more in 50 percent or more of the matrix; or
b. In 50 percent or more of the matrix, hue of 10YR or yellower and either:
 (1) Both a color value of 3 or more (moist) and chroma of 3 or more (moist and dry); or
 (2) Chroma of 2 or more if there are no redox concentrations.

Aeric Fragic Glossaqualfs

JAID. Other Glossaqualfs that have fragic soil properties:
1. In 30 percent or more of the volume of a layer 15 cm or more thick that has its upper boundary within 100 cm of the mineral soil surface; or
2. In 60 percent or more of the volume of a layer 15 cm or more thick.

Fragic Glossaqualfs

JAIE. Other Glossaqualfs that have, in one or more horizons between the A or Ap horizon and a depth of 75 cm below the mineral soil surface, in 50 percent or more of the matrix, one or a combination of the following colors:
1. Hue of 7.5YR or redder; and
 a. If peds are present, chroma of 2 or more (both moist and dry) on 50 percent or more of ped exteriors or no redox depletions with chroma of 2 or less (both moist and dry) in ped interiors; or
 b. If peds are absent, chroma of 2 or more (both moist and dry); or
2. Hue of 10YR or yellower and either:
 a. Both a color value of 3 or more (moist) and chroma of 3 or more (moist and dry); or
b. Chroma of 2 or more (both moist and dry) and no redox concentrations.

Aeric Glossaqualfs

JAIF. Other Glossaqualfs that have a mollic epipedon, or the upper 18 cm of the mineral soil meets the requirements for a mollic epipedon after mixing.

Mollic Glossaqualfs

JAIG. Other Glossaqualfs.

Typic Glossaqualfs

Kandiaqualfs

Key to Subgroups

JAFA. Kandiaqualfs that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of a kandic horizon at a depth of 50 to 100 cm below the mineral soil surface.

Arenic Kandiaqualfs

JAFB. Other Kandiaqualfs that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of a kandic horizon at a depth of 100 cm or more below the mineral soil surface.

Grossarenic Kandiaqualfs

JAFC. Other Kandiaqualfs that have 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface.

Plinthic Kandiaqualfs

JAFD. Other Kandiaqualfs that have both:

1. A color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 18 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 18 cm after mixing; and
2. In one or more horizons between the A or Ap horizon and a depth of 75 cm below the mineral soil surface, in 50 percent or more of the matrix, one or a combination of the following colors:
 a. Hue of 7.5YR or redder; and
 (1) If peds are present, chroma of 2 or more (both moist and dry) on 50 percent or more of ped exteriors or no redox depletions with chroma of 2 or less (both moist and dry) in ped interiors; or
 (2) If peds are absent, chroma of 2 or more (both moist and dry); or
 b. Hue of 10YR or yellower and either:
 (1) Both a color value of 3 or more (moist) and chroma of 3 or more (moist and dry); or
 (2) Chroma of 2 or more (both moist and dry) and no redox concentrations.

Aeric Umbric Kandiaqualfs

JAFE. Other Kandiaqualfs that have, in one or more horizons between the A or Ap horizon and a depth of 75 cm below the mineral soil surface, in 50 percent or more of the matrix, one or a combination of the following colors:

1. Hue of 7.5YR or redder; and
 a. If peds are present, chroma of 2 or more (both moist and dry) on 50 percent or more of ped exteriors or no redox depletions with chroma of 2 or less (both moist and dry) in ped interiors; or
 b. If peds are absent, chroma of 2 or more (both moist and dry); or
2. Hue of 10YR or yellower and either:
 a. Both a color value of 3 or more (moist) and chroma of 3 or more (moist and dry); or
b. Chroma of 2 or more (both moist and dry) and no redox concentrations.

Aeric Kandiaqualfs

JAFF. Other Kandiaqualfs that have an umbric epipedon, or the upper 18 cm of the mineral soil meets the color requirements for an umbric epipedon after mixing.

Umbric Kandiaqualfs

JAFG. Other Kandiaqualfs.

Typic Kandiaqualfs

Natraqualfs

Key to Subgroups

JADA. Natraqualfs that have one or both of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Natraqualfs

JADB. Other Natraqualfs that have one or more layers, at least 25 cm thick (cumulative) within 100 cm of the mineral soil surface, that have 25 percent or more (by volume) recognizable bioturbation, such as filled animal burrows, wormholes, or casts.

Vermic Natraqualfs

JADC. Other Natraqualfs that have both:

1. A glossic horizon or interfingering of albic materials into the natric horizon; and
2. An exchangeable sodium percentage of less than 15 and less magnesium plus sodium than calcium plus extractable acidity either throughout the upper 15 cm of the natric horizon or in all horizons within 40 cm of the mineral soil surface, whichever is deeper.

Albic Glossic Natraqualfs

JADD. Other Natraqualfs that have an exchangeable sodium percentage of less than 15 and less magnesium plus sodium than calcium plus extractable acidity either throughout the upper 15 cm of the natric horizon or in all horizons within 40 cm of the mineral soil surface, whichever is deeper.

Albic Natraqualfs

JADE. Other Natraqualfs that have a glossic horizon or interfingering of albic materials into the natric horizon.

Glossic Natraqualfs

JADF. Other Natraqualfs that have a mollic epipedon, or the upper 18 cm of the mineral soil meets the color requirements for a mollic epipedon after mixing.

Mollic Natraqualfs

JADG. Other Natraqualfs.

Typic Natraqualfs

Plinthaqualfs

Key to Subgroups

JABA. All Plinthaqualfs (provisionally).

Typic Plinthaqualfs

Vermaqualfs

Key to Subgroups

JAGA. Vermaqualfs that have an exchangeable sodium percentage of 7 or more (or a sodium adsorption ratio of 6 or more) either or both:
1. Throughout the upper 15 cm of the argillic horizon; and/or
2. Throughout all horizons within 40 cm of the mineral soil surface.

Natric Vermaqualfs

JAGB. Other Vermaqualfs.

Typic Vermaqualfs

Cryalfs

Key to Great Groups

JBA. Cryalfs that have all of the following:
1. An argillic, kandic, or natric horizon that has its upper boundary 60 cm or more below both:
 a. The mineral soil surface; and
 b. The lower boundary of any surface mantle containing 30 percent or more vitric volcanic ash, cinders, or other vitric pyroclastic materials; and
2. A texture class finer than loamy fine sand in one or more horizons above the argillic, kandic, or natric horizon; and
3. Either a glossic horizon or interfingering of albic materials into the argillic, kandic, or natric horizon.

Palecryalfs, p. 136

JBB. Other Cryalfs that have a glossic horizon.

Glossocryalfs, p. 127

JBC. Other Cryalfs.

Haplocryalfs, p. 131

Glossocryalfs

Key to Subgroups

JBBA. Glossocryalfs that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Glossocryalfs
JBBB. Other Glossocryalfs that have one or both of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Glossocryalfs

JBBC. Other Glossocryalfs that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Glossocryalfs

JBBD. Other Glossocryalfs that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 b. $[(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60] + \text{volcanic glass (percent)}$ is equal to or more than 60.

Vitrandic Glossocryalfs
JBBE. Other Glossocryalfs that have, in one or more subhorizons within the upper 25 cm of the argillic, kandic, or natric horizon, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Glossocryalfs

JBBF. Other Glossocryalfs that are saturated with water in one or more layers within 100 cm of the mineral soil surface in normal years for either or both:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Glossocryalfs

JBBG. Other Glossocryalfs that have fragic soil properties:

1. In 30 percent or more of the volume of a layer 15 cm or more thick that has its upper boundary within 100 cm of the mineral soil surface; or
2. In 60 percent or more of the volume of a layer 15 cm or more thick.

Fragic Glossocryalfs

JBBH. Other Glossocryalfs that have all of the following:

1. A xeric soil moisture regime; and
2. A color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 18 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 18 cm after mixing; and
3. A base saturation (by NH₄OAc) of 50 percent or more in all parts from the mineral soil surface to a depth of 180 cm or to a densic, lithic, or paralithic contact, whichever is shallower.

Xerollic Glossocryalfs

JBBI. Other Glossocryalfs that have both:
1. A xeric soil moisture regime; and
2. A color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 18 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 18 cm after mixing.

Umbric Xeric Glossoscryalfs

JBBJ. Other Glossoscryalfs that meet all of the following:

1. Are dry in some part of the moisture control section for 45 or more days (cumulative) in normal years; and
2. Have a color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 18 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 18 cm after mixing; and
3. Have a base saturation (by NH₄OAc) of 50 percent or more in all parts from the mineral soil surface to a depth of 180 cm or to a densic, lithic, or paralithic contact, whichever is shallower.

Ustollic Glossoscryalfs

JBBK. Other Glossoscryalfs that have a xeric soil moisture regime.

Xeric Glossoscryalfs

JBBL. Other Glossoscryalfs that are dry in some part of the moisture control section for 45 or more days (cumulative) in normal years.

Ustic Glossoscryalfs

JBBM. Other Glossoscryalfs that have both:

1. A color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 18 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 18 cm after mixing; and
2. A base saturation (by NH₄OAc) of 50 percent or more in all parts from the mineral soil surface to a depth of 180 cm or to a densic, lithic, or paralithic contact, whichever is shallower.

Mollic Glossocryalfs

JBBN. Other Glossocryalfs that have a color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 18 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 18 cm after mixing.

Umbric Glossocryalfs

JBOO. Other Glossocryalfs that have a base saturation (by NH₄OAc) of 50 percent or more in all parts from the mineral soil surface to a depth of 180 cm or to a densic, lithic, or paralithic contact, whichever is shallower.

Eutric Glossocryalfs

JBBP. Other Glossocryalfs.

Typic Glossocryalfs

Haplocryalfs

Key to Subgroups

JBCA. Haplocryalfs that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Haplocryalfs

JBCB. Other Haplocryalfs that have *one or both* of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

2. A linear extensibility of 6.0 cm or more between the
mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Haplocryalfs

JBCC. Other Haplocryalfs that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Haplocryalfs

JBCD. Other Haplocryalfs that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 b. $[(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60] + \text{the volcanic glass (percent)}$ is equal to 30 or more.

Vitrandic Haplocryalfs

JBCE. Other Haplocryalfs that have, in one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Haplocryalfs

JBCF. Other Haplocryalfs that are saturated with water in one or more layers within 100 cm of the mineral soil surface in normal years for either or both:
1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Haplocryalfs

JBCG. Other Haplocryalfs that have an argillic horizon that meets *one* of the following:

1. Consists entirely of lamellae; or
2. Is a combination of two or more lamellae and one or more subhorizons with a thickness of 7.5 to 20 cm, each layer with an overlying eluvial horizon; or
3. Consists of one or more subhorizons that are more than 20 cm thick, each with an overlying eluvial horizon, and above these horizons there are *either*:
 a. Two or more lamellae with a combined thickness of 5 cm or more (that may or may not be part of the argillic horizon); or
 b. A combination of lamellae (that may or may not be part of the argillic horizon) and one or more parts of the argillic horizon 7.5 to 20 cm thick, each with an overlying eluvial horizon.

Lamellic Haplocryalfs

JBCH. Other Haplocryalfs that have a sandy or sandy-skeletal particle-size class throughout the upper 75 cm of the argillic, kandic, or natric horizon or throughout the entire argillic, kandic, or natric horizon if it is less than 75 cm thick.

Psammentic Haplocryalfs

JBCI. Other Haplocryalfs that:

1. Have an argillic, kandic, or natric horizon that is 35 cm or less thick; and
2. Do not have a densic, lithic, or paralithic contact within 100 cm of the mineral soil surface.

Inceptic Haplocryalfs
JBCJ. Other Haplocryalfs that have all of the following:

1. A xeric soil moisture regime; and
2. A color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 18 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 18 cm after mixing; and
3. A base saturation (by NH$_4$OAc) of 50 percent or more in all parts from the mineral soil surface to a depth of 180 cm or to a densic, lithic, or paralithic contact, whichever is shallower.

Xerollic Haplocryalfs

JBCK. Other Haplocryalfs that have both:

1. A xeric soil moisture regime; and
2. A color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 18 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 18 cm after mixing.

Umbric Xeric Haplocryalfs

JBCL. Other Haplocryalfs that meet all of the following:

1. Are dry in some part of the moisture control section for 45 or more days (cumulative) in normal years; and
2. Have a color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 18 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 18 cm after mixing; and
3. Have a base saturation (by NH$_4$OAc) of 50 percent or more in all parts from the mineral soil surface to a depth of 180 cm or to a densic, lithic, or paralithic contact, whichever is shallower.

Ustolic Haplocryalfs

134
JBCM. Other Haplocryalfs that have a xeric soil moisture regime.

Xeric Haplocryalfs

JBCN. Other Haplocryalfs that are dry in some part of the moisture control section for 45 or more days (cumulative) in normal years.

Ustic Haplocryalfs

JBCO. Other Haplocryalfs that have both:

1. A color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 18 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 18 cm after mixing; and

2. A base saturation (by NH$_4$OAc) of 50 percent or more in all parts from the mineral soil surface to a depth of 180 cm or to a densic, lithic, or paralithic contact, whichever is shallower.

Mollic Haplocryalfs

JBCP. Other Haplocryalfs that have a color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 18 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 18 cm after mixing.

Umbric Haplocryalfs

JBCQ. Other Haplocryalfs that have a base saturation (by NH$_4$OAc) of 50 percent or more in all parts from the mineral soil surface to a depth of 180 cm or to a densic, lithic, or paralithic contact, whichever is shallower.

Eutric Haplocryalfs

JBCR. Other Haplocryalfs.

Typic Haplocryalfs
Palecryalfs

Key to Subgroups

JBAA. Palecryalfs that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus \(\frac{1}{2} \) Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Palecryalfs

JBAB. Other Palecryalfs that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 b. \[(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \text{ times 60} \] plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Palecryalfs

JBAC. Other Palecryalfs that have, in one or more horizons within 100 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Palecryalfs

JBAD. Other Palecryalfs that are saturated with water in one or more layers within 100 cm of the mineral soil surface in normal years for either or both:
1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Palecryalfs

JBAE. Other Palecryalfs that have a xeric soil moisture regime.

Xeric Palecryalfs

JBAF. Other Palecryalfs that are dry in some part of the moisture control section for 45 or more days (cumulative) in normal years.

Ustic Palecryalfs

JBAG. Other Palecryalfs that have both:

1. A color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 18 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 18 cm after mixing; and
2. A base saturation (by NH$_4$OAc) of 50 percent or more in all parts from the mineral soil surface to a depth of 180 cm or to a densic, lithic, or paralithic contact, whichever is shallower.

Mollic Palecryalfs

JBAH. Other Palecryalfs that have a color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 18 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 18 cm after mixing.

Umbric Palecryalfs

JBAI. Other Palecryalfs.

Typic Palecryalfs
Udalfs

Key to Great Groups

JEA. Udalfs that have a natric horizon.
Natrudalfs, p. 162

JEB. Other Udalfs that have *both*:
1. A glossic horizon; *and*
2. In the argillic or kandic horizon, discrete nodules, 2.5 to 30 cm in diameter, that:
 a. Are enriched with iron and extremely weakly cemented to indurated; *and*
 b. Have exteriors with either a redder hue or a higher chroma than the interiors.
Ferrudalfs, p. 141

JEC. Other Udalfs that have *both*:
1. A glossic horizon; *and*
2. A fragipan within 100 cm of the mineral soil surface.
Fraglossudalfs, p. 142

JED. Other Udalfs that have a fragipan within 100 cm of the mineral soil surface.
Fragiudalfs, p. 141

JEE. Other Udalfs that meet *all* of the following:
1. Do not have a densic, lithic, paralithic, or petroferric contact within 150 cm of the mineral soil surface; *and*
2. Have a kandic horizon; *and*
3. Within 150 cm of the mineral soil surface, *either*:
 a. Do not have a clay decrease with increasing depth of 20 percent or more (relative) from the maximum clay content [Clay is measured noncarbonate clay or is based on the following formula: Clay % = 2.5(% water retained at 1500
kPa tension - % organic carbon), whichever value is greater, but no more than 100; or

b. Have 5 percent or more (by volume) skeletans on faces of peds in the layer that has a 20 percent lower clay content and, below that layer, a clay increase of 3 percent or more (absolute) in the fine-earth fraction.

Kandiudalfs, p. 159

JEF. Other Udalfs that have a kandic horizon.

Kanhaplundalfs, p. 161

JEG. Other Udalfs that:

1. Do not have a densic, lithic, or paralithic contact within 150 cm of the mineral soil surface; and

2. Within 150 cm of the mineral soil surface, either:
 a. Do not have a clay decrease with increasing depth of 20 percent or more (relative) from the maximum clay content [Clay is measured noncarbonate clay or is based on the following formula: Clay % = 2.5(% water retained at 1500 kPa tension - % organic carbon), whichever value is greater, but no more than 100]; or
 b. Have 5 percent or more (by volume) skeletans on faces of peds in the layer that has a 20 percent lower clay content and, below that layer, a clay increase of 3 percent or more (absolute) in the fine-earth fraction; and

3. Have an argillic horizon with one or more of the following:
 a. In 50 percent or more of the matrix of one or more subhorizons in its lower one-half, hue of 7.5YR or redder and chroma of 5 or more; or
 b. In 50 percent or more of the matrix of horizons that total more than one-half the total thickness, hue of 2.5YR or redder, value, moist, of 3 or less, and value, dry, of 4 or less; or
c. Many coarse redox concentrations with hue of 5YR or redder or chroma of 6 or more, or both, in one or more subhorizons; or

4. Have a frigid soil temperature regime and all of the following:
 a. An argillic horizon that has its upper boundary 60 cm or more below both:
 (1) The mineral soil surface; and
 (2) The lower boundary of any surface mantle containing 30 percent or more vitric volcanic ash, cinders, or other vitric pyroclastic materials; and
 b. A texture class finer than loamy fine sand in one or more horizons above the argillic horizon; and
 c. Either a glossic horizon or interfingering of albic materials into the argillic horizon.

 Paleudalfs, p. 163

JEH. Other Udalfs that have, in all subhorizons in the upper 100 cm of the argillic horizon or throughout the entire argillic horizon if less than 100 cm thick, more than 50 percent colors that have all of the following:

1. Hue of 2.5YR or redder; and
2. Value, moist, of 3 or less; and
3. Dry value no more than 1 unit higher than the moist value.

 Rhodudalfs, p. 169

JEI. Other Udalfs that have a glossic horizon.

 Glossudalfs, p. 143

JEJ. Other Udalfs.

 Hapludalfs, p. 149
Ferrudalfs

Key to Subgroups

JEBA. Ferrudalfs that have, in one or more horizons within 60 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Ferrudalfs

JEBB. Other Ferrudalfs.

Typic Ferrudalfs

Fragiudalfs

Key to Subgroups

JEDA. Fragiudalfs that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Fragiudalfs

JEDB. Other Fragiudalfs that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
b. \[(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60\] plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Fragiudalfs

JEDC. Other Fragiudalfs that have, in one or more horizons within 40 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquatic conditions for some time in normal years (or artificial drainage).

Aquic Fragiudalfs

JEDD. Other Fragiudalfs that are saturated with water in one or more layers above the fragipan in normal years for *either or both*:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Fragiudalfs

JEDE. Other Fragiudalfs.

Typic Fragiudalfs

Fraglossudalfs

Key to Subgroups

JECA. Fraglossudalfs that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Fraglossudalfs

JECB. Other Fraglossudalfs that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, *one or both* of the following:
1. More than 5 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 b. \[(Al + \frac{1}{2}Fe, \text{ percent extracted by ammonium oxalate}) \times 60\] plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Fraglossudalfs

JECC. Other Fraglossudalfs that have, in one or more subhorizons within the upper 25 cm of the argillic or kandic horizon, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Fraglossudalfs

JECD. Other Fraglossudalfs that are saturated with water in one or more layers above the fragipan in normal years for either or both:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Fraglossudalfs

JECE. Other Fraglossudalfs.

Typic Fraglossudalfs

Glossudalfs

Key to Subgroups

JEIA. Glossudalfs that have both:

1. *One or both* of the following:
a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower; and

2. Redox depletions with chroma of 2 or less in layers that also have aquic conditions in normal years (or artificial drainage) either:

 a. Within the upper 25 cm of the argillic horizon if its upper boundary is within 50 cm of the mineral soil surface; or

 b. Within 75 cm of the mineral soil surface if the upper boundary of the argillic horizon is 50 cm or more below the mineral soil surface.

Aquertic Glossudalfs

JEIB. Other Glossudalfs that have both:

1. Saturation with water in one or more layers within 100 cm of the mineral soil surface in normal years for either or both:

 a. 20 or more consecutive days; or

 b. 30 or more cumulative days; and

2. One or both of the following:

 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Oxyaquic Vertic Glossudalfs

JEIC. Other Glossudalfs that have *one or both* of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; *or*

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Glossudalfs

JEID. Other Glossudalfs that have *both*:

1. In one or more subhorizons within the upper 25 cm of the argillic horizon, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); *and*

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, *one or more* of the following:

 a. A fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0; *or*

 b. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; *or*

 c. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; *and*
(1) In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and

(2) \([(\text{Al plus } \frac{1}{2} \text{Fe, percent extracted by ammonium oxalate}) \times 60] + \text{volcanic glass (percent)} \geq 0\).

Aquandic Glossudalfs

JEIE. Other Glossudalfs that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus \(\frac{1}{2}\) Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Glossudalfs

JEIF. Other Glossudalfs that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and

 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and

 b. \([(\text{Al plus } \frac{1}{2} \text{Fe, percent extracted by ammonium oxalate}) \times 60] + \text{volcanic glass (percent)} \geq 30\).

Vitrandic Glossudalfs

JEIG. Other Glossudalfs that have both:

1. Fragic soil properties:
 a. In 30 percent or more of the volume of a layer 15 cm or
more thick that has its upper boundary within 100 cm of the mineral soil surface; or
b. In 60 percent or more of the volume of a layer 15 cm or more thick; and

2. Redox depletions with chroma of 2 or less in layers that also have aquic conditions in normal years (or artificial drainage) either:
 a. Within the upper 25 cm of the argillic horizon if its upper boundary is within 50 cm of the mineral soil surface; or
 b. Within 75 cm of the mineral soil surface if the upper boundary of the argillic horizon is 50 cm or more below the mineral soil surface.

Fragiaquic Glossudalfs

JEIH. Other Glossudalfs that:

1. In one or more subhorizons within 75 cm of the mineral soil surface, have redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); and

2. Meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of the argillic horizon at a depth of 50 cm or more below the mineral soil surface.

Aquic Arenic Glossudalfs

JEII. Other Glossudalfs that have, in one or more subhorizons within the upper 25 cm of the argillic horizon, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Glossudalfs

JEIJ. Other Glossudalfs that:

1. Are saturated with water in one or more layers within 100
cm of the mineral soil surface in normal years for *either or both*:

a. 20 or more consecutive days; *or*
b. 30 or more cumulative days; *and*

2. Meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of the argillic horizon at a depth of 50 cm or more below the mineral soil surface.

Arenic Oxyaquic Glossudalfs

JEIK. Other Glossudalfs that are saturated with water in one or more layers within 100 cm of the mineral soil surface in normal years for *either or both*:

1. 20 or more consecutive days; *or*
2. 30 or more cumulative days.

Oxyaquic Glossudalfs

JEIL. Other Glossudalfs that have fragic soil properties:

1. In 30 percent or more of the volume of a layer 15 cm or more thick that has its upper boundary within 100 cm of the mineral soil surface; *or*
2. In 60 percent or more of the volume of a layer 15 cm or more thick.

Fragic Glossudalfs

JEIM. Other Glossudalfs that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic horizon at a depth of 50 cm or more below the mineral soil surface.

Arenic Glossudalfs

JEIN. Other Glossudalfs that have a gossic horizon less than 50 cm in total thickness.

Haplic Glossudalfs
JEIO. Other Glossudalfs.

Typic Glossudalfs

Hapludalfs

Key to Subgroups

JEJA. Hapludalfs that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Hapludalfs

JEJB. Other Hapludalfs that have all of the following:

1. One or both of the following:
 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
 b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower; and

2. Redox depletions with chroma of 2 or less in layers that also have aquic conditions in normal years (or artificial drainage) either:
 a. Within the upper 25 cm of the argillic horizon if its upper boundary is within 50 cm of the mineral soil surface; or
 b. Within 75 cm of the mineral soil surface if the upper boundary of the argillic horizon is 50 cm or more below the mineral soil surface; and

3. An Ap horizon or materials between the mineral soil surface and a depth of 18 cm that, after mixing, have one or more of the following:
 a. A color value, moist, of 4 or more; or
b. A color value, dry, of 6 or more; or
c. Chroma of 4 or more.

Aquertic Chromic Hapludalfs

JEJC. Other Hapludalfs that have both:
1. One or both of the following:
 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
 b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower; and
2. Redox depletions with chroma of 2 or less in layers that also have aquic conditions in normal years (or artificial drainage) either:
 a. Within the upper 25 cm of the argillic horizon if its upper boundary is within 50 cm of the mineral soil surface; or
 b. Within 75 cm of the mineral soil surface if the upper boundary of the argillic horizon is 50 cm or more below the mineral soil surface.

Aquertic Hapludalfs

JEJD. Other Hapludalfs that have both:
1. Saturation with water in one or more layers within 100 cm of the mineral soil surface in normal years for either or both:
 a. 20 or more consecutive days; or
 b. 30 or more cumulative days; and
2. One or both of the following:
a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Oxyaquic Vertic Hapludalfs

JEJE. Other Hapludalfs that have *both*:

1. *One or both* of the following:
 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
 b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower; and

2. An Ap horizon or materials between the mineral soil surface and a depth of 18 cm that, after mixing, have *one or more* of the following:
 a. A color value, moist, of 4 or more; or
 b. A color value, dry, of 6 or more; or
 c. Chroma of 4 or more.

Chromic Vertic Hapludalfs

JEJF. Other Hapludalfs that have *one or both* of the following:

1. Cracks within 125 cm of the mineral soil surface that
are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Hapludalfs

JEJG. Other Hapludalfs that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Hapludalfs

JEJH. Other Hapludalfs that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 b. [(Al plus Fe, percent extracted by ammonium oxalate) times 60] plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Hapludalfs

JEJI. Other Hapludalfs that have both:

1. Fragic soil properties:
a. In 30 percent or more of the volume of a layer 15 cm or more thick that has its upper boundary within 100 cm of the mineral soil surface; or
b. In 60 percent or more of the volume of a layer 15 cm or more thick; and

2. Redox depletions with chroma of 2 or less in layers that also have aquic conditions in normal years (or artificial drainage) either:
 a. Within the upper 25 cm of the argillic horizon if its upper boundary is within 50 cm of the mineral soil surface; or
 b. Within 75 cm of the mineral soil surface if the upper boundary of the argillic horizon is 50 cm or more below the mineral soil surface.

Fragiaquic Hapludalfs

JEJJ. Other Hapludalfs that have both:

1. Fragic soil properties:
 a. In 30 percent or more of the volume of a layer 15 cm or more thick that has its upper boundary within 100 cm of the mineral soil surface; or
 b. In 60 percent or more of the volume of a layer 15 cm or more thick; and

2. Saturation with water in one or more layers within 100 cm of the mineral soil surface in normal years for either or both:
 a. 20 or more consecutive days; or
 b. 30 or more cumulative days.

Fragic Oxyaquic Hapludalfs

JEJK. Other Hapludalfs that:

1. In one or more horizons within 75 cm of the mineral soil surface, have redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); and
2. Meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic horizon at a depth of 50 cm or more.

Aquic Arenic Hapludalfs

JEJL. Other Hapludalfs that:
1. Are saturated with water in one or more layers within 100 cm of the mineral soil surface in normal years for either or both:
 a. 20 or more consecutive days; or
 b. 30 or more cumulative days; and
2. Meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of the argillic horizon at a depth of 50 cm or more below the mineral soil surface.

Arenic Oxyaquic Hapludalfs

JEJM. Other Hapludalfs that have anthraquic conditions.

Anthraquic Hapludalfs

JEJN. Other Hapludalfs that have all of the following:
1. An abrupt textural change; and
2. Redox depletions with chroma of 2 or less in layers that also have aquic conditions in normal years (or artificial drainage) either:
 a. Within the upper 25 cm of the argillic horizon if its upper boundary is within 50 cm of the mineral soil surface; or
 b. Within 75 cm of the mineral soil surface if the upper boundary of the argillic horizon is 50 cm or more below the mineral soil surface; and
3. A base saturation (by sum of cations) of less than 60 percent at a depth of 125 cm from the top of the argillic horizon, at a depth of 180 cm from the mineral soil surface, or
directly above a densic, lithic, or paralithic contact, whichever is shallowest.

Albaquultic Hapludalfs

JEJO. Other Hapludalfs that have *both*:

1. An abrupt textural change; *and*

2. Redox depletions with chroma of 2 or less in layers that also have aquic conditions in normal years (or artificial drainage) *either*:
 a. Within the upper 25 cm of the argillic horizon if its upper boundary is within 50 cm of the mineral soil surface; *or*
 b. Within 75 cm of the mineral soil surface if the upper boundary of the argillic horizon is 50 cm or more below the mineral soil surface.

Albaquic Hapludalfs

JEJP. Other Hapludalfs that have *both*:

1. Interfingering of albic materials in the upper part of the argillic horizon; *and*

2. Redox depletions with chroma of 2 or less in layers that also have aquic conditions in normal years (or artificial drainage) *either*:
 a. Within the upper 25 cm of the argillic horizon if its upper boundary is within 50 cm of the mineral soil surface; *or*
 b. Within 75 cm of the mineral soil surface if the upper boundary of the argillic horizon is 50 cm or more below the mineral soil surface.

Glossaquic Hapludalfs

JEJQ. Other Hapludalfs that have *both*:

1. Redox depletions with chroma of 2 or less in layers that also have aquic conditions in normal years (or artificial drainage) *either*:
a. Within the upper 25 cm of the argillic horizon if its upper boundary is within 50 cm of the mineral soil surface; or
b. Within 75 cm of the mineral soil surface if the upper boundary of the argillic horizon is 50 cm or more below the mineral soil surface; and

2. A base saturation (by sum of cations) of less than 60 percent at a depth of 125 cm from the top of the argillic horizon, at a depth of 180 cm from the mineral soil surface, or directly above a densic, lithic, or paralithic contact, whichever is shallowest.

Aquultic Hapludalfs

JEJR. Other Hapludalfs that have both:

1. A color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 18 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 18 cm after mixing; and

2. Redox depletions with chroma of 2 or less in layers that also have aquic conditions in normal years (or artificial drainage) either:
 a. Within the upper 25 cm of the argillic horizon if its upper boundary is within 50 cm of the mineral soil surface; or
 b. Within 75 cm of the mineral soil surface if the upper boundary of the argillic horizon is 50 cm or more below the mineral soil surface.

Aquollic Hapludalfs

JEJS. Other Hapludalfs that have redox depletions with chroma of 2 or less in layers that also have aquic conditions in normal years (or artificial drainage) either:

1. Within the upper 25 cm of the argillic horizon if its upper boundary is within 50 cm of the mineral soil surface; or

2. Within 75 cm of the mineral soil surface if the upper
boundary of the argillic horizon is 50 cm or more below the mineral soil surface.

Aquic Hapludalfs

JEJT. Other Hapludalfs that have both:
1. A mollic epipedon, or the upper 18 cm of the mineral soil meets the color requirements for a mollic epipedon after mixing; and
2. Saturation with water in 1 or more layers within 100 cm of the mineral soil surface in normal years for either or both:
 a. 20 or more consecutive days; or
 b. 30 or more cumulative days.

Mollic Oxyaquic Hapludalfs

JEJU. Other Hapludalfs that are saturated with water in one or more layers within 100 cm of the mineral soil surface in normal years for either or both:
1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Hapludalfs

JEJV. Other Hapludalfs that have fragic soil properties:
1. In 30 percent or more of the volume of a layer 15 cm or more thick that has its upper boundary within 100 cm of the mineral soil surface; or
2. In 60 percent or more of the volume of a layer 15 cm or more thick.

Fragic Hapludalfs

JEJW. Other Hapludalfs that have an argillic horizon that meets one of the following:
1. Consists entirely of lamellae; or
2. Is a combination of two or more lamellae and one or
more subhorizons with a thickness of 7.5 to 20 cm, each layer with an overlying eluvial horizon; or

3. Consists of one or more subhorizons that are more than 20 cm thick, each with an overlying eluvial horizon, and above these horizons there are either:
 a. Two or more lamellae with a combined thickness of 5 cm or more (that may or may not be part of the argillic horizon); or
 b. A combination of lamellae (that may or may not be part of the argillic horizon) and one or more parts of the argillic horizon 7.5 to 20 cm thick, each with an overlying eluvial horizon.

Lamellic Hapludalfs

JEJX. Other Hapludalfs that have a sandy particle-size class throughout the upper 75 cm of the argillic horizon or throughout the entire argillic horizon if it is less than 75 cm thick.

Psammentic Hapludalfs

JEJY. Other Hapludalfs that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic horizon at a depth of 50 cm or more.

Arenic Hapludalfs

JEJZ. Other Hapludalfs that have interfingering of albic materials in one or more subhorizons of the argillic horizon.

Glossic Hapludalfs

JEJZa. Other Hapludalfs that:
 1. Have an argillic horizon that is 35 cm or less thick; and
 2. Do not have a densic, lithic, or paralithic contact within 100 cm of the mineral soil surface.

Inceptic Hapludalfs
JEJZb. Other Hapludalfs that have a base saturation (by sum of cations) of less than 60 percent at a depth of 125 cm below the top of the argillic horizon, at a depth of 180 cm below the mineral soil surface, or directly above a densic, lithic, or paralithic contact, whichever is shallowest.

Ultic Hapludalfs

JEJZc. Other Hapludalfs that have a mollic epipedon, or the upper 18 cm of the mineral soil meets all the color requirements for a mollic epipedon after mixing.

Mollic Hapludalfs

JEJZd. Other Hapludalfs.

Typic Hapludalfs

Kandiudalfs

Key to Subgroups

JEEA. Kandiudalfs that have both:

1. In one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); and

2. 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface.

Plinthaquic Kandiudalfs

JEEB. Other Kandiudalfs that have, in one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Kandiudalfs

JEEC. Other Kandiudalfs that are saturated with water in one or more layers within 100 cm of the mineral soil surface in normal years for either or both:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Kandiudalfs

JEED. Other Kandiudalfs that:

1. Meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of a kandic horizon at a depth of 50 to 100 cm; and
2. Have 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface.

Arenic Plinthic Kandiudalfs

JEEE. Other Kandiudalfs that:

1. Meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of a kandic horizon at a depth of 100 cm or more; and
2. Have 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface.

Grossarenic Plinthic Kandiudalfs

JEFF. Other Kandiudalfs that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of a kandic horizon at a depth of 50 to 100 cm.

Arenic Kandiudalfs

JEEG. Other Kandiudalfs that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of a kandic horizon at a depth of 100 cm or more.

Grossarenic Kandiudalfs

JEEH. Other Kandiudalfs that have 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface.

Plinthic Kandiudalfs
JEEI. Other Kandiudalfs that have, in all subhorizons in the upper 100 cm of the kandic horizon or throughout the entire kandic horizon if less than 100 cm thick, more than 50 percent colors that have all of the following:

1. Hue of 2.5YR or redder; and
2. Value, moist, of 3 or less; and
3. Dry value no more than 1 unit higher than the moist value.

Rhodic Kandiudalfs

JEEJ. Other Kandiudalfs that have a mollic epipedon, or the upper 18 cm of the mineral soil meets the color requirements for a mollic epipedon after mixing.

Mollic Kandiudalfs

JEEK. Other Kandiudalfs.

Typic Kandiudalfs

Kanhapludalfs

Key to Subgroups

JEFA. Kanhapludalfs that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Kanhapludalfs

JEFB. Other Kanhapludalfs that have, in one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Kanhapludalfs

JEFC. Other Kanhapludalfs that are saturated with water in one or more layers within 100 cm of the mineral soil surface in normal years for either or both:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Kanhapludalfs

JEFD. Other Kanhapludalfs that have, in *all* subhorizons in the upper 100 cm of the kandic horizon or throughout the entire kandic horizon if less than 100 cm thick, more than 50 percent colors that have *all* of the following:

1. Hue of 2.5YR or redder; *and*
2. Value, moist, of 3 or less; *and*
3. Dry value no more than 1 unit higher than the moist value.

Rhodic Kanhapludalfs

JEFE. Other Kanhapludalfs.

Typic Kanhapludalfs

Natrudalfs

Key to Subgroups

JEAA. Natrudalfs that have *one or both* of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; *or*

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Natrudalfs

JEAB. Other Natrudalfs that have *both*:

1. Either a glossic horizon or interfingering of albic materials into the natric horizon; *and*

2. Redox depletions with chroma of 2 or less in layers
that also have aquic conditions in normal years (or artificial drainage) either:

a. Within the upper 25 cm of the natric horizon if its upper boundary is within 50 cm of the mineral soil surface; or

b. Within 75 cm of the mineral soil surface if the upper boundary of the natric horizon is 50 cm or more below the mineral soil surface.

Glossaquic Natrudalfs

JEAC. Other Natrudalfs that have redox depletions with chroma of 2 or less in layers that also have aquic conditions in normal years (or artificial drainage) either:

1. Within the upper 25 cm of the natric horizon if its upper boundary is within 50 cm of the mineral soil surface; or

2. Within 75 cm of the mineral soil surface if the upper boundary of the natric horizon is 50 cm or more below the mineral soil surface.

Aquic Natrudalfs

JEAD. Other Natrudalfs.

Typic Natrudalfs

Paleudalfs

Key to Subgroups

JEAG. Paleudalfs that have one or both of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Paleudalfs
JEGB. Other Paleudalfs that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Paleudalfs

JEGC. Other Paleudalfs that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 b. $([\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}] \times 60)$ plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Paleudalfs

JEGD. Other Paleudalfs that have anthraquic conditions.

Anthraquic Paleudalfs

JEGE. Other Paleudalfs that have both:

1. Fragic soil properties:
 a. In 30 percent or more of the volume of a layer 15 cm or more thick that has its upper boundary within 100 cm of the mineral soil surface; or
 b. In 60 percent or more of the volume of a layer 15 cm or more thick; and
2. Redox depletions with chroma of 2 or less in layers that also have aquic conditions in normal years (or artificial drainage) either:
 a. Within the upper 25 cm of the argillic horizon if its upper boundary is within 50 cm of the mineral soil surface; or
 b. Within 75 cm of the mineral soil surface if the upper boundary of the argillic horizon is 50 cm or more below the mineral soil surface.

Fragiaquic Paleudalfs

JEGF. Other Paleudalfs that have both:
 1. In one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); and
 2. 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface.

Plinthaquic Paleudalfs

JEGG. Other Paleudalfs that have both:
 1. In one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); and
 2. A glossic horizon or, in the upper part of the argillic horizon, one or more subhorizons that have 5 percent or more (by volume) clay depletions with chroma of 2 or less.

Glossaquic Paleudalfs

JEGH. Other Paleudalfs that have both:
 1. In one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); and
2. A clay increase of 15 percent or more (absolute) in the fine-earth fraction within a vertical distance of 2.5 cm at the upper boundary of the argillic horizon.

Albaquic Paleudalfs

JEGI. Other Paleudalfs that have, in one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquatic conditions for some time in normal years (or artificial drainage).

Aquic Paleudalfs

JEGJ. Other Paleudalfs that are saturated with water in one or more layers within 100 cm of the mineral soil surface in normal years for *either or both*:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Paleudalfs

JEGK. Other Paleudalfs that have fragic soil properties:

1. In 30 percent or more of the volume of a layer 15 cm or more thick that has its upper boundary within 100 cm of the mineral soil surface; or
2. In 60 percent or more of the volume of a layer 15 cm or more thick.

Fragic Paleudalfs

JEGL. Other Paleudalfs that:

1. Meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic horizon at a depth of 50 to 100 cm; and
2. Have 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface.

Arenic Plinthic Paleudalfs

JEGM. Other Paleudalfs that:
1. Meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic horizon at a depth of 100 cm or more; and
2. Have 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface.

Grossarenic Plinthic Paleudalfs

JEGN. Other Paleudalfs that have an argillic horizon that meets one of the following:

1. Consists entirely of lamellae; or
2. Is a combination of two or more lamellae and one or more subhorizons with a thickness of 7.5 to 20 cm, each layer with an overlying eluvial horizon; or
3. Consists of one or more subhorizons that are more than 20 cm thick, each with an overlying eluvial horizon, and above these horizons there are either:
 a. Two or more lamellae with a combined thickness of 5 cm or more (that may or may not be part of the argillic horizon); or
 b. A combination of lamellae (that may or may not be part of the argillic horizon) and one or more parts of the argillic horizon 7.5 to 20 cm thick, each with an overlying eluvial horizon.

Lamellic Paleudalfs

JEGO. Other Paleudalfs that have a sandy particle-size class throughout the upper 75 cm of the argillic horizon or throughout the entire argillic horizon if it is less than 75 cm thick.

Psammentic Paleudalfs

JEGP. Other Paleudalfs that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from
the mineral soil surface to the top of an argillic horizon at a
depth of 50 to 100 cm.

Arenic Paleudalfs

JEGQ. Other Paleudalfs that meet sandy or sandy-skeletal
particle-size class criteria throughout a layer extending from
the mineral soil surface to the top of an argillic horizon at a
depth of 100 cm or more.

Grossarenic Paleudalfs

JEGR. Other Paleudalfs that have 5 percent or more (by
volume) plinthite in one or more horizons within 150 cm of the
mineral soil surface.

Plinthic Paleudalfs

JEGS. Other Paleudalfs that have *either*:
1. A glossic horizon; *or*
2. In the upper part of the argillic horizon, one or more
 subhorizons that have 5 percent or more (by volume)
 skeletans with chroma of 2 or less; *or*
3. 5 percent or more (by volume) albic materials in some
 subhorizon of the argillic horizon.

Glossic Paleudalfs

JEGT. Other Paleudalfs that have, in *all* subhorizons in the
upper 100 cm of the argillic horizon or throughout the entire
argillic horizon if less than 100 cm thick, more than 50 percent
colors that have *all* of the following:
1. Hue of 2.5YR or redder; *and*
2. Value, moist, of 3 or less; *and*
3. Dry value no more than 1 unit higher than the moist
 value.

Rhodic Paleudalfs

JEGU. Other Paleudalfs that have a mollic epipedon, or the
upper 18 cm of the mineral soil meets the color requirements for a mollic epipedon after mixing.

Mollic Paleudalfs

JEGV. Other Paleudalfs.

Typic Paleudalfs

Rhodudalfs

Key to Subgroups

JEHA. All Rhodudalfs (provisionally).

Typic Rhodudalfs

Ustalfs

Key to Great Groups

JCA. Ustalfs that have a duripan within 100 cm of the mineral soil surface.

Durustalfs, p. 171

JCB. Other Ustalfs that have one or more horizons within 150 cm of the mineral soil surface in which plinthite either forms a continuous phase or constitutes one-half or more of the volume.

Plinthustalfs, p. 202

JCC. Other Ustalfs that have a natric horizon.

Natrustalfs, p. 186

JCD. Other Ustalfs that meet all of the following:

1. Have a kandic horizon; and
2. Do not have a densic, lithic, paralithic, or petroferric contact within 150 cm of the mineral soil surface; and
3. Within 150 cm of the mineral soil surface, either:
 a. Do not have a clay decrease with increasing depth of 20 percent or more (relative) from the maximum clay content [Clay is measured noncarbonate clay or is based on the
following formula: Clay % = 2.5(% water retained at 1500 kPa tension - % organic carbon), whichever value is greater, but no more than 100]; or

b. Have 5 percent or more (by volume) skeletans on faces of peds in the layer that has a 20 percent lower clay content and, below that layer, a clay increase of 3 percent or more (absolute) in the fine-earth fraction.

Kandiustalfs, p. 181

JCE. Other Ustalfs that have a kandic horizon.

Kanhaplustalfs, p. 185

JCF. Other Ustalfs that have one or more of the following:

1. A petrocalcic horizon within 150 cm of the mineral soil surface; or

2. No densic, lithic, or paralithic contact within 150 cm of the mineral soil surface and an argillic horizon that has both:

 a. Within 150 cm of the mineral soil surface, either:

 (1) With increasing depth, no clay decrease of 20 percent or more (relative) from the maximum clay content [Clay is measured noncarbonate clay or is based on the following formula: Clay % = 2.5(% water retained at 1500 kPa tension - % organic carbon), whichever value is greater, but no more than 100]; or

 (2) 5 percent or more (by volume) skeletans on faces of peds in the layer that has a 20 percent lower clay content and, below that layer, a clay increase of 3 percent or more (absolute) in the fine-earth fraction; and

 b. In the lower one-half of the argillic horizon, one or more subhorizons with either or both:

 (1) Hue of 7.5YR or redder and chroma of 5 or more in 50 percent or more of the matrix; or
(2) Common or many coarse redox concentrations with hue of 7.5YR or redder or chroma of 6 or more, or both; or

3. No densic, lithic, or paralithic contact within 50 cm of the mineral soil surface and an argillic horizon that has both:
 a. 35 percent or more noncarbonate clay throughout one or more subhorizons in its upper part; and
 b. At its upper boundary, a clay increase (in the fine-earth fraction) of either 20 percent or more (absolute) within a vertical distance of 7.5 cm or of 15 percent or more (absolute) within a vertical distance of 2.5 cm.

Paleustalfs, p. 194

JCG. Other Ustalfs that have, in all subhorizons in the upper 100 cm of the argillic horizon or throughout the entire argillic horizon if less than 100 cm thick, more than 50 percent colors that have all of the following:

1. Hue of 2.5YR or redder; and
2. Value, moist, of 3 or less; and
3. Dry value no more than 1 unit higher than the moist value.

Rhodustalfs, p. 202

JCH. Other Ustalfs.

Haplustalfs, p. 172

Durustalfs

Key to Subgroups

JCAA. All Durustalfs (provisionally).

Typic Durustalfs
Haplustalfs

Key to Subgroups

JCHA. Haplustalfs that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Haplustalfs

JCHB. Other Haplustalfs that have both:

1. *One or both* of the following:
 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; *or*
 b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower; *and*

2. In one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquertic Haplustalfs

JCHC. Other Haplustalfs that have *both*:

1. *One or both* of the following:
 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; *or*
 b. A linear extensibility of 6.0 cm or more between the
mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower; and

2. Saturation with water in one or more layers within 100 cm of the mineral soil surface in normal years for either or both:
 a. 20 or more consecutive days; or
 b. 30 or more cumulative days.

Oxyaquic Vertic Haplustalfs

JCHD. Other Haplustalfs that have both of the following:

1. When neither irrigated nor fallowed to store moisture, one of the following:
 a. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
 b. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
 c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:
 (1) Is moist in some or all parts for less than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and
 (2) Is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; and
2. One or both of the following:
 a. Cracks within 125 cm of the soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the soil surface; or
 b. A linear extensibility of 6.0 cm or more between the soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Torrertic Haplustalfs

JCHE. Other Haplustalfs that have both:

1. When neither irrigated nor fallowed to store moisture, either:
 a. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for four-tenths or less of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
 b. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years is dry in some or all parts for less than 120 cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and

2. One or both of the following:
 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
 b. A linear extensibility of 6.0 cm or more between the
mineral soil surface and either a depth of 100 cm or a
densic, lithic, or paralithic contact, whichever is shallower.

Udertic Haplustalfs

JCHF. Other Haplustalfs that have *one or both* of the
following:

1. Cracks within 125 cm of the mineral soil surface that
are 5 mm or more wide through a thickness of 30 cm or more
for some time in normal years and slickensides or wedge-
shaped peds in a layer 15 cm or more thick that has its upper
boundary within 125 cm of the mineral soil surface; *or*

2. A linear extensibility of 6.0 cm or more between the
mineral soil surface and either a depth of 100 cm or a densic,
lithic, or paralithic contact, whichever is shallower.

Vertic Haplustalfs

JCHG. Other Haplustalfs that:

1. In one or more horizons within 75 cm of the mineral
soil surface, have redox depletions with chroma of 2 or less
and also aquic conditions for some time in normal years (or
artificial drainage); *and*

2. Meet sandy or sandy-skeletal particle-size class criteria
throughout a layer extending from the mineral soil surface to
the top of an argillic horizon at a depth of 50 to 100 cm.

Aquic Arenic Haplustalfs

JCHH. Other Haplustalfs that have *both*:

1. In one or more horizons within 75 cm of the mineral soil
surface, redox depletions with chroma of 2 or less and also
aquic conditions for some time in normal years (or artificial
drainage); *and*

2. An argillic horizon that has a base saturation (by sum of
cations) of less than 75 percent throughout.

Aquultic Haplustalfs
JCHI. Other Haplustalfs that have, in one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Haplustalfs

JCHJ. Other Haplustalfs that are saturated with water in one or more layers within 100 cm of the mineral soil surface in normal years for either or both:
1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Haplustalfs

JCHK. Other Haplustalfs that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:
1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 b. [(Al plus $\frac{1}{2}$ Fe, percent extracted by ammonium oxalate) times 60] plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Haplustalfs

JCHL. Other Haplustalfs that have an argillic horizon that meets one of the following:
1. Consists entirely of lamellae; or
2. Is a combination of two or more lamellae and one or more subhorizons with a thickness of 7.5 to 20 cm, each layer with an overlying eluvial horizon; or
3. Consists of one or more subhorizons that are more than 20 cm thick, each with an overlying eluvial horizon, and above these horizons there are either:
 a. Two or more lamellae with a combined thickness of 5 cm or more (that may or may not be part of the argillic horizon); or
 b. A combination of lamellae (that may or may not be part of the argillic horizon) and one or more parts of the argillic horizon 7.5 to 20 cm thick, each with an overlying eluvial horizon.

Lamellic Haplustals

JCHM. Other Haplustals that have a sandy particle-size class throughout the upper 75 cm of the argillic horizon or throughout the entire argillic horizon if it is less than 75 cm thick.

Psammentic Haplustals

JCHN. Other Haplustals that:

1. Meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic horizon at a depth of 50 cm or more; and
2. When neither irrigated nor fallowed to store moisture, have one of the following:
 a. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
 b. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:

(1) Is moist in some or all parts for less than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and

(2) Is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C.

Arenic Aridic Haplustalfs

JCHO. Other Haplustalfs that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic horizon at a depth of 50 cm or more.

Arenic Haplustalfs

JCHP. Other Haplustalfs that have both:

1. A calcic horizon within 100 cm of the mineral soil surface; and

2. When neither irrigated nor fallowed to store moisture, one of the following:

a. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

b. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:

(1) Is moist in some or all parts for less than 90 consecutive days per year when the temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and

(2) Is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C.

Calcic Haplustalfs

JCHQ. Other Haplustalfs that, when neither irrigated nor fallowed to store moisture, have one of the following:

1. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

2. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

3. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:
 a. Is moist in some or all parts for less than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and

b. Is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C.

Aridic Haplustalfs
JCHR. Other Haplustalfs that have a CEC of less than 24 cmol(+)/kg clay (by 1N NH$_4$OAc pH 7) in 50 percent or more either of the argillic horizon if less than 100 cm thick or of its upper 100 cm.

Kanhaplic Haplustalfs

JCHS. Other Haplustalfs that:
1. Have an argillic horizon that is 35 cm or less thick; and
2. Do not have a densic, lithic, or paralithic contact within 100 cm of the mineral soil surface.

Inceptic Haplustalfs

JCHT. Other Haplustalfs that have both:
1. A calcic horizon within 100 cm of the mineral soil surface; and
2. When neither irrigated nor fallowed to store moisture, one of the following:
 a. A frigid soil temperature regime and a moisture control section that in normal years is dry in some or all parts for less than 105 cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
 b. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for four-tenths or less of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
 c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years is dry in some or all parts for less than 120 cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C.

Calcic Udic Haplustalfs
JCHU. Other Haplustalfs that have an argillic horizon with a base saturation (by sum of cations) of less than 75 percent throughout.

Ultic Haplustalfs

JCHV. Other Haplustalfs that have a calcic horizon within 100 cm of the mineral soil surface.

Calcic Haplustalfs

JCHW. Other Haplustalfs that, when neither irrigated nor fallowed to store moisture, have one of the following:

1. A frigid soil temperature regime and a moisture control section that in normal years is dry in some or all parts for less than 105 cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

2. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for four-tenths or less of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

3. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years is dry in some or all parts for less than 120 cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C.

Udic Haplustalfs

JCHX. Other Haplustalfs.

Typic Haplustalfs

Kandiustalfs

Key to Subgroups

JCDA. Kandiustalfs that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from
the mineral soil surface to the top of a kandic horizon at a depth of 100 cm or more.

Grossarenic Kandiustalfs

JCDB. Other Kandiustalfs that:

1. In one or more horizons within 75 cm of the mineral soil surface, have redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); and

2. Meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of a kandic horizon at a depth of 50 to 100 cm.

Aquic Arenic Kandiustalfs

JCDC. Other Kandiustalfs that have 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface.

Plinthic Kandiustalfs

JCDD. Other Kandiustalfs that have, in one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Kandiustalfs

JCDE. Other Kandiustalfs that:

1. Meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of a kandic horizon at a depth of 50 to 100 cm; and

2. When neither irrigated nor fallowed to store moisture, have either:

 a. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for six-tenths or more of the cumulative days per year
when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

b. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:

(1) Is moist in some or all parts for less than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and

(2) Is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C.

Arenic Aridic Kandiustalfs

JCDF. Other Kandiustalfs that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of a kandic horizon at a depth of 50 to 100 cm.

Arenic Kandiustalfs

JCDG. Other Kandiustalfs that, when neither irrigated nor fallowed to store moisture, have either:

1. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

2. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:
 a. Is moist in some or all parts for less than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and
b. Is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C.

Aridic Kandiustalfs

JCDH. Other Kandiustalfs that, when neither irrigated nor fallowed to store moisture, have either:

1. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for 135 cumulative days or less per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

2. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years is dry in some or all parts for less than 120 cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C.

Udic Kandiustalfs

JCDI. Other Kandiustalfs that have, in all subhorizons in the upper 100 cm of the kandic horizon or throughout the entire kandic horizon if less than 100 cm thick, more than 50 percent colors that have all of the following:

1. Hue of 2.5YR or redder; and

2. Value, moist, of 3 or less; and

3. Dry value no more than 1 unit higher than the moist value.

Rhodic Kandiustalfs

JCDJ. Other Kandiustalfs.

Typic Kandiustalfs
Kanhaplustalfs

Key to Subgroups

JCEA. Kanhaplustalfs that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Kanhaplustalfs

JCEB. Other Kanhaplustalfs that have, in one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Kanhaplustalfs

JCEC. Other Kanhaplustalfs that, when neither irrigated nor fallowed to store moisture, have either:

1. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

2. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:
 a. Is moist in some or all parts for less than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and
 b. Is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C.

Aridic Kanhaplustalfs

JCED. Other Kanhaplustalfs that, when neither irrigated nor fallowed to store moisture, have either:

1. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for 135 cumulative days or less per year when the soil
temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
2. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years is dry in some or all parts for less than 120 cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C.

Udic Kanhaplustalfs

JCEE. Other Kanhaplustalfs that have, in all subhorizons in the upper 100 cm of the kandic horizon or throughout the entire kandic horizon if less than 100 cm thick, more than 50 percent colors that have all of the following:

1. Hue of 2.5YR or redder; and
2. Value, moist, of 3 or less; and
3. Dry value no more than 1 unit higher than the moist value.

Rhodic Kanhaplustalfs

JCEF. Other Kanhaplustalfs.

Typic Kanhaplustalfs

Natrustalfs

Key to Subgroups

JCCA. Natrustalfs that have a salic horizon within 75 cm of the mineral soil surface.

Salidic Natrustalfs

JCCB. Other Natrustalfs that have all of the following:

1. Visible crystals of gypsum or other salts more soluble than gypsum, or both, within 40 cm of the soil surface; and
2. When neither irrigated nor fallowed to store moisture, one of the following:
 a. A frigid soil temperature regime and a moisture control
section that in normal years is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

b. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:

(1) Is moist in some or all parts for less than 90 consecutive days per year when the temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and

(2) Is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; and

3. One or both of the following:

a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Leptic Torrertic Natrustalfs
JCCC. Other Natrustalfs that have both of the following:

1. When neither irrigated nor fallowed to store moisture, one of the following:
 a. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
 b. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
 c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:
 (1) Is moist in some or all parts for less than 90 consecutive days per year when the temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and
 (2) Is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; and

2. One or both of the following:
 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Torrertic Natrustalfs

JCCD. Other Natrustalfs that have both:

1. In one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); and

2. One or both of the following:
 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
 b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Aquertic Natrustalfs

JCCE. Other Natrustalfs that have both of the following:

1. Visible crystals of gypsum or other salts more soluble than gypsum, or both, within 40 cm of the mineral soil surface; and

2. When neither irrigated nor fallowed to store moisture, one of the following:
 a. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
 b. A mesic or thermic soil temperature regime and a
moisture control section that in normal years is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:

(1) Is moist in some or all parts for less than 90 consecutive days per year when the temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and

(2) Is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C.

Aridic Leptic Natrustalfs

JCCF. Other Natrustalfs that have one or both of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Natrustalfs

JCCG. Other Natrustalfs that:

1. In one or more horizons within 75 cm of the mineral soil surface, have redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); and
2. Meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic horizon at a depth of 50 cm or more.

Aquic Arenic Natrustalfs

JCCH. Other Natrustalfs that have, in one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Natrustalfs

JCCI. Other Natrustalfs that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic horizon at a depth of 50 cm or more.

Arenic Natrustalfs

JCCJ. Other Natrustalfs that have a petrocalcic horizon within 150 cm of the mineral soil surface.

Petrocalcic Natrustalfs

JCKK. Other Natrustalfs that have visible crystals of gypsum or other salts more soluble than gypsum, or both, within 40 cm of the mineral soil surface.

Leptic Natrustalfs

JCLL. Other Natrustalfs that have both of the following:

1. An exchangeable sodium percentage of less than 15 (or a sodium adsorption ratio of less than 1) in 50 percent or more of the natric horizon; and

2. When neither irrigated nor fallowed to store moisture, one of the following:

 a. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths or more of the cumulative days per year when the soil
temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

b. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:

(1) Is moist in some or all parts for less than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and

(2) Is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C.

Haplargidic Natrustalfs

JCCM. Other Natrustalfs that have both:

1. When neither irrigated nor fallowed to store moisture, one of the following:

 a. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

 b. A mesic or thermic soil temperature regime and a moisture control section that, in 6 normal years, is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that, in normal years:

1. Is moist in some or all parts for less than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and

2. Is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; and

2. A glossic horizon or interfingering of albic materials into the natric horizon.

Aridic Glossic Natrustalfs

JCCN. Other Natrustalfs that, when neither irrigated nor fallowed to store moisture, have one of the following:

1. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

2. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

3. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:

 a. Is moist in some or all parts for less than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and
b. Is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C.

Aridic Natrustalfs

JCCO. Other Natrustalfs that have a mollic epipedon, or the upper 18 cm of the mineral soil meets the color requirements for a mollic epipedon after mixing.

Mollic Natrustalfs

JCCP. Other Natrustalfs.

Typic Natrustalfs

Paleustalfs

Key to Subgroups

JCFA. Paleustalfs that have *both*:

1. *One or both* of the following:
 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; *or*
 b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower; *and*

2. In one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquertic Paleustalfs

JCFB. Other Paleustalfs that have *both*:

1. *One or both* of the following:
a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower; and

2. Saturation with water in one or more layers within 100 cm of the mineral soil surface in normal years for either or both:
 a. 20 or more consecutive days; or
 b. 30 or more cumulative days.

Oxyaquic Vertic Paleustalfs

JCFC. Other Paleustalfs that have both:

1. When neither irrigated nor fallowed to store moisture, either:
 a. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for four-tenths or less of the time (cumulative) per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
 b. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years is dry in some or all parts for less than 120 cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and

2. **One or both** of the following:
 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or
more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Udertic Paleustalfs

JCFD. Other Paleustalfs that have one or both of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Paleustalfs

JCFE. Other Paleustalfs that:

1. In one or more horizons within 75 cm of the mineral soil surface, have redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); and

2. Meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic horizon at a depth of 50 to 100 cm.

Aquic Arenic Paleustalfs

JCFF. Other Paleustalfs that have, in one or more horizons within 75 cm of the mineral soil surface, redox depletions with
chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Paleustalfs

JCFG. Other Paleustalfs that are saturated with water in one or more layers within 100 cm of the mineral soil surface in normal years for *either or both*:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Paleustalfs

JCFH. Other Paleustalfs that have an argillic horizon that meets *one* of the following:

1. Consists entirely of lamellae; or
2. Is a combination of two or more lamellae and one or more subhorizons with a thickness of 7.5 to 20 cm, each layer with an overlying eluvial horizon; or
3. Consists of one or more subhorizons that are more than 20 cm thick, each with an overlying eluvial horizon, and above these horizons there are *either*:
 a. Two or more lamellae with a combined thickness of 5 cm or more (that may or may not be part of the argillic horizon); or
 b. A combination of lamellae (that may or may not be part of the argillic horizon) and one or more parts of the argillic horizon 7.5 to 20 cm thick, each with an overlying eluvial horizon.

Lamellic Paleustalfs

JCFI. Other Paleustalfs that have a sandy particle-size class throughout the upper 75 cm of the argillic horizon or throughout the entire argillic horizon if it is less than 75 cm thick.

Psammentic Paleustalfs
JCFJ. Other Paleustalfs that:

1. Meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic horizon at a depth of 50 to 100 cm; and

2. When neither irrigated nor fallowed to store moisture, have one of the following:
 a. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths or more of the time (cumulative) per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5°C; or
 b. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for six-tenths or more of the time (cumulative) per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5°C; or
 c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:
 (1) Is moist in some or all parts for less than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8°C; and
 (2) Is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5°C.

Arenic Aridic Paleustalfs

JCFK. Other Paleustalfs that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic horizon at a depth of 100 cm or more.

Grossarenic Paleustalfs
JCFL. Other Paleustalfs that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic horizon at a depth of 50 to 100 cm.

Arenic Paleustalfs

JCFM. Other Paleustalfs that have 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface.

Plinthic Paleustalfs

JCFN. Other Paleustalfs that have a petrocalcic horizon within 150 cm of the mineral soil surface.

Petrocalcic Paleustalfs

JCFO. Other Paleustalfs that have both:

1. When neither irrigated nor fallowed to store moisture, either:
 a. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths or more of the time (cumulative) per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
 b. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for six-tenths or more of the time (cumulative) per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
 c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:
 (1) Is moist in some or all parts for less than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and
(2) Is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; and

2. A calcic horizon either within 100 cm of the mineral soil surface if the weighted average particle-size class of the upper 50 cm of the argillic horizon is sandy, or within 60 cm if it is loamy, or within 50 cm if it is clayey, and free carbonates in all horizons above the calcic horizon.

Calcic Paleustalfs

JCFP. Other Paleustalfs that, when neither irrigated nor fallowed to store moisture, have:

1. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths or more of the time (cumulative) per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

2. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for six-tenths or more of the time (cumulative) per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

3. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:
 a. Is moist in some or all parts for less than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and
 b. Is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C.

Aridic Paleustalfs
JCFQ. Other Paleustalfs that have a CEC of less than 24 cmol(+)/kg clay (by 1N NH$_4$OAc pH 7) in 50 percent or more either of the argillic horizon if less than 100 cm thick or of its upper 100 cm.

Kandic Paleustalfs

JCFR. Other Paleustalfs that have, in all subhorizons in the upper 100 cm of the argillic horizon or throughout the entire argillic horizon if less than 100 cm thick, more than 50 percent colors that have all of the following:

1. Hue of 2.5YR or redder; and
2. Value, moist, of 3 or less; and
3. Dry value no more than 1 unit higher than the moist value.

Rhodic Paleustalfs

JCFS. Other Paleustalfs that have an argillic horizon with a base saturation (by sum of cations) of less than 75 percent throughout.

Ultic Paleustalfs

JCFT. Other Paleustalfs that, when neither irrigated nor fallowed to store moisture, have either:

1. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for four-tenths or less of the time (cumulative) per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
2. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years is dry in some or all parts for less than 120 cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C.

Udic Paleustalfs
JCFU. Other Paleustalfs.

Typic Paleustalfs

Plinthustalfs

Key to Subgroups

JCBA. All Plinthustalfs (provisionally).

Typic Plinthustalfs

Rhodustalfs

Key to Subgroups

JCGA. Rhodustalfs that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Rhodustalfs

JCB. Other Rhodustalfs that have a CEC of less than 24 cmol(+)/kg clay (by 1N NH₄OAc pH 7) in 50 percent or more either of the argillic horizon if less than 100 cm thick or of its upper 100 cm.

Kanhaplic Rhodustalfs

JCGC. Other Rhodustalfs that, when neither irrigated nor fallowed to store moisture, have either:

1. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for four-tenths or less of the time (cumulative) per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

2. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years is dry in some or all parts for less than 120 cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C.

Udic Rhodustalfs
JCGD. Other Rhodustalfs.

Typic Rhodustalfs

Xeralfs

Key to Great Groups

JDA. Xeralfs that have a duripan within 100 cm of the mineral soil surface.

Durixeralfs, p. 204

JDB. Other Xeralfs that have a natric horizon.

Natrixeralfs, p. 213

JDC. Other Xeralfs that have a fragipan within 100 cm of the mineral soil surface.

Fragixeralfs, p. 206

JDD. Other Xeralfs that have one or more horizons within 150 cm of the mineral soil surface in which plinthite either forms a continuous phase or constitutes one-half or more of the volume.

Plinthoxeralfs, p. 218

JDE. Other Xeralfs that have, in all subhorizons in the upper 100 cm of the argillic or kandic horizon or throughout the entire argillic or kandic horizon if less than 100 cm thick, more than 50 percent colors that have all of the following:

1. Hue of 2.5YR or redder; and
2. Value, moist, of 3 or less; and
3. Dry value no more than 1 unit higher than the moist value.

Rhodoxeralfs, p. 218

JDF. Other Xeralfs that have one or more of the following:

1. A petrocalcic horizon within 150 cm of the mineral soil surface; or
2. No densic, lithic, or paralithic contact within 150 cm of the mineral soil surface and an argillic or kandic horizon that has both:
 a. Within 150 cm of the mineral soil surface, either:
 (1) With increasing depth, no clay decrease of 20 percent or more (relative) from the maximum clay content [Clay is measured noncarbonate clay or is based on the following formula: Clay % = 2.5(% water retained at 1500 kPa tension - % organic carbon), whichever value is greater, but no more than 100]; or
 (2) 5 percent or more (by volume) skeletans on faces of peds in the layer that has a 20 percent lower clay content and, below that layer, a clay increase of 3 percent or more (absolute) in the fine-earth fraction; and
 b. A base at a depth of 150 cm or more; or
3. No densic, lithic, or paralithic contact within 50 cm of the mineral soil surface and an argillic or kandic horizon that has within 15 cm of its upper boundary both:
 a. 35 percent or more noncarbonate clay; and
 b. A clay increase, in the fine-earth fraction, of either 20 percent or more (absolute) within a vertical distance of 7.5 cm or of 15 percent or more (absolute) within a vertical distance of 2.5 cm.

Palexeralfs, p. 213

JDG. Other Xeralfs.

Haploxeralfs, p. 207

Durixeralfs

Key to Subgroups

JDAA. Durixeralfs that have a natric horizon.

Natric Durixeralfs
JDAB. Other Durixeralfs that have, above the duripan, *one or both* of the following:

1. Cracks that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick; *or*

2. A linear extensibility of 6.0 cm or more.

Vertic Durixeralfs

JDAC. Other Durixeralfs that have, in one or more subhorizons within the argillic horizon, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Durixeralfs

JDAD. Other Durixeralfs that have *both*:

1. An argillic horizon that has *both*:

 a. A clayey particle-size class throughout some subhorizon 7.5 cm or more thick; *and*

 b. At its upper boundary or within some part, a clay increase *either* of 20 percent or more (absolute) within a vertical distance of 7.5 cm *or* of 15 percent or more (absolute) within a vertical distance of 2.5 cm, in the fine-earth fraction; *and*

2. A duripan that is strongly cemented or less cemented in all subhorizons.

Abruptic Haplic Durixeralfs

JDAE. Other Durixeralfs that have an argillic horizon that has *both*:

1. A clayey particle-size class throughout some subhorizon 7.5 cm or more thick; *and*

2. At its upper boundary or within some part, a clay increase *either* of 20 percent or more (absolute) within a vertical
distance of 7.5 cm or of 15 percent or more (absolute) within a vertical distance of 2.5 cm, in the fine-earth fraction.

Abruptic Durixeralfs

JDAG. Other Durixeralfs.

Typic Durixeralfs

Fragixeralfs

Key to Subgroups

JDCA. Fragixeralfs that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm\(^3\) or less, measured at 33 kPa water retention, and Al plus \(\frac{1}{2}\) Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Fragixeralfs

JDCB. Other Fragixeralfs that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, *one or both* of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; *or*

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; *and*
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; *and*
 b. \([\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}] \times 60\) plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Fragixeralfs
JDCC. Other Fragixeralfs that have a color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 18 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 18 cm after mixing.

Mollic Fragixeralfs

JDCD. Other Fragixeralfs that have, in one or more horizons within 40 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Fragixeralfs

JDCE. Other Fragixeralfs that, above the fragipan, do not have an argillic or kandic horizon with clay films on both vertical and horizontal faces of any peds.

Inceptic Fragixeralfs

JDCF. Other Fragixeralfs.

Typic Fragixeralfs

Haploxeralfs

Key to Subgroups

JDGA. Haploxeralfs that have both:

1. A lithic contact within 50 cm of the mineral soil surface; and
2. A color value, moist, of 3 or less and 0.7 percent or more organic carbon either throughout an Ap horizon or throughout the upper 10 cm of an A horizon.

Lithic Mollic Haploxeralfs

JDGB. Other Haploxeralfs that have both:

1. A lithic contact within 50 cm of the mineral soil surface; and
2. An argillic or kandic horizon that is discontinuous horizontally in each pedon.

Lithic Ruptic-Inceptic Haploxeralfs

JDGC. Other Haploxeralfs that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Haploxeralfs

JDGD. Other Haploxeralfs that have *one or both* of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; *or*

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Haploxeralfs

JDGE. Other Haploxeralfs that have *both*:

1. In one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); *and*

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, *one or more* of the following:

 a. A fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus Fe percentages (by ammonium oxalate) totaling more than 1.0; *or*

 b. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; *or*
c. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and

(1) In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and

(2) \([(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60]\) plus the volcanic glass (percent) is equal to 0 or more.

Aquandic Haploxeralfs

JDGF. Other Haploxeralfs that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm\(^3\) or less, measured at 33 kPa water retention, and Al plus \(\frac{1}{2}\) Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Haploxeralfs

JDGG. Other Haploxeralfs that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and

 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and

 b. \([(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60]\) plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Haploxeralfs

JDGH. Other Haploxeralfs that have both:

1. Fragic soil properties:
a. In 30 percent or more of the volume of a layer 15 cm or more thick that has its upper boundary within 100 cm of the mineral soil surface; or
b. In 60 percent or more of the volume of a layer 15 cm or more thick; and

2. Redox depletions with chroma of 2 or less in layers that also have aquic conditions in normal years (or artificial drainage) either:
 a. Within the upper 25 cm of the argillic or kandic horizon if its upper boundary is within 50 cm of the mineral soil surface; or
 b. Within 75 cm of the mineral soil surface if the upper boundary of the argillic or kandic horizon is 50 cm or more below the mineral soil surface.

Fragiaquic Haploxeralfs

JDGI. Other Haploxeralfs that have both:

1. In one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); and

2. An argillic or kandic horizon that has a base saturation (by sum of cations) of less than 75 percent in one or more subhorizons within its upper 75 cm or above a densic, lithic, or paralithic contact, whichever is shallower.

Aquultic Haploxeralfs

JDGJ. Other Haploxeralfs that have, in one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Haploxeralfs

JDGK. Other Haploxeralfs that have an exchangeable sodium percentage of 15 or more (or a sodium adsorption ratio
of 13 or more) in one or more subhorizons of the argillic or kandic horizon.

Natric Haploxeralfs

JDGL. Other Haploxeralfs that have fragic soil properties:

1. In 30 percent or more of the volume of a layer 15 cm or more thick that has its upper boundary within 100 cm of the mineral soil surface; *or*

2. In 60 percent or more of the volume of a layer 15 cm or more thick.

Fragic Haploxeralfs

JDGM. Other Haploxeralfs that have an argillic horizon that meets *one* of the following:

1. Consists entirely of lamellae; *or*

2. Is a combination of two or more lamellae and one or more subhorizons with a thickness of 7.5 to 20 cm, each layer with an overlying eluvial horizon; *or*

3. Consists of one or more subhorizons that are more than 20 cm thick, each with an overlying eluvial horizon, and above these horizons there are *either*:

 a. Two or more lamellae with a combined thickness of 5 cm or more (that may or may not be part of the argillic horizon); *or*

 b. A combination of lamellae (that may or may not be part of the argillic horizon) and one or more parts of the argillic horizon 7.5 to 20 cm thick, each with an overlying eluvial horizon.

Lamellic Haploxeralfs

JDGN. Other Haploxeralfs that have a sandy particle-size class throughout the upper 75 cm of the argillic horizon or
throughout the entire argillic horizon if it is less than 75 cm thick.

Psammentic Haploxeralfs

JDGO. Other Haploxeralfs that have 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface.

Plinthic Haploxeralfs

JDGP. Other Haploxeralfs that have a calcic horizon within 100 cm of the mineral soil surface.

Calcic Haploxeralfs

JDGQ. Other Haploxeralfs that:
1. Have an argillic or kandic horizon that is 35 cm or less thick; and
2. Do not have a densic, lithic, or paralithic contact within 100 cm of the mineral soil surface.

Inceptic Haploxeralfs

JDGR. Other Haploxeralfs that have an argillic or kandic horizon that has a base saturation (by sum of cations) of less than 75 percent in one or more subhorizons within its upper 75 cm or above a densic, lithic, or paralithic contact, whichever is shallower.

Ultic Haploxeralfs

JDGS. Other Haploxeralfs that have a color value, moist, of 3 or less and 0.7 percent or more organic carbon either throughout the upper 10 cm of the mineral soil (unmixed) or throughout the upper 18 cm of the mineral soil after mixing.

Mollic Haploxeralfs

JDGT. Other Haploxeralfs.

Typic Haploxeralfs
Natrixeralfs

Key to Subgroups

JDBA. Natrixeralfs that have one or both of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Natrixeralfs

JDBB. Other Natrixeralfs that have, in one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Natrixeralfs

JDBC. Other Natrixeralfs.

Typic Natrixeralfs

Palexeralfs

Key to Subgroups

JDFA. Palexeralfs that have one or both of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Palexeralfs
JDFB. Other Palexeralfs that have both:

1. In one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); and

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or more of the following:

 a. A fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0; or

 b. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

 c. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and

 (1) In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and

 (2) $\left[(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60 \right]$ plus the volcanic glass (percent) is equal to 30 or more.

Aquandic Palexeralfs

JDFC. Other Palexeralfs that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Palexeralfs
JDFD. Other Palexeralfs that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 b. \[(Al + \frac{1}{2} Fe, \text{ percent extracted by ammonium oxalate}) \times 60\] plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Palexeralfs

JDFE. Other Palexeralfs that have both:

1. Fragic soil properties:
 a. In 0 percent or more of the volume of a layer 15 cm or more thick that has its upper boundary within 100 cm of the mineral soil surface; or
 b. In 60 percent or more of the volume of a layer 15 cm or more thick; and
2. Redox depletions with chroma of 2 or less in layers that also have Aquic conditions in normal years (or artificial drainage) either:
 a. Within the upper 25 cm of the argillic or kandic horizon if its upper boundary is within 50 cm of the mineral soil surface; or
 b. Within 75 cm of the mineral soil surface if the upper boundary of the argillic or kandic horizon is 50 cm or more below the mineral soil surface.

Fragiaquic Palexeralfs
JDFD. Other Palexeralfs that have, in one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Palexeralfs

JDFG. Other Palexeralfs that have a petrocalcic horizon within 150 cm of the mineral soil surface.

Petrocalcic Palexeralfs

JDFH. Other Palexeralfs that have an argillic horizon that meets one of the following:

1. Consists entirely of lamellae; or
2. Is a combination of two or more lamellae and one or more subhorizons with a thickness of 7.5 to 20 cm, each layer with an overlying eluvial horizon; or
3. Consists of one or more subhorizons that are more than 20 cm thick, each with an overlying eluvial horizon, and above these horizons there are either:
 a. Two or more lamellae with a combined thickness of 5 cm or more (that may or may not be part of the argillic horizon); or
 b. A combination of lamellae (that may or may not be part of the argillic horizon) and one or more parts of the argillic horizon 7.5 to 20 cm thick, each with an overlying eluvial horizon.

Lamellic Palexeralfs

JDFI. Other Palexeralfs that have a sandy particle-size class throughout the upper 75 cm of the argillic horizon or throughout the entire argillic horizon if it is less than 75 cm thick.

Psammentic Palexeralfs

JDFJ. Other Palexeralfs that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from
the mineral soil surface to the top of an argillic or kandic horizon at a depth of 50 cm or more.

Arenic Palexeralfs

JDFK. Other Palexeralfs that have an exchangeable sodium percentage of 15 or more (or a sodium adsorption ratio of 13 or more) in one or more horizons within 100 cm of the mineral soil surface.

Natric Palexeralfs

JDFL. Other Palexeralfs that have fragic soil properties:

1. In 30 percent or more of the volume of a layer 15 cm or more thick that has its upper boundary within 100 cm of the mineral soil surface; *or*
2. In 60 percent or more of the volume of a layer 15 cm or more thick.

Fragic Palexeralfs

JDFM. Other Palexeralfs that have a calcic horizon within 150 cm of the mineral soil surface.

Calcic Palexeralfs

JDFN. Other Palexeralfs that have 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface.

Plinthic Palexeralfs

JDOF. Other Palexeralfs that have an argillic or kandic horizon that has a base saturation (by sum of cations) of less than 75 percent throughout.

Ultic Palexeralfs

JDFP. Other Palexeralfs with an argillic or kandic horizon that has, in the fine-earth fraction, *either or both:*

1. Less than 35 percent clay throughout all subhorizons within 15 cm of its upper boundary; *or*
2. At its upper boundary, a clay increase of less than 20 percent (absolute) within a vertical distance of 7.5 cm and of less than 15 percent (absolute) within a vertical distance of 2.5 cm.

Haplic Palexeralfs

JDFQ. Other Palexeralfs that have a color value, moist, of 3 or less and 0.7 percent or more organic carbon either throughout the upper 10 cm of the mineral soil (unmixed) or throughout the upper 18 cm of the mineral soil after mixing.

Mollic Palexeralfs

JDFR. Other Palexeralfs.

Typic Palexeralfs

Plinthoxeralfs

Key to Subgroups

JDDA. All Plinthoxeralfs (provisionally).

Typic Plinthoxeralfs

Rhodoxeralfs

Key to Subgroups

JDEA. Rhodoxeralfs that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Rhodoxeralfs

JDEB. Other Rhodoxeralfs that have *one or both* of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; *or*
2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Rhodoxeralfs

JDEC. Other Rhodoxeralfs that have a petrocalcic horizon within 150 cm of the mineral soil surface.

Petrocalcic Rhodoxeralfs

JDED. Other Rhodoxeralfs that have a calcic horizon within 150 cm of the mineral soil surface.

Calcic Rhodoxeralfs

JDEE. Other Rhodoxeralfs that have an argillic or kandic horizon that is either less than 35 cm thick or is discontinuous horizontally in each pedon.

Inceptic Rhodoxeralfs

JDEF. Other Rhodoxeralfs.

Typic Rhodoxeralfs
CHAPTER 6
Andisols

Key to Suborders

DA. Andisols that have either:
 1. A histic epipedon; or
 2. In a layer above a densic, lithic, or paralithic contact or in a layer at a depth between 40 and 50 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallowest, aquic conditions for some time in normal years (or artificial drainage) and one or more of the following:
 a. 2 percent or more redox concentrations; or
 b. A color value, moist, of 4 or more and 50 percent or more chroma of 2 or less either in redox depletions on faces of peds or in the matrix if peds are absent; or
 c. Enough active ferrous iron to give a positive reaction to alpha,alpha-dipyridyl at a time when the soil is not being irrigated.

 Aquands, p. 221

DB. Other Andisols that have a gelic soil temperature regime.
 Gelands, p. 241

DC. Other Andisols that have a cryic soil temperature regime.
 Cryands, p. 230

DD. Other Andisols that have an aridic soil moisture regime.
 Torrands, p. 241

DE. Other Andisols that have a xeric soil moisture regime.
 Xerands, p. 270

DF. Other Andisols that have a 1500 kPa water retention of
less than 15 percent on air-dried samples and less than 30 percent on undried samples throughout 60 percent or more of the thickness: either:

1. Within 60 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower, if there is no densic, lithic, or paralithic contact, duripan, or petrocalcic horizon within that depth; or

2. Between the mineral soil surface or the top of an organic layer with andic soil properties, whichever is shallower, and a densic, lithic, or paralithic contact, a duripan, or a petrocalcic horizon.

Vitrands, p. 267

DG. Other Andisols that have an ustic soil moisture regime.

Ustands, p. 263

DH. Other Andisols.

Udands, p. 244

Aquands

Key to Great Groups

DAA. Aquands that have a gelic soil temperature regime.

Gelaquands, p. 226

DAB. Other Aquands that have a cryic soil temperature regime.

Cryaquands, p. 222

DAC. Other Aquands that have, in half or more of each pedon, a placic horizon within 100 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Placaquands, p. 228

DAD. Other Aquands that have, in 75 percent or more of each pedon, a cemented horizon within 100 cm of the mineral
soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Duraquands, p. 223

DAE. Other Aquands that have a 1500 kPa water retention of less than 15 percent on air-dried samples and less than 30 percent on undried samples throughout 60 percent or more of the thickness either:

1. Within 60 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower, if there is no densic, lithic, or paralithic contact within that depth; or

2. Between the mineral soil surface or the top of an organic layer with andic soil properties, whichever is shallower, and a densic, lithic, or paralithic contact.

Vitraquands, p. 229

DAF. Other Aquands that have a melanic epipedon.

Melanaquands, p. 227

DAG. Other Aquands that have episaturation.

Epiaquands, p. 225

DAH. Other Aquands.

Endoaquands, p. 224

Cryaquands

Key to Subgroups

DABA. Cryaquands that have a lithic contact within 50 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Lithic Cryaquands

DABB. Other Cryaquands that have a histic epipedon.

Histic Cryaquands

DABC. Other Cryaquands that have, at a depth between 25
and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, a layer 10 cm or more thick with more than 3.0 percent organic carbon and the colors of a mollic epipedon throughout, underlying one or more horizons with a total thickness of 10 cm or more that have a color value, moist, 1 unit or more higher and an organic-carbon content 1 percent or more (absolute) lower.

Thaptic Cryaquands

DABD. Other Cryaquands.

Typic Cryaquands

Duraquands

Key to Subgroups

DADA. Duraquands that have a histic epipedon.

Histic Duraquands

DADB. Other Duraquands that have a sum of extractable bases (by NH₄OAc) plus 1N KCl-extractable Al³⁺ totaling less than 2.0 cmol(+) kg⁻¹ in the fine-earth fraction of one or more horizons with a total thickness of 30 cm or more at a depth between 25 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower.

Acraquoxic Duraquands

DADC. Other Duraquands that have, at a depth between 25 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, a layer 10 cm or more thick with more than 3.0 percent organic carbon and the colors of a mollic epipedon throughout, underlying one or more horizons with a total thickness of 10 cm or more that have a color value, moist, 1
unit or more higher and an organic-carbon content 1 percent or more (absolute) lower.

Thaptic Duraquonds

DADD. Other Duraquonds.

Typic Duraquonds

Endoaquands

Key to Subgroups

DAHA. Endoaquands that have a lithic contact within 50 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Lithic Endoaquands

DAHB. Other Endoaquands that have a horizon 15 cm or more thick that has 20 percent or more (by volume) cemented soil material within 100 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Duric Endoaquands

DAHC. Other Endoaquands that have a histic epipedon.

Histic Endoaquands

DAHD. Other Endoaquands that have more than 2.0 cmol(+)/kg Al\(^{3+}\) (by 1N KCl) in the fine-earth fraction of one or more horizons with a total thickness of 10 cm or more at a depth between 25 and 50 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower.

Alic Endoaquands

DAHE. Other Endoaquands that have, on undried samples, a 1500 kPa water retention of 70 percent or more throughout a layer 35 cm or more thick within 100 cm of the mineral
soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Hydric Endoaquands

DAHF. Other Endoaquands that have, at a depth between 25 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, a layer 10 cm or more thick with more than 3.0 percent organic carbon and the colors of a mollic epipedon throughout, underlying one or more horizons with a total thickness of 10 cm or more that have a color value, moist, 1 unit or more higher and an organic-carbon content 1 percent or more (absolute) lower.

Thaptic Endoaquands

DAHG. Other Endoaquands.

Typic Endoaquands

Epiaquands

Key to Subgroups

DAGA. Epiaquands that have a horizon 15 cm or more thick that has 20 percent or more (by volume) cemented soil material within 100 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Duric Epiaquands

DAGB. Other Epiaquands that have a histic epipedon.

Histic Epiaquands

DAGC. Other Epiaquands that have more than 2.0 cmol(+) / kg Al$^{3+}$ (by 1N KCl) in the fine-earth fraction of one or more horizons with a total thickness of 10 cm or more at a depth between 25 and 50 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower.

Alic Epiaquands
DAGD. Other Epiaquands that have, on undried samples, a 1500 kPa water retention of 70 percent or more throughout a layer 35 cm or more thick within 100 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Hydric Epiaquands

DAGE. Other Epiaquands that have, at a depth between 25 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, a layer 10 cm or more thick with more than 3.0 percent organic carbon and the colors of a mollic epipedon throughout, underlying one or more horizons with a total thickness of 10 cm or more that have a color value, moist, 1 unit or more higher and an organic-carbon content 1 percent or more (absolute) lower.

Thaptic Epiaquands

DAGF. Other Epiaquands.

Typic Epiaquands

Gelaquands

Key to Subgroups

DAAA. Gelaquands that have a histic epipedon.

Histic Gelaquands

DAAB. Other Gelaquands that have gelic materials within 00 cm of the mineral soil surface.

Turbic Gelaquands

DAAC. Other Gelaquands that have, at a depth between 25 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, a layer 10 cm or more thick with more than 3.0 percent organic carbon and the colors of a mollic epipedon throughout, underlying one or more horizons with a total thickness of 10 cm or more that have a color value, moist, 1
unit or more higher and an organic-carbon content 1 percent or more (absolute) lower.

Thaptic Gelaquands

DAAD. Other Gelaquands.

Typic Gelaquands

Melanaquands

Key to Subgroups

DAFA. Melanaquands that have a lithic contact within 50 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Lithic Melanaquands

DAFB. Other Melanaquands that have a sum of extractable bases (by NH$_4$OAc) plus 1N KCl-extractable Al$^{3+}$ totaling less than 2.0 cmol(+) kg in the fine-earth fraction of one or more horizons with a total thickness of 30 cm or more at a depth between 25 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower.

Acraquoxic Melanaquands

DAFC. Other Melanaquands that have both:

1. On undried samples, a 1500 kPa water retention of 70 percent or more throughout a layer 35 cm or more thick within 100 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower; and

2. More than 6.0 percent organic carbon and the colors of a mollic epipedon throughout a layer 50 cm or more thick within 60 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Hydric Pachic Melanaquands

DAFD. Other Melanaquands that have, on undried samples, a 1500 kPa water retention of 70 percent or more throughout
a layer 35 cm or more thick within 100 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Hydric Melanaquands

DAFE. Other Melanaquands that have more than 6.0 percent organic carbon and the colors of a mollic epipedon throughout a layer 50 cm or more thick within 60 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Pachic Melanaquands

DAFF. Other Melanaquands that have, at a depth between 40 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, a layer 10 cm or more thick with more than 3.0 percent organic carbon and the colors of a mollic epipedon throughout, underlying one or more horizons with a total thickness of 10 cm or more that have a color value, moist, 1 unit or more higher and an organic-carbon content 1 percent or more (absolute) lower.

Thaptic Melanaquands

DAFG. Other Melanaquands.

Typic Melanaquands

Placaquands

Key to Subgroups

DACA. Placaquands that have a lithic contact within 50 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Lithic Placaquands

DACB. Other Placaquands that have both:

1. A histic epipedon; and
2. A horizon 15 cm or more thick that has 20 percent or
more (by volume) cemented soil material within 100 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Duric Histic Placaquands

DACC. Other Placaquands that have a horizon 15 cm or more thick that has 20 percent or more (by volume) cemented soil material within 100 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Duric Placaquands

DACD. Other Placaquands that have a histic epipedon.

Histic Placaquands

DACE. Other Placaquands that have, at a depth between 25 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, a layer 10 cm or more thick with more than 3.0 percent organic carbon and the colors of a mollic epipedon throughout, underlying one or more horizons with a total thickness of 10 cm or more that have a color value, moist, 1 unit or more higher and an organic-carbon content 1 percent or more (absolute) lower.

Thaptic Placaquands

DACF. Other Placaquands.

Typic Placaquands

Vitraquands

Key to Subgroups

DAEA. Vitraquands that have a lithic contact within 50 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Lithic Vitraquands

DAEB. Other Vitraquands that have a horizon 15 cm or more
thick that has 20 percent or more (by volume) cemented soil material within 100 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Duric Vitraquands

DAEC. Other Vitraquands that have a histic epipedon.

Histic Vitraquands

DAED. Other Vitraquands that have, at a depth between 25 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, a layer 10 cm or more thick with more than 3.0 percent organic carbon and the colors of a mollic epipedon throughout, underlying one or more horizons with a total thickness of 10 cm or more that have a color value, moist, 1 unit or more higher and an organic-carbon content 1 percent or more (absolute) lower.

Thaptic Vitraquands

DAEE. Other Vitraquands.

Typic Vitraquands

Cryands

Key to Great Groups

DCA. Cryands that have, in 75 percent or more of each pedon, a cemented horizon within 100 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Duricryands, p. 232

DCB. Other Cryands that have, on undried samples, a 1500 kPa water retention of 100 percent or more, by weighted average, throughout *either*:

1. One or more layers with a total thickness of 35 cm between the mineral soil surface or the top of an organic layer
with andic soil properties, whichever is shallower, and 100 cm from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, if there is no densic, lithic, or paralithic contact, duripan, or petrocalcic horizon within that depth; or

2. 60 percent or more of the horizon thickness between the mineral soil surface or the top of an organic layer with andic soil properties, whichever is shallower, and a densic, lithic, or paralithic contact, a duripan, or a petrocalcic horizon.

Hydrocryands, p. 237

DCC. Other Cryands that have a melanic epipedon.

Melanocryands, p. 238

DCD. Other Cryands that have a layer that meets the depth, thickness, and organic-carbon requirements for a melanic epipedon.

Fulvicryands, p. 233

DCE. Other Cryands that have a 1500 kPa water retention of less than 15 percent on air-dried samples and less than 30 percent on undried samples throughout 60 percent or more of the thickness either:

1. Within 60 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower, if there is no densic, lithic, or paralithic contact, a duripan, or a petrocalcic horizon within that depth; or

2. Between the mineral soil surface or the top of an organic layer with andic soil properties, whichever is shallower, and a densic, lithic, or paralithic contact, a duripan, or a petrocalcic horizon.

Vitricryands, p. 239

DCF. Other Cryands.

Haplocryands, p. 234
Duricryands
Key to Subgroups

DCAA. Duricryands that have, in some subhorizon at a depth between 50 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, aquic conditions for some time in normal years (or artificial drainage) and one or more of the following:

1. 2 percent or more redox concentrations; or
2. A color value, moist, of 4 or more and 50 percent or more chroma of 2 or less either in redox depletions on faces of peds or in the matrix if peds are absent; or
3. Enough active ferrous iron to give a positive reaction to alpha,alpha-dipyridyl at a time when the soil is not being irrigated.

Aquic Duricryands

DCAB. Other Duricryands that have both:

1. No horizons with more than 2.0 cmol(+)/kg Al\(^{3+}\) (by 1N KCl) in the fine-earth fraction and with a total thickness of 10 cm or more at a depth between 25 and 50 cm either from the mineral soil surface or from the top of an organic layer with andic properties, whichever is shallower; and
2. Saturation with water in one or more layers above the cemented horizon in normal years for either or both:
 a. 20 or more consecutive days; or
 b. 30 or more cumulative days.

Eutric Oxyaquic Duricryands

DCAC. Other Duricryands that are saturated with water in one or more layers above the cemented horizon in normal years for either or both:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Duricryands

DCAD. Other Duricryands that have no horizons with more than 2.0 cmol(+)\(\text{kg Al}^{3+}\) (by 1N KCl) in the fine-earth fraction and with a total thickness of 10 cm or more at a depth between 25 and 50 cm either from the mineral soil surface or from the top of an organic layer with andic properties, whichever is shallower.

Eutric Duricryands

DCAE. Other Duricryands.

Typic Duricryands

Fulvicryands

Key to Subgroups

DCDA. Fulvicryands that have a lithic contact within 50 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Lithic Fulvicryands

DCDB. Fulvicryands that have a folistic epipedon.

Folistic Fulvicryands

DCDC. Other Fulvicryands that have *both*:

1. No horizons with more than 2.0 cmol(+)\(\text{kg Al}^{3+}\) (by 1N KCl) in the fine-earth fraction and with a total thickness of 10 cm or more at a depth between 25 and 50 cm either from the mineral soil surface or from the top of an organic layer with andic properties, whichever is shallower; *and*

2. Throughout a layer 50 cm or more thick within 60 cm of the mineral soil surface or of the top of an organic layer with andic properties, whichever is shallower:

 a. More than 6.0 percent organic carbon, by weighted average; *and*
b. More than 4.0 percent organic carbon in all parts.

Eutric Pachic Fulvicryands

DCDD. Other Fulvicryands that have no horizons with more than 2.0 cmol(+)/kg Al^{3+} (by 1N KCl) in the fine-earth fraction and with a total thickness of 10 cm or more at a depth between 25 and 50 cm either from the mineral soil surface or from the top of an organic layer with andic properties, whichever is shallower.

Eutric Fulvicryands

DCDE. Other Fulvicryands that have, throughout a layer 50 cm or more thick within 60 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower:

1. More than 6.0 percent organic carbon, by weighted average; and
2. More than 4.0 percent organic carbon in all parts.

Pachic Fulvicryands

DCDF. Other Fulvicryands that have a 1500 kPa water retention of less than 15 percent on air-dried samples and less than 30 percent on undried samples throughout one or more layers that have andic soil properties and have a total thickness of 25 cm or more within 100 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Vitric Fulvicryands

DCDG. Other Fulvicryands.

Typic Fulvicryands

Haplocryands

Key to Subgroups

DCFA. Haplocryands that have a lithic contact within 50 cm
of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Lithic Haplocryands

DCFB. Other Haplocryands that have a folistic epipedon.

Folistic Haplocryands

DCFC. Other Haplocryands that have, in some subhorizon at a depth between 50 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, aquic conditions for some time in normal years (or artificial drainage) and one or more of the following:

1. 2 percent or more redox concentrations; or
2. A color value, moist, of 4 or more and 50 percent or more chroma of 2 or less either in redox depletions on faces of peds or in the matrix if peds are absent; or
3. Enough active ferrous iron to give a positive reaction to alpha,alpha-dipyridyl at a time when the soil is not being irrigated.

Aquic Haplocryands

DCFD. Other Haplocryands that are saturated with water within 100 cm of the mineral soil surface in normal years for either or both:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Haplocryands

DCFE. Other Haplocryands that have more than 2.0 cmol(+)/kg Al^{3+} (by 1N KCl) in the fine-earth fraction of one or more horizons with a total thickness of 10 cm or more at a depth between 25 and 50 cm either from the mineral soil
surface or from the top of an organic layer with andic soil properties, whichever is shallower.

Alic Haplocryands

DCFF. Other Haplocryands that have an albic horizon overlying a cambic horizon in 50 percent or more of each pedon or have a spodic horizon in 50 percent or more of each pedon.

Spodic Haplocryands

DCFG. Other Haplocryands that have a sum of extractable bases (by NH$_4$OAc) plus 1N KCl-extractable Al$^{3+}$ totaling less than 2.0 cmol(+)/kg in the fine-earth fraction of one or more horizons with a total thickness of 30 cm or more at a depth between 25 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower.

Acrudoxic Haplocryands

DCFH. Other Haplocryands that have a 1500 kPa water retention of less than 15 percent on air-dried samples and less than 30 percent on undried samples throughout one or more layers that have andic soil properties and have a total thickness of 25 cm or more within 100 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Vitric Haplocryands

DCFI. Other Haplocryands that have, at a depth between 25 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, a layer 10 cm or more thick with more than 3.0 percent organic carbon and the colors of a mollic epipedon throughout, underlying one or more horizons with a total thickness of 10 cm or more that have a color value, moist, 1
unit or more higher and an organic-carbon content 1 percent or more (absolute) lower.

Thaptic Haplocryands

DCFJ. Other Haplocryands that have a xeric soil moisture regime.

Xeric Haplocryands

DCFK. Other Haplocryands.

Typic Haplocryands

Hydrocryands

Key to Subgroups

DCBA. Hydrocryands that have a lithic contact within 50 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Lithic Hydrocryands

DCBB. Other Hydrocryands that have a placic horizon within 100 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Placic Hydrocryands

DCBC. Other Hydrocryands that have, in one or more horizons at a depth between 50 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, aquic conditions for some time in normal years (or artificial drainage) and *one or more* of the following:

1. 2 percent or more redox concentrations; *or*
2. A color value, moist, of 4 or more and 50 percent or more chroma of 2 or less either in redox depletions on faces of peds or in the matrix if peds are absent; *or*
3. Enough active ferrous iron to give a positive reaction
to alpha,alpha-dipyridyl at a time when the soil is not being irrigated.

Aquic Hydrocryands

DCBD. Other Hydrocryands that have, at a depth between 25 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, a layer 10 cm or more thick with more than 3.0 percent organic carbon and the colors of a mollic epipedon throughout, underlying one or more horizons with a total thickness of 10 cm or more that have a color value, moist, 1 unit or more higher and an organic-carbon content 1 percent or more (absolute) lower.

Thaptic Hydrocryands

DCBE. Other Hydrocryands.

Typic Hydrocryands

Melanocryands

Key to Subgroups

DCCA. Melanocryands that have a lithic contact within 50 cm of the mineral soil surface or of the top of an organic layer that has andic soil properties, whichever is shallower.

Lithic Melanocryands

DCCB. Other Melanocryands that have a 1500 kPa water retention of less than 15 percent on air-dried samples and less than 30 percent on undried samples throughout one or more layers that have andic soil properties and have a total thickness of 25 cm or more within 100 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Vitric Melanocryands

DCCC. Other Melanocryands.

Typic Melanocryands

238
Vitricryands
Key to Subgroups

DCEA. Vitricryands that have a lithic contact within 50 cm of the mineral soil surface or of the top of an organic layer that has andic soil properties, whichever is shallower.

Lithic Vitricryands

DCEB. Other Vitricryands that have a folistic epipedon.

Folistic Vitricryands

DCEC. Other Vitricryands that have, in one or more horizons at a depth between 50 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, aquic conditions for some time in normal years (or artificial drainage) and one or more of the following:

1. 2 percent or more redox concentrations; or
2. A color value, moist, of 4 or more and 50 percent or more chroma of 2 or less either in redox depletions on faces of peds or in the matrix if peds are absent; or
3. Enough active ferrous iron to give a positive reaction to alpha,alpha-dipyridyl at a time when the soil is not being irrigated.

Aquic Vitricryands

DCED. Other Vitricryands that are saturated with water in one or more layers within 100 cm of the mineral soil surface in normal years for either or both:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Vitricryands

DCEE. Other Vitricryands that have an albic horizon overlying
a cambic horizon in 50 percent or more of each pedon or have a spodic horizon in 50 percent or more of each pedon.

Spodic Vitricryands

DCEF. Other Vitricryands that have, at a depth between 25 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, a layer 10 cm or more thick with more than 3.0 percent organic carbon and the colors of a mollic epipedon throughout, underlying one or more horizons with a total thickness of 10 cm or more that have a color value, moist, 1 unit or more higher and an organic-carbon content 1 percent or more (absolute) lower.

Thaptic Vitricryands

DCEG. Other Vitricryands that have a xeric soil moisture regime and a mollic or umbric epipedon.

Humic Xeric Vitricryands

DCEH. Other Vitricryands that have a xeric soil moisture regime.

Xeric Vitricryands

DCEI. Other Vitricryands that have both:

1. An argillic or kandic horizon within 125 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower; and
2. A base saturation (by sum of cations) of less than 35 percent throughout the upper 50 cm or throughout the entire argillic or kandic horizon if it is less than 50 cm thick.

Ultic Vitricryands

DCEJ. Other Vitricryands that have an argillic or kandic horizon within 125 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Alfic Vitricryands
DCEK. Other Vitricryands that have a mollic or umbric epipedon.

Humic Vitricryands

DCEL. Other Vitricryands.

Typic Vitricryands

Gelands

Key to Great Groups

DBA. All Gelands are considered Vitrigelands.

Vitrigelands, p. 241

Key to Subgroups

DBAA. Vitrigelands that have a mollic or umbric epipedon.

Humic Vitrigelands

DBAB. Other Vitrigelands that have gelic materials within 200 cm of the mineral soil surface.

Turbic Vitrigelands

DBAC. Other Vitrigelands.

Typic Vitrigelands

Torrands

Key to Great Groups

DDA. Torrands that have, in 75 percent or more of each pedon, a cemented horizon within 100 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Duritorrands, p. 242

DDB. Other Torrands that have, on air-dried samples, a 1500 kPa water retention of less than 15 percent throughout 60 percent or more of the thickness *either*:

1. Within 60 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is
shallower, if there is no densic, lithic, or paralithic contact, duripan, or petrocalcic horizon within that depth; or

2. Between the mineral soil surface or the top of an organic layer with andic soil properties, whichever is shallower, and a densic, lithic, or paralithic contact, a duripan, or a petrocalcic horizon.

Vitritorrands, p. 243

DDC. Other Torrands.

Haplotorrands, p. 243

Duritorrands

Key to Subgroups

DDAA. Duritorrands that have a petrocalcic horizon within 100 cm of the mineral soil surface.

Petrocalcic Duritorrands

DDAB. Other Duritorrands that have, on air-dried samples, a 1500 kPa water retention of less than 15 percent throughout 60 percent or more of the thickness either:

1. Between the mineral soil surface or the top of an organic layer with andic soil properties, whichever is shallower, if there is no paralithic contact or duripan within that depth, and a point 60 cm below that depth; or

2. Between the mineral soil surface or the top of an organic layer with andic soil properties, whichever is shallower, and a paralithic contact or a duripan.

Vitric Duritorrands

DDAC. Other Duritorrands.

Typic Duritorrands
Haplotorrands

Key to Subgroups

DDCA. Haplotorrands that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Haplotorrands

DDCB. Other Haplotorrands that have a horizon 15 cm or more thick that has 20 percent or more (by volume) cemented soil material within 100 cm of the mineral soil surface.

Duric Haplotorrands

DDCC. Other Haplotorrands that have a calcic horizon within 125 cm of the mineral soil surface.

Calcic Haplotorrands

DDCD. Other Haplotorrands.

Typic Haplotorrands

Vitritorrands

Key to Subgroups

DDBA. Vitritorrands that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Vitritorrands

DDBB. Other Vitritorrands that have a horizon 15 cm or more thick that has 20 percent or more (by volume) cemented soil material within 100 cm of the mineral soil surface.

Duric Vitritorrands

DDBC. Other Vitritorrands that have, in one or more horizons at a depth between 50 and 100 cm from the mineral soil surface, aquic conditions for some time in normal years (or artificial drainage) and one or more of the following:

1. 2 percent or more redox concentrations; or
2. A color value, moist, of 4 or more and 50 percent or more
chroma of 2 or less either in redox depletions on faces of peds or in the matrix if peds are absent; or

3. Enough active ferrous iron to give a positive reaction to alpha,alpha-dipyridyl at a time when the soil is not being irrigated.

Aquic Vitritorrands

DDBD. Other Vitritorrands that have a calcic horizon within 125 cm of the mineral soil surface.

Calcic Vitritorrands

DDBE. Other Vitritorrands.

Typic Vitritorrands

Udands

Key to Great Groups

DHA. Udands that have, in half or more of each pedon, a placic horizon within 100 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Placudands, p. 262

DHB. Other Udands that have, in 75 percent or more of each pedon, a cemented horizon within 100 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Durudands, p. 245

DHC. Other Udands that have a melanic epipedon.

Melanudands, p. 258

DHD. Other Udands that have, on undried samples, a 1500 kPa water retention of 100 percent or more, by weighted average, throughout either:

1. One or more layers with a total thickness of 35 cm between the mineral soil surface or the top of an organic layer
with andic soil properties, whichever is shallower, and 100 cm from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, if there is no densic, lithic, or paralithic contact, duripan, or petrocalcic horizon within that depth; or

2. 60 percent or more of the horizon thickness between the mineral soil surface or the top of an organic layer with andic soil properties, whichever is shallower, and a densic, lithic, or paralithic contact, a duripan, or a petrocalcic horizon.

Hydrudands, p. 256

DHE. Other Udands that have a layer that meets the depth, thickness, and organic-carbon requirements for a melanic epipedon.

Fulvudands, p. 246

DHF. Other Udands.

Hapludands, p. 250

Durudands

Key to Subgroups

DHBA. Durudands that have, in one or more horizons above the cemented horizon, aquic conditions for some time in normal years (or artificial drainage) and one or more of the following:

1. 2 percent or more redox concentrations; or

2. A color value, moist, of 4 or more and 50 percent or more chroma of 2 or less either in redox depletions on faces of peds or in the matrix if peds are absent; or

3. Enough active ferrous iron to give a positive reaction to alpha,alpha-dipyridyl at a time when the soil is not being irrigated.

Aquic Durudands
DHBB. Other Durudands that have no horizons with more than 2.0 cmol(+)/kg Al\(^{3+}\) (by 1N KCl) in the fine-earth fraction and with a total thickness of 10 cm or more at a depth between 25 and 50 cm either from the mineral soil surface or from the top of an organic layer with andic properties, whichever is shallower.

Eutric Durudands

DHBC. Other Durudands that have a sum of extractable bases (by NH\(_4\)OAc) plus 1N KCl-extractable Al\(^{3+}\) totaling less than 2.0 cmol(+)/kg in the fine-earth fraction of one or more horizons with a total thickness of 30 cm or more at a depth between 25 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, and the cemented horizon.

Acrudoxic Durudands

DHBD. Other Durudands that have, on undried samples, a 1500 kPa water retention of 70 percent or more throughout a layer 35 cm or more thick above the cemented horizon.

Hydric Durudands

DHBE. Other Durudands that have more than 6.0 percent organic carbon and the colors of a mollic epipedon throughout a layer 50 cm or more thick within 60 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Pachic Durudands

DHBF. Other Durudands.

Typic Durudands

Fulvudands

Key to Subgroups

DHEA. Fulvudands that have *both*:

1. A lithic contact within 50 cm of the mineral soil surface
or of the top of an organic layer with andic soil properties, whichever is shallower; and

2. No horizons with more than 2.0 cmol(+)/kg Al\(^{3+}\) (by 1N KCl) in the fine-earth fraction and with a total thickness of 10 cm or more at a depth between 25 cm from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, and the lithic contact.

Eutric Lithic Fulvudands

DHEB. Other Fulvudands that have a lithic contact within 50 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Lithic Fulvudands

DHEC. Other Fulvudands that have, in one or more horizons at a depth between 50 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, aquic conditions for some time in normal years (or artificial drainage) and one or more of the following:

1. 2 percent or more redox concentrations; or
2. A color value, moist, of 4 or more and 50 percent or more chroma of 2 or less either in redox depletions on faces of peds or in the matrix if peds are absent; or
3. Enough active ferrous iron to give a positive reaction to alpha,alpha-dipyridyl at a time when the soil is not being irrigated.

Aquic Fulvudands

DHED. Other Fulvudands that are saturated with water within 100 cm of the mineral soil surface in normal years for either or both:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Fulvudands
DHEE. Other Fulvudands that have, on undried samples, a 1500 kPa water retention of 70 percent or more throughout a layer 35 cm or more thick within 100 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Hydric Fulvudands

DHEF. Other Fulvudands that have a sum of extractable bases (by NH$_4$OAc) plus 1N KCl-extractable Al$^{3+}$ totaling less than 2.0 cmol(+)/kg in the fine-earth fraction of one or more horizons with a total thickness of 30 cm or more at a depth between 25 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower.

Acrudoxic Fulvudands

DHEG. Other Fulvudands that have both:

1. An argillic or kandic horizon within 125 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower; and
2. A base saturation (by sum of cations) of less than 35 percent throughout the upper 50 cm of the argillic or kandic horizon.

Ultic Fulvudands

DHEH. Other Fulvudands that have both:

1. No horizons with more than 2.0 cmol(+)/kg Al$^{3+}$ (by 1N KCl) in the fine-earth fraction and with a total thickness of 10 cm or more at a depth between 25 and 50 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower; and
2. Throughout a layer 50 cm or more thick within 60 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower:
a. More than 6.0 percent organic carbon, by weighted average; and
b. More than 4.0 percent organic carbon in all parts.

Eutric Pachic Fulvudands

DHEI. Other Fulvudands that have no horizons with more than 2.0 cmol(+)/kg Al\(^{3+}\) (by 1N KCl) in the fine-earth fraction and with a total thickness of 10 cm or more at a depth between 25 and 50 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower.

Eutric Fulvudands

DHEJ. Other Fulvudands that have, throughout a layer 50 cm or more thick within 60 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower:

1. More than 6.0 percent organic carbon, by weighted average; and
2. More than 4.0 percent organic carbon in all parts.

Pachic Fulvudands

DHEK. Other Fulvudands that have, at a depth between 40 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, a layer 10 cm or more thick with more than 3.0 percent organic carbon and the colors of a mollic epipedon throughout, underlying one or more horizons with a total thickness of 10 cm or more that have a color value, moist, 1 unit or more higher and an organic-carbon content 1 percent or more (absolute) lower.

Thaptic Fulvudands

DHEL. Other Fulvudands.

Typic Fulvudands
Hapludands

Key to Subgroups

DHFA. Hapludands that have a lithic contact within 50 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Lithic Hapludands

DHFB. Other Hapludands that have anthraquic conditions.

Anthraquic Hapludands

DHFC. Other Hapludands that have both:

1. A horizon 15 cm or more thick that has 20 percent or more (by volume) cemented soil material within 100 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower; and

2. In one or more horizons at a depth between 50 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, aquic conditions for some time in normal years (or artificial drainage) and one or more of the following:
 a. 2 percent or more redox concentrations; or
 b. A color value, moist, of 4 or more and 50 percent or more chroma of 2 or less either in redox depletions on faces of peds or in the matrix if peds are absent; or
 c. Enough active ferrous iron to give a positive reaction to alpha,alpha-dipyridyl at a time when the soil is not being irrigated.

Aquic Duric Hapludands

DHFD. Other Hapludands that have a horizon 15 cm or more thick that has 20 percent or more (by volume) cemented soil material within 100 cm of the mineral soil surface or of the
top of an organic layer with andic soil properties, whichever is shallower.

Duric Hapludands

DHFE. Other Hapludands that have, in one or more horizons at a depth between 50 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, aquic conditions for some time in normal years (or artificial drainage) and one or more of the following:

1. 2 percent or more redox concentrations; or
2. A color value, moist, of 4 or more and 50 percent or more chroma of 2 or less either in redox depletions on faces of peds or in the matrix if peds are absent; or
3. Enough active ferrous iron to give a positive reaction to alpha,alpha-dipyridyl at a time when the soil is not being irrigated.

Aquic Hapludands

DHFF. Other Hapludands that are saturated with water within 100 cm of the mineral soil surface in normal years for either or both:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Hapludands

DHFG. Other Hapludands that have more than 2.0 cmol(+) kg Al^{3+} (by 1N KCl) in the fine-earth fraction of one or more horizons with a total thickness of 10 cm or more at a depth between 25 and 50 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower.

Alic Hapludands

DHFH. Other Hapludands that have both:
1. A sum of extractable bases (by NH$_4$OAc) plus 1N KCl-extractable Al$^{3+}$ totaling less than 2.0 cmol(+)/kg in the fine-earth fraction of one or more horizons with a total thickness of 30 cm or more at a depth between 25 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower; and

2. On undried samples, a 1500 kPa water retention of 70 percent or more throughout a layer 35 cm or more thick within 100 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Acrudoxic Hydric Hapludands

DHFI. Other Hapludands that have, at a depth between 25 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, *both*:

1. A sum of extractable bases (by NH$_4$OAc) plus 1N KCl-extractable Al$^{3+}$ totaling less than 2.0 cmol(+)/kg in the fine-earth fraction of one or more horizons with a total thickness of 30 cm or more; and

2. A layer 10 cm or more thick with more than 3.0 percent organic carbon and the colors of a mollic epipedon throughout, underlying one or more horizons with a total thickness of 10 cm or more that have a color value, moist, 1 unit or more higher and an organic-carbon content 1 percent or more (absolute) lower.

Acrudoxic Thaptic Hapludands

DHFJ. Other Hapludands that have *both*:

1. A sum of extractable bases (by NH$_4$OAc) plus 1N KCl-extractable Al$^{3+}$ totaling less than 2.0 cmol(+)/kg in the fine-earth fraction of one or more horizons with a total thickness of 30 cm or more at a depth between 25 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower; and
2. An argillic or kandic horizon that has both:
 a. An upper boundary within 125 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower; and
 b. A base saturation (by sum of cations) of less than 35 percent throughout its upper 50 cm.

Acrudoxic Ultic Hapludands

DHFK. Other Hapludands that have a sum of extractable bases (by NH$_4$OAc) plus 1N KCl-extractable Al$^{3+}$ totaling less than 2.0 cmol(+)/kg in the fine-earth fraction of one or more horizons with a total thickness of 30 cm or more at a depth between 25 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower.

Acrudoxic Hapludands

DHFL. Other Hapludands that have a 1500 kPa water retention of less than 15 percent on air-dried samples and less than 30 percent on undried samples throughout one or more layers that have andic soil properties and have a total thickness of 25 cm or more within 100 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Vitric Hapludands

DHFM. Other Hapludands that have both:
 1. On undried samples, a 1500 kPa water retention of 70 percent or more throughout a layer 35 cm or more thick within 100 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower; and
 2. At a depth between 25 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, a layer 10 cm or more thick with more than 3.0 percent organic carbon and
the colors of a mollic epipedon throughout, underlying one or more horizons with a total thickness of 10 cm or more that have a color value, moist, 1 unit or more higher and an organic-carbon content 1 percent or more (absolute) lower.

Hydric Thaptic Hapludands

DHFN. Other Hapludands that have, on undried samples, a 1500 kPa water retention of 70 percent or more throughout a layer 35 cm or more thick within 100 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Hydric Hapludands

DHFO. Other Hapludands that have *both*:

1. A sum of extractable bases (by NH$_4$OAc) of more than 25.0 cmol(+)/kg in the fine-earth fraction throughout one or more horizons with a total thickness of 15 cm or more at a depth between 25 and 75 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower; *and*

2. At a depth between 25 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, a layer 10 cm or more thick with more than 3.0 percent organic carbon and the colors of a mollic epipedon throughout, underlying one or more horizons with a total thickness of 10 cm or more that have a color value, moist, 1 unit or more higher and an organic-carbon content 1 percent or more (absolute) lower.

Eutric Thaptic Hapludands

DHFP. Other Hapludands that have, at a depth between 25 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, a layer 10 cm or more thick with more than 3.0 percent organic carbon and the colors of a mollic epipedon throughout, underlying one or more horizons with a total
thickness of 10 cm or more that have a color value, moist, 1 unit or more higher and an organic-carbon content 1 percent or more (absolute) lower.

Thaptic Hapludands

DHFQ. Other Hapludands that have a sum of extractable bases (by \(\text{NH}_4\text{OAc}\)) of more than 25.0 cmol(+) per kg in the fine-earth fraction throughout one or more horizons with a total thickness of 15 cm or more at a depth between 25 and 75 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower.

Eutric Hapludands

DHFR. Other Hapludands that have an oxic horizon within 125 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Oxic Hapludands

DHFS. Other Hapludands that have both:

1. An argillic or kandic horizon within 125 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower; and
2. A base saturation (by sum of cations) of less than 35 percent throughout the upper 50 cm of the argillic or kandic horizon.

Ultic Hapludands

DHFT. Other Hapludands that have an argillic or kandic horizon within 125 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Alfic Hapludands

DHFU. Other Hapludands.

Typic Hapludands
Hydrudands

Key to Subgroups

DHDA. Hydrudands that have a lithic contact within 50 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Lithic Hydrudands

DHDB. Other Hydrudands that have, in one or more horizons at a depth between 50 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, aquic conditions for some time in normal years (or artificial drainage) and one or more of the following:

1. 2 percent or more redox concentrations; or
2. A color value, moist, of 4 or more and 50 percent or more chroma of 2 or less either in redox depletions on faces of peds or in the matrix if peds are absent; or
3. Enough active ferrous iron to give a positive reaction to alpha,alpha-dipyridyl at a time when the soil is not being irrigated.

Aquic Hydrudands

DHDC. Other Hydrudands that have, at a depth between 25 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, both:

1. A sum of extractable bases (by NH$_4$OAc) plus 1N KCl-extractable Al$^{3+}$ totaling less than 2.0 cmol(+)kg in the fine-earth fraction of one or more horizons with a total thickness of 30 cm or more; and
2. A layer 10 cm or more thick with more than 3.0 percent organic carbon and the colors of a mollic epipedon throughout, underlying one or more horizons with a total thickness of 10 cm or more that have a color value, moist, 1
unit or more higher and an organic-carbon content 1 percent or more (absolute) lower.

Acrudoxic Thaptic Hydrudands

DHDD. Other Hydrudands that have a sum of extractable bases (by NH$_4$OAc) plus 1N KCl-extractable Al$^{3+}$ totaling less than 2.0 cmol(+)/kg in the fine-earth fraction of one or more horizons with a total thickness of 30 cm or more at a depth between 25 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower.

Acrudoxic Hydrudands

DHDE. Other Hydrudands that have, at a depth between 25 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, a layer 10 cm or more thick with more than 3.0 percent organic carbon and the colors of a mollic epipedon throughout, underlying one or more horizons with a total thickness of 10 cm or more that have a color value, moist, 1 unit or more higher and an organic-carbon content 1 percent or more (absolute) lower.

Thaptic Hydrudands

DHDF. Other Hydrudands that have a sum of extractable bases (by NH$_4$OAc) of more than 25.0 cmol(+)/kg in the fine-earth fraction throughout one or more horizons with a total thickness of 15 cm or more at a depth between 25 and 75 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower.

Eutric Hydrudands

DHDG. Other Hydrudands that have *both*:

1. An argillic or kandic horizon within 125 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower; *and*
2. A base saturation (by sum of cations) of less than 35 percent throughout the upper 50 cm of the argillic or kandic horizon.

Ultic Hydrudands

DHDH. Other Hydrudands.

Typic Hydrudands

Melanudands

Key to Subgroups

DHCA. Melanudands that have a lithic contact within 50 cm of the mineral soil surface or of the top of an organic layer that has andic soil properties, whichever is shallower.

Lithic Melanudands

DHCB. Other Melanudands that have anthraquic conditions.

Anthraquic Melanudands

DHCC. Other Melanudands that have, in one or more horizons at a depth between 50 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, aquic conditions for some time in normal years (or artificial drainage) and one or more of the following:

1. 2 percent or more redox concentrations; or
2. A color value, moist, of 4 or more and 50 percent or more chroma of 2 or less either in redox depletions on faces of peds or in the matrix if peds are absent; or
3. Enough active ferrous iron to give a positive reaction to alpha,alpha-dipyridyl at a time when the soil is not being irrigated.

Aquic Melanudands

DHCD. Other Melanudands that have both:

1. A sum of extractable bases (by NH₄OAc) plus 1N KCl-
extractable Al\(^{3+}\) totaling less than \(2.0\) cmol(+)\(/\text{kg}\) in the fine-earth fraction of one or more horizons with a total thickness of 30 cm or more at a depth between 25 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower; \textit{and}

2. A 1500 kPa water retention of less than 15 percent on air-dried samples and less than 30 percent on undried samples throughout one or more layers that have andic soil properties and have a total thickness of 25 cm or more within 100 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

\textbf{Acrudoxic Vitric Melanudands}

\textbf{DHCE.} Other Melanudands that have \textit{both}:

1. A sum of extractable bases (by NH\(_4\)OAc) plus 1N KCl-extractable Al\(^{3+}\) totaling less than \(2.0\) cmol(+)\(/\text{kg}\) in the fine-earth fraction of one or more horizons with a total thickness of 30 cm or more at a depth between 25 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower; \textit{and}

2. On undried samples, a 1500 kPa water retention of 70 percent or more throughout a layer 35 cm or more thick within 100 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

\textbf{Acrudoxic Hydric Melanudands}

\textbf{DHCF.} Other Melanudands that have a sum of extractable bases (by NH\(_4\)OAc) plus 1N KCl-extractable Al\(^{3+}\) totaling less than \(2.0\) cmol(+)\(/\text{kg}\) in the fine-earth fraction of one or more horizons with a total thickness of 30 cm or more at a depth between 25 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower.

\textbf{Acrudoxic Melanudands}
DHCG. Other Melanudands that have both:

1. More than 6.0 percent organic carbon and the colors of a mollic epipedon throughout a layer 50 cm or more thick within 60 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower; and

2. A 1500 kPa water retention of less than 15 percent on air-dried samples and less than 30 percent on undried samples throughout one or more layers that have andic soil properties and have a total thickness of 25 cm or more within 100 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Pachic Vitric Melanudands

DHCH. Other Melanudands that have a 1500 kPa water retention of less than 15 percent on air-dried samples and less than 30 percent on undried samples throughout one or more layers that have andic soil properties and have a total thickness of 25 cm or more within 100 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Vitric Melanudands

DHCI. Other Melanudands that have both:

1. On undried samples, a 1500 kPa water retention of 70 percent or more throughout a layer 35 cm or more thick within 100 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower; and

2. More than 6.0 percent organic carbon and the colors of a mollic epipedon throughout a layer 50 cm or more thick within 60 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Hydric Pachic Melanudands

DH CJ. Other Melanudands that have more than 6.0 percent organic carbon and the colors of a mollic epipedon throughout
a layer 50 cm or more thick within 60 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Pachic Melanudands

DHCK. Other Melanudands that have, on undried samples, a 1500 kPa water retention of 70 percent or more throughout a layer 35 cm or more thick within 100 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Hydric Melanudands

DHCL. Other Melanudands that have, at a depth between 40 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, a layer 10 cm or more thick with more than 3.0 percent organic carbon and the colors of a mollic epipedon throughout, underlying one or more horizons with a total thickness of 10 cm or more that have a color value, moist, 1 unit or more higher and an organic-carbon content 1 percent or more (absolute) lower.

Thaptic Melanudands

DHCM. Other Melanudands that have both:

1. An argillic or kandic horizon within 125 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower; and

2. A base saturation (by sum of cations) of less than 35 percent throughout the upper 50 cm of the argillic or kandic horizon.

Ultic Melanudands

DHCN. Other Melanudands that have a sum of extractable bases (by NH$_4$OAc) of more than 25.0 cmol(+)/kg in the fine-earth fraction throughout one or more horizons with a total thickness of 15 cm or more at a depth between 25 and 75
cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower.

Eutric Melanudands

DHCO. Other Melanudands.

Typic Melanudands

Placudands

Key to Subgroups

DHAA. Placudands that have a lithic contact within 50 cm of the mineral soil surface or of the top of an organic layer that has andic soil properties, whichever is shallower.

Lithic Placudands

DHAB. Other Placudands that have, in one or more horizons at a depth between 50 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, and the placic horizon, aquic conditions for some time in normal years (or artificial drainage) and one or more of the following:

1. 2 percent or more redox concentrations; or
2. A color value, moist, of 4 or more and 50 percent or more chroma of 2 or less either in redox depletions on faces of peds or in the matrix if peds are absent; or
3. Enough active ferrous iron to give a positive reaction to alpha, alpha-dipyridyl at a time when the soil is not being irrigated.

Aquic Placudands

DHAC. Other Placudands that have a sum of extractable bases (by NH₄OAc) plus 1N KCl-extractable Al³⁺ totaling less than 2.0 cmol(+) /kg in the fine-earth fraction of one or more horizons with a total thickness of 30 cm or more at a depth between 25 cm either from the mineral soil surface or from the
top of an organic layer with andic soil properties, whichever is shallower, and the placic horizon.

Acrudoxic Placudands

DHAD. Other Placudands that have, on undried samples, a 1500 kPa water retention of 70 percent or more throughout a layer 35 cm or more thick within 100 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Hydric Placudands

DHAE. Other Placudands.

Typic Placudands

Ustands

Key to Great Groups

DGA. Ustands that have, in 75 percent or more of each pedon, a cemented horizon within 100 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Durustands, p. 263

DGB. Other Ustands.

Haplustands, p. 264

Durustands

Key to Subgroups

DGAA. Durustands that have, in one or more horizons at a depth between 50 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, aquic conditions for some time in normal years (or artificial drainage) and one or more of the following:

1. 2 percent or more redox concentrations; or
2. A color value, moist, of 4 or more and 50 percent or more
chroma of 2 or less either in redox depletions on faces of peds or in the matrix if peds are absent; or

3. Enough active ferrous iron to give a positive reaction to alpha,alpha-dipyridyl at a time when the soil is not being irrigated.

Aquic Durustands

DGAB. Other Durustands that have, at a depth between 25 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, a layer 10 cm or more thick with more than 3.0 percent organic carbon and the colors of a mollic epipedon throughout, underlying one or more horizons with a total thickness of 10 cm or more that have a color value, moist, 1 unit or more higher and an organic-carbon content 1 percent or more (absolute) lower.

Thaptic Durustands

DGAC. Other Durustands that have a melanic, mollic, or umbric epipedon.

Humic Durustands

DGAD. Other Durustands.

Typic Durustands

Haplustands

Key to Subgroups

DGBA. Haplustands that have a lithic contact within 50 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Lithic Haplustands

DGBB. Other Haplustands that have, in one or more horizons at a depth between 50 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, aquic conditions for some
time in normal years (or artificial drainage) and one or more of the following:

1. 2 percent or more redox concentrations; or

2. A color value, moist, of 4 or more and 50 percent or more chroma of 2 or less either in redox depletions on faces of peds or in the matrix if peds are absent; or

3. Enough active ferrous iron to give a positive reaction to alpha, alpha-dipyridyl at a time when the soil is not being irrigated.

Aquic Haplustands

DGBC. Other Haplustands that have both:

1. A sum of extractable bases (by NH$_4$OAc) plus 1N KCl-extractable Al$^{3+}$ totaling less than 15.0 cmol(+)/kg in the fine-earth fraction throughout one or more horizons with a total thickness of 60 cm or more within 75 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower; and

2. A 1500 kPa water retention of less than 15 percent on air-dried samples and less than 30 percent on undried samples throughout one or more layers that have andic soil properties and have a total thickness of 25 cm or more within 100 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Dystric Vitric Haplustands

DGBD. Other Haplustands that have a 1500 kPa water retention of less than 15 percent on air-dried samples and less than 30 percent on undried samples throughout one or more layers that have andic soil properties and have a total thickness of 25 cm or more within 100 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Vitric Haplustands
DGBE. Other Haplustands that have more than 6.0 percent organic carbon and the colors of a mollic epipedon throughout a layer 50 cm or more thick within 60 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Pachic Haplustands

DGBF. Other Haplustands that have, at a depth between 25 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, a layer 10 cm or more thick with more than 3.0 percent organic carbon and the colors of a mollic epipedon throughout, underlying one or more horizons with a total thickness of 10 cm or more that have a color value, moist, 1 unit or more higher and an organic-carbon content 1 percent or more (absolute) lower.

Thaptic Haplustands

DGBG. Other Haplustands that have a calcic horizon within 125 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Calcic Haplustands

DGBH. Other Haplustands that have a sum of extractable bases (by \(\text{NH}_4 \text{OAc} \)) plus 1N KCl-extractable \(\text{Al}^{3+} \) totaling less than 15.0 cmol(+)kg in the fine-earth fraction throughout one or more horizons with a total thickness of 60 cm or more within 75 cm either of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Dystric Haplustands

DGBI. Other Haplustands that have an oxic horizon within 125 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Oxic Haplustands

DGBJ. Other Haplustands that have both:
1. An argillic or kandic horizon within 125 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower; and
2. A base saturation (by sum of cations) of less than 35 percent throughout the upper 50 cm or throughout the entire argillic or kandic horizon if it is less than 50 cm thick.

Ultic Haplustands

DGBK. Other Haplustands that have an argillic or kandic horizon within 125 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Alfic Haplustands

DGBL. Other Haplustands that have a melanic, mollic, or umbric epipedon.

Humic Haplustands

DGBM. Other Haplustands.

Typic Haplustands

Vitrands

Key to Great Groups

DFA. Vitrands that have an ustic soil moisture regime. **Ustivitrands**, p. 269

DFB. Other Vitrands. **Udivitrands**, p. 267

Udivitrands

Key to Subgroups

DFBA. Udivitrands that have a lithic contact within 50 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower. **Lithic Udivitrands**
DFBB. Other Udivitrands that have, in one or more horizons at a depth between 50 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, aquic conditions for some time in normal years (or artificial drainage) and one or more of the following:

1. 2 percent or more redox concentrations; or
2. A color value, moist, of 4 or more and 50 percent or more chroma of 2 or less either in redox depletions on faces of peds or in the matrix if peds are absent; or
3. Enough active ferrous iron to give a positive reaction to alpha,alpha-dipyridyl at a time when the soil is not being irrigated.

Aquic Udivitrands

DFBC. Other Udivitrands that are saturated with water within 100 cm of the mineral soil surface in normal years for either or both:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Udivitrands

DFBD. Other Udivitrands that have, at a depth between 25 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, a layer 10 cm or more thick with more than 3.0 percent organic carbon and the colors of a mollic epipedon throughout, underlying one or more horizons with a total thickness of 10 cm or more that have a color value, moist, 1 unit or more higher and an organic-carbon content 1 percent or more (absolute) lower.

Thaptic Udivitrands

DFBE. Other Udivitrands that have both:

1. An argillic or kandic horizon within 125 cm of the mineral
soil surface or of the top of an organic layer with andic soil properties, whichever is shallower; and
2. A base saturation (by sum of cations) of less than 35 percent throughout the upper 50 cm of the argillic or kandic horizon.

Ultic Udivitrands

DFBF. Other Udivitrands that have an argillic or kandic horizon within 125 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Alfic Udivitrands

DFBG. Other Udivitrands that have a melanic, mollic, or umbric epipedon.

Humic Udivitrands

DFBH. Other Udivitrands.

Typic Udivitrands

Ustivitrands

Key to Subgroups

DFAA. Ustivitrands that have a lithic contact within 50 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Lithic Ustivitrands

DFAB. Other Ustivitrands that have, in one or more horizons at a depth between 50 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, aquic conditions for some time in normal years (or artificial drainage) and one or more of the following:

1. 2 percent or more redox concentrations; or
2. A color value, moist, of 4 or more and 50 percent or more
chroma of 2 or less either in redox depletions on faces of peds or in the matrix if peds are absent; or

3. Enough active ferrous iron to give a positive reaction to alpha,alpha-dipyridyl at a time when the soil is not being irrigated.

Aquic Ustivitrands

DFAC. Other Ustivitrands that have, at a depth between 25 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, a layer 10 cm or more thick with more than 3.0 percent organic carbon and the colors of a mollic epipedon throughout, underlying one or more horizons with a total thickness of 10 cm or more that have a color value, moist, 1 unit or more higher and an organic-carbon content 1 percent or more (absolute) lower.

Thaptic Ustivitrands

DFAD. Other Ustivitrands that have a calcic horizon within 125 cm of the soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Calcic Ustivitrands

DFAE. Other Ustivitrands that have a melanic, mollic, or umbric epipedon.

Humic Ustivitrands

DFAF. Other Ustivitrands.

Typic Ustivitrands

Xerands

Key to Great Groups

DEA. Xerands that have a 1500 kPa water retention of less than 15 percent on air-dried samples and less than 30 percent on undried samples throughout 60 percent or more of the thickness either:
1. Within 60 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower, if there is no densic, lithic, or paralithic contact, duripan, or petrocalcic horizon within that depth; or

2. Between the mineral soil surface or the top of an organic layer with andic soil properties, whichever is shallower, and a densic, lithic, or paralithic contact, a duripan, or a petrocalcic horizon.

Vitrixerands, p. 273

DEB. Other Xerands that have a melanic epipedon.

Melanoxerands, p. 273

DEC. Other Xerands.

Haploxerands, p. 271

Haploxerands

Key to Subgroups

DECA. Haploxerands that have a lithic contact within 50 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Lithic Haploxerands

DECB. Other Haploxerands that have, in one or more horizons at a depth between 50 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, aquic conditions for some time in normal years (or artificial drainage) and one or more of the following:

1. 2 percent or more redox concentrations; or

2. A color value, moist, of 4 or more and 50 percent or more chroma of 2 or less either in redox depletions on faces of peds or in the matrix if peds are absent; or

3. Enough active ferrous iron to give a positive reaction
to alpha,alpha-dipyridyl at a time when the soil is not being irrigated.

Aquic Haploxerands

DECC. Other Haploxerands that have, at a depth between 25 and 100 cm from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, a layer 10 cm or more thick with more than 3.0 percent organic carbon and the colors of a mollic epipedon throughout, underlying one or more horizons with a total thickness of 10 cm or more that have a color value, moist, 1 unit or more higher and an organic-carbon content 1 percent or more (absolute) lower.

Thaptic Haploxerands

DECD. Other Haploxerands that have a calcic horizon within 125 cm of the mineral soil surface.

Calcic Haploxerands

DECE. Other Haploxerands that have both:

1. An argillic or kandic horizon within 125 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower; and
2. A base saturation (by sum of cations) of less than 35 percent throughout the upper 50 cm of the argillic or kandic horizon.

Ultic Haploxerands

DECF. Other Haploxerands that have both:

1. A mollic or umbric epipedon; and
2. An argillic or kandic horizon within 125 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Alfic Humic Haploxerands

DECG. Other Haploxerands that have an argillic or kandic
horizon within 125 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Alfic Haploxerands

DECH. Other Haploxerands that have a mollic or umbric epipedon.

Humic Haploxerands

DECI. Other Haploxerands.

Typic Haploxerands

Melanoxerands

Key to Subgroups

DEBA. Melanoxerands that have more than 6.0 percent organic carbon and the colors of a mollic epipedon throughout a layer 50 cm or more thick within 60 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Pachic Melanoxerands

DEBB. Other Melanoxerands.

Typic Melanoxerands

Vitrixerands

Key to Subgroups

DEAA. Vitrixerands that have a lithic contact within 50 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Lithic Vitrixerands

DEAB. Other Vitrixerands that have, in one or more horizons at a depth between 50 and 100 cm either from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, aquic conditions for some
time in normal years (or artificial drainage) and one or more of the following:

1. 2 percent or more redox concentrations; or
2. A color value, moist, of 4 or more and 50 percent or more chroma of 2 or less either in redox depletions on faces of peds or in the matrix if peds are absent; or
3. Enough active ferrous iron to give a positive reaction to alpha,alpha-dipyridyl at a time when the soil is not being irrigated.

Aquic Vitrixerands

DEAC. Other Vitrixerands that have, at a depth between 25 and 100 cm from the mineral soil surface or from the top of an organic layer with andic soil properties, whichever is shallower, a layer 10 cm or more thick with more than 3.0 percent organic carbon and the colors of a mollic epipedon throughout, underlying one or more horizons with a total thickness of 10 cm or more that have a color value, moist, 1 unit or more higher and an organic-carbon content 1 percent or more (absolute) lower.

Thaptic Vitrixerands

DEAD. Other Vitrixerands that have both:

1. A melanic, mollic, or umbric epipedon; and
2. An argillic or kandic horizon within 125 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Alfic Humic Vitrixerands

DEAE. Other Vitrixerands that have both:

1. An argillic or kandic horizon within 125 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower; and
2. A base saturation (by sum of cations) of less than 35
percent throughout the upper 50 cm or throughout the entire argillic or kandic horizon if it is less than 50 cm thick.

Ultic Vitixerands

DEAF. Other Vitixerands that have an argillic or kandic horizon within 125 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Alfic Vitixerands

DEAG. Other Vitixerands that have a melanic, mollic, or umbric epipedon.

Humic Vitixerands

DEAH. Other Vitixerands.

Typic Vitixerands
CHAPTER 7

Aridisols

Key to Suborders

GA. Aridisols that have a cryic soil temperature regime.
 Cryids, p. 320

GB. Other Aridisols that have a salic horizon within 100 cm of
 the soil surface.
 Salids, p. 347

GC. Other Aridisols that have a duripan within 100 cm of the
 soil surface.
 Durids, p. 329

GD. Other Aridisols that have a gypsic or petrogypsic
 horizon within 100 cm of the soil surface and do not have a
 petrocalcic horizon overlying these horizons.
 Gypsids, p. 337

GE. Other Aridisols that have an argillic or natric horizon and
 do not have a petrocalcic horizon within 100 cm of the soil
 surface.
 Argids, p. 277

GF. Other Aridisols that have a calcic or petrocalcic horizon
 within 100 cm of the soil surface.
 Calcids, p. 301

GG. Other Aridisols.
 Cambids, p. 308
Argids

Key to Great Groups

GEA. Argids that have a duripan or a petrocalcic or petrogypsic horizon within 150 cm of the soil surface.
Petroargids, p. 299

GEB. Other Argids that have a natric horizon.
Natrargids, p. 290

GEC. Other Argids that do not have a densic, lithic, or paralithic contact within 50 cm of the soil surface and have either:

1. A clay increase of 15 percent or more (absolute) within a vertical distance of 2.5 cm either within the argillic horizon or at its upper boundary; or

2. An argillic horizon that extends to 150 cm or more from the soil surface, that does not have a clay decrease with increasing depth of 20 percent or more (relative) from the maximum clay content, and that has, in 50 percent or more of the matrix in some part between 100 and 150 cm, either:
 a. Hue of 7.5YR or redder and chroma of 5 or more; or
 b. Hue of 7.5YR or redder and value, moist, of 3 or less and value, dry, of 4 or less.
Palearargids, p. 296

GED. Other Argids that have a gypsic horizon within 150 cm of the soil surface.
Gypsiargids, p. 283

GEE. Other Argids that have a calcic horizon within 150 cm of the soil surface.
Calciargids, p. 278

GEF. Other Argids.
Haplargids, p. 285
Calciargids
Key to Subgroups
GEEA. Calciargids that have a lithic contact within 50 cm of the soil surface.

Lithic Calciargids
GEEB. Other Calciargids that have both:
1. **One or both** of the following:
 a. Cracks within 125 cm of the soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the soil surface; *or*
 b. A linear extensibility of 6.0 cm or more between the soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact if shallower; *and*
2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric.

Xerertic Calciargids
GEEC. Other Calciargids that have both:
1. **One or both** of the following:
 a. Cracks within 125 cm of the soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the soil surface; *or*
 b. A linear extensibility of 6.0 cm or more between the soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact if shallower; *and*
2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on ustic.

Ustertic Calciargids

GEED. Other Calciargids that have *one or both* of the following:

1. Cracks within 125 cm of the soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the soil surface; or

2. A linear extensibility of 6.0 cm or more between the soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact if shallower.

Vertic Calciargids

GEEE. Other Calciargids that are *either*:

1. Irrigated and have aquic conditions for some time in normal years in one or more layers within 100 cm of the soil surface; or

2. Saturated with water in one or more layers within 100 cm of the soil surface for 1 month or more in normal years.

Aquic Calciargids

GEEF. Other Calciargids that:

1. Meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the soil surface to the top of an argillic horizon at a depth of 50 cm or more; and

2. Have a moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm
below the soil surface is 5 °C or higher and a soil moisture regime that borders on ustic.

Arenic Ustic Calciargids

GEEG. Other Calciargids that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the soil surface to the top of an argillic horizon at a depth of 50 cm or more.

Arenic Calciargids

GEEH. Other Calciargids that have both:

1. One or more horizons, within 100 cm of the soil surface and with a combined thickness of 15 cm or more, that contain 20 percent or more (by volume) durinodes or are brittle and have at least a firm rupture-resistance class when moist; and

2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric.

Durinodic Xeric Calciargids

GEEI. Other Calciargids that have one or more horizons, within 100 cm of the soil surface and with a combined thickness of 15 cm or more, that contain 20 percent or more (by volume) durinodes or are brittle and have at least a firm rupture-resistance class when moist.

Durinodic Calciargids

GEEJ. Other Calciargids that have both:

1. One or more horizons, within 100 cm of the soil surface and with a combined thickness of 15 cm or more, that contain 20 percent or more (by volume) nodules or concretions; and

2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the
soil surface is 5 °C or higher and a soil moisture regime that borders on xeric.

Petronodic Xeric Calciargids

GEEK. Other Calciargids that have both:
1. One or more horizons, within 100 cm of the soil surface and with a combined thickness of 15 cm or more, that contain 20 percent or more (by volume) nodules or concretions; and
2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on ustic

Petronodic Ustic Calciargids

GEEL. Other Calciargids that have one or more horizons, within 100 cm of the soil surface and with a combined thickness of 15 cm or more, that contain 20 percent or more (by volume) nodules or concretions.

Petronodic Calciargids

GEEM. Other Calciargids that have both:
1. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric; and
2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, one or both of the following:
 a. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
 b. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or
more is volcanic glass, and \[\text{(Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate) times 60]} \text{ plus the volcanic glass (percent) is 30 or more.}\n
Vitrixerandic Calciargids

GEEN. Other Calciargids that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, *one or both* of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; *or*

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and \[\text{(Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate) times 60]} \text{ plus the volcanic glass (percent) is 30 or more.}\n
Vitrandic Calciargids

GEEO. Other Calciargids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on xeric.

Xeric Calciargids

GEEP. Other Calciargids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on ustic.

Ustic Calciargids

GEEQ. Other Calciargids.

Typic Calciargids
Gypsiargids
Key to Subgroups
GEDA. Gypsiargids that are either:

1. Irrigated and have aquic conditions for some time in normal years in one or more layers within 100 cm of the soil surface; or
2. Are saturated with water in one or more layers within 100 cm of the soil surface for 1 month or more in normal years.

Aquic Gypsiargids

GEDB. Other Gypsiargids that have one or more horizons, within 100 cm of the soil surface and with a combined thickness of 15 cm or more, that either contain 20 percent or more (by volume) durinodes or are brittle and have at least a firm rupture-resistance class when moist.

Durinodic Gypsiargids

GEDC. Other Gypsiargids that have both:

1. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric; and
2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, one or both of the following:
 a. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
 b. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and [(Al plus 1/2 Fe, percent extracted
by ammonium oxalate) times 60] plus the volcanic glass (percent) is 30 or more.

Vitrixerandic Gypsiargids

GEDD. Other Gypsiargids that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, *one or both* of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; *or*

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and [(Al plus $\frac{1}{3}$ Fe, percent extracted by ammonium oxalate) times 60] plus the volcanic glass (percent) is 30 or more.

Vitrandic Gypsiargids

GEDE. Other Gypsiargids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on xeric.

Xeric Gypsiargids

GEDF. Other Gypsiargids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on ustic.

Ustic Gypsiargids

GEDG. Other Gypsiargids.

Typic Gypsiargids
Haplargids
Key to Subgroups

GEFA. Haplargids that have both:
1. A lithic contact within 50 cm of the soil surface; and
2. An argillic horizon that is discontinuous throughout each pedon.

Lithic Ruptic-Entic Haplargids

GEFB. Other Haplargids that have both:
1. A lithic contact within 50 cm of the soil surface; and
2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric.

Lithic Xeric Haplargids

GEFC. Other Haplargids that have both:
1. A lithic contact within 50 cm of the soil surface; and
2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on ustic.

Lithic Ustic Haplargids

GEFD. Other Haplargids that have a lithic contact within 50 cm of the soil surface.

Lithic Haplargids

GEFE. Other Haplargids that have both:
1. One or both of the following:
 a. Cracks within 125 cm of the soil surface that are 5 mm or more wide through a thickness of 30 cm or more
for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the soil surface; or

b. A linear extensibility of 6.0 cm or more between the soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact if shallower; and

2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric.

Xerertic Haplargids

GEFF. Other Haplargids that have both:

1. One or both of the following:
 a. Cracks within 125 cm of the soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the soil surface; or
 b. A linear extensibility of 6.0 cm or more between the soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact if shallower; and

2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on ustic.

Ustertic Haplargids

GEFG. Other Haplargids that have one or both of the following:

1. Cracks within 125 cm of the soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some
time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the soil surface; or

2. A linear extensibility of 6.0 cm or more between the soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact if shallower.

Vertic Haplargids

GEFH. Other Haplargids that are either:

1. Irrigated and have aquic conditions for some time in normal years in one or more layers within 100 cm of the soil surface; or

2. Saturated with water in one or more layers within 100 cm of the soil surface for 1 month or more in normal years.

Aquic Haplargids

GEFI. Other Haplargids that:

1. Meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the soil surface to the top of an argillic horizon at a depth of 50 cm or more; and

2. Have a moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on ustic.

Arenic Ustic Haplargids

GEFJ. Other Haplargids that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the soil surface to the top of an argillic horizon at a depth of 50 cm or more.

Arenic Haplargids

GEFK. Other Haplargids that have both:

1. One or more horizons, within 100 cm of the soil surface
and with a combined thickness of 15 cm or more, that contain 20 percent or more (by volume) durinodes or are brittle and have at least a firm rupture-resistance class when moist; and

2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric.

Durinodic Xeric Haplargids

GEFL. Other Haplargids that have one or more horizons, within 100 cm of the soil surface and with a combined thickness of 15 cm or more, that contain 20 percent or more (by volume) durinodes or are brittle and have at least a firm rupture-resistance class when moist.

Durinodic Haplargids

GEFM. Other Haplargids that have both:

1. One or more horizons, within 100 cm of the soil surface and with a combined thickness of 15 cm or more, that contain 20 percent or more (by volume) nodules or concretions; and

2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on ustic.

Petronodic Ustic Haplargids

GEFN. Other Haplargids that have one or more horizons, within 100 cm of the soil surface and with a combined thickness of 15 cm or more, that contain 20 percent or more (by volume) nodules or concretions.

Petronodic Haplargids

GEFO. Other Haplargids that have both:
1. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric; and

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, one or both of the following:
 a. More than 5 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
 b. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and [(Al plus 1/2 Fe, percent extracted by ammonium oxalate) times 60] plus the volcanic glass (percent) is 30 or more.

Vitrixerandic Haplargids

GEFP. Other Haplargids that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and [(Al plus 1/2 Fe, percent extracted by ammonium oxalate) times 60] plus the volcanic glass (percent) is 30 or more.

Vitrandic Haplargids

GEFQ. Other Haplargids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of
50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on xeric. **Xeric Haplargids**

GEFR. Other Haplargids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on xeric. **Ustic Haplargids**

GEFS. Other Haplargids. **Typic Haplargids**

Natrargids

Key to Subgroups

GEBA. Natrargids that have both:

1. A lithic contact within 50 cm of the soil surface; and
2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric. **Lithic Xeric Natrargids**

GEBB. Other Natrargids that have both:

1. A lithic contact within 50 cm of the soil surface; and
2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on ustic. **Lithic Ustic Natrargids**
GEBC. Other Natrargids that have a lithic contact within 50 cm of the soil surface.

Lithic Natrargids

GEBD. Other Natrargids that:

1. In normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on xeric; and

2. Have one or both of the following:
 a. Cracks within 15 cm of the soil surface that are 5 mm or more wide through a thickness of 0 cm or more for some time in most years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 15 cm of the soil surface; or
 b. A linear extensibility of 6.0 cm or more between the soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Xerertic Natrargids

GEBE. Other Natrargids that:

1. In normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on ustic; and

2. Have one or both of the following:
 a. Cracks within 125 cm of the soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in most years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the soil surface; or
 b. A linear extensibility of 6.0 cm or more between the soil
surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Ustertic Natrargids

GEBF. Other Natrargids that have *one or both* of the following:

1. Cracks within 125 cm of the soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the soil surface; *or*

2. A linear extensibility of 6.0 cm or more between the soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Natrargids

GEBG. Other Natrargids that are *either*:

1. Irrigated and have aquic conditions for some time in normal years in one or more layers within 100 cm of the soil surface; *or*

2. Saturated with water in one or more layers within 100 cm of the soil surface for 1 month or more in normal years.

Aquic Natrargids

GEBH. Other Natrargids that have *both*:

1. One or more horizons, within 100 cm of the soil surface and with a combined thickness of 15 cm or more, that contain 20 percent or more (by volume) durinodes or are brittle and have at least a firm rupture-resistance class when moist; *and*

2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric.

Durinodic Xeric Natrargids
GEBI. Other Natrargids that have one or more horizons, within 100 cm of the soil surface and with a combined thickness of 15 cm or more, that contain 20 percent or more (by volume) durinodes or are brittle and have at least a firm rupture-resistance class when moist.

Durinodic Natrargids

GEBJ. Other Natrargids that have one or more horizons, within 100 cm of the soil surface and with a combined thickness of 15 cm or more, that contain 20 percent or more (by volume) nodules or concretions.

Petronodic Natrargids

GEBK. Other Natrargids that have both:

1. Skeletans covering 10 percent or more of the surfaces of peds at a depth of 2.5 cm or more below the upper boundary of the natric horizon; and

2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on ustic.

Glossic Ustic Natrargids

GEBL. Other Natrargids that have both:

1. An exchangeable sodium percentage of less than 15 (or an SAR of less than 13) in 50 percent or more of the natric horizon; and

2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on ustic.

Haplic Ustic Natrargids

GEBM. Other Natrargids that have both:
1. An exchangeable sodium percentage of less than 15 (or an SAR of less than 13) in 50 percent or more of the natric horizon; and

2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric.

Haploxeralfic Natrargids

GEBN. Other Natrargids that have an exchangeable sodium percentage of less than 15 (or an SAR of less than 13) in 50 percent or more of the natric horizon.

Haplic Natrargids

GEBO. Other Natrargids that have both:

1. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric; and

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, one or both of the following:
 a. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
 b. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and \([\text{Al plus } \frac{1}{6} \text{ Fe, percent extracted by ammonium oxalate} \times 60] \) plus the volcanic glass (percent) is 30 or more.

Vitrixerandic Natrargids

GEBP. Other Natrargids that have, throughout one or more
horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and \([(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60] + \text{the volcanic glass (percent)}\) is 30 or more.

Vitrandic Natrargids

GEBQ. Other Natrargids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5°C or higher and have a soil moisture regime that borders on xeric.

Xeric Natrargids

GEBR. Other Natrargids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on ustic.

Ustic Natrargids

GEBS. Other Natrargids that have skeleton coverings 10 percent or more of the surfaces of peds at a depth of 2.5 cm or more below the upper boundary of the natric horizon.

Glossic Natrargids

GEBT. Other Natrargids.

Typic Natrargids
Paleargids

Key to Subgroups

GECA. Paleargids that have one or both of the following:

1. Cracks within 125 cm of the soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the soil surface; or

2. A linear extensibility of 6.0 cm or more between the soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Paleargids

GECB. Other Paleargids that are either:

1. Irrigated and have aquic conditions for some time in normal years in one or more layers within 100 cm of the soil surface; or

2. Saturated with water in one or more layers within 100 cm of the soil surface for 1 month or more in normal years.

Aquic Paleargids

GECC. Other Paleargids that:

1. Meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic horizon at a depth of 50 cm or more; and

2. Have a moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on ustic.

Arenic Ustic Paleargids

GECD. Other Paleargids that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from
the mineral soil surface to the top of an argillic horizon at a depth of 50 cm or more.

Arenic Paleargids

GECE. Other Paleargids that have a calcic horizon within 150 cm of the soil surface.

Calcic Paleargids

GECF. Other Paleargids that have both:

1. One or more horizons, within 100 cm of the soil surface and with a combined thickness of 15 cm or more, that contain 20 percent or more (by volume) durinodes or are brittle and have at least a firm rupture-resistance class when moist; and

2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric.

Durinodic Xeric Paleargids

GECG. Other Paleargids that have one or more horizons, within 100 cm of the soil surface and with a combined thickness of 15 cm or more, that contain 20 percent or more (by volume) durinodes or are brittle and have at least a firm rupture-resistance class when moist.

Durinodic Paleargids

GECH. Other Paleargids that have both:

1. One or more horizons, within 100 cm of the soil surface and with a combined thickness of 15 cm or more, that contain 20 percent or more (by volume) nodules or concretions; and

2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the
soil surface is 5 °C or higher and a soil moisture regime that borders on ustic.

Petronodic Ustic Paleargids

GECI. Other Paleargids that have one or more horizons, within 100 cm of the soil surface and with a combined thickness of 15 cm or more, that contain 20 percent or more (by volume) nodules or concretions.

Petronodic Paleargids

GECJ. Other Paleargids that have both:

1. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric; and

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, one or both of the following:

a. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

b. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and [(Al plus 1/2 Fe, percent extracted by ammonium oxalate) times 60] plus the volcanic glass (percent) is 30 or more.

Vitrixerandic Paleargids

GECK. Other Paleargids that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and \([(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60]\) plus the volcanic glass (percent) is 30 or more.

Vitrandic Paleargids

GECL. Other Paleargids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the surface is 5 °C or higher and have a soil moisture regime that borders on xeric.

Xeric Paleargids

GECM. Other Paleargids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the surface is 5 °C or higher and have a soil moisture regime that borders on ustic.

Ustic Paleargids

GECN. Other Paleargids.

Typic Paleargids

Petroargids

Key to Subgroups

GEAA. Petroargids that have both:

1. A petrogypsic horizon within 150 cm of the soil surface; and

2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the surface is 5 °C or higher and a soil moisture regime that borders on ustic.

Petrogypsic Ustic Petroargids
GEAB. Other Petroargids that have a petrogypsic horizon within 150 cm of the soil surface.

Petrogypsic Petroargids

GEAC. Other Petroargids that have both:

1. A duripan within 150 cm of the soil surface; and
2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric.

Duric Xeric Petroargids

GEAD. Other Petroargids that have a duripan within 150 cm of the soil surface.

Duric Petroargids

GEAE. Other Petroargids that have a natric horizon.

Natric Petroargids

GEAF. Other Petroargids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on xeric.

Xeric Petroargids

GEAG. Other Petroargids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on ustic.

Ustic Petroargids

GEAH. Other Petroargids.

Typic Petroargids
Calcids

Key to Great Groups

GFA. Calcids that have a petrocalcic horizon within 100 cm of the soil surface.

Petrocalcids, p. 307

GFB. Other Calcids.

Haplocalcids, p. 301

Haplocalcids

Key to Subgroups

GFBA. Haplocalcids that have both:

1. A lithic contact within 50 cm of the soil surface; and
2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is $5\,^\circ C$ or higher and a soil moisture regime that borders on xeric.

Lithic Xeric Haplocalcids

GFBB. Other Haplocalcids that have both:

1. A lithic contact within 50 cm of the soil surface; and
2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is $5\,^\circ C$ or higher and a soil moisture regime that borders on ustic.

Lithic Ustic Haplocalcids

GFBC. Other Haplocalcids that have a lithic contact within 50 cm of the soil surface.

Lithic Haplocalcids
GFBD. Other Haplocalcids that have *one or both* of the following:

1. Cracks within 125 cm of the soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the soil surface; *or*

2. A linear extensibility of 6.0 cm or more between the soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Haplocalcids

GFBE. Other Haplocalcids that:

1. Are *either*:

 a. Irrigated and have aquic conditions for some time in normal years in one or more layers within 100 cm of the soil surface; *or*

 b. Saturated with water in one or more layers within 100 cm of the soil surface for 1 month or more in normal years; *and*

2. Have one or more horizons, within 100 cm of the soil surface and with a combined thickness of 15 cm or more, that contain 20 percent or more (by volume) durinodes or are brittle and have at least a firm rupture-resistance class when moist.

Aquic Durinodic Haplocalcids

GBFB. Other Haplocalcids that are *either*:

1. Irrigated and have aquic conditions for some time in normal years in one or more layers within 100 cm of the soil surface; *or*

2. Saturated with water in one or more layers within 100 cm of the soil surface for 1 month or more in normal years.

Aquic Haplocalcids
GFBG. Other Haplocalcids that have both:

1. A duripan within 150 cm of the soil surface; and
2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric.

Duric Xeric Haplocalcids

GFBH. Other Haplocalcids that have a duripan within 150 cm of the soil surface.

Duric Haplocalcids

GFBI. Other Haplocalcids that have both:

1. One or more horizons, within 100 cm of the soil surface and with a combined thickness of 15 cm or more, that contain 20 percent or more (by volume) durinodes or are brittle and have at least a firm rupture-resistance class when moist; and
2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric.

Durinodic Xeric Haplocalcids

GFBJ. Other Haplocalcids that have one or more horizons, within 100 cm of the soil surface and with a combined thickness of 15 cm or more, that contain 20 percent or more (by volume) durinodes or are brittle and have at least a firm rupture-resistance class when moist.

Durinodic Haplocalcids

GFBK. Other Haplocalcids that have both:

1. One or more horizons, within 100 cm of the soil surface
and with a combined thickness of 15 cm or more, that contain 20 percent or more (by volume) nodules or concretions; *and*

2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric.

Petronodic Xeric Haplocalcids

GFBL. Other Haplocalcids that have *both*:

1. One or more horizons, within 100 cm of the soil surface and with a combined thickness of 15 cm or more, that contain 20 percent or more (by volume) nodules or concretions; *and*

2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on ustic.

Petronodic Ustic Haplocalcids

GFBM. Other Haplocalcids that have one or more horizons, within 100 cm of the soil surface and with a combined thickness of 15 cm or more, that contain 20 percent or more (by volume) nodules or concretions.

Petronodic Haplocalcids

GFBN. Other Haplocalcids that have *both*:

1. A horizon at least 25 cm thick within 100 cm of the soil surface that has an exchangeable sodium percentage of 15 or more (or an SAR of 13 or more) during at least 1 month in normal years; *and*

2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the
soil surface is 5 °C or higher and a soil moisture regime that borders on xeric.

Sodic Xeric Haplocalcids

GFBO. Other Haplocalcids that have *both*:

1. A horizon at least 25 cm thick within 100 cm of the soil surface that has an exchangeable sodium percentage of 15 or more (or an SAR of 13 or more) during at least 1 month in normal years; *and*

2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on ustic.

Sodic Ustic Haplocalcids

GFBP. Other Haplocalcids that have, in a horizon at least 25 cm thick within 100 cm of the mineral soil surface, an exchangeable sodium percentage of 15 or more (or an SAR of 13 or more) during at least 1 month in normal years.

Sodic Haplocalcids

GFBQ. Other Haplocalcids that have *both*:

1. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric; *and*

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, *one or both* of the following:

 a. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; *or*

 b. A fine-earth fraction containing 30 percent or more
particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and \[((\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60)\] plus the volcanic glass (percent) is 30 or more.

Vitrixerandic Haplocalcids

GFBR. Other Haplocalcids that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, *one or both* of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; *or*

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and \[((\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60)\] plus the volcanic glass (percent) is 30 or more.

Vitrandic Haplocalcids

GFBS. Other Haplocalcids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on xeric.

Xeric Haplocalcids

GBFT. Other Haplocalcids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on ustic.

Ustic Haplocalcids

GFBU. Other Haplocalcids.

Typic Haplocalcids
Petrocalcids

Key to Subgroups

GFAA. Petrocalcids that are either:
 1. Irrigated and have aquic conditions for some time in normal years in one or more layers within 100 cm of the soil surface; or
 2. Saturated with water in one or more layers within 100 cm of the soil surface for 1 month or more in normal years.

 Aquic Petrocalcids

GFAB. Other Petrocalcids that have a natric horizon.

 Natric Petrocalcids

GFAC. Other Petrocalcids that have both:
 1. An argillic horizon within 100 cm of the soil surface; and
 2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric.

 Xeralfic Petrocalcids

GFAD. Other Petrocalcids that have both:
 1. An argillic horizon within 100 cm of the soil surface; and
 2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on ustic.

 Ustalfic Petrocalcids

GFAE. Other Petrocalcids that have an argillic horizon within 100 cm of the soil surface.

 Argic Petrocalcids
GFAF. Other Petrocalcids that have both:
1. A calcic horizon overlying the petrocalcic horizon; and
2. A lithic contact within 50 cm of the soil surface.

Calcic Lithic Petrocalcids

GFAG. Other Petrocalcids that have a calcic horizon overlying the petrocalcic horizon.

Calcic Petrocalcids

GFAH. Other Petrocalcids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on xeric.

Xeric Petrocalcids

GFAI. Other Petrocalcids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on ustic.

Ustic Petrocalcids

GFAJ. Other Petrocalcids.

Typic Petrocalcids

Cambids

Key to Great Groups

GGA. Cambids that are either:
1. Irrigated and have aquic conditions for some time in normal years in one or more layers within 100 cm of the soil surface; or
2. Saturated with water in one or more layers within 100 cm of the soil surface for 1 month or more in normal years.

Aquicambids, p. 309
GGB. Other Cambids that have a duripan or a petrocalcic or petrogypsic horizon within 150 cm of the soil surface.

Petrocambids, p. 318

GGC. Other Cambids that have an anthropic epipedon.

Anthracambids, p. 309

GGD. Other Cambids.

Haplocambids, p. 311

Anthracambids

Key to Subgroups

GGCA. All Anthracambids.

Typic Anthracambids

Aquicambids

Key to Subgroups

GGAA. Aquicambids that have, in a horizon at least 25 cm thick within 100 cm of the soil surface, an exchangeable sodium percentage of 15 or more (or an SAR of 13 or more) during at least 1 month in normal years.

Sodic Aquicambids

GGAB. Other Aquicambids that have both:

1. One or more horizons, within 100 cm of the soil surface and with a combined thickness of 15 cm or more, that contain 20 percent or more (by volume) durinodes or are brittle and have at least a firm rupture-resistance class when moist; and

2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric.

Durinodic Xeric Aquicambids

GGAC. Other Aquicambids that have one or more horizons,
within 100 cm of the soil surface and with a combined thickness of 15 cm or more, that contain 20 percent or more (by volume) durinodes or are brittle and have at least a firm rupture-resistance class when moist.

Durinodic Aquicambids

GGAD. Other Aquicambids that have one or more horizons, within 100 cm of the soil surface and with a combined thickness of 15 cm or more, that contain 0 percent or more (by volume) nodules or concretions.

Petronodic Aquicambids

GGAE. Other Aquicambids that have *both*:

1. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric; *and*
2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, *one or both* of the following:
 a. More than 5 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; *or*
 b. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and [(Al plus 1/7 Fe, percent extracted by ammonium oxalate) times 60] plus the volcanic glass (percent) is 30 or more.

Vitrixerandic Aquicambids

GGAF. Other Aquicambids that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, *one or both* of the following:

1. More than 35 percent (by volume) fragments coarser
than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and [(Al plus 1\text{/}2 \text{Fe}, percent extracted by ammonium oxalate) times 60] plus the volcanic glass (percent) is 30 or more.

Vitrandic Aquicambids

GGAG. Other Aquicambids that have an irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluventic Aquicambids

GGAH. Other Aquicambids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on xeric.

Xeric Aquicambids

GGAJ. Other Aquicambids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on ustic.

Ustic Aquicambids

GGAI. Other Aquicambids.

Typic Aquicambids

Haplocambids

Key to Subgroups

GGDA. Haplocambids that have both:

1. A lithic contact within 50 cm of the soil surface; and
2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric.

Lithic Xeric Haplocambids

GGDB. Other Haplocambids that have both:
1. A lithic contact within 50 cm of the soil surface; and
2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on ustic.

Lithic Ustic Haplocambids

GGDC. Other Haplocambids that have a lithic contact within 50 cm of the soil surface.

Lithic Haplocambids

GGDD. Other Haplocambids that have both:
1. One or both of the following:
 a. Cracks within 125 cm of the soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the soil surface; or
 b. A linear extensibility of 6.0 cm or more between the soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact if shallower; and
2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the
soil surface is 5 °C or higher and a soil moisture regime that borders on xeric.

Xerertic Haplocambids

GGDE. Other Haplocambids that have *both*:

1. *One or both* of the following:

 a. Cracks within 125 cm of the soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the soil surface; *or*

 b. A linear extensibility of 6.0 cm or more between the soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact if shallower; *and*

2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on ustic.

Ustertic Haplocambids

GGDF. Other Haplocambids that have *one or both* of the following:

1. Cracks within 125 cm of the soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the soil surface; *or*

2. A linear extensibility of 6.0 cm or more between the soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Haplocambids

GGDG. Other Haplocambids that have *both*:
1. One or more horizons, within 100 cm of the soil surface and with a combined thickness of 15 cm or more, that contain 20 percent or more (by volume) durinodes or are brittle and have at least a firm rupture-resistance class when moist; and

2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric.

Durinodic Xeric Haplocambids

GGDH. Other Haplocambids that have one or more horizons, within 100 cm of the soil surface and with a combined thickness of 15 cm or more, that contain 20 percent or more (by volume) durinodes or are brittle and have at least a firm rupture-resistance class when moist.

Durinodic Haplocambids

GGDI. Other Haplocambids that have both:

1. One or more horizons, within 100 cm of the soil surface and with a combined thickness of 15 cm or more, that contain 20 percent or more (by volume) nodules or concretions; and

2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric.

Petronodic Xeric Haplocambids

GGDJ. Other Haplocambids that have both:

1. One or more horizons, within 100 cm of the soil surface and with a combined thickness of 15 cm or more, that contain 20 percent or more (by volume) nodules or concretions; and

2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative)
when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on ustic.

Petronodic Ustic Haplocambids

GGDK. Other Haplocambids that have one or more horizons, within 100 cm of the soil surface and with a combined thickness of 15 cm or more, that contain 20 percent or more (by volume) nodules or concretions.

Petronodic Haplocambids

GGDL. Other Haplocambids that have *both*:

1. A horizon at least 25 cm thick within 100 cm of the soil surface that has an exchangeable sodium percentage of 15 or more (or an SAR of 13 or more) during at least 1 month in normal years; *and*
2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric.

Sodic Xeric Haplocambids

GGDM. Other Haplocambids that have *both*:

1. A horizon at least 25 cm thick within 100 cm of the soil surface that has an exchangeable sodium percentage of 15 or more (or an SAR of 13 or more) during at least 1 month in normal years; *and*
2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on ustic.

Sodic Ustic Haplocambids

GGDN. Other Haplocambids that have, in a horizon at least
25 cm thick within 100 cm of the soil surface, an exchangeable sodium percentage of 15 or more (or an SAR of 13 or more) during at least 1 month in normal years.

Sodic Haplocambids

GGDO. Other Haplocambids that have both:

1. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric; and

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, one or both of the following:
 - More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
 - A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and \([(\text{Al plus }^{1/2} \text{Fe, percent extracted by ammonium oxalate}) \times 60] + \text{volcanic glass (percent)} = 30\) or more.

Vitrixerandic Haplocambids

GGDP. Other Haplocambids that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and \([(\text{Al plus }^{1/2} \text{Fe, percent extracted by ammonium oxalate}) \times 60] + \text{volcanic glass (percent)} = 30\) or more.
by ammonium oxalate) times 60] plus the volcanic glass (percent) is 30 or more.

Vitrandic Haplocambids

GGDQ. Other Haplocambids that:

1. In normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on xeric; *and*

2. Have an irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a dense, lithic, or paralithic contact, whichever is shallower.

Xerofluventic Haplocambids

GGDR. Other Haplocambids that:

1. In normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on ustic; *and*

2. Have an irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a dense, lithic, or paralithic contact, whichever is shallower.

Ustifluventic Haplocambids

GGDS. Other Haplocambids that have an irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a dense, lithic, or paralithic contact, whichever is shallower.

Fluventic Haplocambids

GGDT. Other Haplocambids that, in normal years, are dry
in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on xeric.

Xeric Haplocambids

GGDU. Other Haplocambids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on ustic.

Ustic Haplocambids

GGDV. Other Haplocambids.

Typic Haplocambids

Petrocambids

Key to Subgroups

GGBA. Petrocambids that have, in a horizon at least 25 cm thick within 100 cm of the soil surface, an exchangeable sodium percentage of 15 or more (or an SAR of 13 or more) during at least 1 month in normal years.

Sodic Petrocambids

GGBB. Other Petrocambids that have both:

1. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric; and

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, one or both of the following:
 a. More than 35 percent (by volume) fragments coarser
than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

b. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and \([(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60] \) plus the volcanic glass (percent) is 30 or more.

Vitriixerandic Petrocambids

GGBC. Other Petrocambids that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and \([(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60] \) plus the volcanic glass (percent) is 30 or more.

Vitrandic Petrocambids

GGBD. Other Petrocambids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on xeric.

Xeric Petrocambids

GGBE. Other Petrocambids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on ustic.

Ustic Petrocambids

319
GGBF. Other Petrocambids.

Typic Petrocambids

Cryids

Key to Great Groups

GAA. Cryids that have a salic horizon within 100 cm of the soil surface.

Salicryids, p. 328

GAB. Other Cryids that have a duripan or a petrocalcic or petrogypsic horizon within 100 cm of the soil surface.

Petrocryids, p. 327

GAC. Other Cryids that have a gypsic horizon within 100 cm of the soil surface.

Gypsicryids, p. 324

GAD. Other Cryids that have an argillic or natric horizon.

Argicryids, p. 320

GAE. Other Cryids that have a calcic horizon within 100 cm of the soil surface.

Calcicryids, p. 322

GAF. Other Cryids.

Haplocryids, p. 325

Argicryids

Key to Subgroups

GADA. Argicryids that have a lithic contact within 50 cm of the soil surface.

Lithic Argicryids

GADB. Other Argicryids that have one or both of the following:

1. Cracks within 125 cm of the soil surface that are 5 mm or more wide throughout a thickness of 30 cm or more for some
time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Argicryids

GADC. Other Argicryids that have a natric horizon within 100 cm of the soil surface.

Natric Argicryids

GADD. Other Argicryids that have both:

1. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric; and

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, one or both of the following:
 a. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
 b. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and \[\text{[(Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate)} \times 60\] plus the volcanic glass (percent) is 30 or more.

Vitrixerandic Argicryids

GADE. Other Argicryids that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser
than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and \[\left(\text{Al plus } \frac{1}{3} \text{ Fe, percent extracted by ammonium oxalate} \right) \times 60 \] plus the volcanic glass (percent) is 30 or more.

Vitrandic Argicryids

GADF. Other Argicryids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on xeric.

Xeric Argicryids

GADG. Other Argicryids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on ustic.

Ustic Argicryids

GADH. Other Argicryids.

Typic Argicryids

Calcicryids

Key to Subgroups

GAEA. Calcicryids that have a lithic contact within 50 cm of the soil surface.

Lithic Calcicryids

GAEB. Other Calcicryids that have both:

1. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the
soil surface is 5 °C or higher and a soil moisture regime that borders on xeric; and

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, one or both of the following:

 a. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

 b. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and $[(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60] + \text{ volcanic glass (percent)}$ is 30 or more.

Vitrixerandic Calcicryids

GAEC. Other Calcicryids that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and $[(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60] + \text{ volcanic glass (percent)}$ is 30 or more.

Vitrtrandic Calcicryids

GAED. Other Calcicryids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on xeric.

Xeric Calcicryids
GAEE. Other Calcicryids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on ustic.

Ustic Calcicryids

GAEF. Other Calcicryids.

Typic Calcicryids

Gypsicryids

Key to Subgroups

GACA. Gypsicryids that have a calcic horizon.

Calcic Gypsicryids

GACB. Other Gypsicryids that have *both*:

1. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric; and

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, *one or both* of the following:

 a. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

 b. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and [(Al plus $\frac{1}{6}$ Fe, percent extracted by ammonium oxalate) times 60] plus the volcanic glass (percent) is 30 or more.

Vitrixerandic Gypsicryids
GACC. Other Gypsicryids that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and \[\text{[(Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate)} \times 60\] plus the volcanic glass (percent) is 30 or more.

Vitrandic Gypsicryids

GACD. Other Gypsicryids.

Typic Gypsicryids

Haplocryids

Key to Subgroups

GAFA. Haplocryids that have a lithic contact within 50 cm of the soil surface.

Lithic Haplocryids

GAFB. Other Haplocryids that have one or both of the following:

1. Cracks within 125 cm of the soil surface that are 5 mm or more wide throughout a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Haplocryids

GAFC. Other Haplocryids that have both:
1. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric; and

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, one or both of the following:

 a. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

 b. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and [(Al plus 1/2 Fe, percent extracted by ammonium oxalate) times 60] plus the volcanic glass (percent) is 30 or more.

Vitrixerandic Haplocryids

GAFD. Other Haplocryids that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and [(Al plus 1/2 Fe, percent extracted by ammonium oxalate) times 60] plus the volcanic glass (percent) is 30 or more.

Vitrandic Haplocryids

GAFE. Other Haplocryids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of
50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on xeric. **Xeric Haplocryids**

GAFF. Other Haplocryids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on xeric. **Ustic Haplocryids**

GAFG. Other Haplocryids. **Typic Haplocryids**

Petrocryids

Key to Subgroups

GABA. Petrocryids that have both:

1. A duripan that is strongly cemented or less cemented in all subhorizons within 100 cm of the soil surface; and
2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric. **Xereptic Petrocryids**

GABB. Other Petrocryids that have both:

1. A duripan within 100 cm of the soil surface; and
2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric. **Duric Xeric Petrocryids**
GABC. Other Petrocryids that have a duripan within 100 cm of the soil surface.

Duric Petrocryids

GABD. Other Petrocryids that have a petrogypsic horizon within 100 cm of the soil surface.

Petrogypsic Petrocryids

GABE. Other Petrocryids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on xeric.

Xeric Petrocryids

GABF. Other Petrocryids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on ustic.

Ustic Petrocryids

GABG. Other Petrocryids.

Typic Petrocryids

Salicryids

Key to Subgroups

GAAA. Salicryids that are saturated with water in one or more layers within 100 cm of the soil surface for 1 month or more in normal years.

Aquic Salicryids

GAAB. Other Salicryids.

Typic Salicryids
Durids

Key to Great Groups

GCA. Durids that have a natric horizon above the duripan.

Natridurids, p. 335

GCB. Other Durids that have an argillic horizon above the duripan.

Argidurids, p. 329

GCC. Other Durids.

Haplodurids, p. 332

Argidurids

Key to Subgroups

GCBA. Argidurids that have *one or both* of the following:

1. Cracks between the soil surface and the top of the duripan that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that is above the duripan; *or*
2. A linear extensibility of 6.0 cm or more between the soil surface and the top of the duripan.

Vertic Argidurids

GCBB. Other Argidurids that are *either*:

1. Irrigated and have aquic conditions for some time in normal years in one or more layers within 100 cm of the soil surface; *or*
2. Saturated with water in one or more layers within 100 cm of the soil surface for 1 month or more in normal years.

Aquic Argidurids

GCBC. Other Argidurids that have *both*:
1. An argillic horizon that has 35 percent or more clay in the fine-earth fraction of some part; and either
 a. A clay increase of 15 percent or more (absolute) within a vertical distance of 2.5 cm either within the argillic horizon or at its upper boundary; or
 b. If there is an Ap horizon directly above the argillic horizon, a clay increase of 10 percent or more (absolute) at the upper boundary of the argillic horizon; and
2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric.

Abruptic Xeric Argidurids

GCBD. Other Argidurids that have an argillic horizon that has 35 percent or more clay in the fine-earth fraction of some part; and either

1. A clay increase of 15 percent or more (absolute) within a vertical distance of 2.5 cm within the argillic horizon or at its upper boundary; or
2. If there is an Ap horizon directly above the argillic horizon, a clay increase of 10 percent or more (absolute) at the upper boundary of the argillic horizon.

Abruptic Argidurids

GCB. Other Argidurids that have both:

1. A duripan that is strongly cemented or less cemented in all subhorizons; and
2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the
soil surface is 5 °C or higher and a soil moisture regime that borders on xeric.

Haploxeralfic Argidurids

GCBF. Other Argidurids that have a duripan that is strongly cemented or less cemented in all subhorizons.

Argidic Argidurids

GCBG. Other Argidurids that have both:

1. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric; and

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, one or both of the following:
 a. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
 b. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and [(Al plus Fe, percent extracted by ammonium oxalate) times 60] plus the volcanic glass (percent) is 30 or more.

Vitrixerandic Argidurids

GCBH. Other Argidurids that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or
more is volcanic glass, and \([\text{Al plus } 1/2 \text{ Fe, percent extracted by ammonium oxalate) times 60]} \) plus the volcanic glass (percent) is 30 or more.

Vitrandic Argidurids

GCBI. Other Argidurids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on xeric.

Xeric Argidurids

GCBJ. Other Argidurids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on ustic.

Ustic Argidurids

GCBK. Other Argidurids.

Typic Argidurids

Haplodurids

Key to Subgroups

GCCA. Haplodurids that meet *both* of the following:

1. Have a duripan that is strongly cemented or less cemented in all subhorizons; *and*
2. Are *either*:
 a. Irrigated and have aquic conditions for some time in normal years in one or more layers within 100 cm of the soil surface; *or*
 b. Saturated with water in one or more layers within 100 cm of the soil surface for 1 month or more in normal years.

Aquicambidic Haplodurids
GCCB. Other Haplodurids that are either:

1. Irrigated and have aquic conditions for some time in normal years in one or more layers within 100 cm of the soil surface; or
2. Saturated with water in one or more layers within 100 cm of the soil surface for 1 month or more in normal years.

Aquic Haplodurids

GCCC. Other Haplodurids that have both:

1. A duripan that is strongly cemented or less cemented in all subhorizons; and
2. A mean annual soil temperature lower than 22 °C, a difference of 5 °C or more between mean summer and mean winter soil temperatures at a depth of 50 cm, and a soil moisture regime that borders on xeric.

Xereptic Haplodurids

GCCD. Other Haplodurids that have a duripan that is strongly cemented or less cemented in all subhorizons.

Cambidic Haplodurids

GCCE. Other Haplodurids that have both:

1. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric; and
2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, one or both of the following:
 a. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
 b. A fine-earth fraction containing 30 percent or more
particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and \([(Al + \frac{1}{2}Fe, \text{ percent extracted by ammonium oxalate}) \times 60\) plus the volcanic glass (percent) is 30 or more.

Vitrixerandic Haplodurids

GCCF. Other Haplodurids that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, *one or both* of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and \([(Al + \frac{1}{2}Fe, \text{ percent extracted by ammonium oxalate}) \times 60\) plus the volcanic glass (percent) is 30 or more.

Vitrandic Haplodurids

GCCG. Other Haplodurids that have a mean annual soil temperature lower than 22 °C, a difference of 5 °C or more between mean summer and mean winter soil temperatures at a depth of 50 cm, and a soil moisture regime that borders on xeric.

Xeric Haplodurids

GCCH. Other Haplodurids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on ustic.

Ustic Haplodurids

GCCl. Other Haplodurids.

Typic Haplodurids
Natridurids

Key to Subgroups

GCAA. Natridurids that have *one or both* of the following:

1. Cracks between the soil surface and the top of the duripan that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that is above the duripan; *or*

2. A linear extensibility of 6.0 cm or more between the soil surface and the top of the duripan.

Vertic Natridurids

GCAB. Other Natridurids that meet *both* of the following:

1. Have a duripan that is strongly cemented or less cemented in all subhorizons; *and*

2. Are *either:*

 a. Irrigated and have aquic conditions for some time in normal years in one or more layers within 100 cm of the soil surface; *or*

 b. Saturated with water in one or more layers within 100 cm of the soil surface for 1 month or more in normal years.

Aquic Natrargidic Natridurids

GCAC. Other Natridurids that are *either:*

1. Irrigated and have aquic conditions for some time in normal years in one or more layers within 100 cm of the soil surface; *or*

2. Saturated with water in one or more layers within 100 cm of the soil surface for 1 month or more in normal years.

Aquic Natridurids
GCAD. Other Natridurids that have both:

1. A duripan that is strongly cemented or less cemented in all subhorizons; and
2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric.

Natrixeralfic Natridurids

GCAE. Other Natridurids that have a duripan that is strongly cemented or less cemented in all subhorizons.

Natrargidic Natridurids

GCAF. Other Natridurids that have both:

1. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric; and
2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, one or both of the following:
 a. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
 b. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and \([\text{Al plus } 1/\text{Fe, percent extracted by ammonium oxalate} \times 60] + \text{volcanic glass (percent)}\) is 30 or more.

Vitrixerandic Natridurids

GCAG. Other Natridurids that have, throughout one or more
horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, *one or both* of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; *or*

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and \[((\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60) + \text{volcanic glass (percent)}\] is 30 or more.

Vitrandic Natridurids

GCAH. Other Natridurids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on xeric.

Xeric Natridurids

GCAI. Other Natridurids.

Typic Natridurids

Gypsids

Key to Great Groups

GDA. Gypsids that have a petrogypsic or petrocalcic horizon within 100 cm of the soil surface.

Petrogypsids, p. 346

GDB. Other Gypsids that have a natric horizon within 100 cm of the soil surface.

Natrigypsids, p. 344

GDC. Other Gypsids that have an argillic horizon within 100 cm of the soil surface.

Argigypsids, p. 338
GDD. Other Gypsids that have a calcic horizon within 100 cm of the soil surface.

Calcigypsids, p. 340

GDE. Other Gypsids.

Haplogypsids, p. 342

Argigypsids

Key to Subgroups

GDCA. Argigypsids that have a lithic contact within 50 cm of the soil surface.

Lithic Argigypsids

GDCB. Other Argigypsids that have *one or both* of the following:

1. Cracks within 125 cm of the soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the soil surface; *or*

2. A linear extensibility of 6.0 cm or more between the soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Argigypsids

GDCC. Other Argigypsids that have a calcic horizon overlying the gypsic horizon.

Calcic Argigypsids

GDCD. Other Argigypsids that have one or more horizons, within 100 cm of the soil surface and with a combined thickness of 15 cm or more, that contain 20 percent or more (by volume) durinodes, nodules, or concretions.

Petronodic Argigypsids

GDCE. Other Argigypsids that have *both*:
1. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5° C or higher and a soil moisture regime that borders on xeric; and

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, one or both of the following:
 a. More than 5 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
 b. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and \[\left[(\text{Al plus } \frac{1}{2} \text{Fe, percent extracted by ammonium oxalate}) \times 60 \right] + \text{volcanic glass (percent)} \] is 30 or more.

Vitrixerandic Argigypssids

GDCF. Other Argigypsids that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and \[\left[(\text{Al plus } \frac{1}{2} \text{Fe, percent extracted by ammonium oxalate}) \times 60 \right] + \text{volcanic glass (percent)} \] is 30 percent or more.

Vitrandic Argigypssids

GDCG. Other Argigypsids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of
50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on xeric.

Xeric Argigypsids

GDCH. Other Argigypsids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on xeric.

Ustic Argigypsids

GDCI. Other Argigypsids.

Typic Argigypsids

Calcigypsids

Key to Subgroups

GDDA. Calcigypsids that have a lithic contact within 50 cm of the soil surface.

Lithic Calcigypsids

GDDB. Other Calcigypsids that have one or more horizons, within 100 cm of the soil surface and with a combined thickness of 15 cm or more, that contain 20 percent or more (by volume) durinodes, nodules, or concretions.

Petronodic Calcigypsids

GDDC. Other Calcigypsids that have *both*:

1. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric; *and*

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, *one or both* of the following:
 a. More than 35 percent (by volume) fragments coarser
than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
b. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and \([(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60] + \text{volcanic glass (percent)}\) is 30 or more.

Vitrixerandic Calcigypsids

GDDD. Other Calcigypsids that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, *one or both* of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and \([(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60] + \text{volcanic glass (percent)}\) is 30 or more.

Vitrandic Calcigypsids

GDDE. Other Calcigypsids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on xeric.

Xeric Calcigypsids

GDDF. Other Calcigypsids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on ustic.

Ustic Calcigypsids
GDDG. Other Calcigypsids.

Typic Calcigypsids

Haplogypsids

Key to Subgroups

GDEA. Haplogypsids that have a lithic contact within 50 cm of the soil surface.

Lithic Haplogypsids

GDEB. Other Haplogypsids that have a gypsic horizon within 18 cm of the soil surface.

Leptic Haplogypsids

GDEC. Other Haplogypsids that have, in a horizon at least 25 cm thick within 100 cm of the mineral soil surface, an exchangeable sodium percentage of 15 or more (or an SAR of 13 or more) during at least 1 month in normal years.

Sodic Haplogypsids

GDED. Other Haplogypsids that have one or more horizons, within 100 cm of the soil surface and with a combined thickness of 15 cm or more, that contain 20 percent or more (by volume) durinodes, nodules, or concretions.

Petronodic Haplogypsids

GDEE. Other Haplogypsids that have both:

1. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric; and

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, one or both of the following:
 a. More than 35 percent (by volume) fragments coarser
than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; *or*

b. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and \([(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60] + \text{ volcanic glass (percent)}\) is 30 or more.

Vitrixerandic Haplogypsids

GDEF. Other Haplogypsids that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, *one or both* of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; *or*

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and \([(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60] + \text{ volcanic glass (percent)}\) is 30 or more.

Vitrandic Haplogypsids

GDEG. Other Haplogypsids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on xeric.

Xeric Haplogypsids

GDEH. Other Haplogypsids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on ustic.

Ustic Haplogypsids
GDEI. Other Haplogypsids.

Typic Haplogypsids

Natrigypsids

Key to Subgroups

GDBA. Natrigypsids that have a lithic contact within 50 cm of the soil surface.

Lithic Natrigypsids

GDBB. Other Natrigypsids that have one or both of the following:

1. Cracks within 125 cm of the soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the soil surface; or

2. A linear extensibility of 6.0 cm or more between the soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Natrigypsids

GDBC. Other Natrigypsids that have one or more horizons, within 100 cm of the soil surface and with a combined thickness of 15 cm or more, that contain 20 percent or more (by volume) durinodes, nodules, or concretions.

Petronodic Natrigypsids

GDBD. Other Natrigypsids that have both:

1. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and a soil moisture regime that borders on xeric; and

2. Throughout one or more horizons with a total thickness of
18 cm or more within 75 cm of the soil surface, one or both of the following:

a. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

b. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and [(Al plus Fe, percent extracted by ammonium oxalate) times 60] plus the volcanic glass (percent) is 30 or more.

Vitriixerandic Natrigypsids

GDBE. Other Natrigypsids that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and [(Al plus Fe, percent extracted by ammonium oxalate) times 60] plus the volcanic glass (percent) is 30 or more.

Vitrandic Natrigypsids

GDBF. Other Natrigypsids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on xeric.

Xeric Natrigypsids

GDBG. Other Natrigypsids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of
50 cm below the soil surface is 5°C or higher and have a soil moisture regime that borders on ustic.

Ustic Natrigypsids

GDBH. Other Natrigypsids.

Typic Natrigypsids

Petrogypsids

Key to Subgroups

GDAA. Petrogypsids that have a petrocalcic horizon within 100 cm of the soil surface.

Petrocalcic Petrogypsids

GDAB. Other Petrogypsids that have a calcic horizon overlying the petrogypsic horizon.

Calcic Petrogypsids

GDAC. Other Petrogypsids that have both:

1. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5°C or higher and a soil moisture regime that borders on xeric; and

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, one or both of the following:
 a. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
 b. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and \([(\text{Al plus } 1/\text{Fe, percent extracted by ammonium oxalate}) \times 60] + \text{volcanic glass (percent)}\) is 30 or more.

Vitrixerandic Petrogypsids
GDAD. Other Petrogypsids that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and \((\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60\) plus the volcanic glass (percent) is 30 or more.

Vitrandic Petrogypsids

GDAE. Other Petrogypsids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on xeric.

Xeric Petrogypsids

GDAF. Other Petrogypsids that, in normal years, are dry in all parts of the moisture control section for less than three-fourths of the time (cumulative) when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher and have a soil moisture regime that borders on ustic.

Ustic Petrogypsids

GDAG. Other Petrogypsids.

Typic Petrogypsids

Salids

Key to Great Groups

GBA. Salids that are saturated with water in one or more
layers within 100 cm of the mineral soil surface for 1 month or more in normal years. Aquisalids, p. 348

GBB. Other Salids. Haplosalids, p. 348

Aquisalids
Key to Subgroups
GBAA. Aquisalids that have a gypsic or petrogypsic horizon within 100 cm of the soil surface. Gypsic Aquisalids

GBAB. Other Aquisalids that have a calcic or petrocalcic horizon within 100 cm of the soil surface. Calcic Aquisalids

GBAC. Other Aquisalids. Typic Aquisalids

Haplosalids
Key to Subgroups
GBBA. Haplosalids that have a duripan within 100 cm of the soil surface. Duric Haplosalids

GBBB. Other Haplosalids that have a petrogypsic horizon within 100 cm of the soil surface. Petrogypsic Haplosalids

GBBC. Other Haplosalids that have a gypsic horizon within 100 cm of the soil surface. Gypsic Haplosalids

GBBD. Other Haplosalids that have a calcic horizon within 100 cm of the soil surface. Calcic Haplosalids
GBBE. Other Haplosalids.

Typic Haplosalids
CHAPTER 8
Entisols

Key to Suborders

LA. Entisols that have a positive water potential at the soil surface for more than 21 hours of each day in all years.

Wassents, p. 404

LB. Other Entisols that have one or more of the following:

1. Aquic conditions and sulfidic materials within 50 cm of the mineral soil surface; or

2. Permanent saturation with water and a reduced matrix in all horizons below 25 cm from the mineral soil surface; or

3. In a layer above a densic, lithic, or paralithic contact or in a layer at a depth between 40 and 50 cm below the mineral soil surface, whichever is shallower, aquic conditions for some time in normal years (or artificial drainage) and one or more of the following:

 a. A texture class finer than loamy fine sand and, in 50 percent or more of the matrix, one or more of the following:

 (1) Chroma of 0; or

 (2) Chroma of 1 or less and a color value, moist, of 4 or more; or

 (3) Chroma of 2 or less and redox concentrations; or

 b. A texture class of loamy fine sand or coarser and, in 50 percent or more of the matrix, one or more of the following:

 (1) Chroma of 0; or

 (2) Hue of 10YR or redder, a color value, moist, of 4 or more, and chroma of 1; or

 (3) Hue of 10YR or redder, chroma of 2 or less, and redox concentrations; or
(4) Hue of 2.5Y or yellower, chroma of 3 or less, and distinct or prominent redox concentrations; or
(5) Hue of 2.5Y or yellower and chroma of 1; or
(6) Hue of 5GY, 5G, 5BG, or 5B; or
(7) Any color if it results from uncoated sand grains; or
c. Enough active ferrous iron to give a positive reaction to alpha,alpha-dipyridyl at a time when the soil is not being irrigated.

Aquents, p. 352

LC. Other Entisols that have, in one or more layers at a depth between 25 and 100 cm below the mineral soil surface, 3 percent or more (by volume) fragments of diagnostic horizons that are not arranged in any discernible order.

Arents, p. 361

LD. Other Entisols that have less than 35 percent (by volume) rock fragments and a texture class of loamy fine sand or coarser in all layers (sandy loam lamellae are permitted) within the particle-size control section.

Psamments, p. 394

LE. Other Entisols that do not have a densic, lithic, or paralithic contact within 25 cm of the mineral soil surface and have:

1. A slope of less than 25 percent; and
2. One or both of the following:
 a. An organic-carbon content (Holocene age) of 0.2 percent or more at a depth of 125 cm below the mineral soil surface; or
 b. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower; and
3. A soil temperature regime:
 a. That is warmer than cryic; or
 b. That is cryic and the soil has:
 (1) No gelic materials; and
 (2) Either a slope of less than 5 percent or less than 15 percent volcanic glass in the 0.02 to 2.0 mm fraction in some part of the particle-size control section.

Fluvents, p. 364

LF. Other Entisols.

Orthents, p. 379

Aquents

Key to Great Groups

LBA. Aquents that have sulfidic materials within 50 cm of the mineral soil surface.

Sulfaquents, p. 361

LBB. Other Aquents that have, in all horizons at a depth between 20 and 50 cm below the mineral soil surface, both an n value of more than 0.7 and 8 percent or more clay in the fine-earth fraction.

Hydraquents, p. 359

LBC. Other Aquents that have a gelic soil temperature regime.

Gelaquents, p. 359

LBD. Other Aquents that have a cryic soil temperature regime.

Cryaquents, p. 353

LBE. Other Aquents that have less than 35 percent (by volume) rock fragments and a texture class of loamy fine sand or coarser in all layers (sandy loam lamellae are permitted) within the particle-size control section.

Psammaquents, p. 360
LBF. Other Aquents that have both:
 1. A slope of less than 25 percent; and
 2. One or both of the following:
 a. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more; or
 b. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluvaquents, p. 356

LBG. Other Aquents that have episaturation.

Epiaquents, p. 355

LBH. Other Aquents.

Endoaquents, p. 354

Cryaquents

Key to Subgroups

LBDA. Cryaquents that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or more of the following:
 1. A fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0; or
 2. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
 3. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and

353
b. \([(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60]\) plus the volcanic glass (percent) is equal to 30 or more.

Aquandic Cryaquents

LBDB. Other Cryaquents.

Typic Cryaquents

Endoaquents

Key to Subgroups

LBHA. Endoaquents that have, within 100 cm of the mineral soil surface, \textit{one or both} of the following:

1. Sulfidic materials; \textit{or}

2. A horizon 15 cm or more thick that has all of the characteristics of a sulfuric horizon, except that it has a pH value between 3.5 and 4.0 and does not have sulfide or other sulfur-bearing minerals.

Sulfic Endoaquents

LBHB. Other Endoaquents that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Endoaquents

LBHC. Other Endoaquents that have, in one or more horizons within 100 cm of the mineral soil surface, an exchangeable sodium percentage of 15 or more (or a sodium adsorption ratio of 13 or more) for 6 or more months in normal years.

Sodic Endoaquents

LBHD. Other Endoaquents that have, in one or more horizons between either the Ap horizon or a depth of 25 cm from the mineral soil surface, whichever is deeper, and a depth of 75 cm, colors in 50 percent or more of the matrix as follows:

1. Hue of 2.5Y or redder, a color value, moist, of 6 or more, and chroma of 3 or more; \textit{or}
2. Hue of 2.5Y or redder, a color value, moist, of 5 or less, and chroma of 2 or more; or
3. Hue of 5Y and chroma of 3 or more; or
4. Hue of 5Y or redder and chroma of 2 or more if there are no redox concentrations.

Aeric Endoaquents

LBHE. Other Endoaquents that have *both*:

1. A color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 15 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 15 cm after mixing; and
2. A base saturation (by NH$_4$OAc) of less than 50 percent in some part within 100 cm of the mineral soil surface.

Humaqueptic Endoaquents

LBHF. Other Endoaquents that have a color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 15 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 15 cm after mixing.

Mollic Endoaquents

LBHG. Other Endoaquents.

Typic Endoaquents

Epiaquents

Key to Subgroups

LBGA. Epiaquents that have, in one or more horizons between either the Ap horizon or a depth of 25 cm from the mineral soil surface, whichever is deeper, and a depth of 75 cm, colors in 50 percent or more of the matrix as follows:

1. Hue of 2.5Y or redder, a color value, moist, of 6 or more, and chroma of 3 or more; or
2. Hue of 2.5Y or redder, a color value, moist, of 5 or less, and chroma of 2 or more; or
3. Hue of 5Y and chroma of 3 or more; or
4. Chroma of 2 or more if there are no redox concentrations.

Aeric Epiaquents

LBGB. Other Epiaquents that have both:
1. A color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 15 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 15 cm after mixing; and
2. A base saturation (by NH$_4$OAc) of less than 50 percent in some part within 100 cm of the mineral soil surface.

Humaqueptic Epiaquents

LBGC. Other Epiaquents that have a color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 15 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 15 cm after mixing.

Mollic Epiaquents

LBGD. Other Epiaquents.

Typic Epiaquents

Fluvaquents

Key to Subgroups

LBFA. Fluvaquents that have, within 100 cm of the mineral soil surface, one or both of the following:
1. Sulfidic materials; or
2. A horizon 15 cm or more thick that has all of the characteristics of a sulfuric horizon, except that it has a pH
value between 3.5 and 4.0 and does not have sulfide or other sulfur-bearing minerals.

Sulfic Fluvaquents

LBFB. Other Fluvaquents that have *one or both* of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; *or*

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Fluvaquents

LBFC. Other Fluvaquents that have a buried layer of organic soil materials, 20 cm or more thick, within 100 cm of the mineral soil surface.

Thapto-Histic Fluvaquents

LBFD. Other Fluvaquents that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, *one or more* of the following:

1. A fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0; *or*

2. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; *or*

3. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; *and*

 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; *and*
b. \[(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60 \] plus the volcanic glass (percent) is equal to 30 or more.

Aquandic Fluvaquents

LBFE. Other Fluvaquents that have, in one or more horizons between either the Ap horizon or a depth of 25 cm from the mineral soil surface, whichever is deeper, and a depth of 75 cm, colors in 50 percent or more of the matrix as follows:

1. Hue of 2.5Y or redder, a color value, moist, of 6 or more, and chroma of 3 or more; or
2. Hue of 2.5Y or redder, a color value, moist, of 5 or less, and chroma of 2 or more; or
3. Hue of 5Y and chroma of 3 or more; or
4. Chroma of 2 or more if there are no redox concentrations.

Aeric Fluvaquents

LBFF. Other Fluvaquents that have both:

1. A color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 15 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 15 cm after mixing; and
2. A base saturation (by NH₄OAc) of less than 50 percent in some part within 100 cm of the mineral soil surface.

Humaqueptic Fluvaquents

LBFG. Other Fluvaquents that have a color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 15 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 15 cm after mixing.

Mollic Fluvaquents
LBFH. Other Fluvaquents.

Gelaquents

Key to Subgroups

LBCA. All Gelaquents.

Typic Gelaquents

Hydraquents

Key to Subgroups

LBBA. Hydraquents that have, within 100 cm of the mineral soil surface, one or both of the following:

1. Sulfidic materials; or

2. A horizon 15 cm or more thick that has all of the characteristics of a sulfuric horizon, except that it has a pH value between 3.5 and 4.0 and does not have sulfide or other sulfur-bearing minerals.

Sulfic Hydraquents

LBBB. Other Hydraquents that have, in one or more horizons within 100 cm of the mineral soil surface, an exchangeable sodium percentage of 15 or more (or a sodium adsorption ratio of 13 or more) for 6 or more months in normal years.

Sodic Hydraquents

LBBC. Other Hydraquents that have a buried layer of organic soil materials, 20 cm or more thick, within 100 cm of the mineral soil surface.

Thapto-Histic Hydraquents

LBBD. Other Hydraquents.

Typic Hydraquents
Psammaquents
Key to Subgroups

LBEA. Psammaquents that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Psammaquents

LBEB. Other Psammaquents that have, in one or more horizons within 100 cm of the mineral soil surface, an exchangeable sodium percentage of 15 or more (or a sodium adsorption ratio of 13 or more) for 6 or more months in normal years.

Sodic Psammaquents

LBEC. Other Psammaquents that have a horizon, 5 cm or more thick, either below an Ap horizon or at a depth of 18 cm or more from the mineral soil surface, whichever is deeper, that has one or more of the following:

1. In 25 percent or more of each pedon, cementation by organic matter and aluminum, with or without iron; or
2. Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling 0.25 or more, and half that amount or less in an overlying horizon; or
3. An ODOE value of 0.12 or more, and a value half as high or lower in an overlying horizon.

Spodic Psammaquents

LBED. Other Psammaquents that have both:

1. A color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 15 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 15 cm after mixing; and
2. A base saturation (by NH$_4$OAc) of less than 50 percent in some part within 100 cm of the mineral soil surface.

Humaqueptic Psammaquents
LBEF. Other Psammaquents.

Typic Psammaquents

Sulfaquents

Key to Subgroups

LBAA. Sulfaquents that have, in some horizons at a depth between 20 and 50 cm below the mineral soil surface, either or both:

1. An n value of 0.7 or less; or
2. Less than 8 percent clay in the fine-earth fraction.

Haplic Sulfaquents

LBAB. Other Sulfaquents that have a histic epipedon.

Histic Sulfaquents

LBAC. Other Sulfaquents that have a buried layer of organic soil materials, 20 cm or more thick, within 100 cm of the mineral soil surface.

Thapto-Histic Sulfaquents

LBAD. Other Sulfaquents.

Typic Sulfaquents

Arents

Key to Great Groups

LCA. Arents that have an ustic soil moisture regime.

Ustarents, p. 363
LCB. Other Arents that have a xeric soil moisture regime.
Xerarents, p. 363

LCC. Other Arents that have an aridic (or torric) soil moisture regime.
Torriarents, p. 362

LCD. Other Arents.
Udarents, p. 362

Torriarents

Key to Subgroups

LCCA. Torriarents that have, in one or more horizons within 100 cm of the mineral soil surface, 3 percent or more fragments of a natric horizon.
Sodic Torriarents

LCCB. Other Torriarents that have, within 100 cm of the mineral soil surface, 3 percent or more fragments of a duripan or a petrocalcic horizon.
Duric Torriarents

LCCC. Other Torriarents.
Haplic Torriarents

Udarents

Key to Subgroups

LCDA. Udarents that have 3 percent or more fragments of an argillic horizon in some horizon within 100 cm of the mineral soil surface and have a base saturation (by sum of cations) of 35 percent or more in all parts within 100 cm of the mineral soil surface.
Alfic Udarents

LCDB. Other Udarents that have 3 percent or more
fragments of an argillic horizon in some horizon within 100 cm of the mineral soil surface.

Ultic Udarents

LCDC. Other Udarents that have 3 percent or more fragments of a mollic epipedon in some horizon within 100 cm of the mineral soil surface and have a base saturation (by sum of cations) of 35 percent or more in all parts within 100 cm of the mineral soil surface.

Mollic Udarents

LCDD. Other Udarents.

Haplic Udarents

Ustarents

Key to Subgroups

LCAA. All Ustarents.

Haplic Ustarents

Xerarents

Key to Subgroups

LCBA. Xerarents that have, in one or more horizons within 100 cm of the mineral soil surface, 3 percent or more fragments of a natric horizon.

Sodic Xerarents

LCBB. Other Xerarents that have, within 100 cm of the mineral soil surface, 3 percent or more fragments of a duripan or a petrocalcic horizon.

Duric Xerarents

LCBC. Other Xerarents that have fragments of an argillic horizon with a base saturation (by sum of cations) of 35 percent or more within 100 cm of the mineral soil surface.

Alfic Xerarents
LCBD. Other Xerarents.

Haplic Xerarents

Fluvents

Key to Great Groups

LEA. Fluvents that have a gelic soil temperature regime.
Gelifluvents, p. 366

LEB. Other Fluvents that have a cryic soil temperature regime.
Cryofluvents, p. 364

LEC. Other Fluvents that have a xeric soil moisture regime.
Xerofluvents, p. 376

LED. Other Fluvents that have an ustic soil moisture regime.
Ustifluvents, p. 372

LEE. Other Fluvents that have an aridic (or torric) soil moisture regime.
Torrifluvents, p. 366

LEF. Other Fluvents.

Udifluvents, p. 370

Cryofluvents

Key to Subgroups

LEBA. Cryofluvents that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and percent aluminum plus \(\frac{1}{2} \) the iron percentage (by ammonium oxalate) totaling more than 1.0.
Andic Cryofluvents

LEBB. Other Cryofluvents that have, throughout one or more
horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 b. \((\text{Al plus } \frac{1}{2} \text{Fe, percent extracted by ammonium oxalate}) \times 60\) plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Cryofluvents

LEBC. Other Cryofluvents that have, in one or more horizons within 50 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Cryofluvents

LEBD. Other Cryofluvents that are saturated with water in one or more layers within 100 cm of the mineral soil surface in normal years for either or both:

1. 20 or more consecutive days; or

2. 30 or more cumulative days.

Oxyaquic Cryofluvents

LEBE. Other Cryofluvents that have a color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 15 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 15 cm after mixing.

Mollic Cryofluvents
LEBF. Other Cryofluvents.

Typic Cryofluvents

Gelifluvents

Key to Subgroups

LEAA. Gelifluvents that have, in one or more horizons within 100 cm of the mineral soil surface, both redox depletions with chroma of 2 or less and aquatic conditions for some time in normal years (or artificial drainage).

Aquic Gelifluvents

LEAB. Other Gelifluvents.

Typic Gelifluvents

Torrifluvents

Key to Subgroups

LEEA. Torrifluvents that have:

1. One or both of the following:
 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
 b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower; and

2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher; and

3. An aridic (or torric) soil moisture regime that borders on ustic.

Ustertic Torrifluvents
LEE B. Other Torrifluvents that have *one or both* of the following:

1. Cracks within 125 cm of the soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in most normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the soil surface; *or*

2. A linear extensibility of 6.0 cm or more between the soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Torrifluvents

LEE C. Other Torrifluvents that have:

1. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher; *and*

2. A thermic, mesic, or frigid soil temperature regime and an aridic (or torric) soil moisture regime that borders on xeric; *and*

3. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, *one or both* of the following:

 a. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; *or*

 b. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; *and*

 (1) In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; *and*

 (2) \([(Al + 1/2 Fe), \text{ percent extracted by ammonium}\)
Vitriixerandic Torrifluvents

LEED. Other Torrifluvents that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 b. \[(Al + \frac{1}{2} Fe, \text{ percent extracted by ammonium oxalate}) \times 60\] plus the volcanic glass (percent) is equal to 0 or more.

Vitrandic Torrifluvents

LEEE. Other Torrifluvents that have, in one or more horizons within 100 cm of the soil surface, both redox depletions with chroma of 2 or less and aquic conditions for some time in normal years (or artificial drainage).

Aquic Torrifluvents

LEEF. Other Torrifluvents that are saturated with water in one or more layers within 150 cm of the soil surface in normal years for either or both:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Torrifluvents

LEEG. Other Torrifluvents that have:

1. A horizon within 100 cm of the mineral soil surface that is 15 cm or more thick and that either has 20 percent or more
(by volume) durinodes or is brittle and has at least a firm rupture-resistance class when moist; and
2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher; and
3. A thermic, mesic, or frigid soil temperature regime and an aridic (or torric) soil moisture regime that borders on xeric.

Duric Xeric Torrifluvents

LEEH. Other Torrifluvents that have a horizon within 100 cm of the mineral soil surface that is 15 cm or more thick and that either has 20 percent or more (by volume) durinodes or is brittle and has at least a firm rupture-resistance class when moist.

Duric Torrifluvents

LEEI. Other Torrifluvents that have both:

1. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher; and
2. An aridic (or torric) soil moisture regime that borders on ustic.

Ustic Torrifluvents

LEEJ. Other Torrifluvents that have both:

1. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher; and
2. A thermic, mesic, or frigid soil temperature regime and an aridic (or torric) soil moisture regime that borders on xeric.

Xeric Torrifluvents
LEEK. Other Torrifluvents that have an anthropic epipedon.

Anthropic Torrifluvents

LEEL. Other Torrifluvents.

Typic Torrifluvents

Udifluvents

Key to Subgroups

LEFA. Udifluvents that have *both*:

1. *One or both* of the following:

 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; *or*

 b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower; *and*

2. *Either or both* of the following:

 a. In one or more horizons within 50 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); *or*

 b. In one or more horizons within 100 cm of the mineral soil surface, a color value, moist, of 4 or more and either chroma of 0 or hue of 5GY, 5G, 5BG, or 5B and also aquic conditions for some time in normal years (or artificial drainage).

Aquertic Udifluvents

LEFB. Other Udifluvents that have *one or both* of the following:

1. Cracks within 125 cm of the mineral soil surface that are
5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Udifluvents

LEFC. Other Udifluvents that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus \(\frac{1}{2} \) Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Udifluvents

LEFD. Other Udifluvents that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, *one or both* of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; *or*

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; *and*
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; *and*
 b. \([(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60] \) plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Udifluvents

LEFE. Other Udifluvents that have *either*:

1. In one or more horizons within 50 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also
aquic conditions for some time in normal years (or artificial drainage); or

2. In one or more horizons within 100 cm of the mineral soil surface, a color value, moist, of 4 or more and either chroma of 0 or hue of 5GY, 5G, 5BG, or 5B and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Udifluvents

LEFF. Other Udifluvents that are saturated with water in one or more layers within 100 cm of the mineral soil surface in normal years for either or both:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Udifluvents

LEFG. Other Udifluvents that have a color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 15 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 15 cm after mixing.

Mollic Udifluvents

LEFH. Other Udifluvents.

Typic Udifluvents

Ustifluvents

Key to Subgroups

LEDA. Ustifluvents that have both:

1. One or both of the following:
 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower; and

2. Either or both of the following:

a. In one or more horizons within 50 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); or

b. In one or more horizons within 150 cm of the mineral soil surface, a color value, moist, of 4 or more and either chroma of 0 or hue of 5GY, 5G, 5BG, or 5B and also aquic conditions for some time in normal years (or artificial drainage).

Aquertic Ustifluvents

LEDB. Other Ustifluvents that have both of the following:

1. When neither irrigated nor fallowed to store moisture, one of the following:

a. A frigid soil temperature regime and a moisture control section that, in normal years, is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

b. A mesic or thermic soil temperature regime and a moisture control section that, in normal years, is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that, in normal years, remains moist in some or all parts for less than 90 consecutive days per year when the soil
temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and

2. *One or both* of the following:

 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

 b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Torrertic Ustifluvents

LEDCC. Other Ustifluvents that have *one or both* of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Ustifluvents

LEDD. Other Ustifluvents that have anthraquic conditions.

Anthraquic Ustifluvents

LEDE. Other Ustifluvents that have *either*:

1. In one or more horizons within 50 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); or

2. In one or more horizons within 150 cm of the mineral soil
surface, a color value, moist, of 4 or more and either chroma of 0 or hue of 5GY, 5G, 5BG, or 5B and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Ustifluvents

LEDF. Other Ustifluvents that are saturated with water in one or more layers within 150 cm of the mineral soil surface in normal years for either or both:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Ustifluvents

LEDG. Other Ustifluvents that, when neither irrigated nor fallowed to store moisture, have one of the following:

1. A frigid soil temperature regime and a moisture control section that, in normal years, is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
2. A mesic or thermic soil temperature regime and a moisture control section that, in normal years, is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
3. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that, in normal years, is moist in some or all parts for less than 180 cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C.

Aridic Ustifluvents

LEDH. Other Ustifluvents that, when neither irrigated nor fallowed to store moisture, have one of the following:

1. A frigid soil temperature regime and a moisture control
section that, in normal years, is dry in some or all parts for less than 105 cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

2. A mesic or thermic soil temperature regime and a moisture control section that, in normal years, is dry in some part for less than four-tenths of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

3. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that, in normal years, is dry in some or all parts for less than 120 cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C.

Udic Ustifluvents

LEDI. Other Ustifluvents that have a color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 15 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 15 cm after mixing.

Mollic Ustifluvents

LEDJ. Other Ustifluvents.

Typic Ustifluvents

Xerofluvents

Key to Subgroups

LECA. Xerofluvents that have one or both of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

2. A linear extensibility of 6.0 cm or more between the
mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Xerofluvents

LECB. Other Xerofluvents that have:

1. In one or more horizons within 50 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); *or*

2. In one or more horizons within 150 cm of the mineral soil surface, a color value, moist, of 4 or more and either chroma of 0 or hue bluer than 10Y and also aquic conditions for some time in normal years (or artificial drainage); *and*

3. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, *one or more* of the following:

 a. A fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0; *or*

 b. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; *or*

 c. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; *and*

 1. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; *and*

 2. $[(Al + \frac{1}{2} Fe, \text{ percent extracted by ammonium oxalate}) \times 60] + \text{volcanic glass (percent)}$ is equal to 30 or more.

Aquandic Xerofluvents

LECC. Other Xerofluvents that have, throughout one or more horizons with a total thickness of 18 cm or more within
75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus \(\frac{1}{2} \) Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Xerofluvents

LECD. Other Xerofluvents that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, *one or both* of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 b. \([(Al \text{ plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60]\) plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Xerofluvents

LECE. Other Xerofluvents that have *either*:

1. In one or more horizons within 50 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); or
2. In one or more horizons within 150 cm of the mineral soil surface, a color value, moist, of 4 or more and either chroma of 0 or hue of 5GY, 5G, 5BG, or 5B or aquic conditions for some time in normal years.

Aquic Xerofluvents

LECF. Other Xerofluvents that are saturated with water in one or more layers within 150 cm of the mineral soil surface in normal years for *either or both*:
1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Xerofluvents

LECG. Other Xerofluvents that have a horizon within 100 cm of the mineral soil surface that is 15 cm or more thick and that either has 20 percent or more (by volume) durinodes or is brittle and has a firm rupture-resistance class when moist.

Durinodic Xerofluvents

LECH. Other Xerofluvents that have a color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 15 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 15 cm after mixing.

Mollic Xerofluvents

LECI. Other Xerofluvents.

Typic Xerofluvents

Orthents

Key to Great Groups

LFA. Orthents that have a gelic soil temperature regime. [Gelorthents, p. 381]

LFB. Other Orthents that have a cryic soil temperature regime. [Cryorthents, p. 380]

LFC. Other Orthents that have an aridic (or torric) soil moisture regime. [Torriorthents, p. 381]

LFD. Other Orthents that have a xeric soil moisture regime. [Xerorthents, p. 392]
LFE. Other Orthents that have an ustic soil moisture regime.
Ustorthents, p. 387

LFF. Other Orthents.
Udorthents, p. 385

Cryorthents

Key to Subgroups

LFBA. Cryorthents that have a lithic contact within 50 cm of the mineral soil surface.
Lithic Cryorthents

LFBB. Other Cryorthents that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, *one or both* of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; *or*
2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; *and*
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; *and*
 b. $[(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60] + \text{volcanic glass (percent)}$ is equal to 30 or more.

Vitrandic Cryorthents

LFBC. Other Cryorthents that have, in one or more horizons within 50 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).
Aquic Cryorthents

LFBD. Other Cryorthents that are saturated with water in
one or more layers within 100 cm of the mineral soil surface in normal years for either or both:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Cryorthents

LFBE. Other Cryorthents that have lamellae within 200 cm of the mineral soil surface.

Lamellic Cryorthents

LFBF. Other Cryorthents.

Typic Cryorthents

Gelorthents

Key to Subgroups

LFAA. Gelorthents that have, in one or more horizons within 100 cm of the mineral soil surface, both redox depletions with chroma of 2 or less and aquic conditions for some time in normal years (or artificial drainage).

Aquic Gelorthents

LFAB. Other Gelorthents that are saturated with water in one or more layers within 100 cm of the mineral soil surface in normal years for either or both:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Gelorthents

LFAC. Other Gelorthents.

Typic Gelorthents

Torriorthents

Key to Subgroups

LFCA. Torriorthents that have all of the following:

1. A lithic contact within 50 cm of the soil surface; and
2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher; and

3. A hyperthermic, thermic, mesic, frigid, or iso soil temperature regime and an aridic (or torric) soil moisture regime that borders on ustic.

Lithic Ustic Torriorthents

LFCB. Other Torriorthents that have all of the following:

1. A lithic contact within 50 cm of the soil surface; and

2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher; and

3. A thermic, mesic, or frigid soil temperature regime and an aridic (or torric) soil moisture regime that borders on xeric.

Lithic Xeric Torriorthents

LFCC. Other Torriorthents that have a lithic contact within 50 cm of the soil surface.

Lithic Torriorthents

LFCD. Other Torriorthents that have:

1. *One or both* of the following:
 a. Cracks within 125 cm of the soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the soil surface; or
 b. A linear extensibility of 6.0 cm or more between the soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower; and

2. A moisture control section that, in normal years, is dry in
all parts for less than three-fourths of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher; and

3. A thermic, mesic, or frigid soil temperature regime and an aridic (or torric) soil moisture regime that borders on xeric.

Xerertic Torriorthents

LFCE. Other Torriorthents that have:

1. *One or both* of the following:
 a. Cracks within 125 cm of the soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the soil surface; or
 b. A linear extensibility of 6.0 cm or more between the soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower; and

2. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher; and

3. An aridic (or torric) soil moisture regime that borders on ustic.

Ustertic Torriorthents

LFCF. Other Torriorthents that have *one or both* of the following:

1. Cracks within 125 cm of the soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the soil surface; or

2. A linear extensibility of 6.0 cm or more between the soil
surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Torriorthents

LFCG. Other Torriorthents that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, *one or both* of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; *
or*

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; *and*

a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; *
and*

b.
\[
((\text{Al} + \frac{1}{2} \text{Fe}, \text{percent extracted by ammonium oxalate}) \times 60) + \text{volcanic glass (percent)} \leq 30
\]

Vitrandic Torriorthents

LFCH. Other Torriorthents that have, in one or more horizons within 100 cm of the soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Torriorthents

LFCI. Other Torriorthents that are saturated with water in one or more layers within 150 cm of the soil surface in normal years for *either or both*:

1. 20 or more consecutive days; *
or*

2. 30 or more cumulative days.

Oxyaquic Torriorthents

LFCJ. Other Torriorthents that have a horizon within 100 cm of the soil surface that is 15 cm or more thick and that either
has 20 percent or more (by volume) durinodes or is brittle and has at least a firm rupture-resistance class when moist.

Duric Torriorthents

LFCK. Other Torriorthents that have both:
1. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher; and
2. A hyperthermic, thermic, mesic, frigid, or iso soil temperature regime and an aridic (or torric) soil moisture regime that borders on ustic.

Ustic Torriorthents

LFCL. Other Torriorthents that have both:
1. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher; and
2. A thermic, mesic, or frigid soil temperature regime and an aridic (or torric) soil moisture regime that borders on xeric.

Xeric Torriorthents

LFCM. Other Torriorthents.

Typic Torriorthents

Udorthents

Key to Subgroups

LFFA. Udorthents that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Udorthents

LFFB. Other Udorthents that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:
1. More than 5 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 b. \([(\text{Al plus } \frac{1}{2} \text{Fe, percent extracted by ammonium oxalate}) \times 60]\) plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Udorthents

LFFC. Other Udorthents that have, in one or more horizons within 100 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Udorthents

LFFD. Other Udorthents that are saturated with water in one or more layers within 150 cm of the mineral soil surface in normal years for either or both:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Udorthents

LFFE. Other Udorthents that have 50 percent or more (by volume) wormholes, wormcasts, and filled animal burrows between either the Ap horizon or a depth of 25 cm from the mineral soil surface, whichever is deeper, and either a depth of 100 cm or a densic, lithic, paralithic, or petroferric contact, whichever is shallower.

Vermic Udorthents

LFFF. Other Udorthents.

Typic Udorthents
Ustorthents

Key to Subgroups

LFEA. Ustorthents that have both:

1. A lithic contact within 50 cm of the mineral soil surface; and
2. When neither irrigated nor fallowed to store moisture, one of the following:
 a. A frigid soil temperature regime and a moisture control section that, in normal years, is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 \(^\circ\)C; or
 b. A mesic or thermic soil temperature regime and a moisture control section that, in normal years, is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 \(^\circ\)C; or
 c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that, in normal years, remains moist in some or all parts for less than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 \(^\circ\)C.

Aridic Lithic Ustorthents

LFEB. Other Ustorthents that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Ustorthents

LFEC. Other Ustorthents that have both:

1. One or both of the following:
 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more
for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower; and

2. When neither irrigated nor fallowed to store moisture, one of the following:

 a. A frigid soil temperature regime and a moisture control section that, in normal years, is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

 b. A mesic or thermic soil temperature regime and a moisture control section that, in normal years, is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

 c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that, in normal years, remains moist in some or all parts for less than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C.

Torrertic Ustorthents

LFED. Other Ustorthents that have one or both of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Ustorthents

LFEE. Other Ustorthents that have anthraquic conditions.

Anthraquic Ustorthents

LFEF. Other Ustorthents that have, in one or more horizons within 100 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Ustorthents

LFEG. Other Ustorthents that are saturated with water in one or more layers within 150 cm of the mineral soil surface in normal years for either or both:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Ustorthents

LFEH. Other Ustorthents that have a horizon within 100 cm of the mineral soil surface that is 15 cm or more thick and that either has 20 percent or more (by volume) durinodes or is brittle and has at least a firm rupture-resistance class when moist.

Durinodic Ustorthents

LFEI. Other Ustorthents that have both:

1. When neither irrigated nor fallowed to store moisture, one of the following:
 a. A frigid soil temperature regime and a moisture control section that, in normal years, is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
b. A mesic or thermic soil temperature regime and a moisture control section that, in normal years, is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that, in normal years, remains moist in some or all parts for less than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, one or both of the following:

a. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

b. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and

 (1) In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and

 (2) [(Al plus $\frac{1}{2}$ Fe, percent extracted by ammonium oxalate) times 60] plus the volcanic glass (percent) is equal to 30 or more.

Vitriterrandic Ustorthents

LFEJ. Other Ustorthents that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 b. \([(\text{Al plus } \frac{1}{2} \text{Fe, percent extracted by ammonium oxalate}) \times 60]\) plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Ustorthents

LFEK. Other Ustorthents that, when neither irrigated nor fallowed to store moisture, have one of the following:

1. A frigid soil temperature regime and a moisture control section that, in normal years, is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
2. A mesic or thermic soil temperature regime and a moisture control section that, in normal years, is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
3. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that, in normal years, is moist in some or all parts for less than 180 cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C.

Aridic Ustorthents

LFEL. Other Ustorthents that, when neither irrigated nor fallowed to store moisture, have one of the following:

1. A frigid soil temperature regime and a moisture control section that, in normal years, is dry in some or all parts for less than 105 cumulative days per year when the soil
temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

2. A mesic or thermic soil temperature regime and a moisture control section that, in normal years, is dry in some part for less than four-tenths of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

3. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that, in normal years, is dry in some or all parts for less than 120 cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C.

Udic Ustorthents

LFEM. Other Ustorthents that have 50 percent or more (by volume) wormholes, wormcasts, and filled animal burrows between either the Ap horizon or a depth of 25 cm from the mineral soil surface, whichever is deeper, and either a depth of 100 cm or a densic, lithic, paralithic, or petroferric contact, whichever is shallower.

Vermic Ustorthents

LFEN. Other Ustorthents.

Typic Ustorthents

Xerorthents

Key to Subgroups

LFDA. Xerorthents that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Xerorthents

LFDB. Other Xerorthents that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser
than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 b. \([(\text{Al plus } \frac{1}{2} \text{Fe, percent extracted by ammonium oxalate}) \times 60] + \text{volcanic glass (percent)} \) is equal to 30 or more.

Vitrandic Xerorthents

LFDC. Other Xerorthents that have, in one or more horizons within 100 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Xerorthents

LFDD. Other Xerorthents that are saturated with water in one or more layers within 150 cm of the mineral soil surface in normal years for either or both:
 1. 20 or more consecutive days; or
 2. 30 or more cumulative days.

Oxyaquic Xerorthents

LFDE. Other Xerorthents that have a horizon within 100 cm of the mineral soil surface that is 15 cm or more thick and that either has 20 percent or more (by volume) durinodes or is brittle and has at least a firm rupture-resistance class when moist.

Durinodic Xerorthents

LFDF. Other Xerorthents that have a base saturation (by NH\(_4\)OAc) of less than 60 percent in all horizons at a depth between 25 and 75 cm below the mineral soil surface or in the
horizon directly above a root-limiting layer that is at a shallower depth.

Dystric Xerorthents

LFDG. Other Xerorthents.

Typic Xerorthents

Psamments

Key to Great Groups

LDA. Psamments that have a cryic soil temperature regime.
Cryopsamments, p. 394

LDB. Other Psamments that have an aridic (or torric) soil moisture regime.
Torripsamments, p. 398

LDC. Other Psamments that have, in the 0.02 to 2.0 mm fraction within the particle-size control section, a total of more than 90 percent (by weighted average) resistant minerals.
Quartzipsamments, p. 396

LDD. Other Psamments that have an ustic soil moisture regime.
Ustipsamments, p. 401

LDE. Other Psamments that have a xeric soil moisture regime.
Xeropsamments, p. 403

LDF. Other Psamments.
Udipsamments, p. 400

Cryopsamments

Key to Subgroups

LDAA. Cryopsamments that have a lithic contact within 50 cm of the mineral soil surface.
Lithic Cryopsamments
LDAB. Other Cryopsamments that have, in one or more horizons within 50 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Cryopsamments

LDAC. Other Cryopsamments that are saturated with water in one or more layers within 100 cm of the mineral soil surface in normal years for *either or both*:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Cryopsamments

LDAD. Other Cryopsamments that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction containing 5 percent or more volcanic glass, and \([(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60\] plus the volcanic glass (percent) is 30 or more.

Vitrandic Cryopsamments

LDAE. Other Cryopsamments that have a horizon 5 cm or more thick that has *one or more* of the following:

1. In 25 percent or more of each pedon, cementation by organic matter and aluminum, with or without iron; or
2. Al plus \(\frac{1}{2}\) Fe percentages (by ammonium oxalate) totaling 0.25 or more, and half that amount or less in an overlying horizon; or
3. An ODOE value of 0.12 or more, and a value half as high or lower in an overlying horizon.

Spodic Cryopsamments

LDAF. Other Cryopsamments that have lamellae within 200 cm of the mineral soil surface.

Lamellic Cryopsamments
LDAG. Other Cryopsamments.

Typic Cryopsamments

Quartzipsamments

Key to Subgroups

LDCA. Quartzipsamments that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Quartzipsamments

LDCB. Other Quartzipsamments that have both:

1. In one or more horizons within 100 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); and

2. A horizon, 5 cm or more thick, either below an Ap horizon or at a depth of 18 cm or more from the mineral soil surface, whichever is deeper, that has one or more of the following:
 a. In 25 percent or more of each pedon, cementation by organic matter and aluminum, with or without iron; or
 b. Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling 0.25 or more, and half that amount or less in an overlying horizon; or
 c. An ODOE value of 0.12 or more, and a value half as high or lower in an overlying horizon.

Aquodic Quartzipsamments

LDCC. Other Quartzipsamments that have, in one or more horizons within 100 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Quartzipsamments

LDCD. Other Quartzipsamments that are saturated with water in one or more layers within 100 cm of the mineral soil surface in normal years for either or both:
1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Quartzipsamments

LDCE. Other Quartzipsamments that meet *all* of the following:

1. Have an ustic soil moisture regime; *and*
2. Have a clay fraction with a CEC of 16 cmol(+) or less per kg clay (by 1N NH$_4$OAc pH 7); *and*
3. The sum of the weighted average silt plus 2 times the weighted average clay (both by weight) is more than 5.

Ustoxic Quartzipsamments

LDCF. Other Quartzipsamments that meet *all* of the following:

1. Have a udic soil moisture regime; *and*
2. Have a clay fraction with a CEC of 16 cmol(+) or less per kg clay (by 1N NH$_4$OAc pH 7); *and*
3. The sum of the weighted average silt plus 2 times the weighted average clay (both by weight) is more than 5.

Udoxic Quartzipsamments

LDCG. Other Quartzipsamments that have 5 percent or more (by volume) plinthite in one or more horizons within 100 cm of the mineral soil surface.

Plinthic Quartzipsamments

LDCH. Other Quartzipsamments that have *both*:

1. Lamellae within 200 cm of the mineral soil surface; *and*
2. An ustic soil moisture regime.

Lamellic Ustic Quartzipsamments

LDCI. Other Quartzipsamments that have lamellae within 200 cm of the mineral soil surface.

Lamellic Quartzipsamments
LDCJ. Other Quartzipsamments that have an ustic soil moisture regime.

Ustic Quartzipsamments

LDCK. Other Quartzipsamments that have a xeric soil moisture regime.

Xeric Quartzipsamments

LDCL. Other Quartzipsamments that have a horizon, 5 cm or more thick, either below an Ap horizon or at a depth of 18 cm or more from the mineral soil surface, whichever is deeper, that has one or more of the following:

1. In 25 percent or more of each pedon, cementation by organic matter and aluminum, with or without iron; *or*
2. Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling 0.25 or more, and half that amount or less in an overlying horizon; *or*
3. An ODOE value of 0.12 or more, and a value half as high or lower in an overlying horizon.

Spodic Quartzipsamments

LDCM. Other Quartzipsamments.

Typic Quartzipsamments

Torripsamments

Key to Subgroups

LDBA. Torripsamments that have a lithic contact within 50 cm of the soil surface.

Lithic Torripsamments

LDBB. Other Torripsamments that are saturated with water in one or more layers within 150 cm of the mineral soil surface in normal years for either or both:

1. 20 or more consecutive days; *or*
2. 30 or more cumulative days.

Oxyaquic Torripsamments

LDBC. Other Torripsamments that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction containing 5 percent or more volcanic glass, and \([(Al + \frac{1}{2}Fe, \text{percent extracted by ammonium oxalate}) \times 60]\) plus the volcanic glass (percent) is 30 or more.

Vitrandic Torripsamments

LDBD. Other Torripsamments that have a horizon within 100 cm of the soil surface that is 15 cm or more thick and that either has 20 percent or more (by volume) durinodes or is brittle and has at least a firm rupture-resistance class when moist.

Haploduridic Torripsamments

LDBE. Other Torripsamments that have *both*:

1. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher; and

2. An aridic (or torric) soil moisture regime that borders on ustic.

Ustic Torripsamments

LDBF. Other Torripsamments that have *both*:

1. A moisture control section that, in normal years, is dry in all parts for less than three-fourths of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is 5 °C or higher; and

2. A thermic, mesic, or frigid soil temperature regime and an aridic (or torric) soil moisture regime that borders on xeric.

Xeric Torripsamments
LDBG. Other Torripsamments that have, in all horizons from a depth of 25 to 100 cm, more than 50 percent colors that have all of the following:

1. Hue of 2.5YR or redder; and
2. A color value, moist, of 3 or less; and
3. A dry value no more than 1 unit higher than the moist value.

Rhodic Torripsamments

LDBH. Other Torripsamments.

Typic Torripsamments

Udipsamments

Key to Subgroups

LDFA. Udipsamments that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Udipsamments

LDFB. Other Udipsamments that have, in one or more horizons within 100 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Udipsamments

LDFC. Other Udipsamments that are saturated with water in one or more layers within 100 cm of the mineral soil surface in normal years for either or both:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Udipsamments

LDFD. Other Udipsamments that have a horizon, 5 cm or more thick, either below an Ap horizon or at a depth of 18 cm or more from the mineral soil surface, whichever is deeper, that has one or more of the following:
1. In 5 percent or more of each pedon, cementation by organic matter and aluminum, with or without iron; or
2. Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling 0.25 or more, and half that amount or less in an overlying horizon; or
3. An ODOE value of 0.12 or more, and a value half as high or lower in an overlying horizon.

Spodic Udipsamments

LDFE. Other Udipsamments that have lamellae within 200 cm of the mineral soil surface.

Lamellic Udipsamments

LDFF. Other Udipsamments that have a surface horizon between 25 and 50 cm thick that meets all of the requirements for a plaggen epipedon except thickness.

Plagganthreptic Udipsamments

LDFG. Other Udipsamments.

Typic Udipsamments

Ustipsamments

Key to Subgroups

LDDA. Ustipsamments that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Ustipsamments

LDDB. Other Ustipsamments that have, in one or more horizons within 100 cm of the mineral soil surface, distinct or prominent redox concentrations and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Ustipsamments

LDDC. Other Ustipsamments that are saturated with water in one or more layers within 100 cm of the mineral soil surface in normal years for \textit{either or both}:
1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Ustipsamments

LDDD. Other Ustipsamments that, when neither irrigated nor fallowed to store moisture, have one of the following:

1. A frigid soil temperature regime and a moisture control section that, in normal years, is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

2. A mesic or thermic soil temperature regime and a moisture control section that, in normal years, is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

3. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that, in normal years, is moist in some or all parts for less than 180 cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C.

Aridic Ustipsamments

LDDE. Other Ustipsamments that have lamellae within 200 cm of the mineral soil surface.

Lamellic Ustipsamments

LDDF. Other Ustipsamments that have, in all horizons from a depth of 25 to 100 cm, more than 50 percent colors that have all of the following:

1. Hue of 2.5YR or redder; and
2. A color value, moist, of 3 or less; and
3. A dry value no more than 1 unit higher than the moist value.

Rhodic Ustipsamments

LDDG. Other Ustipsamments.

Typic Ustipsamments

Xeropsamments

Key to Subgroups

LDEA. Xeropsamments that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Xeropsamments

LDEB. Other Xeropsamments that have both:

1. In one or more horizons within 100 cm of the mineral soil surface, distinct or prominent redox concentrations and also aquic conditions for some time in normal years (or artificial drainage); and

2. A horizon within 100 cm of the mineral soil surface that is 15 cm or more thick and that either has 20 percent or more (by volume) durinodes or is brittle and has at least a firm rupture-resistance class when moist.

Aquic Durinodic Xeropsamments

LDEC. Other Xeropsamments that have, in one or more horizons within 100 cm of the mineral soil surface, distinct or prominent redox concentrations and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Xeropsamments

LDED. Other Xeropsamments that are saturated with water in one or more layers within 100 cm of the mineral soil surface in normal years for either or both:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Xeropsamments

LDEE. Other Xeropsamments that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction containing 5 percent or more volcanic glass, and \([(\text{Al plus } 1/2 \text{ Fe, percent extracted by ammonium oxalate}) \times 60] \) plus the volcanic glass (percent) is 30 or more.

Vitrandic Xeropsamments

LDEF. Other Xeropsamments that have a horizon within 100 cm of the mineral soil surface that is 15 cm or more thick and that either has 20 percent or more (by volume) durinodes or is brittle and has at least a firm rupture-resistance class when moist.

Durinodic Xeropsamments

LDEG. Other Xeropsamments that have lamellae within 200 cm of the mineral soil surface.

Lamellic Xeropsamments

LDEH. Other Xeropsamments that have a base saturation (by \(\text{NH}_4\text{OAc} \)) of less than 60 percent in all horizons at a depth between 25 and 75 cm below the mineral soil surface or in the horizon directly above a root-limiting layer that is at a shallower depth.

Dystric Xeropsamments

LDEI. Other Xeropsamments.

Typic Xeropsamments

Wassents

Key to Great Groups

LAA. Wassents that have, in all horizons within 100 cm of the mineral soil surface, an electrical conductivity of less than 0.2
dS/m in a 5:1, by volume, mixture (not extract) of water and soil.

Frasiwassents, p. 406

LAB. Other Wassents that have less than 35 percent (by volume) rock fragments and a texture class of loamy fine sand or coarser in all layers within the particle-size control section.

Psammowassents, p. 409

LAC. Other Wassents that have a horizon or horizons with a combined thickness of at least 15 cm within 50 cm of the mineral soil surface that contain sulfidic materials.

Sulfiwassents, p. 410

LAD. Other Wassents that have, in all horizons at a depth between 20 and 50 cm below the mineral soil surface, both an \(n \) value of more than 0.7 and 8 percent or more clay in the fine-earth fraction.

Hydrowassents, p. 408

LAE. Other Wassents that have *one or both* of the following:

1. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; or
2. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluviwassents, p. 406

LAF. Other Wassents.

Haplowassents, p. 407
Fluviwassents
Key to Subgroups
LAEA. Fluviwassents that have a horizon or horizons with a combined thickness of at least 15 cm within 100 cm of the mineral soil surface that contain sulfidic materials.

Sulfic Fluviwassents

LAEB. Other Fluviwassents that have a lithic contact within 100 cm of the mineral soil surface.

Lithic Fluviwassents

LAEC. Other Fluviwassents that have a buried layer of organic soil materials, 20 cm or more thick, within 100 cm of the mineral soil surface.

Thapto-Histic Fluviwassents

LAED. Other Fluviwassents that have a chroma of 3 or more in 40 percent or more of the matrix of one or more horizons between a depth of 15 and 100 cm from the soil surface.

Aeric Fluviwassents

LAEE. Other Fluviwassents.

Typic Fluviwassents

Frasiwassents
Key to Subgroups
LAAA. Frasiwassents that have, in all horizons at a depth between 20 and 50 cm below the mineral soil surface, both an n value of more than 0.7 and 8 percent or more clay in the fine-earth fraction.

Hydric Frasiwassents

LAAB. Other Frasiwassents that have a lithic contact within 100 cm of the mineral soil surface.

Lithic Frasiwassents

LAAC. Other Frasiwassents that have less than 35 percent
(by volume) rock fragments and a texture class of loamy fine sand or coarser in all layers within the particle-size control section.

Psammentic Frasiwassents

LAAD. Other Frasiwassents that have a buried layer of organic soil materials, 20 cm or more thick, within 100 cm of the mineral soil surface.

Thapto-Histic Frasiwassents

LAAE. Other Frasiwassents that have *one or both* of the following:

1. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; *or*

2. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluventic Frasiwassents

LAAF. Other Frasiwassents that have a chroma of 3 or more in 40 percent or more of the matrix of one or more horizons between a depth of 15 and 100 cm from the soil surface.

Aeric Frasiwassents

LAAG. Other Frasiwassents.

Typic Frasiwassents

Haplowassents

Key to Subgroups

LAFA. Haplowassents that have a horizon or horizons with a combined thickness of at least 15 cm within 100 cm of the mineral soil surface that contain sulfidic materials.

Sulfic Haplowassents
LAFB. Other Haplocalcic Haplohumults that have a lithic contact within 100 cm of the mineral soil surface.

Lithic Haplocalcic Haplohumults

LAFC. Other Haplocalcic Haplohumults that have a chroma of 3 or more in 40 percent or more of the matrix of one or more horizons between a depth of 15 and 100 cm from the soil surface.

Aeric Haplocalcic Haplohumults

LAFD. Other Haplocalcic Haplohumults.

Typic Haplocalcic Haplohumults

Hydrowults

Key to Subgroups

LADA. Hydrowults that have a horizon or horizons with a combined thickness of at least 15 cm within 100 cm of the mineral soil surface that contain sulfidic materials.

Sulfic Hydrowults

LADB. Other Hydrowults that have, in all horizons at a depth between 20 and 100 cm below the mineral soil surface, both an n value of more than 0.7 and 8 percent or more clay in the fine-earth fraction.

Grossic Hydrowults

LADC. Other Hydrowults that have a lithic contact within 100 cm of the mineral soil surface.

Lithic Hydrowults

LADD. Other Hydrowults that have a buried layer of organic soil materials, 20 cm or more thick, within 100 cm of the mineral soil surface.

Thapto-Histic Hydrowults

LADE. Other Hydrowults.

Typic Hydrowults
Psammowassents

Key to Subgroups

LABA. Psammowassents that have a horizon or horizons with a combined thickness of at least 15 cm within 100 cm of the mineral soil surface that contain sulfidic materials.

Sulfic Psammowassents

LABB. Other Psammowassents that have a lithic contact within 100 cm of the mineral soil surface.

Lithic Psammowassents

LABC. Other Psammowassents that have one or both of the following:

1. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; or

2. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluventic Psammowassents

LABD. Other Psammowassents that have a chroma of 3 or more in 40 percent or more of the matrix of one or more horizons between a depth of 15 and 100 cm from the soil surface.

Aeric Psammowassents

LABE. Other Psammowassents.

Typic Psammowassents
Sulfiwassents

Key to Subgroups

LACA. Sulfiwassents that have a lithic contact within 100 cm of the mineral soil surface.

Lithic Sulfiwassents

LACB. Other Sulfiwassents that have, in some horizons at a depth between 20 and 50 cm below the mineral soil surface, *either or both*:
1. An n value of 0.7 or less; or
2. Less than 8 percent clay in the fine-earth fraction.

Haplic Sulfiwassents

LACC. Other Sulfiwassents that have a buried layer of organic soil materials, 20 cm or more thick, within 100 cm of the mineral soil surface.

Thapto-Histic Sulfiwassents

LACD. Other Sulfiwassents that have *one or both* of the following:
1. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; or
2. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluventic Sulfiwassents

LACE. Other Sulfiwassents that have a chroma of 3 or more in 40 percent or more of the matrix of one or more horizons between a depth of 15 and 100 cm from the soil surface.

Aeric Sulfiwassents
CHAPTER 9

Gelisols

Key to Suborders

AA. Gelisols that have organic soil materials that meet one or more of the following:

1. Overlie cindery, fragmental, or pumiceous materials and/or fill their interstices and directly below these materials have either a densic, lithic, or paralithic contact; or

2. When added with the underlying cindery, fragmental, or pumiceous materials, total 40 cm or more between the soil surface and a depth of 50 cm; or

3. Comprise 80 percent or more, by volume, from the soil surface to a depth of 50 cm or to a glacial layer or a densic, lithic, or paralithic contact, whichever is shallower.

Histels, p. 412

AB. Other Gelisols that have one or more horizons showing cryoturbation in the form of irregular, broken, or distorted horizon boundaries, involutions, the accumulation of organic matter on top of the permafrost, ice or sand wedges, and oriented rock fragments.

Turbels, p. 427

AC. Other Gelisols.

Orthels, p. 416

Histels

Key to Great Groups

AAA. Histels that are saturated with water for less than 30 cumulative days during normal years (and are not artificially drained).

Folistels, p. 414
AAB. Other Histels that are saturated with water for 30 or more cumulative days during normal years and that have both:
1. A glacic layer within 100 cm of the soil surface; and
2. Less than three-fourths (by volume) Sphagnum fibers in the organic soil material to a depth of 50 cm or to a densic, lithic, or paralithic contact, whichever is shallower.

Glacistels, p. 414

AAC. Other Histels that have more thickness of fibric soil materials than any other kind of organic soil material to a depth of 50 cm or to a densic, lithic, or paralithic contact, whichever is shallower.

Fibristels, p. 413

AAD. Other Histels that have more thickness of hemic soil materials than any other kind of organic soil material to a depth of 50 cm or to a densic, lithic, or paralithic contact, whichever is shallower.

Hemistels, p. 415

AAE. Other Histels.

Sapristels, p. 415

Fibristels

Key to Subgroups

AACA. Fibristels that have a lithic contact within 100 cm of the soil surface.

Lithic Fibristels

AACB. Other Fibristels that have a layer of mineral soil material 30 cm or more thick within 100 cm of the soil surface.

Terric Fibristels

AACC. Other Fibristels that have, within the organic soil materials, either one layer of mineral soil material 5 cm or more
thick or two or more layers of any thickness within 100 cm of the soil surface.

Fluvaquentic Fibristels

AACD. Other Fibristels in which three-fourths or more of the fibric soil materials are derived from *Sphagnum* to a depth of 50 cm or to a densic, lithic, or paralithic contact, whichever is shallower.

Sphagnic Fibristels

AACE. Other Fibristels.

Typic Fibristels

Folistels

Key to Subgroups

AAAA. Folistels that have a lithic contact within 50 cm of the soil surface.

Lithic Folistels

AAAB. Other Folistels that have a glacic layer within 100 cm of the soil surface.

Glacic Folistels

AAAC. Other Folistels.

Typic Folistels

Glacistels

Key to Subgroups

AABA. Glacistels that have more thickness of hemic soil materials than any other kind of organic soil material in the upper 50 cm.

Hemic Glacistels

AABB. Other Glacistels that have more thickness of sapric soil materials than any other kind of organic soil material in the upper 50 cm.

Sapric Glacistels
AABC. Other Glacistels.

Typic Glacistels

Hemistels

Key to Subgroups

AADA. Hemistels that have a lithic contact within 100 cm of the soil surface.

Lithic Hemistels

AADB. Other Hemistels that have a layer of mineral soil material 30 cm or more thick within 100 cm of the soil surface.

Terric Hemistels

AADC. Other Hemistels that have, within the organic soil materials, either one layer of mineral soil material 5 cm or more thick or two or more layers of any thickness within 100 cm of the soil surface.

Fluvaquentic Hemistels

AADD. Other Hemistels.

Typic Hemistels

Sapristels

Key to Subgroups

AAEA. Sapristels that have a lithic contact within 100 cm of the soil surface.

Lithic Sapristels

AAEB. Other Sapristels that have a layer of mineral soil material 30 cm or more thick within 100 cm of the soil surface.

Terric Sapristels

AAEC. Other Sapristels that have, within the organic soil materials, either one layer of mineral soil material 5 cm or more thick or two or more layers of any thickness within 100 cm of the soil surface.

Fluvaquentic Sapristels
Orthels

Key to Great Groups

ACA. Orthels that have, in 30 percent or more of the pedon, more than 40 percent, by volume, organic soil materials from the soil surface to a depth of 50 cm.

Historthels, p. 421

ACB. Other Orthels that have, within 50 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions during normal years (or artificial drainage).

Aquorthels, p. 418

ACC. Other Orthels that have anhydrous conditions.

Anhyorthels, p. 417

ACD. Other Orthels that have a mollic epipedon.

Mollorthels, p. 423

ACE. Other Orthels that have an umbric epipedon.

Umbrorthels, p. 425

ACF. Other Orthels that have an argillic horizon within 100 cm of the mineral soil surface.

Argiorthels, p. 420

ACG. Other Orthels that have, below the Ap horizon or below a depth of 25 cm, whichever is deeper, less than 35 percent (by volume) rock fragments and a texture class of loamy fine sand or coarser in all layers within the particle-size control section.

Psammorthels, p. 425

ACH. Other Orthels.

Haplorthels, p. 420
Anhyorthels

Key to Subgroups

ACCA. Anhyorthels that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Anhyorthels

ACCB. Other Anhyorthels that have a glacic layer within 100 cm of the mineral soil surface.

Glacic Anhyorthels

ACCC. Other Anhyorthels that have a petrogypsic horizon within 100 cm of the mineral soil surface.

Petrogypsic Anhyorthels

ACCD. Other Anhyorthels that have a gypsic horizon within 100 cm of the mineral soil surface.

Gypsic Anhyorthels

ACCE. Other Anhyorthels that have a horizon 15 cm or more thick that contains 12 cmol(-)/L nitrate in a 1:5 soil:water extract and in which the product of its thickness (in cm) and its nitrate concentration is 3,500 or more.

Nitric Anhyorthels

ACCF. Other Anhyorthels that have a salic horizon within 100 cm of the mineral soil surface.

Salic Anhyorthels

ACCG. Other Anhyorthels that have a calcic horizon within 100 cm of the mineral soil surface.

Calcic Anhyorthels

ACCH. Other Anhyorthels.

Typic Anhyorthels
Aquorthels
Key to Subgroups

ACBA. Aquorthels that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Aquorthels

ACBB. Other Aquorthels that have a glacial layer within 100 cm of the mineral soil surface.

Glacial Aquorthels

ACBC. Other Aquorthels that have a sulfuric horizon or sulfidic materials within 100 cm of the mineral soil surface.

Sulfuric Aquorthels

ACBD. Other Aquorthels that have either:

1. Organic soil materials that are discontinuous at the surface; or
2. Organic soil materials at the surface that change in thickness fourfold or more within a pedon.

Ruptic-Histic Aquorthels

ACBE. Other Aquorthels that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Aquorthels

ACBF. Other Aquorthels that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 b. \([(\text{Al plus } \frac{1}{2} \text{Fe, percent extracted by ammonium oxalate}) \times 60] + \text{volcanic glass (percent) is equal to 30 or more.}\]

Vitrandic Aquorthels

ACBG. Other Aquorthels that have a salic horizon within 100 cm of the mineral soil surface.

Salic Aquorthels

ACBH. Other Aquorthels that have less than 35 percent (by volume) rock fragments and a texture class of loamy fine sand or coarser in all layers within the particle-size control section.

Psammentic Aquorthels

ACBI. Other Aquorthels that have a slope of less than 25 percent and one or both of the following:

1. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; or

2. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluvaquentic Aquorthels

ACBJ. Other Aquorthels.

Typic Aquorthels
Argiorthels
Key to Subgroups
ACFA. Argiorthels that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Argiorthels

ACFB. Other Argiorthels that have a glacial layer within 100 cm of the mineral soil surface.

Glacial Argiorthels

ACFC. Other Argiorthels that have a natric horizon.

Natric Argiorthels

ACFD. Other Argiorthels.

Typic Argiorthels

Haplorthels
Key to Subgroups
ACHA. Haplorthels that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Haplorthels

ACHB. Other Haplorthels that have a glacial layer within 100 cm of the mineral soil surface.

Glacial Haplorthels

ACHC. Other Haplorthels that have a slope of less than 25 percent; and

1. In one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); and

2. One or both of the following:
 a. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or
more and no dense, lithic, or paralithic contact within that depth; or
b. An irregular decrease in organic-carbon content
(Holocene age) between a depth of 25 cm and either a
depth of 125 cm below the mineral soil surface or a dense, lithic, or paralithic contact, whichever is shallower.

Fluvaquentic Haplorthels

ACHD. Other Haplorthels that have a folistic epipedon.

Folistic Haplorthels

ACHE. Other Haplorthels that have, in one or more horizons
within 75 cm of the mineral soil surface, redox depletions with
chroma of 2 or less and also aquic conditions for some time
during normal years (or artificial drainage).

Aquic Haplorthels

ACHF. Other Haplorthels that have a slope of less than 25
percent and *one or both* of the following:

1. At a depth of 125 cm below the mineral soil surface, an
organic-carbon content (Holocene age) of 0.2 percent or more
and no dense, lithic, or paralithic contact within that depth; or

2. An irregular decrease in organic-carbon content
(Holocene age) between a depth of 25 cm and either a depth
of 125 cm below the mineral soil surface or a dense, lithic, or paralithic contact, whichever is shallower.

Fluventic Haplorthels

ACHG. Other Haplorthels.

Typic Haplorthels

Historthels

Key to Subgroups

ACAA. Historthels that have a lithic contact within 50 cm of
the soil surface.

Lithic Historthels
ACAB. Other Historthels that have a glacial layer within 100 cm of the soil surface.

Glacic Historthels

ACAC. Other Historthels that have a slope of less than 25 percent; and

1. In one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquatic conditions for some time in normal years (or artificial drainage); and

2. One or both of the following:
 a. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; or
 b. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluvaquentic Historthels

ACAD. Other Historthels that have a slope of less than 25 percent and one or both of the following:

1. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; or

2. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluventic Historthels

ACAE. Other Historthels that have more than 40 percent, by
volume, organic soil materials from the soil surface to a depth of 50 cm in 75 percent or less of the pedon.

Ruptic Historthels

ACAF. Other Historthels.

Typic Historthels

Mollorthels

Key to Subgroups

ACDA. Mollorthels that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Mollorthels

ACDB. Other Mollorthels that have a glacic layer within 100 cm of the mineral soil surface.

Glacic Mollorthels

ACDC. Other Mollorthels that have one or both of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time during normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Mollorthels

ACDD. Other Mollorthels that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Mollorthels
ACDE. Other Mollorthels that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 b. \([(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60]\) plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Mollorthels

ACDF. Other Mollorthels that have a folistic epipedon.

Folistic Mollorthels

ACDG. Other Mollorthels that have both:

1. A mollic epipedon that is 40 cm or more thick with a texture class finer than loamy fine sand; and
2. A slope of less than 25 percent.

Cumulic Mollorthels

ACDH. Other Mollorthels that have, in one or more horizons within 100 cm of the mineral soil surface, distinct or prominent redox concentrations and also aquic conditions for some time during normal years (or artificial drainage).

Aquic Mollorthels

ACDI. Other Mollorthels.

Typic Mollorthels
Psammorthels

Key to Subgroups

ACGA. Psammorthels that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Psammorthels

ACGB. Other Psammorthels that have a glacic layer within 100 cm of the mineral soil surface.

Glacic Psammorthels

ACGC. Other Psammorthels that have a horizon 5 cm or more thick that has *one or more* of the following:

1. In 25 percent or more of each pedon, cementation by organic matter and aluminum, with or without iron; *or*
2. Al plus \(\frac{1}{2} \) Fe percentages (by ammonium oxalate) totaling 0.25 or more, and half that amount or less in an overlying horizon; *or*
3. An ODOE value of 0.12 or more, and a value half as high or lower in an overlying horizon.

Spodic Psammorthels

ACGD. Other Psammorthels.

Typic Psammorthels

Umbrorthels

Key to Subgroups

ACEA. Umbrorthels that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Umbrorthels

ACEB. Other Umbrorthels that have a glacic layer within 100 cm of the mineral soil surface.

Glacic Umbrorthels

ACEC. Other Umbrorthels that have *one or both* of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time during normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; *or*
2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Umbrorthels

ACED. Other Umbrorthels that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Umbrorthels

ACEE. Other Umbrorthels that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, *one or both* of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; *or*
2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; *and*
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; *and*
 b. \[(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate)}\]
times 60] plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Umbrorthels

ACEF. Other Umbrorthels that have a folistic epipedon.

Folistic Umbrorthels

ACEG. Other Umbrorthels that have both:

1. An umbric epipedon that is 40 cm or more thick with a texture class finer than loamy fine sand; and
2. A slope of less than 25 percent.

Cumulic Umbrorthels

ACEH. Other Umbrorthels that have, in one or more horizons within 100 cm of the mineral soil surface, distinct or prominent redox concentrations and also aquic conditions for some time during normal years (or artificial drainage).

Aquic Umbrorthels

ACEI. Other Umbrorthels.

Typic Umbrorthels

Turbels

Key to Great Groups

ABA. Turbels that have, in 30 percent or more of the pedon, more than 40 percent, by volume, organic soil materials from the soil surface to a depth of 50 cm.

Histoturbels, p. 430

ABB. Other Turbels that have, within 50 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions during normal years (or artificial drainage).

Aquiturbels, p. 429

ABC. Other Turbels that have anhydrous conditions.

Anhyturbels, p. 428
ABD. Other Turbels that have a mollic epipedon.
Molliturbels, p. 431

ABE. Other Turbels that have an umbric epipedon.
Umbriturbels, p. 433

ABF. Other Turbels that have less than 35 percent (by volume) rock fragments and a texture class of loamy fine sand or coarser in all layers within the particle-size control section.
Psammoturbels, p. 433

ABG. Other Turbels.
Haploturbels, p. 430

Anhyturbels

Key to Subgroups

ABCA. Anhyturbels that have a lithic contact within 50 cm of the mineral soil surface.
Lithic Anhyturbels

ABCB. Other Anhyturbels that have a glacic layer within 100 cm of the mineral soil surface.
Glacic Anhyturbels

ABCC. Other Anhyturbels that have a petrogypsic horizon within 100 cm of the mineral soil surface.
Petrogypsic Anhyturbels

ABCD. Other Anhyturbels that have a gypsic horizon within 100 cm of the mineral soil surface.
Gypsic Anhyturbels

ABCE. Other Anhyturbels that have a horizon 15 cm or more thick that contains 12 cmol(-)/L nitrate in a 1:5 soil:water extract and in which the product of its thickness (in cm) and its nitrate concentration is 3,500 or more.
Nitric Anhyturbels
ABCF. Other Anhyturbels that have a salic horizon within 100 cm of the mineral soil surface.
Salic Anhyturbels

ABCG. Other Anhyturbels that have a calcic horizon within 100 cm of the mineral soil surface.
Calcic Anhyturbels

ABCH. Other Anhyturbels.
Typic Anhyturbels

Aquiturbels

Key to Subgroups

ABBA. Aquiturbels that have a lithic contact within 50 cm of the mineral soil surface.
Lithic Aquiturbels

ABBB. Other Aquiturbels that have a glacic layer within 100 cm of the mineral soil surface.
Glacic Aquiturbels

ABBC. Other Aquiturbels that have a sulfuric horizon or sulfidic materials within 100 cm of the mineral soil surface.
Sulfuric Aquiturbels

ABBD. Other Aquiturbels that have either:
1. Organic soil materials that are discontinuous at the surface; or
2. Organic soil materials at the surface that change in thickness fourfold or more within a pedon.
Ruptic-Histic Aquiturbels

ABBE. Other Aquiturbels that have less than 35 percent (by volume) rock fragments and a texture class of loamy fine sand or coarser in all layers within the particle-size control section.
Psammentic Aquiturbels
ABBF. Other Aquiturbels.

Typic Aquiturbels

Haploturbels
Key to Subgroups

ABGA. Haploturbels that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Haploturbels

ABGB. Other Haploturbels that have a glacic layer within 100 cm of the mineral soil surface.

Glacic Haploturbels

ABGC. Other Haploturbels that have a folistic epipedon.

Folistic Haploturbels

ABGD. Other Haploturbels that have, in one or more horizons within 100 cm of the mineral soil surface, distinct or prominent redox concentrations and also aquic conditions for some time during normal years (or artificial drainage).

Aquic Haploturbels

ABGE. Other Haploturbels.

Typic Haploturbels

Histoturbels
Key to Subgroups

ABAA. Histoturbels that have a lithic contact within 50 cm of the soil surface.

Lithic Histoturbels

ABAB. Other Histoturbels that have a glacic layer within 100 cm of the soil surface.

Glacic Histoturbels

ABAC. Other Histoturbels that have more than 40 percent, by
volume, organic soil materials from the soil surface to a depth of 50 cm in 75 percent or less of the pedon.

Ruptic Histoturbels

ABAD. Other Histoturbels.

Typic Histoturbels

Molliturbels

Key to Subgroups

ABDA. Molliturbels that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Molliturbels

ABDB. Other Molliturbels that have a glacic layer within 100 cm of the mineral soil surface.

Glacic Molliturbels

ABDC. Other Molliturbels that have *one or both* of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time during normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Molliturbels

ABDD. Other Molliturbels that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa
water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Molliturbels

ABDE. Other Molliturbels that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, *one or both* of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; *or*
2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; *and*
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; *and*
 b. $[(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60] + \text{volcanic glass (percent)}$ is equal to 30 or more.

Vitrandic Molliturbels

ABDF. Other Molliturbels that have a folistic epipedon.

Folistic Molliturbels

ABDG. Other Molliturbels that have *both*:

1. A mollic epipedon that is 40 cm or more thick with a texture class finer than loamy fine sand; *and*
2. A slope of less than 25 percent.

Cumulic Molliturbels

ABDH. Other Molliturbels that have, in one or more horizons within 100 cm of the mineral soil surface, distinct or prominent redox concentrations and also aquatic conditions for some time during normal years (or artificial drainage).

Aquic Molliturbels
ABDI. Other Molliturbels.

Typic Molliturbels

Psammoturbels

Key to Subgroups

ABFA. Psammoturbels that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Psammoturbels

ABFB. Other Psammoturbels that have a glacial layer within 100 cm of the mineral soil surface.

Glacial Psammoturbels

ABFC. Other Psammoturbels that have a horizon 5 cm or more thick that has one or more of the following:

1. In 25 percent or more of each pedon, cementation by organic matter and aluminum, with or without iron; or

2. Al plus \(\frac{1}{2} \) Fe percentages (by ammonium oxalate) totaling 0.25 or more, and half that amount or less in an overlying horizon; or

3. An ODOE value of 0.12 or more, and a value half as high or lower in an overlying horizon.

Spodic Psammoturbels

ABFD. Other Psammoturbels.

Typic Psammoturbels

Umbriturbels

Key to Subgroups

ABEA. Umbriturbels that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Umbriturbels
ABEB. Other Umbriturbels that have a glacic layer within 100 cm of the mineral soil surface.

Glacic Umbriturbels

ABEC. Other Umbriturbels that have *one or both* of the following:
1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time during normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Umbriturbels

ABED. Other Umbriturbels that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Umbriturbels

ABEE. Other Umbriturbels that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, *one or both* of the following:
1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; *and*
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; *and*
b. \([\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate)} \times 60\] plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Umbriturbels

ABEF. Other Umbriturbels that have a folistic epipedon.

Folistic Umbriturbels

ABEG. Other Umbriturbels that have both:

1. An umbric epipedon that is 40 cm or more thick with a texture class finer than loamy fine sand; *and*
2. A slope of less than 25 percent.

Cumulic Umbriturbels

ABEH. Other Umbriturbels that have, in one or more horizons within 100 cm of the mineral soil surface, distinct or prominent redox concentrations and also aquic conditions for some time during normal years (or artificial drainage).

Aquic Umbriturbels

ABEI. Other Umbriturbels.

Typic Umbriturbels
CHAPTER 10
Histosols

Key to Suborders

BA. Histosols that are saturated with water for less than 30 cumulative days during normal years (and are not artificially drained).

Folists, p. 440

BB. Other Histosols that have a positive water potential at the soil surface for more than 21 hours of each day in all years.

Wassists, p. 447

BC. Other Histosols that:

1. Have more thickness of fibric soil materials than any other kind of organic soil materials either:
 a. In the organic parts of the subsurface tier if there is no continuous layer of mineral soil material 40 cm or more thick that has its upper boundary within the subsurface tier; or
 b. In the combined thickness of the organic parts of the surface and subsurface tiers and there is a continuous layer of mineral soil material 40 cm or more thick that has its upper boundary within the subsurface tier; and
2. Do not have a sulfuric horizon within 50 cm of the soil surface; and
3. Do not have sulfidic materials within 100 cm of the soil surface.

Fibrists, p. 437

BD. Other Histosols that have more thickness of sapric soil materials than any other kind of organic soil materials either:

1. In the organic parts of the subsurface tier if there is no
continuous layer of mineral soil material 40 cm or more thick that has its upper boundary within the subsurface tier; or 2. In the combined thickness of the organic parts of the surface and subsurface tiers and there is a continuous layer of mineral soil material 40 cm or more thick that has its upper boundary within the subsurface tier.

Sapriests, p. 444

BE. Other Histosols.

Hemists, p. 441

Fibrists

Key to Great Groups

BCA. Fibrists that have a cryic soil temperature regime.

Cryofibrists, p. 437

BCB. Other Fibrists in which fibric Sphagnum constitutes three-fourths or more of the volume to either a depth of 90 cm from the soil surface or to a densic, lithic, or paralithic contact, fragmental materials, or other mineral soil materials if at a depth of less than 90 cm.

Sphagnofibrists, p. 439

BCC. Other Fibrists.

Haplofibrists, p. 438

Cryofibrists

Key to Subgroups

BCAA. Cryofibrists that have a layer of water within the control section, below the surface tier.

Hydric Cryofibrists

BCAB. Other Cryofibrists that have a lithic contact at the lower boundary of the control section.

Lithic Cryofibrists
BCAC. Other Cryofibrists that have a layer of mineral soil material 30 cm or more thick that has its upper boundary within the control section, below the surface tier.

Terric Cryofibrists

BCAD. Other Cryofibrists that have, within the organic soil materials, either one layer of mineral soil material 5 cm or more thick or two or more layers of mineral soil material of any thickness in the control section, below the surface tier.

Fluvaquentic Cryofibrists

BCAE. Other Cryofibrists in which three-fourths or more of the fiber volume in the surface tier is derived from *Sphagnum*.

Sphagnic Cryofibrists

BCAF. Other Cryofibrists.

Typic Cryofibrists

Haplofibrists

Key to Subgroups

BCCA. Haplofibrists that have a layer of water within the control section, below the surface tier.

Hydric Haplofibrists

BCCB. Other Haplofibrists that have a lithic contact at the lower boundary of the control section.

Lithic Haplofibrists

BCCC. Other Haplofibrists that have one or more limnic layers with a total thickness of 5 cm or more within the control section.

Limnic Haplofibrists

BCCD. Other Haplofibrists that have a layer of mineral soil material 30 cm or more thick that has its upper boundary within the control section, below the surface tier.

Terric Haplofibrists
BCCE. Other Haplofibrists that have, within the organic soil materials, either one layer of mineral soil material 5 cm or more thick or two or more layers of mineral soil material of any thickness in the control section, below the surface tier.

Fluvaquentic Haplofibrists

BCCF. Other Haplofibrists that have one or more layers of hemic and sapric materials with a total thickness of 25 cm or more in the control section, below the surface tier.

Hemic Haplofibrists

BCCG. Other Haplofibrists.

Typic Haplofibrists

Sphagnofibrists

Key to Subgroups

BCBA. Sphagnofibrists that have a layer of water within the control section, below the surface tier.

Hydric Sphagnofibrists

BCBB. Other Sphagnofibrists that have a lithic contact at the lower boundary of the control section.

Lithic Sphagnofibrists

BCBC. Other Sphagnofibrists that have one or more limnic layers with a total thickness of 5 cm or more within the control section.

Limnic Sphagnofibrists

BCBD. Other Sphagnofibrists that have a layer of mineral soil material 30 cm or more thick that has its upper boundary within the control section, below the surface tier.

Terric Sphagnofibrists

BCBE. Other Sphagnofibrists that have, within the organic soil materials, either one layer of mineral soil material 5 cm or
more thick or two or more layers of mineral soil material of any thickness in the control section, below the surface tier.

Fluvaquentic Sphagnofibrists

BCBF. Other Sphagnofibrists that have one or more layers of hemic and sapric materials with a total thickness of 25 cm or more in the control section, below the surface tier.

Hemic Sphagnofibrists

BCBG. Other Sphagnofibrists.

Typic Sphagnofibrists

Folists

Key to Great Groups

BAA. Folists that have a cryic soil temperature regime.

Cryofolists, p. 440

BAB. Other Folists that have an aridic (or torric) soil moisture regime.

Torrifolists, p. 441

BAC. Other Folists that have an ustic or xeric soil moisture regime.

Ustifolists, p. 441

BAD. Other Folists.

Udifolists, p. 441

Cryofolists

Key to Subgroups

BAAA. Cryofolists that have a lithic contact within 50 cm of the soil surface.

Lithic Cryofolists

BAAB. Other Cryofolists.

Typic Cryofolists
Torrifolists
Key to Subgroups
BABA. Torrifolists that have a lithic contact within 50 cm of the soil surface. Lithic Torrifolists
BABB. Other Torrifolists. Typic Torrifolists

Udifolists
Key to Subgroups
BADA. Udifolists that have a lithic contact within 50 cm of the soil surface. Lithic Udifolists
BADB. Other Udifolists. Typic Udifolists

Ustifolists
Key to Subgroups
BACA. Ustifolists that have a lithic contact within 50 cm of the soil surface. Lithic Ustifolists
BACB. Other Ustifolists. Typic Ustifolists

Hemists
Key to Great Groups
BEA. Hemists that have a sulfuric horizon within 50 cm of the soil surface. Sulfohemists, p. 444
BEB. Other Hemists that have sulfidic materials within 100 cm of the soil surface.
Sulfihemists, p. 444

BEC. Other Hemists that have a horizon 2 cm or more thick in which humilluvic materials constitute one-half or more of the volume.
Luvihemists, p. 444

BED. Other Hemists that have a cryic soil temperature regime.
Cryohemists, p. 442

BEE. Other Hemists.
Haplohemists, p. 443

Cryohemists
Key to Subgroups

BEDA. Cryohemists that have a layer of water within the control section, below the surface tier.
Hydric Cryohemists

BEDB. Other Cryohemists that have a lithic contact at the lower boundary of the control section.
Lithic Cryohemists

BEDC. Other Cryohemists that have a layer of mineral soil material 30 cm or more thick that has its upper boundary within the control section, below the surface tier.
Terric Cryohemists

BEDD. Other Cryohemists that have, within the organic soil materials, either one layer of mineral soil material 5 cm or more thick or two or more layers of mineral soil material of any thickness in the control section, below the surface tier.
Fluvaquentic Cryohemists

442
Typic Cryohemists

Haplohemists

Key to Subgroups

BEEA. Haplohemists that have a layer of water within the control section, below the surface tier.

Hydric Haplohemists

BEEB. Other Haplohemists that have a lithic contact at the lower boundary of the control section.

Lithic Haplohemists

BEEC. Other Haplohemists that have one or more limnic layers with a total thickness of 5 cm or more within the control section.

Limnic Haplohemists

BEED. Other Haplohemists that have a layer of mineral soil material 30 cm or more thick that has its upper boundary within the control section, below the surface tier.

Terric Haplohemists

BEEE. Other Haplohemists that have, within the organic soil materials, either one layer of mineral soil material 5 cm or more thick or two or more layers of mineral soil material of any thickness in the control section, below the surface tier.

Fluvaquentic Haplohemists

BEEF. Other Haplohemists that have one or more layers of fibric materials with a total thickness of 25 cm or more in the control section, below the surface tier.

Fibric Haplohemists

BEEG. Other Haplohemists that have one or more layers of sapric materials with a total thickness of 25 cm or more below the surface tier.

Sapric Haplohemists
BEEH. Other Haplohemists.

Typic Haplohemists

Luvihemists

Key to Subgroups

BECA. All Luvihemists (provisionally).

Typic Luvihemists

Sulfihemists

Key to Subgroups

BEBA. Sulfihemists that have a layer of mineral soil material 30 cm or more thick that has its upper boundary within the control section, below the surface tier.

Terric Sulfihemists

BEBB. Other Sulfihemists.

Typic Sulfihemists

Sulfohemists

Key to Subgroups

BEAA. All Sulfohemists (provisionally).

Typic Sulfohemists

Saprists

Key to Great Groups

BDA. Saprists that have a sulfuric horizon within 50 cm of the soil surface.

Sulfosaprists, p. 447

BDB. Other Saprists that have sulfidic materials within 100 cm of the soil surface.

Sulfisaprists, p. 447
BDC. Other Saprist that have a cryic soil temperature regime.

Cryosaprist, p. 445

BDD. Other Saprist.

Haplosaprist, p. 445

Cryosaprist

Key to Subgroups

BDCA. Cryosaprist that have a lithic contact at the lower boundary of the control section.

Lithic Cryosaprist

BDCB. Other Cryosaprist that have one or more limnic layers with a total thickness of 5 cm or more within the control section.

Limnic Cryosaprist

BDCC. Other Cryosaprist that have a layer of mineral soil material 30 cm or more thick that has its upper boundary within the control section, below the surface tier.

Terric Cryosaprist

BDCD. Other Cryosaprist that have, within the organic soil materials, either one layer of mineral soil material 5 cm or more thick or two or more layers of mineral soil material of any thickness in the control section, below the surface tier.

Fluvaquentic Cryosaprist

BDCE. Other Cryosaprist.

Typic Cryosaprist

Haplosaprist

Key to Subgroups

BDDA. Haplosaprist that have a lithic contact at the lower boundary of the control section.

Lithic Haplosaprist
BDDB. Other Haplosaprits that have one or more limnic layers with a total thickness of 5 cm or more within the control section.

Limnic Haplosaprits

BDDC. Other Haplosaprits that have both:

1. Throughout a layer 30 cm or thick that has its upper boundary within the control section, an electrical conductivity of 30 dS/m or more (1:1 soil:water) for 6 months or more during normal years; and
2. A layer of mineral soil material 30 cm or more thick that has its upper boundary within the control section, below the surface tier.

Halic Terric Haplosaprits

BDDD. Other Haplosaprits that have, throughout a layer 30 cm or more thick that has its upper boundary within the control section, an electrical conductivity of 30 dS/m or more (1:1 soil:water) for 6 months or more during normal years.

Halic Haplosaprits

BDDE. Other Haplosaprits that have a layer of mineral soil material 30 cm or more thick that has its upper boundary within the control section, below the surface tier.

Terric Haplosaprits

BDDF. Other Haplosaprits that have, within the organic soil materials, either one layer of mineral soil material 5 cm or more thick or two or more layers of mineral soil material of any thickness in the control section, below the surface tier.

Fluvaquentic Haplosaprits

BDDG. Other Haplosaprits that have one or more layers of fibric or hemic materials with a total thickness of 25 cm or more in the control section, below the surface tier.

Hemic Haplosaprits
BDDH. Other Haplosaprists.

Sulfisaprists

Key to Subgroups

BDBA. Sulfisaprists that have a layer of mineral soil material 30 cm or more thick that has its upper boundary within the control section, below the surface tier.

Terric Sulfisaprists

BDBB. Other Sulfisaprists.

Typic Sulfisaprists

Sulfosaprists

Key to Subgroups

BDAA. All Sulfosaprists (provisionally).

Typic Sulfosaprists

Wassists

Key to Great Groups

BBA. Wassists that have, in all horizons within 100 cm of the soil surface, an electrical conductivity of less than 0.2 dS/m in a 5:1, by volume, mixture (not extract) of water and soil.

Frasiwassists, p. 448

BBB. Other Wassists that have a horizon or horizons, with a combined thickness of at least 15 cm within 50 cm of the soil surface, that contain sulfidic materials.

Sulfiwassists, p. 450

BBC. Other Wassists.

Haplowassists, p. 449
Frasiwassists
Key to Subgroups

BBAA. Frasiwassists that:

1. Have more thickness of fibric soil materials than any other kind of organic soil materials

 a. In the organic parts of the subsurface tier if there is no continuous layer of mineral soil material 40 cm or more thick that has its upper boundary within the subsurface tier; or

 b. In the combined thickness of the organic parts of the surface and subsurface tiers and there is a continuous layer of mineral soil material 40 cm or more thick that has its upper boundary within the subsurface tier; and

2. Do not have sulfidic materials within 100 cm of the soil surface.

Fibric Frasiwassists

BBAB. Other Frasiwassists that have more thickness of sapric soil materials than any other kind of organic soil materials

1. In the organic parts of the subsurface tier if there is no continuous layer of mineral soil material 40 cm or more thick that has its upper boundary within the subsurface tier; or

2. In the combined thickness of the organic parts of the surface and subsurface tiers and there is a continuous layer of mineral soil material 40 cm or more thick that has its upper boundary within the subsurface tier.

Sapric Frasiwassists

BBAC. Other Frasiwassists.

Typic Frasiwassists
Haplowassists

Key to Subgroups

BBCA. Haplowassists that have a horizon or horizons, with a combined thickness of 15 cm within 100 cm of the soil surface, that contain sulfidic materials.

Sulfic Haplowassists

BBCB. Other Haplowassists that have more thickness of fibric soil materials than any other kind of organic soil materials either:

1. In the organic parts of the subsurface tier if there is no continuous layer of mineral soil material 40 cm or more thick that has its upper boundary within the subsurface tier; or
2. In the combined thickness of the organic parts of the surface and subsurface tiers and there is a continuous layer of mineral soil material 40 cm or more thick that has its upper boundary within the subsurface tier.

Fibric Haplowassists

BBCC. Other Haplowassists that have more thickness of sapric soil materials than any other kind of organic soil materials either:

1. In the organic parts of the subsurface tier if there is no continuous layer of mineral soil material 40 cm or more thick that has its upper boundary within the subsurface tier; or
2. In the combined thickness of the organic parts of the surface and subsurface tiers and there is a continuous layer of mineral soil material 40 cm or more thick that has its upper boundary within the subsurface tier.

Sapric Haplowassists

BBCD. Other Haplowassists.

Typic Haplowassists
Sulfiwassists

Key to Subgroups

BBBA. Sulfiwassists that have more thickness of fibric soil materials than any other kind of organic soil materials \textit{either}:

1. In the organic parts of the subsurface tier if there is no continuous layer of mineral soil material 40 cm or more thick that has its upper boundary within the subsurface tier; \textit{or}

2. In the combined thickness of the organic parts of the surface and subsurface tiers \textit{and} there is a continuous layer of mineral soil material 40 cm or more thick that has its upper boundary within the subsurface tier.

Fibric Sulfiwassists

BBBB. Other Sulfiwassists that have more thickness of sapric soil materials than any other kind of organic soil materials \textit{either}:

1. In the organic parts of the subsurface tier if there is no continuous layer of mineral soil material 40 cm or more thick that has its upper boundary within the subsurface tier; \textit{or}

2. In the combined thickness of the organic parts of the surface and subsurface tiers \textit{and} there is a continuous layer of mineral soil material 40 cm or more thick that has its upper boundary within the subsurface tier.

Sapric Sulfiwassists

BBBC. Other Sulfiwassists.

Typic Sulfiwassists
CHAPTER 11

Inceptisols

Key to Suborders

KA. Inceptisols that have _one or more_ of the following:

1. In a layer above a densic, lithic, or paralithic contact or in a layer at a depth between 40 and 50 cm from the mineral soil surface, whichever is shallower, aquic conditions for some time in normal years (or artificial drainage) and _one or more_ of the following:

 a. A histic epipedon; _or_

 b. A sulfuric horizon within 50 cm of the mineral soil surface; _or_

 c. A layer directly under the epipedon, or within 50 cm of the mineral soil surface, that has, on faces of peds or in the matrix if peds are absent, 50 percent or more chroma of _either_

 (1) 2 or less if there are redox concentrations; _or_

 (2) 1 or less; _or_

 d. Within 50 cm of the mineral soil surface, enough active ferrous iron to give a positive reaction to alpha, alpha-dipyridyl at a time when the soil is not being irrigated; _or_

2. An exchangeable sodium percentage (ESP) of 15 or more (or a sodium adsorption ratio [SAR] of 13 or more) in half or more of the soil volume within 50 cm of the mineral soil surface, a decrease in ESP (or SAR) values with increasing depth below 50 cm, and ground water within 100 cm of the mineral soil surface for some time during the year.

Aquepts, p. 453
KB. Other Inceptisols that have a plaggen or anthropic epipedon.

Anthrepts, p. 452

KC. Other Inceptisols that have a gelic soil temperature regime.

Gelepts, p. 485

KD. Other Inceptisols that have a cryic soil temperature regime.

Cryepts, p. 469

KE. Other Inceptisols that have an ustic soil moisture regime.

Ustepts, p. 511

KF. Other Inceptisols that have a xeric soil moisture regime.

Xerepts, p. 532

KG. Other Inceptisols.

Udepts, p. 489

Anthrepts

Key to Great Groups

KBA. Anthrepts that have a plaggen epipedon.

Plagganthrepts, p. 452

KBB. Other Anthrepts.

Haplanthrepts, p. 452

Haplanthrepts

Key to Subgroups

KBBA. All Haplanthrepts (provisionally).

Typic Haplanthrepts

Plagganthrepts

Key to Subgroups

KBAA. All Plagganthrepts (provisionally).

Typic Plagganthrepts
Aquepts
Key to Great Groups

KAA. Aquepts that have a sulfuric horizon within 50 cm of the mineral soil surface.

Sulfaquepts, p. 469

KAB. Other Aquepts that have, within 100 cm of the mineral soil surface, one or more horizons in which plinthite or a cemented diagnostic horizon either forms a continuous phase or constitutes one-half or more of the volume.

Petraquepts, p. 468

KAC. Other Aquepts that have either:

1. A salic horizon; or

2. In one or more horizons with a total thickness of 25 cm or more within 50 cm of the mineral soil surface, an exchangeable sodium percentage (ESP) of 15 or more (or a sodium adsorption ratio [SAR] of 13 or more) and a decrease in ESP (or SAR) values with increasing depth below 50 cm.

Halaquepts, p. 465

KAD. Other Aquepts that have a fragipan within 100 cm of the mineral soil surface.

Fragiaquepts, p. 463

KAE. Other Aquepts that have a gelic soil temperature regime.

Gelaquepts, p. 463

KAF. Other Aquepts that have a cryic soil temperature regime.

Cryaquepts, p. 454

KAG. Other Aquepts that have, in one or more layers at least 25 cm thick (cumulative) within 100 cm of the mineral soil surface, 25 percent or more (by volume) recognizable
bioturbation, such as filled animal burrows, wormholes, or casts.

Vermaquepts, p. 469

KAH. Other Aquepts that have a histic, melanic, mollic, or umbric epipedon.

Humaquepts, p. 466

KAI. Other Aquepts that have episaturation.

Epiaquepts, p. 460

KAJ. Other Aquepts.

Endoaquepts, p. 456

Cryaquepts

Key to Subgroups

KAFA. Cryaquepts that have, within 150 cm of the mineral soil surface, *one or more* of the following:

1. A sulfuric horizon; or
2. A horizon 15 cm or more thick that has all of the characteristics of a sulfuric horizon, except that it has a pH value between 3.5 and 4.0 and does not have sulfide or other sulfur-bearing minerals; or

Sulfic Cryaquepts

KAFB. Other Cryaquepts that have both a histic epipedon and a lithic contact within 50 cm of the mineral soil surface.

Histic Lithic Cryaquepts

KAFC. Other Cryaquepts that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Cryaquepts

KAFD. Other Cryaquepts that have *one or both* of the following:
1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Cryaquepts

KAFE. Other Cryaquepts that have a histic epipedon.

Histic Cryaquepts

KAFF. Other Cryaquepts that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or more of the following:

1. A fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0; or

2. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

3. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 b. \[(Al \text{ plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60\] plus the volcanic glass (percent) is equal to 30 or more.

Aquandic Cryaquepts

KAFG. Other Cryaquepts that have a slope of less than 25 percent and one or both of the following:
1. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; or

2. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluvaquentic Cryaquepts

KAFH. Other Cryaquepts that have both:

1. Chroma of 3 or more in 40 percent or more of the matrix of one or more horizons at a depth between 15 and 50 cm from the mineral soil surface; and

2. A mollic or umbric epipedon.

Aeric Humic Cryaquepts

KAFI. Other Cryaquepts that have chroma of 3 or more in 40 percent or more of the matrix of one or more horizons at a depth between 15 and 50 cm from the mineral soil surface.

Aeric Cryaquepts

KAFJ. Other Cryaquepts that have a mollic or umbric epipedon.

Humic Cryaquepts

KAFK. Other Cryaquepts.

Typic Cryaquepts

Endoaquepts

Key to Subgroups

KAJA. Endoaquepts that have, within 150 cm of the mineral soil surface, one or more of the following:

1. A sulfuric horizon; or

2. A horizon 15 cm or more thick that has all of the
characteristics of a sulfuric horizon, except that it has a pH value between 3.5 and 4.0 and does not have sulfide or other sulfur-bearing minerals; or

Sulfic Endoaquepts

KAJB. Other Endoaquepts that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Endoaquepts

KAJC. Other Endoaquepts that have *one or both* of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Endoaquepts

KAJD. Other Endoaquepts that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, *one or more* of the following:

1. A fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus 1/2 Fe percentages (by ammonium oxalate) totaling more than 1.0; or

2. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

3. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; *and*
a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and

b. \[(Al + \frac{1}{2} Fe, \text{ percent extracted by ammonium oxalate}) \times 60 \] plus the volcanic glass (percent) is equal to 30 or more.

Aquandic Endoaquepts

KAJE. Other Endoaquepts that have, in one or more horizons between the A or Ap horizon and a depth of 75 cm below the mineral soil surface, one of the following colors:

1. Hue of 7.5YR or redder in 50 percent or more of the matrix; and
 a. If peds are present, either chroma of 2 or more on 50 percent or more of ped exteriors or no redox depletions with chroma of 2 or less in ped interiors; or
 b. If peds are absent, a chroma of 2 or more in 50 percent or more of the matrix; or
2. In 50 percent or more of the matrix, hue of 10YR or yellower; and either
 a. Both a color value, moist, and chroma of 3 or more; or
 b. Chroma of 2 or more if there are no redox concentrations; and
3. A slope of less than 25 percent and one or both of the following:
 a. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; or
 b. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluventic Endoaquepts
KAJF. Other Endoaquepts that have a slope of less than 25 percent and one or both of the following:

1. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; or

2. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluvaquentic Endoaquepts

KAJG. Other Endoaquepts that have fragic soil properties:

1. In 0 percent or more of the volume of a layer 15 cm or more thick that has its upper boundary within 100 cm of the mineral soil surface; or

2. In 60 percent or more of the volume of a layer 15 cm or more thick.

Fragic Endoaquepts

KAJH. Other Endoaquepts that have, in one or more horizons between the A or Ap horizon and a depth of 75 cm below the mineral soil surface, one of the following colors:

1. Hue of 7.5YR or redder in 50 percent or more of the matrix; and
 a. If peds are present, either chroma of 2 or more on 50 percent or more of ped exteriors or no redox depletions with chroma of 2 or less in ped interiors; or
 b. If peds are absent, chroma of 2 or more in 50 percent or more of the matrix; or

2. In 50 percent or more of the matrix, hue of 10YR or yellower and either:
 a. Both a color value, moist, and chroma of 3 or more; or
b. Chroma of 2 or more if there are no redox concentrations.

Aeric Endoaquepts

KAJI. Other Endoaquepts that have both:

1. A color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 15 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 15 cm after mixing; and
2. A base saturation (by NH₄OAc) of less than 50 percent in some part within 100 cm of the mineral soil surface.

Humic Endoaquepts

KAJJ. Other Endoaquepts that have a color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 15 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 15 cm after mixing.

Mollic Endoaquepts

KAJK. Other Endoaquepts.

Typic Endoaquepts

Epiaquepts

Key to Subgroups

KAIA. Epiaquepts that have one or both of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Epiaquepts
KAIB. Other Epiaquepts that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or more of the following:

1. A fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus \(\frac{1}{2} \) Fe percentages (by ammonium oxalate) totaling more than 1.0; or
2. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
3. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 b. \([(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60]\) plus the volcanic glass (percent) is equal to 30 or more.

Aquandic Epiaquepts

KAIC. Other Epiaquepts that have a slope of less than 5 percent and one or both of the following:

1. At a depth of 15 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.0 percent or more and no densic, lithic, or paralithic contact within that depth; or
2. An irregular decrease in organic-carbon content (Holocene age) between a depth of 5 cm and either a depth of 15 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluvaquentic Epiaquepts

KAID. Other Epiaquepts that have fragic soil properties either:

1. In 30 percent or more of the volume of a layer 15 cm or
more thick that has its upper boundary within 100 cm of the mineral soil surface; or
2. In 60 percent or more of the volume of a layer 15 cm or more thick.

Fragic Epiaquepts

KAIE. Other Epiaquepts that have, in one or more horizons between the A or Ap horizon and a depth of 75 cm below the mineral soil surface, one of the following colors:

1. Hue of 7.5YR or redder in 50 percent or more of the matrix; and
 a. If peds are present, either chroma of 2 or more on 50 percent or more of ped exteriors or no redox depletions with chroma of 2 or less in ped interiors; or
 b. If peds are absent, chroma of 2 or more in 50 percent or more of the matrix; or
2. In 50 percent or more of the matrix, hue of 10YR or yellower and either:
 a. Both a color value, moist, and chroma of 3 or more; or
 b. Chroma of 2 or more if there are no redox concentrations.

Aeric Epiaquepts

KAIF. Other Epiaquepts that have both:

1. A color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 15 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 15 cm after mixing; and
2. A base saturation (by NH₄OAc) of less than 50 percent in some part within 100 cm of the mineral soil surface.

Humic Epiaquepts

KAIG. Other Epiaquepts that have a color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and
smoothed sample) either throughout the upper 15 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 15 cm after mixing.

Mollic Epiaquepts

KAIH. Other Epiaquepts.

Typic Epiaquepts

Fragiaquepts

Key to Subgroups

KADA. Fragiaquepts that have, in 50 percent or more of the matrix of one or more horizons either between the plow layer and a depth of 75 cm below the mineral soil surface or, if there is no plow layer, between depths of 15 and 75 cm, chroma of either:

1. 3 or more; or
2. 2 or more if there are no redox concentrations.

Aeric Fragiaquepts

KADB. Other Fragiaquepts that have a histic, mollic, or umbric epipedon.

Humic Fragiaquepts

KADC. Other Fragiaquepts.

Typic Fragiaquepts

Gelaquepts

Key to Subgroups

KAEA. Gelaquepts that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Gelaquepts

KAEB. Other Gelaquepts that have a histic epipedon.

Histic Gelaquepts

KAEC. Other Gelaquepts that have, throughout one or more
horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, *one or more* of the following:

1. A fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0; *or*

2. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; *or*

3. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; *and*
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; *and*
 b. $[(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60] + \text{volcanic glass (percent)}$ is equal to 30 or more.

Aquandic Gelaquepts

KAED. Other Gelaquepts that have a slope of less than 5 percent and *one or both* of the following:

1. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; *or*

2. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluvaquentic Gelaquepts

KAEE. Other Gelaquepts that have a mollic or umbric epipedon.

Humic Gelaquepts
KAEG. Other Gelaquepts.

Typic Gelaquepts

Halaquepts

Key to Subgroups

KACA. Halaquepts that have one or both of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Halaquepts

KACB. Other Halaquepts that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or more of the following:

1. A fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus Fe percentages (by ammonium oxalate) totaling more than 1.0; or

2. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

3. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and

 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
b. \[(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60\] plus the volcanic glass (percent) is equal to 30 or more.

Aquandic Halaquepts

KACC. Other Halaquepts that have one or more horizons, with a combined thickness of 15 cm or more, that contain 20 percent or more (by volume) cemented soil material and are within 100 cm of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Duric Halaquepts

KACD. Other Halaquepts that have chroma of 3 or more in 40 percent or more of the matrix of one or more horizons at a depth between 15 and 75 cm from the mineral soil surface.

Aeric Halaquepts

KACE. Other Halaquepts.

Typic Halaquepts

Humaquepts

Key to Subgroups

KAHA. Humaquepts that have an \(n\) value of \(\textit{either}:\)

1. More than 0.7 (and less than 8 percent clay) in one or more layers at a depth between 20 and 50 cm from the mineral soil surface; \textit{or}

2. More than 0.9 in one or more layers at a depth between 50 and 100 cm.

Hydraquentic Humaquepts

KAHB. Other Humaquepts that have a histic epipedon.

Histic Humaquepts

KAHC. Other Humaquepts that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, \textit{one or more} of the following:
1. A fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus ½ Fe percentages (by ammonium oxalate) totaling more than 1.0; or

2. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

3. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 b. \([(\text{Al plus } ½ \text{ Fe, percent extracted by ammonium oxalate}) \times 60]\) plus the volcanic glass (percent) is equal to 30 or more.

Aquandic Humaquepts

KAHD. Other Humaquepts that have a slope of less than 5 percent; and

1. An umbric or mollic epipedon that is 60 cm or more thick; and

2. One or both of the following:
 a. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; or
 b. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Cumulic Humaquepts

KAHE. Other Humaquepts that have a slope of less than 5 percent and one or both of the following:
1. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; or
2. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluvaquentic Humaquepts

KAHF. Other Humaquepts that have hue of 5Y or redder and chroma of 3 or more in more than 40 percent of the matrix of one or more subhorizons at a depth between 15 and 75 cm from the mineral soil surface.

Aeric Humaquepts

KAHG. Other Humaquepts.

Typic Humaquepts

Petraquepts

Key to Subgroups

KABA. Petraquepts that have both:

1. A histic epipedon; and
2. A placic horizon.

Histic Placic Petraquepts

KABB. Other Petraquepts that have a placic horizon.

Placic Petraquepts

KABC. Other Petraquepts that have one or more horizons within 125 cm of the mineral soil surface in which plinthite either forms a continuous phase or constitutes one-half or more of the volume.

Plinthic Petraquepts
KABD. Other Petraquepts.

Typic Petraquepts

Sulfaquepts

Key to Subgroups

KAAA. Sulfaquepts that have a salic horizon within 75 cm of the mineral soil surface.

Salidic Sulfaquepts

KAAB. Other Sulfaquepts that have an n value of either:
1. More than 0.7 (and 8 or more percent clay) in one or more layers at a depth between 20 and 50 cm from the mineral soil surface; or
2. More than 0.9 in one or more layers at a depth between 50 and 100 cm from the mineral soil surface.

Hydraquentic Sulfaquepts

KAAC. Other Sulfaquepts.

Typic Sulfaquepts

Vermaquepts

Key to Subgroups

KAGA. Vermaquepts that have an exchangeable sodium percentage of 7 or more (or a sodium adsorption ratio [SAR] of 6 or more) in one or more subhorizons within 100 cm of the mineral soil surface.

Sodic Vermaquepts

KAGB. Other Vermaquepts.

Typic Vermaquepts

Cryepts

Key to Great Groups

KDA. Cryepts that have an umbric or mollic epipedon.

Humicryepts, p. 480
KDB. Other Cryepts that have a calcic or petrocalcic horizon within 100 cm of the mineral soil surface. **Calcicryepts**, p. 470

KDC. Other Cryepts that meet *both* of the following:

1. Do not have free carbonates within 200 cm of the mineral soil surface; *and*
2. Have a base saturation (by NH$_4$OAc) of less than 50 percent, *either*:
 a. In one-half or more of the thickness between 25 and 75 cm below the mineral soil surface and there is no placic horizon, duripan, fragipan, or densic, lithic, or paralithic contact within 50 cm of the mineral soil surface; *or*
 b. In a layer, 10 cm or more thick, directly above a placic horizon, duripan, fragipan, or densic, lithic, or paralithic contact within 50 cm of the mineral soil surface.

Dystrocrayepts, p. 471

KDD. Other Cryepts. **Haplocryepts**, p. 475

Calcicryepts

Key to Subgroups

KDBA. Calcicryepts that have a lithic contact within 50 cm of the mineral soil surface. **Lithic Calcicryepts**

KDBB. Other Calcicryepts that in normal years are saturated with water in one or more layers within 100 cm of the mineral soil surface for *either or both*:

1. 20 or more consecutive days; *or*
2. 30 or more cumulative days.

Oxyaquic Calcicryepts
KDBC. Other Calcicryepts that have a xeric soil moisture regime.

\textbf{Xeric Calcicryepts}

KDBD. Other Calcicryepts that are dry in some part of the moisture control section for 45 or more days (cumulative) in normal years.

\textbf{Ustic Calcicryepts}

KDBE. Other Calcicryepts.

\textbf{Typic Calcicryepts}

\section*{Dystrocrhythents}

\textbf{Key to Subgroups}

KDCA. Dystrocrhythents that have a lithic contact within 50 cm of the mineral soil surface.

\textbf{Lithic Dystrocrhythents}

KDCB. Other Dystrocrhythents that have \textit{both}:

1. In one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); \textit{and}

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, \textit{one or more} of the following:

 a. A fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe (by ammonium oxalate) of 1.0 percent or more; \textit{or}

 b. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; \textit{or}

 c. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; \textit{and}
(1) In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; \textit{and}
(2) \([(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60\] plus the volcanic glass (percent) is equal to 30 or more.

\textbf{Aquandic Dystrocryepts}

KDCC. Other Dystrocryepts that have \textit{both}:

1. A xeric soil moisture regime; \textit{and}
2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus \(\frac{1}{2}\) Fe (by ammonium oxalate) of 1.0 percent or more.

\textbf{Haploxerandic Dystrocryepts}

KDCD. Other Dystrocryepts that have \textit{both}:

1. A xeric soil moisture regime; \textit{and}
2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or \textit{both} of the following:
 a. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; \textit{or}
 b. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; \textit{and}

(1) In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; \textit{and}
(2) \([(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60\] plus the volcanic glass (percent) is equal to 30 or more.

\textbf{Vitrixerandic Dystrocryepts}
KDCE. Other Dystrocryepts that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus ½ Fe (by ammonium oxalate) of 1.0 percent or more.

Andic Dystrocryepts

KDCF. Other Dystrocryepts that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, *one or both* of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; *or*
2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; *and*
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; *and*
 b. \[(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60\] plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Dystrocryepts

KDCG. Other Dystrocryepts that have a slope of less than 5 percent; *and*

1. In one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); *and*
2. *One or both* of the following:
 a. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; *or*
b. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluvaquentic Dystrocryepts

KDCH. Other Dystrocryepts that have a folistic epipedon.

Folistic Dystrocryepts

KDCI. Other Dystrocryepts that have, in one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Dystrocryepts

KDCJ. Other Dystrocryepts that in normal years are saturated with water in one or more layers within 100 cm of the mineral soil surface for *either or both*:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Dystrocryepts

KDCK. Other Dystrocryepts that have lamellae (two or more) within 200 cm of the mineral soil surface.

Lamellic Dystrocryepts

KDCL. Other Dystrocryepts that have a slope of less than 25 percent and *one or both* of the following:

1. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; or
2. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth
of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluventic Dystrocryepts

KDCM. Other Dystrocryepts that have a horizon 5 cm or more thick that has one or more of the following:

1. In 25 percent or more of each pedon, cementation by organic matter and aluminum, with or without iron; or
2. Al plus \(\frac{1}{2} \text{Fe} \) (by ammonium oxalate) of 0.25 percent or more and half that amount or less in an overlying horizon; or
3. An ODOE value of 0.12 or more and a value half as high or lower in an overlying horizon.

Spodic Dystrocryepts

KDCN. Other Dystrocryepts that have a xeric soil moisture regime.

Xeric Dystrocryepts

KDCO. Other Dystrocryepts that are dry in some part of the moisture control section for 45 or more days (cumulative) in normal years.

Ustic Dystrocryepts

KDCP. Other Dystrocryepts that have a base saturation (by NH\(_4\)OAc) of 50 percent or more in one or more horizons between 25 and 50 cm from the mineral soil surface.

Eutric Dystrocryepts

KDCQ. Other Dystrocryepts.

Typic Dystrocryepts

Haplocryepts

Key to Subgroups

KDDA. Haplocryepts that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Haplocryepts
KDDB. Other Haplocryepts that have both:

1. In one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); and

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or more of the following:
 a. A fine-earth fraction with both a bulk density of 1.0 g/cm\(^3\) or less, measured at 33 kPa water retention, and Al plus ½ Fe (by ammonium oxalate) of 1.0 percent or more; or
 b. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
 c. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and

 (1) In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 (2) \([(\text{Al plus } 1/2 \text{ Fe, percent extracted by ammonium oxalate}) \times 60]\) plus the volcanic glass (percent) is equal to 30 or more.

Aquandic Haplocryepts

KDDC. Other Haplocryepts that have both:

1. A xeric soil moisture regime; and

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm\(^3\) or less, measured at 33 kPa water retention, and Al plus ½ Fe (by ammonium oxalate) of 1.0 percent or more.

Haploxerandic Haplocryepts

KDDD. Other Haplocryepts that have both:
1. A xeric soil moisture regime; and

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:

 a. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

 b. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and

 (1) In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and

 (2) [(Al plus ½ Fe, percent extracted by ammonium oxalate) times 60] plus the volcanic glass (percent) is equal to 30 or more.

Vitrixerandic Haplocryepts

KDDE. Other Haplocryepts that have both:

1. A moisture control section that is dry in some part for 45 or more days (cumulative) in normal years; and

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus ½ Fe (by ammonium oxalate) of 1.0 percent or more.

Haplustandic Haplocryepts

KDDF. Other Haplocryepts that have both:

1. A moisture control section that is dry in some part for 45 or more days (cumulative) in normal years; and

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:

 a. More than 35 percent (by volume) fragments coarser
than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
b. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 (1) In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 (2) \((\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60\) plus the volcanic glass (percent) is equal to 30 or more.

Ustivitrandic Haplocryepts

KDDG. Other Haplocryepts that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm\(^3\) or less, measured at 33 kPa water retention, and Al plus \(\frac{1}{2}\) Fe (by ammonium oxalate) of 1.0 percent or more.

Andic Haplocryepts

KDDH. Other Haplocryepts that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 b. \((\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60\) plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Haplocryepts
KDDI. Other Haplocryepts that have a slope of less than 25 percent; and

1. In one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); and

2. One or both of the following:
 a. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; or
 b. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluvaquentic Haplocryepts

KDDJ. Other Haplocryepts that have, in one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Haplocryepts

KDDK. Other Haplocryepts that in normal years are saturated with water in one or more layers within 100 cm of the mineral soil surface for either or both:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Haplocryepts

KDDL. Other Haplocryepts that have lamellae (two or more) within 200 cm of the mineral soil surface.

Lamellic Haplocryepts
KDDM. Other Haplocryepts that have a slope of less than 25 percent and *one or both* of the following:

1. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; *or*

2. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluventic Haplocryepts

KDDN. Other Haplocryepts that have identifiable secondary carbonates within 100 cm of the mineral soil surface.

Calcic Haplocryepts

KDDO. Other Haplocryepts that have a xeric soil moisture regime.

Xeric Haplocryepts

KDDP. Other Haplocryepts that are dry in some part of the moisture control section for 45 or more days (cumulative) in normal years.

Ustic Haplocryepts

KDDQ. Other Haplocryepts.

Typic Haplocryepts

Humicryepts

Key to Subgroups

KDAA. Humicryepts that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Humicryepts

KDAB. Other Humicryepts that have *both*:

1. In one or more horizons within 75 cm of the mineral soil
surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); and

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or more of the following:

 a. A fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus ½ Fe (by ammonium oxalate) of 1.0 percent or more; or

 b. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

 c. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and

 (1) In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and

 (2) \([(\text{Al plus } \frac{1}{2} \text{Fe, percent extracted by ammonium oxalate}) \times 60]\) plus the volcanic glass (percent) is equal to 30 or more.

 Aquandic Humicryepts

 KDAC. Other Humicryepts that have both:

 1. A xeric soil moisture regime; and

 2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus ½ Fe (by ammonium oxalate) of 1.0 percent or more.

 Haploxerandic Humicryepts

 KDAD. Other Humicryepts that have both:

 1. A xeric soil moisture regime; and

 2. Throughout one or more horizons with a total thickness of
18 cm or more within 75 cm of the mineral soil surface, one or both of the following:

a. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

b. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and

 (1) In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and

 (2) [(Al plus ½ Fe, percent extracted by ammonium oxalate) times 60] plus the volcanic glass (percent) is equal to 30 or more.

Vitrixerandic Humicryepts

KDAE. Other Humicryepts that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus ½ Fe (by ammonium oxalate) of 1.0 percent or more.

Andic Humicryepts

KDAF. Other Humicryepts that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and

 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and

 b. [(Al plus ½ Fe, percent extracted by ammonium oxalate)
times 60] plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Humicryepts

KDAG. Other Humicryepts that have a slope of less than 25 percent; *and*

1. In one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); *and*

2. *One or both* of the following:

 a. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; *or*

 b. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluvaquentic Humicryepts

KDAH. Other Humicryepts that have, in one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Humicryepts

KDAI. Other Humicryepts that in normal years are saturated with water in one or more layers within 100 cm of the mineral soil surface for *either or both*:

1. 20 or more consecutive days; *or*

2. 30 or more cumulative days.

Oxyaquic Humicryepts
KDAJ. Other Humicryepts that have lamellae (two or more) within 200 cm of the mineral soil surface.

Lamellic Humicryepts

KDAK. Other Humicryepts that have a slope of less than 25 percent and *one or both* of the following:

1. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; or
2. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluventic Humicryepts

KDAL. Other Humicryepts that have a horizon 5 cm or more thick that has *one or more* of the following:

1. In 25 percent or more of each pedon, cementation by organic matter and aluminum, with or without iron; or
2. \(\text{Al} + \frac{1}{2} \text{Fe} \) (by ammonium oxalate) of 0.25 percent or more and half that amount or less in an overlying horizon; or
3. An ODOE value of 0.12 or more and a value half as high or lower in an overlying horizon.

Spodic Humicryepts

KDAM. Other Humicryepts that have a xeric soil moisture regime.

Xeric Humicryepts

KDAN. Other Humicryepts that have a base saturation (by \(\text{NH}_4\text{OAc} \)) of 50 percent or more, *either*:

1. In one-half or more of the total thickness between 25 and 75 cm from the mineral soil surface; or
2. In some part of the 10 cm thickness directly above a densic, lithic, or paralithic contact that occurs less than 50 cm below the mineral soil surface.

Eutric Humicryepts

KDAO. Other Humicryepts.

Typic Humicryepts

Gelepts

Key to Great Groups

KCA. Gelepts that have an umbric or mollic epipedon.

Humigelepts, p. 488

KCB. Other Gelepts that have a base saturation (by NH$_4$OAc) of less than 50 percent, *either*:

1. In one or more horizons totaling 25 cm or more in thickness within 50 cm below the mineral soil surface and there is no placic horizon, duripan, fragipan, or densic, lithic, or paralithic contact within 50 cm of the mineral soil surface; *or*

2. In one-half or more of the thickness between the mineral soil surface and the top of a placic horizon, duripan, fragipan, or densic, lithic, or paralithic contact occurring within 50 cm of the mineral soil surface.

Dystrogelepts, p. 485

KCC. Other Gelepts.

Haplogelepts, p. 487

Dystrogelepts

Key to Subgroups

KCBA. Dystrogelepts that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Dystrogelepts
KCBB. Other Dystrogelepts that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus 1/2 Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Dystrogelepts

KCBC. Other Dystrogelepts that have, in one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Dystrogelepts

KCBD. Other Dystrogelepts that have a slope of less than 5 percent, do not have irregular or broken horizon boundaries, and have one or both of the following:

1. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; or
2. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluventic Dystrogelepts

KCBE. Other Dystrogelepts that have gelic materials within 200 cm of the mineral soil surface.

Turbic Dystrogelepts

KCBF. Other Dystrogelepts.

Typic Dystrogelepts
Haplogelepts
Key to Subgroups

KCCA. Haplogelepts that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Haplogelepts

KCCB. Other Haplogelepts that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Haplogelepts

KCCC. Other Haplogelepts that have, in one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Haplogelepts

KCCD. Other Haplogelepts that have a slope of less than 25 percent, do not have irregular or broken horizon boundaries, and have one or both of the following:

1. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; or

2. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluventic Haplogelepts

KCCE. Other Haplogelepts that have gelic materials within 200 cm of the mineral soil surface.

Turbic Haplogelepts
KCCF. Other Haploglelepts.

Typic Haploglelepts

Humigelepts

Key to Subgroups

KCAA. Humigelepts that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Humigelepts

KCAB. Other Humigelepts that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus ½ Fe (by ammonium oxalate) of 1.0 percent or more.

Andic Humigelepts

KCAC. Other Humigelepts that have, in one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Humigelepts

KCAD. Other Humigelepts that in normal years are saturated with water in one or more layers within 100 cm of the mineral soil surface for either or both:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Humigelepts

KCAE. Other Humigelepts that have a slope of less than 25 percent, do not have irregular or broken horizon boundaries, and have one or both of the following:

1. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or
more and no densic, lithic, or paralithic contact within that depth; or

2. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluventic Humigelepts

KCAF. Other Humigelepts that have gelic materials within 200 cm of the mineral soil surface.

Turbic Humigelepts

KCAG. Other Humigelepts that have a base saturation (by NH$_4$OAc) of 50 percent or more, either:

1. In one-half or more of the total thickness between 25 and 75 cm from the mineral soil surface; or
2. In some part of the 10 cm thickness directly above a densic, lithic, or paralithic contact that occurs less than 50 cm below the mineral soil surface.

Eutric Humigelepts

KCAH. Other Humigelepts.

Typic Humigelepts

Udepts

Key to Great Groups

KGA. Udepts that have a sulfuric horizon within 50 cm of the mineral soil surface.

Sulfudepts, p. 511

KGB. Other Udepts that have a duripan or another cemented horizon within 100 cm of the mineral soil surface.

Durudepts, p. 490
KGC. Other Udepts that have a fragipan within 100 cm of the mineral soil surface.

Fragiudepts, p. 504

KGD. Other Udepts that have an umbric or mollic epipedon.

Humudepts, p. 506

KGE. Other Udepts that have _one or both_ of the following:

1. Free carbonates within the soils; _or_
2. A base saturation (by NH$_4$OAc) of 60 percent or more in one or more horizons at a depth between 25 and 75 cm from the mineral soil surface or directly above a root-limiting layer if at a shallower depth.

Eutrudepts, p. 499

KGF. Other Udepts.

Dystrudepts, p. 492

Durudepts

Key to Subgroups

KGBA. Durudepts that have _both_

1. In one or more horizons above the duripan and within 60 cm of the mineral soil surface, distinct or prominent redox concentrations and also aquic conditions for some time in normal years (or artificial drainage); _and_
2. Throughout one or more horizons with a total thickness of 18 cm or more, above the duripan and within 75 cm of the mineral soil surface, _one or more_ of the following:
 a. A fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $1/2$ Fe percentages (by ammonium oxalate) totaling more than 1.0; _or_
 b. More than 35 percent (by volume) fragments coarser
than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or c. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and

(1) In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and

(2) \((\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60\) plus the volcanic glass (percent) is equal to 30 or more.

Aquandic Durudepts

KGBB. Other Durudepts that have, throughout one or more horizons with a total thickness of 18 cm or more, above the duripan and within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm\(^3\) or less, measured at 33 kPa water retention, and Al plus \(\frac{1}{2}\) Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Durudepts

KGBC. Other Durudepts that have, throughout one or more horizons with a total thickness of 18 cm or more, above the duripan and within 75 cm of the mineral soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and

 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and

 b. \((\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60\) plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Durudepts

491
KGBD. Other Durudepts that have, in one or more horizons above the duripan and within 30 cm of the mineral soil surface, distinct or prominent redox concentrations and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Durudepts

KGBE. Other Durudepts.

Typic Durudepts

Dystrudepts

Key to Subgroups

KGFA. Dystrudepts that have both:
1. A lithic contact within 50 cm of the mineral soil surface; and
2. A color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 18 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 18 cm after mixing.

Humic Lithic Dystrudepts

KGFB. Other Dystrudepts that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Dystrudepts

KGFC. Other Dystrudepts that have one or both of the following:
1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Dystrudepts
KGFD. Other Dystrudepts that have both:

1. In one or more horizons within 60 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); and

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or more of the following:
 a. A fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0; or
 b. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
 c. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 (1) In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 (2) [(Al plus $\frac{1}{2}$ Fe, percent extracted by ammonium oxalate) times 60] plus the volcanic glass (percent) is equal to 30 or more.

Aquandic Dystrudepts

KGFE. Other Dystrudepts that have both:

1. In one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0; and

2. Saturation with water within 100 cm of the mineral soil surface in normal years for either or both:
a. 20 or more consecutive days; or
b. 30 or more cumulative days.

Andic Oxyaquic Dystrudepts

KGFF. Other Dystrudepts that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Dystrudepts

KGFG. Other Dystrudepts that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 b. $[(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60]$ plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Dystrudepts

KGFH. Other Dystrudepts that have both:

1. Fragic soil properties either:
 a. In 30 percent or more of the volume of a layer 15 cm or more thick that has its upper boundary within 100 cm of the mineral soil surface; or
 b. In 60 percent or more of the volume of a layer 15 cm or more thick; and
2. In one or more horizons within 60 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions in normal years (or artificial drainage).

Fragiaquic Dystrudepts

KGFI. Other Dystrudepts that have a slope of less than 25 percent; *and*

1. In one or more horizons within 60 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); *and*

2. *One or both* of the following:
 a. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; *or*
 b. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluvaquentic Dystrudepts

KGFJ. Other Dystrudepts that have *both*:

1. A color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 18 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 18 cm after mixing; *and*

2. In one or more horizons within 60 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Humic Dystrudepts

KGFK. Other Dystrudepts that have, in one or more horizons within 60 cm of the mineral soil surface, redox depletions with
chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Dystrudepts

KGFL. Other Dystrudepts that in normal years are saturated with water in one or more layers within 100 cm of the mineral soil surface for *either or both*:

1. 20 or more consecutive days; *or*
2. 30 or more cumulative days.

Oxyaquic Dystrudepts

KGFM. Other Dystrudepts that have fragic soil properties *either*:

1. In 30 percent or more of the volume of a layer 15 cm or more thick that has its upper boundary within 100 cm of the mineral soil surface; *or*
2. In 60 percent or more of the volume of a layer 15 cm or more thick.

Fragic Dystrudepts

KGFN. Other Dystrudepts that have lamellae (two or more) within 200 cm of the mineral soil surface.

Lamellic Dystrudepts

KGFO. Other Dystrudepts that have *both*:

1. A color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 18 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 18 cm after mixing; *and*
2. A sandy particle-size class in all subhorizons throughout the particle-size control section.

Humic Psammentic Dystrudepts

KGFP. Other Dystrudepts that have a slope of less than 25 percent; *and*
1. A color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 18 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 18 cm after mixing; and
2. One or both of the following:
 a. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; or
 b. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluventic Humic Dystrudepts

KGFQ. Other Dystrudepts that have a slope of less than 25 percent and one or both of the following:

1. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; or
2. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluventic Dystrudepts

KGFR. Other Dystrudepts that have a horizon 5 cm or more thick that has one or more of the following:

1. In 25 percent or more of each pedon, cementation by organic matter and aluminum, with or without iron; or
2. Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling 0.25 or more, and half that amount or less in an overlying horizon; or
3. An ODOE value of 0.12 or more, and a value half as high or lower in an overlying horizon.

Spodic Dystrudepts

KGFS. Other Dystrudepts that have, in 50 percent or more of the soil volume between a depth of 25 cm from the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact if shallower:

1. A CEC (by 1N NH$_4$OAc pH 7) of less than 24 cmol(+) per kg clay; or
2. Both a ratio of measured clay in the fine-earth fraction to percent water retained at 1500 kPa tension of 0.6 or more and the following: the CEC (by 1N NH$_4$OAc pH 7) divided by the product of three times [percent water retained at 1500 kPa tension minus percent organic carbon (but no more than 1.00)] is less than 24.

Oxic Dystrudepts

KGFT. Other Dystrudepts that have both:

1. In each pedon a cambic horizon that includes 10 to 50 percent (by volume) illuvial parts that otherwise meet the requirements for an argillic, kandic, or natric horizon; and
2. A base saturation (by sum of cations) of 35 percent or more either at a depth of 125 cm from the top of the cambic horizon or directly above a densic, lithic, or paralithic contact if shallower.

Ruptic-Alfic Dystrudepts

KGFU. Other Dystrudepts that have in each pedon a cambic horizon that includes 10 to 50 percent (by volume) illuvial parts that otherwise meet the requirements for an argillic, kandic, or natric horizon.

Ruptic-Ultic Dystrudepts

KGFV. Other Dystrudepts that have a color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and
smoothed sample) either throughout the upper 18 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 18 cm after mixing.

Humic Dystrudepts

KGFW. Other Dystrudepts.

Typic Dystrudepts

Eutrudepts

Key to Subgroups

KGEA. Eutrudepts that have both:

1. A color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 18 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 18 cm after mixing; and

2. A lithic contact within 50 cm of the mineral soil surface.

Humic Lithic Eutrudepts

KGEB. Other Eutrudepts that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Eutrudepts

KGEC. Other Eutrudepts that have both:

1. One or both of the following:
 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
 b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower; and
2. In one or more horizons within 60 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquertic Eutrudepts

KGED. Other Eutrudepts that have *one or both* of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; *or*

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Eutrudepts

KGEE. Other Eutrudepts that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Eutrudepts

KGEF. Other Eutrudepts that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, *one or both* of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; *or*

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; *and*
a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; \textit{and}
b. $[(\text{Al plus }\frac{1}{2}\text{ Fe, percent extracted by ammonium oxalate}) \times 60]$ plus the volcanic glass (percent) is equal to 30 or more.

\textbf{Vitrandic Eutrudepts}

KGEG. Other Eutrudepts that have anthraquic conditions.

\textbf{Anthraquic Eutrudepts}

KGEH. Other Eutrudepts that have both:

1. Fragic soil properties \textit{either}:
 a. In 30 percent or more of the volume of a layer 15 cm or more thick that has its upper boundary within 100 cm of the mineral soil surface; \textit{or}
 b. In 60 percent or more of the volume of a layer 15 cm or more thick; \textit{and}

2. In one or more horizons within 60 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions in normal years (or artificial drainage).

\textbf{Fragiaquic Eutrudepts}

KGEI. Other Eutrudepts that have a slope of less than 25 percent; \textit{and}

1. In one or more horizons within 60 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); \textit{and}

2. \textit{One or both} of the following:
 a. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; \textit{or}
b. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluvaquentic Eutrudepts

KGEJ. Other Eutrudepts that meet both of the following:
1. In one or more horizons within 60 cm of the mineral soil surface, have redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); and
2. Do not have free carbonates throughout any horizon within 100 cm of the mineral soil surface.

Aquic Dystric Eutrudepts

KGEK. Other Eutrudepts that have, in one or more horizons within 60 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Eutrudepts

KGEL. Other Eutrudepts that in normal years are saturated with water in one or more layers within 100 cm of the mineral soil surface for either or both:
1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Eutrudepts

KGEM. Other Eutrudepts that have fragic soil properties:
1. In 30 percent or more of the volume of a layer 15 cm or more thick that has its upper boundary within 100 cm of the mineral soil surface; or
2. In 60 percent or more of the volume of a layer 15 cm or more thick.

Fragic Eutrudepts
KGEN. Other Eutrudepts that have lamellae (two or more) within 200 cm of the mineral soil surface.

Lamellic Eutrudepts

KGEO. Other Eutrudepts that have a slope of less than 25 percent; *and*

1. Do not have free carbonates throughout any horizon within 100 cm of the mineral soil surface; *and*

2. Have *one or both* of the following:

 a. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; *or*

 b. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Dystric Fluventic Eutrudepts

KGEP. Other Eutrudepts that have a slope of less than 25 percent and *one or both* of the following:

1. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; *or*

2. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluventic Eutrudepts

KGEQ. Other Eutrudepts that meet sandy or sandy-skeletal particle-size class criteria in all horizons within 50 cm of the mineral soil surface.

Arenic Eutrudepts
KGER. Other Eutrudepts that do not have free carbonates throughout any horizon within 100 cm of the mineral soil surface.

Dystric Eutrudepts

KGES. Other Eutrudepts that have a CaCO$_3$ equivalent of 40 percent or more, including fragments 2 to 75 mm in diameter, in all horizons between the top of the cambic horizon and either a depth of 100 cm from the mineral soil surface or a densic, lithic, or paralithic contact if shallower.

Rendollic Eutrudepts

KGET. Other Eutrudepts that have a cambic horizon that includes 10 to 50 percent (by volume) illuvial parts that otherwise meet the requirements for an argillic, kandic, or natric horizon.

Ruptic-Alfic Eutrudepts

KGEU. Other Eutrudepts that have a color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 18 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 18 cm after mixing.

Humic Eutrudepts

KGEV. Other Eutrudepts.

Typic Eutrudepts

Fragiudepts

Key to Subgroups

KGCA. Fragiudepts that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $^{1/2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Fragiudepts
KGCB. Other Fragiudepts that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 b. \([(\text{Al plus } \frac{1}{2} \text{Fe, percent extracted by ammonium oxalate)} \times 60] + \text{volcanic glass (percent)}\) is equal to 30 or more.

Vitrandic Fragiudepts

KGCC. Other Fragiudepts that have, in one or more horizons within 30 cm of the mineral soil surface, distinct or prominent redox concentrations and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Fragiudepts

KGCD. Other Fragiudepts that have one or both of the following:

1. An umbric or mollic epipedon; or

2. A color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 18 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 18 cm after mixing.

Humic Fragiudepts

KGCE. Other Fragiudepts.

Typic Fragiudepts
Humudepts

Key to Subgroups

KGDA. Humudepts that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Humudepts

KGDB. Other Humudepts that have one or both of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Humudepts

KGDC. Other Humudepts that have both:

1. In one or more horizons within 60 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); and

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or more of the following:

 a. A fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0; or

 b. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
c. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and

(1) In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and

(2) \[(\text{Al plus } \frac{1}{2} \text{Fe, percent extracted by ammonium oxalate}) \times 60\] plus the volcanic glass (percent) is equal to 0 or more.

Aquandic Humudepts

KGDD. Other Humudepts that have both:

1. In one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm\(^3\) or less, measured at 33 kPa water retention, and Al plus \(\frac{1}{2}\) Fe percentages (by ammonium oxalate) totaling more than 1.0; and

2. Saturation with water within 100 cm of the mineral soil surface in normal years for either or both:
 a. 20 or more consecutive days; or
 b. 30 or more cumulative days.

Andic Oxyaquic Humudepts

KGDE. Other Humudepts that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm\(^3\) or less, measured at 33 kPa water retention, and Al plus \(\frac{1}{2}\) Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Humudepts

KGDF. Other Humudepts that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser
than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 b. \([\text{Al plus } 1/2 \text{Fe, percent extracted by ammonium oxalate}] \times 60\) plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Humudepts

KGDG. Other Humudepts that have a slope of less than 25 percent; and

1. In one or more horizons within 60 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); and

2. One or both of the following:
 a. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; or
 b. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluvaquentic Humudepts

KGDH. Other Humudepts that have, in one or more horizons within 60 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Humudepts
KGDI. Other Humudepts that in normal years are saturated with water in one or more layers within 100 cm of the mineral soil surface for either or both:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Humudepts

KGDJ. Other Humudepts that have a sandy particle-size class in all subhorizons throughout the particle-size control section.

Psammentic Humudepts

KGDK. Other Humudepts that have, in 50 percent or more of the soil volume between a depth of 25 cm from the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact if shallower:

1. A CEC (by 1N NH₄OAc pH 7) of less than 24 cmol(+) per kg clay; or
2. Both a ratio of measured clay in the fine-earth fraction to percent water retained at 1500 kPa tension of 0.6 or more and the following: the CEC (by 1N NH₄OAc pH 7) divided by the product of three times [percent water retained at 1500 kPa tension minus percent organic carbon (but no more than 1.00)] is less than 24.

Oxic Humudepts

KGDL. Other Humudepts that have a slope of less than 25 percent; and

1. An umbric or mollic epipedon that is 50 cm or more thick; and
2. One or both of the following:
 a. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or
more and no densic, lithic, or paralithic contact within that depth; or

b. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Cumulic Humudepts

KGDM. Other Humudepts that have a slope of less than 25 percent and *one or both* of the following:

1. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; or

2. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluventic Humudepts

KGDN. Other Humudepts that have an umbric or mollic epipedon that is 50 cm or more thick.

Pachic Humudepts

KGDO. Other Humudepts that have a base saturation (by NH$_4$OAc) of 60 percent or more *either*:

1. In one-half or more of the total thickness between 25 and 75 cm from the mineral soil surface; or

2. In some part of the 10 cm thickness directly above a densic, lithic, or paralithic contact that occurs less than 50 cm below the mineral soil surface.

Eutric Humudepts

KGDP. Other Humudepts that do not have a cambic horizon and do not, in any part of the umbric or mollic epipedon, meet
the requirements for a cambic horizon, except for the color requirements.

Entic Humudepts

KGDQ. Other Humudepts.

Typic Humudepts

Sulfudepts

Key to Subgroups

KGAA. All Sulfudepts (provisionally).

Typic Sulfudepts

Ustepts

Key to Great Groups

KEA. Ustepts that have a duripan within 100 cm of the mineral soil surface.

Durustepts, p. 515

KEB. Other Ustepts that have both:

1. A calcic horizon within 100 cm of the mineral soil surface or a petrocalcic horizon within 150 cm of the mineral soil surface; and

2. Either free carbonates or a texture class of loamy fine sand or coarser, in all parts above the calcic or petrocalcic horizon, after the soil between the mineral soil surface and a depth of 18 cm has been mixed.

Calciustepts, p. 512

KEC. Other Ustepts that have an umbric or mollic epipedon.

Humustepts, p. 530

KED. Other Ustepts that meet both of the following:

1. No free carbonates within 200 cm of the mineral soil surface; and
2. A base saturation (by NH$_4$OAc) of less than 60 percent in all horizons at a depth between 25 and 75 cm from the mineral soil surface.

Dystrusstepts, p. 515

KEF. Other Ustepts.

Haplusstepts, p. 519

Calciustepts

Key to Subgroups

KEBA. Calciustepts that have a petrocalcic horizon and a lithic contact within 50 cm of the mineral soil surface.

Lithic Petrocalcic Calciustepts

KEBB. Other Calciustepts that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Calciustepts

KEBC. Other Calciustepts that have both:

1. *One or both* of the following:
 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; *or*

 b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower; *and*

2. When neither irrigated nor fallowed to store moisture, *one* of the following:

 a. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths or more of the cumulative days per year when the soil
temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

b. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some or all parts for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:

(1) Is moist in some or all parts for fewer than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and

(2) Is dry in some or all parts for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C.

Torrertic Calciustepts

KEBD. Other Calciustepts that have one or both of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Calciustepts

KEBE. Other Calciustepts that have a petrocalcic horizon within 100 cm of the mineral soil surface.

Petrocalcic Calciustepts
KEBF. Other Calciustepts that have a gypsic horizon within 100 cm of the mineral soil surface.

Gypsic Calciustepts

KEBG. Other Calciustepts that have, in one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Calciustepts

KEBH. Other Calciustepts that have, when neither irrigated nor fallowed to store moisture, *one* of the following:

1. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

2. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some or all parts for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

3. A hyperthermic, isomesic, or warmer *iso* soil temperature regime and a moisture control section that in normal years:
 a. Is moist in some or all parts for fewer than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and
 b. Is dry in some or all parts for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C.

Aridic Calciustepts

KEBI. Other Calciustepts that have, when neither irrigated nor fallowed to store moisture, *either*:

514
1. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some or all parts for four-tenths or less of the consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

2. A hyperthermic, isomesic, or warmer \(\text{i} \)so soil temperature regime and a moisture control section that in normal years is dry in some or all parts for fewer than 120 cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C.

Udic Calciustepts

KEBJ. Other Calciustepts.

Typic Calciustepts

Durustepts

Key to Subgroups

KEAA. All Durustepts (provisionally).

Typic Durustepts

Dystrustepts

Key to Subgroups

KEDA. Dystrustepts that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Dystrustepts

KEDB. Other Dystrustepts that have both:

1. When neither irrigated nor fallowed to store moisture, one of the following:
 a. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
b. A mesic or thermic soil temperature regime and a moisture control section that, in 6 normal years, is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:

(1) Is moist in some or all parts for fewer than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and

(2) Is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; and

2. One or both of the following:

a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Torrertic Dystrustepts

KEDC. Other Dystrustepts that have one or both of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-
shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Dystrustepts

KEDD. Other Dystrustepts that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus \(\frac{1}{2}\) Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Dystrustepts

KEDE. Other Dystrustepts that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 b. \([(\text{Al plus }\frac{1}{2}\text{ Fe, percent extracted by ammonium oxalate}) \times 60]\) plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Dystrustepts

KEDF. Other Dystrustepts that have, in one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Dystrustepts
KEDG. Other Dystrustepts that have a slope of less than 25 percent and one or both of the following:

1. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; or

2. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluventic Dystrustepts

KEDH. Other Dystrustepts that, when neither irrigated nor fallowed to store moisture, have one of the following:

1. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

2. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some or all parts for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

3. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:
 a. Is moist in some or all parts for fewer than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and
 b. Is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C.

Aridic Dystrustepts
KEDI. Other Dystrustepts that have, in 50 percent or more of the soil volume between a depth of 25 cm from the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact if shallower:

1. A CEC (by 1N NH$_4$OAc pH 7) of less than 24 cmol(+) per kg clay; or

2. Both a ratio of measured clay in the fine-earth fraction to percent water retained at 1500 kPa tension of 0.6 or more and the following: the CEC (by 1N NH$_4$OAc pH 7) divided by the product of three times [percent water retained at 1500 kPa tension minus percent organic carbon (but no more than 1.00)] is less than 24.

Oxic Dystrustepts

KEDJ. Other Dystrustepts that have a color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 18 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 18 cm after mixing.

Humic Dystrustepts

KEDK. Other Dystrustepts.

Typic Dystrustepts

Haplustepts

Key to Subgroups

KEEA. Haplustepts that have:

1. A lithic contact within 50 cm of the mineral soil surface; and

2. When neither irrigated nor fallowed to store moisture, either:
 a. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths or more of the cumulative days per year when the soil
temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

b. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:

(1) Is moist in some or all parts for fewer than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and

(2) Is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C.

Aridic Lithic Haplustepts

KEEB. Other Haplustepts that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Haplustepts

KEEC. Other Haplustepts that have both:

1. When neither irrigated nor fallowed to store moisture, one of the following:

 a. A frigid soil temperature regime and a moisture control section that in normal years is dry in some or all parts for fewer than 105 cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

 b. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some
part for less than four-tenths of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years is dry in some or all parts for fewer than 120 cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and

2. One or both of the following:

a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Udertic Haplustepts

KEED. Other Haplustepts that have both:

1. When neither irrigated nor fallowed to store moisture, one of the following:

a. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

b. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:

(1) Is moist in some or all parts for fewer than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and

(2) Is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; and

2. One or both of the following:

a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Torrertic Haplustepts

KEEE. Other Haplustepts that have one or both of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Haplustepts
KEEF. Other Haplustepts that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Haplustepts

KEEG. Other Haplustepts that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 b. $[(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \text{ times } 60] \text{ plus the volcanic glass (percent) is equal to } 30 \text{ or more.}$

Vitrandic Haplustepts

KEEH. Other Haplustepts that have anthraquic conditions.

Anthraquic Haplustepts

KEEI. Other Haplustepts that have, in one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Haplustepts

KEEJ. Other Haplustepts that in normal years are saturated with water in one or more layers within 100 cm of the mineral soil surface for either.
1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Haplustepts

KEEK. Other Haplustepts that have, in 50 percent or more of the soil volume between a depth of 25 cm from the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact if shallower:

1. A CEC (by 1N NH$_4$OAc pH 7) of less than 24 cmol(+) per kg clay; or
2. Both a ratio of measured clay in the fine-earth fraction to percent water retained at 1500 kPa tension of 0.6 or more and the following: the CEC (by 1N NH$_4$OAc pH 7) divided by the product of three times [percent water retained at 1500 kPa tension minus percent organic carbon (but no more than 1.00)] is less than 24.

Oxic Haplustepts

KEEL. Other Haplustepts that have lamellae (two or more) within 200 cm of the mineral soil surface.

Lamellic Haplustepts

KEEM. Other Haplustepts that have a slope of less than 25 percent; and

1. When neither irrigated nor fallowed to store moisture, one of the following:
 a. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
 b. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for six-tenths or more of the cumulative days per year
when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:

(1) Is moist in some or all parts for fewer than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and

(2) Is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; and

2. One or both of the following:

a. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; or

b. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Torrifluventic Haplustepts

KEEN. Other Haplustepts that have a slope of less than 25 percent; and

1. When neither irrigated nor fallowed to store moisture, one of the following:

a. A frigid soil temperature regime and a moisture control section that in normal years is dry in some or all parts for fewer than 105 cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
b. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for less than four-tenths of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years is dry in some or all parts for fewer than 120 cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and

2. One or both of the following:

a. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; or

b. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Udifluventic Haplustepts

KEEO. Other Haplustepts that have a slope of less than 25 percent and one or both of the following:

1. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; or

2. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluventic Haplustepts
KEEP. Other Haplustepts that have a gypsic horizon within 100 cm of the mineral soil surface.

Gypsic Haplustepts

KEEQ. Other Haplustepts that have both:

1. A calcic horizon within 100 cm of the mineral soil surface; and

2. When neither irrigated nor fallowed to store moisture, one of the following:
 a. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
 b. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
 c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:
 (1) Is moist in some or all parts for fewer than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and
 (2) Is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C.

Haplocalcidic Haplustepts

KEER. Other Haplustepts that have both:
1. A calcic horizon within 100 cm of the mineral soil surface; and
2. When neither irrigated nor fallowed to store moisture, one of the following:
 a. A frigid soil temperature regime and a moisture control section that in normal years is dry in some or all parts for fewer than 105 cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
 b. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for less than four-tenths of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
 c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years is dry in some or all parts for fewer than 120 cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C.

Calcic Udic Haplustepts

KEES. Other Haplustepts that have a calcic horizon within 100 cm of the mineral soil surface.

Calcic Haplustepts

KEET. Other Haplustepts that, when neither irrigated nor fallowed to store moisture, have one of the following:

1. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
2. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some
part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

3. A hyperthermic, isomesic, or warmer isothermal soil temperature regime and a moisture control section that in normal years:
 a. Is moist in some or all parts for fewer than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and
 b. Is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C.

Aridic Haplustepts

KEEU. Other Haplustepts that have a base saturation (by sum of cations) of less than 60 percent in some horizon between either an Ap horizon or a depth of 25 cm from the mineral soil surface, whichever is deeper, and either a depth of 75 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Dystric Haplustepts

KEEV. Other Haplustepts that, when neither irrigated nor fallowed to store moisture, have one of the following:

1. A frigid soil temperature regime and a moisture control section that in normal years is dry in some or all parts for fewer than 105 cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

2. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for less than four-tenths of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
3. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years is dry in some or all parts for fewer than 120 cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C.

Udic Haplustepts

KEEW. Other Haplustepts.

Typic Haplustepts

Humustepts

Key to Subgroups

KECA. Humustepts that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Humustepts

KECB. Other Humustepts that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Humustepts

KECC. Other Humustepts that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and

 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and

 b. [(Al plus $\frac{1}{2}$ Fe, percent extracted by ammonium oxalate)
times 60] plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Humustepts

KECD. Other Humustepts that in normal years are saturated with water in one or more layers within 100 cm of the mineral soil surface for *either or both*:

1. 20 or more consecutive days; *or*
2. 30 or more cumulative days.

Oxyaquic Humustepts

KECE. Other Humustepts that have, in 50 percent or more of the soil volume between a depth of 25 cm from the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact if shallower:

1. A CEC (by 1N NH$_4$OAc pH 7) of less than 24 cmol(+) per kg clay; *or*
2. Both a ratio of measured clay in the fine-earth fraction to percent water retained at 1500 kPa tension of 0.6 or more and the following: the CEC (by 1N NH$_4$OAc pH 7) divided by the product of three times [percent water retained at 1500 kPa tension minus percent organic carbon (but no more than 1.00)] is less than 24.

Oxic Humustepts

KECF. Other Humustepts that, when neither irrigated nor fallowed to store moisture, have *one* of the following:

1. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; *or*
2. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for six-tenths or more of the cumulative days per year
when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

3. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:
 a. Is moist in some or all parts for fewer than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and
 b. Is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C.

 Aridic Humustepts

KECG. Other Humustepts.

Typic Humustepts

Xerepts

Key to Great Groups

KFA. Xerepts that have a duripan within 100 cm of the mineral soil surface.

 Durixerepts, p. 535

KFB. Other Xerepts that have a fragipan within 100 cm of the mineral soil surface.

 Fragixerepts, p. 541

KFC. Other Xerepts that have an umbric or mollic epipedon.

 Humixerepts, p. 547

KFD. Other Xerepts that have *both*:

1. A calcic horizon within 100 cm of the mineral soil surface or a petrocalcic horizon within 150 cm of the mineral soil surface; and
2. Free carbonates in all parts above the calcic or
petrocalcic horizon, after the soil between the mineral soil surface and a depth of 18 cm has been mixed.

Calcixerepts, p. 533

KFE. Other Xerepts that have *both* of the following:

1. No free carbonates within 200 cm of the mineral soil surface; *and*

2. A base saturation (by \(\text{NH}_4 \text{OAc} \)) of less than 60 percent in all horizons at a depth between 25 and 75 cm from the mineral soil surface.

Dystroxerepts, p. 536

KFF. Other Xerepts.

Haploxerepts, p. 542

Calcixerepts

Key to Subgroups

KFDA. Calcixerepts that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Calcixerepts

KFDB. Other Calcixerepts that have *one or both* of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; *or*

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Calcixerepts
KFDC. Other Calcixerepts that have a petrocalcic horizon within 100 cm of the mineral soil surface.

Petrocalcic Calcixerepts

KFDD. Other Calcixerepts that have an exchangeable sodium percentage of 15 or more (or a sodium adsorption ratio [SAR] of 13 or more) in one or more subhorizons within 100 cm of the mineral soil surface.

Sodic Calcixerepts

KFDE. Other Calcixerepts that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
2. A fine-earth fraction containing 30 percent or more particles 0.0 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 b. \([(\text{Al plus } \frac{1}{2} \text{Fe, percent extracted by ammonium oxalate}) \times 60] \) plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Calcixerepts

KFDF. Other Calcixerepts that have, in one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Calcixerepts

KFDG. Other Calcixerepts.

Typic Calcixerepts
Durixerepts

Key to Subgroups

KFAA. Durixerepts that have both:

1. In one or more horizons above the duripan and within 30 cm of the mineral soil surface, distinct or prominent redox concentrations and also aquic conditions for some time in normal years (or artificial drainage); and

2. Throughout one or more horizons with a total thickness of 18 cm or more, above the duripan and within 75 cm of the mineral soil surface, one or more of the following:
 a. A fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0; or
 b. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
 c. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 (1) In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 (2) $[\text{(Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate)} \times 60]$ plus the volcanic glass (percent) is equal to 30 or more.

Aquandic Durixerepts

KFAB. Other Durixerepts that have, throughout one or more horizons with a total thickness of 18 cm or more, above the duripan and within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Durixerepts
KFAC. Other Durixerepts that have, throughout one or more horizons with a total thickness of 18 cm or more, above the duripan and within 75 cm of the mineral soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 b. \((\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60\) plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Durixerepts

KFAD. Other Durixerepts that have, in one or more horizons above the duripan and within 30 cm of the mineral soil surface, distinct or prominent redox concentrations and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Durixerepts

KFAE. Other Durixerepts that have a duripan that is strongly cemented or less cemented in all subhorizons.

Entic Durixerepts

KFAF. Other Durixerepts.

Typic Durixerepts

Dystroxerepts

Key to Subgroups

KFEA. Dystroxerepts that have both:

1. A lithic contact within 50 cm of the mineral soil surface; and
2. A color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 18 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 18 cm after mixing.

Humic Lithic Dystroxerepts

KFEB. Other Dystroxerepts that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Dystroxerepts

KFEC. Other Dystroxerepts that have both:

1. In one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); *and*

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, *one or more* of the following:
 a. A fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0; *or*
 b. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; *or*
 c. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; *and*
 (1) In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; *and*
 (2) [(Al plus $\frac{1}{2}$ Fe, percent extracted by ammonium oxalate) times 60] plus the volcanic glass (percent) is equal to 30 or more.

Aquandic Dystroxerepts
KFED. Other Dystroxerepts that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm\(^3\) or less, measured at 33 kPa water retention, and Al plus \(\frac{1}{2}\) Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Dystroxerepts

KFEE. Other Dystroxerepts that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, *one or both* of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; *or*
2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; *and*
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; *and*
 b. \([(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60]\) plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Dystroxerepts

KFEF. Other Dystroxerepts that have *both*:

1. Fragic soil properties *either*:
 a. In 30 percent or more of the volume of a layer 15 cm or more thick that has its upper boundary within 100 cm of the mineral soil surface; *or*
 b. In 60 percent or more of the volume of a layer 15 cm or more thick; *and*
2. In one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions in normal years (or artificial drainage).

Fragiaquic Dystroxerepts
KFEG. Other Dystroxerepts that have a slope of less than 25 percent; and
1. In one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); and
2. One or both of the following:
 a. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; or
 b. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluvaquentic Dystroxerepts

KFEH. Other Dystroxerepts that have, in one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Dystroxerepts

KFEI. Other Dystroxerepts that in normal years are saturated with water in one or more layers within 100 cm of the mineral soil surface for either or both:
1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Dystroxerepts

KFEJ. Other Dystroxerepts that have fragic soil properties either:
1. In 30 percent or more of the volume of a layer 15 cm or
more thick that has its upper boundary within 100 cm of the mineral soil surface; or
2. In 60 percent or more of the volume of a layer 15 cm or more thick.

Fragic Dystroxerepts

KFEK. Other Dystroxerepts that have a slope of less than 25 percent; and

1. A color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 18 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 18 cm after mixing; and

2. One or both of the following:
 a. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; or
 b. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluventic Humic Dystroxerepts

KFEL. Other Dystroxerepts that have a slope of less than 25 percent and one or both of the following:

1. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; or
2. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluventic Dystroxerepts
KFEM. Other Dystroxerepts that have a color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 18 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 18 cm after mixing.

Humic Dystroxerepts

KFEN. Other Dystroxerepts.

Typic Dystroxerepts

Fragixerepts

Key to Subgroups

KFBA. Fragixerepts that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Fragixerepts

KFBB. Other Fragixerepts that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 b. $[(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60] + \text{the volcanic glass (percent)}$ is equal to 30 or more.

Vitrandic Fragixerepts
KFBC. Other Fragixerepts that have, in one or more horizons within 30 cm of the mineral soil surface, distinct or prominent redox concentrations and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Fragixerepts

KFBD. Other Fragixerepts that have one or both of the following:

1. An umbric or mollic epipedon; or
2. A color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 18 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 18 cm after mixing.

Humic Fragixerepts

KFBE. Other Fragixerepts.

Typic Fragixerepts

Haploxerepts

Key to Subgroups

KFFA. Haploxerepts that have both:

1. A lithic contact within 50 cm of the mineral soil surface; and
2. A color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 18 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 18 cm after mixing.

Humic Lithic Haploxerepts

KFFB. Other Haploxerepts that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Haploxerepts

KFFC. Other Haploxerepts that have one or both of the following:
1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Haploxerepts

KFFD. Other Haploxerepts that have both:

1. In one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); and
2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or more of the following:
 a. A fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $1/2$ Fe percentages (by ammonium oxalate) totaling more than 1.0; or
 b. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
 c. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 (1) In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 (2) [(Al plus $1/2$ Fe, percent extracted by ammonium oxalate) times 60] plus the volcanic glass (percent) is equal to 30 or more.

Aquandic Haploxerepts
KFFE. Other Haploxerepts that have both:

1. In one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus Fe percentages (by ammonium oxalate) totaling more than 1.0; and

2. Saturation with water within 100 cm of the mineral soil surface in normal years for either or both:
 a. 20 or more consecutive days; or
 b. 30 or more cumulative days.

Andic Oxyaquic Haploxerepts

KFFF. Other Haploxerepts that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Haploxerepts

KFFG. Other Haploxerepts that have both:

1. Saturation with water within 100 cm of the mineral soil surface in normal years for either or both:
 a. 20 or more consecutive days; or
 b. 30 or more cumulative days; and

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or more of the following:
 a. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
b. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and

(1) In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and

(2) \[(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60\] plus the volcanic glass (percent) is equal to 0 or more.

Oxyaquic Vitrandic Haploxerepts

KFFH. Other Haploxerepts that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and

a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and

b. \[(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60\] plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Haploxerepts

KFFI. Other Haploxerepts that have a gypsic horizon within 100 cm of the mineral soil surface.

Gypsic Haploxerepts

KFFJ. Other Haploxerepts that have, in one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquatic conditions for some time in normal years (or artificial drainage).

Aquic Haploxerepts
KFFK. Other Haploxerepts that have lamellae (two or more) within 200 cm of the mineral soil surface.

Lamellic Haploxerepts

KFFL. Other Haploxerepts that have fragic soil properties *either*:

1. In 30 percent or more of the volume of a layer 15 cm or more thick that has its upper boundary within 100 cm of the mineral soil surface; or
2. In 60 percent or more of the volume of a layer 15 cm or more thick.

Fragic Haploxerepts

KFFM. Other Haploxerepts that have a slope of less than 25 percent and *one or both* of the following:

1. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; or
2. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluventic Haploxerepts

KFFN. Other Haploxerepts that have a calcic horizon or identifiable secondary carbonates within *one* of the following particle-size class and depth combinations:

1. A sandy or sandy-skeletal particle-size class and within 150 cm of the mineral soil surface; or
2. A clayey, clayey-skeletal, fine, or very-fine particle-size class and within 90 cm of the mineral soil surface; or
3. Any other particle-size class and within 110 cm of the mineral soil surface.

Calcic Haploxerepts

KFFO. Other Haploxerepts that have a color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) either throughout the upper 18 cm of the mineral soil (unmixed) or between the mineral soil surface and a depth of 18 cm after mixing.

Humic Haploxerepts

KFFP. Other Haploxerepts.

Typic Haploxerepts

Humixerepts

Key to Subgroups

KFCA. Humixerepts that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Humixerepts

KFCB. Other Humixerepts that have both:

1. In one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); and

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or more of the following:

 a. A fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus Fe percentages (by ammonium oxalate) totaling more than 1.0; or

 b. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
c. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 (1) In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 (2) \[(Al + \frac{1}{2} Fe, \text{percent extracted by ammonium oxalate}) \times 60\] plus the volcanic glass (percent) is equal to 0 or more.

Aquandic Humixerepts

KFCC. Other Humixerepts that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus \(\frac{1}{2}\) Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Humixerepts

KFCD. Other Humixerepts that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 b. \([(Al + \frac{1}{2} Fe, \text{percent extracted by ammonium oxalate}) \times 60\] plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Humixerepts

KFCE. Other Humixerepts that have, in one or more horizons within 75 cm of the mineral soil surface, redox depletions with
chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Humixerepts

KFCF. Other Humixerepts that in normal years are saturated with water in one or more layers within 100 cm of the mineral soil surface for *either or both*:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Humixerepts

KFCG. Other Humixerepts that have a slope of less than 25 percent; *and*

1. An umbric or mollic epipedon that is 50 cm or more thick; *and*
2. *One or both* of the following:
 a. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; *or*
 b. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Cumulic Humixerepts

KFCH. Other Humixerepts that have a slope of less than 25 percent and *one or both* of the following:

1. At a depth of 125 cm below the mineral soil surface, an organic-carbon content (Holocene age) of 0.2 percent or more and no densic, lithic, or paralithic contact within that depth; *or*
2. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth
of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluventic Humixerepts

KFCI. Other Humixerepts that have an umbric or mollic epipedon that is 50 cm or more thick.

Pachic Humixerepts

KFCJ. Other Humixerepts that do not have a cambic horizon and do not, in any part of the umbric or mollic epipedon, meet the requirements for a cambic horizon, except for the color requirements.

Entic Humixerepts

KFCK. Other Humixerepts.

Typic Humixerepts
CHAPTER 12
Mollisols

Key to Suborders

IA. Mollisols that have all of the following:
 1. An argillic or natric horizon; and
 2. An albic horizon that has chroma of 2 or less and is 2.5 cm or more thick, has its lower boundary 18 cm or more below the mineral soil surface, and either lies directly below the mollic epipedon or separates horizons that together meet all of the requirements for a mollic epipedon; and
 3. In one or more subhorizons of the albic horizon and/or of the argillic or natric horizon and within 100 cm of the mineral soil surface, redox concentrations in the form of masses or concretions, or both, and also aquic conditions for some time in normal years (or artificial drainage); and
 4. A soil temperature regime that is warmer than cryic.

 Albolls, p. 554

IB. Other Mollisols that have, in a layer above a densic, lithic, or paralithic contact or in a layer at a depth between 40 and 50 cm from the mineral soil surface, whichever is shallower, aquic conditions for some time in normal years (or artificial drainage) and one or more of the following:
 1. A histic epipedon overlying the mollic epipedon; or
 2. An exchangeable sodium percentage (ESP) of 15 or more (or a sodium adsorption ratio [SAR] of 13 or more) in the upper part of the mollic epipedon and a decrease in ESP (or SAR) values with increasing depth below 50 cm from the mineral soil surface; or
 3. A calcic or petrocalcic horizon within 40 cm of the mineral soil surface; or
4. A mollic epipedon, with chroma of 1 or less, that extends to a lithic contact within 30 cm of the mineral soil surface; or

5. One of the following colors:

a. Chroma of 1 or less in the lower part of the mollic epipedon;\(^1\) and either

 (1) Distinct or prominent redox concentrations in the lower part of the mollic epipedon; or

 (2) Either directly below the mollic epipedon or within 75 cm of the mineral soil surface if a calcic horizon intervenes, a color value, moist, of 4 or more and one of the following:

 (a) 50 percent or more chroma of 1 on faces of peds or in the matrix, hue of 10YR or redder, and redox concentrations; or

 (b) 50 percent or more chroma of 2 or less on faces of peds or in the matrix, hue of 2.5Y, and redox concentrations; or

 (c) 50 percent or more chroma of 1 on faces of peds or in the matrix and hue of 2.5Y or yellower; or

 (d) 50 percent or more chroma of 3 or less on faces of peds or in the matrix, hue of 5Y, and redox concentrations; or

 (e) 50 percent or more chroma of 0 on faces of peds or in the matrix; or

 (f) Hue of 5GY, 5G, 5BG, or 5B; or

 (g) Any color if it results from uncoated sand grains; or

b. Chroma of 2 in the lower part of the mollic epipedon; and either

\(^1\)If the mollic epipedon extends to a lithic contact within 30 cm of the mineral soil surface, the requirement for redoximorphic features is waived.
(1) Distinct or prominent redox concentrations in the lower part of the mollic epipedon; or

(2) Directly below the mollic epipedon, one of the following matrix colors:
 (a) A color value, moist, of 4, chroma of 2, and some redox depletions with a color value, moist, of 4 or more and chroma of 1 or less; or
 (b) A color value, moist, of 5 or more, chroma of 2 or less, and redox concentrations; or
 (c) A color value, moist, of 4 and chroma of 1 or less; or

6. At a depth between 40 and 50 cm from the mineral soil surface, enough active ferrous iron to give a positive reaction to alpha,alpha-dipyridyl at a time when the soil is not being irrigated.

Aquolls, p. 556

IC. Other Mollisols that:
 1. Have a mollic epipedon that is less than 50 cm thick; and
 2. Do not have an argillic or calcic horizon; and
 3. Have, either within or directly below the mollic epipedon, mineral soil materials less than 75 mm in diameter that have a CaCO₃ equivalent of 40 percent or more; and
 4. Have either or both:
 a. A udic soil moisture regime; or
 b. A cryic soil temperature regime.

Rendolls, p. 579

ID. Other Mollisols that have a gelic soil temperature regime.

Gelolls, p. 577

IE. Other Mollisols that have a cryic soil temperature regime.

Cryolls, p. 567
IF. Other Mollisols that have either a xeric soil moisture regime or an aridic soil moisture regime that borders on xeric.
Xerolls, p. 646

IG. Other Mollisols that have either an ustic soil moisture regime or an aridic soil moisture regime that borders on ustic.
Ustolls, p. 601

IH. Other Mollisols.
Udolls, p. 580

Albolls

Key to Great Groups

IAA. Albolls that have a natric horizon.
Natralbolls, p. 556

IAB. Other Albolls.
Argialbolls, p. 554

Argialbolls

Key to Subgroups

IABA. Argialbolls that have *both*:

1. One or both of the following:
 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
 b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower; and

2. If not irrigated, a moisture control section that in normal
years is dry in all parts for 45 or more consecutive days during the 120 days following the summer solstice.

Xerertic Argialbolls

IABB. Other Argialbolls that have *one or both* of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; *or*

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Argialbolls

IABC. Other Argialbolls that:

1. Do not have an abrupt textural change from the albic to the argillic horizon; *and*

2. If not irrigated, have a moisture control section that in normal years is dry in all parts for 45 or more consecutive days during the 120 days following the summer solstice.

Argiaquic Xeric Argialbolls

IABD. Other Argialbolls that do not have an abrupt textural change from the albic to the argillic horizon.

Argiaquic Argialbolls

IABE. Other Argialbolls that, if not irrigated, have a moisture control section that in normal years is dry in all parts for 45 or more consecutive days during the 120 days following the summer solstice.

Xeric Argialbolls

IABF. Other Argialbolls that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, *one or more* of the following:
1. A fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0; or

2. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

3. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 b. $[(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60]$ plus the volcanic glass (percent) is equal to 30 or more.

Aquandic Argialbolls

IABG. Other Argialbolls.

Typic Argialbolls

Natralbolls

Key to Subgroups

IAAA. Natralbolls that have visible crystals of gypsum and/or more soluble salts within 40 cm of the mineral soil surface.

Leptic Natralbolls

IAAB. Other Natralbolls.

Typic Natralbolls

Aquolls

Key to Great Groups

IBA. Aquolls that have a cryic soil temperature regime.

Cryaquolls, p. 559

IBB. Other Aquolls that have a duripan within 100 cm of the mineral soil surface.

Duraquolls, p. 560
IBC. Other Aquolls that have a natric horizon.
\textbf{Natraquolls}, p. 567

IBD. Other Aquolls that have a calcic or gypsic horizon within 40 cm of the mineral soil surface but do not have an argillic horizon unless it is a buried horizon.
\textbf{Calciaquolls}, p. 558

IBE. Other Aquolls that have an argillic horizon.
\textbf{Argiaquolls}, p. 557

IBF. Other Aquolls that have episaturation.
\textbf{Epiaquolls}, p. 564

IBG. Other Aquolls.
\textbf{Endoaquolls}, p. 561

\textbf{Argiaquolls}

\textbf{Key to Subgroups}

IBEA. Argiaquolls that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic horizon at a depth of 50 to 100 cm.
\textbf{Arenic Argiaquolls}

IBEB. Other Argiaquolls that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic horizon at a depth of 100 cm or more.
\textbf{Grossarenic Argiaquolls}

IBEC. Other Argiaquolls that have \textit{one or both} of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-
shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Argiaquolls

IBED. Other Argiaquolls that have an argillic horizon that, with increasing depth, has a clay increase of 20 percent or more (absolute, in the fine-earth fraction) within its upper 7.5 cm.

Abruptic Argiaquolls

IBEE. Other Argiaquolls.

Typic Argiaquolls

Calciaquolls

Key to Subgroups

IBDA. Calciaquolls that have a petrocalcic horizon within 100 cm of the mineral soil surface.

Petrocalcic Calciaquolls

IBDB. Other Calciaquolls that have 50 percent or more chroma of 3 or more on faces of peds or in the matrix of one or more horizons within 75 cm of the mineral soil surface or that have the following colors directly below the mollic epipedon:

1. Hue of 2.5Y or yellower and chroma of 3 or more; or
2. Hue of 10YR or redder and chroma of 2 or more; or
3. Hue of 2.5Y or yellower and chroma of 2 or more if there are no distinct or prominent redox concentrations.

Aeric Calciaquolls

IBDC. Other Calciaquolls.

Typic Calciaquolls
Cryaquolls

Key to Subgroups

IBAA. Cryaquolls that have *one or both* of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; *or*

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Cryaquolls

IBAB. Other Cryaquolls that have a histic epipedon.

Histic Cryaquolls

IBAC. Other Cryaquolls that have a buried layer of organic soil materials, 20 cm or more thick, that has its upper boundary within 100 cm of the mineral soil surface.

Thapto-Histic Cryaquolls

IBAD. Other Cryaquolls that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, *one or more* of the following:

1. A fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus Fe percentages (by ammonium oxalate) totaling more than 1.0; *or*

2. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; *or*

3. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; *and*
a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; \textit{and}

b. \([(\text{Al plus } \frac{1}{2} \text{Fe, percent extracted by ammonium oxalate}) \times 60] \) plus the volcanic glass (percent) is equal to 30 or more.

\textbf{Aquandic Cryaquolls}

IBAE. Other Cryaquolls that have an argillic horizon.

\textbf{Argic Cryaquolls}

IBAF. Other Cryaquolls that have a calcic horizon either within or directly below the mollic epipedon.

\textbf{Calcic Cryaquolls}

IBAG. Other Cryaquolls that have a mollic epipedon that is 50 cm or more thick.

\textbf{Cumulic Cryaquolls}

IBAH. Other Cryaquolls.

\textbf{Typic Cryaquolls}

\textbf{Duraquolls}

\textbf{Key to Subgroups}

IBBA. Duraquolls that have a natric horizon.

\textbf{Natric Duraquolls}

IBBB. Other Duraquolls that have \textit{one or both} of the following:

1. Cracks between the soil surface and the top of the duripan that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that is above the duripan; \textit{or}

2. A linear extensibility of 6.0 cm or more between the soil surface and the top of the duripan.

\textbf{Vertic Duraquolls}
IBBC. Other Duraquolls that have an argillic horizon.

Argic Duraquolls

IBBD. Other Duraquolls.

Typic Duraquolls

Endoaquolls

Key to Subgroups

IBGA. Endoaquolls that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Endoaquolls

IBGB. Other Endoaquolls that have both:

1. **One or both** of the following:

 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface;

 or

 b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower;

 and

2. A mollic epipedon that is 60 cm or more thick.

Cumulic Vertic Endoaquolls

IBGC. Other Endoaquolls that have both of the following:

1. **One or both** of the following:

 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface;

 or
b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower; and

2. A slope of less than 25 percent and one or both of the following:
 a. An organic-carbon content (Holocene age) of 0.3 percent or more in all horizons within 125 cm of the mineral soil surface; or
 b. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluvaquentic Vertic Endoaquolls

IBGD. Other Endoaquolls that have one or both of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Endoaquolls

IBGE. Other Endoaquolls that have a histic epipedon.

Histic Endoaquolls

IBGF. Other Endoaquolls that have a buried layer of organic soil materials, 20 cm or more thick, that has its upper boundary within 100 cm of the mineral soil surface.

Thapto-Histic Endoaquolls
IBGG. Other Endoaquolls that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or more of the following:

1. A fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0; or
2. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
3. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 b. \([\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}] \times 60\) plus the volcanic glass (percent) is equal to 0 or more.

Aquandic Endoaquolls

IBGH. Other Endoaquolls that have a horizon, 15 cm or more thick within 100 cm of the mineral soil surface, that either has 0 percent or more (by volume) durinodes or is brittle and has at least a firm rupture-resistance class when moist.

Duric Endoaquolls

IBGI. Other Endoaquolls that have a mollic epipedon that is 60 cm or more thick.

Cumulic Endoaquolls

IBGJ. Other Endoaquolls that have a slope of less than 5 percent and one or both of the following:

1. An organic-carbon content (Holocene age) of 0.3 percent or more in all horizons within 125 cm of the mineral soil surface; or
2. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluvaquentic Endoaquolls

IBGK. Other Endoaquolls.

Typic Endoaquolls

Epiaquolls

Key to Subgroups

IBFA. Epiaquolls that have *both* of the following:

1. *One or both* of the following:
 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; *or*
 b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower; *and*

2. A mollic epipedon that is 60 cm or more thick.

Cumulic Vertic Epiaquolls

IBFB. Other Epiaquolls that have *both*:

1. *One or both* of the following:
 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; *or*
b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower; and

2. A slope of less than 25 percent and one or both of the following:
 a. An organic-carbon content (Holocene age) of 0.3 percent or more in all horizons within 125 cm of the mineral soil surface; or
 b. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluvaquentic Vertic Epiaquolls

IBFC. Other Epiaquolls that have one or both of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Epiaquolls

IBFD. Other Epiaquolls that have a histic epipedon.

Histic Epiaquolls

IBFE. Other Epiaquolls that have a buried layer of organic soil materials, 20 cm or more thick, that has its upper boundary within 100 cm of the mineral soil surface.

Thapto-Histic Epiaquolls
IBFF. Other Epiaquolls that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, *one or more* of the following:

1. A fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0; *or*

2. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; *or*

3. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; *and*
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; *and*
 b. $[(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60]$ plus the volcanic glass (percent) is equal to 30 or more.

Aquandic Epiaquolls

IBFG. Other Epiaquolls that have a horizon, 15 cm or more thick within 100 cm of the mineral soil surface, that either has 0 percent or more (by volume) durinodes or is brittle and has at least a firm rupture-resistance class when moist.

Duric Epiaquolls

IBFH. Other Epiaquolls that have a mollic epipedon that is 60 cm or more thick.

Cumulic Epiaquolls

IBFI. Other Epiaquolls that have a slope of less than 5 percent and *one or both* of the following:

1. An organic-carbon content (Holocene age) of 0.3 percent or more in all horizons within 125 cm of the mineral soil surface; *or*
2. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluvaquentic Epiaquolls

IBFJ. Other Epiaquolls.

Typic Epiaquolls

Natraquolls

Key to Subgroups

IBCA. Natraquolls that have one or both of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Natraquolls

IBCB. Other Natraquolls that have a glossic horizon or interfingering of albic materials into the natric horizon.

Glossic Natraquolls

IBCC. Other Natraquolls.

Typic Natraquolls

Cryolls

Key to Great Groups

IEA. Cryolls that have a duripan within 100 cm of the mineral soil surface.

Duricryolls, p. 572
IEB. Other Cryolls that have a natric horizon.
Natricryolls, p. 576

IEC. Other Cryolls that have *both*:
1. An argillic horizon that has its upper boundary 60 cm or more below the mineral soil surface; *and*
2. A texture class finer than loamy fine sand in all horizons above the argillic horizon.
Palecryolls, p. 576

IED. Other Cryolls that have an argillic horizon.
Argicryolls, p. 568

IEE. Other Cryolls that have *both*:
1. A calcic or petrocalcic horizon within 100 cm of the mineral soil surface; *and*
2. In all parts above the calcic or petrocalcic horizon, after the materials between the soil surface and a depth of 18 cm have been mixed, either free carbonates or a texture class of loamy fine sand or coarser.
Calcicryolls, p. 571

IEF. Other Cryolls.
Haplocryolls, p. 572

Argicryolls
Key to Subgroups

IEDA. Argicryolls that have a lithic contact within 50 cm of the mineral soil surface.
Lithic Argicryolls

IEDB. Other Argicryolls that have *one or both* of the following:
1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-
shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Argicryolls

IEDC. Other Argicryolls that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Argicryolls

IEDD. Other Argicryolls that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and

 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and

 b. $[(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60]$ plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Argicryolls

IEDE. Other Argicryolls that have an argillic horizon that, with increasing depth, has a clay increase of 20 percent or more (absolute, in the fine-earth fraction) within its upper 7.5 cm.

Abruptic Argicryolls
IEDF. Other Argicryolls that have, in one or more horizons within 100 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Argicryolls

IEDG. Other Argicryolls that in normal years are saturated with water in one or more layers within 100 cm of the mineral soil surface for either or both:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Argicryolls

IEDH. Other Argicryolls that have both:

1. A mollic epipedon that is 40 cm or more thick and has a texture class finer than loamy fine sand; and
2. A calcic horizon within 100 cm of the mineral soil surface.

Calcic Pachic Argicryolls

IEDI. Other Argicryolls that have a mollic epipedon that is 40 cm or more thick and has a texture class finer than loamy fine sand.

Pachic Argicryolls

IEDJ. Other Argicryolls that have a calcic horizon within 100 cm of the mineral soil surface.

Calcic Argicryolls

IEDK. Other Argicryolls that have either:

1. Above the argillic horizon, an albic horizon or a horizon that has color values too high for a mollic epipedon and chroma too high for an albic horizon; or
2. A glossic horizon, or interfingering of albic materials into the upper part of the argillic horizon, or skeletans of clean silt
and sand covering 50 percent or more of the faces of peds in the upper 5 cm of the argillic horizon.

Alfic Argicryolls

IEDL. Other Argicryolls that have an ustic soil moisture regime.

Ustic Argicryolls

IEDM. Other Argicryolls that have a xeric soil moisture regime.

Xeric Argicryolls

IEDN. Other Argicryolls.

Typic Argicryolls

Calcicryolls

Key to Subgroups

IEEA. Calcicryolls that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Calcicryolls

IEEB. Other Calcicryolls that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, *one or both* of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 b. \([(\text{Al} + \frac{1}{2}\text{Fe}, \text{percent extracted by ammonium oxalate}) \times 60] \) plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Calcicryolls
IEEC. Other Calcicryolls that have a petrocalcic horizon within 100 cm of the mineral soil surface.
 Petrocalcic Calcicryolls

IEED. Other Calcicryolls that have a mollic epipedon that is 40 cm or more thick and has a texture class finer than loamy fine sand.
 Pachic Calcicryolls

IEEE. Other Calcicryolls that have an ustic soil moisture regime.
 Ustic Calcicryolls

IEEF. Other Calcicryolls that have a xeric soil moisture regime.
 Xeric Calcicryolls

IEEG. Other Calcicryolls.
 Typic Calcicryolls

Duricryolls

Key to Subgroups

IEAA. Duricryolls that have an argillic horizon.
 Argic Duricryolls

IEAB. Other Duricryolls that have a calcic horizon above the duripan.
 Calcic Duricryolls

IEAC. Other Duricryolls.
 Typic Duricryolls

Haplocryolls

Key to Subgroups

IEFA. Haplocryolls that have a lithic contact within 50 cm of the mineral soil surface.
 Lithic Haplocryolls
IEFB. Other Haplocryolls that have one or both of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Haplocryolls

IEFC. Other Haplocryolls that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus 1/2 Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Haplocryolls

IEFD. Other Haplocryolls that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:

1. More than 5 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 b. [(Al plus 1/2 Fe, percent extracted by ammonium oxalate) times 60] plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Haplocryolls
IEFE. Other Haplocryolls that have:

1. A mollic epipedon that is 40 cm or more thick and has a texture class finer than loamy fine sand; and

2. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower; and

3. A slope of less than 25 percent; and

4. In one or more horizons within 100 cm of the mineral soil surface, distinct or prominent redox concentrations and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Cumulic Haplocryolls

IEFF. Other Haplocryolls that have:

1. A mollic epipedon that is 40 cm or more thick and has a texture class finer than loamy fine sand; and

2. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower; and

3. A slope of less than 25 percent.

Cumulic Haplocryolls

IEFG. Other Haplocryolls that have both:

1. A slope of less than 25 percent and one or both of the following:
 a. An organic-carbon content (Holocene age) of 0.3 percent or more at a depth of 125 cm below the mineral soil surface; or
 b. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a
depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower; and
2. In one or more horizons within 100 cm of the mineral soil surface, distinct or prominent redox concentrations and also aquic conditions for some time in normal years (or artificial drainage).

Fluvaquentic Haplocryolls

IEFH. Other Haplocryolls that have, in one or more horizons within 100 cm of the mineral soil surface, distinct or prominent redox concentrations and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Haplocryolls

IEFI. Other Haplocryolls that in normal years are saturated with water in one or more layers within 100 cm of the mineral soil surface for either or both:
1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Haplocryolls

IEFJ. Other Haplocryolls that have both:
1. A mollic epipedon that is 40 cm or more thick and has a texture class finer than loamy fine sand; and
2. A calcic horizon within 100 cm of the mineral soil surface.

Calcic Pachic Haplocryolls

IEFK. Other Haplocryolls that have a mollic epipedon that is 40 cm or more thick and has a texture class finer than loamy fine sand.

Pachic Haplocryolls

IEFL. Other Haplocryolls that have a slope of less than 25 percent and one or both of the following:
1. An organic-carbon content (Holocene age) of 0.3 percent
or more at a depth of 125 cm below the mineral soil surface;
or

2. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluventic Haplocryolls

IEFM. Other Haplocryolls that have a calcic horizon within 100 cm of the mineral soil surface.

Calcic Haplocryolls

IEFN. Other Haplocryolls that have an ustic soil moisture regime.

Ustic Haplocryolls

IEFO. Other Haplocryolls that have a xeric soil moisture regime.

Xeric Haplocryolls

IEFP. Other Haplocryolls.

Typic Haplocryolls

Natricryolls

Key to Subgroups

IEBA. All Natricryolls.

Typic Natricryolls

Palecryolls

Key to Subgroups

IECA. Palecryolls that have, in one or more horizons within 100 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Palecryolls
IECB. Other Palecryolls that in normal years are saturated with water in one or more layers within 100 cm of the mineral soil surface for either or both:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Palecryolls

IECC. Other Palecryolls that have an argillic horizon that, with increasing depth, has a clay increase of 20 percent or more (absolute, in the fine-earth fraction) within its upper 7.5 cm.

Abruptic Palecryolls

IECD. Other Palecryolls that have a mollic epipedon that is 40 cm or more thick and has a texture class finer than loamy fine sand.

Pachic Palecryolls

IECE. Other Palecryolls that have an ustic soil moisture regime.

Ustic Palecryolls

IECF. Other Palecryolls that have a xeric soil moisture regime.

Xeric Palecryolls

IECG. Other Palecryolls.

Typic Palecryolls

Gelolls

Key to Great Groups

IDA. All Gelolls.

Haplogelolls, p. 578
Haplogelolls
Key to Subgroups
IDAA. Haplogelolls that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Haplogelolls

IDAB. Other Haplogelolls that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Haplogelolls

IDAC. Other Haplogelolls that have, in one or more horizons within 100 cm of the mineral soil surface, distinct or prominent redox concentrations and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Haplogelolls

IDAD. Other Haplogelolls that in normal years are saturated with water in one or more layers within 100 cm of the mineral soil surface for either or both:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Haplogelolls

IDAE. Other Haplogelolls that have gelic materials within 200 cm of the mineral soil surface.

Turbic Haplogelolls

IDAF. Other Haplogelolls that have both:

1. A mollic epipedon that is 40 cm or more thick and has a texture class finer than loamy fine sand; and
2. An irregular decrease in organic-carbon content
(Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Cumulic Haplogelolls

IDAE. Other Haplogelolls.

Typic Haplogelolls

Rendolls

Key to Great Groups

ICA. Rendolls that have a cryic soil temperature regime.

Cryrendolls, p. 579

ICB. Other Rendolls.

Haprendolls, p. 579

Cryrendolls

Key to Subgroups

ICAA. Cryrendolls that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Cryrendolls

ICAB. Other Cryrendolls.

Typic Cryrendolls

Haprendolls

Key to Subgroups

ICBA. Haprendolls that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Haprendolls

ICBB. Other Haprendolls that have *one or both* of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more
for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Haprendolls

ICBC. Other Haprendolls that have a cambic horizon.

Inceptic Haprendolls

ICBD. Other Haprendolls that have a color value, dry, of 6 or more either in the upper 18 cm of the mollic epipedon, after mixing, or in an Ap horizon that is 18 cm or more thick.

Entic Haprendolls

ICBE. Other Haprendolls.

Typic Haprendolls

Udolls

Key to Great Groups

IHA. Udolls that have a natric horizon.

Natrudolls, p. 597

IHB. Other Udolls that:
1. Have a calcic or petrocalcic horizon within 100 cm of the mineral soil surface; and
2. Do not have an argillic horizon above the calcic or petrocalcic horizon; and
3. In all parts above the calcic or petrocalcic horizon, after the materials between the soil surface and a depth of 18 cm have been mixed, have either free carbonates or a texture class of loamy fine sand or coarser.

Calciudolls, p. 589
IHC. Other Udolls that have one or more of the following:
 1. A petrocalcic horizon within 150 cm of the mineral soil surface; or
 2. All of the following:
 a. No densic, lithic, or paralithic contact within 150 cm of the mineral soil surface; and
 b. Within 150 cm of the mineral soil surface, a clay decrease, with increasing depth, of less than 20 percent (relative) from the maximum clay content (noncarbonate clay); and
 c. An argillic horizon with one or more of the following:
 (1) In 50 percent or more of the matrix of one or more subhorizons in its lower half, hue of 7.5YR or redder and chroma of 5 or more; or
 (2) In 50 percent or more of the matrix of horizons that total more than one-half the total thickness, hue of 2.5YR or redder, a value, moist, of 3 or less, and a value, dry, of 4 or less; or
 (3) Many redox concentrations with hue of 5YR or redder or chroma of 6 or more, or both, in one or more subhorizons; or
 3. A frigid soil temperature regime; and
 a. An argillic horizon that has its upper boundary 60 cm or more below the mineral soil surface; and
 b. A texture class finer than loamy fine sand in all horizons above the argillic horizon.

Paleudolls, p. 599

IHD. Other Udolls that have an argillic horizon.

Argiudolls, p. 582

IHE. Other Udolls that have a mollic epipedon that:
1. Either below an Ap horizon or below a depth of 18 cm from the mineral soil surface, contains 50 percent or more (by volume) wormholes, wormcasts, or filled animal burrows; and
2. Either rests on a lithic contact or has a transition zone to the underlying horizon in which 25 percent or more of the soil volume consists of discrete wormholes, wormcasts, or animal burrows filled with material from the mollic epipedon and from the underlying horizon.

Vermudolls, p. 601

IHF. Other Udots.

Hapludolls, p. 590

Argiudolls

Key to Subgroups

IHDA. Argiudolls that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Argiudolls

IHDB. Other Argiudolls that have both:

1. Aquic conditions for some time in normal years (or artificial drainage) either:
 a. Within 40 cm of the mineral soil surface, in horizons that also have redoximorphic features; or
 b. Within 75 cm of the mineral soil surface, in one or more horizons with a total thickness of 15 cm or more that have one or more of the following:
 (1) A color value, moist, of 4 or more and redox depletions with chroma of 2 or less; or
 (2) Hue of 10YR or redder and chroma of 2 or less; or
 (3) Hue of 2.5Y or yellower and chroma of 3 or less; and

2. One or both of the following:
 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or
more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Aquertic Argiudolls

IHDC. Other Argiudolls that have both:

1. One or both of the following:

 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

 b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower; and

2. In normal years saturation with water in one or more layers within 100 cm of the mineral soil surface for either or both:

 a. 20 or more consecutive days; or

 b. 30 or more cumulative days.

Oxyaquic Vertic Argiudolls

IHDD. Other Argiudolls that have:

1. A mollic epipedon that has a texture class finer than loamy fine sand and that is either:

 a. 40 cm or more thick in a frigid soil temperature regime; or

 b. 40 cm or more thick in a frigid soil temperature regime; or
b. 50 cm or more thick; and

2. One or both of the following:

a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Pachic Vertic Argiudolls

IHDE. Other Argiudolls that have:

1. Above the argillic horizon, an albic horizon or a horizon that has color values too high for a mollic epipedon and chroma too high for an albic horizon; or

2. A glossic horizon, or interfingering of albic materials into the upper part of the argillic horizon, or skeletans of clean silt and sand covering 50 percent or more of the faces of peds in the upper 5 cm of the argillic horizon; and

3. One or both of the following:

a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Alfic Vertic Argiudolls
IHDF. Other Argiudolls that have *one or both* of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; *or*

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Argiudolls

IHDG. Other Argiudolls that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus \(\frac{1}{2} \) Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Argiudolls

IHDH. Other Argiudolls that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, *one or both* of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; *or*

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; *and*
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; *and*
 b. \([\text{Al plus } \frac{1}{2} \text{Fe, percent extracted by ammonium oxalate)} \times 60\] plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Argiudolls
IHDI. Other Argiudolls that have both:

1. Aquic conditions for some time in normal years (or artificial drainage) either:
 a. Within 40 cm of the mineral soil surface, in horizons that also have redoximorphic features; or
 b. Within 75 cm of the mineral soil surface, in one or more horizons with a total thickness of 15 cm or more that have one or more of the following:
 (1) A color value, moist, of 4 or more and redox depletions with chroma of 2 or less; or
 (2) Hue of 10YR or redder and chroma of 2 or less; or
 (3) Hue of 2.5Y or yellower and chroma of 3 or less; and

2. A mollic epipedon that has a texture class finer than loamy fine sand and that is either:
 a. 40 cm or more thick in a frigid soil temperature regime; or
 b. 50 cm or more thick.

 Aquic Pachic Argiudolls

IHDJ. Other Argiudolls that have a mollic epipedon that has a texture class finer than loamy fine sand and that is either:

1. 40 cm or more thick in a frigid soil temperature regime; or
2. 50 cm or more thick.

 Pachic Argiudolls

IHDK. Other Argiudolls that have aquic conditions for some time in normal years (or artificial drainage) either:

1. Within 40 cm of the mineral soil surface, in horizons that also have redoximorphic features; or
2. Within 75 cm of the mineral soil surface, in one or more horizons with a total thickness of 15 cm or more that have one or more of the following:
a. A color value, moist, of 4 or more and redox depletions with chroma of 2 or less; or
b. Hue of 10YR or redder and chroma of 2 or less; or
c. Hue of 2.5Y or yellower and chroma of 3 or less.

Aquic Argiudolls

IHDL. Other Argiudolls that in normal years are saturated with water in one or more layers within 100 cm of the mineral soil surface for *either or both*:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Argiudolls

IHDM. Other Argiudolls that have an argillic horizon that:

1. Consists entirely of lamellae; or
2. Is a combination of two or more lamellae and one or more subhorizons with a thickness of 7.5 to 20 cm, each layer with an overlying eluvial horizon; or
3. Consists of one or more subhorizons that are more than 20 cm thick, each with an overlying eluvial horizon, and above these horizons there are *either*:
 a. Two or more lamellae with a combined thickness of 5 cm or more (that may or may not be part of the argillic horizon); or
 b. A combination of lamellae (that may or may not be part of the argillic horizon) and one or more parts of the argillic horizon 7.5 to 20 cm thick, each with an overlying eluvial horizon.

Lamellic Argiudolls

IHDN. Other Argiudolls that have a sandy particle-size class throughout the upper 75 cm of the argillic horizon or throughout the entire argillic horizon if it is less than 75 cm thick.

Psammentic Argiudolls
IHDO. Other Argiudolls that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic horizon at a depth of 50 cm or more.

Arenic Argiudolls

IHDP. Other Argiudolls that have an argillic horizon that, with increasing depth, has a clay increase of 20 percent or more (absolute, in the fine-earth fraction) within its upper 7.5 cm.

Abruptic Argiudolls

IHDP. Other Argiudolls that have:

1. Above the argillic horizon, an albic horizon or a horizon that has color values too high for a mollic epipedon and chroma too high for an albic horizon; or
2. A glossic horizon, or interfingering of albic materials into the upper part of the argillic horizon, or skeletans of clean silt and sand covering 50 percent or more of the faces of peds in the upper 5 cm of the argillic horizon.

Alfic Argiudolls

IHDP. Other Argiudolls that have a CEC of less than 24 cmol(+) / kg clay (by 1N NH₄OAc pH 7) in 50 percent or more either of the argillic horizon if less than 100 cm thick or of its upper 100 cm.

Oxic Argiudolls

IHDS. Other Argiudolls that have a calcic horizon within 100 cm of the mineral soil surface.

Calcic Argiudolls

IHDT. Other Argiudolls.

Typic Argiudolls
Calciudolls

Key to Subgroups

IHBA. Calciudolls that have a lithic contact within 50 cm of the mineral soil surface.

 Lithic Calciudolls

IHBB. Other Calciudolls that have one or both of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Calciudolls

IHBC. Other Calciudolls that have, in one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Calciudolls

IHBD. Other Calciudolls that have a slope of less than 25 percent and one or both of the following:

1. An organic-carbon content (Holocene age) of 0.3 percent or more at a depth of 125 cm below the mineral soil surface; or

2. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluventic Calciudolls
IHBE. Other Calciudolls.

Typic Calciudolls

Hapludolls

Key to Subgroups

IHFA. Hapludolls that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Hapludolls

IHFB. Other Hapludolls that have both:

1. Aquic conditions for some time in normal years (or artificial drainage) either:
 a. Within 40 cm of the mineral soil surface, in horizons that also have redoximorphic features; or
 b. Within 75 cm of the mineral soil surface, in one or more horizons with a total thickness of 15 cm or more that have one or more of the following:
 (1) A color value, moist, of 4 or more and redox depletions with chroma of 2 or less; or
 (2) Hue of 10YR or redder and chroma of 2 or less; or
 (3) Hue of 2.5Y or yellower and chroma of 3 or less; and

2. One or both of the following:
 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
 b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Aquertic Hapludolls
IHFC. Other Hapludolls that have *both*:

1. *One or both* of the following:
 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; *or*
 b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower; *and*

2. A mollic epipedon that has a texture class finer than loamy fine sand and that is *either*:
 a. 40 cm or more thick in a frigid soil temperature regime; *or*
 b. 50 cm or more thick.

Pachic Vertic Hapludolls

IHFD. Other Hapludolls that have *one or both* of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; *or*

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Hapludolls

IHFE. Other Hapludolls that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water...
retention, and Al + Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Hapludolls

IHFF. Other Hapludolls that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, *one or both* of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; *or*
2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; *and*
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; *and*
 b. \[\left(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}\right) \times 60\] plus the volcanic glass (percent) is equal to 0 or more.

Vitrandic Hapludolls

IHFG. Other Hapludolls that have:

1. *Either:*
 a. A frigid soil temperature regime and a mollic epipedon that is 40 cm or more thick, of which less than 50 percent meets sandy or sandy-skeletal particle-size class criteria, and there is no densic or paralithic contact and no sandy or sandy-skeletal particle-size class at a depth between 40 and 50 cm from the mineral soil surface; *or*
 b. A mollic epipedon that is 60 cm or more thick, of which 50 percent or more of the thickness has a texture class finer than loamy fine sand; *and*

2. *One or both* of the following:
 a. An organic-carbon content (Holocene age) of 0.3
percent or more at a depth of 125 cm below the mineral soil surface; or
b. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower; and

3. A slope of less than 25 percent; and

4. In one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Cumulic Hapludolls

IHFH. Other Hapludolls that have:

1. Either:
 a. A frigid soil temperature regime and a mollic epipedon that is 40 cm or more thick, of which less than 50 percent meets sandy or sandy-skeletal particle-size class criteria, and there is no densic or paralithic contact and no sandy or sandy-skeletal particle-size class at a depth between 40 and 50 cm from the mineral soil surface; or
 b. A mollic epipedon that is 60 cm or more thick, of which 50 percent or more of the thickness has a texture class finer than loamy fine sand; and

2. One or both of the following:
 a. An organic-carbon content (Holocene age) of 0.3 percent or more at a depth of 125 cm below the mineral soil surface; or
 b. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower; and
3. A slope of less than 25 percent.

Cumulic Hapludolls

IHFI. Other Hapludolls that have both:

1. Aquic conditions for some time in normal years (or artificial drainage) *either*:

a. Within 40 cm of the mineral soil surface, in horizons that also have redoximorphic features; *or*

 b. Within 75 cm of the mineral soil surface, in one or more horizons with a total thickness of 15 cm or more that have *one or more* of the following:

 (1) A color value, moist, of 4 or more and redox depletions with chroma of 2 or less; *or*

 (2) Hue of 10YR or redder and chroma of 2 or less; *or*

 (3) Hue of 2.5Y or yellower and chroma of 3 or less; *and*

2. A slope of less than 25 percent and *one or both* of the following:

 a. An organic-carbon content (Holocene age) of 0.3 percent or more at a depth of 125 cm below the mineral soil surface; *or*

 b. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluvaquentic Hapludolls

IHFJ. Other Hapludolls that have a slope of less than 25 percent and *one or both* of the following:

1. An organic-carbon content (Holocene age) of 0.3 percent or more at a depth of 125 cm below the mineral soil surface; *or*

2. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth
of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluventic Hapludolls

IHFK. Other Hapludolls that have both:

1. Aquic conditions for some time in normal years (or artificial drainage) either:
 a. Within 40 cm of the mineral soil surface, in horizons that also have redoximorphic features; or
 b. Within 75 cm of the mineral soil surface, in one or more horizons with a total thickness of 15 cm or more that have one or more of the following:
 (1) A color value, moist, of 4 or more and redox depletions with chroma of 2 or less; or
 (2) Hue of 10YR or redder and chroma of 2 or less; or
 (3) Hue of 2.5Y or yellower and chroma of 3 or less; and
2. A mollic epipedon that has a texture class finer than loamy fine sand and that is either:
 a. 40 cm or more thick in a frigid soil temperature regime; or
 b. 50 cm or more thick.

Aquic Pachic Hapludolls

IHFL. Other Hapludolls that have a mollic epipedon that has a texture class finer than loamy fine sand and that is either:

1. 40 cm or more thick in a frigid soil temperature regime; or
2. 50 cm or more thick.

Pachic Hapludolls

IHFM. Other Hapludolls that have aquic conditions for some time in normal years (or artificial drainage) either:

1. Within 40 cm of the mineral soil surface, in horizons that also have redoximorphic features; or
2. Within 75 cm of the mineral soil surface, in one or more horizons with a total thickness of 15 cm or more that have one or more of the following:
 a. A color value, moist, of 4 or more and redox depletions with chroma of 2 or less; or
 b. Hue of 10YR or redder and chroma of 2 or less; or
 c. Hue of 2.5Y or yellower and chroma of 3 or less.

Aquic Hapludolls

IHFN. Other Hapludolls that in normal years are saturated with water in one or more layers within 100 cm of the mineral soil surface for either or both:
1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Hapludolls

IHFO. Other Hapludolls that have both:
1. A mollic epipedon that is 60 cm or more thick that has a texture class finer than loamy fine sand and contains 50 percent or more (by volume) wormholes, wormcasts, or filled animal burrows either below an Ap horizon or below a depth of 18 cm from the mineral soil surface; and
2. Either do not have a cambic horizon and do not, in the lower part of the mollic epipedon, meet the requirements for a cambic horizon, except for the color requirements, or have free carbonates throughout either the cambic horizon or the lower part of the mollic epipedon.

Vermic Hapludolls

IHFP. Other Hapludolls that have a calcic horizon within 100 cm of the mineral soil surface.

Calcic Hapludolls

IHFQ. Other Hapludolls that either:
1. Do not have a cambic horizon and do not, in any part of the mollic epipedon below 25 cm from the mineral soil surface, meet the requirements for a cambic horizon, except for the color requirements; or

2. Have free carbonates throughout the cambic horizon or in all parts of the mollic epipedon below a depth of 25 cm from the mineral soil surface.

 Entic Hapludolls

IHFR. Other Hapludolls.

Typic Hapludolls

Natrudolls

Key to Subgroups

IHAA. Natrudolls that have a petrocalcic horizon within 100 cm of the mineral soil surface.

 Petrocalcic Natrudolls

IHAB. Other Natrudolls that have both:

1. Visible crystals of gypsum and/or more soluble salts within 40 cm of the mineral soil surface; and

2. One or both of the following:
 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
 b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

 Leptic Vertic Natrudolls

IHAC. Other Natrudolls that have:
1. A glossic horizon or interfingering of albic materials into the natric horizon; and

2. One or both of the following:
 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
 b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

 Glossic Vertic Natrudolls

IHAD. Other Natrudolls that have one or both of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

 Vertic Natrudolls

IHAE. Other Natrudolls that have visible crystals of gypsum and/or more soluble salts within 40 cm of the mineral soil surface.

 Leptic Natrudolls

IHAF. Other Natrudolls that have a glossic horizon or interfingering of albic materials into the natric horizon.

 Glossic Natrudolls
IHAG. Other Natrudolls that have a calcic horizon within 100 cm of the mineral soil surface.

Calcic Natrudolls

IHAH. Other Natrudolls.

Typic Natrudolls

Paleudolls

Key to Subgroups

IHCA. Paleudolls that have one or both of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Paleudolls

IHCB. Other Paleudolls that have a petrocalcic horizon within 150 cm of the mineral soil surface.

Petrocalcic Paleudolls

IHCC. Other Paleudolls that have both:

1. Aquic conditions for some time in normal years (or artificial drainage) either:

a. Within 40 cm of the mineral soil surface, in horizons that also have redoximorphic features; or

b. Within 75 cm of the mineral soil surface, in one or more horizons with a total thickness of 15 cm or more that have one or more of the following:

 (1) A color value, moist, of 4 or more and redox depletions with chroma of 2 or less; or
(2) Hue of 10YR or redder and chroma of 2 or less;
 or
(3) Hue of 2.5Y or yellower and chroma of 3 or less;
 and

2. A mollic epipedon that has a texture class finer than loamy fine sand and that is either:
 a. 40 cm or more thick in a frigid soil temperature regime;
 or
 b. 50 cm or more thick.

Aquic Pachic Paleudolls

IHCD. Other Paleudolls that have a mollic epipedon that has a texture class finer than loamy fine sand and that is 50 cm or more thick.

Pachic Paleudolls

IHCE. Other Paleudolls that have, in one or more subhorizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Paleudolls

IHCF. Other Paleudolls that in normal years are saturated with water in one or more layers within 100 cm of the mineral soil surface for either or both:
 1. 20 or more consecutive days; or
 2. 30 or more cumulative days.

Oxyaquic Paleudolls

IHCG. Other Paleudolls that have both:
 1. A calcic horizon within 100 cm of the mineral soil surface;
 and
 2. In all parts above the calcic horizon, after the materials between the soil surface and a depth of 18 cm have been
mixed, free carbonates or a texture class of loamy fine sand or coarser.

Calcic Paleudolls

IHCH. Other Paleudolls.

Typic Paleudolls

Vermudolls

Key to Subgroups

IHEA. Vermudolls that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Vermudolls

IHEB. Other Vermudolls that have a mollic epipedon that is less than 75 cm thick.

Haplic Vermudolls

IHEC. Other Vermudolls.

Typic Vermudolls

Ustolls

Key to Great Groups

IGA. Ustolls that have a duripan within 100 cm of the mineral soil surface.

Durustolls, p. 618

IGB. Other Ustolls that have a natric horizon.

Nattrustolls, p. 634

IGC. Other Ustolls that:

1. Have either a calcic or gypsic horizon within 100 cm of the mineral soil surface or a petrocalcic horizon within 150 cm of the mineral soil surface; and

2. Do not have an argillic horizon above the calcic, gypsic, or petrocalcic horizon; and
3. In all parts above the calcic, gypsic, or petrocalcic horizon, after the materials between the soil surface and a depth of 18 cm have been mixed, have either free carbonates or a texture class of loamy fine sand or coarser.

Calciustolls, p. 613

IGD. Other Ustolls that have *either*:

1. A petrocalcic horizon within 150 cm of the mineral soil surface; *or*

2. An argillic horizon that has *one or both* of the following:
 a. With increasing depth, no clay decrease of 20 percent or more (relative) from the maximum clay content (noncarbonate clay) within 150 cm of the mineral soil surface (and there is no densic, lithic, or paralithic contact within that depth); *and either*
 (1) Hue of 7.5YR or redder and chroma of 5 or more in the matrix; *or*
 (2) Common redox concentrations with hue of 7.5YR or redder or chroma of 6 or more, or both; *or*
 b. 35 percent or more noncarbonate clay in its upper part and a clay increase either of 20 percent or more (absolute) within a vertical distance of 7.5 cm or of 15 percent or more (absolute) within a vertical distance of 2.5 cm, in the fine-earth fraction (and there is no densic, lithic, or paralithic contact within 50 cm of the mineral soil surface).

Paleustolls, p. 640

IGE. Other Ustolls that have an argillic horizon.

Argiustolls, p. 603

IGF. Other Ustolls that have a mollic epipedon that:

1. Either below an Ap horizon or below a depth of 18 cm from the mineral soil surface, contains 50 percent or more (by volume) wormholes, wormcasts, or filled animal burrows; *and*
2. Either rests on a lithic contact or has a transition zone to the underlying horizon in which 25 percent or more of the soil volume consists of discrete wormholes, wormcasts, or animal burrows filled with material from the mollic epipedon and from the underlying horizon.

Vermustolls, p. 645

IGG. Other Ustolls.

Haplustolls, p. 618

Argiustolls

Key to Subgroups

IGEA. Argiustolls that have *both*:

1. A lithic contact within 50 cm of the mineral soil surface; *and*

2. When neither irrigated nor fallowed to store moisture, have *one* of the following:

 a. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; *or*

 b. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some or all parts for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; *or*

 c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:

 (1) Is moist in some or all parts for fewer than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; *and*
(2) Is dry in some or all parts for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C.

Aridic Lithic Argiustolls

IGEB. Other Argiustolls that have both:
1. A lithic contact within 50 cm of the mineral soil surface; *and*
2. Above the argillic horizon, either an albic horizon or a horizon that has color values too high for a mollic epipedon and chroma too high for an albic horizon.

Alfic Lithic Argiustolls

IGEC. Other Argiustolls that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Argiustolls

IGED. Other Argiustolls that have both:
1. In one or more horizons within 100 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); *and*
2. One or both of the following:
 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; *or*
 b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Aquertic Argiustolls

IGEE. Other Argiustolls that have both:
1. One or both of the following:
a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower; and

2. When neither irrigated nor fallowed to store moisture, have one of the following:

 a. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

 b. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some or all parts for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

 c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:

 (1) Is moist in some or all parts for fewer than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and

 (2) Is dry in some or all parts for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C.

 Torrertic Argiustolls
IGEF. Other Argiustolls that have all of the following:

1. A mollic epipedon that has a texture class finer than loamy fine sand and that is either:
 a. 40 cm or more thick in a frigid soil temperature regime; or
 b. 50 cm or more thick; and

2. One or both of the following:
 a. Cracks within 15 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
 b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower; and

3. When neither irrigated nor fallowed to store moisture, either:
 a. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for four-tenths or less of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
 b. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years is dry in some or all parts for fewer than 120 cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C.

Pachic Udertic Argiustolls

IGEG. Other Argiustolls that have both:

1. One or both of the following:
a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower; and

2. When neither irrigated nor fallowed to store moisture, either:

a. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for four-tenths or less of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

b. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years is dry in some or all parts for fewer than 120 cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C.

Udertic Argiustolls

IGEH. Other Argiustolls that have both:

1. One or both of the following:

a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a
densic, lithic, or paralithic contact, whichever is shallower; and

2. A mollic epipedon that has a texture class finer than loamy fine sand and that is either:
 a. 40 cm or more thick in a frigid soil temperature regime; or
 b. 50 cm or more thick.

Pachic Vertic Argiustolls

IGEI. Other Argiustolls that have one or both of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Argiustolls

IGEJ. Other Argiustolls that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus \(\frac{1}{2} \) Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Argiustolls

IGEK. Other Argiustolls that have both:

1. When neither irrigated nor fallowed to store moisture, one of the following:
 a. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths or more of the cumulative days per year when the soil
temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

b. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some or all parts for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:

 (1) Is moist in some or all parts for fewer than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and

 (2) Is dry in some or all parts for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; and

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:

a. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

b. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and

 (1) In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and

 (2) \[(\text{Al plus } {1/2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60\] plus the volcanic glass (percent) is equal to 30 or more.

Vitritorrandinic Argiustolls
IGEL. Other Argiustolls that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 b. \[\frac{(Al + \text{Fe}, \text{percent extracted by ammonium oxalate})}{60} \text{ plus the volcanic glass (percent)} \leq 30 \text{ or more.} \]

Vitrandic Argiustolls

IGEM. Other Argiustolls that have, in one or more horizons within 100 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Argiustolls

IGEN. Other Argiustolls that in normal years are saturated with water in one or more layers within 100 cm of the mineral soil surface for either or both:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Argiustolls

IGEO. Other Argiustolls that have a mollic epipedon that has a texture class finer than loamy fine sand and that is either:

1. 40 cm or more thick in a frigid soil temperature regime; or
2. 50 cm or more thick.

Pachic Argiustolls
IGEP. Other Argiustolls that have either:

1. Above the argillic horizon, an albic horizon or a horizon that has color values too high for a mollic epipedon and chroma too high for an albic horizon; or

2. A glossic horizon, or interfingering of albic materials into the upper part of the argillic horizon, or skeletal silt and sand covering 50 percent or more of the faces of peds in the upper 5 cm of the argillic horizon.

Alfic Argiustolls

IGEQ. Other Argiustolls that have both:

1. A calcic horizon within 100 cm of the mineral soil surface; and

2. When neither irrigated nor fallowed to store moisture, one of the following:

 a. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

 b. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

 c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:

 (1) Is moist in some or all parts for fewer than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and
(2) Is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C.

Calcidic Argiustolls

IGER. Other Argiustolls that, when neither irrigated nor fallowed to store moisture, have one of the following:

1. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

2. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some or all parts for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

3. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:
 a. Is moist in some or all parts for fewer than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and
 b. Is dry in some or all parts for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C.

Aridic Argiustolls

IGES. Other Argiustolls that, when neither irrigated nor fallowed to store moisture, have either:

1. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for four-tenths or less of the cumulative days per year
when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

2. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years is dry in some or all parts for fewer than 120 cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C.

Udic Argiustolls

IGET. Other Argiustolls that have a horizon, 15 cm or more thick within 100 cm of the mineral soil surface, that either is brittle and has some opal coats or has 20 percent or more (by volume) durinodes.

Duric Argiustolls

IGEU. Other Argiustolls.

Typic Argiustolls

Calciustolls

Key to Subgroups

IGCA. Calciustolls that have a salic horizon within 75 cm of the mineral soil surface.

Salidic Calciustolls

IGCB. Other Calciustolls that have a petrocalcic horizon and a lithic contact within 50 cm of the mineral soil surface.

Lithic Petrocalcic Calciustolls

IGCC. Other Calciustolls that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Calciustolls

IGCD. Other Calciustolls that have both:

1. *One or both* of the following:
 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or
more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface;
or
b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower;
and
2. When neither irrigated nor fallowed to store moisture, one of the following:
 a. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
 b. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some or all parts for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
 c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:
 (1) Is moist in some or all parts for fewer than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and
 (2) Is dry in some or all parts for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C.

Torrertic Calciustolls
IGCE. Other Calciustolls that have both:

1. One or both of the following:
 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
 b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower; and

2. When neither irrigated nor fallowed to store moisture, either:
 a. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for four-tenths or less of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
 b. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years is dry in some or all parts for fewer than 120 cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C.

Udertic Calciustolls

IGCF. Other Calciustolls that have one or both of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Calciustolls

IGCG. Other Calciustolls that have a petrocalcic horizon within 100 cm of the mineral soil surface.

Petrocalcic Calciustolls

IGCH. Other Calciustolls that have a gypsic horizon within 100 cm of the mineral soil surface.

Gypsic Calciustolls

IGCI. Other Calciustolls that have, in one or more horizons within 75 cm of the mineral soil surface, redox concentrations and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Calciustolls

IGCJ. Other Calciustolls that in normal years are saturated with water in one or more layers within 100 cm of the mineral soil surface for **either or both**:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Calciustolls

IGCK. Other Calciustolls that have a mollic epipedon that has a texture class finer than loamy fine sand and that is **either**:

1. 40 cm or more thick in a frigid soil temperature regime; or
2. 50 cm or more thick.

Pachic Calciustolls

IGCL. Other Calciustolls that, when neither irrigated nor fallowed to store moisture, have one of the following:

1. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths
or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

2. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some or all parts for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

3. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:
 a. Is moist in some or all parts for fewer than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and
 b. Is dry in some or all parts for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C.

Aridic Calciustolls

IGCM. Other Calciustolls that, when neither irrigated nor fallowed to store moisture, have either:

1. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some or all parts for four-tenths or less of the consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

2. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years is dry in some or all parts for fewer than 120 cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C.

Udic Calciustolls
IGCN. Other Calciustolls.

Typic Calciustolls

Durustolls

Key to Subgroups

IGAA. Durustolls that have a natric horizon above the duripan.

Natric Durustolls

IGAB. Other Durustolls that:

1. Do not have an argillic horizon above the duripan; *and*
2. Have an aridic soil moisture regime that borders on ustic.

Haploduridic Durustolls

IGAC. Other Durustolls that have an aridic soil moisture regime that borders on ustic.

Argiduridic Durustolls

IGAD. Other Durustolls that do not have an argillic horizon above the duripan.

Entic Durustolls

IGAE. Other Durustolls that have a duripan that is strongly cemented or less cemented in all subhorizons.

Haplic Durustolls

IGAF. Other Durustolls.

Typic Durustolls

Haplustolls

Key to Subgroups

IGGA. Haplustolls that have a salic horizon within 75 cm of the mineral soil surface.

Salidic Haplustolls
IGGB. Other Haplustolls that have, in part of each pedon, a lithic contact within 50 cm of the mineral soil surface.

Ruptic-Lithic Haplustolls

IGGC. Other Haplustolls that have both:

1. When neither irrigated nor fallowed to store moisture, one of the following:
 a. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
 b. A mesic or thermic soil temperature regime and a moisture control section that, in 6 normal years, is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
 c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that, in normal years:
 (1) Is moist in some or all parts for fewer than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and
 (2) Is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; and

2. A lithic contact within 50 cm of the mineral soil surface.

Aridic Lithic Haplustolls

IGGD. Other Haplustolls that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Haplustolls
IGGE. Other Haplustolls that have both:

1. In one or more horizons within 100 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); and

2. One or both of the following:

 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

 b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Aquertic Haplustolls

IGGF. Other Haplustolls that have both:

1. One or both of the following:

 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

 b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower; and

2. When neither irrigated nor fallowed to store moisture, one of the following:

 a. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths
or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

b. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some or all parts for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:

(1) Is moist in some or all parts for fewer than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and

(2) Is dry in some or all parts for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C.

Torrertic Haplustolls

IGGG. Other Haplustolls that have all of the following:

1. A mollic epipedon that has a texture class finer than loamy fine sand and that is either:
 a. 40 cm or more thick in a frigid soil temperature regime; or
 b. 50 cm or more thick; and

2. One or both of the following:
 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower; and

3. When neither irrigated nor fallowed to store moisture, either:
 a. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for four-tenths or less of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
 b. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years is dry in some or all parts for fewer than 120 cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C.

Pachic Udertic Haplustolls

IGGH. Other Haplustolls that have both:

1. **One or both** of the following:
 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
 b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower; and

2. When neither irrigated nor fallowed to store moisture, either:
a. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for four-tenths or less of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

b. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years is dry in some or all parts for fewer than 120 cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C.

Udertic Haplustolls

IGGI. Other Haplustolls that have both:

1. A mollic epipedon that has a texture class finer than loamy fine sand and that is either:
 a. 40 cm or more thick in a frigid soil temperature regime; or
 b. 50 cm or more thick; and

2. One or both of the following:
 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
 b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a dense, lithic, or paralithic contact, whichever is shallower.

Pachic Vertic Haplustolls

IGGJ. Other Haplustolls that have one or both of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more
for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Haplustolls

IGGK. Other Haplustolls that have *both*:

1. When neither irrigated nor fallowed to store moisture, *one* of the following:
 a. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
 b. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
 c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years remains moist in some or all parts for fewer than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and

2. An apparent CEC (by 1N NH₄OAc pH 7) of less than 24 cmol(+)/kg clay in 50 percent or more of the soil volume between a depth of 25 cm from the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower. (If the ratio of [percent water retained at 1500 kPa tension minus percent organic carbon] to the percentage of measured clay is 0.6
or more, then the percentage of clay is considered to equal either the measured percentage of clay or three times [percent water retained at 1500 kPa tension minus percent organic carbon], whichever value is higher, but no more than 100.)

Torroxic Haplustolls

IGGL. Other Haplustolls that have an apparent CEC (by 1N NH$_4$OAc pH 7) of less than 24 cmol(+)/kg clay in 50 percent or more of the soil volume between a depth of 25 cm from the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower. (If the ratio of [percent water retained at 1500 kPa tension minus percent organic carbon] to the percentage of measured clay is 0.6 or more, then the percentage of clay is considered to equal either the measured percentage of clay or three times [percent water retained at 1500 kPa tension minus percent organic carbon], whichever value is higher, but no more than 100.)

Oxic Haplustolls

IGGM. Other Haplustolls that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at kPa water retention, and Al plus Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Haplustolls

IGGN. Other Haplustolls that have both:

1. When neither irrigated nor fallowed to store moisture, *one* of the following:

 a. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 $^\circ$C; *or*
b. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:

1. Is moist in some or all parts for fewer than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and

2. Is dry in some or all parts for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; and

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:

a. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

b. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and

(1) In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and

(2) \[(\text{Al plus } \frac{1}{2} \text{Fe, percent extracted by ammonium oxalate}) \times 60\] plus the volcanic glass (percent) is equal to 30 or more.

Vitritorrandic Haplustolls

IGGO. Other Haplustolls that have, throughout one or more
horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 b. \([(\text{Al plus } \frac{1}{2} \text{ Fe}, \text{ percent extracted by ammonium oxalate}) \times 60]\) plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Haplustolls

IGGP. Other Haplustolls that have:

1. Either:
 a. A frigid soil temperature regime and a mollic epipedon that is 40 cm or more thick, of which less than 50 percent meets sandy or sandy-skeletal particle-size class criteria, and there is no densic or paralithic contact and no sandy or sandy-skeletal particle-size class at a depth between 40 and 50 cm from the mineral soil surface; or
 b. A mollic epipedon that is 50 cm or more thick and has a texture class finer than loamy fine sand; and

2. One or both of the following:
 a. An organic-carbon content (Holocene age) of 0.3 percent or more at a depth of 125 cm below the mineral soil surface; or
 b. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower; and

627
3. A slope of less than 25 percent; and
4. In one or more horizons within 100 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Cumulic Haplustolls

IGGQ. Other Haplustolls that have:

1. *Either:*
 a. A frigid soil temperature regime and a mollic epipedon that is 40 cm or more thick, of which less than 50 percent meets sandy or sandy-skeletal particle-size class criteria, and there is no densic or paralithic contact and no sandy or sandy-skeletal particle-size class at a depth between 40 and 50 cm from the mineral soil surface; or
 b. A mollic epipedon that is 50 cm or more thick and has a texture class finer than loamy fine sand; and
2. *One or both* of the following:
 a. An organic-carbon content (Holocene age) of 0.3 percent or more at a depth of 125 cm below the mineral soil surface; or
 b. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower; and
3. A slope of less than 25 percent.

Cumulic Haplustolls

IGGR. Other Haplustolls that have anthraquic conditions.

Anthraquic Haplustolls

IGGS. Other Haplustolls that have both:

1. In one or more horizons within 100 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also
aquic conditions for some time in normal years (or artificial drainage); and

2. A slope of less than 25 percent and one or both of the following:
 a. An organic-carbon content (Holocene age) of 0.3 percent or more at a depth of 125 cm below the mineral soil surface; or
 b. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluvaquentic Haplustolls

IGGT. Other Haplustolls that have, in one or more horizons within 100 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in most years (or artificial drainage).

Aquic Haplustolls

IGGU. Other Haplustolls that have a mollic epipedon that has a texture class finer than loamy fine sand and that is either:

1. 40 cm or more thick in a frigid soil temperature regime; or
2. 50 cm or more thick.

Pachic Haplustolls

IGGV. Other Haplustolls that in normal years are saturated with water in one or more layers within 100 cm of the mineral soil surface for either or both:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Haplustolls

IGGW. Other Haplustolls that have both:
1. When neither irrigated nor fallowed to store moisture, one of the following:

 a. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

 b. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

 c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:

 (1) Is moist in some or all parts for fewer than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and

 (2) Is dry in some or all parts for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; and

2. A slope of less than 25 percent and one or both of the following:

 a. An organic-carbon content (Holocene age) of 0.3 percent or more at a depth of 125 cm below the mineral soil surface; or

 b. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

 Torrifluventic Haplustolls
IGGX. Other Haplustolls that:

1. When neither irrigated nor fallowed to store moisture, have one of the following:
 a. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
 b. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
 c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:
 (1) Is moist in some or all parts for fewer than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and
 (2) Is dry in some or all parts for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; and

2. Either:
 a. Do not have a cambic horizon and do not, in any part of the mollic epipedon below 25 cm from the mineral soil surface, meet the requirements for a cambic horizon, except for the color requirements; or
 b. Have free carbonates throughout the cambic horizon or in all parts of the mollic epipedon below a depth of 25 cm from the mineral soil surface.

Torriorthentic Haplustolls
IGGY. Other Haplustolls that, when neither irrigated nor fallowed to store moisture, have one of the following:

1. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

2. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

3. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:
 a. Is moist in some or all parts for fewer than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and
 b. Is dry in some or all parts for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C.

Aridic Haplustolls

IGGZ. Other Haplustolls that have a slope of less than 25 percent and one or both of the following:

1. An organic-carbon content (Holocene age) of 0.3 percent or more at a depth of 125 cm below the mineral soil surface; or

2. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluventic Haplustolls
IGGZa. Other Haplustolls that have a horizon, 15 cm or more thick within 100 cm of the mineral soil surface, that either is brittle and has some opal coats or has 20 percent or more (by volume) durinodes.

Duric Haplustolls

IGGZb. Other Haplustolls that:

1. When neither irrigated nor fallowed to store moisture, have *either*:
 a. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for four-tenths or less of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; *or*
 b. A hyperthermic, isomesic, or warmer *iso* soil temperature regime and a moisture control section that in normal years is dry in some or all parts for fewer than 120 days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; *and*

2. Either do not have a cambic horizon and do not, in the lower part of the mollic epipedon, meet the requirements for a cambic horizon, except for the color requirements, or have free carbonates throughout either the cambic horizon or the lower part of the mollic epipedon.

Udorthentic Haplustolls

IGGZc. Other Haplustolls that, when neither irrigated nor fallowed to store moisture, have *either*:

1. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for four-tenths or less of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; *or*
2. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years is dry in some or all parts for fewer than 120 days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C.

Udic Haplustolls

IGGZd. Other Haplustolls that either:

1. Do not have a cambic horizon and do not, in any part of the mollic epipedon below 25 cm from the mineral soil surface, meet the requirements for a cambic horizon, except for the color requirements; or
2. Have free carbonates throughout the cambic horizon or in all parts of the mollic epipedon below a depth of 25 cm from the mineral soil surface.

Entic Haplustolls

IGGZe. Other Haplustolls.

Typic Haplustolls

Natrustolls

Key to Subgroups

IGBA. Natrustolls that have all of the following:

1. Visible crystals of gypsum and/or more soluble salts within 40 cm of the mineral soil surface; and
2. One or both of the following:
 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
 b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a
densic, lithic, or paralithic contact, whichever is shallower; and

3. When neither irrigated nor fallowed to store moisture, one of the following:

a. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

b. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some or all parts for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:

(1) Is moist in some or all parts for fewer than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and

(2) Is dry in some or all parts for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C.

Leptic Torrertic Natrustolls

IGBB. Other Natrustolls that have *both*:

1. *One or both* of the following:

a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has
its upper boundary within 125 cm of the mineral soil surface; or

b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower; and

2. When neither irrigated nor fallowed to store moisture, one of the following:

a. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

b. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some or all parts for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:

(1) Is moist in some or all parts for fewer than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and

(2) Is dry in some or all parts for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C.

Torrertic Natrustolls

IGBC. Other Natrustolls that have both of the following:

1. Visible crystals of gypsum and/or more soluble salts within 40 cm of the mineral soil surface; and
2. *One or both* of the following:
 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; *or*
 b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Leptic Vertic Natrustolls

IGBD. Other Natrustolls that have *both*:

1. A glossic horizon or interfingering of albic materials into a natric horizon; *and*

2. *One or both* of the following:
 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; *or*
 b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Glossic Vertic Natrustolls

IGBE. Other Natrustolls that have *one or both* of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; *or*
2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Natrustolls

IGBF. Other Natrustolls that have both:

1. Visible crystals of gypsum or of more soluble salts, or both, within 40 cm of the mineral soil surface; and

2. When neither irrigated nor fallowed to store moisture, one of the following:
 a. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
 b. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some or all parts for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
 c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:
 (1) Is moist in some or all parts for fewer than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and
 (2) Is dry in some or all parts for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C.

Aridic Leptic Natrustolls
IGBG. Other Natrustolls that have visible crystals of gypsum and/or more soluble salts within 40 cm of the mineral soil surface.

Leptic Natrustolls

IGBH. Other Natrustolls that have, in one or more horizons at a depth between 50 and 100 cm from the mineral soil surface, aquic conditions for some time in normal years (or artificial drainage) and one of the following:

1. 50 percent or more chroma of 1 or less and hue of 2.5Y or yellower; or
2. 50 percent or more chroma of 2 or less and redox concentrations; or
3. 50 percent or more chroma of 2 or less and also a higher exchangeable sodium percentage (or sodium adsorption ratio) between the mineral soil surface and a depth of 25 cm than in the underlying horizon.

Aquic Natrustolls

IGBI. Other Natrustolls that, when neither irrigated nor fallowed to store moisture, have one of the following:

1. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for four-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
2. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
3. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:
 a. Is moist in some or all parts for fewer than 90
consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and

b. Is dry in some or all parts for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C.

Aridic Natrustolls

IGBJ. Other Natrustolls that have a horizon, 15 cm or more thick within 100 cm of the mineral soil surface, that either has 20 percent or more (by volume) durinodes or is brittle and has at least a firm rupture-resistance class when moist.

Duric Natrustolls

IGBK. Other Natrustolls that have a glossic horizon or interfingering of albic materials into a natric horizon.

Glossic Natrustolls

IGBL. Other Natrustolls.

Typic Natrustolls

Paleustolls

Key to Subgroups

IGDA. Paleustolls that have both:

1. **One or both** of the following:

 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

 b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower; and
2. When neither irrigated nor fallowed to store moisture, one of the following:

a. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for less than four-tenths of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

b. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some or all parts for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

c. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:

 (1) Is moist in some or all parts for fewer than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and

 (2) Is dry in some or all parts for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C.

Torrertic Paleustolls

IGDB. Other Paleustolls that have both:

1. One or both of the following:

a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

b. A linear extensibility of 6.0 cm or more between the
mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower; and

2. When neither irrigated nor fallowed to store moisture, either:
 a. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for four-tenths or less of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
 b. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years is dry in some or all parts for fewer than 120 cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C.

Udertic Paleustolls

IGDC. Other Paleustolls that have one or both of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Paleustolls

IGDD. Other Paleustolls that have, in one or more horizons within 100 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Paleustolls
IGDE. Other Paleustolls that have a mollic epipedon that has
a texture class finer than loamy fine sand and that is 50 cm or
more thick.

Pachic Paleustolls

IGDF. Other Paleustolls that have a petrocalcic horizon within
150 cm of the mineral soil surface.

Petrocalcic Paleustolls

IGDG. Other Paleustolls that:

1. Have a calcic horizon within one of the following particle-
size class (by weighted average in the particle-size control
section) and depth combinations:
 a. Sandy or sandy-skeletal and within 100 cm of the
 mineral soil surface; or
 b. Clayey, clayey-skeletal, fine, or very-fine and within 50
 cm of the mineral soil surface; or
 c. Any other class and within 60 cm of the mineral soil
 surface; and
2. When neither irrigated nor fallowed to store moisture,
have one of the following:
 a. A frigid soil temperature regime and a moisture control
 section that in normal years is dry in all parts for less than
 four-tenths of the cumulative days per year when the soil
 temperature at a depth of 50 cm below the soil surface is
 higher than 5 °C; or
 b. A mesic or thermic soil temperature regime and a
 moisture control section that in normal years is dry in some
 part for six-tenths or more of the cumulative days per year
 when the soil temperature at a depth of 50 cm below the soil
 surface is higher than 5 °C; or
 c. A hyperthermic, isomesic, or warmer iso soil
 temperature regime and a moisture control section that in
 normal years:
(1) Is moist in some or all parts for fewer than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and

(2) Is dry in some or all parts for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C.

Calcic Paleustolls

IGDH. Other Paleustolls that, when neither irrigated nor fallowed to store moisture, have *one* of the following:

1. A frigid soil temperature regime and a moisture control section that in normal years is dry in all parts for less than four-tenths of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; *or*

2. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; *or*

3. A hyperthermic, isomesic, or warmer *iso* soil temperature regime and a moisture control section that in normal years:

 a. Is moist in some or all parts for fewer than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; *and*

 b. Is dry in some or all parts for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C.

Aridic Paleustolls

IGDI. Other Paleustolls that, when neither irrigated nor fallowed to store moisture, have *either*:
1. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for four-tenths or less of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

2. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years is dry in some or all parts for fewer than 120 cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C.

Udic Paleustolls

IGDJ. Other Paleustolls have a calcic horizon within one of the following particle-size class (by weighted average in the particle-size control section) and depth combinations:

1. Sandy or sandy-skeletal and within 100 cm of the mineral soil surface; or

2. Clayey, clayey-skeletal, fine, or very-fine and within 50 cm of the mineral soil surface; or

3. Any other class and within 60 cm of the mineral soil surface.

Calcic Paleustolls

IGDK. Other Paleustolls that have free carbonates throughout after the surface horizons have been mixed to a depth of 18 cm.

Entic Paleustolls

IGDL. Other Paleustolls.

Typic Paleustolls

Vermustolls

Key to Subgroups

IGFA. Vermustolls that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Vermustolls
IGFB. Other Vermustolls that have, in one or more horizons within 100 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Vermustolls

IGFC. Other Vermustolls that have a mollic epipedon that is 75 cm or more thick.

Pachic Vermustolls

IGFD. Other Vermustolls that have a mollic epipedon that is less than 50 cm thick.

Entic Vermustolls

IGFE. Other Vermustolls.

Typic Vermustolls

Xerolls

Key to Great Groups

IFA. Xerolls that have a duripan within 100 cm of the mineral soil surface.

Durixerolls, p. 655

IFB. Other Xerolls that have a natric horizon.

Natrixerolls, p. 669

IFC. Other Xerolls that have *either*:

1. A petrocalcic horizon within 150 cm of the mineral soil surface; *or*

2. An argillic horizon that has *one or both* of the following:

 a. With increasing depth, no clay decrease of 20 percent or more (relative) from the maximum clay content (noncarbonate clay) within 150 cm of the mineral soil surface (and there is no densic, lithic, or paralithic contact within that depth); *and either*
(1) Hue of 7.5YR or redder and chroma of 5 or more in the matrix; or
(2) Common redox concentrations with hue of 7.5YR or redder or chroma of 6 or more, or both; or

b. 35 percent or more noncarbonate clay in its upper part and, at its upper boundary, a clay increase either of 20 percent or more (absolute) within a vertical distance of 7.5 cm or of 15 percent or more (absolute) within a vertical distance of 2.5 cm, in the fine-earth fraction (and there is no densic, lithic, or paralithic contact within 50 cm of the mineral soil surface).

Palexerolls, p. 670

IFD. Other Xerolls that have both:
1. A calcic or gypsic horizon within 150 cm of the mineral soil surface; *and*
2. In all parts above the calcic or gypsic horizon, after the surface soil has been mixed to a depth of 18 cm, either free carbonates or a texture class of loamy fine sand or coarser.

Calcixerolls, p. 653

IFE. Other Xerolls that have an argillic horizon.

Argixerolls, p. 647

IFF. Other Xerolls.

Haploxerolls, p. 659

Argixerolls

Key to Subgroups

IFEA. Argixerolls that have both:
1. An aridic soil moisture regime; *and*
2. A lithic contact within 50 cm of the mineral soil surface.

Aridic Lithic Argixerolls
IFEB. Other Argixerolls that have both:
1. A lithic contact within 50 cm of the mineral soil surface; and
2. A base saturation (by sum of cations) of 75 percent or less in one or more horizons between either the mineral soil surface or an Ap horizon, whichever is deeper, and the lithic contact.

Lithic Ultic Argixerolls

IFEC. Other Argixerolls that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Argixerolls

IFED. Other Argixerolls that have both:
1. An aridic soil moisture regime; and
2. One or both of the following:
 a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
 b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Torrertic Argixerolls

IFEE. Other Argixerolls that have one or both of the following:
1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Argixerolls

IFEF. Other Argixerolls that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Argixerolls

IFEG. Other Argixerolls that have both:

1. An aridic soil moisture regime; and
2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:
 a. More than 5 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
 b. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 (1) In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 (2) $[(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60]$ plus the volcanic glass (percent) is equal to 30 or more.

Vitritorrandic Argixerolls

IFEH. Other Argixerolls that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:
1. More than 5 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
 b. \([\text{Al plus } \frac{1}{2} \text{Fe, percent extracted by ammonium oxalate}] \times 60\) plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Argixerolls

IFEI. Other Argixerolls that have both:
1. In one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); and
2. A base saturation (by sum of cations) of 75 percent or less in one or more horizons between either an Ap horizon or a depth of 25 cm from the mineral soil surface, whichever is deeper, and either a depth of 75 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Aquultic Argixerolls

IFEJ. Other Argixerolls that have, in one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Argixerolls

IFEK. Other Argixerolls that in normal years are saturated with water in one or more layers within 100 cm of the mineral soil surface for either or both:
1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Argixerolls

IFEL. Other Argixerolls that have *either*:

1. Above the argillic horizon, an albic horizon or a horizon that has color values too high for a mollic epipedon and chroma too high for an albic horizon; *or*

2. A glossic horizon, *or* interfingerling of albic materials into the upper part of the argillic horizon, *or* skeletans of clean silt and sand covering 50 percent or more of the faces of peds in the upper 5 cm of the argillic horizon.

Alfic Argixerolls

IFEM. Other Argixerolls that have *both*:

1. A calcic horizon or identifiable secondary carbonates within one of the following particle-size class (by weighted average in the particle-size control section) and depth combinations:
 a. Sandy or sandy-skeletal and within 150 cm of the mineral soil surface; *or*
 b. Clayey, clayey-skeletal, fine, or very-fine and within 90 cm of the mineral soil surface; *or*
 c. Any other class and within 110 cm of the mineral soil surface; *and*

2. A mollic epipedon that is 50 cm or more thick and has a texture class finer than loamy fine sand.

Calcic Pachic Argixerolls

IFEN. Other Argixerolls that have *both*:

1. A mollic epipedon that is 50 cm or more thick and has a texture class finer than loamy fine sand; *and*

2. A base saturation (by sum of cations) of 75 percent or less in one or more horizons between either an Ap horizon or a depth of 25 cm from the mineral soil surface, whichever
is deeper, and either a depth of 75 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Pachic Ultic Argixerolls

IFEO. Other Argixerolls that have a mollic epipedon that is 50 cm or more thick and has a texture class finer than loamy fine sand.

Pachic Argixerolls

IFEP. Other Argixerolls that have both:

1. An aridic soil moisture regime; and
2. A horizon within 100 cm of the mineral soil surface that is 15 cm or more thick and either has 20 percent or more (by volume) durinodes or is brittle and has at least a firm rupture-resistance class when moist.

Argiduridic Argixerolls

IFEQ. Other Argixerolls that have a horizon within 100 cm of the mineral soil surface that is 15 cm or more thick and either has 20 percent or more (by volume) durinodes or is brittle and has at least a firm rupture-resistance class when moist.

Duric Argixerolls

IFER. Other Argixerolls that have both:

1. An aridic soil moisture regime; and
2. A calcic horizon or identifiable secondary carbonates within one of the following particle-size class (by weighted average in the particle-size control section) and depth combinations:
 a. Sandy or sandy-skeletal and within 150 cm of the mineral soil surface; or
 b. Clayey, clayey-skeletal, fine, or very-fine and within 90 cm of the mineral soil surface; or
c. Any other class and within 110 cm of the mineral soil surface.

Calciargidic Argixerolls

IFES. Other Argixerolls that have an aridic soil moisture regime.

Aridic Argixerolls

IFET. Other Argixerolls that have a calcic horizon or identifiable secondary carbonates within one of the following particle-size class (by weighted average in the particle-size control section) and depth combinations:

1. Sandy or sandy-skeletal and within 150 cm of the mineral soil surface; or
2. Clayey, clayey-skeletal, fine, or very-fine and within 90 cm of the mineral soil surface; or
3. Any other class and within 110 cm of the mineral soil surface.

Calcic Argixerolls

IFEU. Other Argixerolls that have a base saturation (by sum of cations) of 75 percent or less in one or more horizons between either an Ap horizon or a depth of 25 cm from the mineral soil surface, whichever is deeper, and either a depth of 75 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Ultic Argixerolls

IFEV. Other Argixerolls.

Typic Argixerolls

Calcixerolls

Key to Subgroups

IFDA. Calcixerolls that have both:

1. An aridic soil moisture regime; and
2. A lithic contact within 50 cm of the mineral soil surface. **Aridic Lithic Calcixerolls**

IFDB. Other Calcixerolls that have a lithic contact within 50 cm of the mineral soil surface. **Lithic Calcixerolls**

IFDC. Other Calcixerolls that have *one or both* of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; *or*

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower. **Vertic Calcixerolls**

IFDD. Other Calcixerolls that have, in one or more horizons within 75 cm of the mineral soil surface, redox concentrations and also aquic conditions for some time in normal years (or artificial drainage). **Aquic Calcixerolls**

IFDE. Other Calcixerolls that in normal years are saturated with water in one or more layers within 100 cm of the mineral soil surface for *either or both*:

1. 20 or more consecutive days; *or*

2. 30 or more cumulative days. **Oxyaquic Calcixerolls**

IFDF. Other Calcixerolls that have a mollic epipedon that is 50 cm or more thick and has a texture class finer than loamy fine sand. **Pachic Calcixerolls**
IFDG. Other Calcixerolls that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, *one or both* of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; *or*

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter, of which 5 percent or more is volcanic glass, and \[\left(\text{Al plus } \frac{1}{2}\text{ Fe, percent extracted by ammonium oxalate}\right) \times 60\] plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Calcixerolls

IFDH. Other Calcixerolls that have an aridic soil moisture regime.

Aridic Calcixerolls

IFDI. Other Calcixerolls that have a mollic epipedon that has, below any Ap horizon, 50 percent or more (by volume) wormholes, wormcasts, or filled animal burrows.

Vermic Calcixerolls

IFDJ. Other Calcixerolls.

Typic Calcixerolls

Durixerolls

Key to Subgroups

IFAA. Durixerolls that have *one or both* of the following:

1. Cracks between the soil surface and the top of the duripan that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that is above the duripan; *or*
2. A linear extensibility of 6.0 cm or more between the soil surface and the top of the duripan.

Vertic Durixerolls

IFAB. Other Durixerolls that have both:

1. An aridic soil moisture regime; and

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:

 a. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

 b. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and

 (1) In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and

 (2) \[(Al \text{ plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}) \times 60\] plus the volcanic glass (percent) is equal to 30 or more.

Vitritorrandic Durixerolls

IFAC. Other Durixerolls that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or both of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and

 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and

 b. \[(Al \text{ plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate})\]
times 60] plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Durixerolls

IFAD. Other Durixerolls that have, in one or more horizons above the duripan, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Durixerolls

IFAE. Other Durixerolls that have *all* of the following:
1. An aridic soil moisture regime; *and*
2. An argillic horizon that, with increasing depth, has a clay increase either of 20 percent or more (absolute) within a vertical distance of 7.5 cm or of 15 percent or more (absolute) within a vertical distance of 2.5 cm; *and*
3. A duripan that is neither very strongly cemented nor indurated in any subhorizon.

Paleargidic Durixerolls

IFAF. Other Durixerolls that have *both*:
1. An aridic soil moisture regime; *and*
2. An argillic horizon that, with increasing depth, has a clay increase either of 20 percent or more (absolute) within a vertical distance of 7.5 cm or of 15 percent or more (absolute) within a vertical distance of 2.5 cm.

Abruptic Argiduridic Durixerolls

IFAG. Other Durixerolls that:
1. Have an aridic soil moisture regime; *and*
2. Do not have an argillic horizon above the duripan; *and*
3. Have a duripan that is neither very strongly cemented nor indurated in any subhorizon.

Cambidic Durixerolls
IFAH. Other Durixerolls that:
1. Have an aridic soil moisture regime; and
2. Do not have an argillic horizon above the duripan.
 Haploduridic Durixerolls

IFAI. Other Durixerolls that have both:
1. An aridic soil moisture regime; and
2. A duripan that is neither very strongly cemented nor indurated in any subhorizon.
 Argidic Durixerolls

IFAJ. Other Durixerolls that have an aridic soil moisture regime.
 Argiduridic Durixerolls

IFAK. Other Durixerolls that have both:
1. An argillic horizon that, with increasing depth, has a clay increase either of 20 percent or more (absolute) within a vertical distance of 7.5 cm or of 15 percent or more (absolute) within a vertical distance of 2.5 cm; and
2. A duripan that is neither very strongly cemented nor indurated in any subhorizon.
 Haplic Palexerollic Durixerolls

IFAL. Other Durixerolls that have an argillic horizon that, with increasing depth, has a clay increase either of 20 percent or more (absolute) within a vertical distance of 7.5 cm or of 15 percent or more (absolute) within a vertical distance of 2.5 cm.
 Palexerollic Durixerolls

IFAM. Other Durixerolls that:
1. Have a duripan that is neither very strongly cemented nor indurated in any subhorizon; and
2. Do not have an argillic horizon above the duripan.
 Haplic Haploxerollic Durixerolls
IFAN. Other Durixerolls that do not have an argillic horizon above the duripan.

Haploxerollic Durixerolls

IFAO. Other Durixerolls that have a duripan that is neither very strongly cemented nor indurated in any subhorizon.

Haplic Durixerolls

IFAP. Other Durixerolls.

Typic Durixerolls

Haploxerolls

Key to Subgroups

IFFA. Haploxerolls that have *both*:

1. An aridic soil moisture regime; *and*
2. A lithic contact within 50 cm of the mineral soil surface.

Aridic Lithic Haploxerolls

IFFB. Other Haploxerolls that have *both*:

1. A lithic contact within 50 cm of the mineral soil surface; *and*
2. A base saturation (by sum of cations) of 75 percent or less in one or more horizons between either the mineral soil surface or an Ap horizon, whichever is deeper, and the lithic contact.

Lithic Ultic Haploxerolls

IFFC. Other Haploxerolls that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Haploxerolls

IFFD. Other Haploxerolls that have *both*:

1. An aridic soil moisture regime; *and*
2. *One or both* of the following:
a. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

b. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Torrertic Haploxerolls

IFFE. Other Haploxerolls that have *one or both* of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Haploxerolls

IFFF. Other Haploxerolls that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus \(\frac{1}{2} \) Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Haploxerolls

IFFG. Other Haploxerolls that have *both*:

1. An aridic soil moisture regime; and

2. Throughout one or more horizons with a total thickness
of 18 cm or more within 75 cm of the mineral soil surface, *one or both* of the following:

a. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; *or*

b. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; *and*

(1) In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; *and*

(2) \[(Al + \frac{1}{2} Fe, \text{ percent extracted by ammonium oxalate}) \times 60\] plus the volcanic glass (percent) is equal to 30 or more.

Vitritorrandic Haploxerolls

IFFH. Other Haploxerolls that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, *one or both* of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; *or*

2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; *and*

 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; *and*

 b. \[(Al + \frac{1}{2} Fe, \text{ percent extracted by ammonium oxalate}) \times 60\] plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Haploxerolls

IFFI. Other Haploxerolls that have *all* of the following:

1. A mollic epipedon that is 50 cm or more thick and has a texture class finer than loamy fine sand; *and*

2. *One or both* of the following:
a. An organic-carbon content (Holocene age) of 0.3 percent or more at a depth of 125 cm below the mineral soil surface; or

b. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower; and

3. A slope of less than 25 percent; and

4. In one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Cumulic Haploxerolls

IFFJ. Other Haploxerolls that have all of the following:

1. A mollic epipedon that is 50 cm or more thick and has a texture class finer than loamy fine sand; and

2. One or both of the following:

 a. An organic-carbon content (Holocene age) of 0.3 percent or more at a depth of 125 cm below the mineral soil surface; or

 b. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower; and

3. A slope of less than 25 percent; and

4. A base saturation (by sum of cations) of 75 percent or less in one or more horizons between either an Ap horizon or a depth of 25 cm from the mineral soil surface, whichever is deeper, and either a depth of 75 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Cumulic Ultic Haploxerolls
IFFK. Other Haploxerolls that have all of the following:
 1. A mollic epipedon that is 50 cm or more thick and has a texture class finer than loamy fine sand; and
 2. One or both of the following:
 a. An organic-carbon content (Holocene age) of 0.3 percent or more at a depth of 125 cm below the mineral soil surface; or
 b. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower; and
 3. A slope of less than 25 percent.

Cumulic Haploxerolls

IFFL. Other Haploxerolls that have both:
 1. In one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); and
 2. A slope of less than 25 percent and one or both of the following:
 a. An organic-carbon content (Holocene age) of 0.3 percent or more in all horizons within 125 cm of the mineral soil surface; or
 b. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluvaquentic Haploxerolls

IFFM. Other Haploxerolls that have both:
 1. In one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also
aquic conditions for some time in normal years (or artificial drainage); and
2. A horizon, 15 cm or more thick within 100 cm of the mineral soil surface, that either has 20 percent or more (by volume) durinodes or is brittle and has at least a firm rupture-resistance class when moist.

Aquic Duric Haploxerolls

IFFN. Other Haploxerolls that have both:
1. In one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); and
2. A base saturation (by sum of cations) of 75 percent or less in one or more horizons between either an Ap horizon or a depth of 25 cm from the mineral soil surface, whichever is deeper, and either a depth of 75 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Aquultic Haploxerolls

IFFO. Other Haploxerolls that have, in one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Haploxerolls

IFFP. Other Haploxerolls that in normal years are saturated with water in one or more layers within 100 cm of the mineral soil surface for either or both:
1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Haploxerolls

IFFQ. Other Haploxerolls that have both:
1. A mollic epipedon that is 50 cm or more thick and has a texture class finer than loamy fine sand; and

2. A calcic horizon or identifiable secondary carbonates within one of the following particle-size class (by weighted average in the particle-size control section) and depth combinations:
 a. Sandy or sandy-skeletal and within 150 cm of the mineral soil surface; or
 b. Clayey, clayey-skeletal, fine, or very-fine and within 90 cm of the mineral soil surface; or
 c. Any other class and within 110 cm of the mineral soil surface.

Calcic Pachic Haploxerolls

IFFR. Other Haploxerolls that have both:

1. A mollic epipedon that is 50 cm or more thick and has a texture class finer than loamy fine sand; and

2. A base saturation (by sum of cations) of 75 percent or less in one or more horizons between either an Ap horizon or a depth of 25 cm from the mineral soil surface, whichever is deeper, and either a depth of 75 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Pachic Ultic Haploxerolls

IFFS. Other Haploxerolls that have a mollic epipedon that is 50 cm or more thick and has a texture class finer than loamy fine sand.

Pachic Haploxerolls

IFFT. Other Haploxerolls that have all of the following:

1. An aridic soil moisture regime; and

2. A slope of less than 25 percent; and

3. One or both of the following:
a. An organic-carbon content (Holocene age) of 0.3 percent or more in all horizons within 125 cm of the mineral soil surface; or

b. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Torrifluventic Haploxerolls

IFFU. Other Haploxerolls that have both:

1. An aridic soil moisture regime; and

2. A horizon within 100 cm of the mineral soil surface that is 15 cm or more thick and either has 20 percent or more (by volume) durinodes or is brittle and has at least a firm rupture-resistance class when moist.

Duridic Haploxerolls

IFFV. Other Haploxerolls that have both:

1. An aridic soil moisture regime; and

2. A calcic horizon or identifiable secondary carbonates within one of the following particle-size class (by weighted average in the particle-size control section) and depth combinations:
 a. Sandy or sandy-skeletal and within 150 cm of the mineral soil surface; or
 b. Clayey, clayey-skeletal, fine, or very-fine and within 90 cm of the mineral soil surface; or
 c. Any other class and within 110 cm of the mineral soil surface.

Calcidic Haploxerolls

IFFW. Other Haploxerolls that have both:

1. An aridic soil moisture regime; and
2. A sandy particle-size class in all horizons within 100 cm of the mineral soil surface.

Torripsammentic Haploxerolls

IFFX. Other Haploxerolls that:

1. Have an aridic soil moisture regime; *and*
2. *Either:*

a. Do not have a cambic horizon and do not, in any part of the mollic epipedon below 25 cm from the mineral soil surface, meet the requirements for a cambic horizon, except for the color requirements; *or*

b. Have free carbonates throughout the cambic horizon or in all parts of the mollic epipedon below a depth of 25 cm from the mineral soil surface.

Torriorthententc Haploxerolls

IFFY. Other Haploxerolls that have an aridic soil moisture regime.

Aridic Haploxerolls

IFFZ. Other Haploxerolls that have a horizon within 100 cm of the mineral soil surface that is 15 cm or more thick and either has 20 percent or more (by volume) durinodes or is brittle and has at least a firm rupture-resistance class when moist.

Duric Haploxerolls

IFFZa. Other Haploxerolls that have a sandy particle-size class in all horizons within 100 cm of the mineral soil surface.

Psammentic Haploxerolls

IFFZb. Other Haploxerolls that have a slope of less than 25 percent and *one or both* of the following:

1. An organic-carbon content (Holocene age) of 0.3 percent or more in all horizons within 125 cm of the mineral soil surface; *or*
2. An irregular decrease in organic-carbon content (Holocene age) between a depth of 25 cm and either a depth of 125 cm below the mineral soil surface or a densic, lithic, or paralithic contact, whichever is shallower.

Fluventic Haploxerolls

IFFZc. Other Haploxerolls that have a mollic epipedon that has granular structure and that has, below any Ap horizon, 50 percent or more (by volume) wormholes, wormcasts, or filled animal burrows.

Vermic Haploxerolls

IFFZd. Other Haploxerolls that have a calcic horizon or identifiable secondary carbonates within one of the following particle-size class (by weighted average in the particle-size control section) and depth combinations:

1. Sandy or sandy-skeletal and within 150 cm of the mineral soil surface; or
2. Clayey, clayey-skeletal, fine, or very-fine and within 90 cm of the mineral soil surface; or
3. Any other class and within 110 cm of the mineral soil surface.

Calcic Haploxerolls

IFFZe. Other Haploxerolls that:

1. Do not have a cambic horizon and do not, in the lower part of the mollic epipedon, meet the requirements for a cambic horizon, except for the color requirements; and
2. Have a base saturation (by sum of cations) of 75 percent or less in one or more horizons between either an Ap horizon or a depth of 25 cm from the mineral soil surface, whichever is deeper, and either a depth of 75 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Entic Ultic Haploxerolls
IFFZf. Other Haploxerolls that have a base saturation (by sum of cations) of 75 percent or less in one or more horizons between either an Ap horizon or a depth of 25 cm from the mineral soil surface, whichever is deeper, and either a depth of 75 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Ultic Haploxerolls

IFFZg. Other Haploxerolls that *either*:

1. Do not have a cambic horizon and do not, in any part of the mollic epipedon below 25 cm from the mineral soil surface, meet the requirements for a cambic horizon, except for the color requirements; *or*

2. Have free carbonates throughout the cambic horizon or in all parts of the mollic epipedon below a depth of 25 cm from the mineral soil surface.

Entic Haploxerolls

IFFZh. Other Haploxerolls.

Typic Haploxerolls

Natrixerolls

Key to Subgroups

IFBA. Natrixerolls that have *one or both* of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; *or*

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Natrixerolls
IFBB. Other Natrixerolls that have both:

1. In one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); and

2. A horizon, 15 cm or more thick within 100 cm of the mineral soil surface, that either has 20 percent or more (by volume) durinodes or is brittle and has at least a firm rupture-resistance class when moist.

Aquic Duric Natrixerolls

IFBC. Other Natrixerolls that have, in one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Natrixerolls

IFBD. Other Natrixerolls that have an aridic soil moisture regime.

Aridic Natrixerolls

IFBE. Other Natrixerolls that have a horizon within 100 cm of the mineral soil surface that is 15 cm or more thick and either has 20 percent or more (by volume) durinodes or is brittle and has at least a firm rupture-resistance class when moist.

Duric Natrixerolls

IFBF. Other Natrixerolls.

Typic Natrixerolls

Palexerolls

Key to Subgroups

IFCA. Palexerolls that have one or both of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-
shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or
2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Palexerolls

IFCB. Other Palexerolls that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, *one or both* of the following:

1. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; *or*
2. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; *and*
 a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; *and*
 b.

 \[\text{[(Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate) times 60]} \]

 plus the volcanic glass (percent) is equal to 30 or more.

Vitrandic Palexerolls

IFCC. Other Palexerolls that have, in one or more horizons within 75 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Palexerolls

IFCD. Other Palexerolls that have a mollic epipedon that is 50 cm or more thick and has a texture class finer than loamy fine sand.

Pachic Palexerolls

IFCE. Other Palexerolls that have *both*:

1. An aridic soil moisture regime; *and*
2. A petrocalcic horizon within 150 cm of the mineral soil surface.

Petrocalcic Palexerolls

IFCF. Other Palexerolls that have a horizon, 15 cm or more thick within 100 cm of the mineral soil surface, that either has 20 percent or more (by volume) durinodes or is brittle and has at least a firm rupture-resistance class when moist.

Duric Palexerolls

IFCG. Other Palexerolls that have an aridic soil moisture regime.

Aridic Palexerolls

IFCH. Other Palexerolls that have a petrocalcic horizon within 150 cm of the mineral soil surface.

Petrocalcic Palexerolls

IFCI. Other Palexerolls that have a base saturation (by sum of cations) of 75 percent or less in one or more subhorizons either within the argillic horizon if more than 50 cm thick or within its upper 50 cm.

Ultic Palexerolls

IFCJ. Other Palexerolls that have an argillic horizon that has either:

1. Less than 35 percent clay in the upper part; or
2. At its upper boundary, a clay increase that is both less than 20 percent (absolute) within a vertical distance of 7.5 cm and less than 15 percent (absolute) within a vertical distance of 2.5 cm, in the fine-earth fraction.

Haplic Palexerolls

IFCK. Other Palexerolls.

Typic Palexerolls
CHAPTER 13

Oxisols

Key to Suborders

EA. Oxisols that have aquatic conditions for some time in normal years (or artificial drainage) in one or more horizons within 50 cm of the mineral soil surface and have one or more of the following:

1. A histic epipedon; or

2. An epipedon with a color value, moist, of 3 or less and, directly below it, a horizon with chroma of 2 or less; or

3. Distinct or prominent redox concentrations within 50 cm of the mineral soil surface, an epipedon, and, directly below it, a horizon with one or both of the following:
 a. 50 percent or more hue of 2.5Y or yellower; or
 b. Chroma of 3 or less; or

4. Within 50 cm of the mineral soil surface, enough active ferrous iron to give a positive reaction to alpha,alpha-dipyridyl at a time when the soil is not being irrigated.

 Aquox, p. 674

EB. Other Oxisols that have an aridic soil moisture regime.

 Torrox, p. 688

EC. Other Oxisols that have an ustic or xeric soil moisture regime.

 Ustox, p. 701

ED. Other Oxisols that have a perudic soil moisture regime.

 Perox, p. 676

EE. Other Oxisols.

 Udox, p. 689
Aquox

Key to Great Groups

EAA. Aquox that have, in one or more subhorizons of an oxic or kandic horizon within 150 cm of the mineral soil surface, an apparent ECEC of less than 1.50 cmol(+) per kg clay and a pH value (1N KCl) of 5.0 or more.

Acraquox, p. 674

EAB. Other Aquox that have plinthite forming a continuous phase within 125 cm of the mineral soil surface.

Plinthaquox, p. 676

EAC. Other Aquox that have a base saturation (by NH$_4$OAc) of 35 percent or more in all horizons within 125 cm of the mineral soil surface.

Eutraquox, p. 675

EAD. Other Aquox.

Haplaquox, p. 675

Acraquox

Key to Subgroups

EAAA. Acraquox that have 5 percent or more (by volume) plinthite in one or more horizons within 125 cm of the mineral soil surface.

Plinthic Acraquox

EAAB. Other Acraquox that have, directly below an epipedon, a horizon 10 cm or more thick that has 50 percent or more chroma of 3 or more.

Aeric Acraquox

EAAC. Other Acraquox.

Typic Acraquox
Eutraquox

Key to Subgroups

EACA. Eutraquox that have a histic epipedon.
Histic Eutraquox

EACB. Other Eutraquox that have 5 percent or more (by volume) plinthite in one or more horizons within 125 cm of the mineral soil surface.
Plinthic Eutraquox

EACC. Other Eutraquox that have, directly below an epipedon, a horizon 10 cm or more thick that has 50 percent or more chroma of 3 or more.
Aeric Eutraquox

EACD. Other Eutraquox that have 16 kg/m2 or more organic carbon between the mineral soil surface and a depth of 100 cm.
Humic Eutraquox

EACE. Other Eutraquox.
Typic Eutraquox

Haplaquox

Key to Subgroups

EADA. Haplaquox that have a histic epipedon.
Histic Haplaquox

EADB. Other Haplaquox that have 5 percent or more (by volume) plinthite in one or more horizons within 125 cm of the mineral soil surface.
Plinthic Haplaquox

EADC. Other Haplaquox that have, directly below an epipedon, a horizon 10 cm or more thick that has 50 percent or more chroma of 3 or more.
Aeric Haplaquox
EADD. Other Haplaquox that have 16 kg/m² or more organic carbon between the mineral soil surface and a depth of 100 cm.

Humic Haplaquox

EADE. Other Haplaquox.

Typic Haplaquox

Plinthaquox

Key to Subgroups

EABA. Plinthaquox that have, directly below an epipedon, a horizon 10 cm or more thick that has 50 percent or more chroma of 3 or more.

Aeric Plinthaquox

EABB. Other Plinthaquox.

Typic Plinthaquox

Perox

Key to Great Groups

EDA. Perox that have a sombric horizon within 150 cm of the mineral soil surface.

Sombriperox, p. 687

EDB. Other Perox that have, in one or more subhorizons of an oxic or kandic horizon within 150 cm of the mineral soil surface, an apparent ECEC of less than 1.50 cmol(+) per kg clay and a pH value (1N KCl) of 5.0 or more.

Acroperox, p. 677

EDC. Other Perox that have a base saturation (by NH₄OAc) of 35 percent or more in all horizons within 125 cm of the mineral soil surface.

Eutroperox, p. 679
EDD. Other Perox that have a kandic horizon within 150 cm of the mineral soil surface.

Kandiperox, p. 685

EDE. Other Perox.

Haploperox, p. 682

Acroperox

Key to Subgroups

EDBA. Acroperox that have, within 125 cm of the mineral soil surface, *both*:

1. A petroferric contact; *and*
2. Redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Petroferric Acroperox

EDBB. Other Acroperox that have a petroferric contact within 125 cm of the mineral soil surface.

Petroferric Acroperox

EDBC. Other Acroperox that have, within 125 cm of the mineral soil surface, *both*:

1. A lithic contact; *and*
2. Redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Lithic Acroperox

EDBD. Other Acroperox that have a lithic contact within 125 cm of the mineral soil surface.

Lithic Acroperox

EDBE. Other Acroperox that have a delta pH (KCl pH minus
1:1 water pH) with a 0 or net positive charge in a layer 18 cm or more thick within 125 cm of the mineral soil surface.

Anionic Acroperox

EDBF. Other Acroperox that have 5 percent or more (by volume) plinthite in one or more horizons within 125 cm of the mineral soil surface.

Plinthic Acroperox

EDBG. Other Acroperox that have, in one or more horizons within 125 cm of the mineral soil surface, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Acroperox

EDBH. Other Acroperox that have both:

1. 16 kg/m² or more organic carbon between the mineral soil surface and a depth of 100 cm; *and*

2. In all horizons at a depth between 25 and 125 cm from the mineral soil surface, more than 50 percent colors that have both of the following:
 a. Hue of 2.5YR or redder; *and*
 b. A value, moist, of 3 or less.

Humic Rhodic Acroperox

EBDI. Other Acroperox that have both:

1. 16 kg/m² or more organic carbon between the mineral soil surface and a depth of 100 cm; *and*

2. 50 percent or more hue of 7.5YR or yellower and a color value, moist, of 6 or more at a depth between 25 and 125 cm from the mineral soil surface.

Humic Xanthic Acroperox

EDBJ. Other Acroperox that have 16 kg/m² or more organic
carbon between the mineral soil surface and a depth of 100 cm.

Humic Acroperox

EDBK. Other Acroperox that have, in all horizons at a depth between 25 and 125 cm from the mineral soil surface, more than 50 percent colors that have both of the following:

1. Hue of 2.5YR or redder; and
2. A value, moist, of 3 or less.

Rhodic Acroperox

EDBL. Other Acroperox that have 50 percent or more hue of 7.5YR or yellower and a color value, moist, of 6 or more at a depth between 25 and 125 cm from the mineral soil surface.

Xanthic Acroperox

EDBM. Other Acroperox.

Typic Acroperox

Eutroperox

Key to Subgroups

EDCA. Eutroperox that have, within 125 cm of the mineral soil surface, both:

1. A petroferric contact; and
2. Redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Petroferric Eutroperox

EDCB. Other Eutroperox that have a petroferric contact within 125 cm of the mineral soil surface.

Petroferric Eutroperox

EDCC. Other Eutroperox that have, within 125 cm of the mineral soil surface, both:
1. A lithic contact; and
2. Redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Lithic Eutroperox

EDCD. Other Eutroperox that have a lithic contact within 125 cm of the mineral soil surface.

Lithic Eutroperox

EDCE. Other Eutroperox that have, in one or more horizons within 125 cm of the mineral soil surface, both:

1. 5 percent or more (by volume) plinthite; and
2. Redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Plinthaquic Eutroperox

EDCF. Other Eutroperox that have 5 percent or more (by volume) plinthite in one or more horizons within 125 cm of the mineral soil surface.

Plinthic Eutroperox

EDCG. Other Eutroperox that have, in one or more horizons within 125 cm of the mineral soil surface, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Eutroperox

EDCH. Other Eutroperox that have a kandic horizon within 150 cm of the mineral soil surface.

Kandiudalfic Eutroperox

EDCI. Other Eutroperox that have both:
1. 16 kg/m² or more organic carbon between the mineral soil surface and a depth of 100 cm; and
2. An oxic horizon that has its lower boundary within 125 cm of the mineral soil surface.

Humic Inceptic Eutroperox

EDCJ. Other Eutroperox that have an oxic horizon that has its lower boundary within 125 cm of the mineral soil surface.

Inceptic Eutroperox

EDCK. Other Eutroperox that have both:
1. 16 kg/m² or more organic carbon between the mineral soil surface and a depth of 100 cm; and
2. In all horizons at a depth between 25 and 125 cm from the mineral soil surface, more than 50 percent colors that have both of the following:
 a. Hue of 2.5YR or redder; and
 b. A value, moist, of 3 or less.

Humic Rhodic Eutroperox

EDCL. Other Eutroperox that have both:
1. 16 kg/m² or more organic carbon between the mineral soil surface and a depth of 100 cm; and
2. 50 percent or more hue of 7.5YR or yellower and a color value, moist, of 6 or more at a depth between 25 and 125 cm from the mineral soil surface.

Humic Xanthic Eutroperox

EDCM. Other Eutroperox that have 16 kg/m² or more organic carbon between the mineral soil surface and a depth of 100 cm.

Humic Eutroperox

EDCN. Other Eutroperox that have, in all horizons at a depth between 25 and 125 cm from the mineral soil surface, more than 50 percent colors that have both of the following:
1. Hue of 2.5YR or redder; and
2. A value, moist, of 3 or less.

Rhodic Eutroperox

EDCO. Other Eutroperox that have 50 percent or more hue of 7.5YR or yellower and a color value, moist, of 6 or more at a depth between 25 and 125 cm from the mineral soil surface.

Xanthic Eutroperox

EDCP. Other Eutroperox.

Typic Eutroperox

Haploperox

Key to Subgroups

EDEA. Haploperox that have, within 125 cm of the mineral soil surface, both:

1. A petroferric contact; and
2. Redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Petroferric Haploperox

EDEB. Other Haploperox that have a petroferric contact within 125 cm of the mineral soil surface.

Petroferric Haploperox

EDEC. Other Haploperox that have, within 125 cm of the mineral soil surface, both:

1. A lithic contact; and
2. Redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Lithic Haploperox
EDED. Other Haploperox that have a lithic contact within 125 cm of the mineral soil surface.

Lithic Haploperox

EDEE. Other Haploperox that have, in one or more horizons within 125 cm of the mineral soil surface, *both*:

1. 5 percent or more (by volume) plinthite; *and*
2. Redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Plinthaquic Haploperox

EDEF. Other Haploperox that have 5 percent or more (by volume) plinthite in one or more horizons within 125 cm of the mineral soil surface.

Plinthic Haploperox

EDEG. Other Haploperox that have, in one or more horizons within 125 cm of the mineral soil surface, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Haploperox

EDEH. Other Haploperox that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Haploperox

EDEI. Other Haploperox that have *both*:

1. 16 kg/m2 or more organic carbon between the mineral soil surface and a depth of 100 cm; *and*
2. In all horizons at a depth between 25 and 125 cm from the mineral soil surface, more than 50 percent colors that have both of the following:
 a. Hue of 2.5YR or redder; and
 b. A value, moist, of 3 or less.

 Humic Rhodic Haploperox

 EDEJ. Other Haploperox that have both:
 1. 16 kg/m² or more organic carbon between the mineral soil surface and a depth of 100 cm; and
 2. 50 percent or more hue of 7.5YR or yellower and a color value, moist, of 6 or more at a depth between 25 and 125 cm from the mineral soil surface.

 Humic Xanthic Haploperox

 EDEK. Other Haploperox that have 16 kg/m² or more organic carbon between the mineral soil surface and a depth of 100 cm.

 Humic Haploperox

 EDEL. Other Haploperox that have, in all horizons at a depth between 25 and 125 cm from the mineral soil surface, more than 50 percent colors that have both of the following:
 1. Hue of 2.5YR or redder; and
 2. A value, moist, of 3 or less.

 Rhodic Haploperox

 EDEM. Other Haploperox that have 50 percent or more hue of 7.5YR or yellower and a color value, moist, of 6 or more at a depth between 25 and 125 cm from the mineral soil surface.

 Xanthic Haploperox

 EDEN. Other Haploperox.

 Typic Haploperox
Kandiperox

Key to Subgroups

EDDA. Kandiperox that have, within 125 cm of the mineral soil surface, *both*:

1. A petroferric contact; *and*
2. Redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

 Aquic Petroferric Kandiperox

EDDB. Other Kandiperox that have a petroferric contact within 125 cm of the mineral soil surface.

 Petroferric Kandiperox

EDDC. Other Kandiperox that have, within 125 cm of the mineral soil surface, *both*:

1. A lithic contact; *and*
2. Redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

 Aquic Lithic Kandiperox

EDDD. Other Kandiperox that have a lithic contact within 125 cm of the mineral soil surface.

 Lithic Kandiperox

EDDE. Other Kandiperox that have, in one or more horizons within 125 cm of the mineral soil surface, *both*:

1. 5 percent or more (by volume) plinthite; *and*
2. Redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

 Plinthaquic Kandiperox
EDDF. Other Kandiperox that have 5 percent or more (by volume) plinthite in one or more horizons within 125 cm of the mineral soil surface.

Plinthic Kandiperox

EDDG. Other Kandiperox that have, in one or more horizons within 125 cm of the mineral soil surface, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Kandiperox

EDDH. Other Kandiperox that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Kandiperox

EDDI. Other Kandiperox that have *both*:

1. 16 kg/m2 or more organic carbon between the mineral soil surface and a depth of 100 cm; *and*
2. In all horizons at a depth between 25 and 125 cm from the mineral soil surface, more than 50 percent colors that have *both* of the following:
 a. Hue of 2.5YR or redder; *and*
 b. A value, moist, of 3 or less.

Humic Rhodic Kandiperox

EDDJ. Other Kandiperox that have *both*:

1. 16 kg/m2 or more organic carbon between the mineral soil surface and a depth of 100 cm; *and*
2. 50 percent or more hue of 7.5YR or yellower and a color
value, moist, of 6 or more at a depth between 5 and 15 cm from the mineral soil surface.

Humic Xanthic Kandiperox

EDDK. Other Kandiperox that have 16 kg/m² or more organic carbon between the mineral soil surface and a depth of 100 cm.

Humic Kandiperox

EDDL. Other Kandiperox that have, in all horizons at a depth between 25 and 125 cm from the mineral soil surface, more than 50 percent colors that have both of the following:

1. Hue of 2.5YR or redder; and
2. A value, moist, of 3 or less.

Rhodic Kandiperox

EDDM. Other Kandiperox that have 50 percent or more hue of 7.5YR or yellower and a color value, moist, of 6 or more at a depth between 25 and 125 cm from the mineral soil surface.

Xanthic Kandiperox

EDDN. Other Kandiperox.

Typic Kandiperox

Sombriperox

Key to Subgroups

EDAA. Sombriperox that have a petroferric contact within 125 cm of the mineral soil surface.

Petroferric Sombriperox

EDAB. Other Sombriperox that have a lithic contact within 125 cm of the mineral soil surface.

Lithic Sombriperox

EDAC. Other Sombriperox that have 16 kg/m² or more organic carbon between the mineral soil surface and a depth of 100 cm.

Humic Sombriperox
EDAD. Other Sombriperox.

Typic Sombriperox

Torrox

Key to Great Groups

EBA. Torrox that have, in one or more subhorizons of an oxic or kandic horizon within 150 cm of the mineral soil surface, an apparent ECEC of less than 1.50 cmol(+) per kg clay and a pH value (1N KCl) of 5.0 or more.

Acrotorrox, p. 688

EBB. Other Torrox that have a base saturation (by NH$_4$OAc) of 35 percent or more in all horizons within 125 cm of the mineral soil surface.

Eutrotorrox, p. 688

EBC. Other Torrox.

Haplotorrox, p. 689

Acrotorrox

Key to Subgroups

EBAA. Acrotorrox that have a petroferric contact within 125 cm of the mineral soil surface.

Petroferric Acrotorrox

EBAB. Other Acrotorrox that have a lithic contact within 125 cm of the mineral soil surface.

Lithic Acrotorrox

EBAC. Other Acrotorrox.

Typic Acrotorrox

Eutrotorrox

Key to Subgroups

EBBA. Eutrotorrox that have a petroferric contact within 125 cm of the mineral soil surface.

Petroferric Eutrotorrox
EBBB. Other Eutrotorrox that have a lithic contact within 125 cm of the mineral soil surface. **Lithic Eutrotorrox**

EBBC. Other Eutrotorrox. **Typic Eutrotorrox**

Haplotorrox

Key to Subgroups

EBCA. Haplotorrox that have a petroferric contact within 125 cm of the mineral soil surface. **Petroferric Haplotorrox**

EBCB. Other Haplotorrox that have a lithic contact within 125 cm of the mineral soil surface. **Lithic Haplotorrox**

EBCC. Other Haplotorrox. **Typic Haplotorrox**

Udox

Key to Great Groups

EEA. Udox that have a sombric horizon within 150 cm of the mineral soil surface. **Sombriudox, p. 701**

EEB. Other Udox that have, in one or more subhorizons of an oxic or kandic horizon within 150 cm of the mineral soil surface, an apparent ECEC of less than 1.50 cmol(+) per kg clay and a pH value (1N KCl) of 5.0 or more. **Acrudox, p. 690**

EEC. Other Udox that have a base saturation (by NH$_4$OAc) of 35 percent or more in all horizons within 125 cm of the mineral soil surface. **Eutrudox, p. 692**
EED. Other Udox that have a kandic horizon within 150 cm of the mineral soil surface.

Kandiudox, p. 698

EEE. Other Udox.

Hapludox, p. 695

Acrudox

Key to Subgroups

EEBA. Acrudox that have, within 125 cm of the mineral soil surface, both:

1. A petroferric contact; and

2. Redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Petroferric Acrudox

EEBB. Other Acrudox that have a petroferric contact within 125 cm of the mineral soil surface.

Petroferric Acrudox

EEBC. Other Acrudox that have, within 125 cm of the mineral soil surface, both:

1. A lithic contact; and

2. Redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Lithic Acrudox

EEBD. Other Acrudox that have a lithic contact within 125 cm of the mineral soil surface.

Lithic Acrudox

EEBE. Other Acrudox that have, within 125 cm of the mineral soil surface, both:
1. A delta pH (KCl pH minus 1:1 water pH) with a 0 or net positive charge in a layer 18 cm or more thick; and
2. Redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquatic conditions for some time in normal years (or artificial drainage).

Anionic Aquic Acrudox

EEBF. Other Acrudox that have a delta pH (KCl pH minus 1:1 water pH) with a 0 or net positive charge in a layer 18 cm or more thick within 125 cm of the mineral soil surface.

Anionic Acrudox

EEBG. Other Acrudox that have 5 percent or more (by volume) plinthite in one or more horizons within 125 cm of the mineral soil surface.

Plinthic Acrudox

EEBH. Other Acrudox that have, in one or more horizons within 125 cm of the mineral soil surface, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquatic conditions for some time in normal years (or artificial drainage).

Aquic Acrudox

EEBI. Other Acrudox that have a base saturation (by NH₄OAc) of 35 percent or more in all horizons within 125 cm of the mineral soil surface.

Eutric Acrudox

EEBJ. Other Acrudox that have both:

1. 16 kg/m² or more organic carbon between the mineral soil surface and a depth of 100 cm; and
2. In all horizons at a depth between 25 and 125 cm from the mineral soil surface, more than 50 percent colors that have both of the following:
 a. Hue of 2.5YR or redder; and
b. A value, moist, of 3 or less.

Humic Rhodic Acrudox

EEBK. Other Acrudox that have both:
1. 16 kg/m² or more organic carbon between the mineral soil surface and a depth of 100 cm; and
2. 50 percent or more hue of 7.5YR or yellower and a color value, moist, of 6 or more at a depth between 25 and 125 cm from the mineral soil surface.

Humic Xanthic Acrudox

EEBL. Other Acrudox that have 16 kg/m² or more organic carbon between the mineral soil surface and a depth of 100 cm.

Humic Acrudox

EEBM. Other Acrudox that have, in all horizons at a depth between 25 and 125 cm from the mineral soil surface, more than 50 percent colors that have both of the following:
1. Hue of 2.5YR or redder; and
2. A value, moist, of 3 or less.

Rhodic Acrudox

EEBN. Other Acrudox that have 50 percent or more hue of 7.5YR or yellower and a color value, moist, of 6 or more at a depth between 25 and 125 cm from the mineral soil surface.

Xanthic Acrudox

EEBO. Other Acrudox.

Typic Acrudox

Eutrudox

Key to Subgroups

EECA. Eutrudox that have, within 125 cm of the mineral soil surface, both:
1. A petroferric contact; and
2. Redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Petroferric Eutrudox

EECB. Other Eutrudox that have a petroferric contact within 125 cm of the mineral soil surface.

Petroferric Eutrudox

EECC. Other Eutrudox that have, within 125 cm of the mineral soil surface, both:
1. A lithic contact; and
2. Redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Lithic Eutrudox

EECD. Other Eutrudox that have a lithic contact within 125 cm of the mineral soil surface.

Lithic Eutrudox

EECE. Other Eutrudox that have, in one or more horizons within 125 cm of the mineral soil surface, both:
1. 5 percent or more (by volume) plinthite; and
2. Redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Plinthaquic Eutrudox

EECF. Other Eutrudox that have 5 percent or more (by volume) plinthite in one or more horizons within 125 cm of the mineral soil surface.

Plinthic Eutrudox
EECG. Other Eutrudox that have, in one or more horizons within 125 cm of the mineral soil surface, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Eutrudox

EECH. Other Eutrudox that have a kandic horizon within 150 cm of the mineral soil surface.

Kandiudalfic Eutrudox

EECI. Other Eutrudox that have both:
1. 16 kg/m\(^2\) or more organic carbon between the mineral soil surface and a depth of 100 cm; *and*
2. An oxic horizon that has its lower boundary within 125 cm of the mineral soil surface.

Humic Inceptic Eutrudox

EECJ. Other Eutrudox that have an oxic horizon that has its lower boundary within 125 cm of the mineral soil surface.

Inceptic Eutrudox

EECK. Other Eutrudox that have both:
1. 16 kg/m\(^2\) or more organic carbon between the mineral soil surface and a depth of 100 cm; *and*
2. In all horizons at a depth between 25 and 125 cm from the mineral soil surface, more than 50 percent colors that have *both* of the following:
 a. Hue of 2.5YR or redder; *and*
 b. A value, moist, of 3 or less.

Humic Rhodic Eutrudox

EECL. Other Eutrudox that have *both*:
1. 16 kg/m\(^2\) or more organic carbon between the mineral soil surface and a depth of 100 cm; *and*
2. 50 percent or more hue of 7.5YR or yellower and a color value, moist, of 6 or more at a depth between 25 and 125 cm from the mineral soil surface.

Humic Xanthic Eutrudox

EECM. Other Eutrudox that have 16 kg/m² or more organic carbon between the mineral soil surface and a depth of 100 cm.

Humic Eutrudox

EECN. Other Eutrudox that have, in all horizons at a depth between 25 and 125 cm from the mineral soil surface, more than 50 percent colors that have both of the following:

1. Hue of 2.5YR or redder; and
2. A value, moist, of 3 or less.

Rhodic Eutrudox

EECO. Other Eutrudox that have 50 percent or more hue of 7.5YR or yellower and a color value, moist, of 6 or more at a depth between 25 and 125 cm from the mineral soil surface.

Xanthic Eutrudox

EECP. Other Eutrudox.

Typic Eutrudox

Hapludox

Key to Subgroups

EEEA. Hapludox that have, within 125 cm of the mineral soil surface, both:

1. A petroferric contact; and
2. Redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Petroferric Hapludox
EEEB. Other Hapludox that have a petroferric contact within 125 cm of the mineral soil surface.

Petroferric Hapludox

EEEC. Other Hapludox that have, within 125 cm of the mineral soil surface, *both*:

1. A lithic contact; *and*
2. Redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Lithic Hapludox

EEED. Other Hapludox that have a lithic contact within 125 cm of the mineral soil surface.

Lithic Hapludox

EEEE. Other Hapludox that have, in one or more horizons within 125 cm of the mineral soil surface, *both*:

1. 5 percent or more (by volume) plinthite; *and*
2. Redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Plinthaquic Hapludox

EEEF. Other Hapludox that have 5 percent or more (by volume) plinthite in one or more horizons within 125 cm of the mineral soil surface.

Plinthic Hapludox

EEEF. Other Hapludox that have, in one or more horizons within 125 cm of the mineral soil surface, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Hapludox
EEEH. Other Hapludox that have an oxic horizon that has its lower boundary within 125 cm of the mineral soil surface.

Inceptic Hapludox

EEEI. Other Hapludox that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus 1/2 Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Hapludox

EEEJ. Other Hapludox that have *both*:

1. 16 kg/m2 or more organic carbon between the mineral soil surface and a depth of 100 cm; *and*
2. In all horizons at a depth between 25 and 125 cm from the mineral soil surface, more than 50 percent colors that have *both* of the following:
 a. Hue of 2.5YR or redder; *and*
 b. A value, moist, of 3 or less.

Humic Rhodic Hapludox

EEEK. Other Hapludox that have *both*:

1. 16 kg/m2 or more organic carbon between the mineral soil surface and a depth of 100 cm; *and*
2. 50 percent or more hue of 7.5YR or yellower and a color value, moist, of 6 or more at a depth between 25 and 125 cm from the mineral soil surface.

Humic Xanthic Hapludox

EEEL. Other Hapludox that have 16 kg/m2 or more organic carbon between the mineral soil surface and a depth of 100 cm.

Humic Hapludox
EEEM. Other Hapludox that have, in all horizons at a depth between 25 and 125 cm from the mineral soil surface, more than 50 percent colors that have both of the following:

1. Hue of 2.5YR or redder; and
2. A value, moist, of 3 or less.

Rhodic Hapludox

EEEN. Other Hapludox that have 50 percent or more hue of 7.5YR or yellower and a color value, moist, of 6 or more at a depth between 25 and 125 cm from the mineral soil surface.

Xanthic Hapludox

EEEO. Other Hapludox.

Typic Hapludox

Kandiudox

Key to Subgroups

EEDA. Kandiudox that have, within 125 cm of the mineral soil surface, both:

1. A petroferric contact; and
2. Redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Petroferric Kandiudox

EEDB. Other Kandiudox that have a petroferric contact within 125 cm of the mineral soil surface.

Petroferric Kandiudox

EEDC. Other Kandiudox that have, within 125 cm of the mineral soil surface, both:

1. A lithic contact; and
2. Redox depletions with a color value, moist, of 4 or more
and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Lithic Kandiudox

EEDD. Other Kandiudox that have a lithic contact within 125 cm of the mineral soil surface.

Lithic Kandiudox

EEDE. Other Kandiudox that have, in one or more horizons within 125 cm of the mineral soil surface, both:

1. 5 percent or more (by volume) plinthite; and

2. Redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Plinthaquic Kandiudox

EEDF. Other Kandiudox that have 5 percent or more (by volume) plinthite in one or more horizons within 125 cm of the mineral soil surface.

Plinthic Kandiudox

EEDG. Other Kandiudox that have, in one or more horizons within 125 cm of the mineral soil surface, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Kandiudox

EEDH. Other Kandiudox that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Kandiudox
EEDI. Other Kandiudox that have both:
1. 16 kg/m² or more organic carbon between the mineral soil surface and a depth of 100 cm; and
2. In all horizons at a depth between 25 and 125 cm from the mineral soil surface, more than 50 percent colors that have both of the following:
 a. Hue of 2.5YR or redder; and
 b. A value, moist, of 3 or less.

Humic Rhodic Kandiudox

EEDJ. Other Kandiudox that have both:
1. 16 kg/m² or more organic carbon between the mineral soil surface and a depth of 100 cm; and
2. 50 percent or more hue of 7.5YR or yellower and a color value, moist, of 6 or more at a depth between 25 and 125 cm from the mineral soil surface.

Humic Xanthic Kandiudox

EEDL. Other Kandiudox that have, in all horizons at a depth between 25 and 125 cm from the mineral soil surface, more than 50 percent colors that have both of the following:
1. Hue of 2.5YR or redder; and
2. A value, moist, of 3 or less.

Rhodic Kandiudox

EEDM. Other Kandiudox that have 50 percent or more hue of 7.5YR or yellower and a color value, moist, of 6 or more at a depth between 25 and 125 cm from the mineral soil surface.

Xanthic Kandiudox
EEDN. Other Kandiudox.

Typic Kandiudox

Sombriudox

Key to Subgroups

EEAA. Sombriudox that have a petroferric contact within 125 cm of the mineral soil surface.

Petroferric Sombriudox

EEAB. Other Sombriudox that have a lithic contact within 125 cm of the mineral soil surface.

Lithic Sombriudox

EEAC. Other Sombriudox that have 16 kg/m² or more organic carbon between the mineral soil surface and a depth of 100 cm.

Humic Sombriudox

EEAD. Other Sombriudox.

Typic Sombriudox

Ustox

Key to Great Groups

ECA. Ustox that have a sombric horizon within 150 cm of the mineral soil surface.

Sombriustox, p. 713

ECB. Other Ustox that have, in one or more subhorizons of an oxic or kandic horizon within 150 cm of the mineral soil surface, an apparent ECEC of less than 1.50 cmol(+) per kg clay and a pH value (1N KCl) of 5.0 or more.

Acrustox, p. 702

ECC. Other Ustox that have a base saturation (by NH₄OAc) of 35 percent or more in all horizons within 125 cm of the mineral soil surface.

Eutrustox, p. 704
ECD. Other Ustox that have a kandic horizon within 150 cm of the mineral soil surface.

Kandiustox, p. 710

ECE. Other Ustox.

Haplustox, p. 707

Acrustox

Key to Subgroups

ECBA. Acrustox that have, within 125 cm of the mineral soil surface, both:

1. A petroferric contact; and
2. Redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Petroferric Acrustox

ECBB. Other Acrustox that have a petroferric contact within 125 cm of the mineral soil surface.

Petroferric Acrustox

ECBC. Other Acrustox that have, within 125 cm of the mineral soil surface, both:

1. A lithic contact; and
2. Redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Lithic Acrustox

ECBD. Other Acrustox that have a lithic contact within 125 cm of the mineral soil surface.

Lithic Acrustox

ECBE. Other Acrustox that have, within 125 cm of the mineral soil surface, both:
1. A delta pH (KCl pH minus 1:1 water pH) with a 0 or net positive charge in a layer 18 cm or more thick; and
2. Redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquatic conditions for some time in normal years (or artificial drainage).

Anionic Aquic Acrustox

ECBF. Other Acrustox that have a delta pH (KCl pH minus 1:1 water pH) with a 0 or net positive charge in a layer 18 cm or more thick within 125 cm of the mineral soil surface.

Anionic Acrustox

ECBG. Other Acrustox that have 5 percent or more (by volume) plinthite in one or more horizons within 125 cm of the mineral soil surface.

Plinthic Acrustox

ECBH. Other Acrustox that have, in one or more horizons within 125 cm of the mineral soil surface, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquatic conditions for some time in normal years (or artificial drainage).

Aquic Acrustox

ECBI. Other Acrustox that have a base saturation (by NH₄OAc) of 35 percent or more in all horizons within 125 cm of the mineral soil surface.

Eutric Acrustox

ECBJ. Other Acrustox that have both:

1. 16 kg/m² or more organic carbon between the mineral soil surface and a depth of 100 cm; and
2. In all horizons at a depth between 25 and 125 cm from the mineral soil surface, more than 50 percent colors that have both of the following:
 a. Hue of 2.5YR or redder; and
b. A value, moist, of 3 or less.

Humic Rhodic Acrustox

ECBK. Other Acrustox that have *both*:
1. 16 kg/m² or more organic carbon between the mineral soil surface and a depth of 100 cm; *and*
2. 50 percent or more hue of 7.5YR or yellower and a color value, moist, of 6 or more at a depth between 25 and 125 cm from the mineral soil surface.

Humic Xanthic Acrustox

ECBL. Other Acrustox that have 16 kg/m² or more organic carbon between the mineral soil surface and a depth of 100 cm.

Humic Acrustox

ECBM. Other Acrustox that have, in all horizons at a depth between 25 and 125 cm from the mineral soil surface, more than 50 percent colors that have *both* of the following:
1. Hue of 2.5YR or redder; *and*
2. A value, moist, of 3 or less.

Rhodic Acrustox

ECBN. Other Acrustox that have 50 percent or more hue of 7.5YR or yellower and a color value, moist, of 6 or more at a depth between 25 and 125 cm from the mineral soil surface.

Xanthic Acrustox

ECBO. Other Acrustox.

Typic Acrustox

Eutr锈t ox

Key to Subgroups

ECCA. Eutr锈t ox that have, within 125 cm of the mineral soil surface, *both*:
1. A petroferric contact; and
2. Redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Petroferric Eutrustox

ECCB. Other Eutrustox that have a petroferric contact within 125 cm of the mineral soil surface.

Petroferric Eutrustox

ECCC. Other Eutrustox that have, within 125 cm of the mineral soil surface, both:

1. A lithic contact; and
2. Redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Lithic Eutrustox

ECCD. Other Eutrustox that have a lithic contact within 125 cm of the mineral soil surface.

Lithic Eutrustox

ECCE. Other Eutrustox that have, in one or more horizons within 125 cm of the mineral soil surface, both:

1. 5 percent or more (by volume) plinthite; and
2. Redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Plinthaquic Eutrustox

ECCF. Other Eutrustox that have 5 percent or more (by volume) plinthite in one or more horizons within 125 cm of the mineral soil surface.

Plinthic Eutrustox
ECCG. Other Eutr锈ox that have, in one or more horizons within 125 cm of the mineral soil surface, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquatic conditions for some time in normal years (or artificial drainage).

Aquic Eutr锈ox

ECCH. Other Eutr锈ox that have a kaunda horizon within 150 cm of the mineral soil surface.

Kandiustalfic Eutr锈ox

ECCI. Other Eutr锈ox that have both:

1. 16 kg/m2 or more organic carbon between the mineral soil surface and a depth of 100 cm; and

2. An oxic horizon that has its lower boundary within 125 cm of the mineral soil surface.

Humic Inceptic Eutr锈ox

ECCK. Other Eutr锈ox that have both:

1. 16 kg/m2 or more organic carbon between the mineral soil surface and a depth of 100 cm; and

2. In all horizons at a depth between 25 and 125 cm from the mineral soil surface, more than 50 percent colors that have both of the following:
 a. Hue of 2.5YR or redder; and
 b. A value, moist, of 3 or less.

Humic Rhodic Eutr锈ox

ECCL. Other Eutr锈ox that have both:

1. 16 kg/m2 or more organic carbon between the mineral soil surface and a depth of 100 cm; and
2. 50 percent or more hue of 7.5YR or yellower and a color value, moist, of 6 or more at a depth between 25 and 125 cm from the mineral soil surface.

Humic Xanthic Eutrustox

ECCM. Other Eutrutosx that have 16 kg/m² or more organic carbon between the mineral soil surface and a depth of 100 cm.

Humic Eutrustox

ECCN. Other Eutrutosx that have, in all horizons at a depth between 25 and 125 cm from the mineral soil surface, more than 50 percent colors that have both of the following:

1. Hue of 2.5YR or redder; and
2. A value, moist, of 3 or less.

Rhodic Eutrustox

ECCO. Other Eutrutosx that have 50 percent or more hue of 7.5YR or yellower and a color value, moist, of 6 or more at a depth between 25 and 125 cm from the mineral soil surface.

Xanthic Eutrustox

ECCP. Other Eutrutosx.

Typic Eutrustox

Haplustox

Key to Subgroups

ECEA. Haplustox that have, within 125 cm of the mineral soil surface, both:

1. A petroferric contact; and
2. Redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquatic conditions for some time in normal years (or artificial drainage).

Aquic Petroferric Haplustox
ECEB. Other Haplustox that have a petroferric contact within 125 cm of the mineral soil surface.

Petroferric Haplustox

ECEC. Other Haplustox that have, within 125 cm of the mineral soil surface, *both*:

1. A lithic contact; *and*
2. Redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Lithic Haplustox

ECED. Other Haplustox that have a lithic contact within 125 cm of the mineral soil surface.

Lithic Haplustox

ECEE. Other Haplustox that have, in one or more horizons within 125 cm of the mineral soil surface, *both*:

1. 5 percent or more (by volume) plinthite; *and*
2. Redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Plinthaquic Haplustox

ECEF. Other Haplustox that have 5 percent or more (by volume) plinthite in one or more horizons within 125 cm of the mineral soil surface.

Plinthic Haplustox

ECEG. Other Haplustox that have, within 125 cm of the mineral soil surface, *both*:

1. The lower boundary of the oxic horizon; *and*
2. Redox depletions with a color value, moist, of 4 or more
and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aqueptic Haplustox

ECEH. Other Haplustox that have, in one or more horizons within 125 cm of the mineral soil surface, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Haplustox

ECEI. Other Haplustox that are saturated with water in one or more layers within 100 cm of the mineral soil surface in normal years for *either or both*:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Haplustox

ECEJ. Other Haplustox that have an oxic horizon that has its lower boundary within 125 cm of the mineral soil surface.

Inceptic Haplustox

ECEK. Other Haplustox that have *both*:

1. 16 kg/m² or more organic carbon between the mineral soil surface and a depth of 100 cm; *and*
2. In all horizons at a depth between 25 and 125 cm from the mineral soil surface, more than 50 percent colors that have *both* of the following:
 a. Hue of 2.5YR or redder; *and*
 b. A value, moist, of 3 or less.

Humic Rhodic Haplustox

ECEL. Other Haplustox that have *both*:

1. 16 kg/m² or more organic carbon between the mineral soil surface and a depth of 100 cm; *and*
2. 50 percent or more hue of 7.5YR or yellower and a color value, moist, of 6 or more at a depth between 25 and 125 cm from the mineral soil surface.

Humic Xanthic Haplustox

ECEM. Other Haplustox that have 16 kg/m² or more organic carbon between the mineral soil surface and a depth of 100 cm.

Humic Haplustox

ECEN. Other Haplustox that have, in all horizons at a depth between 25 and 125 cm from the mineral soil surface, more than 50 percent colors that have both of the following:

1. Hue of 2.5YR or redder; and
2. A value, moist, of 3 or less.

Rhodic Haplustox

ECEO. Other Haplustox that have 50 percent or more hue of 7.5YR or yellower and a color value, moist, of 6 or more at a depth between 25 and 125 cm from the mineral soil surface.

Xanthic Haplustox

ECEP. Other Haplustox.

Typic Haplustox

Kandiustox

Key to Subgroups

ECDA. Kandiustox that have, within 125 cm of the mineral soil surface, both:

1. A petroferric contact; and
2. Redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Petroferric Kandiustox
ECDB. Other Kandiustox that have a petroferric contact within 125 cm of the mineral soil surface.

 Petroferric Kandiustox

ECDC. Other Kandiustox that have, within 125 cm of the mineral soil surface, *both*:

 1. A lithic contact; *and*
 2. Redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

 Aquic Lithic Kandiustox

ECDD. Other Kandiustox that have a lithic contact within 125 cm of the mineral soil surface.

 Lithic Kandiustox

ECDE. Other Kandiustox that have, in one or more horizons within 125 cm of the mineral soil surface, *both*:

 1. 5 percent or more (by volume) plinthite; *and*
 2. Redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

 Plinthaquic Kandiustox

ECDF. Other Kandiustox that have 5 percent or more (by volume) plinthite in one or more horizons within 125 cm of the mineral soil surface.

 Plinthic Kandiustox

ECDG. Other Kandiustox that have, in one or more horizons within 125 cm of the mineral soil surface, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

 Aquic Kandiustox
ECDH. Other Kandiustox that have both:
1. 16 kg/m² or more organic carbon between the mineral soil surface and a depth of 100 cm; and
2. In all horizons at a depth between 25 and 125 cm from the mineral soil surface, more than 50 percent colors that have both of the following:
 a. Hue of 2.5YR or redder; and
 b. A value, moist, of 3 or less.

 Humic Rhodic Kandiustox

ECDI. Other Kandiustox that have both:
1. 16 kg/m² or more organic carbon between the mineral soil surface and a depth of 100 cm; and
2. 50 percent or more hue of 7.5YR or yellower and a color value, moist, of 6 or more at a depth between 25 and 125 cm from the mineral soil surface.

 Humic Xanthic Kandiustox

ECDJ. Other Kandiustox that have 16 kg/m² or more organic carbon between the mineral soil surface and a depth of 100 cm.

 Humic Kandiustox

ECDK. Other Kandiustox that have, in all horizons at a depth between 25 and 125 cm from the mineral soil surface, more than 50 percent colors that have both of the following:
1. Hue of 2.5YR or redder; and
2. A value, moist, of 3 or less.

 Rhodic Kandiustox

ECDL. Other Kandiustox that have 50 percent or more hue of 7.5YR or yellower and a color value, moist, of 6 or more at a depth between 25 and 125 cm from the mineral soil surface.

 Xanthic Kandiustox
ECDM. Other Kandiustox.

Typic Kandiustox

Sombriustox

Key to Subgroups

ECAA. Sombriustox that have a petroferric contact within 125 cm of the mineral soil surface.

Petroferric Sombriustox

ECAB. Other Sombriustox that have a lithic contact within 125 cm of the mineral soil surface.

Lithic Sombriustox

ECAC. Other Sombriustox that have 16 kg/m\(^2\) or more organic carbon between the mineral soil surface and a depth of 100 cm.

Humic Sombriustox

EAD. Other Sombriustox.

Typic Sombriustox
CHAPTER 14

Spodosols

Key to Suborders

CA. Spodosols that have aquic conditions for some time in normal years (or artificial drainage) in one or more horizons within 50 cm of the mineral soil surface and have one or both of the following:

1. A histic epipedon; or
2. Within 50 cm of the mineral soil surface, redoximorphic features in an albic or a spodic horizon.

Aquods, p. 714

CB. Other Spodosols that have a gelic soil temperature regime.

Gelods, p. 725

CC. Other Spodosols that have a cryic soil temperature regime.

Cryods, p. 721

CD. Other Spodosols that have 6.0 percent or more organic carbon in a layer 10 cm or more thick within the spodic horizon.

Humods, p. 727

CE. Other Spodosols.

Orthods, p. 729

Aquods

Key to Great Groups

CAA. Aquods that have a cryic soil temperature regime.

Cryaquods, p. 717
CAB. Other Aquods that have less than 0.10 percent iron (by ammonium oxalate) in 75 percent or more of the spodic horizon.

Alaquods, p. 715

CAC. Other Aquods that have a fragipan within 100 cm of the mineral soil surface.

Fragiaquods, p. 720

CAD. Other Aquods that have a placic horizon within 100 cm of the mineral soil surface in 50 percent or more of each pedon.

Placaquods, p. 720

CAE. Other Aquods that have, in 90 percent or more of each pedon, a cemented horizon within 100 cm of the mineral soil surface.

Duraquods, p. 718

CAF. Other Aquods that have episaturation.

Epiaquods, p. 719

CAG. Other Aquods.

Endoaquods, p. 718

Alaquods

Key to Subgroups

CABA. Alaquods that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Alaquods

CABB. Other Alaquods that have, in 90 percent or more of each pedon, a cemented horizon within 100 cm of the mineral soil surface.

Duric Alaquods

CABC. Other Alaquods that have a histic epipedon.

Histic Alaquods
CABD. Other Aaquods that:

1. Within 200 cm of the mineral soil surface, have an argillic or kandic horizon that has a base saturation (by sum of cations) of 35 percent or more in some part; and

2. Meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of a spodic horizon at a depth of 75 to 125 cm.

Alfic Arenic Aaquods

CABE. Other Aaquods that:

1. Have an argillic or kandic horizon within 200 cm of the mineral soil surface; and

2. Meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of a spodic horizon at a depth of 75 to 125 cm.

Arenic Ultic Aaquods

CABF. Other Aaquods that:

1. Have an umbric epipedon; and

2. Meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of a spodic horizon at a depth of 75 cm or more.

Arenic Umbric Aaquods

CABG. Other Aaquods that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of a spodic horizon at a depth of 75 to 125 cm.

Arenic Aaquods

CABH. Other Aaquods that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of a spodic horizon at a depth of 125 cm or more.

Grossarenic Aaquods
CABI. Other Alaquods that have, within 200 cm of the mineral soil surface, an argillic or kandic horizon that has a base saturation (by sum of cations) of 35 percent or more in some part.

Alfic Alaquods

CABJ. Other Alaquods that have an argillic or kandic horizon within 200 cm of the mineral soil surface.

Ultic Alaquods

CABK. Other Alaquods that have an ochric epipedon.

Aeric Alaquods

CABL. Other Alaquods.

Typic Alaquods

Cryaquods

Key to Subgroups

CAAA. Cryaquods that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Cryaquods

CAAB. Other Cryaquods that have a placic horizon within 100 cm of the mineral soil surface in 50 percent or more of each pedon.

Placic Cryaquods

CAAC. Other Cryaquods that have, in 90 percent or more of each pedon, a cemented horizon within 100 cm of the mineral soil surface.

Duric Cryaquods

CAAD. Other Cryaquods that have andic soil properties throughout horizons that have a total thickness of 25 cm or more within 75 cm either of the mineral soil surface or of the
top of an organic layer with andic soil properties, whichever is shallower.

Andic Cryaquods

CAAE. Other Cryaquods that have a spodic horizon less than 10 cm thick in 50 percent or more of each pedon.

Entic Cryaquods

CAAF. Other Cryaquods.

Typic Cryaquods

Duraquods

Key to Subgroups

CAEA. Duraquods that have a histic epipedon.

Histic Duraquods

CAEB. Other Duraquods that have andic soil properties throughout horizons that have a total thickness of 25 cm or more within 75 cm either of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Andic Duraquods

CAEC. Other Duraquods.

Typic Duraquods

Endoaquods

Key to Subgroups

CAGA. Endoaquods that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Endoaquods

CAGB. Other Endoaquods that have a histic epipedon.

Histic Endoaquods

CAGC. Other Endoaquods that have andic soil properties throughout horizons that have a total thickness of 25 cm or
more within 75 cm either of the mineral soil surface or of the
top of an organic layer with andic soil properties, whichever is
shallower.

Andic Endoaquods

CAGD. Other Endoaquods that have an argillic or kandic
horizon within 200 cm of the mineral soil surface.

Argic Endoaquods

CAGE. Other Endoaquods that have an umbric epipedon.

Umbric Endoaquods

CAGF. Other Endoaquods.

Typic Endoaquods

Epiaquods

Key to Subgroups

CAFA. Epiaquods that have a lithic contact within 50 cm of
the mineral soil surface.

Lithic Epiaquods

CAFB. Other Epiaquods that have a histic epipedon.

Histic Epiaquods

CAFC. Other Epiaquods that have andic soil properties
throughout horizons that have a total thickness of 25 cm or
more within 75 cm either of the mineral soil surface or of the
top of an organic layer with andic soil properties, whichever is
shallower.

Andic Epiaquods

CAFD. Other Epiaquods that have, within 200 cm of the
mineral soil surface, an argillic or kandic horizon that has a
base saturation (by sum of cations) of 35 percent or more in
some part.

Alfic Epiaquods
CAFE. Other Epiaquods that have an argillic or kandic horizon within 200 cm of the mineral soil surface.

Ultic Epiaquods

CAFF. Other Epiaquods that have an umbric epipedon.

Umbric Epiaquods

CAFG. Other Epiaquods.

Typic Epiaquods

Fragiaquods

Key to Subgroups

CACA. Fragiaquods that have a histic epipedon.

Histic Fragiaquods

CACB. Other Fragiaquods that have a surface horizon 30 cm or more thick that meets all of the requirements for a plaggen epipedon except thickness.

Plagganthreptic Fragiaquods

CACC. Other Fragiaquods that have an argillic or kandic horizon within 200 cm of the mineral soil surface.

Argic Fragiaquods

CACD. Other Fragiaquods.

Typic Fragiaquods

Placaquods

Key to Subgroups

CADA. Placaquods that have andic soil properties throughout horizons that have a total thickness of 25 cm or more within 75 cm either of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Andic Placaquods
CADB. Other Placaquods.

Typic Placaquods

Cryods

Key to Great Groups

CCA. Cryods that have a placic horizon within 100 cm of the mineral soil surface in 50 percent or more of each pedon.

Placocryods, p. 725

CCB. Other Cryods that have, in 90 percent or more of each pedon, a cemented horizon within 100 cm of the mineral soil surface.

Duricryods, p. 721

CCC. Other Cryods that have 6.0 percent or more organic carbon throughout a layer 10 cm or more thick within the spodic horizon.

Humicryods, p. 724

CCD. Other Cryods.

Haplocryods, p. 722

Duricryods

Key to Subgroups

CCBA. Duricryods that have both:

1. Redoximorphic features in one or more horizons within 75 cm of the mineral soil surface and also aquic conditions for some time in normal years (or artificial drainage); and

2. Andic soil properties throughout horizons that have a total thickness of 25 cm or more within 75 cm either of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Aquandic Duricryods

CCBB. Other Duricryods that have andic soil properties throughout horizons that have a total thickness of 25 cm or
more within 75 cm either of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Andic Duricryods

CCBC. Other Duricryods that have redoximorphic features in one or more horizons within 75 cm of the mineral soil surface and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Duricryods

CCBD. Other Duricryods that are saturated with water in one or more layers within 100 cm of the mineral soil surface in normal years for *either or both*:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Duricryods

CCBE. Other Duricryods that have 6.0 percent or more organic carbon throughout a layer 10 cm or more thick within the spodic horizon.

Humic Duricryods

CCBF. Other Duricryods.

Typic Duricryods

Haplocryods

Key to Subgroups

CCDA. Haplocryods that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Haplocryods

CCDB. Other Haplocryods that have *both*:

1. Redoximorphic features in one or more horizons within 75 cm of the mineral soil surface and also aquic conditions for some time in normal years (or artificial drainage); *and*
2. Andic soil properties throughout horizons that have a total thickness of 25 cm or more within 75 cm either of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Aquandic Haplocryods

CCDC. Other Haplocryods that have andic soil properties throughout horizons that have a total thickness of 25 cm or more within 75 cm either of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Andic Haplocryods

CCDD. Other Haplocryods that have a folistic epipedon.

Folistic Haplocryods

CCDE. Other Haplocryods that have redoximorphic features in one or more horizons within 75 cm of the mineral soil surface and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Haplocryods

CCDF. Other Haplocryods that are saturated with water in one or more layers within 100 cm of the mineral soil surface in normal years for *either or both*:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Haplocryods

CCDG. Other Haplocryods that have 1.1 percent or less organic carbon in the upper 10 cm of the spodic horizon.

Entic Haplocryods

CCDH. Other Haplocryods.

Typic Haplocryods
Humicryods

Key to Subgroups

CCCA. Humicryods that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Humicryods

CCCB. Other Humicryods that have both:

1. Redoximorphic features in one or more horizons within 75 cm of the mineral soil surface and also aquic conditions for some time in normal years (or artificial drainage); and

2. Andic soil properties throughout horizons that have a total thickness of 25 cm or more within 75 cm either of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Aquandic Humicryods

CCCC. Other Humicryods that have andic soil properties throughout horizons that have a total thickness of 25 cm or more within 75 cm either of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Andic Humicryods

CCCD. Other Humicryods that have a folistic epipedon.

Folistic Humicryods

CCCE. Other Humicryods that have redoximorphic features in one or more horizons within 75 cm of the mineral soil surface and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Humicryods

CCCF. Other Humicryods that are saturated with water in one or more layers within 100 cm of the mineral soil surface in normal years for either or both:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Humicryods

CCCG. Other Humicryods.

Typic Humicryods

Placocryods

Key to Subgroups

CCAA. Placocryods that have andic soil properties throughout horizons that have a total thickness of 25 cm or more within 75 cm either of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Andic Placocryods

CCAB. Other Placocryods that have 6.0 percent or more organic carbon in a layer 10 cm or more thick within the spodic horizon.

Humic Placocryods

CCAC. Other Placocryods.

Typic Placocryods

Gelods

Key to Great Groups

CBA. Gelods that have 6.0 percent or more organic carbon throughout a layer 10 cm or more thick within the spodic horizon.

Humigelods, p. 726

CBB. Other Gelods.

Haplogelods, p. 726
Haplogelods

Key to Subgroups

CBBA. Haplogelods that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Haplogelods

CBBB. Other Haplogelods that have andic soil properties throughout horizons that have a total thickness of 25 cm or more within 75 cm either of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Andic Haplogelods

CBBC. Other Haplogelods that have redoximorphic features in one or more horizons within 75 cm of the mineral soil surface and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Haplogelods

CBBD. Other Haplogelods that have gelic materials within 200 cm of the mineral soil surface.

Turbic Haplogelods

CBBE. Other Haplogelods.

Typic Haplogelods

Humigelods

Key to Subgroups

CBAA. Humigelods that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Humigelods

CBAB. Other Humigelods that have andic soil properties throughout horizons that have a total thickness of 25 cm or more within 75 cm either of the mineral soil surface or of the
top of an organic layer with andic soil properties, whichever is shallower.

Andic Humigelods

CBAC. Other Humigelods that have redoximorphic features in one or more horizons within 75 cm of the mineral soil surface and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Humigelods

CBAD. Other Humigelods that have gelic materials within 200 cm of the mineral soil surface.

Turbic Humigelods

CBAE. Other Humigelods.

Typic Humigelods

Humods

Key to Great Groups

CDA. Humods that have a placic horizon within 100 cm of the mineral soil surface in 50 percent or more of each pedon.

Placohumods, p. 729

CDB. Other Humods that have, in 90 percent or more of each pedon, a cemented horizon within 100 cm of the mineral soil surface.

Durihumods, p. 728

CDC. Other Humods that have a fragipan within 100 cm of the mineral soil surface.

Fragihumods, p. 728

CDD. Other Humods.

Haplohumods, p. 728
Durihumods

Key to Subgroups

CDBA. Durihumods that have andic soil properties throughout horizons that have a total thickness of 25 cm or more within 75 cm either of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Andic Durihumods

CDBB. Other Durihumods.

Typic Durihumods

Fragihumods

Key to Subgroups

CDCA. All Fragihumods (provisionally).

Typic Fragihumods

Haplohumods

Key to Subgroups

CDDA. Haplohumods that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Haplohumods

CDDB. Other Haplohumods that have andic soil properties throughout horizons that have a total thickness of 25 cm or more within 75 cm either of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Andic Haplohumods

CDDC. Other Haplohumods that have a surface horizon 30 cm or more thick that meets all of the requirements for a plaggen epipedon except thickness.

Plagganthreptic Haplohumods
CDDD. Other Haplohumods.

Typic Haplohumods

Placohumods

Key to Subgroups

CDAA. Placohumods that have andic soil properties throughout horizons that have a total thickness of 25 cm or more within 75 cm either of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Andic Placohumods

CDAB. Other Placohumods.

Typic Placohumods

Orthods

Key to Great Groups

CEA. Orthods that have, in 50 percent or more of each pedon, a placic horizon within 100 cm of the mineral soil surface.

Placorthods, p. 738

CEB. Other Orthods that have, in 90 percent or more of each pedon, a cemented horizon within 100 cm of the mineral soil surface.

Durorthods, p. 731

CEC. Other Orthods that have a fragipan within 100 cm of the mineral soil surface.

Fragiorthods, p. 732

CED. Other Orthods that have less than 0.10 percent iron (by ammonium oxalate) in 75 percent or more of the spodic horizon.

Alorthods, p. 730
Alorthods

Key to Subgroups

CEDA. Alorthods that are saturated with water in one or more layers within 100 cm of the mineral soil surface in normal years for either or both:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Alorthods

CEDB. Other Alorthods that:

1. Meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of a spodic horizon at a depth of 75 to 125 cm; and
2. Have an argillic or kandic horizon below the spodic horizon.

Arenic Ultic Alorthods

CEDC. Other Alorthods that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of a spodic horizon at a depth of 75 to 125 cm.

Arenic Alorthods

CEDD. Other Alorthods that:

1. Meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of a spodic horizon at a depth of 125 cm or more; and
2. Have, in 10 percent or more of each pedon, less than 3.0 percent organic carbon in the upper 2 cm of the spodic horizon.

Entic Grossarenic Alorthods
CEDE. Other Alorthods that have, in 10 percent or more of each pedon, less than 3.0 percent organic carbon in the upper 2 cm of the spodic horizon.

Entic Alorthods

CEDF. Other Alorthods that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of a spodic horizon at a depth of 125 cm or more.

Grossarenic Alorthods

CEDG. Other Alorthods that have a surface horizon 30 cm or more thick that meets all of the requirements for a plaggen epipedon except thickness.

Plagganthreptic Alorthods

CEDH. Other Alorthods that have, within 200 cm of the mineral soil surface, an argillic or kandic horizon that has a base saturation (by sum of cations) of 35 percent or more in some part.

Alfic Alorthods

CEDI. Other Alorthods that have an argillic or kandic horizon within 200 cm of the mineral soil surface.

Ultic Alorthods

CEDJ. Other Alorthods.

Typic Alorthods

Durorthods

Key to Subgroups

CEBA. Durorthods that have andic soil properties throughout horizons that have a total thickness of 25 cm or more within 75 cm either of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Andic Durorthods
CEBB. Other Durorthods.

Typic Durorthods

Fragiorthods

Key to Subgroups

CECA. Fragiorthods that have redoximorphic features in one or more horizons within 75 cm of the mineral soil surface and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Fragiorthods

CECB. Other Fragiorthods that:

1. Are saturated with water in one or more layers within 100 cm of the mineral soil surface in normal years for either or both:
 a. 20 or more consecutive days; or
 b. 30 or more cumulative days; and
2. Have, within 200 cm of the mineral soil surface, an argillic or kandic horizon that has a base saturation (by sum of cations) of 35 percent or more in some part.

Alfic Oxyaquic Fragiorthods

CECC. Other Fragiorthods that are saturated with water in one or more layers within 100 cm of the mineral soil surface in normal years for either or both:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Fragiorthods

CECD. Other Fragiorthods that have a surface horizon 30 cm or more thick that meets all of the requirements for a plaggen epipedon except thickness.

Plagganthreptic Fragiorthods
CECE. Other Fragiorthods that have, within 200 cm of the mineral soil surface, an argillic or kandic horizon that has a base saturation (by sum of cations) of 35 percent or more in some part.

Alfic Fragiorthods

CECF. Other Fragiorthods that have an argillic or kandic horizon within 200 cm of the mineral soil surface.

Ultic Fragiorthods

CECG. Other Fragiorthods that have a spodic horizon that has one of the following:

1. A texture class of very fine sand, loamy very fine sand, or finer; and
 a. A thickness of 10 cm or less; and
 b. A weighted average of less than 1.2 percent organic carbon; and
 c. Within the upper 7.5 cm, either or both a moist color value or chroma of 4 or more (crushed and smoothed sample); or
2. A texture class of loamy fine sand, fine sand, or coarser and either or both a moist color value or chroma of 4 or more (crushed and smoothed sample) in the upper 2.5 cm.

Entic Fragiorthods

CECH. Other Fragiorthods.

Typic Fragiorthods

Haplorthods

Key to Subgroups

CEEA. Haplorthods that have a lithic contact within 50 cm of the mineral soil surface and either:

1. A spodic horizon with a texture class of very fine sand, loamy very fine sand, or finer; and
a. A thickness of 10 cm or less; and
b. A weighted average of less than 1.2 percent organic carbon; and
c. Within the upper 7.5 cm, either or both a moist color value or chroma of 4 or more (crushed and smoothed sample); or

2. A spodic horizon with a texture class of loamy fine sand, fine sand, or coarser and either or both a moist color value or chroma of 4 or more (crushed and smoothed sample) in the upper 2.5 cm.

Entic Lithic Haplorthods

CEEB. Other Haplorthods that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Haplorthods

CEEC. Other Haplorthods that have both:

1. Fragic soil properties:
 a. In 30 percent or more of the volume of a layer 15 cm or more thick that has its upper boundary within 100 cm of the mineral soil surface; or
 b. In 60 percent or more of the volume of a layer 15 cm or more thick; and

2. Redoximorphic features in one or more horizons within 75 cm of the mineral soil surface and also aquic conditions for some time in normal years (or artificial drainage).

Fragiaquic Haplorthods

CEED. Other Haplorthods that have both:

1. Redoximorphic features in one or more horizons within 75 cm of the mineral soil surface and also aquic conditions for some time in normal years (or artificial drainage); and

2. Within 200 cm of the mineral soil surface, an argillic or
kandic horizon that has a base saturation (by sum of cations) of 35 percent or more in some part.

Aqualfic Haplorthods

CEEE. Other Haplorthods that have redoximorphic features in one or more horizons within 75 cm of the mineral soil surface and also aquic conditions for some time in normal years (or artificial drainage) and **either**:

1. A spodic horizon with a texture class of very fine sand, loamy very fine sand, or finer; *and*
 a. A thickness of 10 cm or less; *and*
 b. A weighted average of less than 1.2 percent organic carbon; *and*
 c. Within the upper 7.5 cm, *either or both* a moist color value or chroma of 4 or more (crushed and smoothed sample); or

2. A spodic horizon with a texture class of loamy fine sand, fine sand, or coarser and *either or both* a moist color value or chroma of 4 or more (crushed and smoothed sample) in the upper 2.5 cm.

Aquentic Haplorthods

CEEF. Other Haplorthods that have redoximorphic features in one or more horizons within 75 cm of the mineral soil surface and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Haplorthods

CEEG. Other Haplorthods that have:

1. Within 200 cm of the mineral soil surface, an argillic or kandic horizon that has a base saturation (by sum of cations) of 35 percent or more in some part; *and*

2. Saturation with water in one or more layers within 100 cm of the mineral soil surface in normal years for *either or both*:
a. 20 or more consecutive days; or
b. 30 or more cumulative days.

Alfic Oxyaquic Haplorthods

CEEH. Other Haplorthods that have:
1. Within 200 cm of the mineral soil surface, an argillic or kandic horizon; and
2. Saturation with water in one or more layers within 100 cm of the mineral soil surface in normal years for either or both:
 a. 20 or more consecutive days; or
 b. 30 or more cumulative days.

Oxyaquic Ultic Haplorthods

CEEI. Other Haplorthods that have fragic soil properties either:
1. In 30 percent or more of the volume of a layer 15 cm or more thick that has its upper boundary within 100 cm of the mineral soil surface; or
2. In 60 percent or more of the volume of a layer 15 cm or more thick.

Fragic Haplorthods

CEEJ. Other Haplorthods that have both:
1. Saturation with water in 1 or more layers within 100 cm of the mineral soil surface in normal years for either or both:
 a. 20 or more consecutive days; or
 b. 30 or more cumulative days; and
2. Below the spodic horizon but not below an argillic horizon, lamellae (two or more) within 200 cm of the mineral soil surface.

Lamellic Oxyaquic Haplorthods
CEEK. Other Haplorthods that, below the spodic horizon but not below an argillic horizon, have lamellae (two or more) within 200 cm of the mineral soil surface.

Lamellic Haplorthods

CEEL. Other Haplorthods that are saturated with water in one or more layers within 100 cm of the mineral soil surface in normal years for *either or both*:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Haplorthods

CEEM. Other Haplorthods that have andic soil properties throughout horizons that have a total thickness of 25 cm or more within 75 cm either of the mineral soil surface or of the top of an organic layer with andic soil properties, whichever is shallower.

Andic Haplorthods

CEEN. Other Haplorthods that have, within 200 cm of the mineral soil surface, an argillic or kandic horizon that has a base saturation (by sum of cations) of 35 percent or more in some part.

Alfic Haplorthods

CEEO. Other Haplorthods that have an argillic or kandic horizon within 200 cm of the mineral soil surface.

Ultic Haplorthods

CEEP. Other Haplorthods that have a spodic horizon that has one of the following:

1. A texture class of very fine sand, loamy very fine sand, or finer; and
 a. A thickness of 10 cm or less; and
 b. A weighted average of less than 1.2 percent organic carbon; and
c. Within the upper 7.5 cm, *either or both* a moist color value or chroma of 4 or more (crushed and smoothed sample); *or*

2. A texture class of loamy fine sand, fine sand, or coarser and *either or both* a moist color value or chroma of 4 or more (crushed and smoothed sample) in the upper 2.5 cm.

Entic Haplorthods

CEEQ. Other Haplorthods.

Typic Haplorthods

Placorthods

Key to Subgroups

CEAA. All Placorthods (provisionally).

Typic Placorthods
CHAPTER 15

Ultisols

Key to Suborders

HA. Ultisols that have aquic conditions for some time in normal years (or artificial drainage) in one or more horizons within 50 cm of the mineral soil surface and one or both of the following:

1. Redoximorphic features in all layers between either the lower boundary of an Ap horizon or a depth of 25 cm from the mineral soil surface, whichever is deeper, and a depth of 40 cm and one of the following within the upper 12.5 cm of the argillic or kandic horizon:
 a. Redox concentrations and 50 percent or more redox depletions with chroma of 2 or less either on faces of peds or in the matrix; or
 b. 50 percent or more redox depletions with chroma of 1 or less either on faces of peds or in the matrix; or
 c. Distinct or prominent redox concentrations and 50 percent or more hue of 2.5Y or 5Y in the matrix and also a thermic, isothermic, or warmer soil temperature regime; or

2. Within 50 cm of the mineral soil surface, enough active ferrous iron to give a positive reaction to alpha,alpha-dipyridyl at a time when the soil is not being irrigated.

Aquults, p. 740

HB. Other Ultisols that have one or both of the following:

1. 0.9 percent (by weighted average) or more organic carbon in the upper 15 cm of the argillic or kandic horizon; or
2. 12 kg/m\(^2\) or more organic carbon between the mineral soil surface and a depth of 100 cm.

Humults, p. 751

HC. Other Ultisols that have a udic soil moisture regime.

Udults, p. 760

HD. Other Ultisols that have an ustic soil moisture regime.

Ustults, p. 784

HE. Other Ultisols.

Xerults, p. 795

Aquults

Key to Great Groups

HAA. Aquults that have one or more horizons within 150 cm of the mineral soil surface in which plinthite either forms a continuous phase or constitutes one-half or more of the volume.

Plinthaquults, p. 750

HAB. Other Aquults that have a fragipan within 100 cm of the mineral soil surface.

Fragiaquults, p. 745

HAC. Other Aquults that have an abrupt textural change between the ochric epipedon or albic horizon and the argillic or kandic horizon *and* have a saturated hydraulic conductivity of 0.4 cm/hr or slower (moderately low or lower Ksat class) in the argillic or kandic horizon.

Albaquults, p. 742

HAD. Other Aquults that:

1. Do not have a densic, lithic, paralithic, or petroferric contact within 150 cm of the mineral soil surface; *and*
2. Have a kandic horizon; and
3. Within 150 cm of the mineral soil surface, either:
 a. With increasing depth, do not have a clay decrease of 20 percent or more (relative) from the maximum clay content; or
 b. Have 5 percent or more (by volume) clay depletions on faces of peds in the layer that has a 20 percent lower clay content and, below that layer, a clay increase of 3 percent or more (absolute) in the fine-earth fraction.

 Kandiaquults, p. 745

HAE. Other Aquults that have a kandic horizon.

Kanhaplaquults, p. 747

HAF. Other Aquults that:

1. Do not have a densic, lithic, paralithic, or petroferric contact within 150 cm of the mineral soil surface; and
2. Within 150 cm of the mineral soil surface, either:
 a. With increasing depth, do not have a clay decrease of 20 percent or more (relative) from the maximum clay content; or
 b. Have 5 percent or more (by volume) clay depletions on faces of peds in the layer that has a 20 percent lower clay content and, below that layer, a clay increase of 3 percent or more (absolute) in the fine-earth fraction.

 Paleaquults, p. 749

HAG. Other Aquults that have an umbric or mollic epipedon.

Umbraquults, p. 751

HAH. Other Aquults that have episaturation.

Epiaquults, p. 743
Albaquults

Key to Subgroups

HACA. Albaquults that have *one or both* of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; *or*

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

 Vertic Albaquults

HACB. Other Albaquults that have a kandic horizon.

 Kandic Albaquults

HACC. Other Albaquults that have 50 percent or more chroma of 3 or more in one or more horizons between either the A or Ap horizon or a depth of 25 cm from the mineral soil surface, whichever is deeper, and a depth of 75 cm.

 Aeric Albaquults

HACD. Other Albaquults.

 Typic Albaquults

Endoaquults

Key to Subgroups

HAIA. Endoaquults that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from
the mineral soil surface to the top of an argillic horizon at a depth of 50 to 100 cm.

Arenic Endoaquults

HAIB. Other Endoaquults that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic horizon at a depth of 100 cm or more.

Grossarenic Endoaquults

HAIC. Other Endoaquults that have 50 percent or more chroma of 3 or more in one or more horizons between either the A or Ap horizon or a depth of 25 cm from the mineral soil surface, whichever is deeper, and a depth of 75 cm.

Aeric Endoaquults

HAID. Other Endoaquults.

Typic Endoaquults

Epiaquults

Key to Subgroups

HAHA. Epiaquults that have *one or both* of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Epiaquults

HAHB. Other Epiaquults that have:
1. Fragic soil properties either:
 a. In 30 percent or more of the volume of a layer 15 cm or more thick that has its upper boundary within 100 cm of the mineral soil surface; or
 b. In 60 percent or more of the volume of a layer 15 cm or more thick; and
2. 50 percent or more chroma of 3 or more in one or more horizons between either the A or Ap horizon or a depth of 25 cm from the mineral soil surface, whichever is deeper, and a depth of 75 cm.

Aeric Fragic Epiaquults

HAHC. Other Epiaquults that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic horizon at a depth of 50 to 100 cm.

Arenic Epiaquults

HAHD. Other Epiaquults that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic horizon at a depth of 100 cm or more.

Grossarenic Epiaquults

HAHE. Other Epiaquults that have fragic soil properties either:

1. In 30 percent or more of the volume of a layer 15 cm or more thick that has its upper boundary within 100 cm of the mineral soil surface; or
2. In 60 percent or more of the volume of a layer 15 cm or more thick.

Fragic Epiaquults
HAHF. Other Epiaquults that have 50 percent or more chroma of 3 or more in one or more horizons between either the A or Ap horizon or a depth of 25 cm from the mineral soil surface, whichever is deeper, and a depth of 75 cm.

Aeric Epiaquults

HAHG. Other Epiaquults.

Typic Epiaquults

Fragiaquults

Key to Subgroups

HABA. Fragiaquults that have 50 percent or more chroma of 3 or more in one or more horizons between either the A or Ap horizon or a depth of 25 cm from the mineral soil surface, whichever is deeper, and the fragipan.

Aeric Fragiaquults

HABB. Other Fragiaquults that have 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface.

Plinthic Fragiaquults

HABC. Other Fragiaquults that have a mollic or umbric epipedon.

Umbric Fragiaquults

HABD. Other Fragiaquults.

Typic Fragiaquults

Kandiaquults

Key to Subgroups

HADA. Kandiaquults that have an ECEC of 1.5 cmol(+)/kg clay or less (sum of bases extracted with 1N NH₄OAc pH 7,
plus 1N KCl-extractable Al) in one or more horizons within 150 cm of the mineral soil surface.

Acraquoxic Kandiaquults

HADB. Other Kandiaquults that:
1. Meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of a kandic horizon at a depth of 50 to 100 cm; and
2. Have 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface.

Arenic Plinthic Kandiaquults

HADC. Other Kandiaquults that:
1. Have a mollic or umbric epipedon; and
2. Meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of a kandic horizon at a depth of 50 to 100 cm.

Arenic Umbric Kandiaquults

HADD. Other Kandiaquults that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of a kandic horizon at a depth of 50 to 100 cm.

Arenic Kandiaquults

HADE. Other Kandiaquults that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of a kandic horizon at a depth of 100 cm or more.

Grossarenic Kandiaquults

HADF. Other Kandiaquults that have 5 percent or more (by
volume) plinthite in one or more horizons within 150 cm of the mineral soil surface.

Plinthic Kandiaquults

HADG. Other Kandiaquults that have 50 percent or more chroma of 3 or more in one or more horizons between either the A or Ap horizon or a depth of 25 cm from the mineral soil surface, whichever is deeper, and a depth of 75 cm.

Aeric Kandiaquults

HADH. Other Kandiaquults that have a mollic or umbric epipedon.

Umbric Kandiaquults

HADI. Other Kandiaquults.

Typic Kandiaquults

Kanhaplaquults

Key to Subgroups

HAEA. Kanhaplaquults that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, one or more of the following:

1. A fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0; or
2. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; or
3. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; and
a. In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; and
b. \(\left(\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}\right) \times 60\) plus the volcanic glass (percent) is equal to 30 or more.

Aquandic Kanhaplaquults

HAEB. Other Kanhaplaquults that have 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface.

Plinthic Kanhaplaquults

HAEC. Other Kanhaplaquults that:
1. Have a mollic or umbric epipedon; and
2. Have 50 percent or more chroma of 3 or more in one or more horizons between either the A or Ap horizon or a depth of 25 cm from the mineral soil surface, whichever is deeper, and a depth of 75 cm.

Aeric Umbric Kanhaplaquults

HAED. Other Kanhaplaquults that have 50 percent or more chroma of 3 or more in one or more horizons between either the A or Ap horizon or a depth of 25 cm from the mineral soil surface, whichever is deeper, and a depth of 75 cm.

Aeric Kanhaplaquults

HAEE. Other Kanhaplaquults that have a mollic or umbric epipedon.

Umbric Kanhaplaquults

HAEF. Other Kanhaplaquults.

Typic Kanhaplaquults
Paleaquults

Key to Subgroups

HAFA. Paleaquults that have *one or both* of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; *or*

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Paleaquults

HAFB. Other Paleaquults that:

1. Meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic horizon at a depth of 50 to 100 cm; *and*

2. Have 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface.

Arenic Plinthic Paleaquults

HAFC. Other Paleaquults that:

1. Have a mollic or umbric epipedon; *and*

2. Meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic horizon at a depth of 50 to 100 cm.

Arenic Umbric Paleaquults

HAFD. Other Paleaquults that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from
the mineral soil surface to the top of an argillic horizon at a depth of 50 to 100 cm.

Arenic Paleaquults

HAFE. Other Paleaquults that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic horizon at a depth of 100 cm or more.

Grossarenic Paleaquults

HAFF. Other Paleaquults that have 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface.

Plinthic Paleaquults

HAFG. Other Paleaquults that have 50 percent or more chroma of 3 or more in one or more horizons between either the A or Ap horizon or a depth of 25 cm from the mineral soil surface, whichever is deeper, and a depth of 75 cm.

Aeric Paleaquults

HAFH. Other Paleaquults that have a mollic or umbric epipedon.

Umbric Paleaquults

HAFI. Other Paleaquults.

Typic Paleaquults

Plinthaquequalts

Key to Subgroups

HAAA. Plinthaquequalts that have a kandic horizon or a CEC (by 1N NH₄OAc pH 7) of less than 24 cmol(+) /kg clay in 50 percent or more (by volume) of the argillic horizon if less than 100 cm thick or of its upper 100 cm.

Kandic Plinthaquequalts
HAAB. Other Plinthaquults.

Typic Plinthaquults

Umbraquults

Key to Subgroups

HAGA. Umbraquults that have 5 to 50 percent (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface.

Plinthic Umbraquults

HAGB. Other Umbraquults.

Typic Umbraquults

Humults

Key to Great Groups

HBA. Humults that have a sombric horizon within 100 cm of the mineral soil surface.

Sombrihumults, p. 760

HBB. Other Humults that have one or more horizons within 150 cm of the mineral soil surface in which plinthite either forms a continuous phase or constitutes one-half or more of the volume.

Plinthohumults, p. 760

HBC. Other Humults that:

1. Do not have a densic, lithic, paralithic, or petroferric contact within 150 cm of the mineral soil surface; and

2. Have a kandic horizon; and

3. Within 150 cm of the mineral soil surface, either:

 a. With increasing depth, do not have a clay decrease of 20 percent or more (relative) from the maximum clay content; or
b. Have 5 percent or more (by volume) skeletans on faces of peds in the layer that has a 20 percent lower clay content and, below that layer, a clay increase of 3 percent or more (absolute) in the fine-earth fraction.

Kandihumults, p. 754

HBD. Other Humults that have a kandic horizon.

Kanhaplohumults, p. 757

HBE. Other Humults that:

1. Do not have a densic, lithic, paralithic, or petroferric contact within 150 cm of the mineral soil surface; and
2. Within 150 cm of the mineral soil surface, either:
 a. With increasing depth, do not have a clay decrease of 20 percent or more (relative) from the maximum clay content; or
 b. Have 5 percent or more (by volume) skeletans on faces of peds in the layer that has a 20 percent lower clay content and, below that layer, a clay increase of 3 percent or more (absolute) in the fine-earth fraction.

Palehumults, p. 758

HBF. Other Humults.

Haplohumults, p. 752

Haplohumults

Key to Subgroups

HBFA. Haplohumults that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Haplohumults

HBFB. Other Haplohumults that have both:

1. In one or more subhorizons within the upper 25 cm of the
argillic horizon, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less, accompanied by both redox concentrations and aquic conditions for some time in normal years (or artificial drainage); and

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0.

Aquandic Haplohumults

HBFC. Other Haplohumults that have, in one or more subhorizons within the upper 25 cm of the argillic horizon, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less, accompanied by both redox concentrations and aquic conditions for some time in normal years (or artificial drainage).

Aquic Haplohumults

HBFD. Other Haplohumults that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Haplohumults

HBFE. Other Haplohumults that have 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface.

Plinthic Haplohumults

HBFF. Other Haplohumults that in normal years are saturated
with water in one or more layers within 100 cm of the mineral soil surface for *either or both*:

1. 20 or more consecutive days; *or*
2. 30 or more cumulative days.

Oxyaquic Haplohumults

HBFG. Other Haplohumults that have an ustic soil moisture regime.

Ustic Haplohumults

HBFH. Other Haplohumults that have a xeric soil moisture regime.

Xeric Haplohumults

HBFI. Other Haplohumults.

Typic Haplohumults

Kandihumults

Key to Subgroups

HBCA. Kandihumults that meet *all* of the following:

1. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, have a fine-earth fraction with both a bulk density of 1.0 g/cm\(^3\) or less, measured at 33 kPa water retention, and Al plus \(\frac{1}{2}\) Fe percentages (by ammonium oxalate) totaling more than 1.0; *and*
2. In one or more horizons within 75 cm of the mineral soil surface, have redox concentrations, a color value, moist, of 4 or more, and hue that is 10YR or yellower and becomes redder with increasing depth within 100 cm of the mineral soil surface; *and*
3. In normal years are saturated with water in one or more
layers within 100 cm of the mineral soil surface for either or both:

a. 20 or more consecutive days; or
b. 30 or more cumulative days.

Andic Ombroaquic Kandihumults

HBCB. Other Kandihumults that have both:

1. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $1/2$ Fe percentages (by ammonium oxalate) totaling more than 1.0; and
2. An ustic soil moisture regime.

Ustandic Kandihumults

HBCC. Other Kandihumults that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $1/2$ Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Kandihumults

HBCD. Other Kandihumults that have, in one or more subhorizons within the upper 25 cm of the kandic horizon, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less, accompanied by both redox concentrations and aquic conditions for some time in normal years (or artificial drainage).

Aquic Kandihumults
HBCE. Other Kandihumults that:

1. Have, in one or more horizons within 75 cm of the mineral soil surface, redox concentrations, a color value, moist, of 4 or more, and hue that is 10YR or yellower and becomes redder with increasing depth within 100 cm of the mineral soil surface; and

2. In normal years are saturated with water in one or more layers within 100 cm of the mineral soil surface for either or both:
 a. 20 or more consecutive days; or
 b. 30 or more cumulative days.

 Ombroaquic Kandihumults

HBCF. Other Kandihumults that have 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface.

 Plinthic Kandihumults

HBCG. Other Kandihumults that have an ustic soil moisture regime.

 Ustic Kandihumults

HBCH. Other Kandihumults that have a xeric soil moisture regime.

 Xeric Kandihumults

HBCI. Other Kandihumults that have an anthropic epipedon.

 Anthropic Kandihumults

HBCJ. Other Kandihumults.

 Typic Kandihumults
Kanhaplohumults

Key to Subgroups

HBDA. Kanhaplohumults that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Kanhaplohumults

HBDB. Other Kanhaplohumults that have both:

1. An ustic soil moisture regime; and

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus ¹⁄₂ Fe percentages (by ammonium oxalate) totaling more than 1.0.

Ustandic Kanhaplohumults

HBDC. Other Kanhaplohumults that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus ¹⁄₂ Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Kanhaplohumults

HBDD. Other Kanhaplohumults that have, in one or more subhorizons within the upper 25 cm of the kandic horizon, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less, accompanied by both redox concentrations and aquic conditions for some time in normal years (or artificial drainage).

Aquic Kanhaplohumults

HBDE. Other Kanhaplohumults that:

1. Have, in one or more horizons within 75 cm of the
mineral soil surface, redox concentrations, a color value, moist, of 4 or more, and hue that is 10YR or yellower and becomes redder with increasing depth within 100 cm of the mineral soil surface; and

2. In normal years are saturated with water in one or more layers within 100 cm of the mineral soil surface for either or both:
 a. 20 or more consecutive days; or
 b. 30 or more cumulative days.

Ombroaquic Kanhaplohumults

HBDF. Other Kanhaplohumults that have an ustic soil moisture regime.

Ustic Kanhaplohumults

HBDG. Other Kanhaplohumults that have a xeric soil moisture regime.

Xeric Kanhaplohumults

HBDH. Other Kanhaplohumults that have an anthropic epipedon.

Anthropic Kanhaplohumults

HBDI. Other Kanhaplohumults.

Typic Kanhaplohumults

Palehumults

Key to Subgroups

HBEA. Palehumults that have both:
 1. In one or more subhorizons within the upper 25 cm of the argillic horizon, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less, accompanied by both
redox concentrations and aquic conditions for some time in normal years (or artificial drainage); and

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0.

Aquandic Palehumults

HBEB. Other Palehumults that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Palehumults

HBEC. Other Palehumults that have, in one or more subhorizons within the upper 25 cm of the argillic horizon, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less, accompanied by both redox concentrations and aquic conditions for some time in normal years (or artificial drainage).

Aquic Palehumults

HBED. Other Palehumults that have 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface.

Plinthic Palehumults

HBEE. Other Palehumults that in normal years are saturated with water in one or more layers within 100 cm of the mineral soil surface for *either or both*:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Palehumults

HBEF. Other Palehumults that have an ustic soil moisture regime.

Ustic Palehumults

HBEG. Other Palehumults that have a xeric soil moisture regime.

Xeric Palehumults

HBEH. Other Palehumults.

Typic Palehumults

Plinthohumults

Key to Subgroups

HBBA. All Plinthohumults.

Typic Plinthohumults

Sombrihumults

Key to Subgroups

HBAA. All Sombrihumults.

Typic Sombrihumults

Udults

Key to Great Groups

HCA. Udults that have one or more horizons within 150 cm of the mineral soil surface in which plinthite either forms a continuous phase or constitutes one-half or more of the volume.

Plinthudults, p. 783

HCB. Other Udults that have a fragipan within 100 cm of the mineral soil surface.

Fragiudults, p. 762
HCC. Other Udults that:
1. Do not have a densic, lithic, paralithic, or petroferric contact within 150 cm of the mineral soil surface; and
2. Have a kandic horizon; and
3. Within 150 cm of the mineral soil surface, either:
 a. With increasing depth, do not have a clay decrease of 20 percent or more (relative) from the maximum clay content; or
 b. Have 5 percent or more (by volume) skeletans on faces of peds in the layer that has a 20 percent lower clay content and, below that layer, a clay increase of 3 percent or more (absolute) in the fine-earth fraction.

Kandiudults, p. 768

HCD. Other Udults that have a kandic horizon.

Kanhapludults, p. 774

HCE. Other Udults that:
1. Do not have a densic, lithic, paralithic, or petroferric contact within 150 cm of the mineral soil surface; and
2. Within 150 cm of the mineral soil surface, either:
 a. With increasing depth, do not have a clay decrease of 20 percent or more (relative) from the maximum clay content; or
 b. Have 5 percent or more (by volume) skeletans on faces of peds in the layer that has a 20 percent lower clay content and, below that layer, a clay increase of 3 percent or more (absolute) in the fine-earth fraction.

Paleudults, p. 777

HCF. Other Udults that have both:
1. An epipedon that has a color value, moist, of 3 or less throughout; \textit{and}

2. In all subhorizons in the upper 100 cm of the argillic horizon or throughout the entire argillic horizon if it is less than 100 cm thick, more than 50 percent colors that have \textit{all} of the following:

 a. Hue of 2.5YR or redder; \textit{and}
 b. A value, moist, of 3 or less; \textit{and}
 c. A dry value no more than 1 unit higher than the moist value.

\textbf{Rhodudults}, p. 783

HCG. Other Udults.

\textbf{Hapludults}, p. 764

\textbf{Fragiudults}

\textbf{Key to Subgroups}

HCBA. Fragiudults that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic or kandic horizon at a depth of 50 to 100 cm.

\textbf{Arenic Fragiudults}

HCBB. Other Fragiudults that have \textit{both} of the following:

1. In one or more horizons within 40 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage); \textit{and}

2. 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface.

\textbf{Plinthaquic Fragiudults}
HCBC. Other Fragiudults that have both:

1. One or more of the following:
 a. Have a gossic horizon above the fragipan; or
 b. Do not have, above the fragipan, an argillic or kandic horizon that has clay films on both vertical and horizontal surfaces of any peds; or
 c. Between the argillic or kandic horizon and the fragipan, have one or more horizons with 50 percent or more chroma of 3 or less and with a clay content 3 percent or more (absolute, in the fine-earth fraction) lower than that in both the argillic or kandic horizon and the fragipan; and

2. In one or more horizons within 40 cm of the mineral soil surface, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Glossaquic Fragiudults

HCBD. Other Fragiudults that have, in one or more subhorizons above the fragipan and within the upper 25 cm of the argillic or kandic horizon, redox depletions with chroma of 2 or less and also aquic conditions for some time in normal years (or artificial drainage).

Aquic Fragiudults

HCBF. Other Fragiudults that meet one or more of the following:

1. Have a gossic horizon above the fragipan; or
2. Do not have, above the fragipan, an argillic or kandic horizon that has clay films on both vertical and horizontal surfaces of any peds; or

3. Between the argillic or kandic horizon and the fragipan, have one or more horizons with 50 percent or more chroma of 3 or less and with a clay content 3 percent or more (absolute, in the fine-earth fraction) lower than that in both the argillic or kandic horizon and the fragipan.

Glossic Fragiudults

HCBG. Other Fragiudults that have a color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) in either:

1. An Ap horizon that is 18 cm or more thick; or
2. The surface layer after mixing of the upper 18 cm.

Humic Fragiudults

HCBH. Other Fragiudults.

Typic Fragiudults

Hapludults

Key to Subgroups

HCGA. Hapludults that have *either or both*:

1. In each pedon, a discontinuous lithic contact within 50 cm of the mineral soil surface; and
2. In each pedon, a discontinuous argillic horizon that is interrupted by ledges of bedrock.

Lithic-Ruptic-Entic Hapludults

HCGB. Other Hapludults that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Hapludults
HCGC. Other Hapludults that have one or both of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; or

2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Hapludults

HCGD. Other Hapludults that have both:

1. Fragic soil properties either:
 a. In 30 percent or more of the volume of a layer 15 cm or more thick that has its upper boundary within 100 cm of the mineral soil surface; or
 b. In 60 percent or more of the volume of a layer 15 cm or more thick; and

2. In one or more layers within 75 cm of the mineral soil surface, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less, accompanied by both redox concentrations and aquic conditions for some time in normal years (or artificial drainage).

Fragiaquic Hapludults

HCGE. Other Hapludults that:

1. Meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic horizon at a depth of 50 to 100 cm; and

2. Have, in one or more subhorizons within the upper 60
cm of the argillic horizon, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less, accompanied by both redox concentrations and aquic conditions for some time in normal years (or artificial drainage).

Aquic Arenic Hapludults

HCGF. Other Hapludults that have, in one or more subhorizons within the upper 60 cm of the argillic horizon, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less, accompanied by both redox concentrations and aquic conditions for some time in normal years (or artificial drainage).

Aquic Hapludults

HCGG. Other Hapludults that have fragic soil properties either:

1. In 30 percent or more of the volume of a layer 15 cm or more thick that has its upper boundary within 100 cm of the mineral soil surface; or

2. In 60 percent or more of the volume of a layer 15 cm or more thick.

Fragic Hapludults

HCGH. Other Hapludults that in normal years are saturated with water in one or more layers within 100 cm of the mineral soil surface for either or both:

1. 20 or more consecutive days; or

2. 30 or more cumulative days.

Oxyaquic Hapludults

HCGI. Other Hapludults that have an argillic horizon that:

1. Consists entirely of lamellae; or
2. Is a combination of two or more lamellae and one or more subhorizons with a thickness of 7.5 to 20 cm, each layer with an overlying eluvial horizon; or

3. Consists of one or more subhorizons that are more than 20 cm thick, each with an overlying eluvial horizon, and above these horizons there are either:
 a. Two or more lamellae with a combined thickness of 5 cm or more (that may or may not be part of the argillic horizon); or
 b. A combination of lamellae (that may or may not be part of the argillic horizon) and one or more parts of the argillic horizon 7.5 to 20 cm thick, each with an overlying eluvial horizon.

 Lamellic Hapludults

 HCGJ. Other Hapludults that have a sandy particle-size class throughout the upper 75 cm of the argillic horizon or throughout the entire argillic horizon if it is less than 75 cm thick.

 Psammentic Hapludults

 HCGK. Other Hapludults that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic horizon at a depth of 50 to 100 cm.

 Arenic Hapludults

 HCGL. Other Hapludults that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic horizon at a depth of 100 cm or more.

 Grossarenic Hapludults

 HCGM. Other Hapludults that:
1. Do not have a dencic, lithic, or paralithic contact within 50 cm of the mineral soil surface; and
2. Have an argillic horizon that is 25 cm or less thick.

Inceptic Hapludults

HCGN. Other Hapludults that have a color value, moist, of 3 or less and a color value, dry, of 5 or less (crushed and smoothed sample) in either:

1. An Ap horizon that is 18 cm or more thick; or
2. The surface layer after mixing of the upper 18 cm.

Humic Hapludults

HCGO. Other Hapludults.

Typic Hapludults

Kandiudults

Key to Subgroups

HCCA. Kandiudults that:

1. Meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of a kandic horizon at a depth of 50 to 100 cm; and
2. Have 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface; and
3. Have, in one or more layers either within 75 cm of the mineral soil surface or, if the chroma throughout the upper 75 cm results from uncoated sand grains, within the upper 12.5 cm of the kandic horizon, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less, accompanied by both redox concentrations and aquic conditions for some time in normal years (or artificial drainage).

Arenic Plinthaquic Kandiudults
HCCB. Other Kandiudults that:

1. Meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of a kandic horizon at a depth of 50 to 100 cm; and
2. Have, in one or more layers either within 75 cm of the mineral soil surface or, if the chroma throughout the upper 75 cm results from uncoated sand grains, within the upper 12.5 cm of the kandic horizon, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less, accompanied by both redox concentrations and aquic conditions for some time in normal years (or artificial drainage).

Aquic Arenic Kandiudults

HCCC. Other Kandiudults that:

1. Meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of a kandic horizon at a depth of 50 to 100 cm; and
2. Have 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface.

Arenic Plinthic Kandiudults

HCCD. Other Kandiudults that:

1. Meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of a kandic horizon at a depth of 50 to 100 cm; and
2. Have, in all subhorizons in the upper 75 cm of the kandic horizon or throughout the entire kandic horizon if it is less than 75 cm thick, more than 50 percent colors that have all of the following:
 a. Hue of 2.5YR or redder; and
 b. A value, moist, of 3 or less; and
c. A dry value no more than 1 unit higher than the moist value.

Arenic Rhodic Kandiudults

HCCE. Other Kandiudults that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of a kandic horizon at a depth of 50 to 100 cm.

Arenic Kandiudults

HCCF. Other Kandiudults that:

1. Meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of a kandic horizon at a depth of 100 cm or more; and
2. Have 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface.

Grossarenic Plinthic Kandiudults

HCCG. Other Kandiudults that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of a kandic horizon at a depth of 100 cm or more.

Grossarenic Kandiudults

HCCH. Other Kandiudults that have both:

1. An ECEC of 1.5 cmol(+)/kg clay or less (sum of bases extracted with 1N NH₄OAc pH 7, plus 1N KCl-extractable Al) in one or more horizons within 150 cm of the mineral soil surface; and
2. 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface.

Acrudoxic Plinthic Kandiudults
HCCI. Other Kandiudults that have an ECEC of 1.5 cmol(+)/kg clay or less (sum of bases extracted with 1N \(\text{NH}_4 \text{OAc} \) pH 7, plus 1N KCl-extractable Al) in one or more horizons within 150 cm of the mineral soil surface.

Acrudoxic Kandiudults

HCCJ. Other Kandiudults that have *both*:

1. 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface; *and*

2. In one or more layers within 75 cm of the mineral soil surface, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less, accompanied by *both* redox concentrations and aquic conditions for some time in normal years (or artificial drainage).

Plinthaquic Kandiudults

HCCK. Other Kandiudults that have *both*:

1. In one or more layers within 75 cm of the mineral soil surface, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less, accompanied by *both* redox concentrations and aquic conditions for some time in normal years (or artificial drainage); *and*

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, *one or more* of the following:

 a. A fine-earth fraction with both a bulk density of 1.0 g/cm\(^3\) or less, measured at 33 kPa water retention, and Al plus \(\frac{1}{2} \) Fe percentages (by ammonium oxalate) totaling more than 1.0; *or*

 b. More than 35 percent (by volume) fragments coarser than 2.0 mm, of which more than 66 percent is cinders, pumice, and pumicelike fragments; *or*
c. A fine-earth fraction containing 30 percent or more particles 0.02 to 2.0 mm in diameter; *and*

(1) In the 0.02 to 2.0 mm fraction, 5 percent or more volcanic glass; *and*

(2) \([\text{Al plus } \frac{1}{2} \text{ Fe, percent extracted by ammonium oxalate}] \times 60\] plus the volcanic glass (percent) is equal to 30 or more.

Aquandic Kandiudults

HCCL. Other Kandiudults that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus \(\frac{1}{2}\) Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Kandiudults

HCCM. Other Kandiudults that have, in one or more layers within 75 cm of the mineral soil surface, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less, accompanied by *both* redox concentrations and aquic conditions for some time in normal years (or artificial drainage).

Aquic Kandiudults

HCCN. Other Kandiudults that have 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface.

Plinthic Kandiudults

HCCO. Other Kandiudults that:

1. Have, in one or more horizons within 75 cm of the mineral soil surface, redox concentrations, a color value, moist, of 4 or more, and hue that is 10YR or yellower and
becomes redder with increasing depth within 100 cm of the mineral soil surface; and

2. In normal years are saturated with water in one or more layers within 100 cm of the mineral soil surface for either or both:
 a. 20 or more consecutive days; or
 b. 30 or more cumulative days.

Ombroaquic Kandiudults

HCCP. Other Kandiudults that in normal years are saturated with water in one or more layers within 100 cm of the mineral soil surface for either or both:
 1. 20 or more consecutive days; or
 2. 30 or more cumulative days.

Oxyaquic Kandiudults

HCCQ. Other Kandiudults that have a sombric horizon within 150 cm of the mineral soil surface.

Sombric Kandiudults

HCCR. Other Kandiudults that have, in all subhorizons in the upper 75 cm of the kandic horizon or throughout the entire kandic horizon if it is less than 75 cm thick, more than 50 percent colors that have all of the following:
 1. Hue of 2.5YR or redder; and
 2. A value, moist, of 3 or less; and
 3. A dry value no more than 1 unit higher than the moist value.

Rhodic Kandiudults

HCCS. Other Kandiudults.

Typic Kandiudults
Kanhapludults

Key to Subgroups

HCDA. Kanhapludults that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Kanhapludults

HCDB. Other Kanhapludults that have both:

1. 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface; and

2. In one or more layers within 75 cm of the mineral soil surface, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less, accompanied by both redox concentrations and aquic conditions for some time in normal years (or artificial drainage).

Plinthaquic Kanhapludults

HCDC. Other Kanhapludults that:

1. Meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of a kandic horizon at a depth of 50 to 100 cm; and

2. Have 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface.

Arenic Plinthic Kanhapludults

HCDD. Other Kanhapludults that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of a kandic horizon at a depth of 50 to 100 cm.

Arenic Kanhapludults

HCDE. Other Kanhapludults that have an ECEC of 1.5 cmol(+)/kg clay or less (sum of bases extracted with 1N
NH$_4$OAc pH 7, plus 1N KCl-extractable Al) in one or more horizons within 150 cm of the mineral soil surface.

Acrudoxic Kanhapludults

HCDF. Other Kanhapludults that have *both*:

1. Fragic soil properties *either*:
 a. In 30 percent or more of the volume of a layer 15 cm or more thick that has its upper boundary within 100 cm of the mineral soil surface; *or*
 b. In 60 percent or more of the volume of a layer 15 cm or more thick; *and*

2. In one or more layers within 75 cm of the mineral soil surface, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less, accompanied by *both* redox concentrations and aquic conditions for some time in normal years (or artificial drainage).

Fragiaquic Kanhapludults

HCDG. Other Kanhapludults that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $1/2$ Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Kanhapludults

HCDH. Other Kanhapludults that have, in one or more layers within 75 cm of the mineral soil surface, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less, accompanied by *both* redox concentrations and aquic conditions for some time in normal years (or artificial drainage).

Aquic Kanhapludults
HCDI. Other Kanhapludults that:

1. Have, in one or more horizons within 75 cm of the mineral soil surface, redox concentrations, a color value, moist, of 4 or more, and hue that is 10YR or yellower and becomes redder with increasing depth within 100 cm of the mineral soil surface; and

2. In normal years are saturated with water in one or more layers within 100 cm of the mineral soil surface for either or both:
 a. 20 or more consecutive days; or
 b. 30 or more cumulative days.

Ombroaquic Kanhapludults

HCDJ. Other Kanhapludults that in normal years are saturated with water in one or more layers within 100 cm of the mineral soil surface for either or both:

1. 20 or more consecutive days; or

2. 30 or more cumulative days.

Oxyaquic Kanhapludults

HCDK. Other Kanhapludults that have 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface.

Plinthic Kanhapludults

HCDL. Other Kanhapludults that have fragic soil properties either:

1. In 30 percent or more of the volume of a layer 15 cm or more thick that has its upper boundary within 100 cm of the mineral soil surface; or
2. In 60 percent or more of the volume of a layer 15 cm or more thick.

Fragic Kanhapludults

HCDM. Other Kanhapludults that have, in all subhorizons in the upper 50 cm of the kandic horizon or throughout the entire kandic horizon if it is less than 50 cm thick, more than 50 percent colors that have *all* of the following:

1. Hue of 2.5YR or redder; *and*
2. A value, moist, of 3 or less; *and*
3. A dry value no more than 1 unit higher than the moist value.

Rhodic Kanhapludults

HCDN. Other Kanhapludults.

Typic Kanhapludults

Paleudults

Key to Subgroups

HCEA. Paleudults that have *one or both* of the following:

1. Cracks within 125 cm of the mineral soil surface that are 5 mm or more wide through a thickness of 30 cm or more for some time in normal years and slickensides or wedge-shaped peds in a layer 15 cm or more thick that has its upper boundary within 125 cm of the mineral soil surface; *or*
2. A linear extensibility of 6.0 cm or more between the mineral soil surface and either a depth of 100 cm or a densic, lithic, or paralithic contact, whichever is shallower.

Vertic Paleudults

HCEB. Other Paleudults that have a horizon 5 cm or more thick, either below an Ap horizon or at a depth of 18 cm or
more from the mineral soil surface, whichever is deeper, that has *one or more* of the following:

1. In 25 percent or more of each pedon, cementation by organic matter and aluminum, with or without iron; *or*
2. Al plus \(\frac{1}{2} \) Fe percentages (by ammonium oxalate) totaling 0.25 or more, and half that amount or less in an overlying horizon; *or*
3. An ODOE value of 0.12 or more, and a value half as high or lower in an overlying horizon.

Spodic Paleudults

HCEC. Other Paleudults that:

1. Have, in one or more layers either within 75 cm of the mineral soil surface or, if the chroma throughout the upper 75 cm results from uncoated sand grains, within the upper 12.5 cm of the argillic horizon, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less, accompanied by *both* redox concentrations and aquic conditions for some time in normal years (or artificial drainage); *and*
2. Meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic horizon at a depth of 50 cm or more; *and*
3. Have 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface.

Arenic Plinthaquic Paleudults

HCED. Other Paleudults that:

1. Meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic horizon that is 50 cm or more below the mineral soil surface; *and*
2. Have, in one or more layers either within 75 cm of the mineral soil surface or, if the chroma throughout the upper 75 cm results from uncoated sand grains, within the upper 12.5 cm of the argillic horizon, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less, accompanied by both redox concentrations and aquic conditions for some time in normal years (or artificial drainage).

Aquic Arenic Paleudults

HCEE. Other Paleudults that have anthraquic conditions.

Anthraquic Paleudults

HCEF. Other Paleudults that have both:

1. 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface; and

2. In one or more layers either within 75 cm of the mineral soil surface or, if the chroma throughout the upper 75 cm results from uncoated sand grains, within the upper 12.5 cm of the argillic horizon, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less, accompanied by both redox concentrations and aquic conditions for some time in normal years (or artificial drainage).

Plinthaquic Paleudults

HCEG. Other Paleudults that have both:

1. Fragic soil properties either:
 a. In 30 percent or more of the volume of a layer 15 cm or more thick that has its upper boundary within 100 cm of the mineral soil surface; or
 b. In 60 percent or more of the volume of a layer 15 cm or more thick; and
2. In one or more layers within 75 cm of the mineral soil
surface, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less, accompanied by both redox concentrations and aquic conditions for some time in normal years (or artificial drainage).

Fragiaquic Paleudults

HCEH. Other Paleudults that have, in one or more layers within 75 cm of the mineral soil surface, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less, accompanied by both redox concentrations and aquic conditions for some time in normal years (or artificial drainage).

Aquic Paleudults

HCEI. Other Paleudults that in normal years are saturated with water in one or more layers within 100 cm of the mineral soil surface for either or both:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Paleudults

HCEJ. Other Paleudults that have an argillic horizon that:

1. Consists entirely of lamellae; or
2. Is a combination of two or more lamellae and one or more subhorizons with a thickness of 7.5 to 20 cm, each layer with an overlying eluvial horizon; or
3. Consists of one or more subhorizons that are more than 20 cm thick, each with an overlying eluvial horizon, and above these horizons there are either:
 a. Two or more lamellae with a combined thickness of 5 cm or more (that may or may not be part of the argillic horizon); or
 b. A combination of lamellae (that may or may not be part
of the argillic horizon) and one or more parts of the argillic horizon 7.5 to 20 cm thick, each with an overlying eluvial horizon.

Lamellic Paleudults

HCEK. Other Paleudults that:

1. Meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic horizon at a depth of 50 to 100 cm; **and**
2. Have 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface.

Arenic Plinthic Paleudults

HCEL. Other Paleudults that have a sandy particle-size class throughout the upper 75 cm of the argillic horizon or throughout the entire argillic horizon if it is less than 75 cm thick.

Psammentic Paleudults

HCEM. Other Paleudults that:

1. Meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic horizon at a depth of 100 cm or more; **and**
2. Have 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface.

Grossarenic Plinthic Paleudults

HCEN. Other Paleudults that have 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface.

Plinthic Paleudults

HCEO. Other Paleudults that:

1. Meet sandy or sandy-skeletal particle-size class criteria
throughout a layer extending from the mineral soil surface to the top of an argillic horizon at a depth of 50 to 100 cm; and

2. Have, in all subhorizons in the upper 75 cm of the argillic horizon or throughout the entire argillic horizon if it is less than 75 cm thick, more than 50 percent colors that have all of the following:
 a. Hue of 2.5YR or redder; and
 b. A value, moist, of 3 or less; and
 c. A dry value no more than 1 unit higher than the moist value.

Arenic Rhodic Paleudults

HCEP. Other Paleudults that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic horizon at a depth of 50 to 100 cm.

Arenic Paleudults

HCEQ. Other Paleudults that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic horizon at a depth of 100 cm or more.

Grossarenic Paleudults

HCER. Other Paleudults that have fragic soil properties either:

1. In 30 percent or more of the volume of a layer 15 cm or more thick that has its upper boundary within 100 cm of the mineral soil surface; or
2. In 60 percent or more of the volume of a layer 15 cm or more thick.

Fragic Paleudults
HCES. Other Paleudults that have, in all subhorizons in the upper 75 cm of the argillic horizon or throughout the entire argillic horizon if it is less than 75 cm thick, more than 50 percent colors that have all of the following:

1. Hue of 2.5YR or redder; and
2. A value, moist, of 3 or less; and
3. A dry value no more than 1 unit higher than the moist value.

Rhodic Paleudults

HCET. Other Paleudults.

Typic Paleudults

Plinthudults

Key to Subgroups

HCAA. All Plinthudults.

Typic Plinthudults

Rhodudults

Key to Subgroups

HCFA. Rhodudults that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Rhodudults

HCFB. Other Rhodudults that have a sandy particle-size class throughout the upper 75 cm of the argillic horizon or throughout the entire argillic horizon if it is less than 75 cm thick.

Psammentsic Rhodudults

HCFC. Other Rhodudults.

Typic Rhodudults
Ustults

Key to Great Groups

HDA. Ustults that have one or more horizons within 150 cm of the mineral soil surface in which plinthite either forms a continuous phase or constitutes one-half or more of the volume.

Plinthustults, p. 794

HDB. Other Ustults that:

1. Do not have a densic, lithic, paralithic, or petroferric contact within 150 cm of the mineral soil surface; and
2. Have a kandic horizon; and
3. Within 150 cm of the mineral soil surface, either:
 a. With increasing depth, do not have a clay decrease of 20 percent or more (relative) from the maximum clay content; or
 b. Have 5 percent or more (by volume) skeletans on faces of peds in the layer that has a 20 percent lower clay content and, below that layer, a clay increase of 3 percent or more (absolute) in the fine-earth fraction.

Kandiustults, p. 787

HDC. Other Ustults that have a kandic horizon.

Kanhaplustults, p. 790

HDD. Other Ustults that:

1. Do not have a densic, lithic, paralithic, or petroferric contact within 150 cm of the mineral soil surface; and
2. Within 150 cm of the mineral soil surface, either:
 a. With increasing depth, do not have a clay decrease
of 20 percent or more (relative) from the maximum clay content; or

b. Have 5 percent or more (by volume) skeletans on faces of peds in the layer that has a 20 percent lower clay content and, below that layer, a clay increase of 3 percent or more (absolute) in the fine-earth fraction.

Paleustults, p. 794

HDE. Other Ustults that have both:

1. An epipedon that has a color value, moist, of 3 or less throughout; and

2. In all subhorizons in the upper 100 cm of the argillic horizon or throughout the entire argillic horizon if it is less than 100 cm thick, more than 50 percent colors that have all of the following:
 a. Hue of 2.5YR or redder; and
 b. A value, moist, of 3 or less; and
 c. A dry value no more than 1 unit higher than the moist value.

Rhodustults, p. 795

HDF. Other Ustults.

Haplustults, p. 785

Haplustults

Key to Subgroups

HDFA. Haplustults that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Haplustults

HDFB. Other Haplustults that have a petroferric contact within 100 cm of the mineral soil surface.

Petroferric Haplustults
HDFC. Other Haplustults that have, in one or more layers both within the upper 12.5 cm of the argillic horizon and within 75 cm of the mineral soil surface, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less, accompanied by both redox concentrations and aquic conditions for some time in normal years (or artificial drainage).

Aquic Haplustults

HDFD. Other Haplustults that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic horizon at a depth of 50 cm or more below the mineral soil surface.

Arenic Haplustults

HDFE. Other Haplustults that:

1. Have, in one or more horizons within 75 cm of the mineral soil surface, redox concentrations, a color value, moist, of 4 or more, and hue that is 10YR or yellower and becomes redder with increasing depth within 100 cm of the mineral soil surface; and

2. In normal years are saturated with water in one or more layers within 100 cm of the mineral soil surface for either or both:
 a. 20 or more consecutive days; or
 b. 30 or more cumulative days.

Ombroaquic Haplustults

HDFF. Other Haplustults that have 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface.

Plinthic Haplustults
HDFG. Other Haplustults that have a CEC (by 1N NH$_4$OAc pH 7) of less than 24 cmol(+)/kg clay in 50 percent or more of the entire argillic horizon if less than 100 cm thick or of its upper 100 cm.

Kanhaplic Haplustults

HDFH. Other Haplustults.

Typic Haplustults

Kandiustults

Key to Subgroups

HDBA. Kandiustults that have an ECEC of 1.5 cmol(+)/kg clay or less (sum of bases extracted with 1N NH$_4$OAc pH 7, plus 1N KCl-extractable Al) in one or more horizons within 150 cm of the mineral soil surface.

Acrustoxic Kandiustults

HDBB. Other Kandiustults that have, in one or more layers within 75 cm of the mineral soil surface, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less, accompanied by both redox concentrations and aquic conditions for some time in normal years (or artificial drainage).

Aquic Kandiustults

HDBC. Other Kandiustults that:

1. Meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of a kandic horizon at a depth of 50 cm or more; and

2. Have 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface.

Arenic Plinthic Kandiustults

HDBD. Other Kandiustults that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from
the mineral soil surface to the top of a kandic horizon at a depth of 50 cm or more.

Arenic Kandiustults

HDBE. Other Kandiustults that have **both**:

1. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0; and

2. When neither irrigated nor fallowed to store moisture, either:
 a. A mesic or thermic soil temperature regime and a moisture control section that is dry in some part for 135 or fewer of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
 b. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that is dry in some or all parts for fewer than 120 cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C.

Udandic Kandiustults

HDBF. Other Kandiustults that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Kandiustults
HDBG. Other Kandiustults that have 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface.

Plinthic Kandiustults

HDBH. Other Kandiustults that, when neither irrigated nor fallowed to store moisture, have *either*:

1. A thermic, mesic, or colder soil temperature regime and a moisture control section that in normal years is dry in some part for more than four-tenths of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

2. A hyperthermic, isomesic, or warmer *iso* soil temperature regime and a moisture control section that in normal years:

 a. Is moist in some or all parts for fewer than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and

 b. Is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C.

Aridic Kandiustults

HDBI. Other Kandiustults that, when neither irrigated nor fallowed to store moisture, have *either*:

1. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for 135 or fewer of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

2. A hyperthermic, isomesic, or warmer *iso* soil temperature regime and a moisture control section that in normal years is
dry in some or all parts for fewer than 120 cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C.

Udic Kandiustults

HDBJ. Other Kandiustults that have, in all subhorizons in the upper 50 cm of the kandic horizon or throughout the entire kandic horizon if it is less than 50 cm thick, more than 50 percent colors that have all of the following:

1. Hue of 2.5YR or redder; and
2. A value, moist, of 3 or less; and
3. A dry value no more than 1 unit higher than the moist value.

Rhodic Kandiustults

HDBK. Other Kandiustults.

Typic Kandiustults

Kanhaplustults

Key to Subgroups

HDCA. Kanhaplustults that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Kanhaplustults

HDCB. Other Kanhaplustults that have an ECEC of 1.5 cmol(+)/kg clay or less (sum of bases extracted with 1N NH₄OAc pH 7, plus 1N KCl-extractable Al) in one or more horizons within 150 cm of the mineral soil surface.

Acrustoxic Kanhaplustults

HDCC. Other Kanhaplustults that have, in one or more layers within 75 cm of the mineral soil surface, redox depletions with a color value, moist, of 4 or more and chroma of 2 or
less, accompanied by both redox concentrations and aquatic conditions for some time in normal years (or artificial drainage).

Aquic Kanhaplustults

HDCD. Other Kanhaplustults that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of a kandic horizon at a depth of 50 to 100 cm.

Arenic Kanhaplustults

HDCE. Other Kanhaplustults that have both:

1. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus Fe percentages (by ammonium oxalate) totaling more than 1.0; and

2. When neither irrigated nor fallowed to store moisture, either:

a. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for 135 or fewer of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

b. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years is dry in some or all parts for fewer than 120 cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C.

Udandic Kanhaplustults
HDCF. Other Kanhaplustults that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm³ or less, measured at 33 kPa water retention, and Al plus 1/2 Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Kanhaplustults

HDCG. Other Kanhaplustults that have 5 percent or more (by volume) plinthite in one or more horizons within 150 cm of the mineral soil surface.

Plinthic Kanhaplustults

HDCH. Other Kanhaplustults that:

1. Have, in one or more horizons within 75 cm of the mineral soil surface, redox concentrations, a color value, moist, of 4 or more, and hue that is 10YR or yellower and becomes redder with increasing depth within 100 cm of the mineral soil surface; and

2. In normal years are saturated with water in one or more layers within 100 cm of the mineral soil surface for either or both:
 a. 20 or more consecutive days; or
 b. 30 or more cumulative days.

Ombroaquic Kanhaplustults

HDCI. Other Kanhaplustults that, when neither irrigated nor fallowed to store moisture, have either:

1. A thermic, mesic, or colder soil temperature regime and a moisture control section that in normal years is dry in some part for more than four-tenths of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or
2. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years:
 a. Is moist in some or all parts for fewer than 90 consecutive days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C; and
 b. Is dry in some part for six-tenths or more of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C.

Aridic Kanhaplustults

HDCJ. Other Kanhaplustults that, when neither irrigated nor fallowed to store moisture, have either:

1. A mesic or thermic soil temperature regime and a moisture control section that in normal years is dry in some part for 135 or fewer of the cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 5 °C; or

2. A hyperthermic, isomesic, or warmer iso soil temperature regime and a moisture control section that in normal years is dry in some or all parts for fewer than 120 cumulative days per year when the soil temperature at a depth of 50 cm below the soil surface is higher than 8 °C.

Udic Kanhaplustults

HDCK. Other Kanhaplustults that have, in all subhorizons in the upper 50 cm of the kandic horizon or throughout the entire kandic horizon if it is less than 50 cm thick, more than 50 percent colors that have all of the following:

1. Hue of 2.5YR or redder; and

2. A value, moist, of 3 or less; and
3. A dry value no more than 1 unit higher than the moist value.

Rhodic Kanhaplustults

HDCL. Other Kanhaplustults.

Typic Kanhaplustults

Paleustults

Key to Subgroups

HDDA. All Paleustults.

Typic Paleustults

Plinthustults

Key to Subgroups

HDAA. Plinthustults that have *either*:

1. A dense, lithic, paralithic, or petroferric contact within 150 cm of the mineral soil surface; or

2. Within 150 cm of the mineral soil surface, *both*:
 a. With increasing depth, a clay decrease of 20 percent or more (relative) from the maximum clay content; and
 b. Less than 5 percent (by volume) skeletons on faces of peds in the layer that has a 20 percent lower clay content or, below that layer, a clay increase of less than 3 percent (absolute) in the fine-earth fraction.

Haplic Plinthustults

HDAB. Other Plinthustults.

Typic Plinthustults
Rhodustults

Key to Subgroups

HDEA. Rhodustults that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Rhodustults

HDEB. Other Rhodustults that have a sandy particle-size class throughout the upper 75 cm of the argillic horizon or throughout the entire argillic horizon if it is less than 75 cm thick.

Psammentic Rhodustults

HDEC. Other Rhodustults.

Typic Rhodustults

Xerults

Key to Great Groups

HEA. Xerults that:

1. Do not have a densic, lithic, or paralithic contact within 150 cm of the mineral soil surface; and

2. Within 150 cm of the mineral soil surface, either:
 a. With increasing depth, do not have a clay decrease of 20 percent or more (relative) from the maximum clay content; or
 b. Have 5 percent or more (by volume) skeletans on faces of peds or 5 percent or more (by volume) plinthite, or both, in the layer that has a 20 percent lower clay content and, below that layer, a clay increase of 3 percent or more (absolute) in the fine-earth fraction.

Palexerults, p. 798
HEB. Other Xerults.

Haploxerults

Key to Subgroups

HEBA. Haploxerults that have both:

1. A lithic contact within 50 cm of the mineral soil surface; and

2. In each pedon, a discontinuous argillic or kandic horizon that is interrupted by ledges of bedrock.

Lithic Ruptic-Inceptic Haploxerults

HEBB. Other Haploxerults that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Haploxerults

HEBC. Other Haploxerults that have, in one or more subhorizons within the upper 25 cm of the argillic or kandic horizon, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less, accompanied by both redox concentrations and aquic conditions for some time in normal years (or artificial drainage).

Aquic Haploxerults

HEBD. Other Haploxerults that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $1/2$ Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Haploxerults

HEBE. Other Haploxerults that have an argillic or kandic horizon that:
1. Consists entirely of lamellae; or
2. Is a combination of two or more lamellae and one or more subhorizons with a thickness of 7.5 to 20 cm, each layer with an overlying eluvial horizon; or
3. Consists of one or more subhorizons that are more than 20 cm thick, each with an overlying eluvial horizon, and above these horizons there are either:
 a. Two or more lamellae with a combined thickness of 5 cm or more (that may or may not be part of the argillic or kandic horizon); or
 b. A combination of lamellae (that may or may not be part of the argillic or kandic horizon) and one or more parts of the argillic or kandic horizon 7.5 to 20 cm thick, each with an overlying eluvial horizon.

 Lamellic Haploxerults

 HEBF. Other Haploxerults that have a sandy particle-size class throughout the upper 75 cm of the argillic or kandic horizon or throughout the entire horizon if it is less than 75 cm thick.

 Psammentic Haploxerults

 HEBG. Other Haploxerults that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic or kandic horizon at a depth of 50 to 100 cm.

 Arenic Haploxerults

 HEBH. Other Haploxerults that meet sandy or sandy-skeletal particle-size class criteria throughout a layer extending from the mineral soil surface to the top of an argillic or kandic horizon at a depth of 100 cm or more.

 Grossarenic Haploxerults
HEBI. Other Haploxerults.

Typic Haploxerults

Palexerults

Key to Subgroups

HEAA. Palexerults that have both:

1. In one or more subhorizons within the upper 25 cm of the argillic or kandic horizon, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less, accompanied by both redox concentrations and aquic conditions for some time in normal years (or artificial drainage); and

2. Throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0.

Aquandic Palexerults

HEAB. Other Palexerults that have, in one or more subhorizons within the upper 25 cm of the argillic or kandic horizon, redox depletions with a color value, moist, of 4 or more and chroma of 2 or less, accompanied by both redox concentrations and aquic conditions for some time in normal years (or artificial drainage).

Aquic Palexerults

HEAC. Other Palexerults that have, throughout one or more horizons with a total thickness of 18 cm or more within 75 cm of the mineral soil surface, a fine-earth fraction with both a bulk density of 1.0 g/cm3 or less, measured at 33 kPa water retention, and Al plus $\frac{1}{2}$ Fe percentages (by ammonium oxalate) totaling more than 1.0.

Andic Palexerults
HEAD. Other Palexerults.

Typic Palexerults
CHAPTER 16
Vertisols

Key to Suborders

FA. Vertisols that have, in one or more horizons within 50 cm of the mineral soil surface, aquic conditions for some time in normal years (or artificial drainage) and one or both of the following:

1. In more than half of each pedon, either on faces of peds or in the matrix if peds are absent, 50 percent or more chroma of either:
 a. 2 or less if redox concentrations are present; or
 b. 1 or less; or

2. Enough active ferrous iron (Fe^{2+}) to give a positive reaction to alpha,alpha-dipyridyl at a time when the soil is not being irrigated.

 Aquerts, p. 801

FB. Other Vertisols that have a cryic soil temperature regime.

 Cryerts, p. 812

FC. Other Vertisols that in normal years have both:

1. A thermic, mesic, or frigid soil temperature regime; and

2. If not irrigated during the year, cracks that remain both:
 a. 5 mm or more wide, through a thickness of 25 cm or more within 50 cm of the mineral soil surface, for 60 or more consecutive days during the 90 days following the summer solstice; and
b. Closed for 60 or more consecutive days during the 90 days following the winter solstice.

Xererts, p. 830

FD. Other Vertisols that, if not irrigated during the year, have cracks in normal years that remain closed for less than 60 consecutive days during a period when the soil temperature at a depth of 50 cm from the soil surface is higher than 8 °C.

Torrerts, p. 813

FE. Other Vertisols that, if not irrigated during the year, have cracks in normal years that are 5 mm or more wide, through a thickness of 25 cm or more within 50 cm of the mineral soil surface, for 90 or more cumulative days per year.

Usterts, p. 820

FF. Other Vertisols.

Uderts, p. 817

Aquerts

Key to Great Groups

FAA. Aquerts that have within 100 cm of the mineral soil surface _either:_

1. A sulfuric horizon; _or_

2. Sulfidic materials.

Sulfaquerts, p. 811

FAB. Other Aquerts that have a salic horizon within 100 cm of the mineral soil surface.

Salaquerts, p. 810

FAC. Other Aquerts that have a duripan within 100 cm of the mineral soil surface.

Duraquerts, p. 803
FAD. Other Aquerts that have a natric horizon within 100 cm of the mineral soil surface.

Natraquerts, p. 810

FAE. Other Aquerts that have a calcic horizon within 100 cm of the mineral soil surface.

Calciaquerts, p. 802

FAF. Other Aquerts that have, throughout one or more horizons with a total thickness of 25 cm or more within 50 cm of the mineral soil surface, *both*:

1. An electrical conductivity in the saturation extract of less than 4.0 dS/m at 25 °C; *and*
2. A pH value of 4.5 or less in 0.01 M CaCl$_2$ (5.0 or less in 1:1 water).

Dystraquerts, p. 804

FAG. Other Aquerts that have episaturation.

Epiaquerts, p. 808

FAH. Other Aquerts.

Endoaquerts, p. 806

Calciaquerts

Key to Subgroups

FAEA. Calciaquerts that have, in one or more horizons between either an Ap horizon or a depth of 25 cm from the mineral soil surface, whichever is deeper, and either a depth of 75 cm or the upper boundary of a duripan if shallower, 50 percent or more colors as follows:

1. Hue of 2.5Y or redder and *either*:
 a. A color value, moist, of 6 or more and chroma of 3 or more; *or*
b. A color value, moist, of 5 or less and chroma of 2 or more; or
2. Hue of 5Y and chroma of 3 or more; or
3. Chroma of 2 or more and no redox concentrations.

Aeric Calciaquerts

FAEB. Other Calciaquerts.

Typic Calciaquerts

Duraquerts

Key to Subgroups

FACA. Duraquerts that, if not irrigated during the year, have cracks in normal years that are 5 mm or more wide, through a thickness of 25 cm or more within 50 cm of the mineral soil surface, for 210 or more cumulative days per year.

Aridic Duraquerts

FACB. Other Duraquerts that have a thermic, mesic, or frigid soil temperature regime and that, if not irrigated during the year, have cracks in normal years that remain both:

1. 5 mm or more wide, through a thickness of 25 cm or more within 50 cm of the mineral soil surface, for 60 or more consecutive days during the 90 days following the summer solstice; and

2. Closed for 60 or more consecutive days during the 90 days following the winter solstice.

Xeric Duraquerts

FACC. Other Duraquerts that, if not irrigated during the year, have cracks in normal years that are 5 mm or more wide, through a thickness of 25 cm or more within 50 cm of the mineral soil surface, for 90 or more cumulative days per year.

Ustic Duraquerts
FACD. Other Duraquerts that have, in one or more horizons between either an Ap horizon or a depth of 25 cm from the mineral soil surface, whichever is deeper, and either a depth of 75 cm or the upper boundary of the duripan if shallower, 50 percent or more colors as follows:

1. Hue of 2.5Y or redder and *either*:
 a. A color value, moist, of 6 or more and chroma of 3 or more; *or*
 b. A color value, moist, of 5 or less and chroma of 2 or more; *or*

2. Hue of 5Y and chroma of 3 or more; *or*

3. Chroma of 2 or more and no redox concentrations.

Aeric Duraquerts

FACE. Other Duraquerts that have, in one or more horizons within 30 cm of the mineral soil surface, *one or both* of the following in more than half of each pedon:

1. A color value, moist, of 4 or more; *or*

2. A color value, dry, of 6 or more.

Chromic Duraquerts

FACF. Other Duraquerts.

Typic Duraquerts

Dystraquerts

Key to Subgroups

FAFA. Dystraquerts that have, in one or more horizons within 100 cm of the mineral soil surface, jarosite concentrations and a pH value of 4.0 or less (1:1 water, air-dried slowly in shade).

Sulfaqueptic Dystraquerts
FAFB. Other Dystraquerts that, if not irrigated during the year, have cracks in normal years that are 5 mm or more wide, through a thickness of 25 cm or more within 50 cm of the mineral soil surface, for 210 or more cumulative days per year.

Aridic Dystraquerts

FAFC. Other Dystraquerts that, if not irrigated during the year, have cracks in normal years that are 5 mm or more wide, through a thickness of 25 cm or more within 50 cm of the mineral soil surface, for 90 or more cumulative days per year.

Ustic Dystraquerts

FAFD. Other Dystraquerts that have, in one or more horizons between either an Ap horizon or a depth of 25 cm from the mineral soil surface, whichever is deeper, and a depth of 75 cm, 50 percent or more colors as follows:

1. Hue of 2.5Y or redder and *either*:
 a. A color value, moist, of 6 or more and chroma of 3 or more; *or*
 b. A color value, moist, of 5 or less and chroma of 2 or more; *or*
2. Hue of 5Y and chroma of 3 or more; *or*
3. Chroma of 2 or more and no redox concentrations.

Aeric Dystraquerts

FAFE. Other Dystraquerts that have a densic, lithic, or paralithic contact within 100 cm of the mineral soil surface.

Leptic Dystraquerts

FAFF. Other Dystraquerts that have a layer, 25 cm or more thick within 100 cm of the mineral soil surface, that contains less than 27 percent clay in its fine-earth fraction.

Entic Dystraquerts
FAFG. Other Dystraquerts that have, in one or more horizons within 30 cm of the mineral soil surface, one or both of the following in more than half of each pedon:

1. A color value, moist, of 4 or more; or
2. A color value, dry, of 6 or more.

Chromic Dystraquerts

FAFH. Other Dystraquerts.

Typic Dystraquerts

Endoaquerts

Key to Subgroups

FAHA. Endoaquerts that have, throughout a layer 15 cm or more thick within 100 cm of the mineral soil surface, an electrical conductivity of 15 dS/m or more (saturated paste) for 6 or more months in normal years.

Halic Endoaquerts

FAHB. Other Endoaquerts that have, in one or more horizons within 100 cm of the mineral soil surface, an exchangeable sodium percentage of 15 or more (or a sodium adsorption ratio of 13 or more) for 6 or more months in normal years.

Sodic Endoaquerts

FAHC. Other Endoaquerts that, if not irrigated during the year, have cracks in normal years that are 5 mm or more wide, through a thickness of 25 cm or more within 50 cm of the mineral soil surface, for 210 or more cumulative days per year.

Aridic Endoaquerts

FAHD. Other Endoaquerts that have a thermic, mesic, or frigid soil temperature regime and that, if not irrigated during the year, have cracks in normal years that remain both:
1. 5 mm or more wide, through a thickness of 25 cm or more within 50 cm of the mineral soil surface, for 60 or more consecutive days during the 90 days following the summer solstice; and

2. Closed for 60 or more consecutive days during the 90 days following the winter solstice.

Xeric Endoaquerts

FAHE. Other Endoaquerts that, if not irrigated during the year, have cracks in normal years that are 5 mm or more wide, through a thickness of 25 cm or more within 50 cm of the mineral soil surface, for 90 or more cumulative days per year.

Ustic Endoaquerts

FAHF. Other Endoaquerts that have, in one or more horizons between either an Ap horizon or a depth of 25 cm from the mineral soil surface, whichever is deeper, and a depth of 75 cm, 50 percent or more colors as follows:

1. Hue of 2.5Y or redder and *either*:
 a. A color value, moist, of 6 or more and chroma of 3 or more; or
 b. A color value, moist, of 5 or less and chroma of 2 or more; or
2. Hue of 5Y and chroma of 3 or more; or
3. Chroma of 2 or more and no redox concentrations.

Aeric Endoaquerts

FAHG. Other Endoaquerts that have a densic, lithic, or paralithic contact within 100 cm of the mineral soil surface.

Leptic Endoaquerts

FAHH. Other Endoaquerts that have a layer, 25 cm or more
thick within 100 cm of the mineral soil surface, that contains less than 27 percent clay in its fine-earth fraction.

Entic Endoaquerts

FAHI. Other Endoaquerts that have, in one or more horizons within 30 cm of the mineral soil surface, *one or both* of the following in more than half of each pedon:

1. A color value, moist, of 4 or more; or
2. A color value, dry, of 6 or more.

Chromic Endoaquerts

FAHJ. Other Endoaquerts.

Typic Endoaquerts

Epiaquerts

Key to Subgroups

FAGA. Epiaquerts that have, throughout a layer 15 cm or more thick within 100 cm of the mineral soil surface, an electrical conductivity of 15 dS/m or more (saturated paste) for 6 or more months in normal years.

Halic Epiaquerts

FAGB. Other Epiaquerts that have, in one or more horizons within 100 cm of the mineral soil surface, an exchangeable sodium percentage of 15 or more (or a sodium adsorption ratio of 13 or more) for 6 or more months in normal years.

Sodic Epiaquerts

FAGC. Other Epiaquerts that, if not irrigated during the year, have cracks in normal years that are 5 mm or more wide, through a thickness of 25 cm or more within 50 cm of the mineral soil surface, for 210 or more cumulative days per year.

Aridic Epiaquerts
FAGD. Other Epiaquerts that have a thermic, mesic, or frigid soil temperature regime and that, if not irrigated during the year, have cracks in normal years that remain both:

1. 5 mm or more wide, through a thickness of 25 cm or more within 50 cm of the mineral soil surface, for 60 or more consecutive days during the 90 days following the summer solstice; and
2. Closed for 60 or more consecutive days during the 90 days following the winter solstice.

Xeric Epiaquerts

FAGE. Other Epiaquerts that, if not irrigated during the year, have cracks in normal years that are 5 mm or more wide, through a thickness of 25 cm or more within 50 cm of the mineral soil surface, for 90 or more cumulative days per year.

Ustic Epiaquerts

FAGF. Other Epiaquerts that have, in one or more horizons between either an Ap horizon or a depth of 25 cm from the mineral soil surface, whichever is deeper, and a depth of 75 cm, 50 percent or more colors as follows:

1. Hue of 2.5Y or redder and either:
 a. A color value, moist, of 6 or more and chroma of 3 or more; or
 b. A color value, moist, of 5 or less and chroma of 2 or more; or
2. Hue of 5Y and chroma of 3 or more; or
3. Chroma of 2 or more and no redox concentrations.

Aeric Epiaquerts
FAGG. Other Epiaquerts that have a densic, lithic, or paralithic contact within 100 cm of the mineral soil surface.

Leptic Epiaquerts

FAGH. Other Epiaquerts that have a layer, 25 cm or more thick within 100 cm of the mineral soil surface, that contains less than 27 percent clay in its fine-earth fraction.

Entic Epiaquerts

FAGI. Other Epiaquerts that have, in one or more horizons within 30 cm of the mineral soil surface, one or both of the following in more than half of each pedon:

1. A color value, moist, of 4 or more; or
2. A color value, dry, of 6 or more.

Chromic Epiaquerts

FAGJ. Other Epiaquerts.

Typic Epiaquerts

Natraquerts

Key to Subgroups

FADA. All Natraquerts.

Typic Natraquerts

Salaquerts

Key to Subgroups

FABA. Salaquerts that, if not irrigated during the year, have cracks in normal years that are 5 mm or more wide, through a thickness of 25 cm or more within 50 cm of the mineral soil surface, for 210 or more cumulative days per year.

Aridic Salaquerts

FABB. Other Salaquerts that, if not irrigated during the year, have cracks in normal years that are 5 mm or more wide,
through a thickness of 25 cm or more within 50 cm of the mineral soil surface, for 90 or more cumulative days per year.

Ustic Salaquerts

FABC. Other Salaquerts that have a densic, lithic, or paralithic contact within 100 cm of the mineral soil surface.

Leptic Salaquerts

FABD. Other Salaquerts that have a layer, 25 cm or more thick within 100 cm of the mineral soil surface, that contains less than 27 percent clay in its fine-earth fraction.

Entic Salaquerts

FABE. Other Salaquerts that have, in one or more horizons within 30 cm of the mineral soil surface, 50 percent or more colors as follows:

1. A color value, moist, of 4 or more; or
2. A color value, dry, of 6 or more; or
3. Chroma of 3 or more.

Chromic Salaquerts

FABF. Other Salaquerts.

Typic Salaquerts

Sulfaquerts

Key to Subgroups

FAAA. Sulfaquerts that have a salic horizon within 75 cm of the mineral soil surface.

Salic Sulfaquerts

FAAB. Other Sulfaquerts that do not have a sulfuric horizon within 100 cm of the mineral soil surface.

Sulfic Sulfaquerts
FAAC. Other Sulfaquerts.

Typic Sulfaquerts

Cryerts

Key to Great Groups

FBA. Cryerts that have 10 kg/m² or more organic carbon between the mineral soil surface and a depth of 50 cm.

Humicryerts, p. 813

FBB. Other Cryerts.

Haplocryerts, p. 812

Haplocryerts

Key to Subgroups

FBBA. Haplocryerts that have, in one or more horizons within 100 cm of the mineral soil surface, an exchangeable sodium percentage of 15 or more (or a sodium adsorption ratio of 13 or more) for 6 or more months in normal years.

Sodic Haplocryerts

FBBB. Other Haplocryerts that have, in one or more horizons within 30 cm of the mineral soil surface, 50 percent or more colors as follows:

1. A color value, moist, of 4 or more; or
2. A color value, dry, of 6 or more; or
3. Chroma of 3 or more.

Chromic Haplocryerts

FBBC. Other Haplocryerts.

Typic Haplocryerts
Humicryerts

Key to Subgroups

FBAA. Humicryerts that have, in one or more horizons within 100 cm of the mineral soil surface, an exchangeable sodium percentage of 15 or more (or a sodium adsorption ratio of 13 or more) for 6 or more months in normal years.

Sodic Humicryerts

FBAB. Other Humicryerts.

Typic Humicryerts

Torrerts

Key to Great Groups

FDA. Torrerts that have a salic horizon within 100 cm of the soil surface.

Salitorrerts, p. 816

FDB. Other Torrerts that have a gypsic horizon within 100 cm of the soil surface.

Gypsitorrerts, p. 814

FDC. Other Torrerts that have a calcic or petrocalcic horizon within 100 cm of the soil surface.

Calcitorrerts, p. 813

FDD. Other Torrerts.

Haplotorrerts, p. 815

Calcitorrerts

Key to Subgroups

FDCA. Calcitorrerts that have a petrocalcic horizon within 100 cm of the soil surface.

Petrocalcic Calcitorrerts
FDCB. Other Calcitorrerts that have a densic, lithic, or paralithic contact or a duripan within 100 cm of the soil surface.
Leptic Calcitorrerts

FDCC. Other Calcitorrerts that have a layer, 25 cm or more thick within 100 cm of the soil surface, that contains less than 27 percent clay in its fine-earth fraction.
Entic Calcitorrerts

FDCD. Other Calcitorrerts that have, in one or more horizons within 30 cm of the soil surface, 50 percent or more colors as follows:
1. A color value, moist, of 4 or more; *or*
2. A color value, dry, of 6 or more; *or*
3. Chroma of 3 or more.
Chromic Calcitorrerts

FDCE. Other Calcitorrerts.
Typic Calcitorrerts

Gypsitorrerts

Key to Subgroups

FDBA. Gypsitorrerts that have, in one or more horizons within 30 cm of the soil surface, 50 percent or more colors as follows:
1. A color value, moist, of 4 or more; *or*
2. A color value, dry, of 6 or more; *or*
3. Chroma of 3 or more.
Chromic Gypsitorrerts

FDBB. Other Gypsitorrerts.
Typic Gypsitorrerts
Haplotorrerts

Key to Subgroups

FDDA. Haplotorrerts that have, throughout a layer 15 cm or more thick within 100 cm of the soil surface, an electrical conductivity of 15 dS/m or more (saturated paste) for 6 or more months in normal years.

Halic Haplotorrerts

FDDB. Other Haplotorrerts that have, in one or more horizons within 100 cm of the soil surface, an exchangeable sodium percentage of 15 or more (or a sodium adsorption ratio of 13 or more) for 6 or more months in normal years.

Sodic Haplotorrerts

FDDC. Other Haplotorrerts that have a densic, lithic, or paralithic contact or a duripan within 100 cm of the soil surface.

Leptic Haplotorrerts

FDDD. Other Haplotorrerts that have a layer, 5 cm or more thick within 100 cm of the soil surface, that contains less than 27 percent clay in its fine-earth fraction.

Entic Haplotorrerts

FDDE. Other Haplotorrerts that have, in one or more horizons within 30 cm of the soil surface, 50 percent or more colors as follows:

1. A color value, moist, of 4 or more; or
2. A color value, dry, of 6 or more; or
3. Chroma of 3 or more.

Chromic Haplotorrerts

FDDF. Other Haplotorrerts.

Typic Haplotorrerts
Salitorrerts
Key to Subgroups

FDAA. Salitorrerts that have, in one or more horizons within 100 cm of the soil surface, aquic conditions for some time in normal years (or artificial drainage) and either:

1. Redoximorphic features; or
2. Enough active ferrous iron (Fe$^{2+}$) to give a positive reaction to alpha,alpha-dipyridyl at a time when the soil is not being irrigated.

Aquic Salitorrerts

FDAB. Other Salitorrerts that have a densic, lithic, or paralithic contact, a duripan, or a petrocalcic horizon within 100 cm of the soil surface.

Leptic Salitorrerts

FDAC. Other Salitorrerts that have a layer, 5 cm or more thick within 100 cm of the soil surface, that contains less than 27 percent clay in its fine-earth fraction.

Entic Salitorrerts

FDAD. Other Salitorrerts that have, in one or more horizons within 30 cm of the soil surface, 50 percent or more colors as follows:

1. A color value, moist, of 4 or more; or
2. A color value, dry, of 6 or more; or
3. Chroma of 3 or more.

Chromic Salitorrerts

FDAE. Other Salitorrerts.

Typic Salitorrerts
Uderts

Key to Great Groups

FFA. Uderts that have, throughout one or more horizons with a total thickness of 25 cm or more within 50 cm of the mineral soil surface, both:

1. An electrical conductivity in the saturation extract of less than 4.0 dS/m at 25 °C; and
2. A pH value of 4.5 or less in 0.01 M CaCl₂ (5.0 or less in saturated paste).

Dystruderts, p. 817

FFB. Other Uderts.

Hapluderts, p. 818

Dystruderts

Key to Subgroups

FFAA. Dystruderts that have, in one or more horizons within 100 cm of the mineral soil surface, aquic conditions for some time in normal years (or artificial drainage) and either:

1. Redoximorphic features; or
2. Enough active ferrous iron (Fe²⁺) to give a positive reaction to alpha,alpha-dipyridyl at a time when the soil is not being irrigated.

Aquic Dystruderts

FFAB. Other Dystruderts that are saturated with water in one or more layers within 100 cm of the mineral soil surface in normal years for either or both:

1. 20 or more consecutive days; or
2. 30 or more cumulative days.

Oxyaquic Dystruderts
FFAC. Other Dystruderts that have a densic, lithic, or paralithic contact within 100 cm of the mineral soil surface.

Leptic Dystruderts

FFAD. Other Dystruderts that have a layer, 25 cm or more thick within 100 cm of the mineral soil surface, that contains less than 27 percent clay in its fine-earth fraction.

Entic Dystruderts

FFAE. Other Dystruderts that have, in one or more horizons within 30 cm of the mineral soil surface, 50 percent or more colors as follows:

1. A color value, moist, of 4 or more; *or*
2. A color value, dry, of 6 or more; *or*
3. Chroma of 3 or more.

Chromic Dystruderts

FFAF. Other Dystruderts.

Typic Dystruderts

Hapluderts

Key to Subgroups

FFBA. Hapluderts that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Hapluderts

FFBB. Other Hapluderts that have, in one or more horizons within 100 cm of the mineral soil surface, aquic conditions for some time in normal years (or artificial drainage) and *either*:

1. Redoximorphic features; *or*
2. Enough active ferrous iron (Fe$^{2+}$) to give a positive
reaction to alpha,alpha-dipyridyl at a time when the soil is not being irrigated.

Aquic Hapluderts

FFBC. Other Hapluderts that are saturated with water in one or more layers within 100 cm of the mineral soil surface in normal years for *either or both*:

1. 20 or more consecutive days; *or*
2. 30 or more cumulative days.

Oxyaquic Hapluderts

FFBD. Other Hapluderts that have a densic, lithic, or paralithic contact within 100 cm of the mineral soil surface.

Leptic Hapluderts

FFBE. Other Hapluderts that have a layer, 25 cm or more thick within 100 cm of the mineral soil surface, that contains less than 27 percent clay in its fine-earth fraction.

Entic Hapluderts

FFBF. Other Hapluderts that have, in one or more horizons within 30 cm of the mineral soil surface, 50 percent or more colors as follows:

1. A color value, moist, of 4 or more; *or*
2. A color value, dry, of 6 or more; *or*
3. Chroma of 3 or more.

Chromic Hapluderts

FFBG. Other Hapluderts.

Typic Hapluderts
Usterts

Key to Great Groups

FEA. Usterts that have, throughout one or more horizons with a total thickness of 25 cm or more within 50 cm of the mineral soil surface, both:

1. An electrical conductivity in the saturation extract of less than 4.0 dS/m at 25 °C; and
2. A pH value of 4.5 or less in 0.01 M CaCl$_2$ (5.0 or less in saturated paste).

Dystrusterts, p. 822

FEB. Other Usterts that have a salic horizon within 100 cm of the mineral soil surface.

Salusterts, p. 828

FEC. Other Usterts that have a gypsic horizon within 100 cm of the mineral soil surface.

Gypsiusterts, p. 824

FED. Other Usterts that have a calcic or petrocalcic horizon within 100 cm of the mineral soil surface.

Calciusterts, p. 820

FEE. Other Usterts.

Haplusterts, p. 825

Calciusterts

Key to Subgroups

FEDA. Calciusterts that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Calciusterts
FEDB. Other Calciusterts that have, throughout a layer 15 cm or more thick within 100 cm of the mineral soil surface, an electrical conductivity of 15 dS/m or more (saturated paste) for 6 or more months in normal years.

Halic Calciusterts

FEDC. Other Calciusterts that have, in one or more horizons within 100 cm of the mineral soil surface, an exchangeable sodium percentage of 15 or more (or a sodium adsorption ratio of 13 or more) for 6 or more months in normal years.

Sodic Calciusterts

FEDD. Other Calciusterts that have a petrocalcic horizon within 100 cm of the mineral soil surface.

Petrocalcic Calciusterts

FEDE. Other Calciusterts that, if not irrigated during the year, have cracks in normal years that are 5 mm or more wide, through a thickness of 25 cm or more within 50 cm of the mineral soil surface, for 210 or more cumulative days per year.

Aridic Calciusterts

FEDF. Other Calciusterts that, if not irrigated during the year, have cracks in normal years that are 5 mm or more wide, through a thickness of 25 cm or more within 50 cm of the mineral soil surface, for less than 150 cumulative days per year.

Udic Calciusterts

FEDG. Other Calciusterts that have a densic, lithic, or paralithic contact or a duripan within 100 cm of the mineral soil surface.

Leptic Calciusterts
FEDH. Other Calciusterts that have a layer, 25 cm or more thick within 100 cm of the mineral soil surface, that contains less than 27 percent clay in its fine-earth fraction.

Entic Calciusterts

FEDI. Other Calciusterts that have, in one or more horizons within 30 cm of the mineral soil surface, 50 percent or more colors as follows:

1. A color value, moist, of 4 or more; *or*
2. A color value, dry, of 6 or more; *or*
3. Chroma of 3 or more.

Chromic Calciusterts

FEDJ. Other Calciusterts.

Typic Calciusterts

Dystrusterts

Key to Subgroups

FEAA. Dystrusterts that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Dystrusterts

FEAB. Other Dystrusterts that have, in one or more horizons within 100 cm of the mineral soil surface, aquic conditions for some time in normal years (or artificial drainage) and *either*:

1. Redoximorphic features; *or*
2. Enough active ferrous iron \(\text{Fe}^{2+}\) to give a positive reaction to alpha,alpha-dipyridyl at a time when the soil is not being irrigated.

Aquic Dystrusterts

FEAC. Other Dystrusterts that, if not irrigated during the year, have cracks in normal years that are 5 mm or more wide,
through a thickness of 25 cm or more within 50 cm of the mineral soil surface, for 210 or more cumulative days per year.

Aridic Dystrusterts

FEAD. Other Dystrusterts that, if not irrigated during the year, have cracks in normal years that are 5 mm or more wide, through a thickness of 25 cm or more within 50 cm of the mineral soil surface, for less than 150 cumulative days.

Udic Dystrusterts

FEAE. Other Dystrusterts that have a densic, lithic, or paralithic contact or a duripan within 100 cm of the mineral soil surface.

Leptic Dystrusterts

FEAF. Other Dystrusterts that have a layer, 25 cm or more thick within 100 cm of the mineral soil surface, that contains less than 27 percent clay in its fine-earth fraction.

Entic Dystrusterts

FEAG. Other Dystrusterts that have, in one or more horizons within 30 cm of the mineral soil surface, 50 percent or more colors as follows:

1. A color value, moist, of 4 or more; or
2. A color value, dry, of 6 or more; or
3. Chroma of 3 or more.

Chromic Dystrusterts

FEAH. Other Dystrusterts.

Typic Dystrusterts
Gypsiusterts

Key to Subgroups

FECA. Gypsiusterts that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Gypsiusterts

FECB. Other Gypsiusterts that have, throughout a layer 15 cm or more thick within 100 cm of the mineral soil surface, an electrical conductivity of 15 dS/m or more (saturated paste) for 6 or more months in normal years.

Halic Gypsiusterts

FECC. Other Gypsiusterts that have, in one or more horizons within 100 cm of the mineral soil surface, an exchangeable sodium percentage of 15 or more (or a sodium adsorption ratio of 13 or more) for 6 or more months in normal years.

Sodic Gypsiusterts

FECD. Other Gypsiusterts that, if not irrigated during the year, have cracks in normal years that are 5 mm or more wide, through a thickness of 25 cm or more within 50 cm of the mineral soil surface, for 210 or more cumulative days per year.

Aridic Gypsiusterts

FECE. Other Gypsiusterts that, if not irrigated during the year, have cracks in normal years that are 5 mm or more wide, through a thickness of 25 cm or more within 50 cm of the mineral soil surface, for less than 150 cumulative days per year.

Udic Gypsiusterts
FECF. Other Gypsiusterts that have a densic, lithic, or paralithic contact, a duripan, or a petrocalcic horizon within 100 cm of the mineral soil surface.

Leptic Gypsiusterts

FECE. Other Gypsiusterts that have a layer, 25 cm or more thick within 100 cm of the mineral soil surface, that contains less than 27 percent clay in its fine-earth fraction.

Entic Gypsiusterts

FECH. Other Gypsiusterts that have, in one or more horizons within 30 cm of the mineral soil surface, 50 percent or more colors as follows:

1. A color value, moist, of 4 or more; or
2. A color value, dry, of 6 or more; or
3. Chroma of 3 or more.

Chromic Gypsiusterts

FECE. Other Gypsiusterts.

Typic Gypsiusterts

Haplusterts

Key to Subgroups

FEEA. Haplusterts that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Haplusterts

FEEB. Other Haplusterts that have, throughout a layer 15 cm or more thick within 100 cm of the mineral soil surface, an electrical conductivity of 15 dS/m or more (saturated paste) for 6 or more months in normal years.

Halic Haplusterts
FEED. Other Haplusterts that have a petrocalcic horizon within 150 cm of the mineral soil surface.

Petrocalcic Haplusterts

FEEE. Other Haplusterts that have a gypsic horizon within 150 cm of the mineral soil surface.

Gypsic Haplusterts

FEEF. Other Haplusterts that have a calcic horizon within 150 cm of the mineral soil surface.

Calcic Haplusterts

FEEG. Other Haplusterts that have both:

1. A densic, lithic, or paralithic contact within 100 cm of the mineral soil surface; and
2. If not irrigated during the year, cracks in normal years that are 5 mm or more wide, through a thickness of 25 cm or more within 50 cm of the mineral soil surface, for 210 or more cumulative days per year.

Aridic Leptic Haplusterts

FEEH. Other Haplusterts that, if not irrigated during the year, have cracks in normal years that are 5 mm or more wide, through a thickness of 25 cm or more within 50 cm of the mineral soil surface, for 210 or more cumulative days per year.

Aridic Haplusterts

FEEI. Other Haplusterts that have both:
1. A densic, lithic, or paralithic contact within 100 cm of the mineral soil surface; and
2. If not irrigated during the year, cracks in normal years that are 5 mm or more wide, through a thickness of 25 cm or more within 50 cm of the mineral soil surface, for less than 150 cumulative days per year.

Leptic Udic Haplusterts

FEEJ. Other Haplusterts that have both:

1. A layer, 25 cm or more thick within 100 cm of the mineral soil surface, that contains less than 27 percent clay in its fine-earth fraction; and
2. If not irrigated during the year, cracks in normal years that are 5 mm or more wide, through a thickness of 25 cm or more within 50 cm of the mineral soil surface, for less than 150 cumulative days per year.

Entic Udic Haplusterts

FEEK. Other Haplusterts that have both:

1. In one or more horizons within 30 cm of the mineral soil surface, 50 percent or more colors as follows:
 a. A color value, moist, of 4 or more; or
 b. A color value, dry, of 6 or more; or
 c. Chroma of 3 or more; and
2. If not irrigated during the year, cracks in normal years that are 5 mm or more wide, through a thickness of 25 cm or more within 50 cm of the mineral soil surface, for less than 150 cumulative days per year.

Chromic Udic Haplusterts

FEEL. Other Haplusterts that, if not irrigated during the year, have cracks in normal years that are 5 mm or more wide,
through a thickness of 25 cm or more within 50 cm of the mineral soil surface, for less than 150 cumulative days per year.

Udic Haplusterts

FEEM. Other Haplusterts that have a densic, lithic, or paralithic contact or a duripan within 100 cm of the mineral soil surface.

Leptic Haplusterts

FEEN. Other Haplusterts that have a layer, 25 cm or more thick within 100 cm of the mineral soil surface, that contains less than 27 percent clay in its fine-earth fraction.

Entic Haplusterts

FEEO. Other Haplusterts that have, in one or more horizons within 30 cm of the mineral soil surface, 50 percent or more colors as follows:

1. A color value, moist, of 4 or more; or
2. A color value, dry, of 6 or more; or
3. Chroma of 3 or more.

Chromic Haplusterts

FEEP. Other Haplusterts.

Typic Haplusterts

Salusterts

Key to Subgroups

FEBA. Salusterts that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Salusterts

FEBB. Other Salusterts that have, in one or more horizons within 100 cm of the mineral soil surface, an exchangeable
sodium percentage of 15 or more (or a sodium adsorption ratio of 13 or more) for 6 or more months in normal years.

Sodic Salusterts

FEBC. Other Salusterts that have, in one or more horizons within 100 cm of the mineral soil surface, aquic conditions for some time in normal years (or artificial drainage) and *either*:

1. Redoximorphic features; *or*
2. Enough active ferrous iron (Fe\(^{2+}\)) to give a positive reaction to alpha,alpha-dipyridyl at a time when the soil is not being irrigated.

Aquic Salusterts

FEBD. Other Salusterts that, if not irrigated during the year, have cracks in normal years that are 5 mm or more wide, through a thickness of 25 cm or more within 50 cm of the mineral soil surface, for 210 or more cumulative days per year.

Aridic Salusterts

FEBE. Other Salusterts that have a densic, lithic, or paralithic contact, a duripan, or a petrocalcic horizon within 100 cm of the mineral soil surface.

Leptic Salusterts

FEBF. Other Salusterts that have a layer, 25 cm or more thick within 100 cm of the mineral soil surface, that contains less than 27 percent clay in its fine-earth fraction.

Entic Salusterts

FEBG. Other Salusterts that have, in one or more horizons within 30 cm of the mineral soil surface, 50 percent or more colors as follows:

1. A color value, moist, of 4 or more; *or*
2. A color value, dry, of 6 or more; *or*
3. Chroma of 3 or more.

Chromic Salusterts

FEBH. Other Salusterts.

Typic Salusterts

Xererts

Key to Great Groups

FCA. Xererts that have a duripan within 100 cm of the mineral soil surface.

Durixererts, p. 831

FCB. Other Xererts that have a calcic or petrocalcic horizon within 100 cm of the mineral soil surface.

Calcixererts, p. 830

FCC. Other Xererts.

Haploxererts, p. 833

Calcixererts

Key to Subgroups

FCBA. Calcixererts that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Calcixererts

FCBB. Other Calcixererts that have a petrocalcic horizon within 100 cm of the mineral soil surface.

Petrocalcic Calcixererts

FCBC. Other Calcixererts that, if not irrigated during the year, have cracks in normal years that remain 5 mm or more wide, through a thickness of 25 cm or more within 50 cm of the mineral soil surface, for 180 or more consecutive days.

Aridic Calcixererts
FCBD. Other Calcixererts that have a dentic, lithic, or paralithic contact within 100 cm of the mineral soil surface.

Leptic Calcixererts

FCBE. Other Calcixererts that have a layer, 25 cm or more thick within 100 cm of the mineral soil surface, that contains less than 27 percent clay in its fine-earth fraction.

Entic Calcixererts

FCBF. Other Calcixererts that have, in one or more horizons within 30 cm of the mineral soil surface, 50 percent or more colors as follows:

1. A color value, moist, of 4 or more; or
2. A color value, dry, of 6 or more; or
3. Chroma of 3 or more.

Chromic Calcixererts

FCBG. Other Calcixererts.

Typic Calcixererts

Durixererts

Key to Subgroups

FCAA. Durixererts that have, throughout a layer 15 cm or more thick above the duripan, an electrical conductivity of 15 dS/m or more (saturated paste) for 6 or more months in normal years.

Halic Durixererts

FCAB. Other Durixererts that have, in one or more horizons above the duripan, an exchangeable sodium percentage of 15 or more (or a sodium adsorption ratio of 13 or more) for 6 or more months in normal years.

Sodic Durixererts
FCAC. Other Durixererts that have, in one or more horizons above the duripan, aquic conditions for some time in normal years (or artificial drainage) and either:

1. Redoximorphic features; or
2. Enough active ferrous iron (Fe$^{2+}$) to give a positive reaction to alpha,alpha-dipyridyl at a time when the soil is not being irrigated.

Aquic Durixererts

FCAD. Other Durixererts that, if not irrigated during the year, have cracks in normal years that remain 5 mm or more wide, through a thickness of 25 cm or more above the duripan, for 180 or more consecutive days.

Aridic Durixererts

FCAE. Other Durixererts that, if not irrigated during the year, have cracks in normal years that remain 5 mm or more wide, through a thickness of 25 cm or more above the duripan, for less than 90 consecutive days.

Udic Durixererts

FCAF. Other Durixererts that have a duripan that is not indurated in any subhorizon.

Haplic Durixererts

FCAG. Other Durixererts that have, in one or more horizons within 30 cm of the mineral soil surface, 50 percent or more colors as follows:

1. A color value, moist, of 4 or more; or
2. A color value, dry, of 6 or more; or
3. Chroma of 3 or more.

Chromic Durixererts
Typic Durixererts

Haploxererts

Key to Subgroups

FCCA. Haploxererts that have a lithic contact within 50 cm of the mineral soil surface.

Lithic Haploxererts

FCCB. Other Haploxererts that have, throughout a layer 15 cm or more thick within 100 cm of the mineral soil surface, an electrical conductivity of 15 dS/m or more (saturated paste) for 6 or more months in normal years.

Halic Haploxererts

FCCC. Other Haploxererts that have, in one or more horizons within 100 cm of the mineral soil surface, an exchangeable sodium percentage of 15 or more (or a sodium adsorption ratio of 13 or more) for 6 or more months in normal years.

Sodic Haploxererts

FCCD. Other Haploxererts that, if not irrigated during the year, have cracks in normal years that remain 5 mm or more wide, through a thickness of 25 cm or more within 50 cm of the mineral soil surface, for 180 or more consecutive days.

Aridic Haploxererts

FCCE. Other Haploxererts that have, in one or more horizons within 100 cm of the mineral soil surface, aquic conditions for some time in normal years (or artificial drainage) and either:

1. Redoximorphic features; or
2. Enough active ferrous iron (Fe$^{2+}$) to give a positive
reaction to alpha,alpha-dipyridyl at a time when the soil is not being irrigated.

Aquic Haploxererts

FCCF. Other Haploxererts that, if not irrigated during the year, have cracks in normal years that remain 5 mm or more wide, through a thickness of 25 cm or more within 50 cm of the mineral soil surface, for less than 90 consecutive days.

Udic Haploxererts

FCCG. Other Haploxererts that have a densic, lithic, or paralithic contact within 100 cm of the mineral soil surface.

Leptic Haploxererts

FCCH. Other Haploxererts that have a layer, 25 cm or more thick within 100 cm of the mineral soil surface, that contains less than 27 percent clay in its fine-earth fraction.

Entic Haploxererts

FCCI. Other Haploxererts that have, in one or more horizons within 30 cm of the mineral soil surface, 50 percent or more colors as follows:

1. A color value, moist, of 4 or more; or
2. A color value, dry, of 6 or more; or
3. Chroma of 3 or more.

Chromic Haploxererts

FCCJ. Other Haploxererts.

Typic Haploxererts
Families and series serve purposes that are largely pragmatic; the series name is abstract, and the technical family name is descriptive. In this chapter the descriptive terms used in the names of families are defined, the control sections to which the terms apply are given, and the criteria, including the taxa in which they are used, are indicated.

Family Differentiae for Mineral Soils and Mineral Layers of Some Organic Soils

The following differentiae are used to distinguish families of mineral soils and the mineral layers of some organic soils within a subgroup. The class names of these components are used to form the family name. The components are listed and defined in the same sequence in which the components appear in the family names.

- Particle-size classes and their substitutes
- Mineralogy classes
- Cation-exchange activity classes
- Calcareous and reaction classes
- Soil temperature classes
- Soil depth classes
- Rupture-resistance classes
- Classes of coatings on sands
- Classes of permanent cracks

Particle-Size Classes and Their Substitutes

Definition of Particle-Size Classes and Their Substitutes for Mineral Soils

The first part of the family name is the name of either a particle-size class or a substitute for a particle-size class. The
term particle-size class is used to characterize the grain-size composition of the whole soil, including both the fine earth and the rock and pararock fragments up to the size of a pedon, but it excludes organic matter and salts more soluble than gypsum. Substitutes for particle-size classes are used for soils that have andic soil properties or a high content of volcanic glass, pumice, cinders, rock fragments, or gypsum.

The particle-size classes of this taxonomy represent a compromise between conventional divisions in pedologic and engineering classifications. Engineering classifications have set the limit between sand and silt at a diameter of 74 microns, while pedologic classifications have set it at either 50 or 20 microns. Engineering classifications have been based on grain-size percentages, by weight, in the soil fraction less than 74 mm in diameter, while texture classes in pedologic classifications have been based on percentages, by weight, in the fraction less than 2.0 mm in diameter. In engineering classifications, the separate very fine sand (diameter between 50 and 100 microns or 0.05 and 0.1 mm) has been subdivided at 74 microns. In defining the particle-size classes for this taxonomy, a similar division has been made, but in a different way. Soil materials that have a texture class of fine sand or loamy fine sand normally have an appreciable amount of very fine sand, most of which is coarser than 74 microns. A silty sediment, such as loess, may also contain an appreciable amount of very fine sand, most of which is finer than 74 microns. Thus, in the design of particle-size classes for this taxonomy, the very fine sand has been allowed to “float.” It is included with the sand if the texture class (fine-earth fraction) of a soil is sand, loamy fine sand, or coarser. It is treated as silt, however, if the texture class is very fine sand, loamy very fine sand, sandy loam, silt loam, or finer.

No single set of particle-size classes seems adequate to serve as family differentiae for all of the different kinds of soil. Thus, this taxonomy provides 2 generalized and 11
more narrowly defined classes, which permit relatively fine
distinctions between families of soils for which particle size
is important, while providing broader groupings for soils in
which narrowly defined particle-size classes would produce
undesirable separations. Thus, the term “clayey” is used for
some soil families to indicate a clay content of 35 percent
(30 percent in Vertisols) or more in specific horizons, while
in other families the more narrowly defined terms “fine” and
“very-fine” indicate that these horizons have a clay content
either of 35 (30 percent in Vertisols) to 60 percent or of 60
percent or more in their fine-earth fraction. Fine earth refers
to particles smaller than 2.0 mm in diameter. Rock fragments
are particles 2.0 mm or more in diameter that are strongly
cemented or more resistant to rupture and include all particles
with horizontal dimensions smaller than the size of a pedon.
Cemented fragments 2.0 mm or more in diameter that are
in a rupture-resistance class that is less cemented than the
strongly cemented class are referred to as pararock fragments.
Pararock fragments, like rock fragments, include all particles
between 2.0 mm and a horizontal dimension smaller than
the size of a pedon. Most pararock fragments are broken into
fragments 2.0 mm or less in diameter during the preparation of
samples for particle-size analysis in the laboratory. Therefore,
pararock fragments are generally included with the fine
earth in the particle-size classes, although cinders, pumice,
and pumicelike fragments are treated as fragments in the
substitutes for classes, regardless of their rupture-resistance
class.

Substitutes for particle-size classes are used for soils that
have andic soil properties or a high content of volcanic glass,
pumice, cinders, rock fragments, or gypsum. These materials
cannot be readily dispersed and have variable results of
dispersion. The substitute classes dominated by rock and
pararock fragments have too little fine-earth component for
valid data, and soil properties are dominated by the fragments.
Consequently, normal particle-size classes do not adequately characterize these soils. Substitutes for particle-size class names are used for those parts of soils that have andic soil properties or a high content of volcanic glass, pumice, or cinders, as is the case with Andisols and many Andic and Vitrandic subgroups of other soil orders. The “gypseous” substitutes for particle-size class are used for mineral soils (e.g., Aridisols) that have a high content of gypsum. Some Spodosols, whether identified in Andic subgroups or not, have andic soil properties in some horizons within the particle-size control section, and particle-size substitute class names are used for these horizons.

Neither a particle-size class nor a substitute for a particle-size class is used for Psamments, Psammaquents, Psammowassents, Psammoturbels, Psammorthels, and Psammentic subgroups that meet sandy particle-size class criteria. These taxa, by definition, meet sandy particle-size class criteria (i.e., have a texture class of sand or loamy sand), so the sandy particle-size class is considered redundant in the family name. The ashy substitute class, however, is used, if appropriate in these taxa (e.g., high content of volcanic glass).

Particle-size classes are applied, although with reservations, to spodic horizons and other horizons that do not have andic soil properties but contain significant amounts of allophane, imogolite, ferrihydrite, or aluminum-humus complexes. The isotic mineralogy class (defined below) is helpful in identifying these particle-size classes.

In general, the weighted average particle-size class of the whole particle-size control section (defined below) determines what particle-size class name is used as a component of the family name.

Strongly Contrasting Particle-Size Classes

If the particle-size control section consists of two parts with strongly contrasting particle-size or substitute classes (listed below), if both parts are 12.5 cm or more thick (including parts
not in the control section), and if the transition zone between them is less than 12.5 cm thick, both class names are used. For example, the family particle-size class is sandy over clayey if all of the following criteria are met: the soil meets criterion D (listed below) under the control section for particle-size classes or their substitutes; any Ap horizon is less than 30 cm thick; the weighted average particle-size class of the upper 30 cm of the soil is sandy; the weighted average of the lower part is clayey; and the transition zone is less than 12.5 cm thick. If a substitute name applies to one or more parts of the particle-size control section and the parts are not strongly contrasting classes, the name of the thickest part (cumulative) is used as the soil family name.

Aniso Class

If the particle-size control section includes more than one pair of the strongly contrasting classes, listed below, then the soil is assigned to an aniso class named for the pair of adjacent classes that contrast most strongly. The aniso class is considered a modifier of the particle-size class name and is set off by commas after the particle-size name. An example is a sandy over clayey, aniso, mixed, active, mesic Aridic Haplustoll.

Generalized Particle-Size Classes

Two generalized particle-size classes, loamy and clayey, are used for shallow classes (defined below) and for soils in Arenic, Grossarenic, and Lithic subgroups. The clayey class is used for all strongly contrasting particle-size classes with more than 35 percent clay (30 percent in Vertisols). The loamy particle-size class is used for contrasting classes, where appropriate, to characterize the lower part of the particle-size control section. The generalized classes, where appropriate, are also used for all strongly contrasting particle-size classes that include a substitute class. For example, loamy over
pumiceous or cindery (not fine-loamy over pumiceous or cindery) is used.

Six generalized classes, defined later in this chapter, are used for Terric subgroups of Histosols and Histels.

Control Section for Particle-Size Classes and Their Substitutes in Mineral Soils

The particle-size and substitute class names listed below are applied to certain horizons, or to the soil materials within specific depth limits, that have been designated as the control section for particle-size classes and their substitutes. The lower boundary of the control section may be at a specified depth (in centimeters) below the mineral soil surface or below the upper boundary of an organic layer with andic soil properties, or it may coincide with the upper boundary of a root-limiting layer (defined below).

Root-Limiting Layers

The concept of root-limiting layers as used in this taxonomy defines the base of the soil horizons considered for most (but not all) differentiae at the family level. The properties of soil materials above the base and within the control section are used for assignment of classes, such as particle-size classes and their substitutes. One notable exception to the concept of root-limiting layers is in assignment of soil depth classes (defined below) to soils with fragipans. Unless otherwise indicated, the following are considered root-limiting layers in this chapter: a duripan; a fragipan; petrocalcic, petrogypsic, and placic horizons; continuous ortstein; and densic, lithic, paralithic, and petroferric contacts.

Key to the Control Section for Particle-Size Classes and Their Substitutes in Mineral Soils

The following list of particle-size control sections for particular kinds of mineral soils is arranged as a key. This key, like other keys in this taxonomy, is designed in such a
way that the reader makes the correct classification by going through the key systematically, starting at the beginning and eliminating one by one all classes that include criteria that do not fit the soil in question. The soil belongs to the first class for which it meets all of the criteria listed. The upper boundary of an argillic, natric, or kandic horizon is used in the following key. This boundary is not always obvious. If one of these horizons is present but the upper boundary is irregular or broken, as in an A/B or B/A horizon, the depth at which half or more of the volume has the fabric of an argillic, natric, or kandic horizon should be considered the upper boundary.

A. For mineral soils that have a root-limiting layer (listed above) within 36 cm of the mineral soil surface or below the upper boundary of organic soil materials with andic soil properties, whichever is shallower: From the mineral soil surface or the upper boundary of the organic soil materials with andic soil properties, whichever is shallower, to the root-limiting layer; or

B. For Andisols: Between either the mineral soil surface or the upper boundary of an organic layer with andic soil properties, whichever is shallower, and the shallower of the following: (a) a depth 100 cm below the starting point or (b) a root-limiting layer; or

C. For those Alfisols, Ultisols, and great groups of Aridisols and Mollisols, excluding soils in Lamellic subgroups, that have an argillic, kandic, or natric horizon that has its upper boundary within 100 cm of the mineral soil surface and its lower boundary at a depth of 25 cm or more below the mineral soil surface or that are in a Grossarenic or Arenic subgroup, use items 1 through 4 below. For other soils, go to section D below.

1. Strongly contrasting particle-size classes (defined and listed later) within or below the argillic, kandic, or natric horizon and within 100 cm of the mineral soil surface: The
upper 50 cm of the argillic, kandic, or natric horizon or to a depth of 100 cm, whichever is deeper, but not below the upper boundary of a root-limiting layer; or

2. All parts of the argillic, kandic, or natric horizon in or below a fragipan: Between a depth of 25 cm from the mineral soil surface and the top of the fragipan; or

3. A fragipan at a depth of less than 50 cm below the top of the argillic, kandic, or natric horizon: Between the upper boundary of the argillic, kandic, or natric horizon and the top the fragipan; or

4. Other soils that meet section C above: Either the whole argillic, kandic, or natric horizon if 50 cm or less thick or the upper 50 cm of the horizon if more than 50 cm thick.

D. For those Alfisols, Ultisols, and great groups of Aridisols and Mollisols that are in a Lamellic subgroup or have an argillic, kandic, or natric horizon that has its upper boundary at a depth of 100 cm or more from the mineral surface and that are not in a Grossarenic or Arenic subgroup: Between the lower boundary of an Ap horizon or a depth of 25 cm from the mineral soil surface, whichever is deeper, and 100 cm below the mineral soil surface or a root-limiting layer, whichever is shallower; or

E. For other soils that have an argillic or natric horizon that has its lower boundary at a depth of less than 25 cm from the mineral soil surface: Between the upper boundary of the argillic or natric horizon and a depth of 100 cm below the mineral soil surface or a root-limiting layer, whichever is shallower; or

F. All other mineral soils: Between the lower boundary of an Ap horizon or a depth of 25 cm below the mineral soil surface, whichever is deeper, and the shallower of the following: (a) a depth of 100 cm below the mineral soil surface or (b) a root-limiting layer.
Key to the Particle-Size and Substitute Classes of Mineral Soils

This key, like other keys in this taxonomy, is designed in such a way that the reader makes the correct classification by going through the key systematically, starting at the beginning and eliminating one by one all classes that include criteria that do not fit the soil or layer in question. The class or substitute name for each layer within the control section must be determined from the key. If any two layers meet the criteria for strongly contrasting particle-size classes (listed below), the soil is named for that strongly contrasting class. If more than one pair meets the criteria for strongly contrasting classes, the soil is also in an aniso class named for the pair of adjacent classes that contrast most strongly. If the soil has none of the strongly contrasting classes, the weighted average soil materials within the particle-size control section generally determine the class. Exceptions are soils that are not strongly contrasting and that have a substitute class name for one or more parts of the control section. In these soils the class or substitute name of the thickest (cumulative) part within the control section is used to determine the family name.

A. Mineral soils that have, in the thickest part of the control section (if the control section is not in one of the strongly contrasting particle-size classes listed below), or in a part of the control section that qualifies as an element in one of the strongly contrasting particle-size classes listed below, or throughout the control section, a fine-earth component (including associated medium and finer pores) of less than 10 percent of the total volume and that meet one of the following sets of substitute class criteria:

1. Have, in the whole soil, more than 60 percent (by weight) volcanic ash, cinders, lapilli, pumice, and pumicelike

1Pumicelike—vesicular pyroclastic materials other than pumice that have an apparent specific gravity (including vesicles) of less than 1.0 g/cm³.
fragments and, in the fraction more than 2.0 mm in diameter, two-thirds or more (by volume) pumice and/or pumicelike fragments.

Pumiceous

or

2. Have, in the whole soil, more than 60 percent (by weight) volcanic ash, cinders, lapilli, pumice, and pumicelike fragments and, in the fraction more than 2.0 mm in diameter, less than two-thirds (by volume) pumice and/or pumicelike fragments.

Cindery

or

3. Other mineral soils that have a fine-earth component of less than 10 percent (including associated medium and finer pores) of the total volume.

Fragmental

or

B. Other mineral soils that have a fine-earth component of 10 percent or more (including associated medium and finer pores) of the total volume and meet, in the thickest part of the control section (if the control section is not in one of the strongly contrasting particle-size classes listed below), or in a part of the control section that qualifies as an element in one of the strongly contrasting particle-size classes listed below, or throughout the control section, one of the following sets of substitute class criteria:

1. They:
 a. Have andic soil properties and have a water content at 1500 kPa tension of less than 30 percent on undried samples and less than 12 percent on dried samples; or
 b. Do not have andic soil properties, have 30 percent or
more of the fine-earth fraction in the 0.02 to 2.0 mm fraction, and have a volcanic glass content (by grain count) of 30 percent or more in the 0.02 to 2.0 mm fraction; and

c. Have one of the following;

(1) A total of 35 percent or more (by volume) rock and pararock fragments, of which two-thirds or more (by volume) is pumice or pumicelike fragments.

Ashy-pumiceous

or

(2) 35 percent or more (by volume) rock fragments.

Ashy-skeletal

or

(3) Less than 35 percent (by volume) rock fragments.

Ashy

or

2. Have a fine-earth fraction that has andic soil properties and that has a water content at 1500 kPa tension of less than 100 percent on undried samples; and

a. Have a total of 35 percent or more (by volume) rock and pararock fragments, of which two-thirds or more (by volume) is pumice or pumicelike fragments.

Medial-pumiceous

or

b. Have 35 percent or more (by volume) rock fragments.

Medial-skeletal

or

c. Have less than 35 percent (by volume) rock fragments.

Medial

or

3. Have a fine-earth fraction that has andic soil properties and that has a water content at 1500 kPa tension of 100 percent or more on undried samples; and
a. Have a total of 35 percent or more (by volume) rock and pararock fragments, of which two-thirds or more (by volume) is pumice or pumicelike fragments.

 Hydrous-pumiceous

 or

b. Have 35 percent or more (by volume) rock fragments.

 Hydrous-skeletal

 or

c. Have less than 35 percent (by volume) rock fragments.

 Hydrous

4. Have, in the fraction less than 20 mm in diameter, 40 percent of more (by weight) gypsum and one of the following:

 a. A total of 35 percent or more (by volume) rock fragments.

 Gypseous-skeletal

 or

 b. Less than 35 percent (by volume) rock fragments and 50 percent or more (by weight) particles with diameters of 0.1 to 2.0 mm.

 Coarse-gypseous

 or

 c. Less than 35 percent (by volume) rock fragments.

 Fine-gypseous

 or

 Note: In the following classes, “clay” excludes clay-size carbonates. Carbonates of clay size are treated as silt. If the ratio of percent water retained at 1500 kPa tension to the percentage of measured clay is 0.25 or less or 0.6 or more in half or more of the particle-size control section or part of the particle-size control section in strongly contrasting classes, then the percentage of clay is estimated by the following
formula: Clay % = 2.5(\% water retained at 1500 kPa tension - \% organic carbon).

C. Other mineral soils that, in the thickest part of the control section (if part of the control section has a substitute for particle-size class and is not in one of the strongly contrasting particle-size classes listed below), or in a part of the control section that qualifies as an element in one of the strongly contrasting particle-size classes listed below, or throughout the control section, meet one of the following sets of particle-size class criteria:

1. Have 35 percent or more (by volume) rock fragments and a fine-earth fraction with a texture class of sand or loamy sand, including less than 50 percent (by weight) very fine sand.
 Sandy-skeletal

 or

2. Have 35 percent or more (by volume) rock fragments and less than 5 percent (by weight) clay.
 Loamy-skeletal

 or

3. Have 35 percent or more (by volume) rock fragments.
 Clayey-skeletal

 or

4. Have a texture class of sand or loamy sand, including less than 50 percent (by weight) very fine sand particles in the fine-earth fraction.
 Sandy

 or

5. Have a texture class of loamy very fine sand, very fine sand, or finer, including less than 35 percent (by weight) clay in the fine-earth fraction (excluding Vertisols), and are in a shallow family (defined below) or in a Lithic, Arenic, or
Grossarenic subgroup, or the layer is an element in a strongly contrasting particle-size class (listed below).

Loamy

6. Have, in the fraction less than 75 mm in diameter, 15 percent or more (by weight) particles with diameters of 0.1 to 75 mm (fine sand or coarser, including gravel) and, in the fine-earth fraction, less than 18 percent (by weight) clay.

Coarse-loamy

7. Have, in the fraction less than 75 mm in diameter, 15 percent or more (by weight) particles with diameters of 0.1 to 75 mm (fine sand or coarser, including gravel) and, in the fine-earth fraction, 18 to 35 percent (by weight) clay (Vertisols are excluded).

Fine-loamy

8. Have, in the fraction less than 75 mm in diameter, less than 15 percent (by weight) particles with diameters of 0.1 to 75 mm (fine sand or coarser, including gravel) and, in the fine-earth fraction, less than 18 percent (by weight) clay.

Coarse-silty

9. Have, in the fraction less than 75 mm in diameter, less than 15 percent (by weight) particles with diameters of 0.1 to 75 mm (fine sand or coarser, including gravel) and, in the fine-earth fraction, 18 to 35 percent (by weight) clay (Vertisols are excluded).

Fine-silty

10. Have 35 percent or more (by weight) clay (more than 30 percent in Vertisols) and are in a shallow family (defined
below) or in a Lithic, Arenic, or Grossarenic subgroup, or the layer is an element in a strongly contrasting particle-size class (listed below).

Clayey

or

11. Have (by weighted average) less than 60 percent (by weight) clay in the fine-earth fraction.

Fine

or

12. Have 60 percent or more (by weight) clay.

Very-fine

Strongly Contrasting Particle-Size Classes

The purpose of strongly contrasting particle-size classes is to identify changes in pore-size distribution or composition that are not identified in higher soil categories and that seriously affect the movement and retention of water and/or nutrients.

The particle-size or substitute classes listed below are considered strongly contrasting if both parts are 12.5 cm or more thick (including the thickness of these parts not entirely within the particle-size control section; however, substitute class names are used only if the soil materials to which they apply extend 10 cm or more into the upper part of the particle-size control section) and if the transition zone between the two parts of the particle-size control section is less than 12.5 cm thick.

Some classes, such as sandy and sandy-skeletal, have been combined in the following list. In those cases the combined name is used as the family class if part of the control section meets the criteria for either class. The following classes are listed alphabetically and are not presented in a key format.

1. Ashy over clayey
2. Ashy over clayey-skeletal
3. Ashy over loamy
4. Ashy over loamy-skeletal
5. Ashy over medial (if the water content at 1500 kPa tension in dried samples of the fine-earth fraction is 10 percent or less for the ashy part and 15 percent or more for the medial part)
6. Ashy over medial-skeletal
7. Ashy over pumiceous or cindery
8. Ashy over sandy or sandy-skeletal
9. Ashy-skeletal over clayey
10. Ashy-skeletal over fragmental or cindery (if the volume of the fine-earth fraction is 35 percent or more [absolute] greater in the ashy-skeletal part than in the fragmental or cindery part)
11. Ashy-skeletal over loamy-skeletal
12. Ashy-skeletal over sandy or sandy-skeletal
13. Cindery over loamy
14. Cindery over medial
15. Cindery over medial-skeletal
16. Clayey over coarse-gypseous
17. Clayey over fine-gypseous (if there is an absolute difference of 15 percent or more gypsum between the two parts of the control section)
18. Clayey over fragmental
19. Clayey over gypseous-skeletal
20. Clayey over loamy (if there is an absolute difference of 25 percent or more between clay percentages of the fine-earth fraction in the two parts of the control section)
21. Clayey over loamy-skeletal (if there is an absolute difference of 25 percent or more between clay percentages of the fine-earth fraction in the two parts of the control section)
22. Clayey over sandy or sandy-skeletal
23. Clayey-skeletal over sandy or sandy-skeletal
24. Coarse-loamy over clayey
25. Coarse-loamy over fragmental
26. Coarse-loamy over sandy or sandy-skeletal (if the coarse-loamy material contains less than 50 percent, by weight, fine sand or coarser sand)
27. Coarse-silty over clayey
28. Coarse-silty over sandy or sandy-skeletal
29. Fine-loamy over clayey (if there is an absolute difference of 25 percent or more between clay percentages of the fine-earth fraction in the two parts of the control section)
30. Fine-loamy over fragmental
31. Fine-loamy over sandy or sandy-skeletal
32. Fine-silty over clayey (if there is an absolute difference of 25 percent or more between clay percentages of the fine-earth fraction in the two parts of the control section)
33. Fine-silty over fragmental
34. Fine-silty over sandy or sandy-skeletal
35. Hydrous over clayey
36. Hydrous over clayey-skeletal
37. Hydrous over fragmental
38. Hydrous over loamy
39. Hydrous over loamy-skeletal
40. Hydrous over sandy or sandy-skeletal
41. Loamy over ashy or ashy-pumiceous
42. Loamy over coarse-gypseous (if there is an absolute difference of 15 percent or more gypsum between the two parts of the control section)
43. Loamy over fine-gypseous (if there is an absolute difference of 15 percent or more gypsum between the two parts of the control section)

44. Loamy over pumiceous or cindery

45. Loamy over sandy or sandy-skeletal (if the loamy material contains less than 50 percent, by weight, fine sand or coarser sand)

46. Loamy-skeletal over cindery (if the volume of the fine-earth fraction is 35 percent or more [absolute] greater in the loamy-skeletal part than in the cindery part)

47. Loamy-skeletal over clayey (if there is an absolute difference of 25 percent or more between clay percentages of the fine-earth fraction in the two parts of the control section)

48. Loamy-skeletal over fragmental (if the volume of the fine-earth fraction is 35 percent or more [absolute] greater in the loamy-skeletal part than in the fragmental part)

49. Loamy-skeletal over gypseous-skeletal (if there is an absolute difference of 15 percent or more gypsum between the two parts of the control section)

50. Loamy-skeletal over sandy or sandy-skeletal (if the loamy material contains less than 50 percent, by weight, fine sand or coarser sand)

51. Medial over ashy (if the water content at 1500 kPa tension in dried samples of the fine-earth fraction is 15 percent or more for the medial part and 10 percent or less for the ashy part)

52. Medial over ashy-pumiceous or ashy-skeletal (if the water content at 1500 kPa tension in dried samples of the fine-earth fraction is 15 percent or more for the medial part and 10 percent or less for the ashy part)
53. Medial over clayey
54. Medial over clayey-skeletal
55. Medial over fragmental
56. Medial over hydrous (if the water content at 1500 kPa tension in undried samples of the fine-earth fraction is 75 percent or less for the medial part)
57. Medial over loamy
58. Medial over loamy-skeletal
59. Medial over pumiceous or cindery
60. Medial over sandy or sandy-skeletal
61. Medial-skeletal over fragmental or cindery (if the volume of the fine-earth fraction is 35 percent or more [absolute] greater in the medial-skeletal part than in the fragmental or cindery part)
62. Medial-skeletal over loamy-skeletal
63. Medial-skeletal over sandy or sandy-skeletal
64. Pumiceous or ashy-pumiceous over loamy
65. Pumiceous or ashy-pumiceous over loamy-skeletal
66. Pumiceous or ashy-pumiceous over medial
67. Pumiceous or ashy-pumiceous over medial-skeletal
68. Pumiceous or ashy-pumiceous over sandy or sandy-skeletal
69. Sandy over clayey
70. Sandy over loamy (if the loamy material contains less than 50 percent, by weight, fine sand or coarser sand)
71. Sandy-skeletal over loamy (if the loamy material contains less than 50 percent, by weight, fine sand or coarser sand)
Mineralogy Classes

The mineralogy of soils is known to be useful in making predictions about soil behavior and responses to management. Some mineralogy classes occur or are important only in certain taxa or particle-size classes, and others are important in all particle-size classes. A mineralogy class is assigned to all mineral soils, except for Quartzipsamments.

Control Section for Mineralogy Classes

The control section for mineralogy classes is the same as that defined for the particle-size classes and their substitutes.

Key to Mineralogy Classes

This key, like other keys in this taxonomy, is designed in such a way that the reader makes the correct classification by going through the key systematically, starting at the beginning and eliminating one by one any classes that include criteria that do not fit the soil in question. The soil belongs to the first class for which it meets all of the required criteria. The user should first check the criteria in section A and, if the soil in question does not meet the criteria listed there, proceed on to sections B, C, D, and E, until the soil meets the criteria listed. All criteria are based on a weighted average.

For soils with strongly contrasting particle-size classes, mineralogy classes are used for both of the named parts of particle-size classes or substitute classes, unless they are the same. The same mineralogy class name cannot be used for both parts of the control section (e.g., “mixed over mixed”). Examples of soils that require assignment of two different mineralogy classes are a clayey over sandy or sandy-skeletal, smectitic over mixed, thermic Vertic Haplustept and an ashy-skeletal over loamy-skeletal, glassy over mixed (if the ashy-skeletal part has 30 percent or more volcanic glass), superactive Vitrandic Argicryoll. Examples of soils that
are not assigned two mineralogy classes are an ashy over clayey, mixed (if both the ashy part with andic soil properties and the clayey part without andic soil properties are mixed), superactive, mesic Typic Vitraquand and a fine-loamy over sandy or sandy-skeletal, mixed (if both the fine-loamy and sandy or sandy-skeletal parts are mixed), active, frigid Pachic Argiudoll.

A. Oxisols and “kandi” and “kanhap” great groups of Alfisols and Ultisols that in the mineralogy control section have:

1. More than 40 percent (by weight) iron oxide as Fe$_2$O$_3$ (more than 28 percent Fe), by dithionite citrate, in the fine-earth fraction.

Ferritic

or

2. More than 40 percent (by weight) gibbsite in the fine-earth fraction.

Gibbsitic

or

3. Both:
 a. 18 to 40 percent (by weight) iron oxide as Fe$_2$O$_3$ (12.6 to 28 percent Fe), by dithionite citrate, in the fine-earth fraction; and
 b. 18 to 40 percent (by weight) gibbsite in the fine-earth fraction.

Sesquic

or

4. 18 to 40 percent (by weight) iron oxide as Fe$_2$O$_3$ (12.6 to 28 percent Fe), by dithionite citrate, in the fine-earth fraction.

Ferruginous

or
5. 18 to 40 percent (by weight) gibbsite in the fine-earth fraction.

Allitic

or

6. More than 50 percent (by weight) kaolinite plus halloysite, dickite, nacrite, and other 1:1 or nonexpanding 2:1 layer minerals and gibbsite and less than 10 percent (by weight) smectite in the fraction less than 0.002 mm in size; and more kaolinite than halloysite.

Kaolinitic

or

7. More than 50 percent (by weight) halloysite plus kaolinite and allophane and less than 10 percent (by weight) smectite in the fraction less than 0.002 mm in size.

Halloysitic

or

8. All other soils in section A.

Mixed

or

B. Other soil layers or horizons, in the mineralogy control section, that have a substitute class that replaces the particle-size class, other than fragmental, and that:

1. Have 40 percent or more (by weight) gypsum either in the fine-earth fraction or in the fraction less than 20 mm in size, whichever has a higher percentage of gypsum.

Hypergypsic

or

2. Have a sum of 8 times the Si (percent by weight extracted by ammonium oxalate from the fine-earth fraction) plus 2 times the Fe (percent by weight extracted by
ammonium oxalate from the fine-earth fraction) of 5 or more, and 8 times the Si is more than 2 times the Fe.

\[
\text{Amorphic or}
\]

3. Other soils that have a sum of 8 times the Si (percent by weight extracted by ammonium oxalate from the fine-earth fraction) plus 2 times the Fe (percent by weight extracted by ammonium oxalate from the fine-earth fraction) of 5 or more.

\[
\text{Ferrihydritic or}
\]

4. Other soils that have 30 percent or more (by grain count) volcanic glass in the 0.02 to 2.0 mm fraction.

\[
\text{Glassy or}
\]

5. All other soils in section B.

\[
\text{Mixed or}
\]

C. Other mineral soil layers or horizons, in the mineralogy control section, in all other mineral soil orders and in Terric subgroups of Histosols and Histels that have:

1. Any particle-size class and 15 percent or more (by weight) gypsum, either in the fine-earth fraction or in the fraction less than 20 mm in size, whichever has a higher percentage of gypsum.

\[
\text{Gypsic or}
\]

2. Any particle-size class and more than 40 percent (by weight) carbonates (expressed as CaCO\(_3\)) plus gypsum, either in the fine-earth fraction or in the fraction less than 20
mm in size, whichever has a higher percentage of carbonates plus gypsum.

Carbonatic

3. Any particle-size class, except for fragmental, and more than 40 percent (by weight) iron oxide as Fe$_2$O$_3$ (more than 28 percent Fe) extractable by dithionite citrate, in the fine-earth fraction.

Ferritic

or

4. Any particle-size class, except for fragmental, and more than 40 percent (by weight) gibbsite and boehmite in the fine-earth fraction.

Gibbsitic

or

5. Any particle-size class, except for fragmental, and more than 40 percent (by weight) magnesium-silicate minerals, such as the serpentine minerals (antigorite, chrysotile, and lizardite) plus talc, olivines, Mg-rich pyroxenes, and Mg-rich amphiboles, in the fine-earth fraction.

Magnesic

or

6. Any particle-size class, except for fragmental, and more than 20 percent (by weight) glauconitic pellets in the fine-earth fraction.

Glauconitic

or

D. Other mineral soil layers or horizons, in the mineralogy control section, of soils in all other mineral orders and in Terric subgroups of Histosols and Histels, in a clayey, clayey-skeletal, fine, or very-fine particle-size class, that:
1. In the fine-earth fraction, have a total percent (by weight) iron oxide as Fe$_2$O$_3$ (percent Fe by dithionate citrate times 1.43) plus the percent (by weight) gibbsite of more than 10. \textbf{Parasesquic} or

2. In the fraction less than 0.002 mm in size:
 a. Have more than 50 percent (by weight) halloysite plus kaolinite and allophane and more halloysite than any other single kind of clay mineral. \textbf{Halloysitic} or
 b. Have more than 50 percent (by weight) kaolinite plus halloysite, dickite, nacrite, and other 1:1 or nonexpanding 2:1 layer minerals and gibbsite and less than 10 percent (by weight) smectite. \textbf{Kaolinitic} or
 c. Have more smectite minerals (montmorillonite, beidellite, and nontronite), by weight, than any other single kind of clay mineral. \textbf{Smectitic} or
 d. Have more than 50 percent (by weight) illite (hydrous mica) and commonly more than 4 percent K$_2$O. \textbf{Illitic} or
 e. Have more vermiculite than any other single kind of clay mineral. \textbf{Vermiculitic} or
 f. In more than 50 percent of the thickness, meet all of the following:
 (1) Have no free carbonates; \textit{and}
(2) The pH of a suspension of 1 g soil in 50 ml 1 M NaF is more than 8.4 after 2 minutes; and
(3) The ratio of 1500 kPa water to measured clay is 0.6 or more.

Isotic

or

g. All other soils in section D.

Mixed

or

E. All other mineral soil layers or horizons (except for those in Quartzipsammements), in the mineralogy control section, that have:

1. More than 45 percent (by grain count) mica and stable mica pseudomorphs in the 0.02 to 0.25 mm fraction.

Micaceous

or

2. A total percent (by weight) iron oxide as Fe₂O₃ (percent Fe by dithionate citrate times 1.43) plus the percent (by weight) gibbsite of more than 10 in the fine-earth fraction.

Parasesquic

or

3. In more than one-half of the thickness, all of the following:
 a. No free carbonates; and
 b. NaF pH of 8.4 or more; and
 c. A ratio of 1500 kPa water to measured clay of 0.6 or more.

Isotic

or

4. More than 90 percent (by weight or grain count) silica
minerals (quartz, chalcedony, or opal) and other resistant minerals in the 0.02 to 2.0 mm fraction.

Siliceous

or

5. All other soils.

Mixed

Cation-Exchange Activity Classes

The cation-exchange activity classes help in making interpretations of mineral assemblages and of the nutrient-holding capacity of soils in mixed and siliceous mineralogy classes of clayey, clayey-skeletal, coarse-loamy, coarse-silty, fine, fine-loamy, fine-silty, loamy, loamy-skeletal, and very-fine particle-size classes. Cation-exchange activity classes are not assigned to Histosols and Histels, and they are not assigned to Oxisols and “kandi” and “kanhap” great groups and subgroups of Alfisols and Ultisols because assigning such classes to them would be redundant. Cation-exchange activity classes are not assigned to Psammments, “psamm” great groups of Entisols and Gelisols, Psammentic subgroups, or other soils with sandy or sandy-skeletal particle-size classes or the fragmental substitute class because the low clay content causes cation-exchange activity classes to be less useful and less reliable. Soils with other substitutes for particle-size class (e.g., ashy) or with such mineralogy classes as smectitic also are not assigned cation-exchange activity classes since cation-exchange capacity (CEC) is high in such soils or the clay mineralogy dictates soil properties.

The cation-exchange capacity is determined by NH$_4$OAc at pH 7 on the fine-earth fraction. The CEC of the organic matter, sand, silt, and clay is included in the determination. The criteria for the classes use ratios of CEC to the percent, by weight, of silicate clay, both by weighted average in the control section. In the following classes “clay” excludes clay-size carbonates. If the ratio of percent water retained at 1500 kPa tension to
the percentage of measured clay is 0.25 or less or 0.6 or more in half or more of the particle-size control section (or part in contrasting families), then the percentage of clay is estimated by the following formula: Clay % = 2.5(% water retained at 1500 kPa tension - % organic carbon).

Control Section for Cation-Exchange Activity Classes

The control section for cation-exchange activity classes is the same as that used to determine the particle-size and mineralogy classes. For soils with strongly contrasting particle-size classes, where both named parts of the control section use a cation-exchange activity class, the class associated with the particle-size class that has the most clay is named. For example, in a pedon with a classification of loamy over clayey, mixed, active, calcareous, thermic Typic Udorthent, the cation-exchange activity class “active” is associated with the clayey part of the control section.

Key to Cation-Exchange Activity Classes

A. Soils that are not Histosols, Histels, Oxisols, or Psamments, that are not in “psamm” great groups of Entisols or Gelisols, that are not in Psammentic subgroups, that are not in “kandi” or “kanhap” great groups or subgroups of Alfisols or Ultisols, that are not in a sandy or sandy-skeletal particle-size class or any substitute for a particle-size class (including fragmental), and that have:

1. A mixed or siliceous mineralogy class; and

2. A ratio of cation-exchange capacity (by 1N NH₄OAc pH 7) to percent clay (by weight) of:
 a. 0.60 or more.
 Superactive
 b. 0.40 to 0.60.
 Active
c. 0.24 to 0.40.
 Semiactive

d. Less than 0.24.
 Subactive

or

B. All other soils: No cation-exchange activity classes used.

Calcareous and Reaction Classes of Mineral Soils

The presence or absence of carbonates, soil reaction, and the presence of high concentrations of aluminum in mineral soils are treated together because they are so intimately related. There are four classes—calcareous, acid, nonacid, and allic. These are defined later, in the key to calcareous and reaction classes. The classes are not used in all taxa, nor is more than one used in the same taxa.

Use of the Calcareous and Reaction Classes

The calcareous, acid, and nonacid classes are used in the names of the families of Entisols, Gelisols, Aquands, Aquepts, and all Gelic suborders and Gelic great groups, except they are not used in any of the following:

1. Duraquands and Placaquands
2. Sulfaquepts, Fragiaquepts, and Petraquepts
3. The Psamments, Psammaquents, Psammowassents, Psammoturbels, Psammorthels, and Psammentic subgroups that have no particle-size class
4. Sandy, sandy-skeletal, cindery, pumiceous, or fragmental families
5. Families with carbonatic, gyspic, or hypergyspic mineralogy
6. Histels
The calcareous class is used not only in the names of the taxa listed above but also in the names of the families of Aquolls, except that it is not used with any of the following:

1. Calciaquolls, Natraquolls, and Argiaquolls
2. Cryaquolls and Duraquolls that have an argillic or natric horizon
3. Families with carbonatic, gypsic, or hypergypsic mineralogy

The allic class is used only in families of Oxisols.

Control Section for Calcaceous and Reaction Classes

The control section for the calcareous class is one of the following:

1. All Gelisols (except for Histels) and all Gelic suborders and Gelic great groups: The layer from the mineral soil surface to a depth of 25 cm or to a root-limiting layer, whichever is shallower.
2. Soils with a root-limiting layer that is 25 cm or less below the mineral soil surface: A 2.5-cm-thick layer directly above the root-limiting layer.
3. Soils with a root-limiting layer that is 26 to 50 cm below the mineral soil surface: The layer between a depth of 25 cm below the mineral soil surface and the root-limiting layer.
4. All other listed soils: Between a depth of 25 and 50 cm below the mineral soil surface.

The control section for the acid and nonacid classes is one of the following:

1. All Gelisols (except for Histels) and all Gelic suborders and Gelic great groups: The layer from the mineral soil surface to a depth of 25 cm or to a root-limiting layer, whichever is shallower.
2. All other listed soils: The same control section depths as those for particle-size classes.

 The control section for the allic class in Oxisols is the same as that for particle-size classes.

Key to Calcareous and Reaction Classes

A. Oxisols that have a layer, 30 cm or more thick within the control section, that contains more than 2 cmol(+) of KCl-extractable Al per kg soil in the fine-earth fraction.

 Allic

B. Other listed soils that, in the fine-earth fraction, effervesce (in cold dilute HCl) in all parts of the control section.

 Calcareous

C. Other listed soils with a pH of less than 5.0 in 0.01 M CaCl₂ (1:2) (about pH 5.5 in H₂O, 1:1) throughout the control section.

 Acid

D. Other listed soils with a pH of 5.0 or more in 0.01 M CaCl₂ (1:2) in some or all layers in the control section.

 Nonacid

 It should be noted that a soil containing dolomite is calcareous and that effervescence of dolomite, when treated with cold dilute HCl, is slow.

 The calcareous, acid, nonacid, and allic classes are listed in the family name, when appropriate, following the mineralogy and cation-exchange activity classes.

Soil Temperature Classes

Soil temperature classes, as named and defined here, are used as part of the family name in both mineral and organic soils. Temperature class names are used as part of the family name unless the criteria for a higher taxon carry the same limitation. Thus, frigid is implied in all cryic suborders, great
groups, and subgroups and would be redundant if used in the names of families within these classes.

The Celsius (centigrade) scale is the standard. It is assumed that the temperature is that of a soil that is not being irrigated.

Control Section for Soil Temperature

The control section for soil temperature is either at a depth of 50 cm below the soil surface or at the upper boundary of a root-limiting layer, whichever is shallower. The soil temperature classes, defined in terms of the mean annual soil temperature and the difference between mean summer and mean winter temperatures, are determined by the following key.

Key to Soil Temperature Classes

A. Gelisols and Gelic suborders and great groups that have a mean annual soil temperature as follows:

1. \(-10 \, ^\circ\text{C} \) or lower.

 Hypergelic

 or

2. \(-4 \, ^\circ\text{C} \) to \(-10 \, ^\circ\text{C} \).

 Pergelic

 or

3. \(+1 \, ^\circ\text{C} \) to \(-4 \, ^\circ\text{C} \).

 Subgelic

 or

B. Other soils that have a difference in soil temperature of 6 \(^\circ\text{C} \) or more between mean summer (June, July, and August in the Northern Hemisphere) and mean winter (December, January, and February in the Northern Hemisphere) and a mean annual soil temperature of:

1. Lower than \(8 \, ^\circ\text{C} \) (47 \(^\circ\text{F} \)).

 Frigid

 or
2. 8 °C (47 °F) to 15 °C (59 °F).
 Mesic

 or

3. 15 °C (59 °F) to 22 °C (72 °F).
 Thermic

 or

4. 22 °C (72 °F) or higher.
 Hyperthermic

or

C. All other soils that have a mean annual soil temperature as follows:

 1. Lower than 8 °C (47 °F).
 Isofrigid

 or

 2. 8 °C (47 °F) to 15 °C (59 °F).
 Isomesic

 or

 3. 15 °C (59 °F) to 22 °C (72 °F).
 Isothermic

 or

 4. 22 °C (72 °F) or higher.
 Isohyperthermic

Soil Depth Classes

Soil depth classes are used in all families of mineral soils and Histels that have a root-limiting layer at a specified depth from the mineral soil surface, except for those families in Lithic subgroups (defined below) and those with a fragipan. The root-limiting layers included in soil depth classes are duripans; petrocalcic, petrogypsic, and placic horizons; continuous ortstein (90 percent or more); and densic, lithic, paralithic, and petroferric contacts. Soil depth classes for Histosols are given later in this chapter. One soil depth class name, “shallow,” is
used to characterize certain soil families that have one of the depths indicated in the following key.

Key to Soil Depth Classes for Mineral Soils and Histels

A. Oxisols that are less than 100 cm deep (from the mineral soil surface) to a root-limiting layer and are not in a Lithic subgroup.

Shallow

or

B. Other mineral soils and Folistsels that are less than 50 cm deep (from the mineral soil surface) to a root-limiting layer and are not in a Lithic subgroup.

Shallow

or

C. Other Histels that are less than 50 cm deep to a root-limiting layer.

Shallow

or

D. All other Histels and mineral soils: No soil depth class used.

Rupture-Resistance Classes

In this taxonomy, some partially cemented soil materials, such as durinodes, serve as differentiae in categories above the family, while others, such as partially cemented spodic materials (ortstein), do not. No single family, however, should include soils both with and without partially cemented horizons. In Spodosols, a partially cemented spodic horizon is used as a family differentia. The following rupture-resistance class is defined for families of Spodosols:

A. Spodosols that have an ortstein horizon.

Ortstein

or
B. All other soils: No rupture-resistance class used.

Classes of Coatings on Sands

Despite the emphasis given to particle-size classes in this taxonomy, variability remains in the sandy particle-size class, which includes sands and loamy sands. Some sands are very clean, i.e., almost completely free of silt and clay, while others are mixed with appreciable amounts of finer grains. Clay is more efficient at coating sand than is silt. A weighted average silt plus 2 times the weighted average clay of more than 5 makes a reasonable division of the sands at the family level. Two classes of Quartzipsamments are defined in terms of their content of silt plus 2 times their content of clay.

Control Section for Classes of Coatings on Sands

The control section for classes of coatings is the same as that for particle-size classes or their substitutes and for mineralogy classes.

Key to Classes of Coatings on Sands

A. Quartzipsamments that have a sum of the weighted average silt (by weight) plus 2 times the weighted average clay (by weight) of more than 5.

Coated

or

B. Other Quartzipsamments.

Uncoated

Classes of Permanent Cracks

Some Hydraquents consolidate or shrink after drainage and become Fluvaquents or Humaquepts. In the process they can form polyhedrons roughly 12 to 50 cm in diameter, depending on their n value and texture. These polyhedrons are separated by cracks that range in width from 2 mm to more than 1 cm. The polyhedrons may shrink and swell with changes in the
moisture content of the soils, but the cracks are permanent and can persist for several hundreds of years, even if the soils are cultivated. The cracks permit rapid movement of water through the soils, either vertically or laterally. Such soils may have the same texture, mineralogy, and other family properties as soils that do not form cracks or that have cracks that open and close with the seasons. Soils with permanent cracks are very rare in the United States.

Control Section for Classes of Permanent Cracks

The control section for classes of permanent cracks is from the base of any plow layer or 25 cm from the soil surface, whichever is deeper, to 100 cm below the soil surface.

Key to Classes of Permanent Cracks

A. Fluvaquents or Humaquepts that have, throughout a layer 50 cm or more thick, continuous, permanent, lateral and vertical cracks 2 mm or more wide, spaced at average lateral intervals of less than 50 cm.

Cracked

or

B. All other Fluvaquents and Humaquepts: No class of permanent cracks used.

Family Differentiae for Histosols and Histels

Most of the differentiae that are used to distinguish families of Histosols and Histels have already been defined, either because they are used as differentiae in mineral soils as well as Histosols and Histels or because their definitions are used for the classification of some Histosols and Histels in categories higher than the family. In the following descriptions, differentiae not previously mentioned are defined and the classes in which they are used are enumerated.

The order in which family classes, if appropriate for a
particular family, are placed in the technical family names of Histosols and Histels is as follows:

- Particle-size classes
- Mineralogy classes, including the nature of limnic deposits in Histosols
- Reaction classes
- Soil temperature classes
- Soil depth classes (used only in Histosols)

Particle-Size Classes

Particle-size classes are used only for the family names of Terric subgroups of Histosols and Histels. The classes are determined from the properties of the mineral soil materials in the control section through use of the key to particle-size classes. The classes are more generalized than those for soils in other orders.

Control Section for Particle-Size Classes

The particle-size control section is the upper 30 cm of the mineral layer or of that part of the mineral layer that is within the control section for Histosols and Histels (given in chapter 3), whichever is thicker.

Key to Particle-Size Classes of Histosols and Histels

A. Terric subgroups of Histosols and Histels that have (by weighted average) in the particle-size control section:

1. A fine-earth component of less than 10 percent (including associated medium and finer pores) of the total volume.

 Fragmental

 or

2. A texture class (of the fine-earth material) of sand or loamy sand, including less than 50 percent (by weight) very fine sand in the fine-earth fraction.

 Sandy or sandy-skeletal

 or
3. Less than 35 percent (by weight) clay in the fine-earth fraction and a content of rock fragments of 35 percent or more of the total volume.

 Loamy-skeletal

 or

4. A content of rock fragments of 35 percent or more of the total volume.

 Clayey-skeletal

 or

5. A clay content of 35 percent or more (by weight) in the fine-earth fraction.

 Clayey

 or

6. All other Terric subgroups of Histosols and Histels.

 Loamy

 or

B. All other Histosols and Histels: No particle-size class used.

Mineralogy Classes

There are three different kinds of mineralogy classes recognized for families in certain great groups and subgroups of Histosols. The first kind is the ferrihumic soil material defined below. The second is three types of limnic materials—coprogenous earth, diatomaceous earth, and marl, defined in chapter 3. The third is mineral layers of Terric subgroups. The key to mineralogy classes for these mineral layers is the same as that for mineral soils. Terric subgroups of Histels also have the same mineralogy classes as those for mineral soils.

Ferrihumic Mineralogy Class

Ferrihumic soil material, i.e., bog iron, is an authigenic (formed in place) deposit consisting of hydrated iron oxide
mixed with organic matter, either dispersed and soft or cemented into large aggregates, in a mineral or organic layer that has all of the following characteristics:

1. Saturation with water for more than 6 months per year (or artificial drainage);

2. 2 percent or more (by weight) iron concretions having lateral dimensions ranging from less than 5 to more than 100 mm and containing 10 percent or more (by weight) free iron oxide (7 percent or more Fe) and 1 percent or more (by weight) organic matter; and

3. A dark reddish or brownish color that changes little on drying.

The ferrihumic mineralogy class is used for families of Fibrists, Hemists, and Saprists, but it is not used for Folists, Sphagnofibrists, or Sphagnic subgroups of other great groups. If the ferrihumic class is used in the family name of a Histosol, no other mineralogy classes are used in that family because the presence of iron is considered to be by far the most important mineralogical characteristic.

Mineralogy Classes Applied Only to Limnic Subgroups

Limnic materials (defined in chapter 3) with a thickness of 5 cm or more are mineralogy class criteria if the soil does not also have ferrihumic mineralogy. The following family classes are used: coprogenous, diatomaceous, and marly.

Control Section for the Ferrihumic Mineralogy Class and Mineralogy Classes Applied to Limnic Subgroups

The control section for the ferrihumic mineralogy class and the classes applied to Limnic subgroups is the same as the control section for Histosols.
Mineralogy Classes Applied Only to Terric Subgroups

For Histosols and Histels in Terric subgroups, use the same key to mineralogy classes as that used for mineral soils unless a Histosol also has ferrihumic mineralogy.

Control Section for Mineralogy Classes Applied Only to Terric Subgroups

For Terric subgroups of Histosols and Histels, use the same control section for mineralogy classes as that used for the particle-size classes.

Key to Mineralogy Classes

A. Histosols (except for Folists, Sphagnofibrists, and Sphagnic subgroups of other great groups) that have ferrihumic soil material within the control section for Histosols.

 Ferrihumic

or

B. Other Histosols that have, within the control section for Histosols, limnic materials, 5 cm or more thick, that consist of:

 1. Coprogenous earth.

 Coprogenous

 or

 2. Diatomaceous earth.

 Diatomaceous

 or

 3. Marl.

 Marly

or

C. Histels and other Histosols in Terric subgroups: Use the key to mineralogy classes for mineral soils.

or

D. All other Histels and Histosols: No mineralogy class used.
Reaction Classes

Reaction classes are used in all families of Histosols and Histels. The two classes recognized are defined in the following key:

A. Histosols and Histels that have a pH value, on undried samples, of 4.5 or more (in 0.01 M CaCl\textsubscript{2}) in one or more layers of organic soil materials within the control section for Histosols.

\textbf{Euic}

or

B. All other Histosols and Histels.

\textbf{Dysic}

Soil Temperature Classes

The soil temperature classes of Histosols are determined through use of the same key and definitions as those used for mineral soils. Histels have the same temperature classes as other Gelisols.

Soil Depth Classes

Soil depth classes refer to the depth to a root-limiting layer or to a pumiceous, cindery, or fragmental substitute class. The root-limiting layers included in soil depth classes of Histosols are duripans; petrocalcic, petrogypsic, and placic horizons; continuous ortstein; and densic, lithic, paralithic, and petroferric contacts. The following key is used for families in all subgroups of Histosols. The shallow class is not used in the suborder Folists.

Key to Soil Depth Classes for Histosols

A. Histosols that are less than 18 cm deep to a root-limiting layer or to a pumiceous, cindery, or fragmental substitute class.

\textbf{Micro}

or
B. Other Histosols, excluding Folists, that have a root-limiting layer or a pumiceous, cindery, or fragmental substitute class at a depth between 18 and 50 cm from the soil surface.

Shallow

or

C. All other Histosols: No soil depth class used.

Series Differentiae Within a Family

The function of the series is pragmatic, and differences within a family that affect the use of a soil should be considered in classifying soil series. The separation of soils at the series level of this taxonomy can be based on any property that is used as criteria at higher levels in the system. The criteria most commonly used include presence of, depth to, thickness of, and expression of horizons and properties diagnostic for the higher categories and differences in texture, mineralogy, soil moisture, soil temperature, and amounts of organic matter. The limits of the properties used as differentiae must be more narrowly defined than the limits for the family. The properties used, however, must be reliably observable or be inferable from other soil properties or from the setting or vegetation.

The differentiae used must be within the series control section. Differences in soil or regolith that are outside the series control section and that have not been recognized as series differentiae but are relevant to potential uses of certain soils are considered as a basis for phase distinctions.

Control Section for the Differentiation of Series

The control section for the soil series is similar to that for the family, but it differs in a few important respects. The particle-size and mineralogy control sections for families end at the upper boundary of a fragipan, duripan, or petrocalcic horizon because these horizons have few roots. In contrast to the control section for the series, the thickness of such horizons is not taken into account in the control sections for the family.
The series control section includes materials starting at the soil surface and also the first 25 cm below a densic or paralithic contact if its upper boundary is less than 125 cm below the mineral soil surface. Properties of horizons and layers below the particle-size control section, a depth between 100 and 150 cm (or to 200 cm if in a diagnostic horizon) from the mineral soil surface, also are considered.

Key to the Control Section for the Differentiation of Series

The part of a soil to be considered in differentiating series within a family is as follows:

A. Mineral soils that have permafrost within 150 cm of the soil surface: From the soil surface to the shallowest of the following:
 1. A lithic or petroferric contact; or
 2. A depth of 100 cm if the depth to permafrost is less than 75 cm; or
 3. 25 cm below the upper boundary of permafrost if that boundary is 75 cm or more below the soil surface; or
 4. 25 cm below a densic or paralithic contact; or
 5. A depth of 150 cm; or

B. Other mineral soils: From the soil surface to the shallowest of the following:
 1. A lithic or petroferric contact; or
 2. A depth of either 25 cm below a densic or paralithic contact or 150 cm below the soil surface, whichever is shallower, if there is a densic or paralithic contact within 150 cm; or
 3. A depth of 150 cm if the bottom of the deepest diagnostic horizon is less than 150 cm from the soil surface; or
 4. The lower boundary of the deepest diagnostic horizon or a depth of 200 cm, whichever is shallower, if the lower
boundary of the deepest diagnostic horizon is 150 cm or more below the soil surface; or

C. Organic soils (Histosols and Histels): From the soil surface to the shallowest of the following:

1. A lithic or petroferric contact; or
2. A depth of 25 cm below a dencic or paralithic contact; or
3. A depth of 100 cm if the depth to permafrost is less than 75 cm; or
4. 25 cm below the upper boundary of permafrost if that boundary is between a depth of 75 and 125 cm below the soil surface; or
5. The base of the bottom tier.
This chapter describes soil layers and genetic soil horizons. The genetic horizons are not the equivalent of the diagnostic horizons of Soil Taxonomy. While designations of genetic horizons express a qualitative judgment about the kinds of changes that are believed to have taken place in a soil, diagnostic horizons are quantitatively defined features that are used to differentiate between taxa. A diagnostic horizon may encompass several genetic horizons, and the changes implied by genetic horizon designations may not be large enough to justify recognition of different diagnostic horizons.

Master Horizons and Layers

The capital letters O, L, A, E, B, C, R, M, and W represent the master horizons and layers of soils. These letters are the base symbols to which other characters are added to complete the designations. Most horizons and layers are given a single capital-letter symbol; some require two.

O horizons or layers: Horizons or layers dominated by organic soil materials. Some are saturated with water for long periods or were once saturated but are now artificially drained; others have never been saturated.

Some O layers consist of undecomposed or partially decomposed litter (such as leaves, needles, twigs, moss, and lichens) that has been deposited on the surface. They may be on top of either mineral or organic soils. Other O layers consist of organic material that was deposited under saturated conditions and has decomposed to varying stages. The mineral fraction of such material constitutes only a small percentage of the volume of the material and generally much less than half of its weight. Some soils consist entirely of materials designated as O horizons or layers.
An O layer may be on the surface of a mineral soil, or it may be at any depth below the surface if it is buried. A horizon formed by the illuviation of organic material into a mineral subsoil is not an O horizon, although some horizons that have formed in this manner contain considerable amounts of organic matter.

L horizons or layers: *Limnic horizons or layers include both organic and mineral limnic materials that were either (1) deposited in water by precipitation or through the actions of aquatic organisms, such as algae and diatoms, or (2) derived from underwater and floating aquatic plants and subsequently modified by aquatic animals.*

L horizons or layers include coprogenous earth (sedimentary peat), diatomaceous earth, and marl. They are used only in Histosols. They have only the following subordinate distinctions: co, di, or ma. They do not have the subordinate distinctions of the other master horizons and layers.

A horizons: *Mineral horizons that have formed at the surface or below an O horizon. They exhibit obliteration of all or much of the original rock structure¹ and show one or both of the following: (1) an accumulation of humified organic matter closely mixed with the mineral fraction and not dominated by properties characteristic of E or B horizons (defined below) or (2) properties resulting from cultivation, pasturing, or similar kinds of disturbance.*

If a surface horizon has properties of both A and E horizons but the feature emphasized is an accumulation of humified organic matter, it is designated as an A horizon. In some areas, such as areas of warm, arid climates, the undisturbed surface horizon is less dark than the adjacent underlying horizon and contains only small amounts of organic matter. It has a

¹Rock structure includes fine stratification in unconsolidated soil materials as well as pseudomorphs of weathered minerals that retain their positions relative to each other and to unweathered minerals in saprolite.
morphology distinct from the C layer, although the mineral fraction is unaltered or only slightly altered by weathering. Such a horizon is designated as an A horizon because it is at the surface. Recent alluvial or eolian deposits that retain fine stratification are not considered to be A horizons unless cultivated.

E horizons: Mineral horizons in which the main feature is the loss of silicate clay, iron, aluminum, or some combination of these, leaving a concentration of sand and silt particles. These horizons exhibit obliteration of all or much of the original rock structure.

An E horizon is most commonly differentiated from an underlying B horizon in the same sequum by a color of higher value or lower chroma, or both, by coarser texture, or by a combination of these properties. In some soils the color of the E horizon is that of the sand and silt particles, but in many soils coatings of iron oxides or other compounds mask the color of the primary particles. An E horizon is most commonly differentiated from an overlying A horizon by its lighter color. It generally contains less organic matter than the A horizon. An E horizon is commonly near the surface, below an O or A horizon and above a B horizon, but eluvial horizons that are within or between parts of the B horizon or extend to depths greater than those of normal observation can be assigned the letter E if they are pedogenic.

B horizons: Horizons that have formed below an A, E, or O horizon. They are dominated by the obliteration of all or much of the original rock structure and show one or more of the following:

1. Illuvial concentration of silicate clay, iron, aluminum, humus, carbonates, gypsum, or silica, alone or in combination;
2. Evidence of the removal, addition, or transformation of carbonates and/or gypsum;
3. Residual concentration of oxides;
4. Coatings of sesquioxides that make the horizon conspicuously lower in color value, higher in chroma, or redder in hue, without apparent illuviation of iron;
5. Alteration that forms silicate clay or liberates oxides, or both, and that forms a granular, blocky, or prismatic structure if volume changes accompany changes in moisture content;
6. Brittleness; or
7. Strong gleying.

All of the different kinds of B horizons are, or were originally, subsurface horizons. Some examples included as B horizons, where contiguous to other genetic horizons, are layers of illuvial concentration of carbonates, gypsum, or silica that are the result of pedogenic processes (and may or may not be cemented) and brittle layers that show other evidence of alteration, such as prismatic structure or illuvial accumulation of clay.

Examples of layers that are not B horizons are layers in which clay films either coat rock fragments or cover finely stratified unconsolidated sediments, regardless of whether the films were formed in place or by illuviation; layers into which carbonates have been illuviated but that are not contiguous to an overlying genetic horizon; and layers with gleying but no other pedogenic changes.

C horizons or layers: Horizons or layers, excluding strongly cemented and harder bedrock, that are little affected by pedogenic processes and lack the properties of O, A, E, or B horizons. Most are mineral layers. The material of C horizons or layers may be either like or unlike the material from which the solum has presumably formed. The C horizon may have been modified, even if there is no evidence of pedogenesis.

Included as C layers (typically designated Cr) are sediment, saprolite, bedrock, and other geologic materials that are moderately cemented or less cemented. The excavation
difficulty in these materials commonly is low or moderate. Some soils form in material that is already highly weathered, and if such material does not meet the requirements for A, E, or B horizons, it is designated by the letter C. Changes that are not considered pedogenic are those not related to the overlying horizons. Some layers that have accumulations of silica, carbonates, gypsum, or more soluble salts are included in C horizons, even if cemented. If a cemented layer formed through pedogenic processes, however, it is considered a B horizon.

R layers: *Strongly cemented to indurated bedrock.*

Granite, basalt, quartzite, limestone, and sandstone are examples of bedrock designated by the letter R. The excavation difficulty commonly exceeds high. The R layer is sufficiently coherent when moist to make hand-digging with a spade impractical, although the layer may be chipped or scraped. Some R layers can be ripped with heavy power equipment. The bedrock may have cracks, but these are generally too few and too small to allow root penetration. The cracks may be coated or filled with clay or other material.

M layers: *Root-limiting subsoil layers consisting of nearly continuous, horizontally oriented, human-manufactured materials.*

Examples of materials designated by the letter M are geotextile liners, asphalt, concrete, rubber, and plastic.

W layers: *Water*

This symbol indicates water layers within or beneath the soil. The water layer is designated as *W*f if it is permanently frozen and as *W* if it is not permanently frozen. The *W* (or *W*f) designation is not used for shallow water, ice, or snow above the soil surface.

Transitional and Combination Horizons

Horizons dominated by properties of one master horizon but having subordinate properties of another.—Two capital-
letter symbols are used for such transitional horizons, e.g., AB, EB, BE, or BC. The first of these symbols indicates that the properties of the horizon so designated dominate the transitional horizon. An AB horizon, for example, has characteristics of both an overlying A horizon and an underlying B horizon, but it is more like the A horizon than the B horizon.

In some cases a horizon can be designated as transitional even if one of the master horizons to which it presumably forms a transition is not present. A BE horizon may be recognized in a truncated soil if its properties are similar to those of a BE horizon in a soil from which the overlying E horizon has not been removed by erosion. A BC horizon may be recognized even if no underlying C horizon is present; it is transitional to assumed parent materials.

Horizons with two distinct parts that have recognizable properties of the two kinds of master horizons indicated by the capital letters.—The two capital letters designating such combination horizons are separated by a virgule (/), e.g., E/B, B/E, or B/C. Most of the individual parts of one horizon component are surrounded by the other. The designation may be used even when horizons similar to one or both of the components are not present, provided that the separate components can be recognized in the combination horizon. The first symbol is that of the horizon with the greater volume.

Single sets of horizon designators do not cover all situations; therefore, some improvising is needed. For example, Lamellic Udipsamments have lamellae that are separated from each other by eluvial layers. Because it is generally not practical to describe each lamella and eluvial layer as a separate horizon, the horizons can be combined but the components described separately. One horizon then has several lamellae and eluvial layers and can be designated an “E and Bt” horizon. The complete horizon sequence for these soils could be: Ap-Bw-E and Bt1-E and Bt2-C.
Suffix Symbols

Lowercase letters are used as suffixes to designate specific kinds of master horizons and layers. The term “accumulation” is used in many of the definitions of such horizons to indicate that these horizons must contain more of the material in question than is presumed to have been present in the parent material. The suffix symbols and their meanings are as follows:

a *Highly decomposed organic material*

This symbol is used with O to indicate the most highly decomposed organic materials, which have a fiber content of less than 17 percent (by volume) after rubbing.

b *Buried genetic horizon*

This symbol is used in mineral soils to indicate identifiable buried horizons with major genetic features that were developed before burial. Genetic horizons may or may not have formed in the overlying material, which may be either like or unlike the assumed parent material of the buried soil. This symbol is not used in organic soils, nor is it used to separate an organic layer from a mineral layer.

c *Concretions or nodules*

This symbol indicates a significant accumulation of concretions or nodules. Cementation is required. The cementing agent commonly is iron, aluminum, manganese, or titanium. It cannot be silica, dolomite, calcite, or more soluble salts.

do *Coprogenous earth*

This symbol, used only with L, indicates a limnic layer of coprogenous earth (or sedimentary peat).

d *Physical root restriction*

This symbol indicates noncemented, root-restricting layers in naturally occurring or human-made sediments or
materials. Examples are dense basal till, plowpans, and other mechanically compacted zones.

di *Diatomaceous earth*

This symbol, used only with L, indicates a limnic layer of diatomaceous earth.

e *Organic material of intermediate decomposition*

This symbol is used with O to indicate organic materials of intermediate decomposition. The fiber content of these materials is 17 to 40 percent (by volume) after rubbing.

f *Frozen soil or water*

This symbol indicates that a horizon or layer contains permanent ice. The symbol is not used for seasonally frozen layers or for dry permafrost.

ff *Dry permafrost*

This symbol indicates a horizon or layer that is continually colder than 0°C and does not contain enough ice to be cemented by ice. This suffix is not used for horizons or layers that have a temperature warmer than 0°C at some time of the year.

g *Strong gleying*

This symbol indicates either that iron has been reduced and removed during soil formation or that saturation with stagnant water has preserved it in a reduced state. Most of the affected layers have chroma of 2 or less, and many have redox concentrations. The low chroma can represent either the color of reduced iron or the color of uncoated sand and silt particles from which iron has been removed. The symbol g is not used for materials of low chroma that have no history of wetness, such as some shales or E horizons. If g is used with B, pedogenic change in addition to gleying is implied. If no other pedogenic change besides gleying has taken place, the horizon is designated Cg.
h **Illuvial accumulation of organic matter**

This symbol is used with B to indicate the accumulation of illuvial, amorphous, dispersible complexes of organic matter and sesquioxides if the sesquioxide component is dominated by aluminum but is present only in very small quantities. The organo-sesquioxide material coats sand and silt particles. In some horizons these coatings have coalesced, filled pores, and cemented the horizon. The symbol h is also used in combination with s as “Bhs” if the amount of the sesquioxide component is significant but the color value and chroma, moist, of the horizon are 3 or less.

i **Slightly decomposed organic material**

This symbol is used with O to indicate the least decomposed of the organic materials. The fiber content of these materials is 40 percent or more (by volume) after rubbing.

j **Accumulation of jarosite**

Jarosite is a potassium (ferric) iron hydroxy sulfate mineral, KFe$_3$(SO$_4$)$_2$(OH)$_6$, that is commonly an alteration product of pyrite that has been exposed to an oxidizing environment. Jarosite has hue of 2.5Y or yellower and normally has chroma of 6 or more, although chromas as low as 3 or 4 have been reported. It forms in preference to iron (hydr)oxides in active acid sulfate soils at pH of 3.5 or less and can be stable in post-active acid sulfate soils for long periods of time at higher pH.

jj **Evidence of cryoturbation**

Evidence of cryoturbation includes irregular and broken horizon boundaries, sorted rock fragments, and organic soil materials occurring as bodies and broken layers within and/or between mineral soil layers. The organic bodies and layers are most commonly at the contact between the active layer and the permafrost.
k *Accumulation of secondary carbonates*

This symbol indicates an accumulation of visible pedogenic calcium carbonate (less than 50 percent, by volume). Carbonate accumulations occur as carbonate filaments, coatings, masses, nodules, disseminated carbonate, or other forms.

kk *Engulfment of horizon by secondary carbonates*

This symbol indicates major accumulations of pedogenic calcium carbonate. The suffix kk is used when the soil fabric is plugged with fine grained pedogenic carbonate (50 percent or more, by volume) that occurs as an essentially continuous medium. The suffix corresponds to the stage III plugged horizon or higher of the carbonate morphogenetic stages (Gile et al., 1966).

m *Cementation or induration*

This symbol indicates continuous or nearly continuous cementation. It is used only for horizons that are more than 90 percent cemented, although they may be fractured. The cemented layer is physically root-restrictive. The predominant cementing agent (or the two dominant ones) may be indicated by adding defined letter suffixes, singly or in pairs. The horizon suffix kkm (and less commonly km) indicates cementation by carbonates; qm, cementation by silica; sm, cementation by iron; yym, cementation by gypsum; kqm, cementation by carbonates and silica; and zm, cementation by salts more soluble than gypsum.

ma *Marl*

This symbol, used only with L, indicates a limnic layer of marl.

n *Accumulation of sodium*

This symbol indicates an accumulation of exchangeable sodium.
o Residual accumulation of sesquioxides
 This symbol indicates a residual accumulation of sesquioxides.

p Tillage or other disturbance
 This symbol indicates a disturbance of the surface layer by mechanical means, pasturing, or similar uses. A disturbed organic horizon is designated Op. A disturbed mineral horizon is designated Ap even though it is clearly a former E, B, or C horizon.

q Accumulation of silica
 This symbol indicates an accumulation of secondary silica.

r Weathered or soft bedrock
 This symbol is used with C to indicate layers of bedrock that are moderately cemented or less cemented. Examples are weathered igneous rock and partly consolidated sandstone, siltstone, or shale. The excavation difficulty is low to high.

s Illuvial accumulation of sesquioxides and organic matter
 This symbol is used with B to indicate an accumulation of illuvial, amorphous, dispersible complexes of organic matter and sesquioxides if both the organic matter and sesquioxide components are significant and if either the color value or chroma, moist, of the horizon is 4 or more. The symbol is also used in combination with h as “Bhs” if both the organic matter and sesquioxide components are significant and if the color value and chroma, moist, are 3 or less.

ss Presence of slickensides
 This symbol indicates the presence of slickensides. Slickensides result directly from the swelling of clay minerals and shear failure, commonly at angles of 20 to 60 degrees above horizontal. They are indicators that other
vertic characteristics, such as wedge-shaped peds and surface cracks, may be present.

t Accumulation of silicate clay

This symbol indicates an accumulation of silicate clay that either has formed within a horizon and subsequently has been translocated within the horizon or has been moved into the horizon by illuviation, or both. At least some part of the horizon should show evidence of clay accumulation either as coatings on surfaces of peds or in pores, as lamellae, or as bridges between mineral grains.

u Presence of human-manufactured materials (artifacts)

This symbol indicates the presence of manufactured artifacts that have been created or modified by humans, usually for a practical purpose in habitation, manufacturing, excavation, or construction activities. Examples of artifacts are processed wood products, liquid petroleum products, coal combustion by-products, asphalt, fibers and fabrics, bricks, cinder blocks, concrete, plastic, glass, rubber, paper, cardboard, iron and steel, altered metals and minerals, sanitary and medical waste, garbage, and landfill waste.

v Plinthite

This symbol indicates the presence of iron-rich, humus-poor, reddish material that is firm or very firm when moist and is less than strongly cemented. It hardens irreversibly when exposed to the atmosphere and to repeated wetting and drying.

w Development of color or structure

This symbol is used only with B horizons to indicate the development of color or structure, or both, with little or no apparent illuvial accumulation of material. It should not be used to indicate a transitional horizon.
x *Fragipan character*

This symbol indicates a genetically developed layer that has a combination of firmness and brittleness and commonly a higher bulk density than the adjacent layers. Some part of the layer is physically root-restrictive.

y *Accumulation of gypsum*

This symbol indicates an accumulation of gypsum. The suffix y is used when the horizon fabric is dominated by soil particles or minerals other than gypsum. Gypsum is present in amounts that do not significantly obscure or disrupt other features of the horizon.

yy *Dominance of horizon by gypsum*

This symbol indicates a horizon that is dominated by the presence of gypsum. The gypsum content may be due to an accumulation of secondary gypsum, the transformation of primary gypsum inherited from parent material, or other processes. Suffix yy is used when the horizon fabric has such an abundance of gypsum (generally 50 percent or more, by volume) that pedogenic and/or lithologic features are obscured or disrupted by growth of gypsum crystals. Colors associated with horizons that have suffix yy typically are highly whitened with value of 7 through 9.5 and chroma of 2 or less.

z *Accumulation of salts more soluble than gypsum*

This symbol indicates an accumulation of salts that are more soluble than gypsum.

Conventions for Using Letter Suffixes

Many master horizons and layers that are symbolized by a single capital letter have one or more lowercase letter suffixes. The following rules apply:

1. Letter suffixes should directly follow the capital letter.
2. More than three suffixes are rarely used.

3. If more than one suffix is needed, the following letters, if used, are written first: a, d, e, h, i, r, s, t, and w. Except in the Bhs or Crt2 horizon designations, none of these letters are used in combination in a single horizon.

4. If more than one suffix is needed and the horizon is not buried, the following symbols, if used, are written last: c, f, g, m, v, and x. Some examples: Btc, Bkm, and Bsv.

5. If a horizon is buried, the suffix b is written last. It is used only for buried mineral soils.

6. If the above rules do not apply to certain suffixes, such as k, kk, q, or y, the suffixes may be listed together in order of assumed dominance or they are listed alphabetically if dominance is not a concern.

A B horizon that has a significant accumulation of clay and also shows evidence of a development of color or structure, or both, is designated Bt (t has precedence over w, s, and h). A B horizon that is gleyed or has accumulations of carbonates, sodium, silica, gypsum, or salts more soluble than gypsum or residual accumulations of sesquioxides carries the appropriate symbol: g, k, n, q, y, z, or o. If illuvial clay also is present, t precedes the other symbol: Bto.

Unless needed for explanatory purposes, the suffixes h, s, and w are not used with g, k, n, q, y, z, or o.

Vertical Subdivision

Commonly, a horizon or layer identified by a single letter or a combination of letters has to be subdivided. For this purpose, Arabic numerals are added to the letters of the horizon designation. These numerals follow all the letters. Within a C horizon, for example, successive layers may be designated

2Indicates weathered bedrock or saprolite in which clay films are present.
C1, C2, C3, etc. If the lower part is gleyed and the upper part is not gleyed, the layers may be designated C1-C2-Cg1-Cg2 or C-Cg1-Cg2-R.

These conventions apply whatever the purpose of the subdivision. In many soils a horizon that could be identified by a single set of letters is subdivided because of the need to recognize differences in morphological features, such as structure, color, or texture. These divisions are numbered consecutively with Arabic numerals, but the numbering starts again with 1 wherever in the profile any letter of the horizon symbol changes, e.g., Bt1-Bt2-Btk1-Btk2 (not Bt1-Bt2-Btk3-Btk4). The numbering of vertical subdivisions within consecutive horizons is not interrupted at a discontinuity (indicated by a numerical prefix) if the same letter combination is used in both materials, e.g., Bs1-Bs2-2Bs3-2Bs4 (not Bs1-Bs2-2Bs1-2Bs2).

During sampling for laboratory analyses, thick soil horizons are sometimes subdivided even though differences in morphology are not evident in the field. These subdivisions are identified by Arabic numerals that follow the respective horizon designations. For example, four layers of a Bt horizon sampled by 10-cm increments are designated Bt1, Bt, Bt, and Bt4. If the horizon has already been subdivided because of differences in morphological features, the set of Arabic numerals that identifies the additional sampling subdivisions follows the first numeral. For example, three layers of a Bt horizon sampled by 10-cm increments are designated Bt21, Bt22, and Bt23. The descriptions for each of these sampling subdivisions can be the same, and a statement indicating that the horizon has been subdivided only for sampling purposes can be added.

Discontinuities

Arabic numerals are used as prefixes to horizon designations (preceding the letters A, E, B, C, and R) to
indicate discontinuities in mineral soils. These prefixes are distinct from the Arabic numerals that are used as suffixes denoting vertical subdivisions.

A discontinuity that can be identified by a number prefix is a significant change in particle-size distribution or mineralogy that indicates a difference in the material from which the horizons have formed and/or a significant difference in age, unless that difference in age is indicated by the suffix b. Symbols that identify discontinuities are used only when they can contribute substantially to an understanding of the relationships among horizons. The stratification common to soils that formed in alluvium is not designated as a discontinuity, unless particle-size distribution differs markedly from layer to layer (i.e., particle-size classes are strongly contrasting), even though genetic horizons may have formed in the contrasting layers.

Where a soil has formed entirely in one kind of material, the whole profile is understood to be material 1 and the number prefix is omitted from the symbol. Similarly, the uppermost material in a profile consisting of two or more contrasting materials is understood to be material 1, but the number is omitted. Numbering starts with the second layer of contrasting material, which is designated 2. Underlying contrasting layers are numbered consecutively. Even when the material of a layer below material 2 is similar to material 1, it is designated 3 in the sequence; the numbers indicate a change in materials, not types of material. Where two or more consecutive horizons have formed in the same kind of material, the same prefix number indicating the discontinuity is applied to all the designations of horizons in that material: Ap-E-Bt1-2Bt2-2Bt3-2BC. The suffix numbers designating vertical subdivisions of the Bt horizon continue in consecutive order across the discontinuity. However, vertical subdivisions do not continue across lithologic discontinuities if the horizons are not consecutive or contiguous to each other. If other horizons

If an R layer is present below a soil that has formed in residuum and if the material of the R layer is judged to be like the material from which the soil has developed, the Arabic-number prefix is not used. The prefix is used, however, if it is thought that the R layer would produce material unlike that in the solum, e.g., A-Bt-C-2R or A-Bt-2R. If part of the solum has formed in residuum, the symbol R is given the appropriate prefix: Ap-Bt1-2Bt2-2Bt3-2C1-2C2-2R.

A buried horizon (designated by the letter b) presents special problems. It is obviously not in the same deposit as the overlying horizons. Some buried horizons, however, have formed in material that is lithologically like the overlying deposit. A prefix is not used to distinguish material of such a buried horizon. If the material in which a horizon of a buried soil has formed is lithologically unlike the overlying material, however, the discontinuity is indicated by a number prefix and the symbol for the buried horizon also is used, e.g., Ap-Bt1-Bt2-BC-C-2ABb-2Btb1-2Btb2-2C.

Discontinuities between different kinds of layers in organic soils are not identified. In most cases such differences are identified either by letter-suffix designations if the different layers are organic or by the master symbol if the different layers are mineral.

Use of the Prime Symbol

If two or more horizons with identical Arabic-numeral prefixes and letter combinations are separated by one or more horizons with a different horizon designation in a pedon, identical letter and number symbols can be used for those horizons that have the same characteristics. For example, the sequence A-E-Bt-E-Btx-C identifies a soil that has two E horizons. To emphasize this characteristic, the prime symbol
(´) is added after the master-horizon symbol of the lower of the two horizons that have identical designations, e.g., A-E-Bt-E´-Btx-C. The prime symbol, where appropriate, is placed after the capital-letter horizon designation and before the lowercase suffix letter symbols that follow it: B´t.

The prime symbol is not used unless all letters and Arabic-numeral prefixes are completely identical. The sequence A-Bt1-Bt2-2E-2Bt1-2Bt2 is an example. It has two Bt master horizons of different lithologies; thus, the Bt horizons are not identical and the prime symbol is not needed. The prime symbol is used for soils with lithologic discontinuities when horizons have identical designations: A-C-2Bw-2Bc-2B´w-3Bc. This soil has two identical 2Bw horizons but has two different Bc horizons (a 2Bc and a 3Bc), so the prime symbol is used only with the lower 2Bw horizon (2B´w). In the rare cases where three layers have identical letter symbols, double prime symbols can be used for the lowest of these horizons: E´´.

Vertical subdivisions of horizons or layers (Arabic-numeral suffixes) are not taken into account when the prime symbol is assigned. The sequence A-E-Bt-E-B´t1-B´t2-B´t3-C is an example.

These same principles apply in designating layers of organic soils. The prime symbol is used only to distinguish two or more horizons that have identical symbols, e.g., Oi-C-O´i-C´ (when the soil has two identical Oi and C layers) and Oi-C-Oe-C´ (when the soil has two identical C layers). The prime symbol is added to the lower layers to differentiate them from the upper.

Use of the Caret Symbol

The “caret” symbol (^) is used as a prefix to master horizon designations to indicate mineral or organic layers of human-transported material. This material has been moved horizontally onto a pedon from a source area outside of that pedon by directed human activity, usually with the
aid of machinery. All horizons and layers formed in human-
transported material are indicated by a “caret” prefix (e.g.,
^A-^C-Ab-Btb). When they can contribute substantially to an
understanding of the relationship of the horizons or layers,
Arabic-numeral prefixes may be used before the caret symbol
to indicate the presence of discontinuities within the human-
transported material or between the human-transported
material and underlying layers (e.g., ^A-^C1-2^C2-3Bwb).

Literature Cited
Laboratory Methods for Soil Taxonomy

The standard laboratory methods upon which the operational definitions of the second edition of *Soil Taxonomy* are based are described in the *Soil Survey Laboratory Methods Manual* (Burt, 2004). Copies of standard laboratory data sheets are included with the typifying pedons in the chapters on soil orders in the second edition of *Soil Taxonomy*. For specific information about an analytical procedure, these data sheets should be checked and reference should be made to the *Soil Survey Laboratory Methods Manual*. Much of the information included in this appendix is derived from “Soil Survey Laboratory Methods for Characterizing Physical and Chemical Properties and Mineralogy of Soils” (Kimble et al., 1993). Also, the information is summarized in the *Soil Survey Laboratory Information Manual* (USDA, NRCS, 1995).

Pedon characterization data, or any soil survey data, are most useful when the operations for collecting the data are well understood. The mental pictures and conceptual definitions that aid in visualizing properties and processes often differ from the information supplied by an analysis. Also, results differ by method, even though two methods may carry the same name or the same concept. There is uncertainty in comparing one bit of data with another without knowledge of how both bits were gathered. Operational definitions, definitions tied to a specific method, are needed. This soil taxonomy has many class limits (at all levels) that are based on chemical or physical properties determined in the laboratory. One can question a given limit, but that is not the purpose of this appendix. This appendix is written to show what procedures are used for given class limits. By using specific class limits, everyone will come to the same classification if they follow the same procedures.
This taxonomy is based almost entirely on criteria that are defined operationally. One example is the definition of particle-size classes. There is no one definition of clay that works well for all soils. Hence, an operation for testing the validity of a clay measurement and a default operation for those situations where the clay measurement is not valid are defined. The default method is based on a water content at 1500 kPa and on content of organic carbon.

Data Elements Used in Classifying Soils

Detailed explanations of laboratory methods are given in the Soil Survey Laboratory Methods Manual (Burt, 2004). Each method is listed by code on the data sheet at the beginning of the chapters describing soil orders in the second edition of Soil Taxonomy. On the data sheets presented with each order, the method code (e.g., 3A1 for Particles <2mm) is shown for each determination made. These data sheets should be consulted for reference to the Soil Survey Laboratory Methods Manual. This manual specifies method codes for pedon sampling, sample handling, site selection, sample collection, and sample preparation.

The units of measure reported on the data sheets in the second edition of Soil Taxonomy are not SI units. Following are SI conversions:

1 meq/100 g = 1 cmol(+) /kg
1 meq/liter = 1 mmol (±)/L
1 mmho/cm = 1 dS/m
15 bar = 1500 kPa
1/₄ bar = 33 kPa
1/₁₀ bar = 10 kPa

In this taxonomy the terms (1) particle-size analysis (size separates), (2) texture, and (3) particle-size classes are all used. Particle-size analysis is needed to determine texture and particle-size classes. Texture differs from particle-size class in that texture includes only the fine-earth fraction (less than 2
mm), while particle size includes both the fraction less than 2 mm in size and the fraction equal to or more than 2 mm.

Physical Analyses

Atterberg limits are determined on the fraction less than 0.4 mm in size. Plasticity index is the difference in water content between liquid limit and plastic limit. It is the range of water content over which a soil paste can be deformed without breaking, but it does not include flow as a liquid under operationally defined conditions. Liquid limit is the minimum water content at which the paste begins to flow as a liquid. Samples that do not deform without breaking at any water content are reported as NP, nonplastic. Operational definitions are in the *Annual Book of ASTM Standards* (ASTM, 1998).

Bulk density is obtained typically by equilibration of Saran-coated natural fabric clods at designated pressure differentials. Bulk densities are determined at two or more water contents. For coarse textured and moderately coarse textured soils, they are determined when the sample is at 10 kPa suction and when oven dry. For soils of medium and finer texture, the bulk densities are determined when the sample is at 33 kPa suction and when oven dry.

Bulk density determined at 33 kPa suction is used to convert other analytical results to a volumetric basis (for example, kg of organic carbon per m3).

Coefficient of linear extensibility (COLE) is a derived value. It is computed from the difference in bulk density between a moist clod and an oven dry clod. It is based on the shrinkage of a natural soil clod between a water content of 33 kPa (10 kPa for sandier soils) and oven dry.

Linear extensibility (LE) of a soil layer is the product of the thickness, in centimeters, multiplied by the COLE of the layer in question. The LE of a soil is the sum of these products for all soil horizons. COLE multiplied by 100 is called linear extensibility percent (LEP).
Water retention difference (WRD) is computed from gravimetric water retentions at 33 kPa (10 kPa for sandier soils) and 1500 kPa suction. It is converted to cm of water per cm of soil through use of the bulk density. The 33 or 10 kPa water contents are determined by desorption of the natural fabric clods, and the 1500 kPa water content is determined by desorption of crushed and sieved fine-earth (<2 mm) soil.

Chemical Analyses

Aluminum saturation is the amount of KCl-extractable Al divided by extractable bases (extracted by ammonium acetate) plus the KCl-extractable Al. It is expressed as percent. A general rule of thumb is that if there is more than 50 percent Al saturation, Al problems in the soil are likely. The problems may not be related to Al toxicity but to a deficiency of calcium and/or magnesium.

Ammonium oxalate-extractable aluminum, iron, and silicon are determined by a single extraction made in the dark with 0.2 molar ammonium oxalate at a pH of 3.5. The amount of aluminum, iron, and silicon is measured by atomic absorption and reported as a percentage of the total dry weight of the fine-earth fraction. These values are used as criteria in identifying soils in the Andisol and Spodosol orders and in the andic and spodic subgroups in other orders. They also are used to determine amorphic and ferrihydritic mineralogy classes. The procedure extracts iron, aluminum, and silicon from organic matter and from amorphous mineral material. It is used in conjunction with dithionite-citrate and pyrophosphate extractions to identify the sources of iron and aluminum in the soil. Pyrophosphate extracts iron and aluminum from organic matter. Dithionite-citrate extracts iron from iron oxides and oxyhydroxides as well as from organic matter. A field test using potassium hydroxide (KOH) can be used to estimate the amount of aluminum that is extractable by ammonium oxalate.
Base saturation is reported on the data sheets as percent of the CEC. It is reported as CEC by sum of cations at pH 8.2 and by ammonium acetate at pH 7. Base saturation by ammonium acetate is equal to the sum of the bases extracted by ammonium acetate, divided by the CEC (by ammonium acetate), and multiplied by 100. If extractable calcium is not reported on the data sheet because of free carbonates or salts in the sample, then the base saturation is assumed to be 100 percent.

Base saturation percentage by sum of cations is equal to the sum of bases extracted by ammonium acetate, divided by the CEC (by sum of cations), and multiplied by 100. This value is not reported if either extractable calcium or extractable acidity is omitted.

Differences between the two methods of determining base saturation reflect the amount of the pH-dependent CEC. Class definitions in this taxonomy specify which method is used.

The sum of exchangeable cations is considered equal to the sum of bases extracted by ammonium acetate unless carbonates, gypsum, or other salts are present. When these salts are present, the sum of the bases extracted by ammonium acetate typically exceeds 100 percent of the CEC. Therefore, a base saturation of 100 percent is assumed. The amount of calcium from carbonates is usually much larger than the amount of magnesium from the carbonates. Extractable calcium is not shown on the data sheet if more than a trace (more than 0.4 percent) of carbonates (reported as calcium carbonate) is present or if calculated base saturation exceeds 110 percent, based on CEC by ammonium acetate at pH 7.

Calcium carbonate equivalent is the amount of carbonates in the soil as measured by treating the sample with HCl. The evolved carbon dioxide is measured manometrically. The amount of carbonate is then calculated as a calcium carbonate equivalent regardless of the form of carbonates (dolomite, sodium carbonate, magnesium carbonate, etc.) in the sample.
Calcium carbonate equivalent is reported as a percentage of the total dry weight of the sample. It can be reported on material that is less than 2 mm or less than 20 mm in size.

Calcium sulfate as gypsum is determined by extraction in water and precipitation in acetone. The amount of gypsum is reported as a percentage of the total dry weight of the fraction less than 2 mm in size and the fraction less than 20 mm in size. Drying soils to oven-dryness, the standard base for reporting the data, removes part of the water of hydration from the gypsum. Many measured values, particularly water retention values, must be recalculated to compensate for the weight of the water of hydration lost during drying.

Cation-exchange capacity (CEC) by ammonium acetate (1N NH$_4$OAc pH 7), by sum of cations (at pH 8.2), and by bases plus aluminum is given on the data sheets in the chapters on soil orders. The CEC depends on the method of analysis as well as the nature of the exchange complex. CEC by sum of cations at pH 8.2 is calculated by adding the sum of bases and the extractable acidity. CEC by ammonium acetate is measured at pH 7. CEC by bases plus aluminum, or effective cation-exchange capacity (ECEC), is derived by adding the sum of bases and KCl-extractable Al. Aluminum extracted by 1N KCl is negligible if the extractant pH rises toward 5.5. ECEC then is equal to extractable bases. CEC and ECEC are reported on the data sheets as cmol(+)/kg$^{-1}$ soil.

The reported CEC may differ from the CEC of the soil at its natural pH. The standard methods allow the comparison of one soil with another even though the pH of the extractant differs from the pH of the natural soil. Cation-exchange capacity by ammonium acetate and by sum of cations applies to all soils. CEC at pH 8.2 is not reported if the soil contains free carbonates because bases are extracted from the carbonates. The effective CEC (ECEC) is reported only for acid soils. ECEC is not reported for soils having soluble salts, although it can be calculated by subtracting the soluble components from
the extractable components. ECEC also may be defined as bases plus aluminum plus hydrogen. That is the more common definition for agronomic interpretations. This taxonomy specifies bases plus aluminum.

Generally, the ECEC is less than the CEC at pH 7, which in turn is less than the CEC at pH 8.2. If the soil is dominated by positively charged colloids (e.g., iron oxides), however, the trend is reversed. Most soils have negatively charged colloids, which cause the CEC to increase with increasing pH. This difference in CEC is commonly called the pH-dependent or variable charge. The CEC at the soil pH can be estimated by plotting the CEC of the soil vs. the pH of the extractant on a graph and reading the CEC at the soil pH.

CEC measurements at pH levels other than those described in the paragraphs above and CEC derived by use of other cations will yield somewhat different results. It is important to know the procedure, pH, and extracting cation used before CEC data are evaluated or data from different sources are compared.

Citric-acid-extractable phosphorus (acid-soluble phosphate) is used to separate the mollic epipedon (less than 1,500 mg/kg P_2O_5) from the anthropic epipedon (equal to or more than 1,500 mg/kg).

Color of sodium-pyrophosphate extract is used as a criterion in the separation of different types of organic materials. A saturated solution is made by adding 1 g of sodium pyrophosphate to 4 ml of distilled water, and a moist organic matter sample is added to the solution. The sample is mixed and allowed to stand overnight, chromatographic paper is dipped in the solution, and the color of the paper is ascertained through use of a Munsell color chart.

Electrical conductivity (EC) is the conductivity of the water extracted from saturated paste. The EC is used to determine the total content of salts. It is reported as dS/m.
Exchangeable magnesium and calcium plus exchangeable acidity (at pH 8.2) is used as a criterion for the natric horizon. The exchangeable acidity is measured at pH 8.2, and the magnesium and calcium are extracted at pH 7.0 with ammonium acetate. See the paragraphs about extractable acidity and exchangeable bases.

Exchangeable sodium percentage (ESP) is reported as a percentage of the CEC by ammonium acetate at pH 7. Water-soluble sodium is converted to cmol(+)kg\(^{-1}\) soil. This value is subtracted from extractable sodium, divided by the CEC (by ammonium acetate), and multiplied by 100. An ESP of more than 15 percent is used in this taxonomy as a criterion for the natric horizon.

Extractable acidity is the acidity released from the soil by a barium chloride-triethanolamine solution buffered at pH 8.2. It includes all the acidity generated by replacement of the hydrogen and aluminum from permanent and pH-dependent exchange sites. It is reported as cmol(+)kg\(^{-1}\) soil. Extractable acidity data are reported on some data sheets as exchangeable acidity and on others as exchangeable H\(^+\).

Extractable aluminum is exchangeable aluminum extracted by 1N KCl. It is a major constituent only in strongly acid soils (pH of less than 5.0). Aluminum will precipitate if the pH rises above 4.5 to 5.0 during analysis. The extractant KCl usually affects the soil pH 1 unit or less. Extractable aluminum is measured at the Soil Survey Laboratory (SSL), National Soil Survey Center, by atomic absorption. Many laboratories measure the aluminum by titration with a base to the phenolphthalein end point. Titration measures exchangeable acidity as well as extractable aluminum. Soils with a pH below 4.0 or 4.5 are likely to have values determined by atomic absorption similar to values determined by titration because very little hydrogen is typically on the exchange complex. If there is a large percentage of organic matter, however, some hydrogen may be present. For some soils it is important to
know which procedure was used. Extractable aluminum is reported as cmol(+)/kg⁻¹ soil.

Extractable bases (calcium, magnesium, sodium, and potassium) are extracted with ammonium acetate buffered at pH 7. They are equilibrated, filtered in an auto-extractor, and measured by atomic absorption. They are reported as cmol(+)/kg⁻¹ soil. The bases are extracted from the cation-exchange complex by displacement with ammonium ions. The term “extractable bases” is used instead of “exchangeable bases” because soluble salts and some bases from carbonates can be included in the extract.

Sum of bases is the sum of the calcium, magnesium, sodium, and potassium described in the previous paragraph.

Iron and aluminum extracted by citrate are removed in a single extraction. They are measured by atomic absorption and reported as a percentage of the total dry weight. The iron is primarily from ferric oxides (hematite, magnetite) and iron oxyhydroxides (goethite). Aluminum substituted into these minerals is extracted simultaneously. The dithionite reduces the ferric iron, and the citrate stabilizes the iron by chelation. Iron and aluminum bound in organic matter are extracted if the citrate is a stronger chelator than the organic molecules. Manganese extracted by this procedure also is recorded. The iron extracted is commonly related to the clay distribution within a pedon.

Melanic index is used in the identification of the melanic epipedon. The index is related to the ratio of the humic and fulvic acids in the organic fraction of the soil (Honna et al., 1988). About 0.50 gram of air-dried soil material that is less than 2 mm in size is shaken with 25 ml of 0.5 percent NaOH solution in a 50-ml centrifuge tube for 1 hour at room temperature. One drop of a flocculating agent is added, and the mixture is centrifuged at 4,000 rpm for 10 minutes. The melanic index is the ratio of the absorbance at 450 nm over that at 520 nm.
Nitrogen in the SSL database is reported as a percentage of the total dry weight. A soil sample is combusted at high temperature with oxygen, and atmospheric nitrogen (N_2) is measured by thermal conductivity detection.

Optical density of the ammonium oxalate extract (ODOE) is determined with a spectrophotometer using a 430 nm wavelength. An increase in the ODOE value in an illuvial horizon, relative to an overlying eluvial horizon, indicates an accumulation of translocated organic materials.

Organic carbon data in the SSL database have been determined mostly by wet digestion (Walkley, 1935). Because of environmental concerns about waste products, however, that procedure is no longer in use. The only procedure that is currently used to determine organic carbon is a dry combustion procedure that determines the percent of total carbon. In calcareous horizons the content of organic carbon is determined by subtracting the amount of carbon contributed by carbonates from the total carbon data (percent organic carbon = percent total carbon – [% <2 mm CaCO$_3$ x 0.12]). The content of organic carbon determined by this computation is very close to the content determined by the wet digestion procedure.

pH is measured in water and in salts. The pH measured in water is determined in distilled water typically mixed 1:1 with dry soil. The pH measured in potassium chloride is determined in 1N KCl solution mixed 1:1 with soil. The pH measured in calcium chloride is determined in 0.01M CaCl$_2$ solution mixed 2:1 with soil.

The pH is measured by a pH meter in a soil-water or soil-salt solution. The extent of the dilution is shown in the heading on the data sheets. A ratio of 1:1 means one part dry soil and one part water, by weight.

Measurement of pH in a dilute salt solution is common because it tends to mask seasonal variations in pH. Readings in 0.01M CaCl$_2$ tend to be uniform regardless of the time of
year. Readings in 1N KCl also tend to be uniform. The former are more popular in regions with less acid soils. The latter are more popular in regions with more acid soils. If KCl is used to extract exchangeable aluminum, the pH reading (in KCl) shows the pH at which the aluminum was extracted.

pH in sodium fluoride (NaF pH) is measured in a suspension of 1 gram of soil in 50 ml 1M NaF after stirring for 2 minutes. A NaF pH of 9.4 or more is a strong indicator that short-range-order minerals dominate the soil exchange complex. A NaF pH of 8.4 or more is a criterion for the isotic mineralogy class. It indicates a significant component of short-range-order minerals in the exchange complex. Soil materials with free carbonates also have high NaF pH values. NaF is poisonous with ingestion and eye contact and moderately hazardous with skin contact.

Phosphate retention (P ret.) refers to the percent phosphorus retained by soil after equilibration with 1,000 mg/kg phosphorus solution for 24 hours. This procedure is used in the detection of andic soil properties. It identifies soils in which phosphorus fixation may be a problem affecting agronomic uses.

Sodium adsorption ratio (SAR) was developed as a measure of irrigation water quality. Water-soluble sodium is divided by water-soluble calcium and magnesium. The formula is $\text{SAR} = \frac{\text{Na}}{[(\text{Ca}+\text{Mg})/2]^{0.5}}$. An SAR of 13 or more is used as an alternate to the ESP criterion for the natric horizon.

Sodium-pyrophosphate-extractable iron and aluminum are determined by a single extraction and measured by atomic absorption. Results are reported as a percentage of the total dry weight. This procedure has been used widely to extract iron and aluminum from organic matter. It successfully removes much of the organo-metal accumulations in spodic horizons but extracts little of the inorganically bound iron and aluminum.

Total salts is calculated from the electrical conductivity of the saturation extract. It is reported as a weight percentage of the total water-soluble salts in the soil.
Water-soluble cations and anions are determined in water extracted from a saturated paste. The cations include calcium, magnesium, sodium, and potassium, and the anions include carbonate, bicarbonate, sulfate, chloride, nitrite, nitrate, fluoride, phosphate, silicate, and borate. The cations and anions are reported as mmol(±) L\(^{-1}\).

Water-soluble sulfate is used as a criterion for the sulfuric horizon. The sulfate is determined in the saturation extract and is reported as one of the anions.

Mineral Analyses

Mineralogy of the clay, silt, and sand fractions is needed for classification in some taxa. X-ray diffraction (XRD) and thermal and petrographic analyses are classically viewed as mineralogy techniques, although some mineralogy classes (e.g., ferritic, amorphic, gypsic, carbonatic, and isotic) are determined by chemical and/or physical analyses.

Halloysite, illite, kaolinite, smectite, vermiculite, and other minerals in the clay fraction (less than 0.002 mm) may be identified by XRD analysis. Relative peak positions identify clay minerals, and peak intensities are the basis for semi-quantitative estimates of mineral percent by weight in the clay fraction. The SSL reports relative peak intensities of clay minerals from XRD in a five-class system that generally corresponds to percent by weight of a mineral (class 1 = 0 to 2 percent, class 2 = 3 to 9 percent, class 3 = 10 to 29 percent, class 4 = 30 to 50 percent, and class 5 = more than 50 percent). There are multiple potential interferences in the analysis of a clay sample (Burt, 2004). Peak intensities may be attenuated by one or more interferences, and the reported class may underestimate the actual amount of mineral present. Thus, these assigned percentages are given for informational use only and should not be used to quantify minerals in a clay fraction. Clay minerals are listed in the order of decreasing quantity on the data sheet. XRD is used to determine smectitic,
vermiculitic, illitic, kaolinitic, or halloysitic mineralogy classes in *Soil Taxonomy*. Some family classes require a clay mineral to be more than one-half (by weight) of the clay fraction, corresponding to XRD class 5. Other mineralogy classes require more of the specified mineral than any other single mineral, corresponding to the clay mineral being listed first on the SSL data sheet.

Kaolinite and gibbsite may be determined by thermal analysis. Results from this analysis are reported as percent by weight in the clay fraction and are more quantitative than the results of XRD for these minerals. Thermal analysis is a technique in which the dried sample (typically the clay fraction) is heated in a controlled environment. Certain minerals undergo decomposition at specific temperature ranges, and the mineral can be quantified when compared to standard clays. Results may be used to determine kaolinitic and gibbsitic family mineralogy classes, complementary to or in lieu of XRD data.

Resistant minerals, weatherable minerals, volcanic glass, magnesium-silicate minerals, glauconitic pellets, mica, and stable mica pseudomorphs may be determined by petrographic analysis. Magnesium-silicate minerals (e.g., serpentine minerals) and glauconitic pellets are reported as percent by weight in the fine-earth fraction (less than 2.0 mm). Resistant minerals, weatherable minerals, and volcanic glass are determined as percent of total grains counted in the coarse silt through very coarse sand (0.02 to 2.0 mm) fractions, while mica and stable mica pseudomorphs are determined in the 0.02 to 0.25 mm fractions (coarse silt, very fine sand, and fine sand).

Individual mineral grains in a specific particle-size fraction are mounted on a glass slide, identified, and counted (at least 300 grains) under a polarizing light microscope. Data are reported as percent of grains counted for a specific size fraction. This percentage is generally regarded as equivalent to weight percent for spherical minerals. Alternative techniques
are available for determining weight percent micas and other platy grains in a soil separate. The usual SSL protocol is to count mineral grains in either the coarse silt (0.02-0.05 mm), very fine sand (0.05-0.10 mm), or fine sand (0.10-0.25 mm) fraction, whichever one has the highest weight percent based on particle-size analysis. Mineral or glass content in the analyzed fraction is assumed to be representative of the content in the whole 0.02 to 2.0 mm or fine-earth fraction. It may be necessary to count additional fractions to obtain a reliable estimate of volcanic glass content in soil materials with a non-uniform distribution of glass in dominant particle-size fractions. If more than one fraction is counted, the weighted average of the counted fractions may be calculated to represent glass content in the 0.02 to 2.0 mm fraction. For soils expected to have significant amounts of glass in dominant fractions of medium, coarse, or very coarse sand, a request is made to count grains in the larger fractions.

Two general types of petrographic analysis are conducted in the SSL: (a) complete mineral grain count, in which all minerals in the sample are identified and counted, or (b) a glass count, in which glass, glass aggregates, glass-coated minerals, and glassy materials are identified and quantified and all other minerals are counted as “other.” Other isotropic materials, such as plant opal, sponge spicules, and diatoms, also are identified and quantified in the glass count grain studies. “Glass-coated grains” are crystalline mineral grains (e.g., quartz and feldspar) in which more than 50 percent of the grain is covered in glass. “Glassy materials” is a general category for grains that have optical properties of glass but lack definitive characteristics of glass, glass-coated grains, or glass aggregates. Percent of total resistant minerals is reported on the SSL data sheet. (Calcite and more soluble minerals are included in determinations of the percentage of resistant minerals reported on the laboratory data sheet but are not included in the values used in this taxonomy.) Total percent volcanic
Other Information Useful in Classifying Soils

Volumetric amounts of organic carbon are used in some taxonomic criteria. The following calculation is used: (Datum [percent] times bulk density [at 33 or 10 kPa] times thickness [cm]) divided by 10. This calculation is normally used for organic carbon, but it can be used for some other measurements. Each horizon is calculated separately, and the product of the calculations can be summed to any desired depth, commonly 100 cm.

Ratios that can be developed from the data are useful in making internal checks of the data, in making management-related interpretations, and in answering taxonomic questions. Some of the ratios are used as criteria in determining argillic, kandic, or oxic horizons.

The ratio of 1500 kPa water to clay is used to indicate the relevancy of the particle-size determination. If the ratio is 0.6 or more and the soil does not have andic soil properties, incomplete dispersion of the clay is assumed and clay is estimated by the following formula: Clay % = 2.5(% water retained at 1500 kPa tension - % organic carbon). For a typical soil with well dispersed clays, the ratio is 0.4. Some soil-related factors that can cause deviation from the 0.4 value are: (1) low-activity clays (kaolinites, chlorites, and some micas), which tend to have a ratio of 0.35 or below; (2) iron oxides and clay-size carbonates, which tend to decrease the ratio; (3) organic matter, which increases the ratio because it increases the water content at 1500 kPa; (4) andic and spodic materials and materials with an isotic mineralogy class, which increase the ratio because they do not disperse well; (5) large amounts
of gypsum; and (6) clay minerals within grains of sand and silt. These clay minerals hold water at 1500 kPa and thus increase the ratio. They are most common in shale and in pseudomorphs of primary minerals in saprolite.

The ratio of CEC by ammonium acetate at pH 7 to percent clay can be used to estimate clay mineralogy and clay dispersion. If the ratio is multiplied by 100, the product is cmol(+) / kg clay. The following ratios are typical for the following classes of clay mineralogy: less than 0.2, kaolinitic; 0.2-0.3, kaolinitic or mixed; 0.3-0.5, mixed or illitic; 0.5-0.7, mixed or smectitic; and more than 0.7, smectitic. These ratios are most valid when some detailed mineralogy data are available. If the ratio of 1500 kPa water to clay is 0.25 or less or 0.6 or more, the ratio of CEC by ammonium acetate to clay is not valid. Ratios of 1500 kPa water to clay of 0.6 or more are typical of poorly dispersed clays, andic and spodic materials, and materials with an isotic mineralogy class, and ratios of less than 0.3 are common in some soils that contain large amounts of gypsum.

A ratio of CEC at pH 8.2 to 1500 kPa water of more than 1.5 and more exchange acidity than the sum of bases plus KCl-extractable Al imply a soil with a high pH-dependent charge. Along with bulk density data, they help to distinguish soils that have andic and spodic materials or soils that have materials with an isotic mineralogy class from soils with minerals that are more crystalline.

Literature Cited

Percentages of clay (less than 0.002 mm), silt (0.002 to 0.05 mm), and sand (0.05 to 2.0 mm) in the basic soil texture classes.
Index

A

A horizons. See Horizons and layers.

Abrupt textural change .. 44

Acraquox ... 674

Acroperox ... 677

Acrotorrox ... 688

Acruadox ... 690

Acrustox ... 702

Agric horizon .. 29

Alaquods ... 715

Albaqualfs ... 104

Albaquults ... 742

Albic horizon ... 29

Albic materials .. 45

Albolls ... 554

Alfisols ... 102

Alorthods ... 730

Andic soil properties .. 46

Andisols ... 220

Anhydrous conditions .. 49

Anhyorthels ... 417

Anhyturbels ... 428

Aniso class ... 839

Anthracambids ... 309

Anthrepts ... 452

Anthropic epipedon .. 18

Aqualfs ... 103
Aquic conditions .. 70
 Redoximorphic features .. 73
 Reduced matrix .. 75
 Redox concentrations ... 74
 Redox depletions ... 74
 Reduction ... 72
Saturation .. 71
 Anthric saturation (anthraquic conditions) 72
 Endosaturation .. 72
 Episaturation ... 72
Aquic moisture regime. See Soil moisture regimes.
Aquicambids .. 309
Aquisalids .. 348
Aquiturbels ... 429
Aquods ... 714
Aquolls ... 556
Aquorthels .. 418
Aquox ... 674
Aquults ... 740
Arents ... 361
Argialbolls ... 554
Argiaquolls ... 557
Argicryids ... 320
Argicryolls ... 568
Argids .. 277
<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argidurids</td>
<td>329</td>
</tr>
<tr>
<td>Argigypsids</td>
<td>338</td>
</tr>
<tr>
<td>Argillic horizon</td>
<td>30</td>
</tr>
<tr>
<td>Argiorthels</td>
<td>420</td>
</tr>
<tr>
<td>Argiudolls</td>
<td>582</td>
</tr>
<tr>
<td>Argiustolls</td>
<td>603</td>
</tr>
<tr>
<td>Argixerolls</td>
<td>647</td>
</tr>
<tr>
<td>Aridic moisture regime. See Soil moisture regimes.</td>
<td></td>
</tr>
<tr>
<td>Aridisols</td>
<td>276</td>
</tr>
<tr>
<td>Artificial drainage. See Aquic conditions.</td>
<td></td>
</tr>
<tr>
<td>B horizons. See Horizons and layers.</td>
<td></td>
</tr>
<tr>
<td>Bottom tier</td>
<td>70</td>
</tr>
<tr>
<td>Buried soils</td>
<td>8</td>
</tr>
<tr>
<td>C horizons or layers. See Horizons and layers.</td>
<td></td>
</tr>
<tr>
<td>Calcareous and reaction classes of mineral soils</td>
<td>863</td>
</tr>
<tr>
<td>Calciaquerts</td>
<td>802</td>
</tr>
<tr>
<td>Calciaquolls</td>
<td>558</td>
</tr>
<tr>
<td>Calciargids</td>
<td>278</td>
</tr>
<tr>
<td>Calcic horizon</td>
<td>31</td>
</tr>
<tr>
<td>Calcicryepts</td>
<td>470</td>
</tr>
<tr>
<td>Calcicryids</td>
<td>322</td>
</tr>
<tr>
<td>Calcicryolls</td>
<td>571</td>
</tr>
<tr>
<td>Calcids</td>
<td>301</td>
</tr>
<tr>
<td>Calciudolls</td>
<td>589</td>
</tr>
<tr>
<td>Calcigypsids</td>
<td>340</td>
</tr>
<tr>
<td>Calcitorrerts</td>
<td>813</td>
</tr>
</tbody>
</table>
Calciustepts ... 51
Calciusterts .. 80
Calciustolls .. 61
Calcixerepts ... 5
Calcixererts .. 80
Calcixerolls .. 65
Cambic horizon ... 32
Cambids .. 308
Caret symbol in horizon designations 896
Cation-exchange activity classes for mineral soils 861
Chemical analyses .. 901
Coatings (classes) on sands .. 869
Coefficient of linear extensibility (COLE) 49
Control section of Histosols and Histels 68
Coprogenous earth. See Organic soil materials.
Cryalfs .. 127
Cryands ... 230
Cryaqualfs ... 107
Cryaquands ... 222
Cryaquents ... 353
Cryaquepts ... 454
Cryaquods ... 717
Cryaquolls ... 559
Cryepts .. 469
Cryerts ... 812
Cryic temperature regime. See Soil temperature regimes.
Cryids ... 320
Cryods ... 721
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryofibrists</td>
<td>437</td>
</tr>
<tr>
<td>Cryofluvents</td>
<td>364</td>
</tr>
<tr>
<td>Cryofolists</td>
<td>440</td>
</tr>
<tr>
<td>Cryohemists</td>
<td>442</td>
</tr>
<tr>
<td>Cryolls</td>
<td>567</td>
</tr>
<tr>
<td>Cryopsamments</td>
<td>394</td>
</tr>
<tr>
<td>Cryorthents</td>
<td>380</td>
</tr>
<tr>
<td>Cryosaprist</td>
<td>445</td>
</tr>
<tr>
<td>Cryoturbation</td>
<td>75</td>
</tr>
<tr>
<td>Cryrendolls</td>
<td>579</td>
</tr>
<tr>
<td>Densic contact</td>
<td>75</td>
</tr>
<tr>
<td>Densic materials</td>
<td>76</td>
</tr>
<tr>
<td>Diagnostic subsurface horizons</td>
<td>28</td>
</tr>
<tr>
<td>Diagnostic surface horizons</td>
<td>16</td>
</tr>
<tr>
<td>Diatomaceous earth. See Organic soil materials.</td>
<td></td>
</tr>
<tr>
<td>Discontinuities in horizon designations</td>
<td>893</td>
</tr>
<tr>
<td>Duraqualfs</td>
<td>107</td>
</tr>
<tr>
<td>Duraquands</td>
<td>223</td>
</tr>
<tr>
<td>Duraquerts</td>
<td>803</td>
</tr>
<tr>
<td>Duraquods</td>
<td>718</td>
</tr>
<tr>
<td>Duraquolls</td>
<td>560</td>
</tr>
<tr>
<td>Duricryands</td>
<td>232</td>
</tr>
<tr>
<td>Duricryods</td>
<td>721</td>
</tr>
<tr>
<td>Duricryolls</td>
<td>572</td>
</tr>
<tr>
<td>Durids</td>
<td>329</td>
</tr>
<tr>
<td>Durihumods</td>
<td>728</td>
</tr>
<tr>
<td>Durinodes</td>
<td>50</td>
</tr>
<tr>
<td>Duripan</td>
<td>34</td>
</tr>
</tbody>
</table>
E horizons. See Horizons and layers.

Endoaqualfs ... 107
Endoaquands .. 224
Endoaquents ... 354
Endoaquepts ... 456
Endoaquerts .. 806
Endoaquods .. 718
Endoaquolls .. 561
Endoaquults ... 742
Endosaturation. See Aquic conditions.
Entisols ... 350
Epiaqualfs .. 113
Epiaquands .. 225
Epiaquents ... 355
Epiaquepts ... 460
Epiaquerts ... 808
Epi aquoods .. 719
Epiaquolls ... 564
Epiaquults ... 743
Epipedon ... 16
Episaturation. See Aquic conditions.
Eutraquox ... 675
Eutroperox ... 679
Eutrotorrox ... 688
Eutrudepts ... 499
Eutrudox ... 692
Eutrusto x ... 704

F
Family differentiae for Histosols and Histels 870
Family differentiae for mineral soils 835
Ferrudalfs .. 141
Fibers. See Organic soil materials.
Fibric soil materials. See Organic soil materials.
Fibristels ... 413
Fibrists .. 437
Fluvaquents .. 356
Fluvents .. 364
Frigid temperature regime. See Soil temperature regimes.

G

Gelands ... 241
Gelaquands ... 226
Gelaquents ... 359
Gelaquepts ... 463
Gelepts .. 485
Gelic materials .. 76
Gelic temperature regime. See Soil temperature regimes.
Gelifluvents ... 366
Gelisols ... 412
Gelods ... 725
Gelolls ... 577
Gelorthents .. 381
Glacic layer ... 77
Glacistels ... 414
Glossaqualfs .. 121
Glossic horizon .. 35
Glossocryalfs .. 127
Glossudalfs .. 143
Gypsiargids .. 283
Gypsic horizon .. 35
Gypsicryids .. 324
Gypsids .. 337
Gypsitorrerts ... 814
Gypiusterts ... 824

H
Halaquepts ... 465
Haplanthrepts ... 452
Haplaquox .. 675
Haplargids .. 285
Haplalcids ... 301
Haplocambids .. 311
<table>
<thead>
<tr>
<th>Species</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haplocryalfs</td>
<td>131</td>
</tr>
<tr>
<td>Haplocryands</td>
<td>234</td>
</tr>
<tr>
<td>Haplocryepts</td>
<td>475</td>
</tr>
<tr>
<td>Haplocryerts</td>
<td>812</td>
</tr>
<tr>
<td>Haplocryids</td>
<td>325</td>
</tr>
<tr>
<td>Haplocryods</td>
<td>722</td>
</tr>
<tr>
<td>Haplocryolls</td>
<td>572</td>
</tr>
<tr>
<td>Haplodurids</td>
<td>332</td>
</tr>
<tr>
<td>Haplofibrists</td>
<td>438</td>
</tr>
<tr>
<td>Haplogelepts</td>
<td>487</td>
</tr>
<tr>
<td>Haplogelods</td>
<td>726</td>
</tr>
<tr>
<td>Haplogelolls</td>
<td>578</td>
</tr>
<tr>
<td>Haplogypsids</td>
<td>342</td>
</tr>
<tr>
<td>Haplohemists</td>
<td>443</td>
</tr>
<tr>
<td>Haplohumods</td>
<td>728</td>
</tr>
<tr>
<td>Haplohumults</td>
<td>752</td>
</tr>
<tr>
<td>Haploperox</td>
<td>682</td>
</tr>
<tr>
<td>Haplothels</td>
<td>420</td>
</tr>
<tr>
<td>Haplotherods</td>
<td>733</td>
</tr>
<tr>
<td>Haplosalids</td>
<td>348</td>
</tr>
<tr>
<td>Haplosaprists</td>
<td>445</td>
</tr>
<tr>
<td>Haplotorrands</td>
<td>445</td>
</tr>
<tr>
<td>Haplotorrerts</td>
<td>445</td>
</tr>
<tr>
<td>Haplotorrox</td>
<td>445</td>
</tr>
<tr>
<td>Haploturbels</td>
<td>430</td>
</tr>
<tr>
<td>Haplowassents</td>
<td>407</td>
</tr>
<tr>
<td>Haplowassists</td>
<td>449</td>
</tr>
<tr>
<td>Haploxeralfs</td>
<td>207</td>
</tr>
<tr>
<td>Haploxerands</td>
<td>271</td>
</tr>
</tbody>
</table>
Haploxerepts ... 542
Haploxererts ... 833
Haploxerolls ... 659
Haploxerults ... 796
Hapludalfs .. 149
Hapludands .. 250
Hapluderts .. 818
Hapludolls .. 590
Hapludox ... 695
Hapludults ... 764
Haplustalalfs ... 172
Haplustands .. 264
Haplustepts ... 519
Haplusterts ... 825
Haplustolls .. 618
Haplustox ... 707
Haplustults ... 785
Haprendolls ... 579

Hemic soil materials. See Organic soil materials.
Hemistels .. 415
Hemists ... 441
Histels .. 412
Histic epipedon ... 21
Historthels .. 421
Histosols .. 436
Histoturbels .. 430
Horizons and layers .. 879
 A horizons .. 880
 B horizons .. 881
C horizons or layers .. 882
E horizons .. 881
L horizons or layers .. 880
M layers ... 883
O horizons or layers .. 879
R layers ... 883
W layers .. 883
Humaquets ... 466
Humicryepts .. 480
Humicryerts ... 813
Humicryods ... 724
Humigelepts ... 488
Humigelods ... 726
Humilluvic material. See Organic soil materials.
Humixerepts .. 547
Humods ... 727
Humudepts ... 506
Humults ... 751
Humustepts ... 530
Hydraquents ... 359
Hydicrocryands ... 237
Hydrowassents .. 408
Hydrudands ... 256
Hyperthermic temperature regime. See Soil temperature regimes.

I
Identifiable secondary carbonates 51
Inceptisols ... 451
Interfingering of albic materials .. 52
Isofrigid temperature regime. See Soil temperature regimes.
Isohyperthermic temperature regime. See Soil temperature regimes.
Isomesic temperature regime. See Soil temperature regimes.
Isothermic temperature regime. See Soil temperature regimes.

K
Kandiaqualfs .. 123
Kandiaquults .. 745
Kandic horizon .. 36
Kandihumults .. 754
Kandiperox ... 685
Kandiudalfs .. 159
Kandiudox .. 698
Kandiudults .. 768
Kandiustalfs .. 181
Kandiustox .. 710
Kandiustults .. 787
Kanhaplaquults .. 747
Kanhaplohumults .. 757
Kanhapludalfs .. 161
Kanhapludults .. 774
Kanhaplustalfs .. 185
Kanhaplustults .. 790
Key to soil orders ... 94
L

L horizons or layers. See Horizons and layers.

Lamellae ... 53
Limnic materials. See Organic soil materials.

Linear extensibility (LE) .. 54
Lithic contact ... 77
Lithologic discontinuities .. 54
Luvihemists ... 444

M

M layers. See Horizons and layers.

Marl. See Organic soil materials.

Melanaquands ... 227
Melanic epipedon .. 21
Melanocryands ... 238
Melanoxerands ... 273
Melanudands .. 258
Mesic temperature regime. See Soil temperature regimes.

Mineral analyses .. 909
Mineral soil material .. 10
Mineral soils ... 12
Mineralogy classes for Histosols and Histels 872
Mineralogy classes for mineral soils 854
Mollic epipedon .. 22
Mollisols ... 551
Molliturbels .. 431
Mollorthels .. 423
n value .. 57
Natralbolls ... 556
Natraqualfs ... 125
Natraquerts ... 810
Natraquolls ... 567
Natragids ... 290
Natric horizon .. 38
Natricryolls ... 576
Natridurids ... 335
Natrigypsids .. 344
Natrixeralfs ... 213
Natrixerolls ... 669
Natrudalfs ... 162
Natrudolls ... 597
Naturstalfs ... 186
Natrustolls ... 634
Normal years ... 79

O
O horizons or layers. See Horizons and layers.
Ochric epipedon ... 24
Organic soil materials .. 11
Fibers ... 64
Fibric soil materials ... 64
Hemic soil materials .. 66
Humilluvic material .. 66
Limnic materials ... 67
Coprogenous earth ... 67
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diatomaceous earth</td>
<td>68</td>
</tr>
<tr>
<td>Marl</td>
<td>68</td>
</tr>
<tr>
<td>Sapric soil materials</td>
<td>66</td>
</tr>
<tr>
<td>Organic soils</td>
<td>14</td>
</tr>
<tr>
<td>Orthels</td>
<td>416</td>
</tr>
<tr>
<td>Orthents</td>
<td>379</td>
</tr>
<tr>
<td>Orthods</td>
<td>729</td>
</tr>
<tr>
<td>Ortstein</td>
<td>40</td>
</tr>
<tr>
<td>Oxic horizon</td>
<td>40</td>
</tr>
<tr>
<td>Oxisols</td>
<td>673</td>
</tr>
<tr>
<td>Paleaquults</td>
<td>749</td>
</tr>
<tr>
<td>Paleargids</td>
<td>296</td>
</tr>
<tr>
<td>Palecryalfs</td>
<td>136</td>
</tr>
<tr>
<td>Palecryolls</td>
<td>576</td>
</tr>
<tr>
<td>Palehumults</td>
<td>758</td>
</tr>
<tr>
<td>Paleudalfs</td>
<td>163</td>
</tr>
<tr>
<td>Paleudolls</td>
<td>599</td>
</tr>
<tr>
<td>Paleudults</td>
<td>777</td>
</tr>
<tr>
<td>Paleustalfs</td>
<td>194</td>
</tr>
<tr>
<td>Paleustolls</td>
<td>640</td>
</tr>
<tr>
<td>Paleustults</td>
<td>794</td>
</tr>
<tr>
<td>Palexeralfs</td>
<td>213</td>
</tr>
<tr>
<td>Paleixerolls</td>
<td>670</td>
</tr>
<tr>
<td>Paleixerults</td>
<td>798</td>
</tr>
<tr>
<td>Paralithic contact</td>
<td>77</td>
</tr>
<tr>
<td>Paralithic materials</td>
<td>78</td>
</tr>
<tr>
<td>Pararock fragments</td>
<td>837</td>
</tr>
<tr>
<td>Particle-size classes for Histosols and Histels</td>
<td>871</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Particle-size classes and their substitutes for mineral soils</td>
<td>835</td>
</tr>
<tr>
<td>Permafrost</td>
<td>78</td>
</tr>
<tr>
<td>Permanent cracks (classes) in mineral soils</td>
<td>869</td>
</tr>
<tr>
<td>Perox</td>
<td>676</td>
</tr>
<tr>
<td>Perudic moisture regime. See Soil moisture regimes.</td>
<td></td>
</tr>
<tr>
<td>Petraquepts</td>
<td>468</td>
</tr>
<tr>
<td>Petroargids</td>
<td>299</td>
</tr>
<tr>
<td>Petrocalcic horizon</td>
<td>41</td>
</tr>
<tr>
<td>Petrocalcids</td>
<td>307</td>
</tr>
<tr>
<td>Petrocambids</td>
<td>318</td>
</tr>
<tr>
<td>Petrocryids</td>
<td>327</td>
</tr>
<tr>
<td>Petroferric contact</td>
<td>58</td>
</tr>
<tr>
<td>Petrogypsic horizon</td>
<td>42</td>
</tr>
<tr>
<td>Petrogypsids</td>
<td>346</td>
</tr>
<tr>
<td>Physical analyses</td>
<td>900</td>
</tr>
<tr>
<td>Placaquands</td>
<td>228</td>
</tr>
<tr>
<td>Placaquods</td>
<td>720</td>
</tr>
<tr>
<td>Placic horizon</td>
<td>42</td>
</tr>
<tr>
<td>Placocryods</td>
<td>725</td>
</tr>
<tr>
<td>Placohumods</td>
<td>729</td>
</tr>
<tr>
<td>Placorthods</td>
<td>738</td>
</tr>
<tr>
<td>Placudands</td>
<td>262</td>
</tr>
<tr>
<td>Plagganthrepts</td>
<td>452</td>
</tr>
<tr>
<td>Plaggen epipedon</td>
<td>25</td>
</tr>
<tr>
<td>Plinthaquealfs</td>
<td>126</td>
</tr>
<tr>
<td>Plinthaqueox</td>
<td>676</td>
</tr>
<tr>
<td>Plinthaquults</td>
<td>750</td>
</tr>
<tr>
<td>Plinthite</td>
<td>58</td>
</tr>
<tr>
<td>Term</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Plinthohumults</td>
<td>760</td>
</tr>
<tr>
<td>Plinthoxeralfs</td>
<td>218</td>
</tr>
<tr>
<td>Plinthudults</td>
<td>783</td>
</tr>
<tr>
<td>Plinthustalfs</td>
<td>202</td>
</tr>
<tr>
<td>Plinthustults</td>
<td>794</td>
</tr>
<tr>
<td>Prime symbol in horizon designations</td>
<td>895</td>
</tr>
<tr>
<td>Psammaquents</td>
<td>360</td>
</tr>
<tr>
<td>Psamments</td>
<td>394</td>
</tr>
<tr>
<td>Psammorthels</td>
<td>425</td>
</tr>
<tr>
<td>Psammoturbels</td>
<td>433</td>
</tr>
<tr>
<td>Psammowassents</td>
<td>409</td>
</tr>
<tr>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>Quarzipsamments</td>
<td>396</td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>R layers. See Horizons and layers.</td>
<td></td>
</tr>
<tr>
<td>Ratio, 1500 kPa water to clay</td>
<td>846</td>
</tr>
<tr>
<td>Ratio, CEC to clay</td>
<td>861</td>
</tr>
<tr>
<td>Reaction classes for Histosols and Histels</td>
<td>875</td>
</tr>
<tr>
<td>Redoximorphic features. See Aquic conditions.</td>
<td></td>
</tr>
<tr>
<td>Reduction. See Aquic conditions.</td>
<td></td>
</tr>
<tr>
<td>Rendolls</td>
<td>579</td>
</tr>
<tr>
<td>Resistant minerals</td>
<td>60</td>
</tr>
<tr>
<td>Rhodoxeralfs</td>
<td>218</td>
</tr>
<tr>
<td>Rhodudalfs</td>
<td>169</td>
</tr>
<tr>
<td>Rhodudults</td>
<td>783</td>
</tr>
<tr>
<td>Rhodustalfs</td>
<td>202</td>
</tr>
<tr>
<td>Rhodustults</td>
<td>795</td>
</tr>
<tr>
<td>Rock fragments</td>
<td>837</td>
</tr>
</tbody>
</table>

933
Rock structure .. 16
Root-limiting layers .. 840
Rounding ... 92
Rupture-resistance classes for mineral soils .. 868

S
Salaquerts .. 810
Salic horizon ... 43
Salicryids .. 328
Salids ... 347
Salitorrerts .. 816
Salusterts .. 828

Sapric soil materials. See Organic soil materials.
Sapristels .. 415
Saprists .. 444

Saturation. See Aquic conditions.
Series control section .. 876
Series differentiae within a family ... 876
Slickensides .. 60

Soil .. 6
Soil color, water state criteria .. 92

Soil depth classes for Histosols ... 875
Soil depth classes for mineral soils and Histels .. 867

Soil moisture regimes ... 78
 Aquic ... 81
 Aridic and torric .. 82
 Perudic .. 83
 Udic .. 82
 Ustic ... 83
 Xeric ... 84
Sulfidic materials .. 87
Sulfihemists ... 444
Sulfisaprists .. 447
Sulfiwassents ... 410
Sulfiwassists ... 450
Sulfohemists .. 444
Sulfosaprists ... 447
Sulfudepts ... 511
Sulfuric horizon ... 88
Surface tier ... 69

T

Thermic temperature regime. See Soil temperature regimes.

Torands .. 241
Torrerts .. 813
Torriarents ... 362

Torric moisture regime. See Soil moisture regimes.

Torrifluvents .. 366
Torrifolists ... 441
Torriorthents .. 381
Torripsamments ... 398
Torrox .. 688
Transitional and combination horizons ... 883
Turbels ... 427

U

Udalfs ... 138
Udands ... 244
Udarents .. 362
Udepts .. 489
Uderts .. 817
Udic moisture regime. See Soil moisture regimes.
Udifluvents.. 370
Udifolists.. 441
Udipsamments.. 400
Udivitrands... 267
Udolls.. 580
Udorthents.. 385
Udox ... 689
Udults .. 760
Ultisols .. 739
Umbracults ... 751
Umbric epipedon ... 26
Umbriturbels... 433
Umbrorthels... 425
Ustalfs.. 169
Ustands .. 263
Ustarents.. 363
Ustepts .. 511
Usterts .. 820
Ustic moisture regime. See Soil moisture regimes.
Ustifluvents.. 372
Ustifolists... 441
Ustipsamments.. 401
Ustivitrands... 269
Ustolls.. 601
Ustorthents.. 387
Ustox ... 701
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ustults</td>
<td>784</td>
</tr>
<tr>
<td>Vertaqualfs</td>
<td>126</td>
</tr>
<tr>
<td>Vermaquepts</td>
<td>469</td>
</tr>
<tr>
<td>Vermudolls</td>
<td>601</td>
</tr>
<tr>
<td>Vermustolls</td>
<td>645</td>
</tr>
<tr>
<td>Vertical subdivision in horizon designations</td>
<td>892</td>
</tr>
<tr>
<td>Vertisols</td>
<td>800</td>
</tr>
<tr>
<td>Vitrands</td>
<td>267</td>
</tr>
<tr>
<td>Vitrquands</td>
<td>229</td>
</tr>
<tr>
<td>Vitricryands</td>
<td>239</td>
</tr>
<tr>
<td>Vitrigelands</td>
<td>241</td>
</tr>
<tr>
<td>Vitritorrands</td>
<td>243</td>
</tr>
<tr>
<td>Vitrixerands</td>
<td>273</td>
</tr>
<tr>
<td>Volcanic glass</td>
<td>62</td>
</tr>
<tr>
<td>W layers</td>
<td>63</td>
</tr>
<tr>
<td>W layers. See Horizons and layers.</td>
<td></td>
</tr>
<tr>
<td>Wassents</td>
<td>404</td>
</tr>
<tr>
<td>Wassists</td>
<td>447</td>
</tr>
<tr>
<td>Weatherable minerals</td>
<td></td>
</tr>
<tr>
<td>Xerafls</td>
<td>203</td>
</tr>
<tr>
<td>Xerands</td>
<td>270</td>
</tr>
<tr>
<td>Xerarents</td>
<td>363</td>
</tr>
<tr>
<td>Xerepts</td>
<td>532</td>
</tr>
<tr>
<td>Xererts</td>
<td>830</td>
</tr>
<tr>
<td>Xeric moisture regime. See Soil moisture regimes.</td>
<td></td>
</tr>
</tbody>
</table>
Xerofluvents... 376
Xerolls... 646
Xeropsamments ... 403
Xerorthents... 392
Xerults ... 795