# Subsurface Drip Irrigation

Taylor Zeltwanger



# **Taylor Zeltwanger**



### MN,SD,ND,WI

Sales Service Support Agronomy





# **Family History**

- 1983 moved off dairy to crop/livestock farm
- 1993 greenhouses for hydroponic tomatoes
- 1997 first center pivot in our region
- 2012 first subsurface drip irrigation (SDI) system in our region
- 2018 Joined Nutradrip
- 2019 first SDI system with manure



# **Our Farm**

- Family Operation -
- 4000 acres NE KS and SE NE
- Corn, Soybeans
- 1540 acres irrigated
- 450 acres subsurface drip
- Netafim Drip irrigation dealer
- Garden Center and Landscape





# **Installed systems**



# **Our Team**

#### Meet the Team





TED DRIVIN





HICHTLE RODVELT

TRAVIS ROALY

FIERRE JOXDAAN

TOBUE CARRANCO BIAZ

NutraDrip



TAMI MINDE



DEBORAN EDELWAN





HATHAN HENDLER



DEBEN WIELSEN

BRETT DIGE-WOLFE





DOUG GRINN



BURT CRIMM

WYATT BEYEN

LOOAN METZOFR

LUFITA LUFET MARTINET.



THERT-STRAIM.

ETVIN BENBETT

WARTELLO BALAS TAMATO



MANNAN SRINN

TREVOK HALEMATER

BRANDON WETTSTERN

JOSE FRANCISCO DOMEZ

0187

TAVION ZELTWANDER

SETH MILLER

cnetts.



MILES PETERSON

#DLLY EDELMAN

INTE SCHESSEE









ALEXIS HERMANDES ADDILAN





DANIEL MORE GARCIA













MARTINE?

RERI ALEIRIG DEISSUS



















BILRESTRE ANSELINE

INTE KORVER

MAREABITO DICHA LAUNAS





















RBERTLAND BEYER









With SDI, fertilizer and other chemicals are directly placed into the root zone where they are needed.



#### DripNet PC<sup>™</sup> Technical

INJECTION MOLDED DRIPPERS — Made of high quality polyethylene material and welded into a wall of seamless tubing - prevents dripper damage during installation and distortion of the flow path even as the tubing stretches and expands.



During start-up opens to provide uninterrupted flow and at shut-down closes to prevent soil ingestion and root intrusion.

> – HIGH QUALITY POLYETHYLENE TUBING

> > — TWO ORANGE STRIPES

ANTI-SIPHON MECHANISM OPTION

Seals the dripper outlet at system shut-down, blocking debris from entering the dripline after irrigation.

CHEMICAL RESISTANT MOLDED SILICON SELF-

differential within the water passage resulting

in a uniform flow rate under a wide pressure

INDUSTRY'S WIDEST FLOW PATH

Allows particles through short

TURB NET TECHNOLOGY

Improves dripper performance with expanded

tooth pattern maximizing flow path area allowing debris to pass easily through the dripper.

FLUSHING, SELF-ADJUSTING DIAPHRAGM

Movement maintains a constant pressure

range and varying water quality.

flow path.

### Aries<sup>™</sup> Technical



LARGEST DRIPPER -INLET FILTER AREA Prevents penetration of dirt particles into the dripper.





























| and Active                                                    | Dashboard                                |                                         |                                                                          |                                                                                                                                           | Edit Save                                                                        |
|---------------------------------------------------------------|------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| lehn MrLean controller 🛛 🌩 🐖                                  | Main water meter (1)                     | Disc hitters meter (2)                  | IN - Sand M Filters (U)                                                  | OUT - Sand M Filters (2)                                                                                                                  | DUI-DecHiters(5)                                                                 |
| Dashboard 🗧                                                   | Dally Water Accumulation<br>332.080 THEI | Daily Water Accumulation<br>0.000 (THE) | 2259/19<br>Mar2927=<br>Current Value Daily Info<br>222.8 F51 Mirc. 22.1% | Verge 325 to<br>Verge 325 to<br>Current Value Daily Info<br>14.1 to<br>Max: 39.3 psi<br>Min: 0.7 psi                                      | Huszen<br>Huszen<br>Current Value Daily Info<br>22.3 m Max 39 psi<br>Min: 1,9 ps |
| Calendar<br>System Setup<br>History<br>Graphs<br>Installation | 0.010 (THG)                              | D.010 (THG)                             | Average: 1938                                                            | Average: 13.5 PSI<br>pH sectour (B) (0)<br>127.6<br>Mact ye<br>Current Value Daily Info<br>Max: 12.9 pH<br>Mirr 8.2 pH<br>Average: 8.7 pH | Average: 18.5 PS                                                                 |
| Account Settings                                              | Working Programs                         |                                         | Z.Imgation Program                                                       | nZ - Pagel - 1-1afl Z X                                                                                                                   |                                                                                  |
|                                                               | # Name Statu                             | s Valves                                | Time to End (hhamm) Water Delivered                                      | d Actual How Gal/Min Ne Delivered                                                                                                         |                                                                                  |
|                                                               |                                          | Intesting USbard - Mana - Rana - Rana   | Nara 23.59 00.00.06 HH.MM                                                | 55 A123 0 000 Cal                                                                                                                         |                                                                                  |

## FAQ's



**Depth of Dripline**: 10 to 16" deep

Spacing between dripline: 30, 40 or 60"

How much fresh water do I need: 1 to 5 gpm per acre.

How long does it last: 25+ years

**Cost per acre**: 2200 – 3500 per acre depending on shape/size of field, topography and water quality.

Cost share available: REAP or EQIP, Climate





# How much maintenance is required: Spring startup, winterize, acid treatment

How long does it last: 25+ years

What can go wrong?

- 1. Rodents
- 2. Water quality (Iron and Mg)
- 3. Maintenance, training and support

**Efficiency difference compared to pivot or flood irrigation**? 20-50% water savings

# MEASURE BEFORE WE MANAGE





With SDI, fertilizer and other chemicals are directly placed into the root zone where they are needed.







#### ANTAGONISM

Decrease in availability to the plant of a nutrient by the action of another nutrient (see direction of arrow).

#### STIMULATION -----

An increase in the need for a nutrient by the plant because of the increase in the level of another nutrient.





#### PURPOSE

To raise 400 Bu./A. com by utilizing various intensive management strategies.

#### 2024 RESULTS

| d we det                                                                           | PE PE DE DE L | BU./A. |  |  |  |  |  |
|------------------------------------------------------------------------------------|---------------|--------|--|--|--|--|--|
| 42801CV2P                                                                          | 26.8          | 397.6  |  |  |  |  |  |
| 646PV2P                                                                            | 30.0          | 361.9  |  |  |  |  |  |
| 6574TCV2P                                                                          | 29.6          | 341.2  |  |  |  |  |  |
| These results are based on the disclosed study parameters and participating sites. |               |        |  |  |  |  |  |

#### BECK'S 400 BUSHEL ATTEMPT VS. HAMILTON COUNTY AVERAGE (BU. /A.)



STUDY INPORMATION | Planted 5/2/2024 | Hervested 9/20/2024 | Population 45,000 SeedulA. | Row Wildth 15 in. | Previous Crop Soybeans | Tillage Fall: Dirk Rp, Spring: Field Cultivation | Herbiddes Pre: 10 az. Verdict<sup>9</sup>, 32 az. Anazine, 30 az. Roundup PowerMAX\* 3 Post: 32 az. Roundup PowerMAX\* 3, 16 az. Anazine, 80 az. Acazon\* | Insecticides Escalate\* | Total Nitrogen 455 units as UAN | Soil Type Shoah (Sit Loan) | Soil Teet Values pH 6.5, CLM, 5 3.2, CDC 10.9 | Percent Base Saturation Co 71.2, Mg 11.9, K 5.0, H 11 | Parts Per Million P 73, K 241, 5 7, Zn 2.8, Mn 40, B 0.6





#### **Top and Bottom 10 Return on Investment Performance**

| Top 10                                                                            | ROI \$/A.   |
|-----------------------------------------------------------------------------------|-------------|
| 1. NETAFIM <sup>™</sup> Drip Irrigation                                           | \$317.46/A. |
| 2. Corn High Management                                                           | \$91.11/A.  |
| 3. Corn/Soybean Band vs. Broadcast Fertilizer Rate                                | \$89.16/A.  |
| 4. High Management Soybeans                                                       | \$73.38/A.  |
| 5. Phantom Yield Loss                                                             | \$72.85/A.  |
| 6. Soybean Fungicide/Insecticide                                                  | \$68.15/A.  |
| 7. FurrowForce® Closing System Pressure                                           | \$66.91/A.  |
| 8. Corn Multi-Genetic Planting                                                    | \$61.61/A.  |
| 9. FurrowJet <sup>®</sup> Xyway <sup>®</sup> LFR <sup>®</sup> In-Furrow Fungicide | \$60.30/A.  |
| 10. Corn Smart Hydrogel Soil Moisture Retainer                                    | \$59.09/A.  |
|                                                                                   |             |

# 4 R's of Nutrient management

- Right time
- Right placement
- Right amount
- Right source





### N Uptake & Partitioning for 230 Bushel Corn









Predicted nitrate in deeper groundwater

used for drinking water



DeSimone, L. P. B. McMahon, and M. R. Rosen. 2015. The quality of our Nation's waters: Water quality in principal aquifers of the United States, 1991-2010. USGS Circular 1360, figure 6-7.

1 to 5

> 10



| pH                                    | 7.9         |            |
|---------------------------------------|-------------|------------|
| Sodium Adsorption Ratio (SAR)         | 5.4         |            |
| Adjusted SAR                          | 7.6         |            |
| Total Dissolved Solids (TDS) Est, ppm | 1350        |            |
| Electrical Conductivity, mmho/cm      | 2.25        |            |
| Cations / Anions, me/L                | 26.0 / 26.7 |            |
|                                       |             | lbs / Acre |
|                                       | ppm         | 9 inch     |
| Sodium, Na                            | 303         | 606        |
| Potassium, K                          | 40          | 80         |
| Calcium, Ca                           | 153.6       | 308        |
| Magnesium, Mg                         | 50          | 100        |
| Total Hardness, CaCO3                 | 593         | 1186       |
| Nitrate, NO3-N                        | 7.2         | 14.4       |
| Sulfate, SO4-S                        | 236         | 472        |
| Chloride, Cl                          | 51          | 102        |
| Carbonate, CO3                        | < 1.0       | < 2        |
| Bicarbonate, HCO3                     | 610         | 1220       |
| Total Alkalinity, CaCO3               | 504         | 1000       |
| Boron, B                              | 0.28        | 0.56       |
|                                       |             |            |

"<" - Not Detected / Below Detection Limit







| Potassium        |     |        |            |
|------------------|-----|--------|------------|
| Ammonium Acetate | ppm | 264.2  | Wiry High  |
| Calcium          |     |        |            |
| Ammonium Acetate | pim | 2915.9 | High       |
| Magnesium        | ppm | 210.7  | sery sliph |
| Znc              | ppm | 4.7    | Righ       |
| Manganese        | ppm | 4.8    | Low        |
| Iron             | ppm | 42.5   | Very Migh  |
| Copper           | ppm | 0.8    | Medium     |
| Boron            | ppm | 0.3    | Low        |
| Sulfur           | ppm | 7.6    | Low        |

| Potassium        |     |        |           |
|------------------|-----|--------|-----------|
| Ammonium Acetate | ppm | 260.7  | High      |
| Calcium          | 1   |        |           |
| Ammonium Acetate | ppm | 2997.7 | Medium    |
| Magnesium        | ppm | 427.5  | Very High |
| Znc              | ppm | 1.2    | Medium    |
| Manganese        | ppm | 8.6    | Medium    |
| Iron             | ppm | 67.4   | Very High |
| Copper           | ppm | 1.0    | Medium    |
| Boron            | ppm | 0.3    | Low       |

| Total Est N-Release | Ibs | 41.1  |          |
|---------------------|-----|-------|----------|
| Phosphorus          |     |       |          |
| Total P H3A         | ppm | 3.9   | Mark and |
| P H3A (Inorganic)   | ppm | 3.8   |          |
| P H3A (Organic)     | ppm | 0,1   |          |
| Available P205      | ibs | 8.8   |          |
| PSaturation         | *   | 4.3   | Redium   |
| Potassium           |     |       |          |
| AEH                 | ppm | 53.3  | Medium   |
| Calcium             |     |       |          |
| АЗА                 | P   | 433.4 | Low      |
| Calcium Saturation  | *   | 4.8   |          |

| btal Est N-Release | ibs | 52.7  |                |
|--------------------|-----|-------|----------------|
| Phosphorus         |     |       |                |
| ibtal P H3A        | ppm | 4,1   | Service Scores |
| P H3A (Inorganic)  | ppm | 3.2   |                |
| P H3A (Organic)    | mqq | 0.9   |                |
| Wallable P205      | ibs | 7,8   |                |
| P Saturation       | *   | 3.9   | Medium         |
| Potassium          |     |       |                |
| H3A                | ppm | 51.1  | Medium         |
| Calcium            |     |       |                |
| H3A                | ppm | 337.6 | intera Land    |

#### SDI EFFLUENT WATER APPLICATION



**\$0.60 per head per day of value** 



# How is manure valued on your farm?

Is it an asset or liability?

Questions to assess this:

Do you look at the lagoon and think of the cost to empty?
 Or do you think how much revenue could you produce?
 Is the question how many gallons per acre you can apply?
 Or how few of gallons and how many acres you can stretch it to?



# MANURE THROUGH DRIP



Riverscreen: 120 mesh screen

Works on most lagoons with solids less that 2%



# **MICROFILTER – Demo trailer**











## Microfilter

- Second stage separation
- 25 micron screen
- 15 hp low operating cost
- Liquid from here to drip irrigation



## THE RELATIVE SIZE **OF PARTICLES**

From the COVID-19 pandemic to the U.S. West Coast wildfires, some of the biggest threats now are also the most microscopic.

A particle needs to be 10 microns (µm) or less before it can be inhaled into your respiratory tract. But just how small are these specks?

Here's a look at the relative sizes of some familiar particles ¥

HUMAN HAIR 50-180µm FOR SCALE

FINE BEACH SAND 90µm>

GRAIN OF SALT 60µm >

WHITE BLOOD CELL 25µm >

GRAIN OF POLLEN 15µm >

DUST PARTICLE (PM10) <10 µm >

RED BLOOD CELL 7-8µm 7

RESPIRATORY DROPLETS 5-10µm

DUST PARTICLE (PM2.5) 2.5µm >

BACTERIUM 1-3µm > WILDFIRE SMOKE 0.4-0.7 um s CORONAVIRUS 0.1-0.5µm ¥ T4 BACTERIOPHAGE 0.225µm ZIKA VIRUS 0.045µm > P

and hay fever-which 1 in 5 Americans experience every year. Instead Harsterd Health

Pollen can trigger allergic reactions

' The visibility limits for what the naked eye can see hovers around 10-40µm.

Respiratory droplets have the potential to carry smaller particles within them, such as dust or coronavirus.

Wildfire smoke can persist in the air for several days, and even months.

SOURCES Casestream, Detroi Loverbay, 574, Francial Times, News Medical, Science Direct, SCMP, Scient Sokolowski, Mitoclast, U.S. Dayt of Snergy COLLABORATORS. RESEARCH + WRITING Common Ang, Iman Ghown | DESIGN + ART DIRECTION Floringer Scholl

CAPITALIST

(f) ()/visualcapitalist () () @ @visualcap () visualcapitalist.com



### N, P, K Lbs/1000 gallons Dairy farm



N, P, K Lbs/1000 gallons Swine finishing maure KS





# Adding value.....



### What else can we use it for?

- Starter
- Biological
- Spray carrier
- Plant food
- Root stimulant
- Humic and Fulvic values



|              | IAS Laboratories<br>2515 East University Drive<br>Phoenix, Arizona 85034<br>(602) 273-7248<br>Fax (602) 275-3836 |        | October 30, 2024<br>24J0480 | Submitted By:<br>Report To:<br>Project: | Kurt Grimes<br>Nutradrip<br>Swine Processed |
|--------------|------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|-----------------------------------------|---------------------------------------------|
|              |                                                                                                                  | S      | ample Results               | i                                       |                                             |
| Sample Nar   | ne: Lagoon                                                                                                       |        |                             |                                         |                                             |
| IAS Lab ID:  | 24J0480-01 (Fertilizer)                                                                                          |        |                             |                                         |                                             |
|              |                                                                                                                  | Result | MRL                         | Units                                   | Method                                      |
| Organic Aci  | ds                                                                                                               |        |                             |                                         |                                             |
| Fulvic Acid  |                                                                                                                  | 0.86   | <0.01                       | %                                       | IHSS/Lamar/AOAC                             |
| Time Analyz  | zed: 10/31/2024 9:12:00AM                                                                                        |        |                             |                                         |                                             |
| Humic Acid   |                                                                                                                  | 0.15   | <0.01                       | %                                       | IHSS/Lamar/AOAC                             |
| Time Analyz  | zed: 10/31/2024 9:12:00AM                                                                                        |        |                             |                                         |                                             |
| Elements ar  | nd Compounds                                                                                                     |        |                             |                                         |                                             |
| Sulfur (S)   |                                                                                                                  | 0.0141 | <0.0001                     | %                                       | EPA 3050B                                   |
| Time Analyz  | zed: 11/1/2024 1:10:00PM                                                                                         |        |                             |                                         |                                             |
| Physical Pro | operties                                                                                                         |        |                             |                                         |                                             |
| Moisture     |                                                                                                                  | 98.41  | <0.01                       | %                                       | AOAC 967.03                                 |
| Time Analyz  | zed: 10/31/2024 9:12:00AM                                                                                        |        |                             |                                         |                                             |
| Organic Mat  | ter                                                                                                              | 1.75   | <0.01                       | %                                       | AOAC 967.05                                 |
| Time Analy:  | zed: 10/31/2024 9:12:00AM                                                                                        |        |                             |                                         |                                             |

# Greenhouse Gas GHG

### Methane, Nitrous Oxide, CO2

COP28



### **GREENHOUSE GAS EMISSIONS**

In side by side studies in Madera County California by Marten Berger et al, UC Davis, approximately 70-90% fewer greenhouse gases were released, when dairy effluent water was applied through a SDI system.







| Year | Pivot_Yield<br>_t/ac | Drip_Yield<br>_t/ac | Feed_Value<br>_\$/t | Pivot_Reven | nue_\$ | Dri | p_Revenue_\$ | ROI Per Year    | ROI \$/ac    | Pivot Gallons | Drip Gallons | Gallons<br>Saved | Annual Precip<br>Inches |
|------|----------------------|---------------------|---------------------|-------------|--------|-----|--------------|-----------------|--------------|---------------|--------------|------------------|-------------------------|
| 2023 | 24                   | 26                  | 51.26               | \$ 45,5     | 518.88 | \$  | 69,703.35    | \$<br>24,184.47 | \$<br>462.42 | 12,700,000    | 10,763,740   | 1,936,260        | 9.7                     |
| 2024 | 19                   | 20                  | 46.78               | \$ 32.8     | 886.34 | \$  | 48.931.88    | \$<br>16.045.54 | \$<br>306.80 |               | 0.400.000    |                  | 14                      |



Case Study; Sauk Center, MN

#### Year 1

- Saved 1.9 MG
- Gained 15.3 Acres
  Yield Increase 2 ton/ac

#### Year 2

- Irrigated 2.25"
- Spoon-fed the crop

#### Year 3

- Utilize SAP and Rapid soil testing to address nutrient deficiencies in season.



## **Thank You and Questions**





taylor@nutradrip.com

www.nutradrip.com

320-349-1301