

Cover Crop Management

Objectives

- 1. List benefits of cover crops
- 2. Identify the different plant functional groups
 - Name 2-3 representative species in each group that are common to most of the US.
 - List key benefits of the representative species
- 3. Determine how to manage cover crops

Cover Crop Purposes

Identify Resource Concerns & Objectives

- Crop diversity (habitat)
- Soil surface armor (erosion)
- Build stable soil aggregates
- Improve water cycle/ availability
- IPM/beneficial insects
- Build or improve soil N fixation organic matter

- Nutrient cycling/ efficiency/ acquisition
- Air Quality
- Adjust carbon/nitrogen ratios
- Wildlife winter food & shelter
- Livestock integration

Cover Crop CPS (340)

PURPOSE

This practice is applied to support one or more of the following purposes:

- Reduce sheet, rill, and wind erosion.
- Maintain or increase soil organic matter.
- Improve soil aggregate stability.
- Improve habitat for soil organisms.
- Reduce water quality degradation by utilizing excess soil nutrients.
- Reduce weed and plant pest pressure.
- Improve moisture management.
- Reduce soil compaction.
- Supply nitrogen to the subsequent crop.
- Improve habitat for pollinators, beneficial organisms, or natural enemies of crop pests.

NRCS, NHCP May 2024

Cover Crop Considerations

for Successful Planning

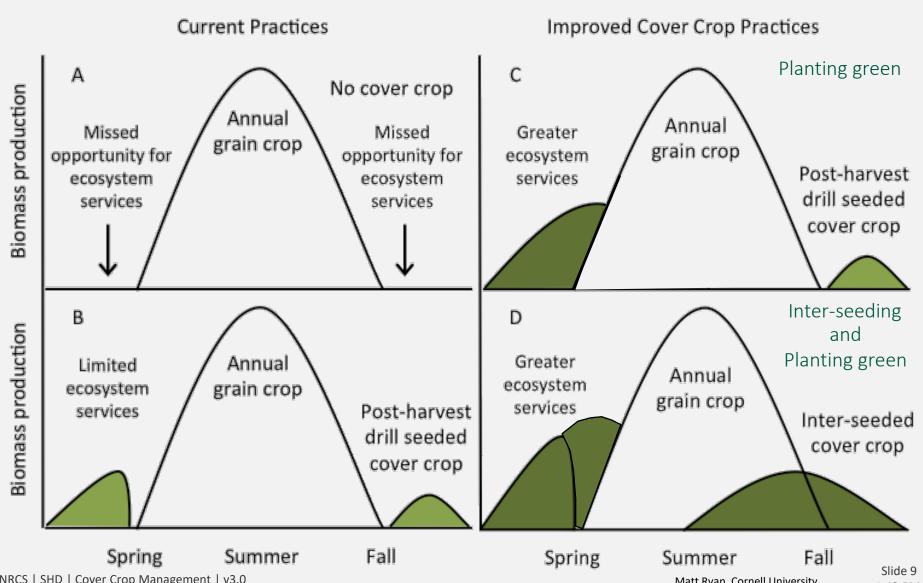
- Site preparation
- Early weed control
- Timing and species (adequate growing season)
- Crop rotation/diversity
- Seed quality (bin run, PLS, certified)

- Seeding method seed-soil contact (broadcast vs. drilling)
- Seed size/seeding depth
- Legume inoculation
- Moisture
 management
 (cover benefits,
 water use)
- Producer's goals

Cover Crop Considerations

for Successful Planning

- Residue management (cash crop)
 before & after cover crop emergence
- Nutrient cycling (C:N ratio, residual NO₃)
- Weed, insect & disease management
- Termination method/timing
 - Know how you are going to terminate before you plant
- Economics
 - Yield impacts (+/-), cost of establishment, soil improvement, can we afford not to use them?



What is your Seeding Timeframe?

- Spring Fallow ground, prevented planting or prior to a summer crop
- Early Summer After early vegetable harvest, winter grain or small grain forage harvest, after first crop hay
- Late Summer After grain harvest, Interseeding into corn or soybean, cotton etc.
- Fall After fall crop harvest

Cover Crops Niches for Summer **Annual Crops**

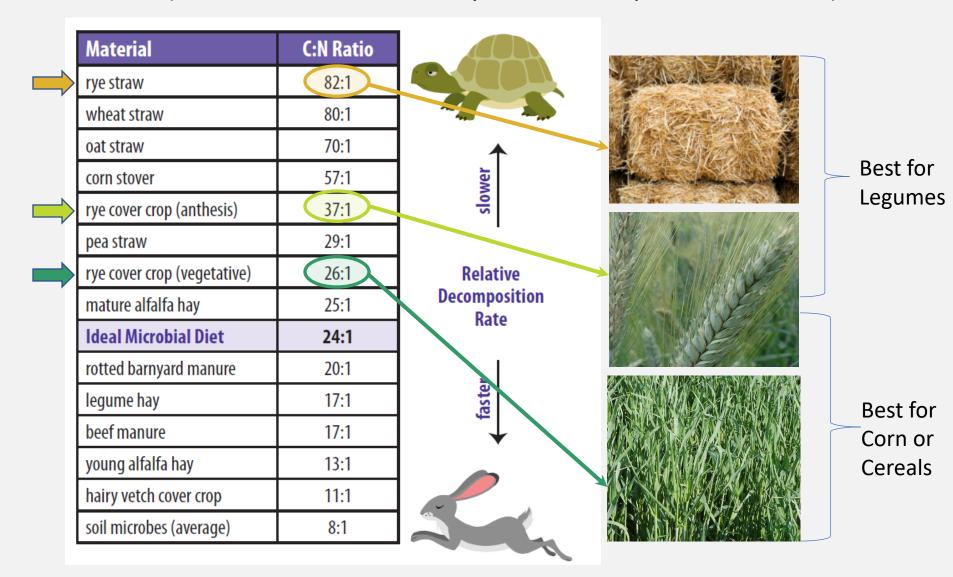
Seeding Considerations

- Earlier seeding results in better seed germination, tillering, growth, survival and more biomass.
- Delaying termination in spring can compensate for delayed planting in the fall (some producers have learned to plant green)
- Be aware of planting dates based on species in the mix (warm / cool season; winter grains /cool season legumes and brassicas)
- Drilling is much more efficient than surface broadcast. Increase seeding rate by 10-30% when broadcasting (some states have specific, higher rates for broadcast vs. drilling).
- Higher seeding rates are not necessarily good can be detrimental (i.e., increases competition for limited resources)

What Characteristics Should Be Considered?

- Growth cycle
- Growth habit
- Root architecture
- Growth rate
- Chemical composition
- Stress tolerance
- Time to flowering
- Pest resistance or susceptibility
- Nutrient dynamics

What to Seed


Choosing the right cover crop for:

- ✓ Nutrient availability
- ✓ Nutrient requirements
- ✓ Stabilizing nutrients
- ✓ Weed suppression
- ✓ Insect and disease suppression
- ✓ Erosion Control
- ✓ Forage: not a purpose of a cover crop but valuable.
- ✓ Acceptable planting and termination techniques for the producer

There may be other objectives identified during the planting process to address



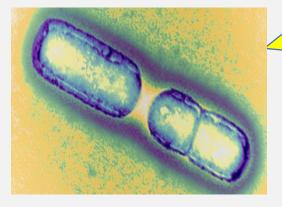
C:N ratio in Cover Crops (Nutrients Availability & Decomposition Rate)

Bacteria
C:N ratio about 5:1

5:1

Bacteria Feeding Nematode C:N ratio about 10:1

10:1



Bacteria

C:N ratio about 5:1

Bacteria Feeding Nematode

C:N ratio about 10:1

Consume two bacteria to get enough carbon for function and reproduction

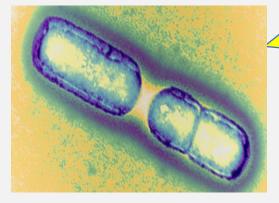
Bacteria

C:N ratio about 5:1

Bacteria Feeding Nematode

C:N ratio about 10:1

Consume two
bacteria to get Only
enough carbon for Needs
function and 1 part N
reproduction



Bacteria

C:N ratio about 5:1

Bacteria Feeding Nematode

C:N ratio about 10:1

Consume two bacteria to get only enough carbon for Needs function and 1 part N reproduction

R. Gaugler, DEEZ, Rutgers U

Excrete 1
part N to
soil solution
as Plant
Available N

Reduce N Losses

- Nitrate mineralized from crop residues and soil OM Is highly soluble through the winter.
- Nitrogen leaching can be significant even without fall N applications.

Residue Management for N Retention and Weed Control

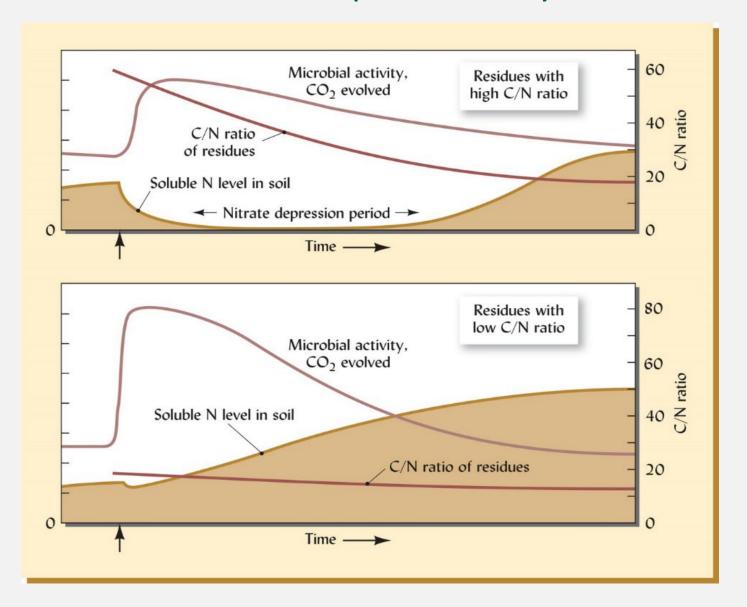
Nitrogen Immobilization

Cover Crop
C:N ratio about 40:1

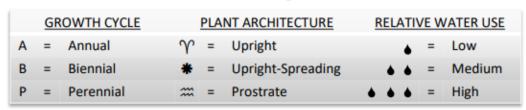
Bacteria
C:N ratio about 5:1

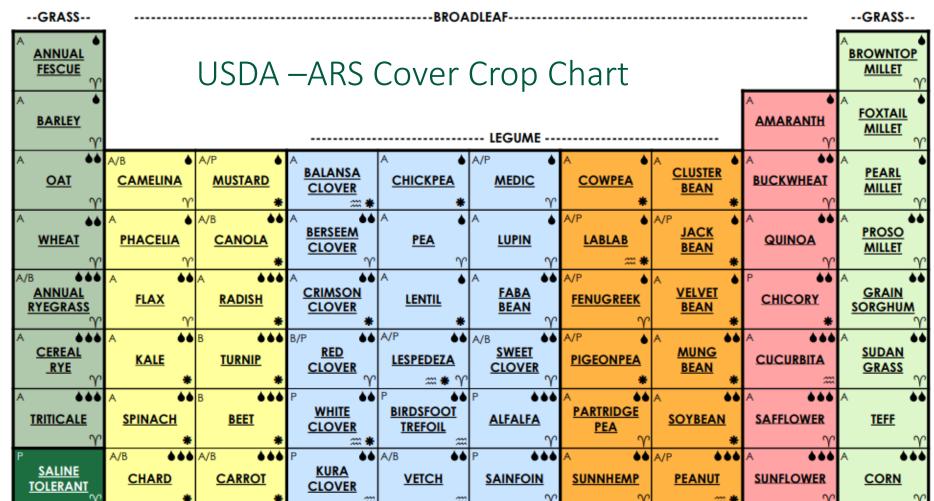
Nitrogen Immobilization

Cover Crop
C:N ratio about 40:1


Consume enough carbon from the rye for respiration & body structure

Bacteria
C:N ratio about 5:1


How C:N is Impacted by Microbes



Cover Crop Chart

Oat (Avena sativa L.)

This is an example of using the ARS Cover Crop Chart

- Cool Season, grass
- Annual
- Upright plant architecture
- Medium water use
- Fair salinity tolerance
- Seeding depth: 1 − 2 inches
- Crude protein: hay 9-15%, grain 13-18%
- C:N ratio: 33
- Forms arbuscular mycorrhizal associations
- Self pollinator (wind)
- · Rated 'very good' at scavenging nitrogen from the soil

Functional Groups

Warm Season

 Grasses, Broadleaves and Legumes

Cool Season

 Grasses, Broadleaves and Legumes

Cool Season Grasses

- Annual Ryegrass
- Cereal Rye
- Barley
- Oats
- Wheat
- Triticale

Warm Season Grasses

- Pearl Millet
- Japanese Millet
- Sorghum-Sudan grass
- Forage Sorghum
- Teff

Brown rib sorghum - sudan grass

Pearl Millet

Cool Season Broadleaves

- Radish
- Turnip and Rape
- Kale and Collards
- Mustard
- Phacelia

Know How & When Cover Crops Produce Seed so They Don't Become a Problem

- Radishes are photoperiod sensitive Longer days = seed set
 - Avoid spring/early summer
- Mustards mature quickly, blooming in 45-60 days after planting
- Some brassicas (turnips, collards) require vernalization (needs chilling) to make viable seed
- Climate dependent, some brassicas can over winter

Warm Season Broadleaves

- Buckwheat
- Safflower
- Sunflower

Cool Season Legumes

- Vetch
 - Hairy, Purple, Common, Woolypod
- Crimson Clover
- Perennial Clovers
 - Red, White, Alsike
- Winter Pea
 - Austrian, Canadian

Warm Season Legumes

- Cowpea
- Soybean
- Sunn hemp
- Chickpea
- Mungbean
- Chickling vetch
- Guar

Need for Legume Inoculation

- Inoculants help guarantee the successful formation of nitrogen-fixing nodules in legumes
- Inoculants are species specific
- Inoculants are alive and have a maximum storage life
- Keep inoculant refrigerated out of direct sunlight and Use prior to expiration date.

Natural Resources Conservation Service

Plant Materials Program Washington, D.C.

July 2021

Plant Materials Technical Note 5

Using the Appropriate Legume Inoculant for Conservation Plantings

Bin Run Seed

Certified or VNS What is PLS?

PLS = purity x germ $65.5 \times 90 = 58.95\%$

PLS per bag 50# x 58.95% = 29.5 #

10#/ac seeding rate requires? 10#/ac / 58.95% = 16.9 #

80%

1096

WA

PURE SEED:

65.50% OTHER CROP 0.00%

INERT MATTER:

WEED SEED:

COATING MATERIAL 34%

NOXIOUS: NONE FOUND

GERMINATION:

HARD SEED!

ORIGIN:

AMS#

NET WEIGHT:

50 LBS

DATE TESTED:

1/2013

INOCULANT USED IS A ORGANIC PEAT BASED PRODUCT

0.45%

0.05%

Completing 340 IR Sheet

Planned Seeding date: 6/1/2023 Planned termination date: 4/15/2024 Planned termination method: Herbicide Additional specifications and notes: (Seedbed prep, Planting method, Other information as needed)				
Producer:	Date:			-
Planner:	Date:			
Certification				
practice has been applied and meets NRCS standards and specifications. Document or refer to attachment for each item below Year 1 Year 2 Year 3				
Seed tags and receipts for cover crop seed				
Record of planting date, and seeding rate				
- Record of method of termination and date				
Photo of cover crop before termination				
Acres Certified				
Planner Signature				
Date		NRCS UTAH 2023		

Knowledge Check

What are the four functional groups of cover crops?

Answer:

Warm Season Grasses

Cool Season Grasses

Warm Season Broadleaf

Cool Season Broadleaf

PMC Variety Trials

- National Cool Season Cover Crop Adaptation Trials
 - Regional Technical Notes
 - PMC Study Reports
- Spring planted cool season cover crops in the Northern Great Plains
- Other Cool Season Cover Crop Trials
- Warm Season Cover Crop Adaptation Trials

Cultivars Vary

black oats (Avena strigosa)

SoilSaver

black-seeded winter oats (Avena sativa)

Cosaque

balans a clover (*Trifolium michelianum*)

Fixation Frontier

<u>crimson clover (Trifolium incarnatum)</u>

AU Robin Contea AU Sunrise Dixie

AU Sunup KY Pride

field peas (Pisum sativum)

Arvica Lynx

Dunn Maxum

Frostmaster Survivor-15

Windham Whistler

red clover (*Trifolium pratense*)

Cinnamon Plus Kenland
Cyclone II Mammoth

Dynamite Starfire

Freedon Wildcat

daikon radish (Raphanus sativus)

Big Dog Graza

Concorde Groundhog

Control Lunch

Defender Nitro

Driller Sodbuster

Eco-till Tilllage

cereal rye (Secale cereale)

Aroostook Maton II

Bates Merced

Brasetto Oklon

Elbon Rymin

FL 401 Wheeler

Guardian Wintergrazer

Hazlet Abruzzi

Maton

hairy vetch (Vicia villosa)

CCS-Groff Purple Prosperity

Lana TNT

Purple Bounty Vilana

Drill

- Most time consuming
- May allow reduced planting rate
- Provides row plant spacing
- Consistent results
- Good soil to seed contact

Air Seeder on a Harrow or Vertical tillage

- Wide swath at 10 mph
- Fast
- Provides a random plant spacing
- Soil disturbance

Fly it on

- Most flexible timing
- Fast
- Provides a random plant spacing
- No seed to soil contact/moisture dependent
- Higher seeding rates may become impractical

Fly it on...When?...What?

- Target the optimum window
- Balance sunlight and moisture
- Growing Degree Days
- •Some species are more adapted, seed size
- Lack of soil to seed contact/Moisture dependent

Highboy for establishing into standing corn

Air Seeder on Combine Head

Ray McCormick, Vincennes, IN

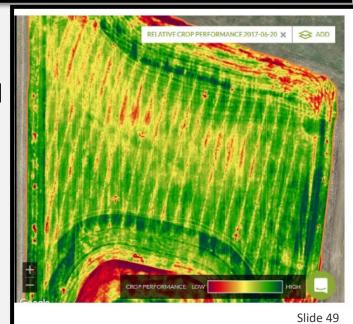
- Concurrent operation
- Cheap / Fast
- Provides a random plant spacing
- Seed placed beneath the residue

Precision planting in narrow rows (15" rows)

- Use existing bean planter
- Less seed per acre
- Provides precision row/ plant spacing
- Consistent results
- Good soil to seed contact

Inter-seeding Options

Planting Green


Advantages:

- increased biomass for weed control
- better planter performance in standing cover vs a thick mat
- more biomass reduces evaporation and erosion

Plan accordingly to reduce potential challenges

- increased pest pressure (green bridge?)
- more risk of wrapping on planter drives and wheels; hair pinning
- pollen shed plugging breathers or air flow devices
- over utilization of moisture.

Cover Crop Termination Methods

- Herbicide burn down
- Tillage
- Frost termination
- Crimper / Roller (mature enough to kink the stem)
- Grazing
 — Not in
 Termination Guidelines
- Shredding / mowing
- Combination of methods

COVER CROP -Termination When and How?

- Have a good GAME PLAN...
 - What are your goals?
- Be adaptive to the season
- Wet springs happen!

 NRCS | SHD | Cover Crop Management | v3.0

Cover Crop Herbicide Restrictions

Forage and grain (food chain)

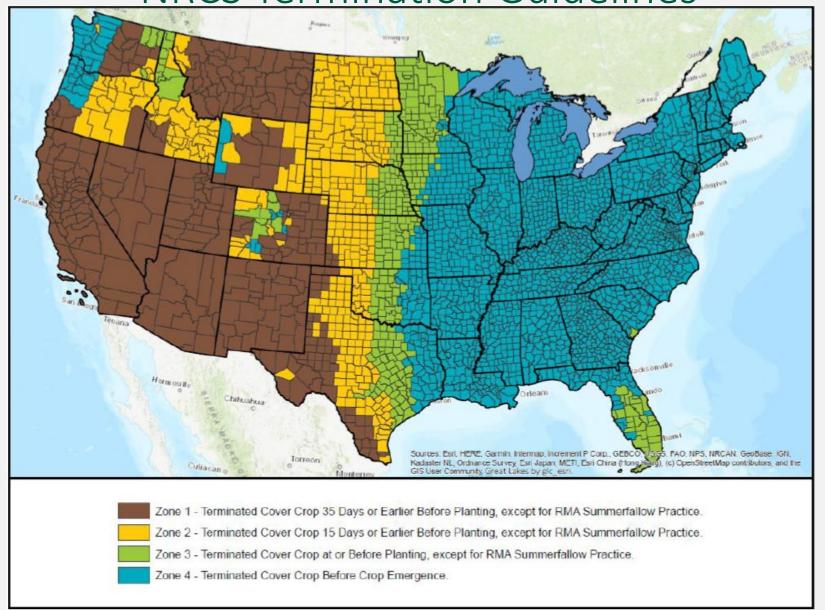
- Herbicide must be labeled for all crops
- Rotation/plant back restrictions
- Forage restrictions (grazing, haying)

Cover only (soil building or erosion)

- At your own risk (some labels lack info)
- Review labels/experience
- Climate & soils (biological activity)

Herbicide Restrictions from a Planning aspect

Planner Needs:

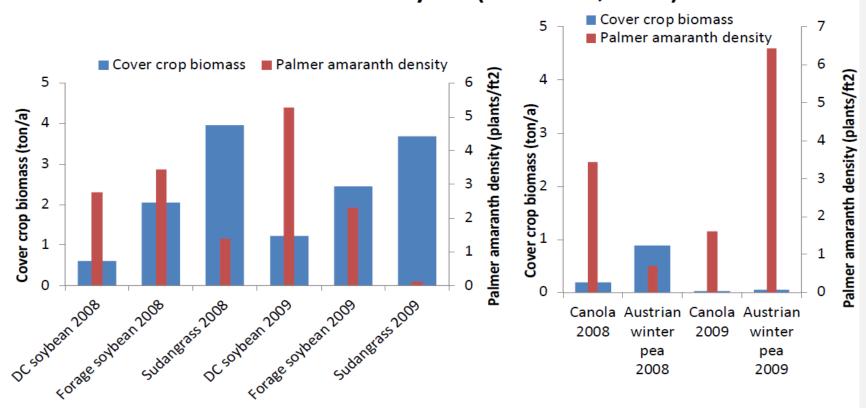

- Determine producers crops in the system
- Need to inventory producer herbicides
- May need to look up labels, Look at plant back timing.
- Decide if your species mix will be an issue

Producer Needs:

- Follow label
- Do a <u>bioassay</u> to assure no carryover
- Check with the planner if they need to switch a species out of the mix

NRCS Termination Guidelines

Covers and Pest Management


- Reduce sunlight reaching soil surface
- Alter micro-environment during weed seed germination
- Release of chemicals from roots or decaying residue to inhibit weed seed germination (allelopathy)
- Improve overall soil health to enhance crop vigor
- Physical barrier to pathogens

Residue Effect on Palmer Amaranth

- Cover crops in wheat stubble, before grain sorghum
- Every 900 lb/ac increase in cover crop biomass reduced Palmer amaranth biomass by 4% (Petrosino, 2010)

Cover Crop Planning Tools

- Cover Crop 340 Practice Standard
- Cover Crop Councils
- Resources and Publications—Soil Health Division
- Sustainable Agriculture Research & Education (SARE)
 - Online Book and Topic Room on Cover Crops
- Cover Crops for Sustainable Crop Rotation and Soil Health and the SARE cover crops topic room
- No-Till Farmer: The Pluses And Minuses Of Today's Most Popular Cover Crops
- Various industry cover crop calculators

Soil Health Principles to Support High Functioning Soils

Maximize **Living Roots**

Fuel Soil Biology Improve Resilience

Feed

Protect

Soil Aggregates Organism Habitat SOM

