

Strategizing for Ecological Management & Implementing a Soil Health Management System

Soil Health Division

Objectives

- Identify key components of practices and activities to develop a Soil Health Management System
- Describe the interaction, dependency and synergy between practices in a SHMS
- 3. Recognize barriers to implementation
- 4. Describe an entry level strategy to develop a SHMS

Soil Health Management System

Collection of NRCS and other conservation practices, BMPs, activities, that focus on maintaining or enhancing soil health

Address all the soil health principles

Create a "synergistic" effect

Cropping system and landuse specific

Conservation activities that might not be in an NRCS conservation practice standard. Examples:

Inited States

- Companion cropping
- Traffic management
- Precision application of nutrients and pesticides
- Use of floatation tires or tracks
- Bale Grazing

• Achieving soil health through:

- ✤ A Quality No-till/ Strip-till System
- Diverse and Strategic Cover Crops
- Adapted Nutrient Management
- Integrated Weed & Pest
 Management
- Diverse Crop Rotations
- Precision Farming Technology that results in reductions overall
- ✤ Prescriptive Buffers
- Livestock integration

Soil Health is not a destination...it's a Journey

Quality no-till/strip-till

New technology and integrated weed & pest management

Prescribed cover crops

10:02 AM

Diverse crop rotation

Quality no-till/strip-till

No-Till / Strip-Till

Planter set-up and maintenance is critical

NRCS | SHD | Strategizing & Implementing a SHMS | v3.0

.

Spread the Weight!

Spread residue

Spread the Residue!

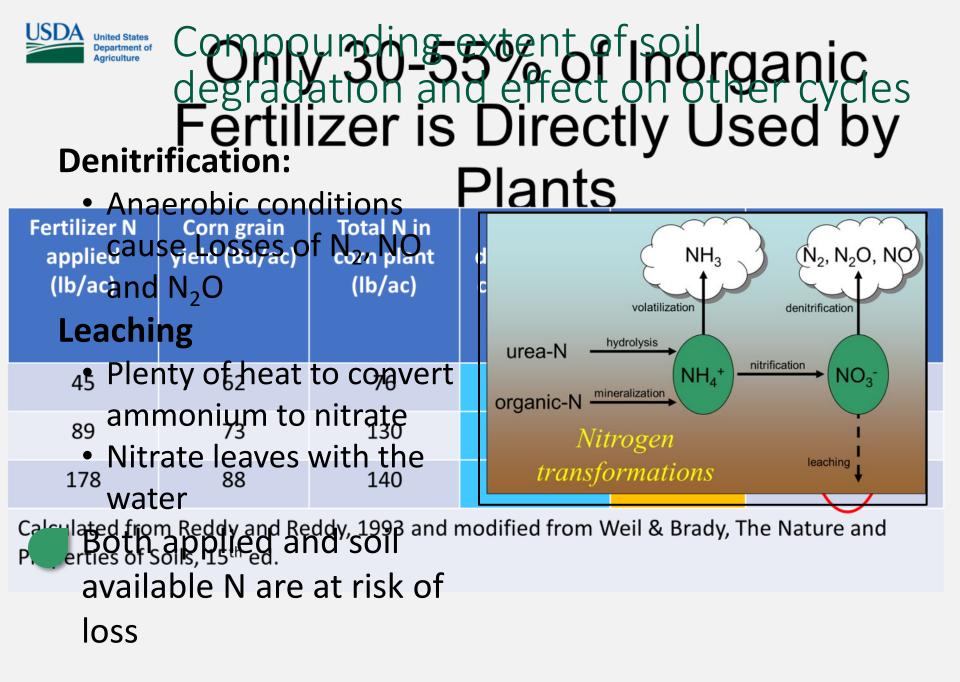
NRCS | SHD | Strategizing & Implementing a SHMS | v3.0

PHOTOS: USDA - SHD

Knowledge Check: Poll Question

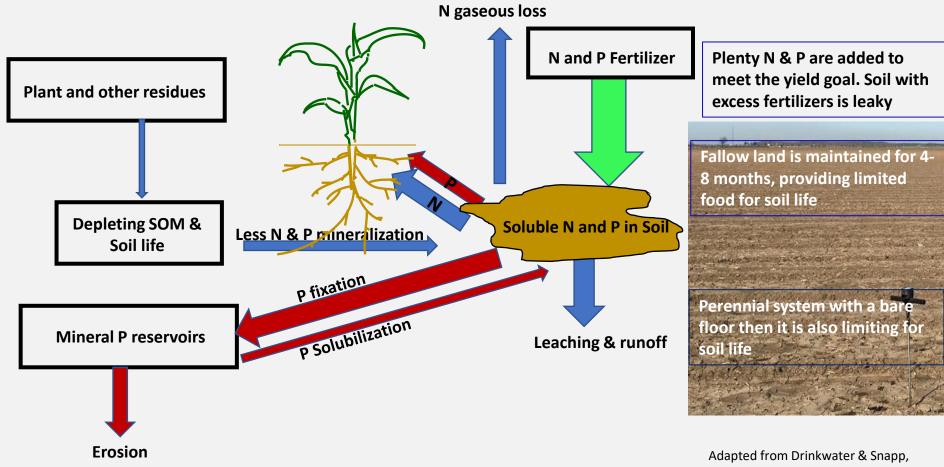
What Issues with No-till have you seen or heard of in your location?

Poor Structure = Yield Loss

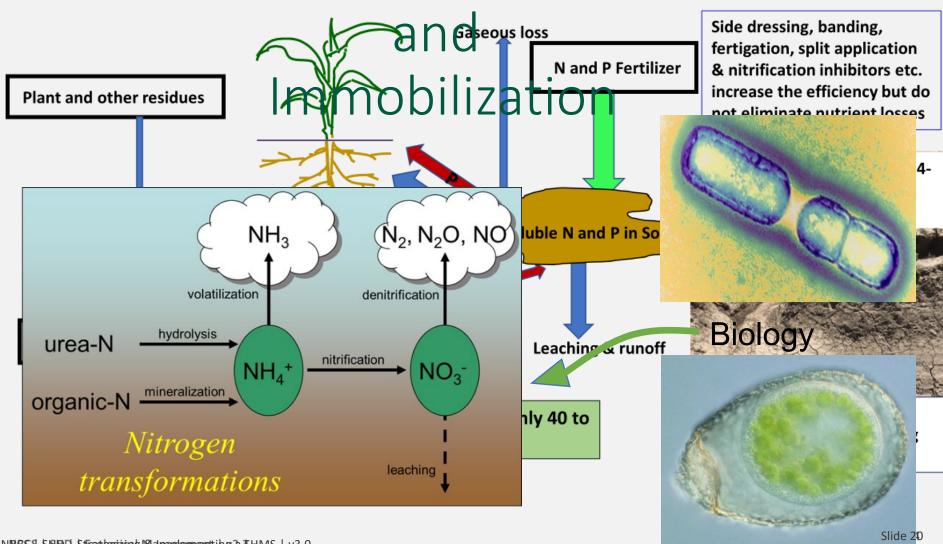


No-Till Planter Attachments

Less total down pressure is needed Match field conditions on the go! ting a SHMS | v3.0

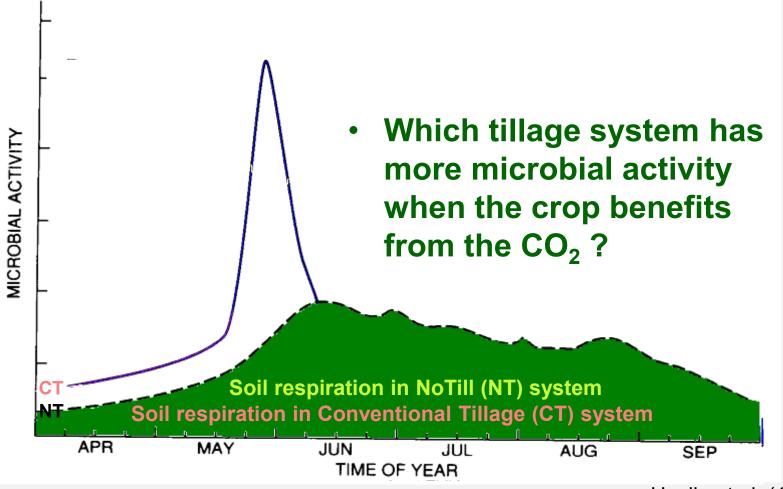

Adapted nutrient management

New technology and integrated weed & pest management

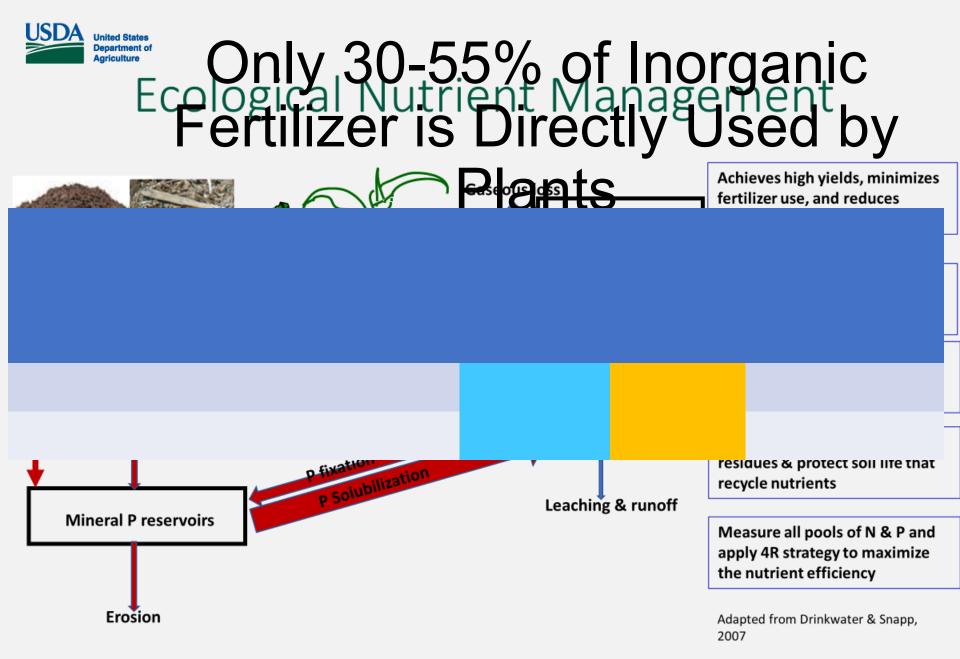

Dominant Nutrient Management Strategy

²⁰⁰⁷

The 4R Nutrient Management Strategy Nitrogen Mineralization



10:02 AM


NRESS \$800 \$tradegizing Wanglementing 2.3 HMS | v3.0

Effect of Tillage on Microbial Activity

Havlin et al. (1999)

New technology and integrated weed & pest management

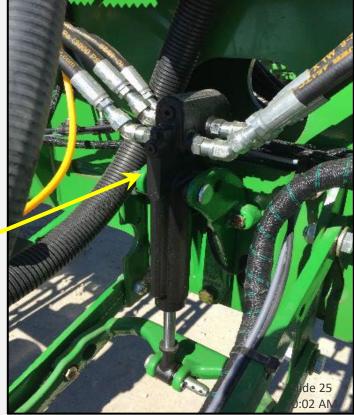
Slide 23

10:02 AM

No-Till Planters

JOH

With Adapted 4R Precision


No-Till Planters

Sense and adapt to field conditions on the go!

With Space Shuttle Tech

Precision downforce

in sub inch increments.

New Technology using Nature for

Slide 26 10:02 AM

7 Strategies to Control Weeds with Cover Crops

- 1. Determine the time and emergence of target weeds.
- 2. Plan for robust growth of cover crops
- 3. Choose cover crop species that produce a significant amount of biomass
- 4. Choose species that meet your goals
- 5. Plan a strategy to allow allelopathy to work
- 6. Consider planting conditions and rates
- 7. Monitor the effectiveness

https://www.agriculture.com/crops/covercrops/7-ways-cover-crops-help-fight-weeds

Prescribed cover crops

Strategically...CC Should Complement the Following Crop

Mineralization Vs. Immobilization

Immobilization is the reverse of mineralization.

Johnson et al. 2005, Cornell University

Department of Agriculture Strategically...CC should match desired C:N Ratio

	Material	C:N Ratio			
	rye straw	82:1		N STRANSPORT	
	wheat straw	80:1	The American State	1 - 2 - Ar S	an
	oat straw	70:1	↑		∣ Soybean
	corn stover	57:1	slower	Marine	δ Δ
	rye cover crop (anthesis)	37:1	slor		
ŕ	pea straw	29:1			for
	rye cover crop (vegetative)	26:1	Relative Decomposition Rate		po
	mature alfalfa hay	25:1			Good
	Ideal Microbial Diet	24:1			U
	rotted barnyard manure	20:1			_
	legume hay	17:1			Corn
	beef manure	17:1			
	young alfalfa hay	13:1			for
	hairy vetch cover crop	11:1			
	soil microbes (average)	8:1			Good

Wited States Strategically...CC should complement the following crop ...Which is better? Nitrogen

Dependent Crops into:

 High Carbon (Cereals Rye/Wheat)

...or

- High Nitrogen (Protein)
- Cover Crop (Clover/Peas)

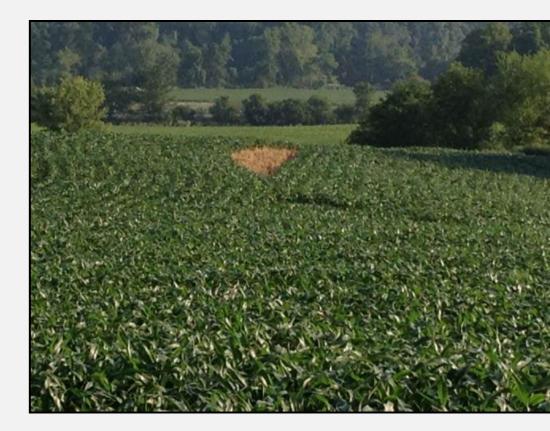
Strategically...CC Should Complement the Following Crop

Corn into:

- High N (Protein)
- Cover Crop (Clover/Peas)
- Contributes high quality N
- Less likely to harbor disease pathogens

Strategically... CC should complement the following crop

Corn strategy: Strip Till Easy spring management Other innovations Biotill



Strategically...CC Should Complement the Following Crop

Corn into a mix: High Protein Can Provide:

- Optimum
 Nutrient Release
- Extra water
 During rapid
 demand

Strategically...CC Should Complement the Following Crop

Corn into a mix: High Carbon (Rye)

- Provides erosion and weed control
- Uses/ immobilizes:
 - Nitrogen/ nutrients
 - Disease?

Starter N a must!

Strategically...What about Legume or low N Dependent Crops?

Choices

Do Soybeans need N ? ...Sure, but they capture their own!

Strategically...

- Legumes do well into a high carbon Cover Crop. ...Why?
- Weed Control, Late Season Water and Nutrient Cycling

Starting the System

Example of a Corn and Soybean System being strategically planned over 18 months

Strategically...Planning the System Using the Step-by-Step Approach

 Drill or Aerial Seed Cereal Rye or Annual Ryegrass into Corn Stalks

2. Terminate the Cereal Rye at 12"...

Strategically...Planning the system

3. Plant a short season Soybean into the Rye (preferably early in the season)

Strategically...Planning the system

4. Plant a low C:N mix into or after Soybean

Strategically... Planning the system

18 months into the system we have had:Three no-till plantings (Minimized Disturbance)
Year-round ground cover (Maximized Ground Cover)
Added diversity that was lacking (Maximized Diversity)
Two winters of a living root (Maximized Living Roots)

Strategically...Planning the system

5. NT Corn into a: Biologically active high functioning soil

Options for Higher Level Management

Strategically...Planning the system... for a higher level?

6. Add a Small Grain and make it a true rotation

A Small Grain gives endless options...

Strategically...Planning the system... <u>for</u> <u>a higher level</u>?

7. Maximize Diversity by companion cropping...

Strategically...Planning the system... <u>for</u> <u>a higher level</u>?

- 8. Maximize Diversity by adding
 - livestock...with high end
 - grazing systems

9. Enjoy The Rewards of Soil Health!

Managing for a Living Ecosystem is Key to Optimum Production

"We can take production and conservation further with management systems that continually build Soil Health"

Capture the potential

This information is provided as a public service and constitutes no endorsement by the United States Department of Agriculture or the Natural Resources Conservation Service of any service, supply, or equipment listed. While an effort has been made to provide a complete and accurate listing of services, supplies, and equipment, omissions or other errors may occur and, therefore, other available sources of information should be consulted. The USDA is an equal opportunity provider and employer.

Meeh, NRCS