

Grazing Considerations for Soil Health

Objectives

- 1. Describe advantages and challenges of grazing related to soil health
- 2. Describe impacts of grazing on soil function and animal performance
- 3. Introduce the principles of adaptive grazing management
- 4. Explain management strategies

Advantages of Grazing

- Livestock manure as primary source of nutrients for crop production cycling nutrients from crops through animals and back to land*
- Biological acceleration, improving soil health at faster rate
 - Add biology
 - Incorporation of organic matter
- Additional source of income
- Increased nutrient cycling (C/N ratio impacts)

Advantages of Grazing

No-Till Farmer

- Increase mycorrhizal fungi abundance
- More rapid building of soil aggregates
- Improved infiltration
- Salinity remediation; grazing can better utilize areas where perennial vegetation is required
- Minimize import of feedstuffs to farm*

Advantage Of Grazing

- High quantity & quality forage for livestock from perennials
- Grazing that provides adequate recovery will:
 - Maintain adequate cover
 - Increase infiltration
 - Decrease evaporation
 - Improve plant vigor
- Grazing can be managed to improve diversity
- Minimize feeding and improve animal health
- Biological acceleration greater improvements and at a faster rate
 - Add biology
 - Incorporation of organic matter

Advantages of Grazing

- Potential increase in diversity of insects to help reduce pest species
- Livestock serve as a sink for agricultural byproducts*
- Encourages establishment of perennial forages as the primary feedstuff for ruminant livestock*

King's Agriseeds

Challenges of Grazing

Megapixl.com

- Lack of knowledge/familiarity about:
 - Livestock management/herd health
 - Equipment/infrastructure needed; how to use
- Increased time/level of management to prepare operation, move fence, livestock, water, etc.
- Lack of grazing infrastructure: no fences, fences in poor condition, no water nearby

Challenges of Grazing

- Potential hassle working out lease agreement with livestock owner
- Potential risk of livestock not being moved frequently enough causing compaction
- Liability if livestock cause accident on public roads

No-Till Farmer

Research grazing cover crops:

- MN and IA:

 fertility, total organic carbon, inorganic C, total C, total living microbial biomass
- GA: grazing cover crops did not cause substantial physical damage to soil

• Research grazing crop residues:

- IA in winter: utilizing corn stover as an inexpensive feed source is a viable option; posing minimal reductions to soybean yield
- NE in fall and spring: long-term corn residue grazing had little to no effect on soil properties and did not affect crop yields

- On-farm field testing in ND grazing cover crops with no-till compared to farms without cover crops and/or no-till:
 - 7 times higher N
 - 4 times higher P
 - 9 times higher K
 - 4 times higher water extractable organic carbon
 - 4 times higher OM
 - 43 times higher water infiltration

Brown's Ranch

- Research on grasslands in TX compared to heavy or light continuous grazing, multi-paddock grazing offered:
 - Greater soil cover
 - Lower soil penetration resistance
 - Lower sediment loss
 - Higher OM and CEC
 - Increased fungal population

Texas A&M University

- On-farm trial in MS comparing high stock density rotational grazing to continuous grazing:
 - Several times higher total soil carbon in topsoil and subsoil
 - Significantly greater soil organic matter in topsoil and subsoil

Effect of Recovery Period

Impacts of Grazing Grasslands for Soil Health

% Leaf Removed	% Root Growth Stopped
10	0
20	0
30	0
40	0
50	2 to 4
60	50
70	78
80	100
90	100

Leaves – The Facts of Growth

- Roots uptake and send water, minerals, and micronutrients to leaves.
- Roots DO NOT transport carbohydrates to the leaves.
- Leaves use carbohydrates to respire.
- 5-10% of new leaf growth is from residual sheath & crown carbohydrate reserves.
- 90-95% of new leaf growth comes from carbohydrates resulting from current photosynthesis.
- Bottom line it takes leaves to make leaves.

Knowledge check – poll question

On perennial grasses, what percentage of leaf area can be removed without significantly affecting root growth?

Effect on Carbon Cycle with Livestock

Effect of Grazing on Nitrogen Cycle

Forage Quality Declines as Livestock Graze Closer to the Soil

Effect of Graze Period on Animal Performance

University of Missouri Forage Systems Research Center

Grazing System Objectives

- Grazing is a tool that can....
 - Improve the resource
 - Degrade the resource
- Grazing System Objective:
 - Provide adequate nutrition
 - Protect and feed soil: feed above/belowground herd

Echo-Y, Inc.

- Work within manager's labor; social constraints
- Fast track to soil health

 mimic nature as closely as possible

Dimensions of Disturbance

- Timing
- Frequency
- Intensity
- Duration

Natural disturbance patterns that generally lead to improved soil health:

- Variable timing
- Low frequency
- High intensity
- Variable duration (condition dependent)

Knowledge Check

Where is the highest quality forage on a plant?

- a) lower leaves
- b) middle leaves
- c) upper leaves
- d) forage quality is the same throughout

Adaptive Grazing Management

- Uses feedback from system to adapt management to fit ecosystem
- Flexible
- Not a specific grazing system
- Realizes benefits of hands-on management:
 - Livestock comfortable with humans (better herd health)
 - Power of observation see changes as they happen
 - Minimizes risk associated with unforeseen changes

Feedback Loop

Continuous Grazing

Justin Morris, USDA-NRCS

Grazing Management for Soil Health Effective method for grazing cover crops

Grazing Management for Soil Health

Grazing Management for Soil Health

Grazing Management for Soil Health

Haying

Another disturbance that can result in poor soil health

Midwest Machinery Company

Effect of Haying on Aggregate Stability

Mellette County, SD

Grazing

Effect of Continuous Haying on Water Infiltration Rate Mellette County, SD

Rotational Hayland Grazing

Other Soil Health Improvement Strategies

Bale Grazing

Saskatchewan Agriculture

Saskatchewan Agriculture

Grazing Management Strategies for Soil Health

- Sufficient quantity and quality of forage
- Plan and control grazing timing, frequency and intensity, and duration:
 - Reduce selectivity decrease impact on desirable plants, ensure proper forage use levels
 - Adequate recovery period for plant health
 - Change season of use from year to year
- It takes leaves to make leaves

More to Ruminate On

How does continuous haying affect soil health?

- Reduction in aggregate stability
- Reduction in soil carbon

Midwest Machinery Company

Cover Crop Selection

- Mixtures typically provide considerably higher production and quality versus single species plantings
- Grass dominated mixes are usually more desirable for grazing purposes
- Warm-season mixes: somewhat lower in protein, but higher yielding
- Cool-season mixes: higher in protein and lower yielding

Cisco Farm Seed

Herbicide Residual Considerations

Follow the label

Methods to Avoid issues with High Quality Forage

Do not introduce hungry animals into a field

Introduce animals slowly or restrict access over 7 − 10

day period

 Provide dry matter (hay, millet hulls, dry pasture, or crop stalks) when grazing high quality cover crops crop

Tractor Supply Co.

Grazing in the 21st century will require us to.....

- Optimize disturbance
- Optimize soil cover
- Maximize biodiversity
- Maximize living roots

Carolyn Wong, USDA-NRCS

