

APPENDIX E: OTHER SUPPORTING INFORMATION

LIST OF DOCUMENTS INCLUDED

- Summary table of impacts to aquatic resources, includes:
 - o Avoidance and minimization measures
 - o Compliance with Food Security Act / Swampbuster
 - Analysis for Executive Order 11990
- Summary maps of impacts to aquatic resources
- Geotechnical Investigation Report
- Wetland Delineation Reports
- CERT Reports
- IPaC Reports
- Redacted Cultural Resources Report
- Draft NHPA Section 106 Programmatic Agreement

Osmond															
				Total		Impacts to	USACE Jurisdictional Re	sources		Impacts to Non-USACE Jurisdicational Resources					
Aquatic Resource Name	Cowardin Classification or Stream Type	Wetland Subclass	Avoidance and Minimization Measures Taken	Impacted Area (AC)	Impact Area (AC)	Impact Type and Description	Compliance with Clean Water Act Section 404	Anticipated Mitigation Action*	Anticipated Mitigation Area (AC)*	Impact Area (AC)	Impact Type and Description	Compliance with Food Security Act (FSA) Swampbuster	Compliance with Executive Order (EO) 11990	Mitigation Action (if needed)	Mitigation Area (AC)
Wetland A	РЕМА/С	Floodplain Depression	Impacts avoided.	0.000	0.000	N/A	Project will be reviewed under CWA Section 404, a Nationwide Permit is anticipated from the	N/A	0.000	0.000	N/A	These wetlands are currently farmed. Proposed activities will not increase the farmability of these wetlands or result in any conversion under FSA provisions. Potential lateral effects were analyzed using NRCS procedures to ensure there would be no induced draining of wetlands.	There will be no impact to these wetlands, and therefore no mitigation. As there is no change, this is not detrimental under EO 11990 provisions.	N/A	N/A
Unnamed Stream	Ephemeral	N/A	Impacts minimzed to the greatest extent possible by limiting grading extents.	0.011	0.011	Fill placement.	USACE.	Not required, impact is less than allowable 0.03 ac limit.	0.000	0.000	N/A	channel. FSA conversion effects to adjacent wetlands were analyzed separately.	Wetlands are not present within this stream channel. EO 11990 effects to adjacent wetlands were analyzed separately.	N/A	N/A

Pierce															
				Total		Impacts to	USACE Jurisdictional Re	esources				Impacts to Non-USACE Juris	dicational Resources		
Aquatic Resource Name	Cowardin Classification of Stream Type	Wetland Subclass	Avoidance and Minimization Measures Taken	Impacted Area (AC)	Impact Area (AC)	Impact Type and Description	Compliance with Clean Water Act Section 404	Anticipated Mitigation Action*	Anticipated Mitigation Area (AC)*	Impact Area (AC)	Impact Type and Description	Compliance with Food Security Act (FSA) Swampbuster	Compliance with Executive Order (EO) 11990	Mitigation Action (if needed)	Mitigatio Area (AC
Wetland A	рема/с	Riverine Channel	Impacts avoided.	0.000	0.000	n/a		N/A	0.000	0.000	I/A			N/A	N/A
Wetland B	PEMA/C	Riverine Channel	- 	0.000	0.000	NI/A		N/A	0.000	0.00.0	1/4	4		N/A	N/A
Wetland C	PEMA/C	Riverine Channel		0.000	0.000			N/A	0.000	1 000.0		4		N/A	N/A
Wetland D	PEMA/C	Riverine Channel	Impacts minimzed to the greatest extent	0.003		Southwest channel bridge / culvert		4:1 wetland creation	0.000	0.000	•			N/A	N/A
	, -		possible by limiting grading extents.			installation								,	
Wetland E	PEMA/C	Riverine Channel		0.000	0.000			N/A	0.000	0.00.0				N/A	N/A
Wetland F	PEMA/C	Riverine Channel	Impacts avoided.	0.000	0.000			N/A	0.000	0.000				N/A	N/A
Wetland G	PEMA/C	Lacustrine Fringe		0.000	0.000	N/A	4	N/A	0.000	0.000	I/A	4		N/A	N/A
Wetland H	PEMA/C	Riverine Channel		0.006	0.006	Lateral drainage for southwest channel		N/A	0.024	0.000.0	I/A			N/A	N/A
Wetland I	PEMA/C	Riverine Channel	Impacts minimzed to the greatest extent possible by limiting grading extents.	0.285	0.285	Excavation & lateral drainage for southwest channel		4:1 wetland creation	1.140	0.00.0	I/A			N/A	N/A
Wetland J	PEMA/C	Riverine Channel		0.000	0.000	N/A		N/A	0.000	0.000	I/A	1		N/A	N/A
Wetland K	PEMA/C	Riverine Channel		0.000	0.000			N/A	0.000	0.000		1		N/A	N/A
Wetland L	PEMA/C	Riverine Channel	Impacts avoided.	0.000	0.000			N/A	0.000	0.000				N/A	N/A
Wetland M	PEMA/C	Riverine Channel		0.000	0.000			N/A	0.000	0.000				N/A	N/A
Wetland N	PEMA/C	Riverine Channel		0.000	0.000			N/A	0.000	0.000				N/A	N/A
Wetland O	PEMA/C	Riverine Channel	Impacts minimzed to the greatest extent	0.098		Excavation & lateral drainge for northwest channel	1	4:1 wetland creation	0.392	0.000				N/A	N/A
Wetland P	PEMA/C	Riverine Channel	possible by limiting grading extents.	0.178		Excavation for northwest channel		4:1 wetland creation	0.712	0.000	I/A			N/A	N/A
Wetland Q	PEMA/C	Floodplain Depression	Impacts avoided.	0.000	0.000	N/A		N/A	0.000	0.000	I/A			N/A	N/A
Wetland R	PEMA/C	Riverine Channel		0.114	0.114	Excavation & lateral drainge for northwest channel		4:1 wetland creation	0.454	0.000.0	I/A			N/A	N/A
Wetland S	PEMA/C	Riverine Channel	Impacts minimzed to the greatest extent	2.200	2.200	Excavation & lateral drainge for northwest channel		4:1 wetland creation	8.800	0.000.0	I/A			N/A	N/A
Wetland T	PEMA/C	Riverine Channel	possible by limiting grading extents.	0.011		Lateral drainage for northwest channel	_	4:1 wetland creation	0.044	0.000	I/A			N/A	N/A
Wetland U	PEMA/C	Riverine Channel		0.199	0.199	Excavation & lateral drainge for northwest channel		4:1 wetland creation	0.796	0.000.0				N/A	N/A
Wetland V	PEMA/C	Riverine Channel		0.000	0.000]	N/A	0.000	0.000				N/A	N/A
Wetland W	PEMA/C	Riverine Channel	_	0.000	0.000			N/A	0.000	0.000		1		N/A	N/A
Wetland X	PEMA/C	Riverine Channel	_	0.000	0.000			N/A	0.000	0.000				N/A	N/A
Wetland Y	PEMA/C	Riverine Channel	Impacts avoided.	0.000	0.000			N/A	0.000	0.000		1		N/A	N/A
Wetland Z	PEMA/C	Riverine Channel	pacts avoided.	0.000	0.000]	N/A	0.000	0.00.0				N/A	N/A
Wetland AA	PEMA/C	Riverine Channel	_	0.000	0.000			N/A	0.000	0.00.0				N/A	N/A
Wetland BB	PEMA/C	Riverine Channel	_	0.000	0.000			N/A	0.000	0.00.0				N/A	N/A
Wetland CC	PEMA/C	Riverine Channel		0.000	0.000			N/A	0.000	0.000	I/A			N/A	N/A
Wetland DD	PEMA/C	Riverine Channel	Impacts minimized to the greatest extent	1.194		Excavation & lateral drainge for northwest channel		4:1 wetland creation	4.776	0.000				N/A	N/A

Wetland EE PEM/ Wetland FF PEM/ Wetland GG PEM/ Wetland HH PEM/ Wetland II PEM/ Wetland JJ PEM/ Wetland LL PEM/ Wetland LL PEM/ Wetland NN PEM/ Wetland NN PEM/ Wetland OO PEM/ Wetland OO PEM/ Wetland OP PEM/	MA/C F MA/C F MA/C F MA/C F MA/C F MA/C MA/C F MA/C	Floodplain Depression Riverine Channel Riverine Channel Riverine Channel Riverine Channel Riverine Channel	possible by limiting grading extents. Impacts avoided. Impacts minimzed to the greatest extent possible by limiting grading extents. Impacts avoided.	0.544 0.000 0.032 0.000 0.000	0.544 0.000 0.032 0.000 0.000	Excavation / riprap fill / lateral drainage for northwest channel
Wetland GG PEM/ Wetland HH PEM/ Wetland II PEM/ Wetland JJ PEM/ Wetland KK PEM/ Wetland LL PEM/ Wetland MM PEM/ Wetland NN PEM/ Wetland OO PEM/	1A/C F 1A/C T	Riverine Channel Riverine Channel Riverine Channel Riverine Channel	Impacts minimzed to the greatest extent possible by limiting grading extents.	0.032	0.032	N/A Excavation / riprap fill / lateral drainage for northwest channel
Wetland HH PEM/ Wetland II PEM/ Wetland JJ PEM/ Wetland KK PEM/ Wetland LL PEM/ Wetland MM PEM/ Wetland NN PEM/ Wetland OO PEM/	11A/C F 11A/C F 11A/C F 11A/C F 11A/C F 11A/C F	Riverine Channel Riverine Channel Riverine Channel Riverine Channel	Impacts minimzed to the greatest extent possible by limiting grading extents.	0.032	0.000	/ lateral drainage for northwest channel
Wetland II PEM/ Wetland JJ PEM/ Wetland KK PEM/ Wetland LL PEM/ Wetland MM PEM/ Wetland NN PEM/ Wetland OO PEM/	MA/C F MA/C F MA/C F MA/C F MA/C F MA/C MA/C F MA/C F MA/C MA	Riverine Channel Riverine Channel	Impacts avoided.			
Wetland JJ Wetland KK PEM/ Wetland LL PEM/ Wetland MM PEM/ Wetland NN PEM/ Wetland OO PEM/	MA/C F MA/C F	Riverine Channel	impacts avoided.	0.000	0.000	
Wetland KK PEM/ Wetland LL PEM/ Wetland MM PEM/ Wetland NN PEM/ Wetland OO PEM/	MA/C F	Riverine Channel				N/A
Wetland LL PEM/ Wetland MM PEM/ Wetland NN PEM/ Wetland OO PEM/	/A/C F			0.001	0.001	Fill for levee embankment
Wetland MM PEM/ Wetland NN PEM/ Wetland OO PEM/	,	Floodplain Depression		0.003	0.003	Fill for levee embankment
Wetland NN PEM/ Wetland OO PEM/	1 O\AN		Impacts minimzed to the greatest extent possible by limiting grading extents.	0.097	0.097	Fill for levee seepage berm
Wetland OO PEMA		N/A		0.039	0.039	Fill for levee seepage berm Fill for levee seepage
	1 JAAC	N/A		0.039	0.039	berm Fill for levee seepage
		N/A Riverine Channel		0.035	0.035	berm
Wetland QQ PEMA		Riverine Channel		0.000	0.000	
Wetland RR PEMA		Riverine Channel		0.000	0.000	•
Wetland SS PEMA		Riverine Channel		0.000	0.000	
Wetland TT PEMA		Riverine Channel		0.000	0.000	N/A
Wetland UU PEMA		Riverine Channel		0.000	0.000	N/A
Wetland VV PUBA	BA/C	Riverine Channel		0.000	0.000	
Wetland WW PUBA		Riverine Channel	[0.000	0.000	•
Wetland XX PEMA		Riverine Channel	Impacts avoided.	0.000	0.000	
Wetland YY PUBA		Riverine Channel		0.000	0.000	
Wetland ZZ PEMA		Lacustrine Fringe		0.000	0.000	
Wetland AAA PEMA		Riverine Channel		0.000	0.000	,
Wetland BBB PFOA		Riverine Channel		0.000	0.000	
Wetland CCC PEMA Wetland DDD PEMA		Riverine Channel	 	0.000	0.000	
Wetland EEE PEMA		Lacustrine Fringe Riverine Channel	 	0.000	0.000	
Wetland FFF PEMA		Riverine Channel	 	0.000	0.000	
72.11	, c	avernic channel		0.000	0.000	,,,
Wetland GGG PEMA	ΛΑ/C F	Riverine Channel	Impacts minimzed to the greatest extent	0.038	0.038	Fill for levee seepage berm
Wetland HHH PEM/	ΛΑ/C F	Riverine Channel	possible by limiting grading extents.	0.036	0.036	Fill for levee seepage berm
Wetland III PEM/		Riverine Channel		0.001		Fill for levee seepage berm
Wetland JJJ PEMA Wetland KKK PEMA		Riverine Channel Riverine Channel	Impacts avoided.	0.000	0.000	
Wetland LLL PEM/		Floodplain Depression	Impacts minimzed to the greatest extent	0.119		Fill for levee seepage
Wetland MMM PEMA	ΛΑ/C F	Floodplain Depression	possible by limiting grading extents.	0.124	0.124	berm Fill for levee seepage berm
Wetland NNN PEMA	AA/C	Riverine Channel		0.000	0.000	
Wetland 000 PEMA		Riverine Channel		0.000	0.000	
Wetland PPP PEMA			Impacts avoided.	0.000	0.000	
Wetland QQQ PEMA		Riverine Channel	·	0.000	0.000	
Wetland RRR PEMA	ΛΑ/C	Riverine Channel		0.000	0.000	N/A
Wetland SSS PEM/	ΛΑ/C	Lacustrine Fringe	Impacts minimzed to the greatest extent possible by limiting grading extents.	0.196	0.196	Fill for levee embankment
Wetland TTT PEMA	ΛΑ/C F	Riverine Channel		0.000	0.000	
Wetland UUU PEMA			Impacts avoided.	0.000	0.000	
Wetland VVV PEMA	ΛΑ/C F	Riverine Channel		0.000	0.000	N/A
Wetland WWW PEMA	ΛΑ/C		Impacts minimzed to the greatest extent possible by limiting grading extents.	0.023	0.023	Fill for levee embankment
Wetland XXX PEMA	ΛΑ/C F	Floodplain Depression		0.000	0.000	
North Fork Elkhorn River Perer	ennial r	N/A	Impacts avoided.	0.000	0.000	N/A
Willow Creek Perer	ennial I	N/A		0.000	0.000	
Unnamed Stream 1 Ephe	emeral I	N/A	Impacts minimzed to the greatest extent possible by limiting grading extents.	0.002	0.002	Southwest channel bridge / culvert
Unnamed Stream 2 Ephe	emeral I	N/A	Impacts avoided.	0.000	0.000	installation N/A
·			Impacts avoided. Impacts minimzed to the greatest extent possible by limiting grading extents.	0.045		Realignment for southwest channel
Unnamed Stream 4 Ephe	emeral 1	N/A		0.000	0.000	
· · · · · · · · · · · · · · · · · · ·		N/A	Impacts avoided.	0.000	0.000	
Epile		,		5.000	0.300	-
Unnamed Stream 6 Cana	al	N/A		0.018	0.018	Riprap placement for northwest channel

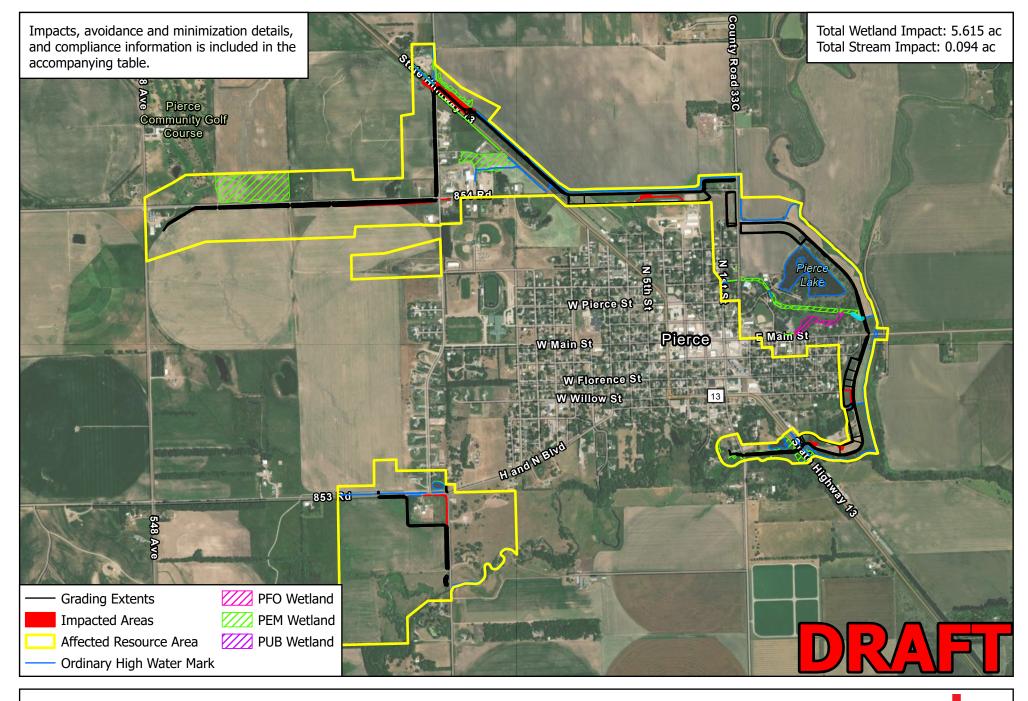
Project will be reviewed under CWA Section 404, an Individual Permit is anticipated from the USACE.

4:1 wetland creation	2.176	0.000	N/A			N/A	N/A
N/A	0.000	0.000	N/A	These wetlands are not currently farmed. Proposed activities will not increase the	Impacts to these wetlands will be	N/A	N/A
.,,,,	0.000	0.000	N/A	farmability of these wetlands or result in any	adequately replaced by new wetlands	IN/A	TV/A
4:1 wetland creation	0.128	0.000	N/A	conversion under FSA provisions. Potential lateral effects were analyzed using NRCS procedures to ensure there would be no	which will be established for the purpose of mitigation. Therefore, this change is not detrimental under EO 11990	N/A	N/A
N/A	0.000	0.000	N/A	induced draining of wetlands.	provisions.	N/A	N/A
N/A	0.000	0.000	N/A	Ğ		N/A	N/A
4:1 wetland creation	0.004	0.000	N/A			N/A	N/A
4:1 wetland creation	0.012	0.000	N/A			N/A	N/A
4:1 wetland creation	0.388	0.000	N/A			N/A	N/A
4:1 wetland creation	0.156	0.000	N/A			N/A	N/A
4:1 wetland creation	0.156	0.000	N/A			N/A	N/A
4:1 wetland creation	0.140	0.000	-				N/A
N/A N/A	0.000	0.000					N/A N/A
N/A	0.000	0.000					N/A N/A
N/A	0.000	0.000					N/A
N/A	0.000	0.000					N/A
N/A	0.000	0.000				N/A	N/A
N/A	0.000	0.000					N/A
N/A	0.000	0.000					N/A
N/A	0.000	0.000					N/A
N/A	0.000	0.000				N/A	N/A
N/A	0.000	0.000					N/A
N/A	0.000	0.000					N/A
N/A	0.000	0.000	N/A			N/A	N/A
N/A	0.000	0.000	N/A			N/A	N/A
N/A	0.000	0.000					N/A
N/A	0.000	0.000				N/A	N/A
N/A	0.000	0.000	N/A			N/A	N/A
4:1 wetland creation	0.152	0.000	N/A			N/A	N/A
4:1 wetland creation	0.144	0.000	N/A			N/A	N/A
4:1 wetland creation N/A	0.004	0.000	-				N/A N/A
N/A	0.000	0.000				N/A	N/A
.,,,,	0.000	0.000	NA			INFA	11/73
4:1 wetland creation	0.476	0.000	N/A			N/A	N/A
4:1 wetland creation	0.496	0.000					N/A
N/A	0.000	0.000					N/A
N/A N/A	0.000	0.000				'	N/A
N/A	0.000	0.000					N/A N/A
N/A	0.000	0.000				N/A N/A	N/A
4:1 wetland creation	0.784	0.000					N/A
21/2							
N/A	0.000	0.000					N/A
N/A N/A	0.000 0.000	0.000					N/A N/A
4:1 wetland creation	0.000	0.000					N/A
N/A	0.000	0.000	N/A			N/A	N/A
N/A	0.000	0.000	N/A			N/A	N/A
N/A	0.000	0.000	N/A			N/A	N/A
Channel improvements	N/A	0.000	N/A			N/A	N/A
N/A	0.000	0.000	N/A			N/A	N/A
N/A Channel improvements	0.000 N/A	0.000					N/A N/A
N/A	0.000	0.000	N/A			NI/A	N/A
N/A N/A	0.000	0.000 0.000		Wetlands are not present within this stream channel. FSA conversion effects to adjacent	Wetlands are not present within this stream channel. EO 11990 effects to	N/A N/A	N/A N/A
Chanali	[<i>(</i> .		N1/A	wetlands were analyzed separately.	adjacent wetlands were analyzed	A1 / A	N /A
Channel improvements	N/A	0.000	IN/A		separately.	N/A	N/A

Unnamed Stream 7	Ephemeral	N/A	Impacts minimzed to the greatest extent	0.006		Fill for levee embankment	Channel im	nprovements	N/A	0.000	N/A
Unnamed Stream 8	Intermittent	N/A	possible by limiting grading extents.	0.002		Fill for levee embankment	Channel in	nprovements	N/A	0.000	N/A
Unnamed Stream 9	Ephemeral	N/A		0.021	0.021	Fill for levee seepage berm	Channel in	nprovements	N/A	0.000	N/A
Unnamed Stream 10	Ephemeral	N/A		0.000	0.000	N/A	N/A		0.000	0.000	N/A
Unnamed Stream 11	Ephemeral	N/A		0.000	0.000	N/A	N/A		0.000	0.000	N/A
Pierce Lake	Pond	N/A	Impacts avoided.	0.000	0.000	N/A	N/A		0.000	0.000	N/A
Unnamed Pond 1	Pond	N/A	impacts avoided.	0.000	0.000	N/A	N/A		0.000	0.000	N/A
Unnamed Pond 2	Pond	N/A		0.000	0.000	N/A	N/A	•	0.000	0.000	N/A
Unnamed Pond 3	Pond	N/A		0.000	0.000	N/A	N/A	•	0.000	0.000	N/A

	Tota	al Project Impacts	
Aquatic Resource	Osmond Impacts (AC)	Pierce Impacts (AC)	Total (AC)
	Wetlands b	y Cowardin Classification	
PEMA/C	0.000	5.615	5.615
PUBA/C	0.000	0.000	0.000
PFOA/C	0.000	0.000	0.000
	Wet	lands by Subclass	
Floodplain Depression	0.000	0.340	0.340
Lacustrine Fringe	0.000	0.196	0.196
Riverine Channel	0.000	4.966	4.966
N/A	0.000	0.113	0.113
	Stream	ns and Waterbodies	
Perennial Stream	0.000	0.000	0.000
Intermittent Stream	0.000	0.002	0.002
Ephemeral Stream	0.011	0.074	0.085
Canal	0.000	0.018	0.018
Pond	0.000	0.000	0.000

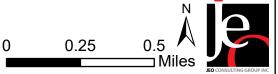
 $^{{}^*\}mbox{Note:}$ Anticipated mitigation ratios are subject to change during final permitting.



Created By: DJV Date: 9/9/2024

Aquatic Habitat Impacts

This map was prepared using information from record drawings supplied by JEO and/or other applicable city, county, federal, or public or private entities. JEO does not guarantee the accuracy of this map or the information used to prepare this map. This is not a scaled plat.



Created By: DJV Date: 9/9/2024

This map was prepared using information from record drawings supplied by JEO and/or other applicable city, county, federal, or public or private entities. JEO does not guarantee the accuracy of this map or the information used to prepare this map. This is not a scaled plat.

Aquatic Habitat Impacts

Pierce, NE

Preliminary Geotechnical Exploration Report

North Fork Elkhorn River Watershed WFPO

Pierce & Osmond, Nebraska

Prepared for: JEO Consulting Group 1937 North Chestnut Street Wahoo, NE 68066

September 9, 2024 TG Project No. 24350.01

NE Firm# CA-0080E

THIELE GEOTECH, INC.

13478 Chandler Road Omaha, Nebraska 68138-3716 402.556.2171 Fax 402.556.7831 www.thielegeotech.com

Preliminary Geotechnical Exploration Report North Fork Elkhorn River Watershed WFPO

Table of Contents

INTRODUCTION	
PROJECT DESCRIPTION	
SURFACE AND SUBSURFACE CONDITIONS	
SITE CONDITIONS	
LOCAL GEOLOGY	
BORING LOCATIONS	
SOIL CONDITIONS	
SOIL CONDITIONS	
GROUND WATER OBSERVATIONS	
GROUND WATER OBSERVATIONS	
GROUND WATER OBSERVATIONS	
GROUND WATER OBSERVATIONS ANALYSIS AND RECOMMENDATIONS	
GROUND WATER OBSERVATIONS ANALYSIS AND RECOMMENDATIONS GENERAL	
GROUND WATER OBSERVATIONS ANALYSIS AND RECOMMENDATIONS GENERAL SITE PREPARATION	
GROUND WATER OBSERVATIONS ANALYSIS AND RECOMMENDATIONS GENERAL SITE PREPARATION General Earthwork	
GROUND WATER OBSERVATIONS ANALYSIS AND RECOMMENDATIONS GENERAL SITE PREPARATION General Earthwork Excavated Site Soils	
GROUND WATER OBSERVATIONS ANALYSIS AND RECOMMENDATIONS GENERAL SITE PREPARATION General Earthwork Excavated Site Soils Fill-Induced Settlement	
GROUND WATER OBSERVATIONS ANALYSIS AND RECOMMENDATIONS GENERAL SITE PREPARATION General Earthwork Excavated Site Soils Fill-Induced Settlement Ground Water	
GROUND WATER OBSERVATIONS ANALYSIS AND RECOMMENDATIONS GENERAL SITE PREPARATION General Earthwork Excavated Site Soils Fill-Induced Settlement Ground Water DETENTION CELL CONSIDERATIONS	
GROUND WATER OBSERVATIONS ANALYSIS AND RECOMMENDATIONS GENERAL SITE PREPARATION General Earthwork Excavated Site Soils Fill-Induced Settlement Ground Water	

APPENDIX

INTRODUCTION

Thiele Geotech, Inc. has completed a preliminary geotechnical exploration study for the proposed North Fork Elkhorn River Watershed WFPO project located in Pierce and Osmond, Nebraska. The purpose of this study was to identify the general soil and ground water conditions underlying the site; to present the relevant engineering properties of the existing soils; to provide preliminary earthwork and site preparation recommendations; and discuss general geotechnical considerations for the proposed improvements. Additional borings will be required to develop final recommendations after more design information is available.

This study included soil borings, laboratory testing, and engineering analysis. A series of 14 test borings was spaced across the project sites at strategic locations (12 in Pierce and 2 in Osmond). The field and laboratory data are presented in the Appendix, along with a description of investigative methods.

The drilling and testing performed for this study were conducted solely for preliminary geotechnical analysis. No analytical testing or environmental assessment has been conducted. Any statements or observations in this report regarding odors, discoloration, or suspicious conditions are strictly for the information of our client. If an evaluation of environmental conditions is desired, a separate environmental assessment should be conducted. This study did not include biological assessment (e.g. mold, fungi, bacteria) or evaluation of measures for their control.

It should also be noted that this report was prepared for preliminary design purposes only, and may not be sufficient for a contractor in bid preparation. Prospective contractors should evaluate potential construction problems on the basis of their own knowledge and experience in the local area and on similar projects, taking into account their own intended construction methods and procedures.

This report is an instrument of service prepared for use by our client on this specific project. The report may be duplicated as necessary and distributed to those directly associated with this project, including members of the design team and prospective contractors. However, the technical approach and report format shall be considered proprietary and confidential, and this report may not be distributed in whole or in part to any third party not directly associated with this project. By using and relying on this report, all other parties agree to the same terms, conditions, and limitations to which the client has agreed.

PROJECT DESCRIPTION

Our understanding of the project is based upon information provided by JEO Consulting Group.

The project consists of evaluating soil conditions at several potential project sites within the North Fork Elkhorn River watershed located in Pierce and Osmond, Nebraska. At the time of this report, various alternative options are being considered as part of the Watershed and Flood Prevention Operations (WFPO) program. These options include levee improvements, diversion channels, pump stations, and construction of a detention cell, which are summarized below.

• Levee Improvements

This potential project involves improving the existing levee located north of Pierce and along the east side of Osmond. These improvements include constructing a berm at the north end of the existing levee on the southwest side of Highway 13 in Pierce and increasing the overall height of the levee and roadway between North Hill Street and North Park Street along 4th Street in Osmond, which both may require fill placement of up to 5 feet to establish assumed grades.

• Diversion Channels

This potential project involves improving the network of existing ditches and constructing new channels located northwest and southwest of Pierce that lead to the North Fork Elkhorn River and Willow Creek. We assume improvements will consist of widening and deepening the existing ditches to allow for more water flow and storage capacity. Construction will primarily consist of cuts, with maximum depths estimated at approximately 5 feet.

Pump Stations

Two pump stations are being considered behind the levee along the east side of Pierce. The pump house footprints which contain the station are anticipated to be small and constructed utilizing brick or metal walls and a metal roof. Maximum column loads of 25 kips and maximum continuous wall loads of 2 kips per lineal foot are assumed for the pump house. Grade changes are assumed to be minor. The depths of the pump stations are unknown at this time.

Detention Cell

One detention cell will potentially be constructed northeast of Pierce. The cell will be located northeast of Gilman Park. The cell will have an approximate footprint of 39 acres, with overall assumed depths ranging from 4 to 8 feet below existing grades.

SURFACE AND SUBSURFACE CONDITIONS

SITE CONDITIONS

The overall project area covering the four noted projects is primary located north, east, and south of Pierce and along the east side of Osmond in Pierce County, Nebraska. In general, the area has historically been primarily utilized for agricultural production. The North Fork Elkhorn River runs north to south along the east side of both cities. Both areas are relatively flat, with gradual grade changes.

LOCAL GEOLOGY

The project site lies within the geologic floodplain of the North Fork Elkhorn River. Alluvial soils within the floodplain generally consist of silts and clays near the surface. The deeper deposits typically consist of fine to coarse sand with interbedded clay layers. The alluvial deposits are underlain by Pennsylvanian limestone and shale that form the bedrock unit underlying the region. The depth to bedrock varies dramatically due to erosion within the North Fork Elkhorn River valley.

BORING LOCATIONS

The test borings were conducted as shown on the Boring Location Plan included in the Appendix and presented in Table 1. Coordinates of the borings are approximate and based on as-drilled locations following completion of the borings and interpolation from Google Earth.

Table 1 - Boring Locations

Boring	Coord	linates	Desired Leading
Number	Latitude	Longitude	Project Location
NF B-1	42° 12' 22.41" N	97° 33' 27.69" W	Diversion channel
NF B-2	42° 12' 22.27" N	97° 32' 53.94" W	Diversion channel
NF B-3	42° 12' 32.65" N	97° 32' 36.54" W	Diversion channel
NF B-4	42° 12' 36.78" N	97° 32' 32.02" W	Diversion channel/Berm
NF B-5	42° 12' 7.76" N	97° 31' 21.27" W	Detention cell
NF B-6	42° 12' 0.21" N	97° 30' 57.58" W	Pump Station
NF B-7	42° 11' 45.13" N	97° 31′ 0.26" W	Pump Station
NF B-8	42° 11′ 19.20" N	97° 32' 49.51" W	Diversion channel
NF B-9	42° 11' 27.46" N	97° 32' 49.53" W	Diversion channel
NF B-10	42° 11' 31.17" N	97° 32' 41.63" W	Diversion channel

Table 1 – Boring Locations (cont.)

Boring	Coord	linates	Ductout Location	
Number	Latitude	Longitude	Project Location	
NF B-11	42° 11' 27.54" N	97° 32' 36.61" W	Diversion channel	
NF B-12	42° 11' 19.04" N	97° 32' 36.89" W	Diversion channel	
OS B-1	42° 21' 35.46" N	97° 35' 36.51" W	Levee	
OS B-2	42° 21' 35.39" N	97° 35' 33.61" W	Levee	

SOIL CONDITIONS

The soils encountered in the test borings generally consisted of man-placed fill and alluvium.

Man-placed fill was encountered at the surface of borings NF B-3 and NF B-12, extending to a depth of 3.5 to 4 feet. It was generally described as dark brown or brown, dry, hard, clayey sand or silt.

Alluvium was encountered at the surface of all remaining borings and beneath the man-placed fill in borings NF B-3 and NF B-12, extending to a termination depth of 20 feet. It was generally described as brown, reddish brown, reddish gray, gray, light brown, dark gray, light gray, olive gray, grayish brown, or dark brown, dry to wet, very soft to hard, very loose to medium dense, fat clay, lean clay, silty sand, poorly graded sand with silt, or poorly graded sand.

Ranges of engineering properties from laboratory tests on selected samples are presented in Table 2.

Table 2 - Laboratory Results

Soil Layer	Moisture Content (%)	Dry Unit Weight (pcf)	Unconfined Compressive Strength (tsf)	Standard Penetration Values (N)*	Classification (LL/PI)
Man-placed fill	5 to 9	110 to 119	1.9		SC (visual) ML (19/5)
Alluvium (fine-grained)	6 to 37	82 to 112	0.6 to 2.1	WOH to 9	CH (56/42) CL (35/19, 43/24, P200 88.3%)
Alluvium (coarse-grained)	5 to 42	81 to 116		WOH to 27	SM (P200 30.2%, 30.0%) SP-SM (P200 11.6%, 9.5%, 6.6%, 10.0%, 9.4%, 6.9%, 7.9%) SP (visual)

^{*} Standard Penetration Values are actual field recorded values and have not been corrected for hammer energy

GROUND WATER OBSERVATIONS

Ground water levels were observed in the borings as presented in Table 3. Note that ground water levels may fluctuate due to seasonal variations and other factors. The materials encountered in the test borings have relatively low permeabilities and observations over an extended period of time through use of piezometers or cased borings would be required to better define current ground water conditions.

Table 3 - Water Level Observations

Boring	Boring	Water Level (f	t. below grade)	Ground Water	
Number	Elevation (ft.)	During Drilling	End of Drilling	Elevation (ft.)	
NF B-1	1,625	9.0	9.4	1,616	
NF B-2	1,619	6.0	NE (cave 11.7)	1,613	
NF B-3	1,588	6.0	14.1	1,582	
NF B-4	1,586	4.0	NE (cave 8.4)	1,582	
NF B-5	1,578	10.0	NE (cave 5.9)	1,568	
NF B-6	1,581	5.0	14.1	1,576	
NF B-7	1,577	9.0	NE (cave 7.6)	1,568	
NF B-8	1,600	6.0	13.8	1,594	
NF B-9	1,600	6.0	NE (cave 4.8)	1,594	
NF B-10	1,599	6.0	5.4	1,594	
NF B-11	1,594	12.0	10.0	1,584	
NF B-12	1,598	9.0	NE (cave 9.9)	1,589	
OS B-1	1,658	19.0	18.5	1,639	
OS B-2	1,657	5.0	NE (cave 7.3)	1,652	

Ground water observations were made in the borings both during and after completion of drilling operations. The borings were drilled with hollow stem augers limiting observation during drilling operations. Upon removal of the augers, partial filling of the boring occurred due to the loss of cuttings into the boring. Water level observations taken after completion of the borings were limited to the remaining depth of the open boring. The water level observations include the condition observed (such as cave in) and the depth to which the observations could be made.

ANALYSIS AND RECOMMENDATIONS

GENERAL

This preliminary geotechnical exploration consisted of widely spaced borings to determine the general soil conditions within the proposed project areas. An additional geotechnical exploration(s) consisting of more strategically placed borings should be conducted once more design information is available. The borings performed during this preliminary study may be used to supplement a final geotechnical exploration.

The existing soils encountered across all project sites primarily consisted of alluvial deposits ranging in moisture content, consistency, and plasticity. These soil conditions appear generally suitable for support of the proposed improvements. However, we have provided site preparation considerations that may be necessary depending on the final design of the improvements. There are several potential geotechnical engineering concerns for this project site, including: high moisture contents of excavated materials, consolidation of the alluvial soils that could occur under the induced stresses of structural fill placement, permeability of the soils in the proposed detention cell, relatively shallow ground water, and moderately low strength alluvial deposits. These concerns are discussed in the remaining sections of this report.

SITE PREPARATION

General Earthwork

Topsoil and vegetation should be stripped to a depth of 4 to 6 inches in areas to be disturbed during grading, including borrow and fill areas. Stripping depths will likely vary and should be adjusted to remove all vegetation and root systems. Care should be exercised to separate these materials to avoid incorporation of the organic matter in structural fill sections.

Excavated Site Soils

The fine-grained alluvial soils consisting of either lean or fat clay will generally be suitable for reuse as structural fill for levee improvements; however, moderate to significant moisture conditioning should be anticipated. It may be impractical to dry some of the wetter soils excavated near the ground water table sufficiently, if required. It is anticipated that soils above 30 percent moisture content cannot be reasonably dried. Therefore, it may be necessary to replace some of the excavated natural soil with offsite borrow. It will also likely be necessary to use off-site borrow for raising the levee and constructing a berm. Any off-site borrow should consist of a clay material with a minimum liquid limit of 40 and a plasticity index of 15 or higher. Borrow material should not contain an appreciable amount of roots, rock, or debris, and should not contain any foreign material with a dimension greater than 3 inches.

Fill-Induced Settlement

Fill placement of up to 5 feet is assumed to achieve proposed finished grades at the proposed new berm and existing levee. The existing fine-grained alluvial soils encountered in the test borings are

compressible, and the addition of fill to raise grades will cause these soils to consolidate. The amount of settlement is dependent upon the extent and magnitude of the fill to be placed. The time rate of settlement is largely dependent on the degree of saturation and aerial extent of the fill. The amount of settlement and length of delay prior to construction of any improvements can be determined and provided in a final geotechnical exploration report after a final grading plan has been developed.

Ground Water

Ground water was encountered in all of the test borings conducted on the two sites, with during drilling depths ranging from 4 to 19 feet below existing grades. The presence of shallow ground water is anticipated to impact excavations near or below these depths. It is likely that stabilization of soft subgrades will be necessary for excavations that extend close to or below the ground water. A combination of dewatering and stabilization with layers of geotextile and coarse aggregate would likely be required if excavations extend near or below the ground water table. A dewatering contractor should be consulted if dewatering is deemed necessary.

DETENTION CELL CONSIDERATIONS

One detention cell will potentially be constructed northeast of Pierce. The cell will be located northeast of Gilman Park and have an approximate footprint of 39 acres, with overall assumed depths ranging from 4 to 8 feet below existing grades and sloped to drain to the east. Boring NF B-5 was drilled near the south edge of the cell. In general, a 3.5-feet thick layer of low to high plasticity alluvial clay underlain by coarse alluvial sand layers that were slightly moist to wet with very loose to loose consistencies were encountered in this area. Ground water was encountered at a depth of 10 feet during drilling in the boring.

Based on limited laboratory testing conducted on samples taken from the cell, reviewing final plans will be critical in determining what remedial actions will need to take place for the cell to be constructed. If the cell is intended to hold water for extended periods of time, for example in a flooding event, excavating the coarse-grained alluvial soils below and then reusing and recompacting the existing fine-grained soils that were encountered above as a clay liner would create somewhat of an impervious layer allowing the cell to hold water. However, based on the permeability test conducted on sample U-1 of boring NF B-5, it appears that recompacting these soils will allow water to permeate through the matrix at a rate faster than the recommended permeability rate of $1x10^{-7}$ cm/sec. Therefore, if a near-impermeable condition is required, some consideration should be given to treating the entire recompacted clay placed at the base of the basin with bentonite to limit water infiltration. The installation of a synthetic liner would need to be considered if impermeable conditions are required.

Regardless of which option is selected, both underseepage and blowout from unbalanced hydrostatic loads should be studied once final plans become available. If the cell is intended to drain, consideration

should be given to setting the bottom of the cell elevation in the poorly graded sand with silt soil layer. This layer will have a higher permeability rate allow the water to drain.

It should be noted that the samples were taken from one boring conducted in a moderately variable alluvial setting. Based on the boring logs and previous experience in the area, we anticipate that high plasticity alluvial clay soils with lower sand content and assumed lower permeabilities are likely present within the basin footprint, which could be mined and compacted as a suitable clay liner. Additional borings would be necessary to identify and delineate such soils.

PUMP STATION CONSIDERATIONS

Structural loading information was not available at the time of this exploration. The existing site conditions appear suitable to support the assumed lightly loaded pump house structures on a shallow foundation system. For structures supported on the natural alluvium, a net allowable bearing pressure in the range of 1,200 to 1,500 pounds per square foot should be anticipated unless an overexcavation is performed to improve the bearing soils. Note that this bearing pressure range is general and should not be used for design.

We do not have any information regarding design of the pump stations, but assume that a below-grade wet well may be required. The allowable bearing pressure for a buried structure would be the gross bearing pressure, which is the net allowable bearing pressure derived from the shear strength of the soil plus the surrounding overburden pressure. During construction, the net allowable bearing pressure controls before the structure is backfilled. Thus, we recommend that both the construction case and long-term case be considered in sizing the mat foundation for the structures.

Based on the soil conditions in boring NF B-6 and NF B-7, the base of the structures would be expected to bear within the soft to firm, fine-grained alluvium or very loose to medium dense, coarse-grained alluvium depending on the proposed depths. The net allowable bearing pressure would likely be in the range of approximately 1,000 to 1,500 pounds per square foot (psf) and is dependent on the depth of the buried structure. The overburden pressure at a certain depth would be a function of the depth of the structure below the ground water table, multiplied by 53 pcf. Thus, the gross allowable bearing pressure for the pump station would be the sum of the net allowable and overburden pressure. Final design recommendations for design of mat foundations for the pump stations should be determined during final geotechnical exploration once designs have been developed.

Depending on the proposed depth of the pump station, we anticipate that dewatering will likely be required to facilitate construction. A dewatering contractor should be consulted if dewatering is deemed necessary.

We anticipate that use of a mud mat or crushed aggregate at the base of the excavation to provide a level working platform and to limit disturbance to the clays or saturated sands will be required.

OTHER RECOMMENDATIONS

During detailed design, additional issues may arise and possible conflicts may occur with our recommendations. Such issues and conflicts should be resolved through dialogue between the geotechnical engineer and designers. It is recommended that the geotechnical engineer perform additional borings to develop final recommendations for construction of any of the proposed improvements for this project.

The analysis and preliminary recommendations in this report are based upon borings at specific locations. The nature and extent of variation between boring locations is impossible to predict. Because of this, geotechnical recommendations are preliminary until they have been confirmed through observation of site excavation and earthwork preparation. If variations appear during subsequent exploration or during construction, we may reevaluate our recommendations and modify them, if appropriate. The geotechnical engineer should be retained during construction to observe compliance with the recommendations of this report and to provide quality control testing of earthwork construction. If these services are provided by others, including the contractor, the entity that provides construction phase observation and testing shares responsibility as the geotechnical engineer of record for implementing or modifying these recommendations.

Respectfully submitted, **Thiele Geotech, Inc.**

Prepared by,

Collin R. Steimer, E.I.

Prepared under the supervision of,

Racanna C.D. Thicle

Raeanna C.D. Thiele, P.E. Nebraska License E-16864

P:\24350.01\GEOTECHNICAL EXPLORATION REPORT - NORTH FORK ELKHORN RIVER WATERSHED WFPO.DOCX

APPENDIX

Subsurface Exploration Methods

Legend of Terms

Boring Location Plan

Boring Logs

Soil Test Summary

Crumb Tests

Permeability Tests

SUBSURFACE EXPLORATION METHODS

The fieldwork for this study was conducted on July 24 and 25, 2024. The exploratory program consisted of 14 test borings drilled at the approximate locations shown on the Boring Location Plan. Boring locations were selected to provide the desired site coverage and were adjusted to accommodate access conditions. The boring locations were laid out in the field using a handheld GPS and coordinates obtained from Google Earth. Elevations were interpolated from Google Earth. The boring locations should only be considered accurate to the degree implied by the methods used to define them.

Test borings were advanced using flight augers powered by a truck-mounted drill rig. Soil samples were obtained at selected depths as indicated on the boring logs. A 3-inch nominal diameter thin-walled sampler was hydraulically pushed to obtain undisturbed samples. Disturbed samples were obtained by driving a 2-inch nominal diameter split barrel sampler while conducting standard penetration tests (SPT). The SPT values presented on the boring logs are actual field recorded numbers and have not been corrected for hammer energy or overburden.

The boring logs were prepared based on visual classification of the samples and drill cuttings, and by observation of the drilling characteristics of the subsurface formations. The logs have been supplemented and modified based on the laboratory test results and further examination of the recovered samples. The stratification lines on the boring logs represent the approximate boundary between soil types, but the insitu transition may be gradual.

Water level observations were made at the times stated on the boring logs. The borings were backfilled with drill cuttings at the completion of the fieldwork.

The field boring logs were reviewed to outline the depths, thicknesses, and extent of the soil strata. A laboratory testing program was then developed to further classify the basic soils and to evaluate the engineering properties for use in our analysis.

Laboratory tests to further classify the soils included visual classification, moisture content, dry unit weight, Atterberg limits, and crumb tests. The shear strengths of cohesive samples were evaluated using the unconfined compression test. Hydraulic conductivity was calculated using the flexible wall permeameter.

The boring logs and related information in this report are indicators of subsurface conditions only at the specific locations and times noted. Subsurface conditions, including ground water levels, at other locations of the site may differ significantly from conditions that exist at the sampling locations. Also note that the passage of time may affect conditions at the sampling locations.

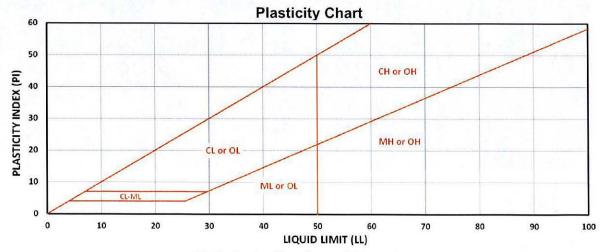
Soil Description Terms

 Consistency - Fine Grained
 Consistency - Coarse Grained
 Moisture Conditions

 Very Soft, Soft, Firm,
 Very Loose, Loose, Medium
 Dry, Slightly Moist, Moist

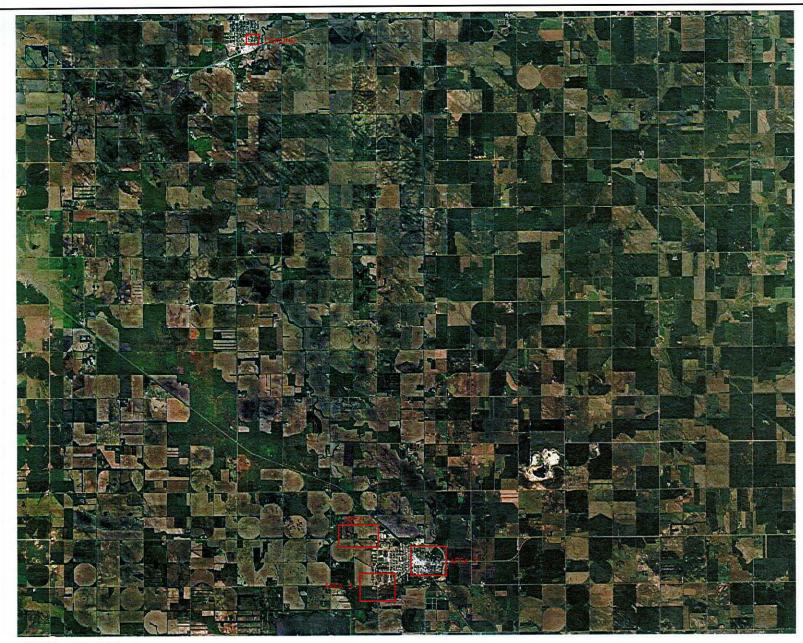
 Hard, Very Hard
 Dense, Dense, Very Dense
 Very Moist, Wet (Saturated)

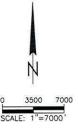
Sample Identification


Sample Type	Sample Data	Laboratory Data
U Undisturbed (Shelby Tube)	No Number	MC Moisture content
S Split barrel (disturbed)	SPT Standard penetration test	γ _d Dry unit weight
C Continuous sample	bpf blows per foot	qu Unconfined compression
A Auger cuttings (disturbed)	Rec Recovery	LL/PI Liquid limit & plasticity index

Unified Soil Classification System

Peat	Pt	Highly organic soils	
Fat Clay	CH	Clay - Liquid Limit > 50 *	50% or more
Elastic Silt	MH	Silt - Liquid Limit > 50 *	smaller than
Lean Clay	CL	Clay - Liquid Limit < 50 *	No. 200 sieve
Silt	ML	Silt - Liquid Limit < 50 *	
Silty Clay	CL-ML	Silty Clay *	
Clayey Sand	SC	Sands with 12 to 50 percent	
Silty Sand	SM	smaller than No. 200 sieve *	
Poorly-Graded Sand with Clay	SP-SC		More than 50%
Poorly-Graded Sand with Silt	SP-SM	Sands with 5 to 12 percent	larger than
Well-Graded Sand with Clay **	SW-SC	smaller than No. 200 Sieve *	No. 200 sieve and
Well-Graded Sand with Silt **	SW-SM		% sand > % Gravel
Poorly-Graded Sand	SP	Sands with less than 5 percent	
Well-Graded Sand **	SW	smaller than No. 200 sieve *	
Clayey Gravel	GC	Gravels with 12 to 50 percent	
Silty Gravel	GM	smaller than No. 200 Sieve *	
Poorly-Graded Gravel with Clay	GP-GC	1 N 30 Value 38 1 1 1	More than 50%
Poorly-Graded Gravel with Silt	GP-GM	Gravels with 5 to 12 percent	larger than
Well-Graded Gravel with Clay **	GW-GC	smaller than No. 200 sieve *	No. 200 sieve and
Well-Graded Gravel with Silt **	GW-GM		% gravel > % sand
Poorly-Graded Gravel	GP	Gravels with less than 5 percent	The Third Total
Well-Graded Gravel **	GW	smaller than No. 200 sieve *	


^{*} See Plasticity Chart for definition of silts and clays

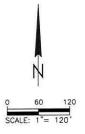

^{**} See Criteria for Sands and Gravels for definition of well-graded

Criteria for Sands and Gravels

Boulders		Cobbles	Coarse Gravel	Fine Gravel	Coarse Sand	Medium Sand		Fine Sand	FINES (silt or clay)
Sieve size	12"	3"	3/	4"	#4	#10	#40	#20	0
		70000000000	STANDED WITH CONTRACTOR AND	MUNICIPAL CENTER NO MEDICAL	and the contract of the	$_{30})^2/(D_{10} \times D_{60}) \le$			
		Well-g	raded gravels ((GW) $C_u=D_{60}/I$	D ₁₀ ≥4 and C _c =([$(D_{30})^2/(D_{10} \times D_{60})$	≤3 and ≥1		

LEGEND:

BORING LOCATION



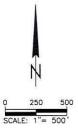
PROJE

N. FORK ELKHORN RIVER WATERSHED WFPO PIERCE & OSMOND, NE JOB # 24350.01 | DATE: 9/5/2024

SITE PLAN

LEGEND:

BORING LOCATION

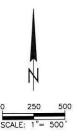


PROJECT

N. FORK ELKHORN RIVER
WATERSHED WFPO
OSMOND, NE
JOB # 24350.01 | DATE: 9/5/2024

BORING LOCATION PLAN

LEGEND:


BORING LOCATION

PROJECT

N. FORK ELKHORN RIVER
WATERSHED WFPO
PIERCE, NE
B # 24350.01 | IDATE: 9/5/2024

LEGEND:

* BORING LOCATION

PROJECT

N. FORK ELKHORN RIVER
WATERSHED WFPO
PIERCE, NE
3 # 24350.01 | DATE: 9/5/2024

LEGEND:

BORING LOCATION

PROJEC

N. FORK ELKHORN RIVER
WATERSHED WFPO
PIERCE, NE
B # 24350.01 | IDATE: 9/5/2024

BORING LOCATION PLAN-AREA 3

Thiele Geotech, Inc. 13478 Chandler Road Omaha, NE 68138 Telephone: (402) 556-2171

BORING NUMBER NF B-1

PAGE 1 OF 1

Inlele Geotech Inc	,									
CLIENT JEO - Wahoo		PROJECT NAMI	E Nortl	n Fork	Elkhor	n River	Watersh	ned WFPO		
PROJECT NUMBER 24350.01		PROJECT LOCA	ATION _	Variou	ıs, Pieı	rce & O	smond, I	ΝE		
DRILLING DATE 7/24/2024	SURFACE Grass	GROUND ELEV	ATION	1625	ft		BORIN	G DEPTH	20.0 feet	
DRILLING METHOD Flight	HOLE SIZE 6 inches	GROUND WATE	R LEVE	ELS:						
DRILLER Jon Livingston	DRILL RIG CME 45B #008	abla during (RILLIN	G 9.0) ft / El	lev 1616	6.0 ft			
LOGGED BY Nick Phillips	CHECKED BY Broc Burmeister	▼ END OF D	RILLIN	G 9.4	ft / El	ev 1615	5.6 ft			
NOTES Boring backfilled with cuttings	11 114 14	AFTER D	RILLING	Not_	meası	ured				
VISUA	L/MANUAL DESCRIPTION	, w		TS	j	(9)	Ľ	0.000	ERBERG	F

			VISUAL/N	MANUAL D	ESCRIPTION	N	Щ	_	TS	ż	: (%	Т.		АΠ	TERBE LIMITS	RG S	LN
GRAPHIC LOG	MOISTURE	COLOR	CONSIST.	SOIL TYPE	GEOLOGIC ORIGIN	REMARKS	SAMPLE TYPE NUMBER	RECOVERY (IN)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	MOISTURE CONTENT (%)	DRY UNIT WT. (pcf)	٩. (tsf)			PLASTICITY INDEX	FINES CONTENT
elele v	very noist	brown	loose	silty sand	alluvium	fine grained	S-1		9		11.9						
5		reddish brown	hard	fat clay			S-2	-	9		24.9	3		56	14	42	
10	wet	reddish gray	firm	lean clay		appreciable sand	S-3		6		31.7						88
15		gray	very soft				S-4	-	0		28.8						
20						Bottom of borehol at 20.0 feet.	S-5		2		25.8						

Thiele Geotech, Inc. 13478 Chandler Road Omaha, NE 68138

BORING NUMBER NF B-2

PAGE 1 OF 1

Telephone: (402) 556-2171 PROJECT NAME North Fork Elkhorn River Watershed WFPO CLIENT JEO - Wahoo PROJECT LOCATION Various, Pierce & Osmond, NE PROJECT NUMBER 24350.01 **GROUND ELEVATION** 1619 ft BORING DEPTH 20.0 feet DRILLING DATE 7/24/2024 SURFACE Grass HOLE SIZE 8 inches **GROUND WATER LEVELS:** DRILLING METHOD HSA ☐ DURING DRILLING 6.0 ft / Elev 1613.0 ft DRILLER Jon Livingston DRILL RIG CME 45B #008 END OF DRILLING None encountered, cave at 11.7 ft LOGGED BY Nick Phillips CHECKED BY Broc Burmeister AFTER DRILLING Not measured NOTES Boring backfilled with cuttings **ATTERBERG** BLOW COUNTS (N VALUE) FINES CONTENT (%) VISUAL/MANUAL DESCRIPTION SAMPLE TYPE NUMBER MOISTURE CONTENT (%) DRY UNIT WT. (pcf) POCKET PEN. (tsf) IMITS RECOVERY (IN) GRAPHIC LOG GEOLOGIC ORIGIN PLASTICITY INDEX SOIL TYPE MOISTURE COLOR CONSIST q_u(tsf) LIQUID REMARKS 0 brown loose silty sand alluvium fine grained, lenses of silt S-1 6 8.9 very light poorly graded 8 17.0 11.6 moist brown S-2 sand w/ silt wet TG COLUMNS - GINT STD US LAB.GDT - 9/5/24 13:20 - P:\24350.01\NORTH FORK ELKHORN RIVER WATERSHED.GP. S-3 6 18.4 10 silty sand 9 S-4 19.3 firm minor sand brown fat clay

Bottom of borehole at 20.0 feet.

S-5

8

22.6

BORING NUMBER NF B-3 PAGE 1 OF 1

BER 24350.0 E 7/24/2024 CHOD HSA Livingston Nick Phillips g backfilled with BANCON Grant Common Comm	cuttings	MANUAL D clayey sand silty sand	BY Broc Bu ESCRIPTION OBO OBO fill alluvium	008 rmeister	GROUNI GROUNI DI EN AF	D'ELEVAT D'WATER D'RING DRI ID OF DRI ETER DRIL BALL BAMPIN WANTER WANTE	ION _ LEVE	1588 ft LS: 6 6.0 ft 14.1 Not m	POCKET PEN. (tsf) (tsf) (tsf) MOISTIBE	B 0 1582.0 1573.9	ft 9 ft (bct)	NG D	ATT	20.0 ERBEE IMITS INITS		FINES CONTENT (%)
HOD HSA Livingston Nick Phillips g backfilled with BY ON	cuttings VISUAL/I LOS ON NA	MANUAL D clayey sand silty sand	8 inches CME 45B # BY Broc Bu ESCRIPTION OBORDO fill	008 rmeister N REM/ medium trace crumi	GROUNI DE DI EN AF ARKS Grained, gravel of test	SAMPLE TYPE SAMPLE TYPE NUMBER NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE	RECOVERY (IN)	BFOW COUNTS NO VALUE (N VALUE)	ft / Elev ft / Elev neasured (tst) (tst) MOISTIBLE A	0.000 CONTENT (%) DRY UNIT WT.	ft (jcd)		ATT	ERBE		FINES CONTENT (%)
Livingston Nick Phillips Dackfilled with ROTO OU dry dark brown very brown	cuttings VISUAL/I SONO O hard	MANUAL D Clayey sand silty sand	ESCRIPTION OSCIONAL STREET	N REMA medium trace crumi	☑ DU ☑ EN ARKS grained, gravel o test	SAMPLE TYPE SAMPLE TYPE SAMPLE TYPE NUMBER N-1	RECOVERY (IN)	B G.0.1 BLOW COUNTS (N VALUE)	POCKET PEN.	CONTENT (%) DRY UNIT WT.	9 ft (bct)	(tsf)	L	<u>IMITS</u> 	PLASTICITY BA	FINES CONTENT (%)
Nick Phillips a backfilled with BANDLY ON ON ON ON ON ON ON ON ON O	visual/i	MANUAL D Lack Clayey sand silty sand	BY Broc Bu ESCRIPTION OBJUSTICATION OBJUSTI	REM/ medium trace crumi	ARKS grained, gravel o test	SAMPLE TYPE NUMBER NOMBER	RECOVERY (IN)	BLOW COUNTS (N VALUE)	POCKET PEN.	CONTENT (%) DRY UNIT WT.	9 ft (bct)	qu (tsf)	L	<u>IMITS</u> 	PLASTICITY BA	FINES CONTENT (%)
By Backfilled with BY WOOD OD dry dark brown very brown	VISUAL/I	MANUAL D Lack Lack Lack Lack Lack Lack Lack Lack	GEOLOGIC ORIGIN	N REMA medium trace crumi	ARKS grained, gravel o test	SAMPLE TYPE NUMBER N-1	RECOVERY (IN)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf) (tsf)	CONTENT (%) DRY UNIT WT.	(bct)	م. (tst)	L	<u>IMITS</u> 	PLASTICITY B INDEX	FINES CONTENT (%)
dry dark brown	VISUAL/I	Ud. L I I OS clayey sand	GEOLOGIC ORIGIN	REM/ medium trace crumi	ARKS grained, gravel o test	SAMPLE TYPE NUMBER	RECOVERY (IN)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	CONTENT (%) DRY UNIT WT.		d _u (tsf)	L	<u>IMITS</u> 	PLASTICITY BA	FINES CONTENT (%)
dark brown very brown	hard loose	Ud. L I I OS clayey sand	GEOLOGIC ORIGIN	REM/ medium trace crumi	grained, gravel o test	U-1			4			q _u (tsf)	L	<u>IMITS</u>	PLASTICITY SU INDEX	FINES CONTENT (%)
dark brown very brown	hard	clayey sand	fill	medium trace : crumi	grained, gravel o test	U-1			4			م. (tsf)			PLASTICITY INDEX	FINES CONTE
brown very brown	loose	sand silty sand		trace crum	gravel o test		11	7		4.8 11	8.5					
noist			alluvium	fine g	ained	S-2		7								
wet	very loose	e							-	2.8						
				lenses	of silt											
				16/1568	UI SIIL	S-3		3	1	8.5						30.2
light brown	medium dense					S-4		16	2	20.7						
				Bottom :	f borobala	S-5		19		16.2						
					brown dense		light brown dense S-4 S-5 Bottom of borehole	light brown dense	light brown dense S-4 16 S-5 19 Bottom of borehole	light brown dense S-4 16 S-5 19 Bottom of borehole	light brown dense S-4 16 20.7 S-5 19 16.2	light medium dense S-4 16 20.7 S-5 19 16.2	light brown dense S-4 16 20.7 S-5 19 16.2	light medium dense S-4 16 20.7 S-5 19 16.2	light medium dense S-4 16 20.7 S-5 19 16.2	light medium dense S-4 16 20.7 S-5 19 16.2

Thiele Geotech, Inc. 13478 Chandler Road Omaha, NE 68138 Telephone: (402) 556-2171

BORING NUMBER NF B-4

PAGE 1 OF 1

CLIEN	IT JE	O - Wah	00					PROJEC	TNAME	North	Fork i	Elkhorr	River	Water	shed	WFP)		
PROJ	ECT N	UMBER	24350.01	1				PROJEC	T LOCAT	ION _	Variou:	s, Piero	ce & O	smono	l, NE				
DRILL	ING D	ATE _7/	24/2024	;	SURFACE	Grass		GROUNI	ELEVAT	TION _	1586 f	t		BOR	NG D	EPTH	20.0	feet	
DRILL	ING M	ETHOD	HSA		HOLE SIZE	8 inches		GROUNI	WATER	LEVE	LS:								
DRILL	ER _J	on Living	ston		DRILL RIG	CME 45B #	#008	$ar{\Delta}$ D(JRING DR	ILLING	3 <u>4.0</u>	ft / Ele	ev 158:	2.0 ft					
LOGG	ED B	Nick F	Phillips		CHECKED I	BY Broc Bu	urmeister	EN	ID OF DR	ILLING	Nor	ne enco	ounter	ed, cav	e at 8	3.4 ft			
NOTE	S Bo	ring back	filled with	cuttings			~	AF	TER DRII	LLING	Not	measu	red						
				VISUAL/	MANUAL D	ESCRIPTIO	N		Ä		TS	ż	@	Ë			TERBE LIMITS		LN:
O DEPTH	GRAPHIC LOG	MOISTURE	COLOR	CONSIST.	SOIL TYPE	GEOLOGIC ORIGIN	REMA	ARKS	SAMPLE TYPE NUMBER	RECOVERY (IN)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	MOISTURE CONTENT (%)	DRY UNIT WT. (pcf)	٩. (tsf)	LIQUID	PLASTIC LIMIT	PLASTICITY INDEX	FINES CONTENT (%)
		very moist	dark gray	loose	silty sand	alluvium		ed, roots b test		2000	<u>e</u>			. September 1	710				
									U-1	11	·		42.3	81.2					
			gray	very loose					/										
_ <u>∑</u> _ 5		wet							S-2		0	-	17.3						
<u> </u>																			
			light gray	medium dense	poorly graded														
10			gray	delide	sand w/ silt				S-3		16		16.6						9.5
15																			
			brown	-	silty sand				V										
15									S-4		15		19.1						
20									S-5		17	_	17.0						
1	h 4 · 1 ·	10	L		E .			f borehole 0 feet.					1				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		d.
2																			

Thiele Geotech, Inc. 13478 Chandler Road Omaha, NE 68138 Telephone: (402) 556-2171

BORING NUMBER NF B-5

PAGE 1 OF 1

		Geote O - Wah	ech inc		. (402) 330	-2171		PROJEC	T NAME	North	Fork F	Elkhorr	n Rive	Wate	rshed	WFP	0		
			24350.0						T LOCAT			Selection	200						
					SURFACE	Grass			D ELEVAT	100		4-1		607546	OCI NACA.		20.0) feet	
			HSA		Ú7.	8 inches			D WATER										
DRIL	LER _	lon Living	gston			CME 45B #			URING DR			0 ft / E	lev 15	68.0 ft					
						BY Broc Bu			ND OF DR							5.9 ft			
			filled with						FTER DRII										
-				VISUAL/N	MANITAL DI	ESCRIPTION	ď									AT	TERBE	RG	T _F
-	೦	111		101					- 품~	₹	E (E	Ä	₩ [®]	N.		200000	LIMITS	3	- EN
O DEPTH (ff)	GRAPHIC LOG	MOISTURE	COLOR	CONSIST.	SOIL TYPE	GEOLOGIC ORIGIN	REM	ARKS	SAMPLE TYPE NUMBER	RECOVERY (IN)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	MOISTURE CONTENT (%)	DRY UNIT WT. (pcf)	q _u (tsf)	LIQUID	PLASTIC LIMIT	PLASTICITY INDEX	FINES CONTENT (%)
-		slightly moist	gray	firm	lean clay	alluvium	much	n sand	U-1	12			12.6	112.4					
5	- - - -	very moist	brown	loose	poorly graded sand w/ silt		fine ç	rained	S-2		7		13.1						6.6
		wet	light brown	very loose	poorly graded sand				S-3		4		16.0	-					
150 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			dark gray		silty sand		lense	s of silt	S-4		3		24.7						
ABG				•	•		Bottom o	of borehole		To:	*		1		-	1	-		

Thiele Geotech Inc

gray

gray

20

graded sand w/ silt

medium

dense

Thiele Geotech, Inc. 13478 Chandler Road

BORING NUMBER NF B-6

PAGE 1 OF 1 Omaha, NE 68138 Telephone: (402) 556-2171 PROJECT NAME North Fork Elkhorn River Watershed WFPO CLIENT JEO - Wahoo PROJECT LOCATION Various, Pierce & Osmond, NE PROJECT NUMBER 24350.01 **GROUND ELEVATION** 1581 ft BORING DEPTH 20.0 feet DRILLING DATE 7/25/2024 SURFACE Grass **GROUND WATER LEVELS:** HOLE SIZE 8 inches DRILLING METHOD HSA ☑ DURING DRILLING 5.0 ft / Elev 1576.0 ft DRILLER Jon Livingston DRILL RIG CME 45B #008 ▼ END OF DRILLING 14.1 ft / Elev 1566.9 ft LOGGED BY Nick Phillips CHECKED BY Broc Burmeister AFTER DRILLING Not measured NOTES Boring backfilled with cuttings **ATTERBERG** BLOW COUNTS (N VALUE) FINES CONTENT (%) VISUAL/MANUAL DESCRIPTION MOISTURE CONTENT (%) SAMPLE TYPE NUMBER IMITS POCKET PEN. (tsf) DRY UNIT WT. (pcf) RECOVERY (IN) GRAPHIC LOG GEOLOGIC PLASTICITY INDEX DEPTH (ft) MOISTURE SOIL TYPE PLASTIC LIMIT COLOR CONSIST d_u (tsf) LIQUID REMARKS dark lean clay alluvium minor sand, roots moist gray 21.8 97.7 0.88 12 verv moist minor wood, crumb test 25.3 96.1 19 U-2 12 16 wet fine grained gray medium silty sand dense TG COLUMNS - GINT STD US LAB.GDT - 9/5/24 13:20 - P:/24350.01/INORTH FORK ELKHORN RIVER WATERSHED.GPJ U-3 10 10 lenses of silt dark loose poorly

Bottom of borehole at 20.0 feet.

S-4

S-5

6

17

22.9

15.3

Thiele Geotech Inc

Thiele Geotech, Inc. 13478 Chandler Road Omaha, NE 68138

BORING NUMBER NF B-7

PAGE 1 OF 1

Telephone: (402) 556-2171 CLIENT JEO - Wahoo PROJECT NAME North Fork Elkhorn River Watershed WFPO PROJECT NUMBER 24350.01 PROJECT LOCATION Various, Pierce & Osmond, NE GROUND ELEVATION 1577 ft DRILLING DATE 7/25/2024 SURFACE Grass BORING DEPTH 20.0 feet DRILLING METHOD HSA HOLE SIZE 8 inches **GROUND WATER LEVELS:** ☑ DURING DRILLING 9.0 ft / Elev 1568.0 ft DRILLER _Jon Livingston DRILL RIG CME 45B #008 CHECKED BY Broc Burmeister LOGGED BY Nick Phillips END OF DRILLING None encountered, cave in at 7.6 ft NOTES Boring backfilled with cuttings AFTER DRILLING Not measured VISUAL/MANUAL DESCRIPTION

		2010			VISUAL/N	MANUAL D	ESCRIPTION	N.	Ж	>	TS_	ż	@	E		, , , , i	LIMITS	3	
	O DEPTH (ft)	GRAPHIC LOG	MOISTURE	COLOR	CONSIST.	SOIL TYPE	GEOLOGIC ORIGIN	REMARKS	SAMPLE TYPE NUMBER	RECOVERY (IN)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	MOISTURE CONTENT (%)	DRY UNIT WT. (pcf)	q _u (tsf)	LIQUID LIMIT		PLASTICITY INDEX	FINES CONTENT (%)
			moist	dark gray	soft	lean clay	alluvium	trace sand, roots											
				5 - 3					U-1	12			21.1	89.3	0.63	43	19	24	
	5								U-2	6			23.9	95.0					
			very moist	gray	loose	silty sand		fine grained											
			moist																
HED.GPJ	_ <u>\</u>		wet					crumb test	U-3	12			20.8	105.9					
WATERS	10																		
TG COLUMNS - GINT STD US LAB.GDT - 9/5/24 13,20 - P.\24350.01\NORTH FORK ELKHORN RIVER WATERSHED.GPJ																			
K ELKHO					very loose	noorly						-		-					
RTH FOR	15				very loose	poorly graded sand w/ silt			S-4		0		17.6						
50.01\NO						Silt			700-										
10 - P:\243																			
3/5/24 13:2				dark gray		silty sand			/							-			
GDT - 9	20								S-5		3		18.8						
US LAB.								Bottom of borehole at 20.0 feet.											
INT STD																			
MNS - G																			
TG COLU																			
16															_				

Thiele Geotech, Inc. 13478 Chandler Road Omaha, NE 68138 Telephone: (402) 556-2171

BORING NUMBER NF B-8 PAGE 1 OF 1

CLIENT JEO - Wahoo		PROJECT NAME North Fork Elkhorn River Watershed WFPO
PROJECT NUMBER 24350.01		PROJECT LOCATION Various, Pierce & Osmond, NE
DRILLING DATE 7/25/2024	SURFACE Grass	GROUND ELEVATION 1600 ft BORING DEPTH 20.0 feet
DRILLING METHOD HSA	HOLE SIZE 8 inches	GROUND WATER LEVELS:
DRILLER Jon Livingston	DRILL RIG CME 45B #008	∑ DURING DRILLING 6.0 ft / Elev 1594.0 ft
LOGGED BY Nick Phillips	CHECKED BY Broc Burmeister	▼ END OF DRILLING 13.8 ft / Elev 1586.2 ft
NOTES Boring backfilled with cutting	S	AFTER DRILLING Not measured
VISL	AL/MANUAL DESCRIPTION	Ψ . Ø . ATTERBERG F. LIMITS Z.

ľ					VISUAL/N	MANUAL D	ESCRIPTION	V	- PE	>	ATS (z	(%) %)	È.		ΑΠ	ERBE	RG	ENT
	O DEPTH	GRAPHIC LOG	MOISTURE	COLOR	CONSIST.	SOIL TYPE	GEOLOGIC ORIGIN	REMARKS	SAMPLE TYPE NUMBER	RECOVERY (IN)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	MOISTURE CONTENT (%)	DRY UNIT WT. (pcf)	q _u (tsf)	LIQUID	PLASTIC LIMIT	PLASTICITY INDEX	FINES CONTENT (%)
			moist	brown	very loose	silty sand	alluvium	fine grained	S-1		3		6.6						
	5		very moist						S-2		4		18.2	-					
	. <u>V</u>		wet	light brown	loose	poorly graded sand w/ silt													
WATERSHED.GPJ	10								S-3		8		18.6	-					10.0
K ELKHORN RIVER																			
350.01\NORTH FOR	15	- - -							S-4		7		18.0						
TG COLUMNS - GINT STD US LAB, GDT - 9/5/24 13:20 - P:/24350.01/NORTH FORK ELKHORN RIVER WATERSHED.GPJ		- - - -							S-5	-	6	- :	17.2						
LAB.GDT	20							Bottom of borehole at 20.0 feet.	/\										
NT STD US																			
JMNS - GII																			ž
TG COLL																			

Thiele Geotech, Inc. 13478 Chandler Road Omaha, NE 68138 Telephone: (402) 556-2171

BORING NUMBER NF B-9 PAGE 1 OF 1

CLIENT JE		00					PROJEC	TNAME	North	Fork I	Elkhorn	River	Wate	rshed	WFP	0		
PROJECT N								T LOCAT	ION _	√arious	s, Piero	ce & O	smon	d, NE				
DRILLING D	ATE _7/	25/2024		SURFACE	Grass		GROUN	ELEVAT	ION _	1600 f	t		BOR	ING D	EPTH	20.0) feet	
DRILLING M	IETHOD	HSA		HOLE SIZE	8 inches			WATER										
DRILLER _J					CME 45B #			JRING DR	ILLING	6.0	ft / Ele	v 159	4.0 ft					
LOGGED BY	Y Nick F	Phillips		CHECKED	BY Broc Bu	urmeister	E	ID OF DR	ILLING	Nor	ne enco	ounter	ed, cav	ve at 4	1.8 ft			
NOTES Bo	ring back	filled with	cuttings				Al	TER DRII	LLING	Not	neasu	red						
			VISUAL	MANUAL D	ESCRIPTIO	N		Ä	_	TS	ż	(%	Ë			TERBE LIMITS		F.
DEPTH (ft) GRAPHIC LOG	MOISTURE	COLOR	CONSIST.	SOIL TYPE	GEOLOGIC ORIGIN	REMA	ARKS	SAMPLE TYPE NUMBER	RECOVERY (IN)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	MOISTURE CONTENT (%)	DRY UNIT WT. (pcf)	م (tsf)			>	FINES CONTENT (%)
0	very	brown	very loos	e silty sand	alluvium	fine g	rained			(Cast								ш
	moist							S-1		2		11.5	_					
		light brown						\ S-2	-	4		16.2	-					30.0
5								/\					-					
<u> </u>	wet		loose															
10								S-3		6		16.8						
15		olive gray	medium dense	1		lenses of	f lean clay	S-4		27		20.1						
20		light brown		poorly graded sand w/				S-5		13		16.8	No.					
				silt	A.T.		of borehole .0 feet.											
10						3.20												

Thiele Geotech Inc

COLUMNS - GINT STD US LAB.GDT - 9/5/24 13:20 - P:/24350.01/NORTH FORK ELKHORN RIVER WATERSHED.GPJ

10

Thiele Geotech, Inc. 13478 Chandler Road Omaha, NE 68138

firm

gray

lean clay

BORING NUMBER NF B-10

PAGE 1 OF 1

9.4

Telephone: (402) 556-2171 CLIENT JEO - Wahoo PROJECT NAME North Fork Elkhorn River Watershed WFPO PROJECT NUMBER 24350.01 PROJECT LOCATION Various, Pierce & Osmond, NE GROUND ELEVATION 1599 ft BORING DEPTH 20.0 feet DRILLING DATE 7/24/2024 SURFACE Grass DRILLING METHOD HSA HOLE SIZE 8 inches **GROUND WATER LEVELS:** DURING DRILLING 6.0 ft / Elev 1593.0 ft DRILLER Jon Livingston DRILL RIG CME 45B #008 CHECKED BY Broc Burmeister END OF DRILLING 5.4 ft / Elev 1593.6 ft LOGGED BY Nick Phillips AFTER DRILLING Not measured NOTES Boring backfilled with cuttings **ATTERBERG** FINES CONTENT (%) VISUAL/MANUAL DESCRIPTION BLOW COUNTS (N VALUE) MOISTURE CONTENT (%) DRY UNIT WT. (pcf) LIMITS POCKET PEN. (tsf) RECOVERY (IN) GRAPHIC LOG GEOLOGIC DEPTH (ft) PLASTICITY INDEX MOISTURE SOIL TYPE PLASTIC LIMIT COLOR CONSIST de (tst) LIQUID **REMARKS** moist brown loose silty sand alluvium fine grained crumb test 109.5 12 5.1 very light brown S-2 19.2 moist wet poorly graded sand w/ silt

S-3

S-4

S-5

6

6

4

16.2

17.8

21.0

Bottom of borehole at 20.0 feet.

minor sand

10V

wet

gray

Thiele Geotech, Inc.

silt

silty sand

lean clay

soft

BORING NUMBER NF B-11

13478 Chandler Road PAGE 1 OF 1 Omaha, NE 68138 Telephone: (402) 556-2171 CLIENT JEO - Wahoo PROJECT NAME North Fork Elkhorn River Watershed WFPO PROJECT NUMBER 24350.01 PROJECT LOCATION Various, Pierce & Osmond, NE DRILLING DATE 7/25/2024 SURFACE Concrete GROUND ELEVATION 1594 ft BORING DEPTH 20.0 feet DRILLING METHOD HSA HOLE SIZE 8 inches **GROUND WATER LEVELS:** DRILLER Jon Livingston ☐ DURING DRILLING 12.0 ft / Elev 1582.0 ft DRILL RIG CME 45B #008 LOGGED BY Nick Phillips CHECKED BY Broc Burmeister ▼ END OF DRILLING 10.0 ft / Elev 1584.0 ft NOTES Boring backfilled with cuttings AFTER DRILLING Not measured ATTERBERG VISUAL/MANUAL DESCRIPTION FINES CONTENT (%) BLOW COUNTS (N VALUE) MOISTURE CONTENT (%) DRY UNIT WT. (pcf) SAMPLE TYPE NUMBER POCKET PEN. (tsf) LIMITS GRAPHIC LOG RECOVERY (IN) DEPTH (ft) GEOLOGIC ORIGIN MOISTURE SOIL TYPE PLASTICITY INDEX COLOR PLASTIC LIMIT CONSIST q. (tsf) LIQUID **REMARKS** 3" concrete moist brown medium silty sand alluvium fine grained dense crumb test U-1 12 115.5 6.3 grayish very lenses of silt moist brown S-2 10 10.9 light loose poorly brown graded TG COLUMNS - GINT STD US LAB.GDT - 9/5/24 13:20 - P:\24350.01\\NORTH FORK ELKHORN RIVER WATERSHED.GPJ sand w/

S-3

S-4

S-5

7

7

2

15.6

16.4

24.6

6.9

Bottom of borehole at 20.0 feet.

appreciable sand

Thiele Geotech, Inc. 13478 Chandler Road Omaha, NE 68138 Telephone: (402) 556-2171

BORING NUMBER NF B-12

PAGE 1 OF 1

PROJECT NAME North Fork Elkhorn River Watershed WFPO CLIENT JEO - Wahoo PROJECT LOCATION Various, Pierce & Osmond, NE PROJECT NUMBER 24350.01 SURFACE Grass GROUND ELEVATION 1598 ft BORING DEPTH 20.0 feet DRILLING DATE 7/25/2024 **GROUND WATER LEVELS:** DRILLING METHOD HSA HOLE SIZE 8 inches DURING DRILLING 9.0 ft / Elev 1589.0 ft DRILLER Jon Livingston DRILL RIG CME 45B #008 END OF DRILLING None encountered, cave at 9.9 ft LOGGED BY Nick Phillips CHECKED BY Broc Burmeister AFTER DRILLING Not measured NOTES Boring backfilled with cuttings ATTERBERG FINES CONTENT (%) VISUAL/MANUAL DESCRIPTION **BLOW COUNTS** MOISTURE CONTENT (%) DRY UNIT WT. (pcf) SAMPLE TYPE NUMBER LIMITS POCKET PEN. (tsf) RECOVERY (IN) GRAPHIC LOG (N VALUE) GEOLOGIC ORIGIN PLASTICITY MOISTURE SOIL TYPE PLASTIC COLOR CONSIST a (tsf) LIQUID LIMIT REMARKS 0 fill much sand, minor dry brown hard silt gravel crumb test 12 9.3 110.3 1.86 19 14 5 silty sand alluvium fine grained moist brown loose S-2 9 7.4 poorly graded sand w/ silt TG COLUMNS - GINT STD US LAB.GDT - 9/5/24 13:20 - P:\24350.01\NORTH FORK ELKHORN RIVER WATERSHED.GPJ S-3 6 18.1 7.9 wet dark firm lean clay appreciable sand S-4 30.1 gray very loose silty sand fine grained light brown S-5 4 17.2 Bottom of borehole at 20.0 feet.

TG COLUMNS - GINT STD US LAB.GDT - 9/5/24 13:20 - P:\24350.01\NORTH FORK ELKHORN RIVER WATERSHED.GPJ

Thiele Geotech, Inc. 13478 Chandler Road Omaha, NE 68138 Telephone: (402) 556-2171

BORING NUMBER OS B-1

PAGE 1 OF 1

CLIENT JEO - Wahoo PROJECT NAME North Fork Elkhorn River Watershed WFPO PROJECT NUMBER 24350.01 PROJECT LOCATION Various, Pierce & Osmond, NE DRILLING DATE 7/26/2024 SURFACE Grass **GROUND ELEVATION** 1658 ft BORING DEPTH 20.0 feet **DRILLING METHOD** HSA HOLE SIZE 8 inches **GROUND WATER LEVELS:** DRILLER Jon Livingston ☑ DURING DRILLING 19.0 ft / Elev 1639.0 ft DRILL RIG CME 45B #008 LOGGED BY Nick Phillips CHECKED BY Broc Burmeister ▼ END OF DRILLING _18.5 ft / Elev 1639.5 ft NOTES Boring backfilled with cuttings AFTER DRILLING Not measured **ATTERBERG** VISUAL/MANUAL DESCRIPTION BLOW COUNTS (N VALUE) SAMPLE TYPE NUMBER FINES CONTENT (%) MOISTURE CONTENT (%) DRY UNIT WT. (pcf) POCKET PEN. (tsf) LIMITS GRAPHIC LOG RECOVERY (IN) DEPTH (ft) GEOLOGIC ORIGIN MOISTURE SOIL TYPE PLASTICITY INDEX PLASTIC LIMIT CONSIST COLOR q_u (tsf) LIQUID **REMARKS** moist brown hard fat clay alluvium trace sand, roots U-1 22.0 105.2 2.11 12 U-2 10 16.6 107.1 medium silty sand fine grained, lenses dense of silt crumb test U-3 12 6.4 115.4 10 moist S-4 11 14.0 S-5 13 19.9 Bottom of borehole at 20.0 feet.

Thiele Geotech, Inc. 13478 Chandler Road Omaha, NE 68138 Telephone: (402) 556-2171

BORING NUMBER OS B-2

PAGE 1 OF 1

CLIENT JEO - Wahoo PROJECT NAME North Fork Elkhorn River Watershed WFPO PROJECT LOCATION Various, Pierce & Osmond, NE PROJECT NUMBER 24350.01 **GROUND ELEVATION** 1657 ft BORING DEPTH 20.0 feet DRILLING DATE 7/26/2024 SURFACE Grass DRILLING METHOD HSA HOLE SIZE 8 inches **GROUND WATER LEVELS:** ☐ DURING DRILLING 5.0 ft / Elev 1652.0 ft DRILLER Jon Livingston DRILL RIG CME 45B #008 CHECKED BY Broc Burmeister END OF DRILLING None encountered, cave at 7.3 ft LOGGED BY Nick Phillips AFTER DRILLING Not measured NOTES Boring backfilled with cuttings **ATTERBERG** FINES CONTENT (%) VISUAL/MANUAL DESCRIPTION BLOW COUNTS (N VALUE) MOISTURE CONTENT (%) DRY UNIT WT. (pcf) LIMITS POCKET PEN. (tsf) RECOVERY (IN) GRAPHIC LOG GEOLOGIC PLASTICITY INDEX MOISTURE SOIL TYPE COLOR CONSIST q (tsf) LIQUID PLASTIC REMARKS 0 dark hard lean clay alluvium much sand, trace brown gravel 12 6.0 106.2 moist firm crumb test U-2 12 19.0 91.3 wet COLUMNS - GINT STD US LAB,GDT - 9/5/24 13:20 - P:\24350.01\NORTH FORK ELKHORN RIVER WATERSHED.GP. dark soft fat clay trace sand U-3 12 36.5 81.6 gray minor sand U-4 33.8 12 firm much sand, trace lean clay gray gravel U-5 12 23.5 Bottom of borehole at 20.0 feet.

Thiele Geotech 13478 Chandler Road Omaha, NE 68138 Telephone: 402-556-2171

SUMMARY OF LABORATORY RESULTS

PAGE 1 OF 2

CLIENT JEO - Wahoo

PROJECT NAME North Fork Elkhorn River Watershed WFPO

PROJECT NUMBER 24350.01 PROJECT LOCATION Various Pierce & Osmond NE

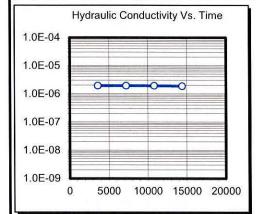
FROSEC	PROJECT NUMBER 24350.01						KOJEC			Various, Pierce &		Osmona,	INC	
Boring	Sample	D#-	Water	Unit Weight		Void	Sat.		nfined ression	Atterber	g Limits	%<#200	Class	Other
	Number	Depth	Content (%)	Wet Density (pcf)	Dry Density (pcf)	Ratio	(%)	q _u (tsf)	Strain (%)	LL	PI	Sieve	Class.	Tests
NF B-1	S-1	0.5-2.0'	11.9											
	S-2	3.5-5.0'	24.9							56	42		CH	
	S-3	8.5-10.0'	31.7									88.3	CL	
	S-4	13.5-15.0'	28.8											
	S-5	18.5-20.0'	25.8											
NF B-2	S-1	0.5-2.0'	8.9											
	S-2	3.5-5.0'	17.0									11.6	SP-SM	
	S-3	8.5-10.0'	18.4										NP	
	S-4	13.5-15.0'	19.3											
	S-5	18.5-20.0'	22.6											
NF B-3	U-1	0.5-2.0'	4.8	124.2	118.5	0.421	31						NP	
	S-2	3.5-5.0'	12.8											
	S-3	8.5-10.0	18.5									30.2	SM	
	S-4	13.5-15.0'	20.7											
	S-5	18.5-20.0'	16.2											
NF B-4	U-1	0.5-2.0'	42.3	115.5	81.2	1.076	100						NP	
	S-2	3.5-5.0'	17.3	A PARACONE D	5345710554	150,000,000,000,000							13.000	
	S-3	8.5-10.0'	16.6									9.5	SP-SM	
	S-4	13.5-15.0'	19.1				345					(808		
	S-5	18.5-20.0'	17.0				0.0							
NF B-5	U-1	0.5-2.0'	12.6	126.6	112.4	0.471	71							
	S-2	3.5-5.0'	13.1				956 %					6.6	SP-SM	
	S-3	8.5-10.0'	16.0											
	S-4	13.5-15.0'	24.7											
	S-5	18.5-20.0'	20.0											
NF B-6	U-1	0.5-2.0'	21.8	119.0	97.7	0.725	81	0.88	5.8					
	U-2	3.5-5.0'	25.3	120.5	96.1	0.752	91	0.00	0.0	35	19		CL	
	U-3	8.5-10.0'		1						"	,,,,,,			
	S-4	13.5-15.0'	22.9				1.5	1						
	S-5	18.5-20.0'	15.3											
NF B-7	U-1	0.5-2.0'	21.1	108.1	89.3	0.887	64	0.63	2.1	43	24		CL	
non ababan	U-2	3.5-5.0'	23.9	117.7	95.0	0.741	86	0.00		10			- J_	
	U-3	8.5-10.0'	20.8	127.9	105.9	0.591	95						NP	
	S-4	13.5-15.0'	17.6	121.0		5.001							INI	
	S-5	18.5-20.0'	18.8					+		+				
NF B-8	S-1	0.5-2.0'	6.6						-					
22227.75_	S-2	3.5-5.0'	18.2			j.		-		+-			NP	
	S-3	8.5-10.0'	18.6							-	+	10.0	SP-SM	
	S-4	13.5-15.0'	18.0				-			-		10.0	35-3141	
	S-5	18.5-20.0	17.2							-	-			
NF B-9	S-3	0.5-2.0'	11.5							-	-			
141 D-9		3.5-5.0							-			20.0	CNA	
	S-2		16.2				-		-		-	30.0	SM	
	S-3	8.5-10.0'	16.8										NP	

Thiele Geotech 13478 Chandler Road Omaha, NE 68138 Telephone: 402-556-2171

SUMMARY OF LABORATORY RESULTS

PAGE 2 OF 2

CLIENT JEO - Wahoo


PROJECT NAME North Fork Elkhorn River Watershed WFPO

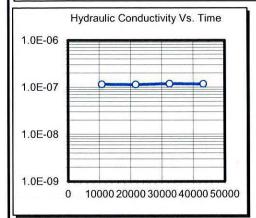
PROJEC	INUMBE	R 24350.0	1				KOJEC	A CONTRACTOR SANCE	100000000000000000000000000000000000000			Osmond,	INL	
Boring	Sample		Water	Unit V	Veight	Void	Sat.	Uncor Compr		Atterber	g Limits	%<#200		Other
Number	Number	Depth	Content (%)	Wet Density (pcf)	Dry Density (pcf)	Ratio	(%)	q _u (tsf)	Strain (%)	LL	PI	Sieve	Class.	Tests
NF B-9	S-4	13.5-15.0	20.1											
	S-5	18.5-20.0	16.8											
NF B-10	U-1	0.5-2.0'	5.1	115.1	109.5	0.539	26						NP	
	S-2	3.5-5.0'	19.2											
	S-3	8.5-10.0'	16.2									9.4	SP-SM	
	S-4	13.5-15.0'	17.8											
	S-5	18.5-20.0'	21.0											
NF B-11	U-1	0.5-2.0'	6.3	122.8	115.5	0.459	37						NP	
	S-2	3.5-5.0'	10.9											
	S-3	8.5-10.0'	15.6									6.9	SP-SM	
	S-4	13.5-15.0'	16.4											
	S-5	18.5-20.0'	24.6											
NF B-12	U-1	0.5-2.0'	9.3	120.6	110.3	0.527	47	1.86	3.4	19	5		ML	
	S-2	3.5-5.0'	7.4											
	S-3	8.5-10.0'	18.1									7.9	SP-SM	
	S-4	13.5-15.0'	30.1											
	S-5	18.5-20.0'	17.2											
OS B-1	U-1	0.5-2.0'	22.0	128.4	105.2	0.601	99	2.11	5.8					
	U-2	3.5-5.0'	16.6	124.8	107.1	0.544	81							
	U-3	8.5-10.0'	6.4	122.8	115.4	0.460	38							
	S-4	13.5-15.0'	14.0											
	S-5	18.5-20.0'	19.9											
OS B-2	U-1	0.5-2.0'	6.0	112.6	106.2	0.586	28							
	U-2	3.5-5.0'	19.0	108.6	91.3	0.845	61							
	U-3	8.5-10.0'	36.5	111.3	81.6	1.028	94							
	U-4	13.5-15.0'	33.8											
	U-5	18.5-20.0'	23.5											

TG SOIL TEST SUMMARY - GINT STD US LAB.GDT - 8/29/24 07:46 - P:\24350.01\NORTH FORK ELKHORN RIVER WATERSHED.GPJ

P	ROJECT IDENTIFICATION	SAMPLE IDENTIFICATION			
Client	JEO - Wahoo	Sample Descrip	brown, lean clay w/ fine sands		
Project:	North Fork Elkhorn River Watershed WFPO	Sample ID	NF B-5, U-1		
Phase:	Geotechnical	Depth	0.5-2.0'		
Location:	Various	Lab #			
City, State	Pierce & Osmond, NE	Remarks			
Job.:	24350.01	Sample Type	Undisturbed (Shelby)		
Report Date:	September 9, 2024	Compaction	Not Applicable		

SPECIMEN PARAMETERS							
INITIAL	FINAL	West of the second					
12.29	12.29	Height (cm) (Min. 2.54 cm)					
7.32	7.34	Diameter (cm) (Min 2.54 cm)					
126.6	128.1	Wet Density (pcf)					
12.6	17.7	Moisture Content, %					
112.4	108.9	Dry Density (pcf)					
2.65	2.65	Assumed Specific Gravity					
71.0	90.2	Degree of Saturation, %					

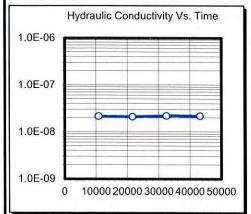
	TEST PARAM	ETERS		
21 5 251 mg -	Interval 1	Interval 2	Interval 3	Interval 4
Lateral (Chamber) Pressure (psi)	20.5	20.5	20.5	20.5
Upper Channel Pressure (psi)	16.0	16.0	16.0	16.0
Lower Channel Pressure (psi)	18.0	18.0	18.0	18.0
Differential Pressure (psi)	2.0	2.0	2.0	2.0
Hydraulic Gradient	11.4	11.4	11.4	11.4
Test Time (sec)	3600	3600	3600	3600
Elapsed Time (sec)	3600	7200	10800	14400
Upper Burette - Inflow - initial	0.00	0.00	0.00	0.00
Upper Burette - Inflow - final	7.40	7.60	7.60	7.50
Lower Burette - Outflow - initial	10.00	10.00	10.00	10.00
Lower Burette - Outflow - final	2.50	2.40	2.40	2.50
Inflow/Outflow Ratio (0.75-1.25)	1.01	1.00	1.00	1.00
Permeability (cm/sec)	2.09E-06	2.12E-06	2.12E-06	2.09E-06
Temperature (C)	23.3	23.7	23.9	24.6
Temperature Correction	0.924	0.914	0.909	0.892
Permeability, K @ 20 C (cm/sec)	1.9E-06	1.9E-06	1.9E-06	1.9E-06
Acceptable Test Limits	PASS LIMITS	PASS LIMITS	PASS LIMITS	PASS LIMITS


Permeability Four Interval Average 1.9E-06
Permeability Requirement < 1.0E-07

cm/sec

cm/sec

F	PROJECT IDENTIFICATION	SAMPLE IDENTIFICATION		
Client	JEO - Wahoo	Sample Descrip	brown, lean clay	
Project:	North Fork Elkhorn River Watershed WFPO	Sample ID	NF B-7 U-2	
Phase:	Geotechnical	Depth	3.5-5.0'	
Location:	Various	Lab #		
City, State	Pierce & Osmond, NE	Remarks		
Job.:	24350.01	Sample Type	Undisturbed (Shelby)	
Report Date:	September 9, 2024	Compaction	Not Applicable	


	SPECIMEN PARAMETERS								
	INITIAL	FINAL							
	12.34	12.37	Height (cm) (Min. 2.54 cm)						
	7.29	7.32	Diameter (cm) (Min 2.54 cm)						
	117.7	119.3	Wet Density (pcf)						
١	23.9	27.2	Moisture Content, %						
	95.0	93.7	Dry Density (pcf)						
1	2.65	2.65	Assumed Specific Gravity						
1	85.6	94.5	Degree of Saturation, %						

TEST PARAMETERS								
	Interval 1	Interval 2	Interval 3	Interval 4				
Lateral (Chamber) Pressure (psi)	20.3	20.3	20.3	20.3				
Upper Channel Pressure (psi)	16.0	16.0	16.0	16.0				
Lower Channel Pressure (psi)	18.0	18.0	18.0	18.0				
Differential Pressure (psi)	2.0	2.0	2.0	2.0				
Hydraulic Gradient	11.4	11.4	11.4	11.4				
Test Time (sec)	10800	10800	10800	10800				
Elapsed Time (sec)	10800	21600	32400	43200				
Upper Burette - Inflow - initial	0.00	0.00	0.00	0.00				
Upper Burette - Inflow - final	1.30	1.30	1.30	1.30				
Lower Burette - Outflow - initial	10.00	10.00	10.00	10.00				
Lower Burette - Outflow - final	8.60	8.60	8.60	8.60				
Inflow/Outflow Ratio (0.75-1.25)	1.08	1.08	1.08	1.08				
Permeability (cm/sec)	1.29E-07	1.29E-07	1.29E-07	1.29E-07				
Temperature (C)	24.6	25	23.6	23.9				
Temperature Correction	0.892	0.882	0.916	0.909				
Permeability, K @ 20 C (cm/sec)	1.2E-07	1.1E-07	1.2E-07	1.2E-07				
Acceptable Test Limits	PASS LIMITS	PASS LIMITS	PASS LIMITS	PASS LIMITS				

Permeability Four Interval Average 1.2E-07 cm/sec
Permeability Requirement < 1.0E-07 cm/sec

	PROJECT IDENTIFICATION	SAME	PLE IDENTIFICATION
Client	JEO - Wahoo	Sample Descrip	brown, lean clay
Project:	North Fork Elkhorn River Watershed WFPO	Sample ID	OS B-1, U-2
Phase:	Geotechnical	Depth	3.5-5.0'
Location:	Various	Lab #	
City, State	Pierce & Osmond, NE	Remarks	
Job.:	24350.01	Sample Type	Undisturbed (Shelby)
Report Date	September 9, 2024	Compaction	Not Applicable

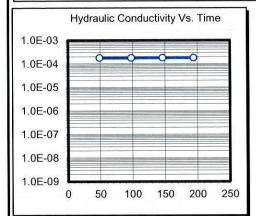
SPECIMEN PARAMETERS						
INITIAL	FINAL					
8.13	8.18	Height (cm) (Min. 2.54 cm)				
7.34	7.34	Diameter (cm) (Min 2.54 cm)				
124.8	126.6	Wet Density (pcf)				
16.6	83.8	Moisture Content, %				
107.1	68.9	Dry Density (pcf)				
2.65	2.65	Assumed Specific Gravity				
80.7	100.0	Degree of Saturation, %				

TEST PARAMETERS									
1.50	Interval 1	Interval 2	Interval 3	Interval 4					
Lateral (Chamber) Pressure (psi)	30.0	30.0	30.0	30.0					
Upper Channel Pressure (psi)	26.0	26.0	26.0	26.0					
Lower Channel Pressure (psi)	28.0	28.0	28.0	28.0					
Differential Pressure (psi)	2.0	2.0	2.0	2.0					
Hydraulic Gradient	17.3	17.3	17.3	17.3					
Test Time (sec)	10800	10800	10800	10800					
Elapsed Time (sec)	10800	21600	32400	43200					
Upper Burette - Inflow - initial	0.00	0.00	0.00	0.00					
Upper Burette - Inflow - final	0.40	0.40	0.40	0.40					
Lower Burette - Outflow - initial	10.00	10.00	10.00	10.00					
Lower Burette - Outflow - final	9.60	9.60	9.60	9.60					
Inflow/Outflow Ratio (0.75-1.25)	1.00	1.00	1.00	1.00					
Permeability (cm/sec)	2.39E-08	2.39E-08	2.39E-08	2.39E-08					
Temperature (C)	24.3	25	23.6	23.9					
Temperature Correction	0.899	0.882	0.916	0.909					
Permeability, K @ 20 C (cm/sec)	2.1E-08	2.1E-08	2.2E-08	2.2E-08					
Acceptable Test Limits	PASS LIMITS	PASS LIMITS	PASS LIMITS	PASS LIMITS					

Permeability Four Interval Average

2.2E-08

cm/sec


Permeability Requirement <

1.0E-07

cm/sec

	PROJECT IDENTIFICATION	SAMPLE IDENTIFICATION		
Client	JEO - Wahoo	Sample Descrip	dark brown, lean clay	
Project:	North Fork Elkhorn River Watershed WFPO	Sample ID	OS B-2, U-3	
Phase:	Geotechnical	Depth	8.5-10.0'	
Location:	Various	Lab#		
City, State	Pierce & Osmond, NE	Remarks	0	
Job.:	24350.01	Sample Type	Undisturbed (Shelby)	
Report Date	: September 9, 2024	Compaction	Not Applicable	

	SPECIMEN PARAMETERS								
INITIAL	FINAL								
11.23	11.23	Height (cm) (Min. 2.54 cm)							
7.29	7.29	Diameter (cm) (Min 2.54 cm)							
111.3	111.8	Wet Density (pcf)							
36.5	36.2	Moisture Content, %							
81.6	82.1	Dry Density (pcf)							
2.65	2.65	Assumed Specific Gravity							
94.1	94.5	Degree of Saturation, %							

TEST PARAMETERS									
	Interval 1	Interval 2	Interval 3	Interval 4					
Lateral (Chamber) Pressure (psi)	20.0	20.0	20.0	20.0					
Upper Channel Pressure (psi)	16.0	16.0	16.0	16.0					
Lower Channel Pressure (psi)	18.0	18.0	18.0	18.0					
Differential Pressure (psi)	2.0	2.0	2.0	2.0					
Hydraulic Gradient	12.5	12.5	12.5	12.5					
Test Time (sec)	49	49	48	48					
Elapsed Time (sec)	49	98	146	194					
Upper Burette - Inflow - initial	0.00	0.00	0.00	0.00					
Upper Burette - Inflow - final	10.00	10.00	10.00	10.00					
Lower Burette - Outflow - initial	10.00	10.00	10.00	10.00					
Lower Burette - Outflow - final	0.00	0.00	0.00	0.00					
Inflow/Outflow Ratio (0.75-1.25)	1.00	1.00	1.00	1.00					
Permeability (cm/sec)	1.90E-04	1.90E-04	1.94E-04	1.94E-04					
Temperature (C)	23.6	23.6	23.6	23.6					
Temperature Correction	0.916	0.916	0.916	0.916					
Permeability, K @ 20 C (cm/sec)	1.7E-04	1.7E-04	1.8E-04	1.8E-04					
Acceptable Test Limits	PASS LIMITS	PASS LIMITS	PASS LIMITS	PASS LIMITS					

Permeability Four Interval Average 1.8E-04 cm/sec
Permeability Requirement < 1.0E-07 cm/sec

C:\SERVER\FORMS\CRUMB DISPERSION.DOC

Project North For	Locat	Location Pierce & Osmond, NE										
Job# 24350.0	D1				Teste	Tested by BB/BG Date 8/15/24						
Boring #		NF B-3			•	NF B-3		NF B-3				
Sample #		U-1			U-1				U-1			
Depth	Depth 0.5 - 2					0.5 - 2				0.5 - 2	-	
Sample Description						f brown CL tom half br			Top half brown CL much sand, bottom half brown ML			
	x A (Natural) x					A (Natura	al)	х		A (Natur	al)	
Method		B (Remole	led)			B (Remolo	led)			B (Remole	led)	
	х	Distilled	t	х		Distilled	t e	х		Distilled	t L	
Water Type		Type I\	/			Type I\	/			Type I\	/	
Container #		8				7				10		
	Time Temp. Grade Time (hh:mm:ss) (C) (1-4) (hh:mm:ss)			Temp. (C)	Grade (1-4)	Tir (hh:m	ne m:ss)	Temp. (C)	Grade (1-4)			
Start	8:45	23.2		8:	45	23.2		8:4	45	23.2	-	
2 min ± 15 s	8:47	23.2	2	8:47		23.2	2	8:4	47	23.2	2	
1 hour ± 8 min	9:44	23.4	2	9:44		23.4	2	9:44		23.4	2	
6 hours ± 45 min	14:32 23.6 2		14	:32	23.6	2	14:32		23.6	2		
Dispersive Classification*:	2					2				2		
*Grade 1 - Nondispersiv	e Grade 2 -	Intermediate	Grade 3 – Di	spersiv	e Gra	de 4 – Highly I	Dispersive	ī				
Boring #		NF B-4				NF B-4		NF B-4				
Sample #		<u>U-1</u>			U-1			U-1				
Depth		0.5 - 2		-	0.5 - 2			0.5 - 2				
Sample Description	-	Dk gray Cl				Dk gray CL			Dk gray CL			
Method	X	A (Natur	•	X		A (Natur	,	X	-	A (Natur	•	
	x	B (Remole Distille		X		B (Remole Distille	<u></u>	X		B (Remol		
Water Type		Type I		<u> </u>		Type I		<u> </u>		Type I		
Container #		9			<u> </u>	3			1	6		
	Time (hh:mm:ss)	Temp. (C)	Grade (1-4)		me nm:ss)	Temp. (C)	Grade (1-4)	1	me nm:ss)	Temp. (C)	Grade (1-4)	
Start	8:45	23.2	-	8	:45	23.2	-	8	:45	23.2	_	
2 min ± 15 s	8:47	23.2	1	8	:47	23.2	1	8	:47	23.2	1	
1 hour ± 8 min	9:44	23.4	1	9	:44	23.4	1	9	:44	23.4	1	
6 hours ± 45 min	14:32	23.6	1	14	:32	32 23.6 1		14	14:32 23.6 1			
Dispersive Classification*:		1				1				1		
*Grade 1 – Nondispersi		- Intermediate	Grade 3 – D	ispersi	ve Gr	ade 4 – Highly	Dispersive					

Project North Fork Elkhorn River Watershed WFPO							Location Pierce & Osmond, NE					
Job# 24350.	.01					Test	ed by	BB/BG	D	ate	8/16/24	·
Boring #			NF B-6			NF B-6			NF B-6			
Sample #			U-2			U-2			U-2			
Depth	3.5 - 5						3.5 - 5				3.5 - 5	
Sample Description	Dk gray CL (wood)					Dk g	gray CL (w	ood)		Dk g	ray CL (wo	ood)
	x A (Natural)			х		A (Natur	al)	х		A (Natur	al)	
Method			B (Remole	ded)			B (Remole	ded)			B (Remole	ded)
	х		Distille	d	х		Distille	d	х		Distille	d t
Water Type			Type I	✓			Type I	V			Type I\	1
Container #			7				8				9	
. Mi	1	me ım:ss)	Temp. (C)	Grade (1-4)	Tir (hh:m	ne m:ss)	Temp. (C)	Grade (1-4)	Tir (bh:m	ne m:ss)	Temp. (C)	Grade (1-4)
Start	7:	45	26.2	,	7:	45	26.2	-	7:	45	26.2	-
2 min ± 15 s	7:	47	26.2	1	7:	47	26.2	1	7:	47	26.2	1
1 hour ± 8 min	8:	46	25.2	1	8:	46	25.2	1	8:	46	25.2	1
6 hours ± 45 min	13	:20	24.8	2	13	:20	24.8	1	13:20		24.8	1
Dispersive Classification*:							1				1	
*Grade 1 – Nondispersi	ve Gr	ade 2 –	Intermediate	Grade 3 – Di	ispersiv	e Gra	ade 4 – Highly	Dispersive				
Boring #			NF B-7				NF B-7	· . <u> </u>			NF B-7	
Sample #			U-3			U-3			U-3			
Depth	ļ		<u>8.5 – 10</u>		<u> </u>	8.5 – 10			8.5 – 10			
Sample Description		T	Gray SM			Gray SM			Gray SM			
Method	X	_	A (Natur	•	X		A (Natur	,	x		A (Natur	•
			B (Remole Distille				B (Remole	<u>`-</u>	<u> </u>		B (Remole	
Water Type	X		Type I		X		Type I'		×		Distille Type I	
Container #		<u>. </u>	10	•	 		6	•		<u> </u>	3	<u>*</u>
	1	me nm:ss)	Temp. (C)	Grade (1-4)		ne m:ss)	Temp. (C)	Grade (1-4)		me m:ss)	Temp. (C)	Grade (1-4)
Start	+	45	26.2	-	 	45	26.2	-	<u> </u>	45	26.2	-
2 min ± 15 s	7:	47	26.2	3	7:	47	26.2	2	7:	47	26.2	2
1 hour ± 8 min	8:	46	25.2	3	8:	46	25.2	2	8:	46	25.2	2
6 hours ± 45 min	13	:20	24.8	3	13	:20	24.8	2	13	:20	24.8	2
Dispersive Classification*:			3			2 2						
*Grade 1 - Nondispersi	ve Gr	ade 2 -	Intermediate	Grade 3 Di	ispersiv	e Gra	ade 4 – Highly	Dispersive				

C:\SERVER\FORMS\CRUMB DISPERSION.DOC

Project North Fork Elkhorn River Watershed WFPO						Loca	Location Pierce & Osmond, NE						
Job# 24350.0)1		-			Teste	Tested by BB/BG Date 8/19/24						
Boring #			NF B-10			NF B-10				NF B-10			
Sample #			U-1	<u> </u>		U-1				U-1			
Depth	0.5 - 2						0.5 - 2		_		0.5 - 2		
Sample Description	Br SM					Br SM			Br SM				
	x A (Natural) x					A (Natura	al)	х		A (Natura	al)		
Method	B (Remolded)				B (Remole	led)			B (Remold	led)			
14/-4 T	х		Distilled	1	х		Distilled	ť	х		Distilled	4	
Water Type			Type I\	/			Type I\	/			Type I\	/	
Container #			9				6				7		
	Time Temp. Grade Tir				Temp. (C)	Grade (1-4)	Tir (hh:m	1	Temp. (C)	Grade (1-4)			
Start	8:0)9	23.9	-	8:	09	23.9	-	8:0	09	23.9	-	
2 min ± 15 s	8:1	1	23.9	1	8:	11	23.9	1	8:	11	23.9	1	
1 hour ± 8 min	9:1	5	24.1	1	9:15		24.1	1	9:15		24.1	1	
6 hours ± 45 min	14:15 24.7 1		14	:15	24.7	1	14	:15	24.7	1			
Dispersive Classification*:	1 1 1					1							
*Grade 1 – Nondispersiv	e Gra		Intermediate	Grade 3 – Di	spersiv		ide 4 – Highly I		Ī				
Boring #			NF B-11				NF B-11				NF B-11	··	
Sample #			U-1			U-1			U-1				
Depth			0.5 – 2			0.5 – 2			0.5 – 2				
Sample Description			Br SM				Br SM		Br SM				
Method	X		A (Natur	•	X		A (Natur	•	X		A (Natur	•	
	Х		B (Remole Distille		x		B (Remole Distille		x		B (Remole Distille		
Water Type			Type I				Type I			1	Type I		
Container #			3			•	8	•		•	10		
	Tin (hh:ma		Temp. (C)	Grade (1-4)		me nm:ss)	Temp. (C)	Grade (1-4)	1	me nm:ss)	Temp. (C)	Grade (1-4)	
Start	8:0	09	23.9	-	8:	09	23.9	-	8:	09	23.9		
2 min ± 15 s	8:	11	23.9	4	8:	11	23.9	4	8:	:11	23.9	3	
1 hour ± 8 min	9:	15	24.1	4	9	15	24.1	4	9:	:15	24.1	3	
6 hours ± 45 min	14:	:15	24.7	4	14	:15	24.7	4	14	:15	24.7	3	
Dispersive Classification*:			4				4				3		
*Grade 1 – Nondispersiv			Intermediate	Grade 3 – D	ispersiv	e Gr	ade 4 – Highly	Dispersive					

Thiele Geotech Inc
Project North Fork Elkhorn River Watershed

Job # 24350.01

Fill, Br N	NF B-12 U-1 0.5 – 2				ted by NF R-12	BB/BG	D:	ate	8/20/24	
Fill, Br N	U-1				NF R-12					
Fill, Br N				NF B-12			NF B-12			
Fill, Br N	0.5 - 2						U-1			
Fill, Br N		0.5 – 2							0.5 - 2	
	Fill, Br ML, much sand, minor gravel				L, much sa gravel	nd, minor	Fill, Br ML, much sand, minor gravel			
x A (Natural) x			×		A (Natur	al)	х		A (Natur	al)
B (Remolded)					B (Remole	ded)			B (Remole	(bet
х	Distille	d	х		Distille	 d	×		Distille	d d
	Type I	V			Type I\	/			Type I\	/
	8				3				7	
Time (hh:mm:ss)	Temp. (C)	Temp. Grade Time Temp. Gr			Grade (1-4)			Temp. (C)	Grade (1-4)	
8:09	24.0	-	8:0	09	24.0	-	8:0)9	24.0	-
8:11	24.0	1	8:	11	24.0	1	8:11		24.0	1
9:08	23.9	1	9:08		23.9	1	9:08		23.9	1
14:11 23.7 1		14:	:11	23.7	1	14:	11	23.7	1	
e 1					1				1	
e Grade 2	 Intermediate 	Grade 3 – Di	spersive	e Gra	ade 4 – Highly	Dispersive				
	OS B-1				OS B-1					
	U-3			U-3			U-3			
	<u>8.5 – 10</u>	·	<u> </u>	8.5 – 10			8.5 – 10			
Lt Br S	SM		Lt	Br SN	3r SM, layers ML & SP- SM			Lt Br SM, layers ML & SP- SM		
Х	•	•	X		•	•	х		,	•
v	<u></u>		v			`				
	10	<u> </u>			6		ļ		9	<u> </u>
Time (hh:mm:ss)	Temp.	Grade (1-4)			Temp. (C)	Grade (1-4)		- 1	Temp. (C)	Grade (1-4)
8:09	24.0				24.0	-			24.0	-
8:11	24.0	2	8:	11	24.0	2	8:1	11	24.0	3
9:08	23.9	2	9:0	08	23.9	2	9:0	08	23.9	3
14:11	23.7	2	14:	:11	23.7	2	14:	11	23.7	3
5 hours ± 45 min					2 3					
	Time (h:mm:ss) 8:09 8:11 9:08 14:11 Lt Br S X X Time (h:mm:ss) 8:09 8:11 9:08 14:11	X Distille Type 8 Time	Type IV 8 Time	Name	Name	Name	Name	Name	Name	Name

Project North Fork Elkhorn River Watershed WFPO							Location Pierce & Osmond, NE						
Job # 24350	.01					Teste	Tested by BB/BG Date			8/21/24			
Boring #			OS B-2				OS B-2			OS B-2			
Sample #		•••	U-2			U-2			U-2				
Depth	3.5 – 5					3.5 – 5				3.5 – 5	· ·		
Sample Description	Fill,	Fill, Dk gray CL, minor sand Fill,				Dk gı	ray CL, mi	nor sand	Fill, Dk gray CL, minor sand				
	x A (Natural) x				A (Natur	al)	x A (Natural)						
Method		B (Remolded)				B (Remole	ded)			B (Remole	ded)		
	х		Distille	d	×		Distille	d	х		Distille	d	
Water Type			Type I\	/			Type I\	/			Type I	V	
Container #			6				9	,			10		
	1	me ım:ss)	Temp. (C)	Grade (1-4)	Tir (hh:m	ne m:ss)	Temp. (C)	Grade (1-4)	Tim (hh:mm	1	Temp. (C)	Grade (1-4)	
Start		57	23.6	-		57	23.6	-	7:5		23.6	-	
2 min ± 15 s	7:	59	23.6	1	7:	59	23.6	1	7:5	9	23.6	1	
1 hour ± 8 min	8:	57	23.8	1	8:	57	23.8	1	8:57		23.8	1	
6 hours ± 45 min	14	:02	2 23.6 1		14	:02	23.6	1	14:0)2	23.6	1	
Dispersive Classification*:							1				1		
*Grade 1 – Nondispers	ive Gr	ade 2 –	Intermediate	Grade 3 – D	ispersiv	e Gra	de 4 – Highly	Dispersive					
Boring #													
Sample #													
Depth													
Sample Description													
N.AAl1	T _E		A (Natui	ral)			A (Natui	ral)			A (Natu	ral)	
Method			B (Remol				B (Remol	<u> </u>			B (Remol		
Water Type			Distille			 	Distille				Distille		
			Type I	V	<u> </u>		Type I	<u> </u>			Type I	<u>V</u>	
Container#													
		me nm:ss)	Temp. (C)	Grade (1-4)	1	me nm:ss)	Temp. (C)	Grade (1-4)	Tin (hh:ma		Temp. (C)	Grade (1-4)	
Start													
2 min ± 15 s													
1 hour ± 8 min													
6 hours ± 45 min					<u> </u>								
Dispersive Classification*:													
*Grade 1 – Nondispers	ive G	rade 2 -	- Intermediate	Grade 3 – D	ispersiv	re Gra	ade 4 – Highly	Dispersive	-				

RAEANNI CID SER

NE Firm# CA-0080E

WETLAND DELINEATION REPORT

LENRD North Fork Elkhorn River WFPO - Pierce

JEO PROJECT NUMBER: 201302.00

Table of Contents

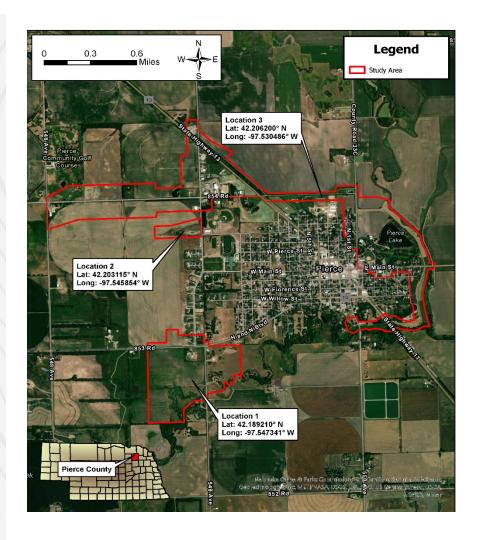
INTRODUCTION	1
Location	1
Background	1
WETLAND DELINEATION	2
Desktop Review	2
Farmed Wetland Analysis	4
Delineation Methods	5
WETLAND DELINEATION RESULTS	7
REFERENCES	20
Appendix A: Figures	А
Appendix B: Site Photographs	В
Appendix C: USACE Wetland Determination Data Forms	С
Appendix D: Farmed Wetland Analysis	D
LIST OF TABLES	
Table 1: Delineated Wetlands	7
Table 2: Other Water Resources	11
LIST OF FIGURES	
Figure 1: Location Map	A
Figure 2: Topographic Map	
Figure 3: NWI Map	A
Figure 4a-4d: Soils Map	A
Figure 5: NHD Map	A
Figure 6a-6r: Delineated Wetlands/WOTUS	A

INTRODUCTION

Location

The study area is split into three locations surrounding Pierce, Pierce County, Nebraska (see Appendix A, Figure 1).

Location 1:


Located in Sections 27, 28, 33, and 34, Township 26 North, Range 2 West and the approximate coordinates are 42.189210° N latitude and -97.547341° W longitude.

Location 2:

Located in Section 28, Township 26 North, Range 2 West and the approximate coordinates are 42.203115° N latitude and -97.545854° W longitude.

Location 3:

Located in Sections 21, 22, 23, 26, 27, and 28, Township 26 North, Range 2 West and the approximate coordinates are 42.206200° N latitude and -97.530486° W longitude.

Background

JEO Consulting Group, Inc. (JEO) was retained by the Lower Elkhorn Natural Resource District (LENRD) to conduct a wetland delineation and prepare a wetland report for North Fork Elkhorn River WFPO in Pierce County, Nebraska (study area). This document summarizes the findings of the wetland delineation completed on July 9, July 10, and July 11, 2024, in accordance with the 1987 U.S. Army Corps of Engineers (USACE) Wetlands Delineation Manual (1987 Manual) and the Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Midwest Region (Version 2.0) (Midwest Regional Supplement).

WETLAND DELINEATION

Desktop Review

Prior to the field delineation, a desktop review was conducted using U.S. Geological Survey (USGS) topographic maps, U.S. Fish and Wildlife Service (USFWS) National Wetlands Inventory (NWI), Natural Resources Conservation Service (NRCS) Web Soil Survey, Federal Emergency Management Agency (FEMA) Digital Flood Insurance Rate Maps (DFIRM), USGS National Hydrography Dataset (NHD), as well as current and historic aerial imagery provided through Google Earth to identify potential Waters of the U.S. (WOTUS), including wetlands, and areas historically prone to wetland development. The following is a summary of the desktop review.

USGS 7.5-MINUTE SERIES TOPOGRAPHIC MAP

Topographic maps obtained from the USGS depict an unnamed pond, Willow Creek, an unnamed intermittent stream, Pierce Lake, and the North Fork Elkhorn River. The general topographic gradient through the study areas is southeast (see Appendix A, Figure 2). Elevations in the study area are approximately 1,570 feet to 1,630 feet above mean sea level.

USFWS NWI

The NWI map depictions are as follows (see Appendix A, Figure 3).

The study area exhibited:

- 12 Palustrine, emergent, persistent, temporarily flooded wetland (PEM1A)
- 2 Palustrine, emergent, persistent, temporarily flooded, excavated wetland (PEM1Ax)
- 7 Palustrine, emergent, persistent, seasonally flooded wetland (PEM1C)
- 5 Palustrine, emergent, persistent, seasonally flooded, excavated wetland (PEM1Cx)
- 2 Palustrine, forested, temporarily flooded wetland (PFOA)
- 1 Palustrine, unconsolidated bottom, semipermanently flooded wetland (PUBF)
- 2 Palustrine, unconsolidated bottom, semipermanently flooded, excavated wetland (PUBFx)
- 1 Riverine, lower perennial, unconsolidated bottom, intermittently exposed, excavated stream (R2UBGx)
- 1 Riverine, lower perennial, unconsolidated bottom, permanently flooded stream (R2UBH)
- 2 Riverine, intermittent, streambed, seasonally flooded stream (R4SBC)
- 1 Riverine, intermittent, streambed, seasonally flooded, excavated stream (R4SBCx)

 1 – Riverine, unknown perennial, unconsolidated bottom, permanently flooded stream (R5UBH)

No other aquatic resources are mapped within the study area.

NRCS WEB SOIL SURVEY

The Web Soil Survey maps 17 soil units within the study area which include:

- 2354 Inavale loamy fine sand, 0 to 3 percent slopes, frequently flooded
- 3553 Hobbs silt loam, 0 to 2 percent slopes, frequently flooded, cool
- 3556 Muir silt loam, calcareous, rarely flooded
- 4241 Ord fine sandy loam, occasionally flooded
- 4244 Ord loam, occasionally flooded
- 4553 Elsmere loamy fine sand, 0 to 2 percent slopes, rarely flooded
- 4686 Marlake loam, frequently ponded
- 4796 Valentine fine sand, rolling, moist
- 6352 Leshara silt loam, occasionally flooded
- 6369 Orwet loam, rarely flooded
- 6570 Thurman loamy fine sand, terrace, 0 to 2 percent slopes
- 6584 Ortello fine sandy loam, terrace, 0 to 2 percent slopes
- 6646 Boelus-Loretto complex, 0 to 2 percent slopes
- 6700 Thurman loamy fine sand, 0 to 2 percent slopes
- 6703 Thurman loamy fine sand, 2 to 6 percent slopes
- 6715 Thurman-Valentine complex, undulating
- 8540 Ovina fine sandy loam, rarely flooded

All mapped soil units are included in the Nebraska Hydric Soils list and are therefore considered to be hydric (see *Appendix A, Figure 4a-4d*).

Additional Mapped Units:

- 9967 Sanitary landfill
- 9999 Water

FEMA DFIRM

The FEMA DFIRM shows the study area on Panel 3104660150B, effective date 6/4/1987, Panel 3104660100B, effective date 6/4/1987, and Panel 310174B, effective date 9/4/1985. The areas surrounding the North Fork Elkhorn River and Willow creek are depicted as Zone A (shaded), which are areas within the 100-year floodplain. All other areas are depicted as Zone C (unshaded), which are areas of minimal flooding.

USGS NHD

The online NHD mapping tool shows the study area within hydrologic unit code (HUC) 102200020305, within the Lower Willow Creek watershed; HUC 102200020504, within the City of Pierce-North Fork Elkhorn River watershed; and HUC 102200020604, within the Pleasant View School-North Fork Elkhorn River watershed. The NHD map depicts an unnamed pond, Willow Creek, an unnamed intermittent stream, Pierce Lake, and the North Fork Elkhorn River. No other aquatic resources are within the study area (see Appendix A, Figure 5).

AERIAL IMAGERY

A review of both recent and historic aerial imagery (1993 – 2020) in Google Earth depicts the study areas surrounding Pierce, NE with a mix of residential housing, commercial properties, pastures, and row-crop fields. Continuous development was observed at each of the three locations during the years reviewed.

Farmed Wetland Analysis

In accordance with guidance contained in the Midwest Regional Supplement and NRCS National Engineering Handbook, Part 650, Chapter 19, available data from the NRCS Geospatial Data Gateway for Pierce County, Nebraska were utilized to complete a farmed wetland analysis.

A desktop review of five years of color aerial imagery taken during the growing season obtained from the National Agricultural Imagery Program (NAIP), was completed to determine whether wetland hydrology is present within the agricultural fields in the study area. The selected years of imagery reviewed and analyzed for potential wetlands based on hydrologic indicators includes 2010, 2014, 2016, 2018, and 2022 (see Appendix D, Figures 1-5). Precipitation data from the nearest NRCS WETS stations to the study area were analyzed for the three months prior to the date each aerial image was taken. The precipitation data was then given a weighted value to determine wet, dry, or normal conditions (see Appendix D, Antecedent Precipitation Worksheets).

The hydrology analysis process then requires using at least five years of aerial imagery from normal precipitation years to estimate the boundaries of potential wetlands. In accordance with NRCS National Engineering Handbook, Part 650, Chapter 19, one wet year (2010), one dry year (2022), and three normal years (2014, 2016, 2018) were available to be reviewed and analyzed. The specific wetland signatures analyzed during the farmed wetland analysis included:

- Standing water
- Flooded or drowned-out crops
- Crop stress
- Dry areas
- Inclusions of wet areas as "set-aside"

Areas displaying saturated soil signatures that overlapped in at least three years (>50%) of the selected five years of NAIP imagery were identified as potential wetlands and geospatially referenced using GIS (see Appendix D, Figure 6). A site visit was conducted on July 9, July 10, and July 11, 2024, to determine the presence or absence of hydric soils within the identified potential wetlands. Wetland boundaries were updated based on hydric soils and topography. Final wetland boundaries are available in Appendix A, Figure 6a-6r.

Several areas identified in the farmed wetland analysis had hydric soils and were determined to be a wetland. No other potential wetland areas were identified during the farmed wetland analysis.

Delineation Methods

JEO conducted a wetland delineation on July 9, July 10, and July 11, 2024, in accordance with the methods described in the 1987 Manual and the Midwest Regional Supplement using a routine wetland determination method, including the standard multi-parameter approach (vegetation, soils, and hydrology) for wetland identification. An area is considered to be a wetland if hydrophytic vegetation, hydric soils, and wetland hydrology are all present. Sample locations were determined using NWI maps and visual observations that supported a hydrophytic plant community, where applicable, as well as characteristics of hydric soils and wetland hydrology. Definitions and methods for determining each of these three parameters are summarized below:

HYDROPHYTIC VEGETATION

Definition	The prevalence (>50%) of dominant plant species that are adapted to life in saturated soil conditions.
Method	To determine if vegetation was hydrophytic, the scientific name and indicator status of dominant plant species at each wetland were recorded on USACE data sheets. Dominance refers to the spatial extent of a species that is directly observed in the field. The most abundant plant species that individually or collectively account for more than 50 percent of the total coverage of each vegetation stratum and any other individual species comprising 20 percent or more of the total are considered to be dominant species for that stratum. Where 50 percent or more of all dominant species were hydrophytic, the hydrophytic vegetation parameter was met. Absolute percent cover of dominant species within each stratum is listed on data sheets.

HYDRIC SOILS

Definition	Soils that are saturated, flooded, or ponded long enough during the growing season to develop anaerobic conditions in the upper 12 inches.
Method	Soils from each sample location were characterized using Munsell Soil Color Charts and soil texturing. Soil samples were also compared to the NRCS Web Soil Survey and Nebraska Hydric Soils List. If one or more of the hydric soil indicators on the USACE data sheet were identified, the soil was considered to be hydric.

WETLAND HYDROLOGY

Definition	Fourteen or more consecutive days of flooding, ponding, or water table within 12 inches of the surface during the growing season at a minimum frequency of 5 out of 10 years (50%).
Method	Wetland hydrology was determined by observing the presence of primary and/or secondary indicators listed on the USACE data sheet. If one primary indicator or two secondary indicators were present, the wetland hydrology parameter was met.

Field maps were developed using aerial photography combined with information from the NRCS Web Soil Survey, USFWS NWI, and USGS topographic map. Field-delineated wetland boundaries were determined based on the USACE wetland delineation process by completing paired sample points, where possible, and investigating vegetation, soil, and hydrology parameters. Vegetation was identified to the species level and referenced to the State of Nebraska 2022 Wetland Plant List. Soil and hydrology characteristics were evaluated by using a sharpshooter/tile spade to examine the soil profile. Wetland boundaries were then recorded using Field Maps for ArcGIS in conjunction with a Trimble Catalyst DA2 unit to provide submeter accuracy. Portions of some wetlands may extend beyond the study area; however, only wetland boundaries within the study area were delineated. Site photographs are included in Appendix B and the Midwest Region Wetland Determination Data Forms are included in Appendix C.

WETLAND DELINEATION RESULTS

Data was collected at 97 locations within the study area to document existing conditions. Seventeen WOTUS were present and 76 areas meeting all three criteria for wetland classification were identified during the site visit, as detailed below in Table 1 and Table 2, and overlain on aerial imagery in Appendix A, Figure 6a-6r. Areas highlighted orange on Figures 6a-6r are areas where a wetland delineation was not completed due to lack of property access. No other special aquatic sites (e.g., sanctuaries and refuges, riffle and pool complexes) were identified within the study area.

Table 1: Delineated Wetlands

Sample ID	Wetland ID	Figure	Wetland Classification (Cowardin¹ Nebraska Subclass)	Area (acres)
1	Wetland A	6a, 6b	PEMA/C Riverine Channel	0.006
2, 4	Wetland B	6a, 6b	PEMA/C Riverine Channel	0.027
-	Wetland C	6a, 6b	PEMA/C Riverine Channel	0.032
5	Wetland D	6a, 6b, 6c	PEMA/C Riverine Channel	0.146
6	Wetland E	6a, 6c	PEMA/C Riverine Channel	0.020
-	Wetland F	6a, 6c	PEMA/C Riverine Channel	0.008
8	Wetland G	6a, 6c	PEMA/C Lacustrine Fringe	0.107
-	Wetland H	6a, 6c	PEMA/C Riverine Channel	0.006
11, 13	Wetland I	6a, 6c, 6d, 6e	PEMA/C Riverine Channel	0.286
16	Wetland J	6a, 6e	PEMA/C Riverine Channel	0.016
18	Wetland K	6a, 6e	PEMA/C Riverine Channel	0.006
19	Wetland L	6a, 6e	PEMA/C Riverine Channel	0.015
21	Wetland M	6a, 6e	PEMA/C Riverine Channel	0.017
22	Wetland N	6a, 6e	PEMA/C Riverine Channel	0.002
25	Wetland O	6a, 6g	PEMA/C Riverine Channel	0.099

-	Wetland P	6a, 6g	PEMA/C Riverine Channel	0.178
27, 28, 30	Wetland Q	6a, 6g	PEMA/C Floodplain Depression	14.848
-	Wetland R	6a, 6g, 6h	PEMA/C Riverine Channel	0.114
31	Wetland S	6a, 6h	PEMA/C Riverine Channel	2.201
32	Wetland T	6a, 6h	PEMA/C Riverine Channel	0.012
33	Wetland U	6a, 6h, 6i	PEMA/C Riverine Channel	0.200
35	Wetland V	6a, 6i, 6j	PEMA/C Riverine Channel	0.272
38	Wetland W	6a, 6i	PEMA/C Riverine Channel	0.074
-	Wetland X	6a, 6i	PEMA/C Riverine Channel	0.150
-	Wetland Y	6a, 6i	PEMA/C Riverine Channel	0.017
-	Wetland Z	6a, 6i	PEMA/C Riverine Channel	0.021
-	Wetland AA	6a, 6i	PEMA/C Riverine Channel	0.047
40	Wetland BB	6a, 6i	PEMA/C Riverine Channel	0.028
-	Wetland CC	6a, 6i	PEMA/C Riverine Channel	0.013
41	Wetland DD	6a, 6i, 6j, 6k, 6l	PEMA/C Riverine Channel	2.193
-	Wetland EE	6a, 6i	PEMA/C Riverine Channel	0.544
42	Wetland FF	6a, 6i	PEMA/C Floodplain Depression	0.982
-	Wetland GG	6a, 6i, 6j, 6k, 6l	PEMA/C Riverine Channel	0.663
45	Wetland HH	6a, 6h, 6j	PEMA/C Riverine Channel	5.005
47, 49	Wetland II	6a, 6j	PEMA/C Riverine Channel	0.404
-	Wetland JJ	6a, 6j	PEMA/C Riverine Channel	0.003
51	Wetland KK	6a, 6j	PEMA/C Riverine Channel	0.027

53	Wetland LL	6a, 6k	PEMA/C Floodplain Depression	0.098
-	Wetland MM	6a, 6k	PEMA/C N/A	0.039
55	Wetland NN	6a, 6k	PEMA/C N/A	0.039
-	Wetland OO	6a, 6k	PEMA/C N/A	0.035
-	Wetland PP	6a, 6l	PEMA/C Riverine Channel	0.022
56	Wetland QQ	6a, 6l	PEMA/C Riverine Channel	0.014
57, 60	Wetland RR	6a, 6l, 6m	PEMA/C Riverine Channel	0.232
-	Wetland SS	6a, 6m	PEMA/C Riverine Channel	0.006
-	Wetland TT	6a, 6m	PEMA/C Riverine Channel	0.064
62	Wetland UU	6a, 6m, 6n	PEMA/C Riverine Channel	0.528
-	Wetland VV	6a, 6m, 6n	PUBA/C Riverine Channel	0.007
-	Wetland WW	6a, 6m, 6n	PUBA/C Riverine Channel	0.017
63	Wetland XX	6a, 6n, 6o	PEMA/C Riverine Channel	1.805
-	Wetland YY	6a, 6n	PUBA/C Riverine Channel	0.104
-	Wetland ZZ	6a, 6m, 6n	PEMA/C Lacustrine Fringe	0.012
-	Wetland AAA	6a, 6n	PEMA/C Riverine Channel	0.050
65	Wetland BBB	6a, 6n, 6o	PFOA/C Riverine Channel	1.862
-	Wetland CCC	6a, 6n, 6o	PEMA/C Riverine Channel	0.533
66	Wetland DDD	6a, 6m, 6n, 6o	PEMA/C Lacustrine Fringe	0.162
69	Wetland EEE	6a, 6o	PEMA/C Riverine Channel	0.012
-	Wetland FFF	6a, 6o	PEMA/C Riverine Channel	0.012
-	Wetland GGG	6a, 6p, 6q	PEMA/C Riverine Channel	0.039

72	Wetland HHH	6a, 6p, 6q	PEMA/C Riverine Channel	0.044
73	Wetland III	6a, 6p, 6q	PEMA/C Riverine Channel	0.006
-	Wetland JJJ	6a, 6p, 6q	PEMA/C Riverine Channel	0.010
76	Wetland KKK	6a, 6p, 6q	PEMA/C Riverine Channel	0.010
81	Wetland LLL	6a, 6q	PEMA/C Floodplain Depression	0.119
83	Wetland MMM	6a, 6q	PEMA/C Floodplain Depression	0.124
-	Wetland NNN	6a, 6q	PEMA/C Riverine Channel	0.029
84	Wetland OOO	6a, 6q	PEMA/C Riverine Channel	0.022
86	Wetland PPP	6a, 6q	PEMA/C Riverine Channel	0.201
-	Wetland QQQ	6a, 6q	PEMA/C Riverine Channel	0.022
87	Wetland RRR	6a, 6q, 6r	PEMA/C Riverine Channel	0.043
89	Wetland SSS	6a, 6q, 6r	PEMA/C Lacustrine Fringe	1.165
91	Wetland TTT	6a, 6q, 6r	PEMA/C Riverine Channel	0.427
92	Wetland UUU	6a, 6r	PEMA/C Riverine Channel	0.064
-	Wetland VVV	6a, 6r	PEMA/C Riverine Channel	0.021
94	Wetland WWW	6a, 6r	PEMA/C Riverine Channel	0.198
96	Wetland XXX	6a, 6r	PEMA/C Floodplain Depression	0.218
				DEM - 25 244

TOTAL

PEM = 35.214 PFO = 1.862

PUB = 0.128

Notes: ¹ PEMA = Palustrine, Emergent, Temporarily Flooded; PEMC = Palustrine, Emergent, Seasonally Flooded

PFOA = Palustrine, Forested, Temporarily Flooded; PFOC = Palustrine, Forested, Seasonally Flooded

PUBA = Palustrine, Unconsolidated Bottom; Temporarily Flooded; PUBC = Palustrine, Unconsolidated Bottom, Seasonally Flooded

Table 2: Other Water Resources

Photo ID	Figure	Name	Type ¹
2-8	6a, 6b, 6c	Unnamed Stream 1	Ephemeral
10, 11	6a, 6c	Unnamed Pond 1	Pond
12	6a, 6c	Unnamed Stream 2	Ephemeral
14, 16-18	6a, 6c, 6d, 6e	Unnamed Stream 3	Ephemeral
19, 21, 23, 24, 26- 28, 189-191, 193, 194, 205, 207-209, 211, 213	6a, 6e, 6q, 6r	Willow Creek	Perennial
76, 78, 81	6a, 6i	Unnamed Stream 4	Ephemeral
83	6a, 6i	Unnamed Stream 5	Ephemeral
74, 75, 84, 89, 91, 92, 116, 127, 129, 131-133, 135-139	6a, 6i, 6j, 6k, 6l	Unnamed Stream 6	Canal
100-102, 107, 109- 114	6a, 6j	Unnamed Stream 7	Ephemeral
140, 170-172, 175, 176, 184-186, 188	6a, 6l, 6m, 6o, 6p, 6q	North Fork Elkhorn River	Perennial
143, 149, 165, 167, 173	6a, 6m, 6n, 6o	Unnamed Stream 8	Intermittent
150-152, 168, 169	6a, 6m, 6n, 6o	Pierce Lake	Pond
179-183	6a, 6p, 6q	Unnamed Stream 9	Ephemeral
197, 198	6a, 6q, 6r	Unnamed Stream 10	Ephemeral
199-201	6a, 6q, 6r	Unnamed Stream 11	Ephemeral
202, 203	6a, 6q, 6r	Unnamed Pond 2	Pond
206	6a, 6q, 6r	Unnamed Pond 3	Pond

Notes: ¹ Other Water Resources are non-wetland resources such as channels, ponds, and canals.

The following provides a brief narrative for each of the identified aquatic resources:

- **Wetland A** PEMA/C wetland located north of 853rd Road within the roadside ditch. Dominant vegetation within the wetland consisted of sandbar willow (*Salix interior*) and reed canarygrass (*Phalaris arundinacea*). See Appendix B, Photo 1, and Appendix C, Datasheet 1.
- **Wetland B** PEMA/C wetland located on the north bank of Unnamed Stream 1 on the north side of 853rd Road. Dominant vegetation within the wetland consisted of reed canarygrass. See Appendix B, Photos 2-4, and Appendix C, Datasheets 2 and 4.
- **Wetland C** PEMA/C wetland located on the south bank of Unnamed Stream 1 on the north side of 853rd Road. Dominant vegetation within the wetland consisted of reed canarygrass. See Appendix B, Photos 2 and 4.
- **Wetland D** PEMA/C wetland located north of 853rd Road along the banks and below the OHWM of Unnamed Stream 1. Dominant vegetation within the wetland consisted of reed canarygrass. See Appendix B, Photos 5 and 6, and Appendix C, Datasheet 5.
- **Wetland E –** PEMA/C wetland located north of 853rd Road on the north bank of Unnamed Stream 1. Dominant vegetation within the wetland consisted of reed canarygrass. See Appendix B, Photos 7 and 8, and Appendix C, Datasheet 6.
- **Wetland F** PEMA/C wetland located north of 853rd Road on the south bank of Unnamed Stream 1. Dominant vegetation within the wetland consisted of reed canarygrass. *See Appendix B, Photos 7 and 8.*
- Wetland G PEMA/C wetland located north of 853rd Road along the banks of Unnamed Pond 1. Dominant vegetation within the wetland consisted of reed canarygrass and broadleaf cattail (*Typha latifolia*). See Appendix B, Photos 10 and 11, and Appendix C, Datasheet 8.
- Wetland H PEMA/C wetland located south of 853rd Road within the roadside ditch. Dominant vegetation within the wetland consisted of reed canarygrass. See Appendix B, Photo 13.
- **Wetland I –** PEMA/C wetland located along the banks of Unnamed Stream 3 on the south side of 853rd Road and the west side of 549th Avenue. Dominant vegetation within the wetland consisted of reed canarygrass and stinging nettle (*Urtica dioica*). See Appendix B, Photos 14, 16-18, and Appendix C, Datasheets 11 and 13.
- **Wetland J** PEMA/C wetland located on the northwest bank of Willow Creek. Dominant vegetation within the wetland consisted of prairie cordgrass (*Spartina pectinata*), eastern woodland sedge (*Carex blanda*), and smooth brome (*Bromus inermis*). See Appendix B, Photo 21, and Appendix C, Datasheet 16.
- **Wetland K** PEMA/C wetland located on the northwest bank of Willow Creek. Dominant vegetation within the wetland consisted of prairie cordgrass and eastern woodland sedge. See Appendix B, Photo 23, and Appendix C, Datasheet 18.
- **Wetland L –** PEMA/C wetland located on the north bank of Willow Creek. Dominant vegetation within the wetland consisted of dark-green bulrush (*Scirpus atrovirens*) and prairie cordgrass. See Appendix B, Photo 24, and Appendix C, Datasheet 19.

- Wetland M PEMA/C wetland located on the west bank of Willow Creek. Dominant vegetation within the wetland consisted of dark-green bulrush. See Appendix B, Photo 26, and Appendix C, Datasheet 21.
- **Wetland N –** PEMA/C wetland located on the northwest bank of Willow Creek. Dominant vegetation within the wetland consisted of prairie cordgrass and dark-green bulrush. See Appendix B, Photo 27, and Appendix C, Datasheet 22.
- **Wetland O** PEMA/C wetland located south of 854th Road within the roadside ditch. Dominant vegetation within the wetland consisted of perennial rye grass (*Lolium perenne*), troublesome sedge (*Carex molesta*), and prairie cordgrass. *See Appendix B, Photos 41 and 42. and Appendix C. Datasheet 25.*
- **Wetland P** PEMA/C wetland located south of 854th Road within the roadside ditch. Dominant vegetation within the wetland consisted of perennial rye grass, troublesome sedge, and prairie cordgrass. *See Appendix B, Photos 43 and 55.*
- **Wetland Q** PEMA/C wetland located within a row-crop field on the north side of 854th Road. Dominant vegetation within the wetland consisted of soybeans (*Glycine max*). See Appendix B, Photos 45-53, and Appendix C, Datasheets 27, 28, and 30.
- **Wetland R –** PEMA/C wetland located south of 854th Road within the roadside ditch. Dominant vegetation within the wetland consisted of perennial rye grass, troublesome sedge, and prairie cordgrass. *See Appendix B, Photos 56 and 57.*
- Wetland S PEMA/C wetland located south of 854th Road within the roadside ditch. Dominant vegetation within the wetland consisted of narrow-leaf cattail (*Typha angustifolia*) and reed canarygrass. See Appendix B, Photos 58 and 59, and Appendix C, Datasheet 31.
- **Wetland T** PEMA/C wetland located south of 854th Road within the roadside ditch. Dominant vegetation within the wetland consisted of reed canarygrass. *See Appendix B, Photo 62, and Appendix C, Datasheet 32.*
- **Wetland U –** PEMA/C wetland located west of 549th Avenue within the roadside ditch. Dominant vegetation within the wetland consisted of prairie cordgrass and narrow-leaf cattail. See Appendix B, Photo 69, and Appendix C, Datasheet 33.
- Wetland V PEMA/C wetland located southwest of Highway 13 within the roadside ditch. Dominant vegetation within the wetland consisted of reed canarygrass. See Appendix B, Photos 70 and 71, and Appendix C, Datasheet 35.
- Wetland W PEMA/C wetland located northeast of Highway 13 along the bank of Unnamed Stream 6. Dominant vegetation within the wetland consisted of reed canarygrass. See Appendix B, Photos 74 and 75, and Appendix C, Datasheet 38.
- Wetland X PEMA/C wetland located northeast of Highway 13 along the bank of Unnamed Stream 6. Dominant vegetation within the wetland consisted of reed canarygrass. See Appendix B, Photos 74 and 75.
- **Wetland Y –** PEMA/C wetland located west of 549th Avenue on the east bank of Unnamed Stream 4. Dominant vegetation within the wetland consisted of reed canarygrass. See Appendix B, Photo 76.

- **Wetland Z –** PEMA/C wetland located west of 549th Avenue on the west bank of Unnamed Stream 4. Dominant vegetation within the wetland consisted of reed canarygrass. *See Appendix B, Photo 76.*
- Wetland AA PEMA/C wetland located west of 549th Avenue within the roadside ditch. Dominant vegetation within the wetland consisted of reed canarygrass. See Appendix B, Photo 77.
- Wetland BB PEMA/C wetland located west of 549th Avenue on the west bank of Unnamed Stream 4. Dominant vegetation within the wetland consisted of smooth brome, perennial rye grass, reed canarygrass, and prairie cordgrass. See Appendix B, Photos 78 and 81, and Appendix C, Datasheet 40.
- **Wetland CC** PEMA/C wetland located west of 549th Avenue on the east bank of Unnamed Stream 4. Dominant vegetation within the wetland consisted of smooth brome, perennial rye grass, reed canarygrass, and prairie cordgrass. *See Appendix B, Photos 78 and 81.*
- Wetland DD PEMA/C wetland located on the north bank of Unnamed Stream 6, extending from 549th Avenue to County Road 33C. Dominant vegetation within the wetland consisted of eastern cottonwood (*Populus deltoides*), sandbar willow, reed canarygrass, and pinkweed (*Persicaria pensylvanica*). See Appendix B, Photos 82-84, 89, 92, 116, 127, and 129, and Appendix C, Datasheet 41.
- Wetland EE PEMA/C wetland located on the southwest bank of Unnamed Stream 6. Dominant vegetation within the wetland consisted of eastern cottonwood, sandbar willow, reed canarygrass, and pinkweed. See Appendix B, Photos 85 and 91.
- **Wetland FF** PEMA/C wetland located east of 549th Avenue within a row-crop field. Dominant vegetation within the wetland consisted of corn (*Zea mays*). *See Appendix B, Photos 86 and 87, and Appendix C, Datasheet 42.*
- **Wetland GG** PEMA/C wetland located on the south bank of Unnamed Stream 6. Dominant vegetation within the wetland consisted of eastern cottonwood, sandbar willow, reed canarygrass, and pinkweed. *See Appendix B, Photos 89, 91, 92, 116, 127, and 129.*
- Wetland HH PEMA/C wetland located southwest of Highway 33 along the bank of Unnamed Stream 7. Dominant vegetation within the wetland consisted of prairie cordgrass and perennial ryegrass. See Appendix B, Photos 93-95, 98-102, and 107, and Appendix C, Datasheet 45.
- **Wetland II** PEMA/C wetland located along the bank of Unnamed Stream 7. Dominant vegetation within the wetland consisted of reed canarygrass, large barnyard grass (*Echinochloa crus-galli*), and tall false rye grass (*Schedonorus arundinaceus*). See Appendix B, Photos 100-102, and 107, and Appendix C, Datasheets 47 and 49.
- **Wetland JJ –** PEMA/C wetland located along the bank of Unnamed Stream 7. Dominant vegetation within the wetland consisted of eastern cottonwood, American elm (*Ulmus americana*), reed canarygrass, and smooth brome. *See Appendix B, Photo 110.*
- Wetland KK PEMA/C wetland located along the bank of Unnamed Stream 7. Dominant vegetation within the wetland consisted of eastern cottonwood, American elm, reed

- canarygrass, and smooth brome. See Appendix B, Photos 111-114, and Appendix C, Datasheet 51.
- Wetland LL PEMA/C wetland located in a swale east of Highway 13. Dominant vegetation within the wetland consisted of prairie cordgrass, foxtail barley (Hordeum jubatum), reed canarygrass, and red clover (Trifolium pratense). See Appendix B, Photos 119 and 123, and Appendix C, Datasheet 53.
- Wetland MM PEMA/C wetland located east of Highway 13 within an old sand volleyball pit. Dominant vegetation within the wetland consisted of common spike-rush (Eleocharis palustris) and narrow-leaf cattail. See Appendix B, Photo 120.
- Wetland NN PEMA/C wetland located east of Highway 13 within an old sand volleyball pit. Dominant vegetation within the wetland consisted of common spike-rush and narrow-leaf cattail. See Appendix B, Photo 121, and Appendix C, Datasheet 55.
- Wetland OO PEMA/C wetland located east of Highway 13 within an old sand volleyball pit. Dominant vegetation within the wetland consisted of common spike-rush and narrow-leaf cattail. See Appendix B, Photo 122.
- Wetland PP PEMA/C wetland located east of County Road 33C on the east bank of Unnamed Stream 6. Dominant vegetation within the wetland consisted of reed canarygrass and smooth brome. See Appendix B, Photos 131 and 132.
- **Wetland QQ –** PEMA/C wetland located east of County Road 33C on the west bank of Unnamed Stream 6. Dominant vegetation within the wetland consisted of reed canarygrass and smooth brome. See Appendix B, Photo 131, and Appendix C, Datasheet 56.
- Wetland RR PEMA/C wetland located along the banks and below the OHWM of Unnamed Stream 6 extending from County Road 33C to the North Fork Elkhorn River. Dominant vegetation within the wetland consisted of reed canarygrass and silver maple (Acer saccharinum). See Appendix B, Photo 133, 135-140, and Appendix C, Datasheets 57 and 60.
- Wetland SS PEMA/C wetland located west of N Mill Street within the roadside ditch. See Appendix B, Photo 142.
- Wetland TT PEMA/C wetland located within a drainageway west of N Mill Street. See Appendix B, Photos 143 and 145.
- Wetland UU PEMA/C wetland located within a drainageway east of N Mill Street. Dominant vegetation within the wetland consisted of reed canarygrass and duck-potato (Sagittaria latifolia). See Appendix B, Photos 146 and 148, and Appendix C, Datasheet 62.
- Wetland VV PUBA/C wetland located within a drainageway east of N Mill Street. See Appendix B, Photo 146.
- Wetland WW PUBA/C wetland located within a drainageway east of N Mill Street. See Appendix B. Photo 148.
- Wetland XX- PEMA/C wetland located within a drainageway east of N Mill Street. Dominant vegetation within the wetland consisted of reed canarygrass and duck-potato. See Appendix B, Photos 149, 153-156, and 163, and Appendix C, Datasheet 63.

- Wetland YY PUBA/C wetland located within a drainageway east of N Mill Street. See Appendix B, Photo 153.
- **Wetland ZZ** PEMA/C wetland located on the southwest bank of Pierce Lake. Dominant vegetation within the wetland consisted of three-square (*Schoenoplectus pungens*), swamp milkweed (*Asclepias incarnata*), and annual ragweed (*Ambrosia artemisiifolia*). See Appendix B, Photo 151.
- Wetland AAA PEMA/C wetland located north of E Main Street. See Appendix B, Photo 158
- **Wetland BBB** PFOA/C wetland located north of E Main Street. Dominant vegetation within the wetland consisted of American elm, silver maple, green ash (*Fraxinus pennsylvanica*), hooded blue violet (*Viola sororia*), groundivy (*Glechoma hederacea*), and stinging nettle. See Appendix B, Photos 161 and 162, and Appendix C, Datasheet 65.
- Wetland CCC PEMA/C wetland located in a drainageway north of E Main Street. Dominant vegetation within the wetland consisted of reed canarygrass and duck-potato. See Appendix B, Photos 164 and 166.
- **Wetland DDD** PEMA/C wetland located on the northeast bank of Pierce Lake. Dominant vegetation within the wetland consisted of silver maple, three-square, swamp milkweed, and annual ragweed. See Appendix B, Photos 150 and 169, and Appendix C, Datasheet 66.
- Wetland EEE PEMA/C wetland located on the north bank of Unnamed Stream 8. Dominant vegetation within the wetland consisted of reed canarygrass. See Appendix B, Photos 173 and 174, and Appendix C, Datasheet 69.
- Wetland FFF PEMA/C wetland located on the south bank of Unnamed Stream 8. Dominant vegetation within the wetland consisted of reed canarygrass. See Appendix B, Photo 173.
- **Wetland GGG** PEMA/C wetland located on the bank of Unnamed Stream 9. Dominant vegetation within the wetland consisted of reed canarygrass and curly dock (*Rumex crispus*). See Appendix B, Photos 179-181.
- **Wetland HHH** PEMA/C wetland located on the bank of Unnamed Stream 9. Dominant vegetation within the wetland consisted of reed canarygrass and curly dock. *See Appendix B, Photos 179-181, and Appendix C, Datasheet 72.*
- **Wetland III** PEMA/C wetland located on the bank of Unnamed Stream 9. Dominant vegetation within the wetland consisted of reed canarygrass. *See Appendix B, Photo 181, and Appendix C, Datasheet 73.*
- Wetland JJJ PEMA/C wetland located on the north bank of Unnamed Stream 9. Dominant vegetation within the wetland consisted of reed canarygrass. See Appendix B, Photo 183.
- Wetland KKK PEMA/C wetland located on the south bank of Unnamed Stream 9. Dominant vegetation within the wetland consisted of reed canarygrass. See Appendix B, Photo 183, and Appendix C, Datasheet 76.

- **Wetland LLL** PEMA/C wetland located in a depressional feature east of Highway 13. Dominant vegetation within the wetland consisted of eastern cottonwood, large barnyard grass, red-root amaranth (*Amaranthus retroflexus*), reed canarygrass, and kentucky blue grass (*Poa pratensis*). See Appendix B, Photo 192, and Appendix C, Datasheet 81.
- Wetland MMM PEMA/C wetland located in a depressional feature east of Highway 13. Dominant vegetation within the wetland consisted of reed canarygrass. See Appendix B, Photo 196, and Appendix C, Datasheet 83.
- Wetland NNN PEMA/C wetland located on the northeast bank of Unnamed Stream 10.
 Dominant vegetation within the wetland consisted of reed canarygrass. See Appendix B, Photos 197 and 198.
- **Wetland OOO** PEMA/C wetland located on the southwest bank of Unnamed Stream 10. Dominant vegetation within the wetland consisted of silver maple, American elm, green ash, and reed canarygrass. See Appendix B, Photos 197 and 198, and Appendix C, Datasheet 84.
- Wetland PPP PEMA/C wetland located on the northeast bank of Unnamed Stream 11. Dominant vegetation within the wetland consisted of reed canarygrass. See Appendix B, Photos 199 and 200, and Appendix C, Datasheet 86.
- Wetland QQQ PEMA/C wetland located on the southwest bank of Unnamed Stream 11.
 Dominant vegetation within the wetland consisted of reed canarygrass. See Appendix B, Photo 200.
- Wetland RRR PEMA/C wetland located along the banks of and below the OHWM of Unnamed Stream 11. Dominant vegetation within the wetland consisted of green ash, reed canarygrass, duck-potato, and narrow-leaf cattail. See Appendix B, Photo 201, and Appendix C, Datasheet 87.
- Wetland SSS PEMA/C wetland located west of Highway 13 along the banks of Unnamed Pond 2. Dominant vegetation within the wetland consisted of reed canarygrass and prairie cordgrass. See Appendix B, Photos 202-204, 210, and Appendix C, Datasheet 89.
- **Wetland TTT –** PEMA/C wetland located west of Highway 13. Dominant vegetation within the wetland consisted of silver maple, eastern cottonwood, American elm, and reed canarygrass. See Appendix B, Photos 205 and 206, and Appendix C, Datasheet 91.
- Wetland UUU PEMA/C wetland located along the north bank of Willow Creek. Dominant vegetation within the wetland consisted of reed canarygrass. See Appendix B, Photos 207 and 208, and Appendix C, Datasheet 92.
- Wetland VVV PEMA/C wetland located along the north bank of Willow Creek. Dominant vegetation within the wetland consisted of reed canarygrass. See Appendix B, Photos 209 and 211.
- Wetland WWW PEMA/C wetland located on the north bank of Willow Creek. Dominant vegetation within the wetland consisted of elderberry (Sambucus nigra), reed canarygrass, pinkweed, and stinging nettle. See Appendix B, Photo 212, and Appendix C, Datasheet 94.

- Wetland XXX PEMA/C wetland located west of S 1st Street. Dominant vegetation within the wetland consisted of reed canarygrass. See Appendix B, Photo 214, and Appendix C, Datasheet 96.
- Unnamed Stream 1 Ephemeral stream flowing generally west to east on the north side of 853rd Road. The channel has an average OHWM ranging in width from 1 foot to 6 feet and an average depth from the top of bank to the OHWM ranging from 1 foot to 3 feet. See Appendix B, Photos 2-8.
- Unnamed Pond 1 Pond located northwest of the intersection of 853rd Road and 549th Avenue. See Appendix B. Photos 10 and 11.
- Unnamed Stream 2 Ephemeral stream flowing generally west to east on the south side of 853rd Road. The channel has an average OHWM ranging in width from 1 foot to 3 feet and an average depth from the top of bank to the OHWM ranging from 1 foot to 3 feet. See Appendix B, Photo 12.
- Unnamed Stream 3 Ephemeral stream flowing generally north to south on the west side of 549th Avenue. The channel has an average OHWM ranging in width from 2 feet to 3 feet and an average depth from the top of bank to the OHWM ranging from 1 foot to 3 feet. See Appendix B, Photos 14, 16-18.
- Willow Creek Perennial stream flowing generally southwest to northeast along the south side of the study area. The channel has an average OHWM ranging in width from 15 feet to 30 feet and an average depth from the top of bank to the OHWM ranging from 2 feet to 10 feet. See Appendix B, Photos 19, 21, 23, 24, 26-28, 189-191, 193, 194, 205, 207-209, 211, 213.
- Unnamed Stream 4 Ephemeral stream flowing generally north to south on the west side of 549th Avenue. The channel has an average OHWM ranging in width from 1 foot to 8 feet and an average depth from the top of bank to the OHWM ranging from 1 foot to 3 feet. See Appendix B, Photos 76, 78, 81.
- Unnamed Stream 5 Ephemeral stream flowing generally west to east on the east side of 549th Avenue. The channel has an average OHWM ranging in width from 1 foot to 2 feet and an average depth from the top of bank to the OHWM ranging from 1 foot to 3 feet. See Appendix B, Photo 83.
- Unnamed Stream 6 Manmade canal flowing generally northwest to southeast from 549th Avenue to the North Fork Elkhorn River. The channel has an average OHWM ranging in width from 2 feet to 6 feet and an average depth from the top of bank to the OHWM ranging from 2 feet to 4 feet. See Appendix B, Photos 74, 75, 84, 89, 91, 92, 116, 127, 129, 131-133, 135-139.
- Unnamed Stream 7 Ephemeral stream flowing generally west to east on the west and east side of Highway 13. The channel has an average OHWM ranging in width from 1 foot to 14 feet and an average depth from the top of bank to the OHWM ranging from 1 foot to 5 feet. See Appendix B, Photos 100-102, 107, 109-114.
- North Fork Elkhorn River Perennial stream flowing generally north to south along the east side of the study area. The channel has an average OHWM width of 50 feet and an average depth from the top of bank to the OHWM of 5 feet. See Appendix B, Photos 140, 170-172, 175, 176, 184-186, 188.

- Unnamed Stream 8 Intermittent stream flowing generally west to east through the city park. The channel has an average OHWM ranging in width from 3 feet to 12 feet and an average depth from the top of bank to the OHWM ranging from 1 foot to 5 feet. See Appendix B, Photos 143, 149, 165, 167, 173.
- Pierce Lake Pond located within the city park. See Appendix B, Photos 150-152, 168, 169.
- Unnamed Stream 9 Ephemeral stream flowing generally west to east on the east side of Hall Street. The channel has an average OHWM ranging in width from 1 foot to 4 feet and an average depth from the top of bank to the OHWM ranging from 2 feet to 4 feet. See Appendix B, Photos 179-183.
- Unnamed Stream 10 Ephemeral stream flowing generally northwest to southeast on the northeast side of Highway 13. The channel has an average OHWM ranging in width from 1 foot to 3 feet and an average depth from the top of bank to the OHWM ranging from 1 foot to 4 feet. See Appendix B, Photos 197 and 198.
- Unnamed Stream 11 Ephemeral stream flowing generally northwest to southeast on the northeast side of Highway 13. The channel has an average OHWM ranging in width from 2 feet to 5 feet and an average depth from the top of bank to the OHWM ranging from 1 foot to 3 feet. See Appendix B, Photos 199-201.
- Unnamed Pond 2 Pond located on the southwest side of Highway 13. See Appendix B, Photos 202 and 203.
- Unnamed Pond 3 Pond located on the southwest side of Highway 13. See Appendix B, Photo 206.

REFERENCES

- Cowardin, et al. 1979. Classification of Wetlands and Deepwater Habitats of the United States. FWS/OBS-79/31. U.S. Department of the Interior, Washington D.C.
- Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual. Technical Report Y-87-1, Waterways Experiment Station, Vicksburg, Mississippi.
- Environmental Laboratory. August 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Midwest Region (Version 2.0). ERDC/EL TR-10-16. U.S. Army Corps of Engineers, Research and Development Center, Vicksburg, Mississippi.
- FEMA. 2024. Digital Flood Insurance Rate Maps. FIRM Panel Number 3104660150B, effective date 6/4/1987, Panel 3104660100B, effective date 6/4/1987, and Panel 310174B, effective date 9/4/1985. Available at URL https://msc.fema.gov/.
- NRCS. 2024. National List of Hydric Soils by State. Available at URL https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/use/hydric/.
- NRCS. 2024. Plants Database. Available at URL http://plants.usda.gov/.
- NRCS. 2024. Web Soil Survey. Available at URL http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx.
- U.S. Army Corps of Engineers. (2022). National Wetland Plant List, version 3.5. Retrieved from http://wetland-plants.usace.army.mil/
- USFWS. 2024. National Wetlands Inventory. Available at URL http://www.fws.gov/wetlands/.
- USGS. 2024. 7.5-Minute Series Topographic Map U.S. Department of the Interior. Available at URL http://topomaps.usgs.gov/index.html.
- USGS. 2024. National Hydrography Dataset. U.S. Department of the Interior. Available at URL http://nhd.usgs.gov/index.html.
- X-Rite, Incorporated. 2000. Munsell Soil Color Charts. X-Rite Incorporated, Grand Rapids, Michigan.

Appendix A: Figures

Figure 1: Location Map

Figure 2: Topographic Map

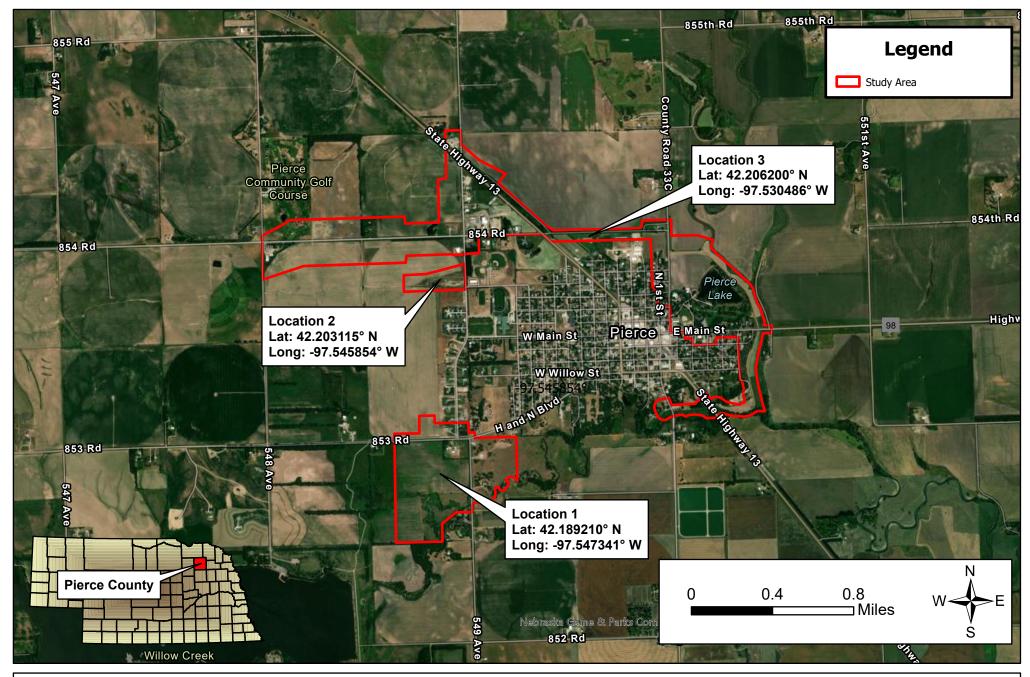

Figure 3: NWI Map

Figure 4a-4d: Soils Map

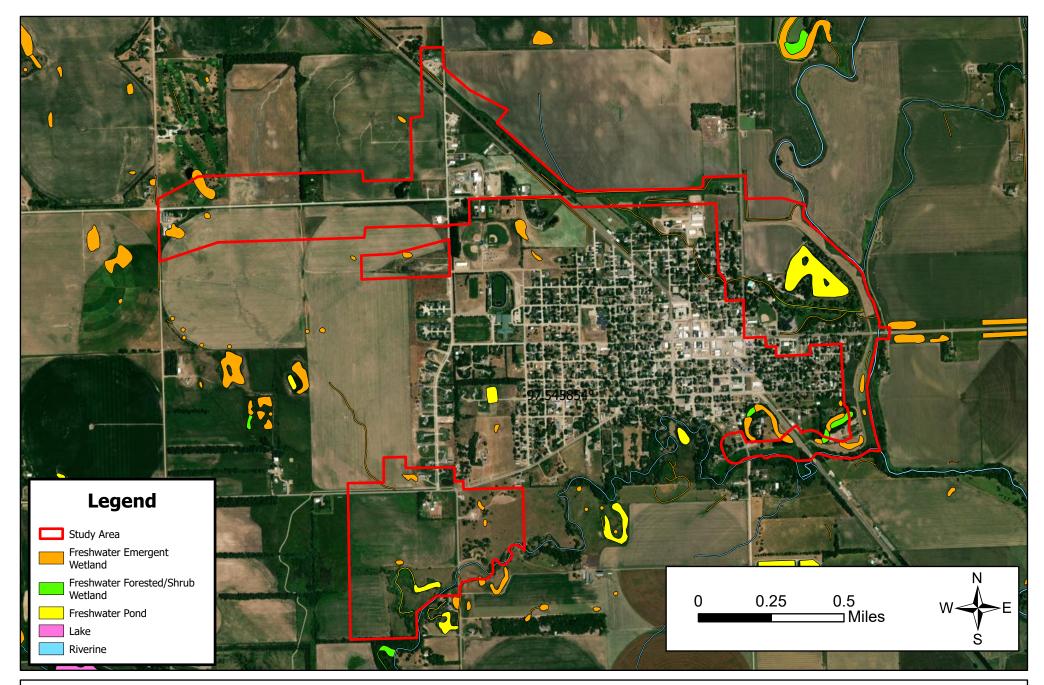
Figure 5: NHD Map

Figure 6a-6r: Delineated Wetlands/WOTUS

This map was prepared using information from record drawings supplied by JEO and/or other applicable city, county, federal, or public or private entitles. JEO does not guarantee the accuracy of this map or the information used to prepare this map. This is not a scaled plat.

LENRD North Fork Elkhorn River WFPO Pierce

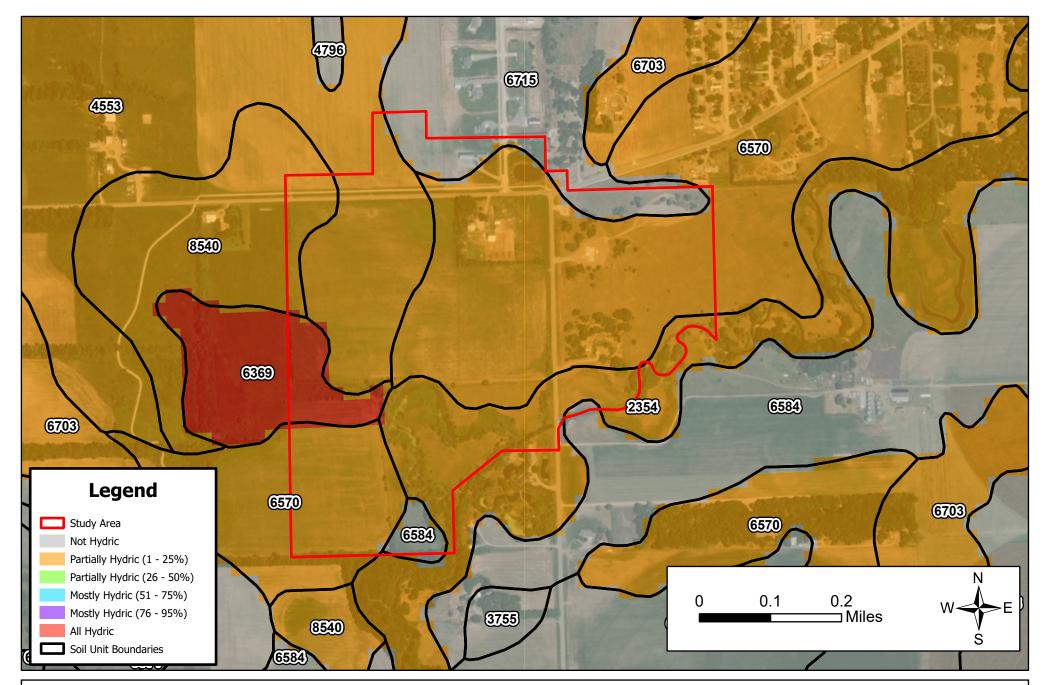
Figure 1 - Project Location Map Pierce County, NE



This map was prepared using information from record drawings supplied by JEO and/or other applicable city, county, federal, or public or private entities. JEO does not guarantee the accuracy of this map or the information used to prepare this map. This is not a scaled plat.

LENRD North Fork Elkhorn River WFPO Pierce

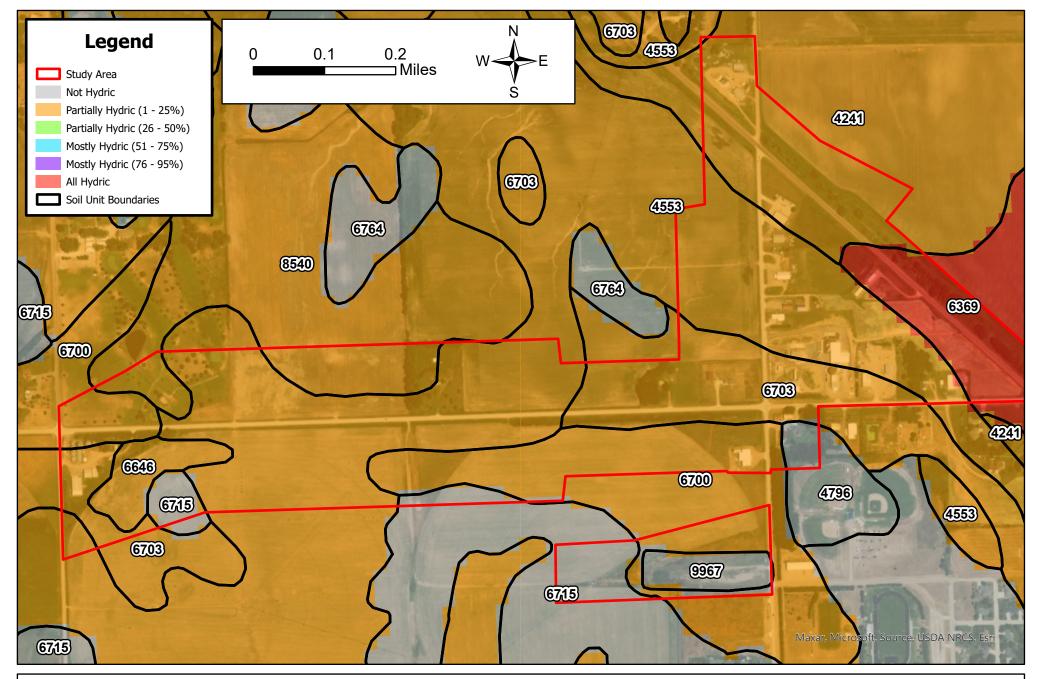
Figure 2 - Topographic Map Pierce County, NE



This map was prepared using information from record drawings supplied by JEO and/or other applicable city, county, federal, or public or private entitles. JEO does not guarantee the accuracy of this map or the information used to prepare this map. This is not a scaled plat.

LENRD North Fork Elkhorn River WFPO Pierce

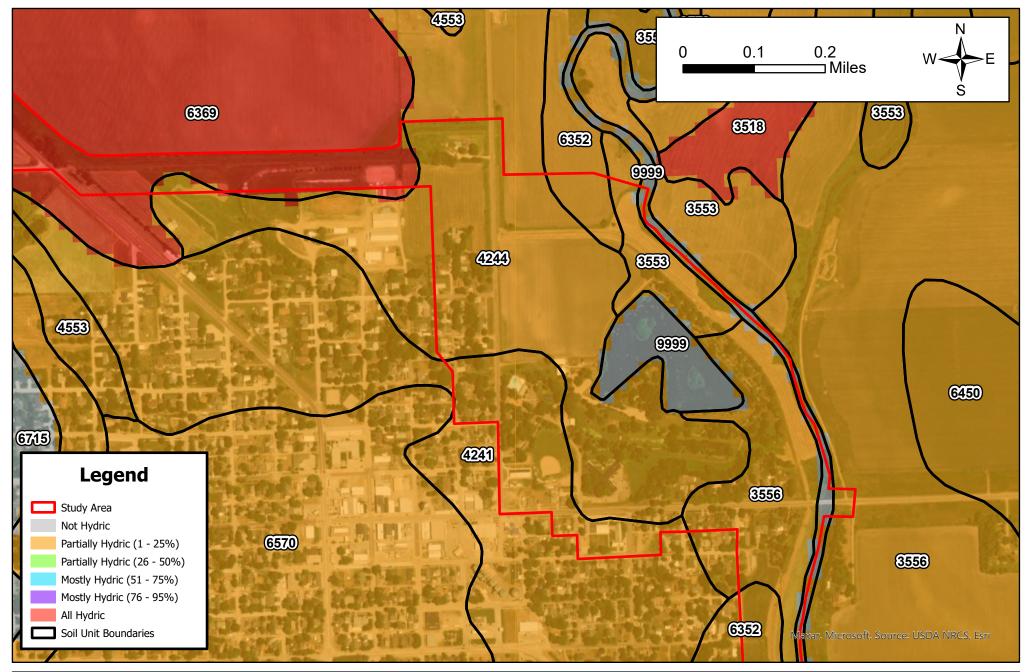
Figure 3 - NWI Map Pierce County, NE



This map was prepared using information from record drawings supplied by JEO and/or other applicable city, county, federal, or public or private entities. IEO does not guarantee the accuracy of this map or the information used to prepare this map. This is not a scaled plate.

LENRD North Fork Elkhorn River WFPO Pierce

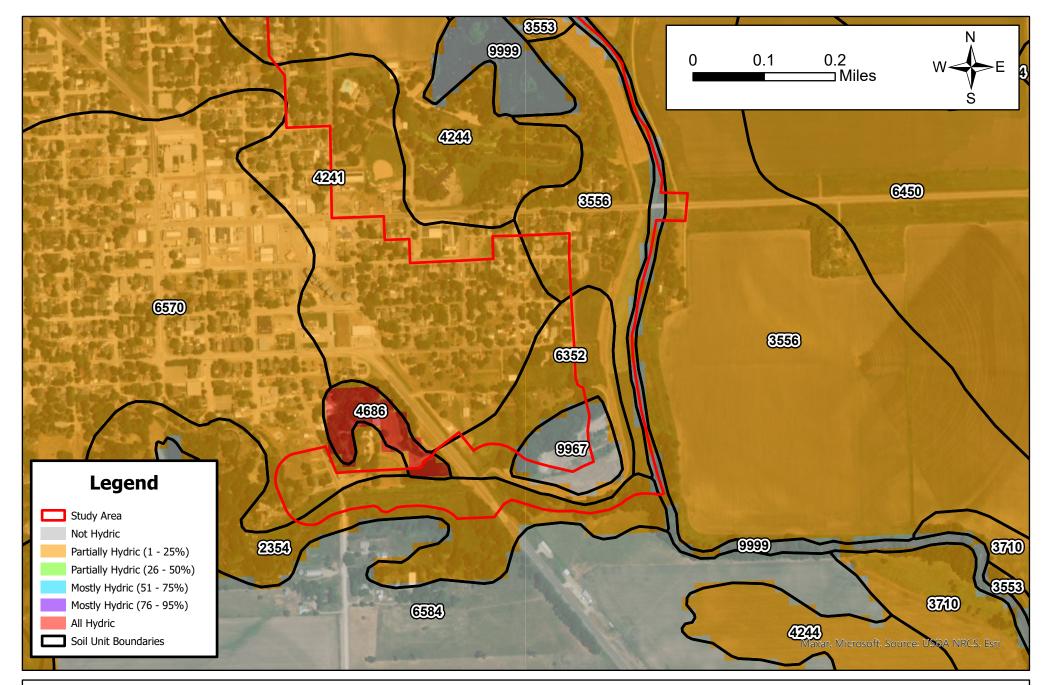
Figure 4a - Soils Map Pierce County, NE



This map was prepared using information from record drawings supplied by JEO and/or other applicable city, county, federal, or public or private entities. JEO does not guarantee the accuracy of this map or the information used to prepare this map. This is not a scaled plate.

LENRD North Fork Elkhorn River WFPO Pierce

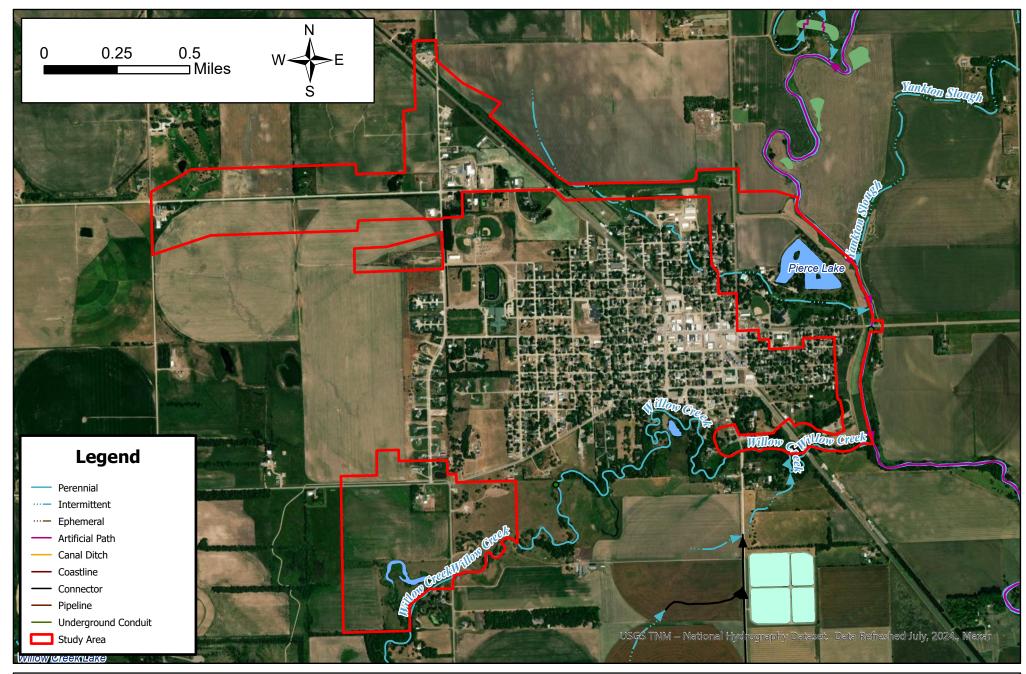
Figure 4b - Soils Map Pierce County, NE



This map was prepared using information from record drawings supplied by JEO and/or other applicable city, county, federal, or public or private entities. JEO does not guarantee the accuracy of this map or the information used to prepare this map. This is not a scaled plate.

LENRD North Fork Elkhorn River WFPO Pierce

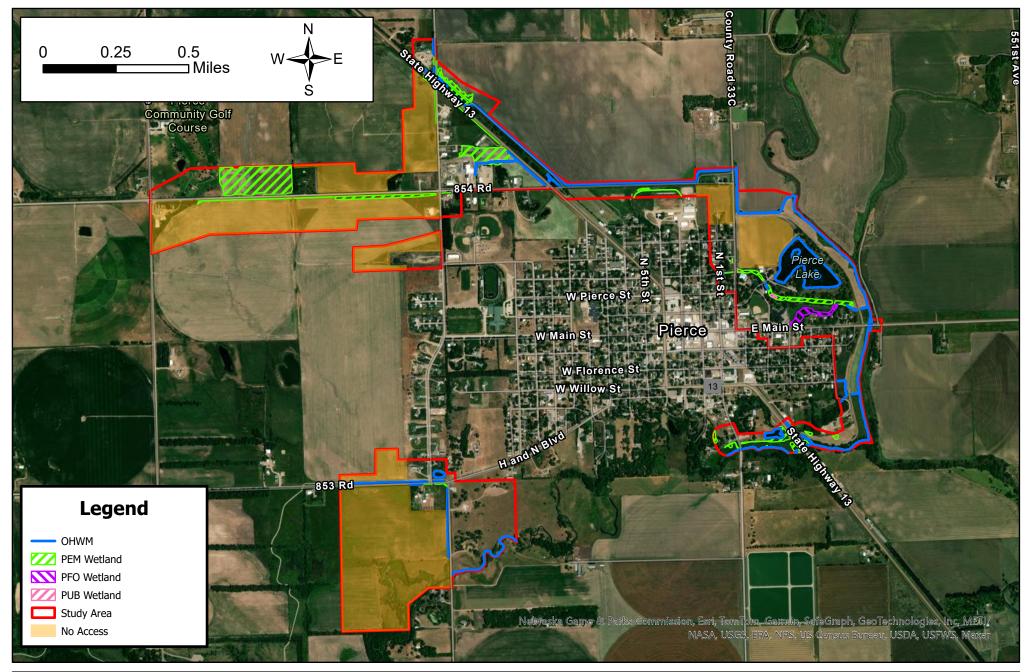
Figure 4c - Soils Map Pierce County, NE



This map was prepared using information from record drawings supplied by JEO and/or other applicable city, county, federal, or public or private entities. IEO does not guarantee the accuracy of this map or the information used to prepare this map. This is not a scaled plate.

LENRD North Fork Elkhorn River WFPO Pierce

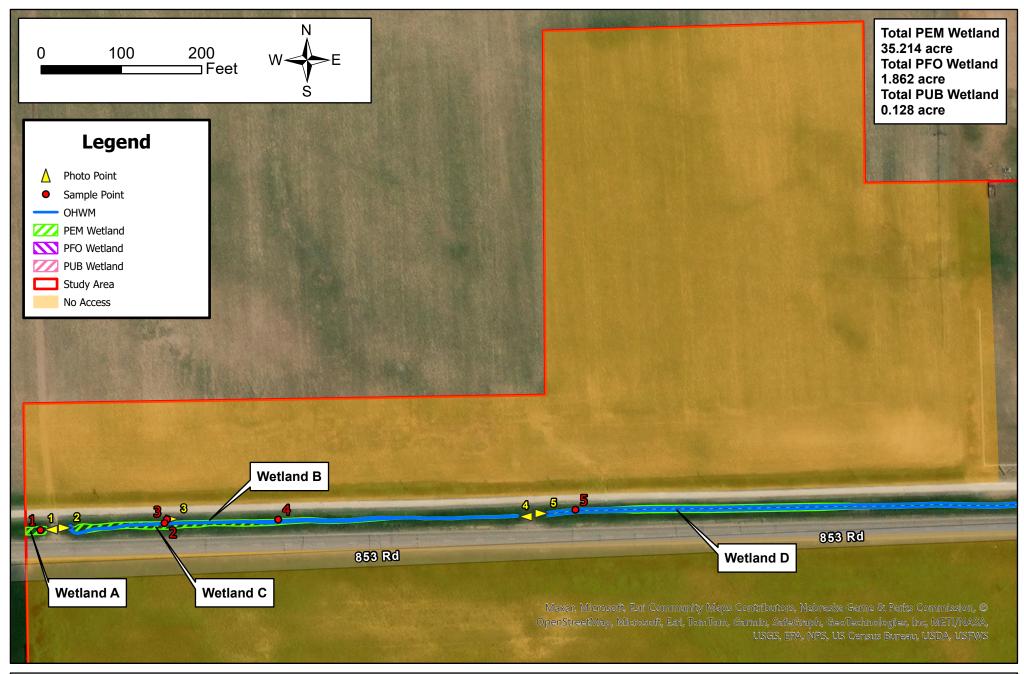
Figure 4d - Soils Map Pierce County, NE



This map was prepared using information from record drawings supplied by JEO and/or other applicable city, county, federal, or public or private entitles. JEO does not guarantee the accuracy of this map or the information used to prepare this map. This is not a scaled plate.

LENRD North Fork Elkhorn River WFPO Pierce

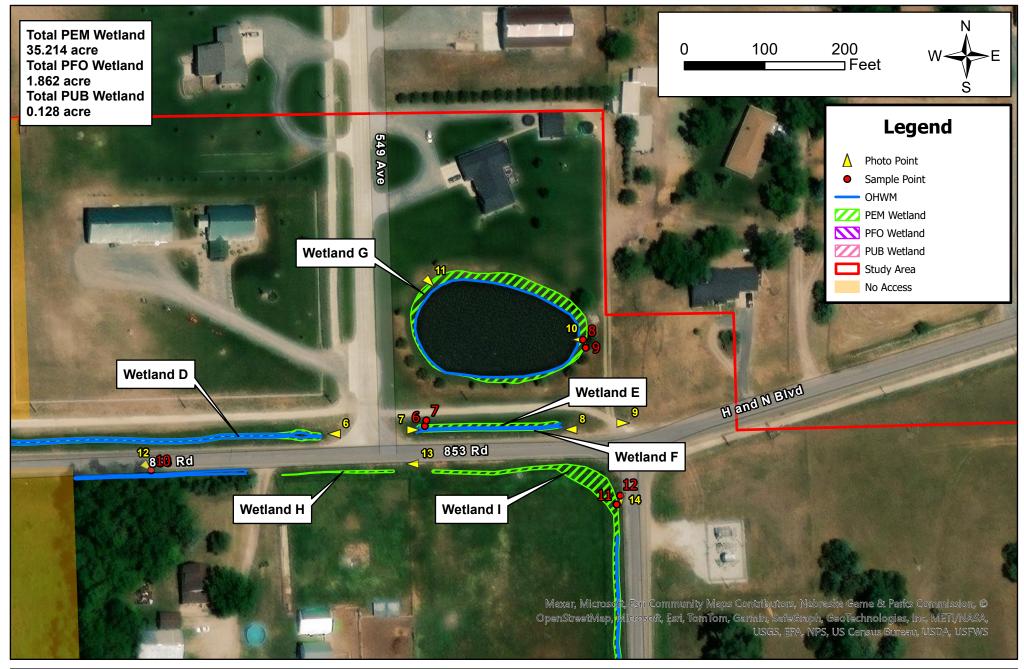
Figure 5 - NHD Map Pierce County, NE



This map was prepared using information from record drawings supplied by JEO and/or other applicable city, county, federal, or public or private entities. IEO does not guarantee the accuracy of this map or the information used to prepare this map. This is not a scaled plate.

LENRD North Fork Elkhorn River WFPO Pierce

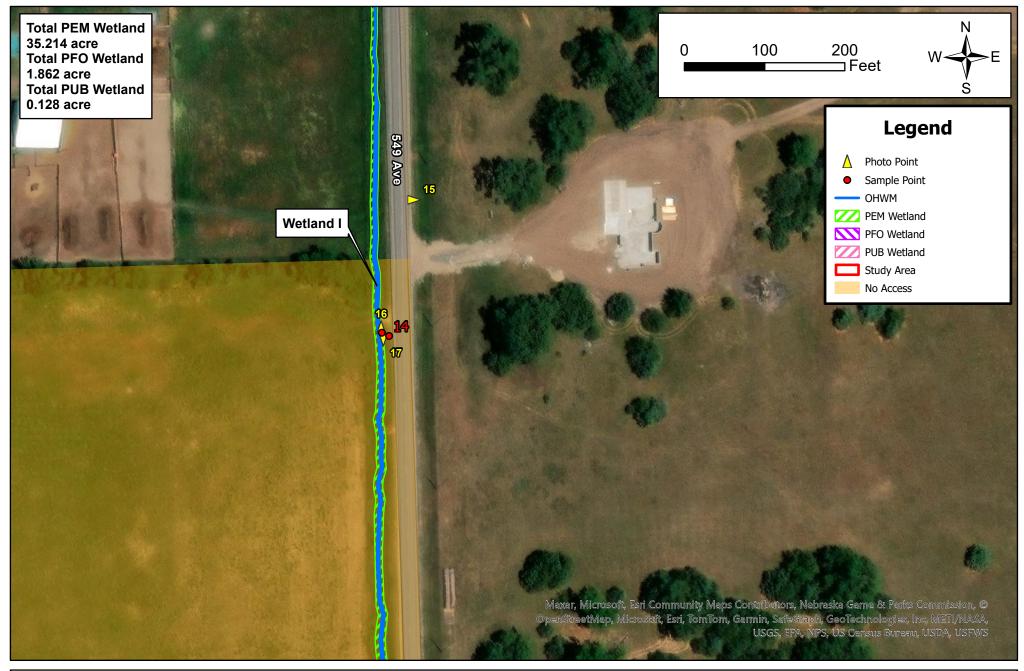
Figure 6a - Delineated Wetlands / WOTUS
Pierce County, NE



This map was prepared using information from record drawings supplied by JEO and/or other applicable city, county, federal, or public or private entities, JEO does not guarantee the accuracy of this map or the information used to prepare this map. This is not a scaled plate.

LENRD North Fork Elkhorn River WFPO Pierce

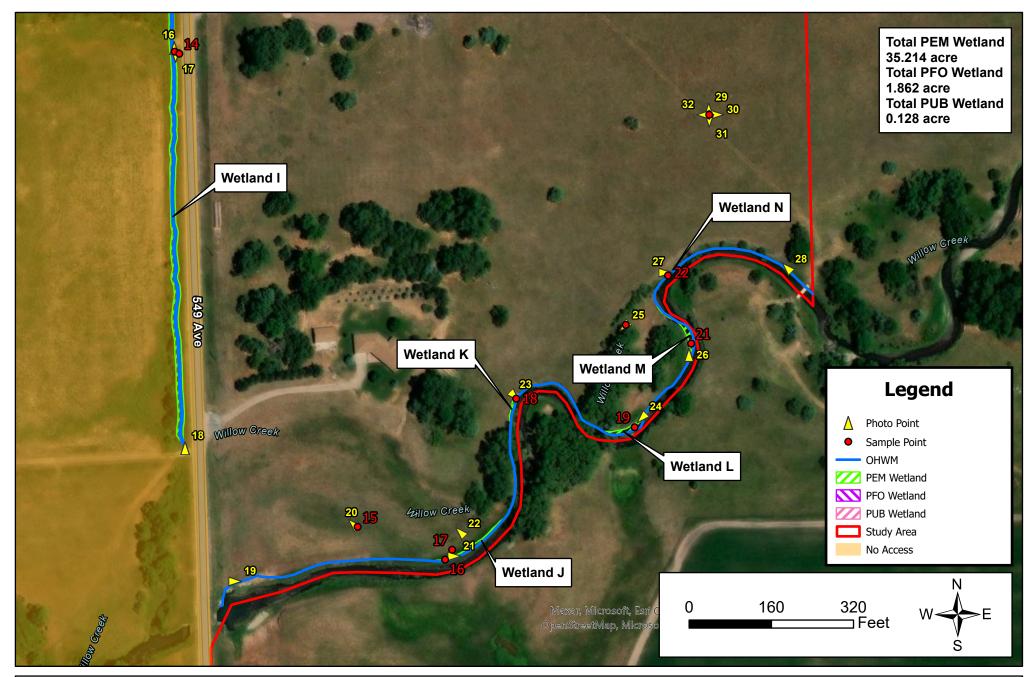
Figure 6b - Delineated Wetlands / WOTUS
Pierce County, NE



This map was prepared using information from record drawings supplied by JEO and/or other applicable city, county, federal, or public or private entities. JEO does not guarantee the accuracy of this map or the information used to prepare this map. This is not a scaled plate.

LENRD North Fork Elkhorn River WFPO Pierce

Figure 6c - Delineated Wetlands / WOTUS
Pierce County, NE



This map was prepared using information from record drawings supplied by JEO and/or other applicable city, county, federal, or public or private entities. JEO does not guarantee the accuracy of this map or the information used to prepare this map. This is not a scaled plate.

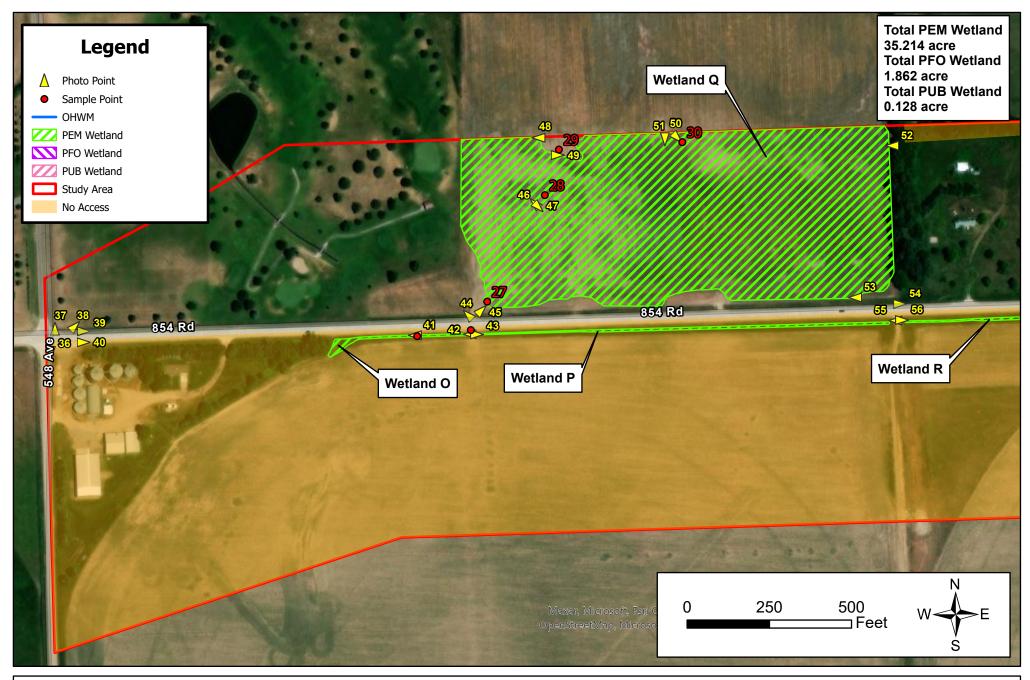
LENRD North Fork Elkhorn River WFPO Pierce

Figure 6d - Delineated Wetlands / WOTUS
Pierce County, NE

This map was prepared using information from record drawings supplied by JEO and/or other applicable city, county, federal, or public or private entities. JEO does not guarantee the accuracy of this map or the information used to prepare this map. This is not a scaled plat.

LENRD North Fork Elkhorn River WFPO Pierce

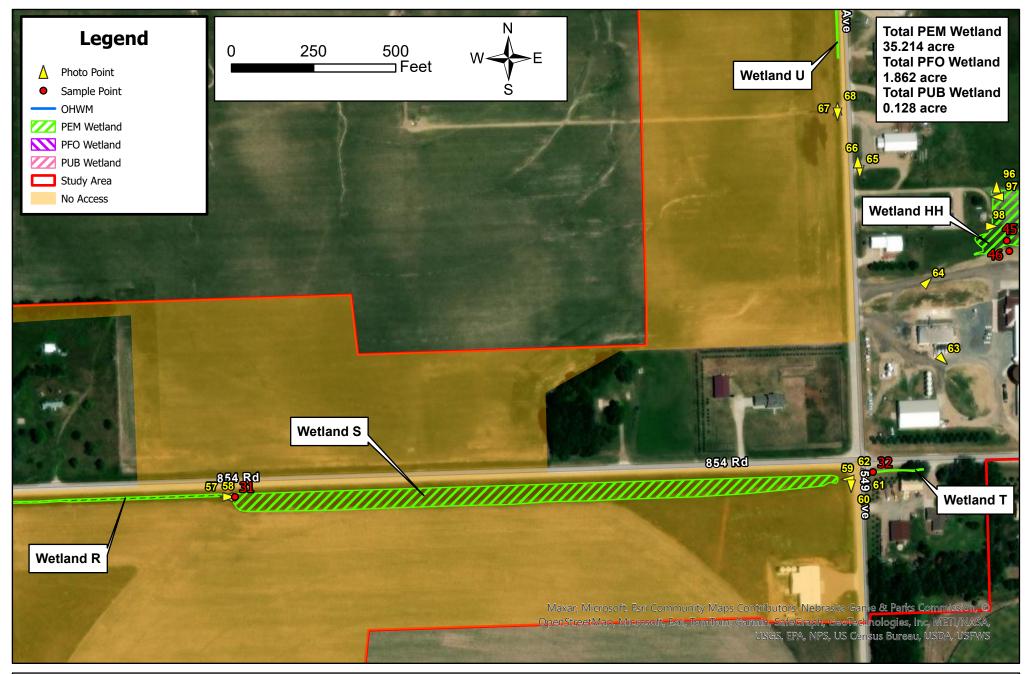
Figure 6e - Delineated Wetlands / WOTUS
Pierce County, NE



This map was prepared using information from record drawings supplied by JEO and/or other applicable city, county, federal, or public or private entities. JEO does not guarantee the accuracy of this map or the information used to prepare this map. This is not a scaled plat.

LENRD North Fork Elkhorn River WFPO Pierce

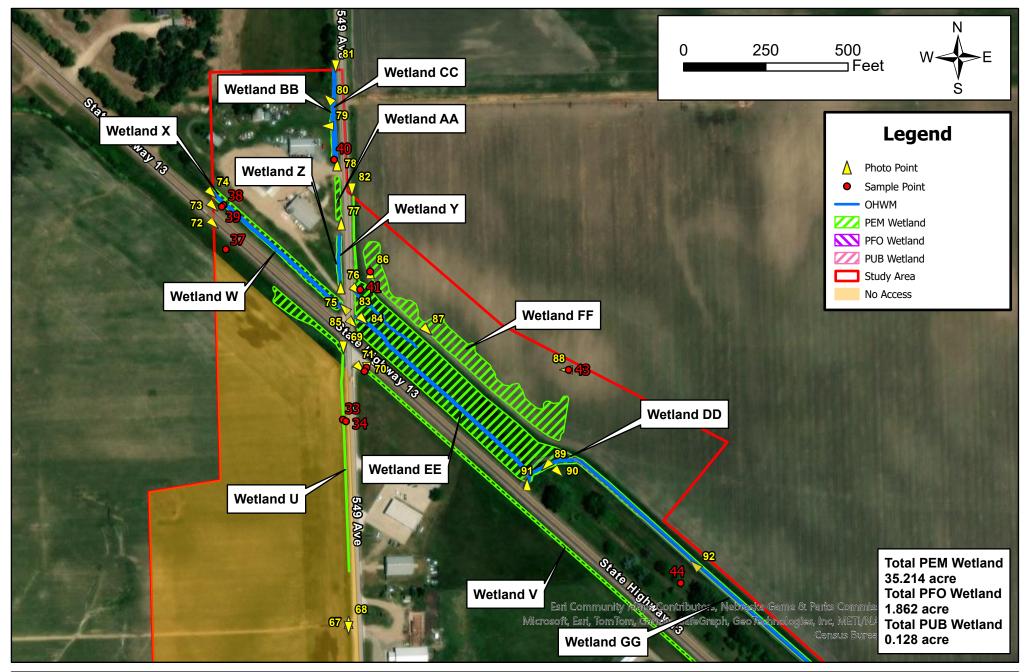
Figure 6f - Delineated Wetlands / WOTUS
Pierce County, NE



This map was prepared using information from record drawings supplied by JEO and/or other applicable city, county, federal, or public or private entitles. JEO does not guarantee the accuracy of this map or the information used to prepare this map. This is not a scaled plat.

LENRD North Fork Elkhorn River WFPO Pierce

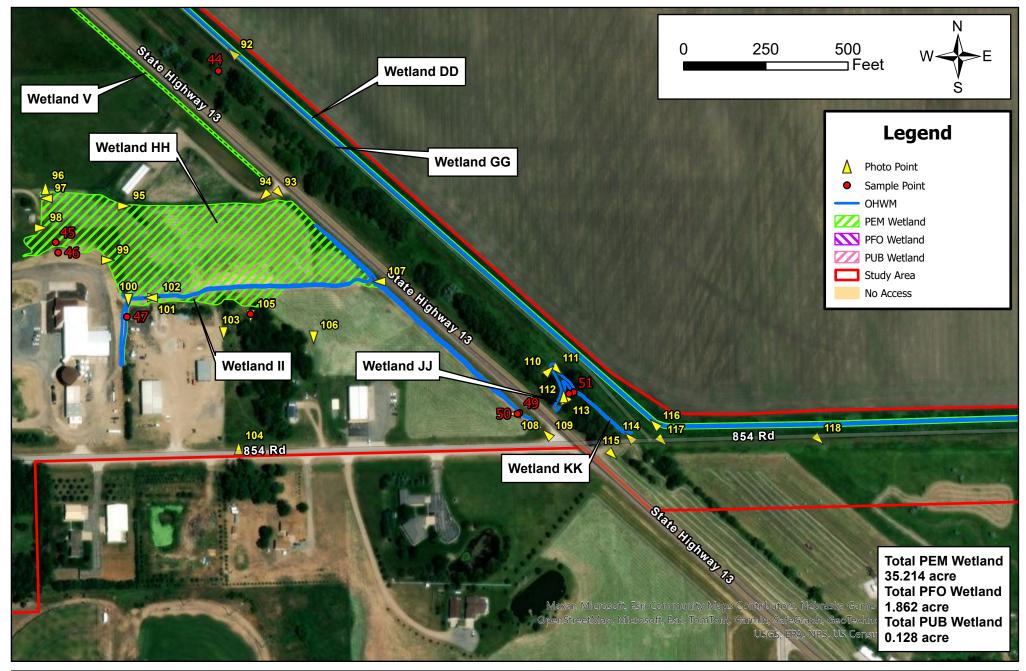
Figure 6g - Delineated Wetlands / WOTUS
Pierce County, NE



This map was prepared using information from record drawings supplied by JEO and/or other applicable city, county, federal, or public or private entities. IEO does not guarantee the accuracy of this map or the information used to prepare this map. This is not a scaled plate.

LENRD North Fork Elkhorn River WFPO Pierce

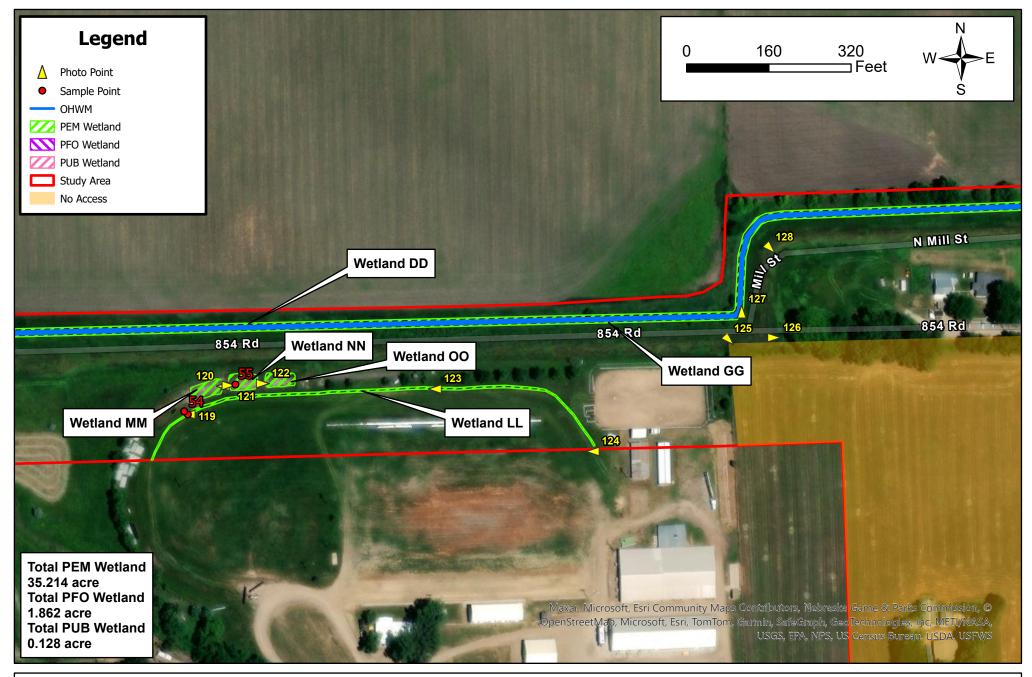
Figure 6h - Delineated Wetlands / WOTUS
Pierce County, NE



This map was prepared using information from record drawings supplied by JEO and/or other applicable city, county, federal, or public or private entities. JEO does not guarantee the accuracy of this map or the information used to prepare this map. This is not a scaled plate.

LENRD North Fork Elkhorn River WFPO Pierce

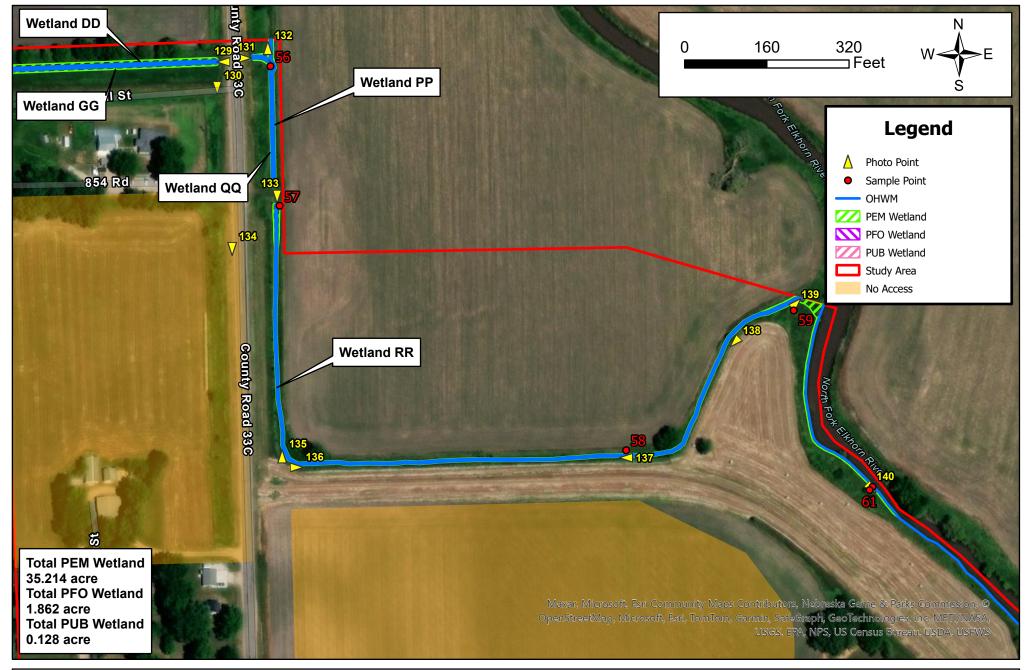
Figure 6i - Delineated Wetlands / WOTUS
Pierce County, NE



This map was prepared using information from record drawings supplied by JEO and/or other applicable city, county, federal, or public or private entities. JEO does not guarantee the accuracy of this map or the information used to prepare this map. This is not a scaled plat.

LENRD North Fork Elkhorn River WFPO Pierce

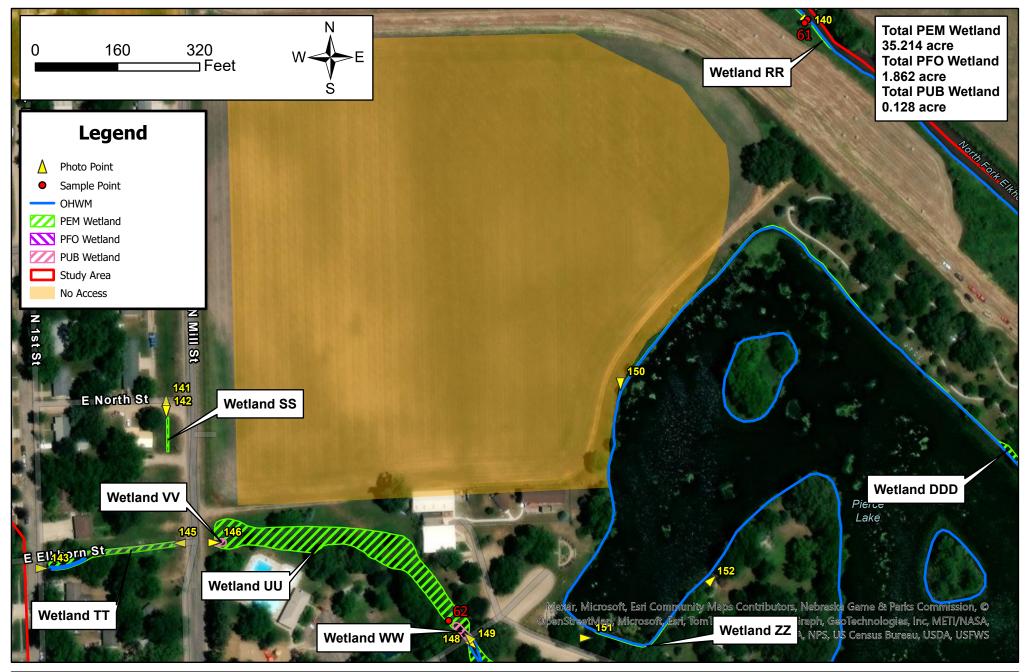
Figure 6j - Delineated Wetlands / WOTUS
Pierce County, NE



This map was prepared using information from record drawings supplied by JEO and/or other applicable city, county, federal, or public or private entities. JEO does not guarantee the accuracy of this map or the information used to prepare this map. This is not a scaled plate.

LENRD North Fork Elkhorn River WFPO Pierce

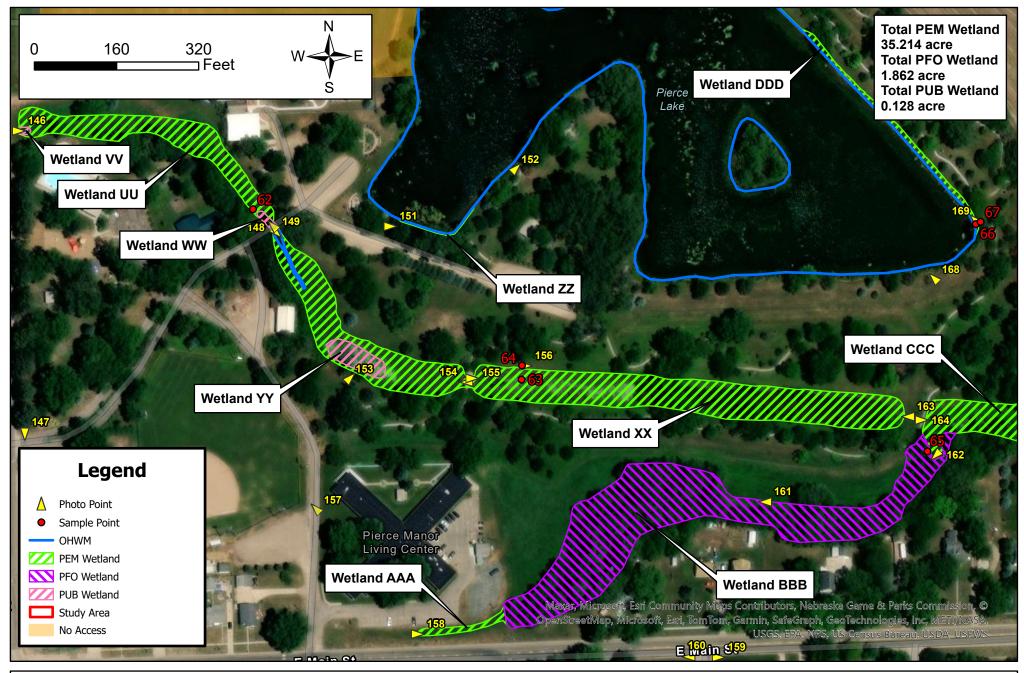
Figure 6k - Delineated Wetlands / WOTUS
Pierce County, NE



This map was prepared using information from record drawings supplied by JEO and/or other applicable city, county, federal, or public or private entitles. JEO does not guarantee the accuracy of this map or the information used to prepare this map. This is not a scaled plat.

LENRD North Fork Elkhorn River WFPO Pierce

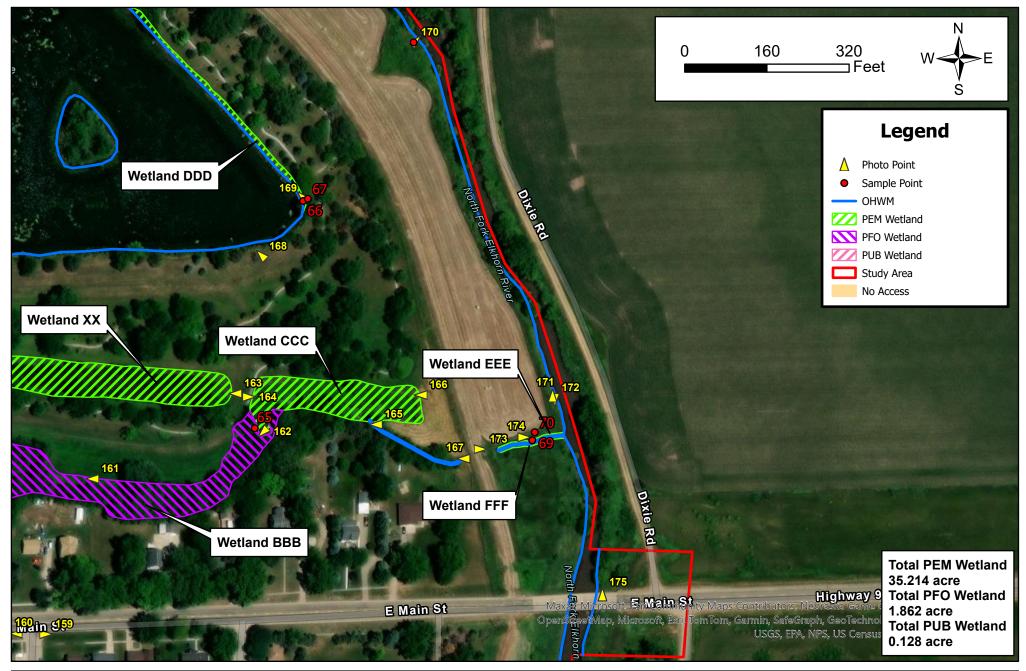
Figure 61 - Delineated Wetlands / WOTUS
Pierce County, NE



This map was prepared using information from record drawings supplied by JEO and/or other applicable city, county, federal, or public or private entities. JEO does not guarantee the accuracy of this map or the information used to prepare this map. This is not a scaled plate.

LENRD North Fork Elkhorn River WFPO Pierce

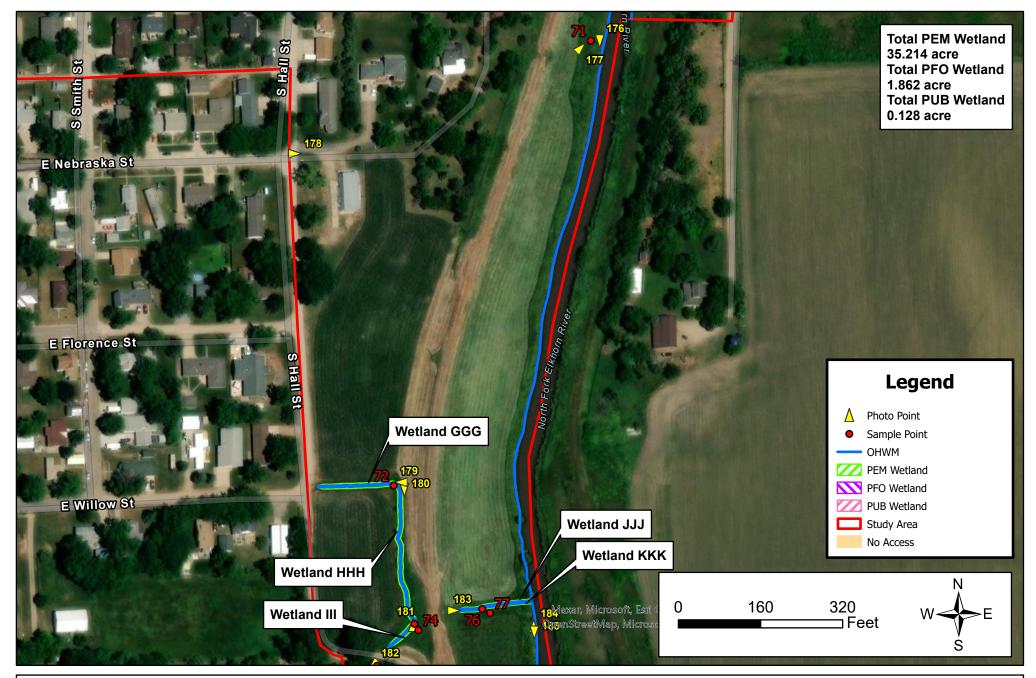
Figure 6m - Delineated Wetlands / WOTUS
Pierce County, NE



This map was prepared using information from record drawings supplied by JEO and/or other applicable city, county, federal, or public or private entitles. JEO does not guarantee the accuracy of this map or the information used to prepare this map. This is not a scaled plat.

LENRD North Fork Elkhorn River WFPO Pierce

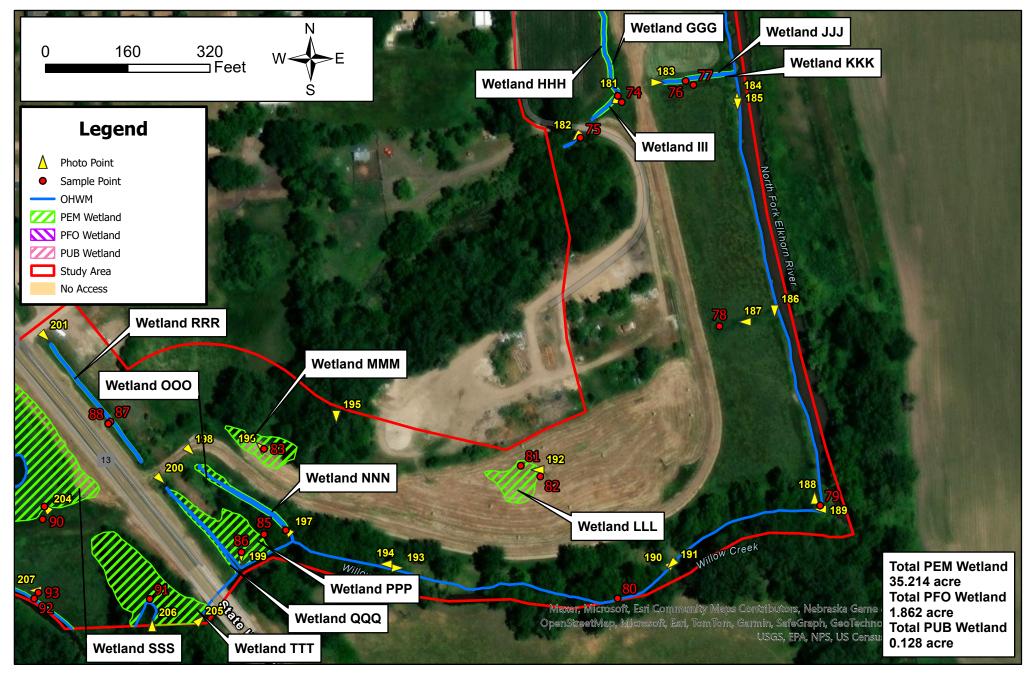
Figure 6n - Delineated Wetlands / WOTUS
Pierce County, NE



This map was prepared using information from record drawings supplied by JEO and/or other applicable city, county, federal, or public or private entities. JEO does not guarantee the accuracy of this map or the information used to prepare this map. This is not a scaled plate.

LENRD North Fork Elkhorn River WFPO Pierce

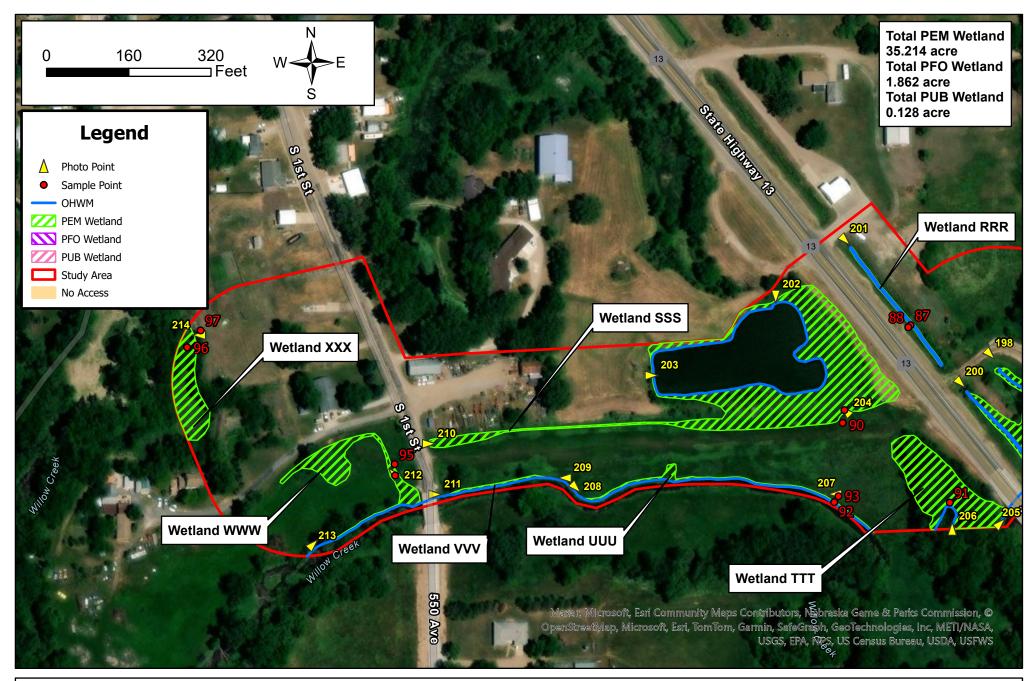
Figure 6o - Delineated Wetlands / WOTUS
Pierce County, NE



This map was prepared using information from record drawings supplied by JEO and/or other applicable city, county, federal, or public or private entities. JEO does not gaurantee the accuracy of this map or the information used to prepare this map. This is not a scaled plate.

LENRD North Fork Elkhorn River WFPO Pierce

Figure 6p - Delineated Wetlands / WOTUS
Pierce County, NE



This map was prepared using information from record drawings supplied by JEO and/or other applicable city, county, federal, or public or private entities. IEO does not guarantee the accuracy of this map or the information used to prepare this map. This is not a scaled plate.

LENRD North Fork Elkhorn River WFPO Pierce

Figure 6q - Delineated Wetlands / WOTUS
Pierce County, NE

This map was prepared using information from record drawings supplied by JEO and/or other applicable city, county, federal, or public or private entities. IEO does not guarantee the accuracy of this map or the information used to prepare this map. This is not a scaled plate.

LENRD North Fork Elkhorn River WFPO Pierce

Figure 6r - Delineated Wetlands / WOTUS
Pierce County, NE

Appendix B: Site Photographs

Photo 1 – View looking west toward Sample Point 1. Photo depicts PEM Wetland A within the roadside ditch.

Photo 2 – View looking east along the north side of 853rd Road. Photo depicts Unnamed Stream 1 with PEM Wetlands B and C along the banks.

Photo 3 – View looking east from Sample Point 3. Photo depicts the upland/wetland boundary of PEM Wetland B.

Photo 4 – View looking west along the north side of 853rd Road. Photo depicts Unnamed Stream 1 with PEM Wetlands B and C along the banks.

Photo 5 – View looking east toward Sample Point 5. Photo depicts PEM Wetland D below the OHWM of Unnamed Stream 1.

Photo 6 – View looking west from the intersection of 853rd Road and 549th Avenue. Photo depicts the OHWM of Unnamed Stream 1 with PEM Wetland D along the banks.

Photo 7 – View looking east from the intersection of 853rd Road and 549th Avenue. Photo depicts PEM Wetlands E and F along the banks of Unnamed Stream 1.

Photo 8 – View looking west along the north side of 853rd Road. Photo depicts PEM Wetlands E and F along the banks of Unnamed Stream 1.

Photo 9 – View looking east along the north side of 853rd Road. Photo depicts an upland ditch.

Photo 10 – View looking west from Sample Point 8. Photo depicts Unnamed Pond 1 with PEM Wetland G along the bank.

Photo 11 – View looking southeast from the northwest side of Unnamed Pond 1. Photo depicts PEM Wetland G along the bank.

Photo 12 – View looking southeast toward Sample Point 10. Photo depicts the upland area adjacent to Unnamed Stream 2.

Photo 13 – View looking west along the south side of 853rd Road. Photo depicts PEM Wetland H within the roadside ditch.

Photo 14 – View looking south from Sample Point 12. Photo depicts the upland/wetland boundary of PEM Wetland I.

Photo 15 – View looking east from the east side of 549th Avenue. Photo depicts an upland pasture.

Photo 16 – View looking north from Sample Point 13. Photo depicts PEM Wetland I along the banks of Unnamed Stream 3.

Photo 17 – View looking south from Sample Point 13. Photo depicts PEM Wetland I along the banks of Unnamed Stream 3.

Photo 18 – View looking north along the west side of 549th Avenue. Photo depicts PEM Wetland I along the banks of Unnamed Stream 3.

Photo 19 – View looking east from the east side of 549th Avenue. Photo depicts the northern bank of Willow Creek.

Photo 20 – View looking northwest from Sample Point 15. Photo depicts an upland pasture.

Photo 21 – View looking east from Sample Point 16. Photo depicts PEM Wetland J along the bank of Willow Creek.

Photo 22 – View looking northwest from PEM Wetland J. Photo depicts the upland area adjacent to the wetland.

Photo 23 – View looking southeast toward Sample Point 18. Photo depicts PEM Wetland K along the bank of Willow Creek.

Photo 24 – View looking southwest toward Sample Point 19. Photo depicts PEM Wetland L along the bank of Willow Creek.

Photo 25 – View looking southwest from Sample Point 20. Photo depicts a swale near Willow Creek. No wetlands were present.

Photo 26 – View looking north toward Sample Point 21. Photo depicts PEM Wetland M along the bank of Willow Creek.

Photo 27 – View looking east toward Sample Point 22. Photo depicts PEM Wetland N along the bank of Willow Creek.

Photo 28 – View looking northwest from the eastern boundary of the study area. Photo depicts the OHWM of Willow Creek.

Photo 29 – View looking north from Sample Point 23. Photo depicts an upland pasture.

Photo 30 – View looking east from Sample Point 23. Photo depicts an upland pasture.

Photo 31 – View looking south from Sample Point 23. Photo depicts an upland pasture.

Photo 32 – View looking west from Sample Point 23. Photo depicts an upland pasture.

Photo 33 – View looking west from the west side of 549th Avenue. Photo depicts an upland area.

Photo 34 – View looking east from Sample Point 24. Photo depicts an upland area.

Photo 35 – View looking west from Sample Point 24. Photo depicts an upland area.

Photo 36 – View looking south along the east side of 548th Avenue. Photo depicts an upland roadside ditch.

Photo 37 – View looking north along the east side of 548th Avenue. Photo depicts an upland roadside ditch.

Photo 38 – View looking northeast from the north side of 854th Road. Photo depicts a pasture.

Photo 39 – View looking east along the north side of 854th Road. Photo depicts an upland roadside ditch.

Photo 40 – View looking east along the south side of 854th Road. Photo depicts an upland roadside ditch.

Photo 41 – View looking west from Sample Point 25. Photo depicts PEM Wetland O within the roadside ditch.

Photo 42 – View looking west along the south side of 854th Road. Photo depicts PEM Wetland O within the roadside ditch.

Photo 43 – View looking east along the south side of 854th Road. Photo depicts PEM Wetland P within the roadside ditch.

Photo 44 – View looking northwest on the north side of 854th Road. Photo depicts an upland pasture.

Photo 45 – View looking northeast toward Sample Point 27. Photo depicts PEM Wetland Q within a row-crop field.

Photo 46 – View looking northwest near Sample Point 28. Photo depicts PEM Wetland Q within a row-crop field.

Photo 47 – View looking southeast near Sample Point 28. Photo depicts PEM Wetland Q within a row-crop field.

Photo 48 – View looking west along the northern boundary of the study area. Photo depicts the upland area adjacent to PEM Wetland Q.

Photo 49 – View looking east near Sample Point 29. Photo depicts the upland/wetland boundary of PEM Wetland Q.

Photo 50 – View looking southeast toward Sample Point 30. Photo depicts PEM Wetland Q within a row-crop field.

Photo 51 – View looking south from the northern boundary of the study area. Photo depicts PEM Wetland Q within a row-crop field.

Photo 52 – View looking west from the eastern boundary of PEM Wetland Q. Photo depicts the wetland within a row-crop field.

Photo 53 – View looking west along the north side of 854th Road. Photo depicts the southern boundary of PEM Wetland Q.

Photo 54 – View looking east along the north side of 854th Road. Photo depicts an upland roadside ditch.

Photo 55 – View looking west from the south side of 854th Road. Photo depicts PEM Wetland P within the roadside ditch.

Photo 56 – View looking east from the south side of 854th Road. Photo depicts PEM Wetland R within the roadside ditch.

Photo 57 – View looking west from the south side of 854th Road. Photo depicts PEM Wetland R within the roadside ditch.

Photo 58 – View looking east toward Sample Point 31. Photo depicts PEM Wetland S within a roadside ditch.

