

Technical Memorandum

То:	Walsh County Water Resource District
From:	Zach Herrmann, PE Houston Engineering, Inc.
Subject:	Bylin Dam Environmental Assessment – Appendix D-8: Stream Classification and Riparian Area Assessment
Date:	May 1, 2024
Project:	HEI 7135-0037 NB FR Dam No. 1 (Bylin Dam) Rehab Plan

BACKGROUND

Bylin Dam is located on the North Branch Forest River in Sections 5 and 6 of Norton Township in Walsh County, North Dakota. A Watershed Plan – Environmental Assessment for the review of rehabilitation of Bylin Dam is currently underway. The purpose of the Watershed Plan is to bring Bylin Dam into compliance with current NRCS and North Dakota State Water Commission (SWC) dam performance, design, and safety standards while maintaining the current flood protection and recreational opportunities. As part of the Watershed Plan and rehabilitation effort, an assessment of the North Branch Forest River and riparian areas near the dam is required. The purpose of the analysis completed in this technical memorandum is to supplement the development of a conceptual design for an alternative where the dam is decommissioned, or for a no-action alternative where a breach of the dam is possible.

The Rosgen Stream Classification System was used to assess the condition of the North Branch Forest River both upstream and downstream of Bylin Dam. Through this effort, the stream was classified using a Level II assessment out of the *River Stability Field Guide* (Rosgen, 2014a). The Level II assessment involves field measurements to describe the morphology of the river, and to classify the stream being analyzed. The Rosgen Stream Classification System has been widely used in the Midwest to describe the geomorphic condition of rivers. Stream classification is dependent on various field measurements. Experience with fluvial geomorphology, engineering, and hydrology is required for the staff conducting the field measurements and observations.

Rapid Bioassessment Protocols (RBP) (Barbour, Gerritsen, Snyder, & Stribling, 1999) were used to assess the biological condition of riparian areas for the North Branch Forest River in a cost-effective manner. For the purposes of the Bylin Dam rehabilitation effort, the condition of riparian areas was evaluated by using the visual-based habitat assessment in Section 5.2 of *Rapid Bioassessment Protocols for Use in Stream and Wadeable Rivers* (Barbour, Gerritsen, Snyder, & Stribling, 1999). The visual-based habitat assessment provides a qualitative rating for aquatic habitat. The different elements of aquatic habitat to be evaluated include channel substrate, channel morphology, bank structure, and vegetation.

In addition to the stream classification and visual-based habitat assessment, a Level III river stability assessment that involves the collection and analysis of specific channel stability variables was completed to predict river

stability. More information on the Level III assessment is available in the *River Stability Field Guide* (Rosgen, 2014a).

DATA ACQUISITION

Prior to any field work, an offsite review was conducted to determine appropriate locations to collect data. The offsite review included a review of current and historical aerial imagery, a review of the topography in the region based on LiDAR data collected in 2008 and 2009, and a review of observations made during prior field visits. Ultimately the observation locations for the Rosgen Stream Classification analyses are determined in the field and are based on good bankfull channel indicators and riffle sections that are representative of the overall reach. Observations for the RBP assessment were made at the same locations that the Rosgen Stream Classification data was collected.

Figure D-8-1: Location Map of Data Collection Sites for Rosgen Stream Classification

The Rosgen Stream Classification location upstream of Bylin Dam was selected where the existing reservoir, bridges, or culverts would not influence the data. The observation location downstream of the dam was selected because it would not be impacted by the immediate release of the principal and/or auxiliary spillway of the dam, bridges, or culverts. Both locations were selected because they have good bankfull channel indicators and

representative riffle cross sections. The locations where data was collected for the analysis are shown in Figure D-8-1: Location Map of Data Collection Sites for Rosgen Stream ClassificationFigure D-8-1.

The fieldwork for the Rosgen Stream Classification and RBP analysis took place in the summer of 2020. Staff experienced with environmental science, hydrology, engineering, and fluvial geomorphology conducted the fieldwork. Fieldwork for the Rosgen Stream Classification consisted of marking good channel bankfull indicators, marking appropriate riffle cross section locations to be surveyed at a later date, collecting data on riverbed material, and recording various other observations necessary for a Level II stream classification and Level III river stability assessment. Topographic survey data was collected for the bankfull elevations and riffle cross section data includes the channel thalweg, low bank elevations, and any other elevation breaks that occurred within the cross section. Survey data was collected using RTK GPS equipment, and LiDAR was used to supplement topography data outside of the survey extents.

Fieldwork for the RBP assessment involved filling out the Habitat Assessment Field Data Sheets included in Appendix A-1 of *Rapid Bioassessment Protocols for Use in Stream and Wadeable Rivers* (Barbour, Gerritsen, Snyder, & Stribling, 1999). The 10 categories included on the data sheets are described in Section 5.2 of *Rapid Bioassessment Protocols for Use in Stream and Wadeable Rivers*. Those 10 categories were used to qualitatively assess the habitat of the river and adjacent riparian areas in the field. The categories evaluated are listed below.

- 1. Epifaunal Substrate/Available Cover
- 2. Pool Substrate Characterization
- 3. Pool Variability
- 4. Sediment Deposition
- 5. Channel Flow Status
- 6. Channel Alteration
- 7. Channel Sinuosity
- 8. Bank Stability
- 9. Bank Vegetative Protection
- 10. Riparian Vegetative Zone Width

The rating system utilized for RBP involves applying numerical values to each of the categories from 0 to 20 with higher numbers indicating a more optimal aquatic habitat condition for the region. Table D-8-1 shows the different conditional categories used when a total rating number is computed at each RBP location.

Table D-8-1: RBP Conditional Categories Rating System

Condition Category	Total Rating
Poor	0 - 59
Marginal	60 - 109
Sub-Optimal	110 - 159
Optimal	160 - 200

DATA ANALYSIS

After all necessary data was acquired from either the offsite review or from field reconnaissance, the data analysis was conducted for the stream classification (Level II assessment), the RBP assessment, and the river stability prediction (Level III assessment).

STREAM CLASSIFICATION - LEVEL II ANALYSIS

Field data is used to determine parameters necessary to complete the Rosgen Stream Classification. After stream classification, the data is compared to regional curves developed based on stream classification work completed in northeastern North Dakota.

Stream Classification

The parameters determined upstream and downstream of Bylin Dam are shown in Table D-8-2. For definitions or further clarification on each of the parameters listed in Table D-8-2, refer to the *River Stability Field Guide* (Rosgen, 2014a). To classify the North Branch Forest River, the results shown in Table D-8-2 are used along with the Rosgen Stream Classification key shown in Figure D-8-2 (Figure D-8-2 is from the *River Stability Field Guide* (Rosgen, 2014a)).

First, the parameters upstream of Bylin Dam were analyzed to determine the stream classification where Bylin Dam would presumably have little to no effect on the stream. Starting at the top of Figure D-8-2, the North Branch Forest River is a single thread channel with an entrenchment ratio of about 8.35. Therefore, the channel is slightly entrenched. The width-to-depth ratio is 9.4, which falls in the category of a very low width-to-depth ratio. The sinuosity of the channel is 1.13, which is considered a low value. Even though the sinuosity of the channel is lower than expected based on the flow chart in Figure D-8-2, the data indicates that the North Branch Forest River upstream of Bylin Dam is an E type stream because of the entrenchment ratio and width-to-depth ratio.

	Location								
Parameter	Upstream of Bylin Dam	Downstream of Bylin Dam							
Bankfull Width (W _{bkf})	13.57 ft	12.00 ft							
Bankfull Mean Depth (d _{bkf})	1.44 ft	1.58 ft							
Bankfull Cross-Sectional Area (Abkf)	19.6 ft ²	18.98 ft ²							
Width/Depth Ratio (W _{bkf} / d _{bkf})	9.39 ft/ft	7.59 ft/ft							
Bankfull Maximum Depth (d _{max})	2.88 ft	2.77 ft							
Flood-Prone Area Width (W_{fpa})	113.35 ft	37.55 ft							
Entrenchment Ratio (ER)	8.35 ft/ft	3.13 ft/ft							
Channel Materials (Particle Size Index D_{50})	5 mm	5 mm							

Table D-8-2: Rosgen Classification Parameters

Average Water Surface Slope (S)	0.0029 ft/ft	0.0026 ft/ft
Channel Sinuosity (k)	1.13 ft/ft	1.80 ft/ft

Figure D-8-2: Rosgen Stream Classification Key for Natural Rivers (Rosgen, 2014a)

Median particle size is also necessary to obtain a more specific classification. The median particle size of the channel upstream and downstream of Bylin Dam is determined via a pebble count conducted in the field. The particle distribution for the North Branch Forest River upstream and downstream of Bylin Dam is shown in Figure D-8-3. Based on the pebble count data provided in Figure D-8-3, the median particle size of the channel upstream of Bylin Dam is approximately 5 millimeters. Given this information, and the average water surface slope of the channel upstream of Bylin Dam, the North Branch Forest River upstream of Bylin Dam can be classified as an E4 type stream.

Downstream of Bylin Dam, the entrenchment ratio is 3.13 indicating that the stream is slightly entrenched. The width-to-depth ratio is 7.6, which is very low. The sinuosity of the channel is 1.8, which is considered high. Based on this data, the North Branch Forest River downstream of Bylin Dam is an E type stream. This matches the stream type for the North Branch Forest River upstream of Bylin Dam.

The median particle size in the downstream channel is also determined via a pebble count. The pebble count data for the North Branch Forest River downstream of Bylin Dam is shown in Figure D-8-3. The median particle size of the downstream channel is approximately 5 millimeters. Based on this information and the average water surface slope of the channel, the North Branch Forest River downstream of Bylin Dam can be classified as an E4

type stream. Therefore, the North Branch Forest River both upstream and downstream of Bylin Dam is an E4 type stream.

Figure D-8-3: Forest River Pebble Count Data for the North Branch Forest River

Regional Data Analysis

Regional data for northeastern North Dakota was obtained from the NRCS and previous studies done for other dam rehabilitations in the area by Houston Engineering Inc. Data collected for a geomorphic analysis through a Regional Cooperation Partnership Program on the Tongue River (also located in the northeastern North Dakota) was also obtained to be able to compare the data obtained for the North Branch Forest River. Figure D-8-4a, Figure D-8-4b, Figure D-8-4c, and Figure D-8-4d show the regional data and the North Branch Forest River data plotted on logarithmic axes with drainage area on the x-axis. The y-axis represents key parameters used with the Rosgen Stream Classification. The blue dots show the regional data and the blue dotted line shows the general trend of the data. The orange dots represent the data for the North Branch Forest River.

In general, the data from the North Branch Forest River is slightly above the trendlines plotted for the regional data. This is an indication that the bankfull cross sectional area, mean depth, and discharge are slightly higher than expected when compared to other streams in northeastern North Dakota. However, the data are not significantly distant from the plotted trendline and are considered acceptable for this analysis.

Figure D-8-4b: Regional Curves – Drainage Area vs Bankfull Width

Figure D-8-4c: Regional Curves – Drainage Area vs Bankfull Mean Depth

Figure D-8-4d: Regional Curves – Drainage Area vs Bankfull Flow

RAPID BIOASSESSMENT PROTOCOLS

Observations were made in the field for the 10 categories involved in the riparian area assessment using RBP. After the 10 categories were rated for the observation locations upstream and downstream of the dam the data was compiled and is shown in Table D-8-3. The habitat assessment for the North Branch Forest River resulted in an optimal rating for both locations evaluated. The downstream assessment location resulted in a higher rating with the upstream location near the cutoff between sub-optimal and optimal. A higher amount of tree cover in the area downstream helps to improve available cover in the stream and is one reason for the higher RBP rating there. The downstream location also has higher channel sinuosity, and better variability in pool sizes than the upstream observation location. Photos taken during the RBP assessment are provided in Attachment D-8-1 at the end of this document.

				Парта в	51040000		1010001	Totalo			
Location				Cate 4	egory (Ra 5	ting Num 6	ber) 7				TOTAL
Upstream of Dam	9	16	13	18	19	20	6	20	20	20	161
Downstream	40	47	40	40	00	00	10	40	00	00	470

20

Table D-8-3: North Branch Forest River Rapid Bioassessment Protocol Totals

RIVER STABILITY PREDICTION – LEVEL III ANALYSIS

18

19

For this effort, a Level III analysis was completed by using the field data described previously along with some additional information on vegetation and channel substrate recorded in the field. The North Branch Forest River upstream of the dam was used as the reference reach because it is not affected by Bylin Dam.

20

10

16

20

20

178

Stream Stability Indices

18

of Dam

17

Stream stability indices - such as depositional patterns within the stream, and channel blockages - were evaluated both upstream and downstream of Bylin Dam. The results of the stream stability indices are shown on Worksheets 3-2 through 3-10 shown in Attachment D-8-2. The worksheets in Attachment D-8-2 were extracted from River Stability - Forms and Worksheets (Rosgen, 2014b).

The channel flow regime is considered perennial for both the upstream and downstream locations. Runoff is generated by snowmelt, rainfall, and rain on snow scenarios. The flow regime of the downstream location is impacted by Bylin Dam. The observation location downstream of the dam has irregular meanders with evidence of historic oxbows that are cutoff from the stream, while the upstream observation location has more regular meanders. The upstream observation location appeared to have a few additional mid-channel bars compared to the downstream location. A higher amount of channel blockages was noted at the downstream observation location when compared to the upstream location. This is due to the lack of trees in the upstream location. Trees are more prevalent adjacent to the North Branch Forest River downstream of Bylin Dam, which results in more fallen trees in the channel.

The degree of channel incision is significantly higher for the location downstream of Bylin Dam. The width-todepth ratio state is considered stable for both observation locations. Due to the increased sinuosity downstream of the dam, the degree of confinement for the downstream location indicates little or no departure. To summarize the stream stability indices, the Pfankuch channel stability rating (1975) was used. Both observation locations

Rating

Optimal

Optimal

produced a good stability rating for an E4 stream type. The downstream location produced a slightly higher value due to some bank erosion and cutting that was evident downstream of the dam.

Channel Stability

Worksheets 3-11 through 3-21 from *River Stability – Forms and Worksheets* (Rosgen, 2014b) are used to assess the stability of the channel. The stability of the channels is dependent on channel substrate and vegetation adjacent to the streams. Observations and data collection for channel substrate and vegetation were collected in the field for both observation locations. The completed worksheets are shown in Attachment D-8-2.

The results from the data upstream of Bylin Dam show that the channel is moderately stable. Point bar sediment was not able to be obtained for this analysis upstream of Bylin Dam because there were not any evident point bars near the observation location. The lack of point bar sediment along with the stream stability indices upstream of the dam indicate that deposition and incision are not expected to occur. The results show that a slight increase for channel enlargement is expected. The results from the data downstream of Bylin Dam show that the channel is stable laterally with a slightly higher chance of vertical incision when compared to the upstream location. The increase in potential for channel incision is caused by the apparent degree of channel incision at the downstream location (see worksheet 3-7 for the observation location downstream of Bylin Dam). Similar to the upstream observation location shows that there is some potential for channel enlargement.

CONCLUSION

Field data was collected upstream and downstream of Bylin Dam. The field data was used for a Level II stream classification, which results in a Rosgen Stream Classification of type E4 upstream of the dam and a stream type E4 downstream of the dam. Particle distributions upstream and downstream of the dam are used as the representative data for the North Branch Forest River.

A qualitative assessment of the North Branch Forest River was completed using a visual-based habitat assessment with Rapid Bioassessment Protocols (Barbour, Gerritsen, Snyder, & Stribling, 1999). The results of the assessment show that the habitat for the North Branch Forest River near Bylin Dam is optimal. Bylin Dam appears to have minimal impact on the habitat downstream of the dam. The RBP rating downstream of the dam is higher than the upstream location due to a higher frequency of epifaunal substrate and available cover, higher sinuosity, and more variability in pool sizes. The higher RBP rating downstream of the dam is not necessarily a result of the dam being in-place. There may be several reasons that the upstream rating is lower, including increased grazing and a higher percentage of tilled acres in the upstream area.

A Level III river stability analysis was also completed for both observation locations. This analysis indicates that the downstream channel is incised when compared to the upstream channel. This is likely due to the lack of sediment available for deposition because it is being withheld by Bylin Dam. Other than the increased channel incision, the downstream channel seems to be stable when compared to the upstream observation location. Based on the results, minimal lateral movement or vertical aggradation is expected if Bylin Dam were decommissioned.

REFERENCES

- Barbour, M. T., Gerritsen, J., Snyder, B. D., & Stribling, J. B. (1999). *Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers.* Washington, D.C.: US Environmental Protection Agency.
- Pfankuch, D. J. (1975). *Stream Reach Inventory and Channel Stability Evaluation.* U.S. Department of Agriculture, Forest Service No. R1-75-002, GPO No. 696-260/200. Washington, D.C.: U.S. Government Printing Office.
- Rosgen, D. (1996). *Applied River Morphology.* Pagosa Springs, Colorado, United States of America: Wildland Hydrology.
- Rosgen, D. (2014a). *River Stability Field Guide* (2nd ed.). (D. Geenen, Ed.) Fort Collins, Colorado: Wildland Hydrology.
- Rosgen, D. (2014b). *River Stability Forms & Worksheets* (2nd ed.). (D. Geenen, Ed.) Fort Collins, Colorado: Wildland Hydrology.

ATTACHMENT D-8-1 PHOTOS FOR RBP ASSESSMENT

Photos for RBP evaluation upstream of Bylin Dam.

Photos for RBP evaluation upstream of Bylin Dam.

ATTACHMENT D-8-2 RIVER STABILITY PREDICTION WORKSHEETS

Worksheet 3-2. Flow regime variables that influence channel characteristics, sediment regime, and biological interpretations.

Flow Regime											
Stream:	Forest River Stream Type: E4										
Location:	Upstream Bylin - 1 Valley Type: U-GL-TP										
Observers: Paul LeClaire Date: 6/9/2020											
List ALL COMBINATIONS that P1 P2 P9											
General Category											
E	Ephemeral stream channel: Flows only in response to precipitation.										
S	Subterranean stream channel: Flows parallel to and near the surface for various seasons – a sub-surface flow that follows the stream bed.										
I	<i>Intermittent stream channel:</i> Surface water flows discontinuously along its length. Often associated with sporadic or seasonal flows and also with Karst (limestone) geology where losing/gaining reaches create flows that disappear then reappear farther downstream.										
Р	Perennial stream channels: Surface water persists yearlong.										
Specific Category											
1	Seasonal variation in streamflow dominated primarily by snowmelt runoff.										
2	Seasonal variation in streamflow dominated primarily by stormflow runoff.										
3	Uniform stage and associated streamflow due to spring-fed condition, backwater, etc.										
4	Streamflow regulated by glacial melt.										
5	Ice flows/ice torrents from ice dam breaches.										
6	Alternating flow/backwater due to tidal influence.										
7	Regulated streamflow due to diversions, dam release, dewatering, etc.										
8	Altered due to development, such as urban streams, cut-over watersheds, or vegetation conversions (forested to grassland) that change flow response to precipitation events.										
9	Rain-on-snow generated runoff.										

Worksheet 3-3. Stream order and stream size categories for stratification by stream type.

	Stream Size and Order										
Stream:	Forest River										
Location: Upstream Bylin - 1											
Observers: Paul LeClaire Stream Type: E4											
Valley Type:	U-GL-TP Date: 6/9/2020										
Stream Size Category and Order 🥌 S-3(3)											
Category	STREA Bankfu	STREAM SIZE: Bankfull Width									
	meters	Category									
S-1	0.305	<1									
S-2	0.3 – 1.5	1 – 5									
S-3	1.5 – 4.6	5 – 15	1								
S-4	4.6 - 9.0	15 – 30									
S-5	9.0 - 15.0	30 - 50									
S-6	15.0 – 22.8	50 – 75									
S-7	22.8 - 30.5	75 – 100									
S-8	30.5 - 46.0	100 – 150									
S-9	46 - 76	150 – 250									
S-10	76 – 107	250 - 350									
S-11	107 – 150	350 - 500									
S-12	150 – 305	500 - 1000									
S-13	>305	>1000									
	Stream	ı Order									
Add categories For example, a meters (20 fee	s in parenthesis fo a third-order strear t) would be indexe	r specific stream c m with a bankfull v ed as: S-4(3).	order of reach. vidth of 6.1								

Worksheet 3-6. Various categories of in-channel debris, dams, and channel blockages used to evaluate channel stability.

	Channel Blockages											
Stream	: Forest Rive	r Stream Type: E4										
Locatio	n: Upstream B	ylin - 1 Valley Type: U-GL-TP										
Observers: Paul LeClaire Date: 6/9/2020												
Desc	ription/Extent	Materials that upon placement into the active channel or flood- prone area may cause adjustments in channel dimensions or conditions due to influences on the existing flow regime.										
D1	None	Minor amounts of small, floatable material.										
D2	Infrequent	Debris consists of small, easily moved, floatable material, e.g., leaves, needles, small limbs, and twigs.	7									
D3	Moderate	Increasing frequency of small- to medium-sized material, such as large limbs, branches, and small logs, that when accumulated affect 10% or less of the active channel cross-sectional area.										
D4	Numerous	Significant build-up of medium- to large-sized materials, e.g., large limbs, branches, small logs, or portions of trees, occupying 10–30% of the active channel cross-sectional area.										
D5	Extensive	Debris "dams" of predominantly larger materials, e.g., branches, logs, and trees, occupying 30–50% of the active channel cross-sectional area, often extending across the width of the active channel.										
D6	Dominating	Large, somewhat continuous, debris "dams," extensive in nature and occupying over 50% of the active channel cross-sectional area. Such accumulations may divert water into the flood-prone areas and form fish migration barriers, even when flows are at less than bankfull.										
D7	Beaver Dams: Few	An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams.										
D8	Beaver Dams: Frequent	Frequency of dams is such that backwater conditions exist for channel reaches between structures where streamflow velocities are reduced and channel dimensions or conditions are influenced.										
D9	Beaver Dams: Abandoned	Numerous abandoned dams, many of which have filled with sediment or breached, initiating a series of channel adjustments, such as streambank erosion, lateral migration, avulsion, aggradation, or degradation.										
D10	Human Influences	Structures, facilities, or materials related to land uses or development located within the flood-prone area, such as diversions or low-head dams, controlled by-pass channels, velocity control structures, and various transportation encroachments that have an influence on the existing flow regime, such that significant channel adjustments occur.										

Worksheet 3-7. Relationship of Bank-Height Ratio (BHR) ranges to corresponding stream stability ratings.

Worksheet 3-8. Stability ratings based on departure of width/depth ratio from reference condition.

Worksheet 3-9. Degree of confinement departure based on Meander Width Ratio (MWR) divided by reference condition Meander Width Ratio (MWR_{ref}).

Attachment D-8-2: River Stability Prediction Worksheets

Worksheet 3-10.	Pfankuch ((1975) channel stabilit	y rating procedure,	as modified by	/ Rosgen ((1996, 2006b)).
-----------------	------------	-------------------------	---------------------	----------------	------------	---------------	----

Stream:	Forest	River		Location: Upstream Bylin - 1 Valley Type: U-GL-TP Observers: Paul LeClaire D							Date: 6/9/2020																											
Loca-	Kov	Cater	onv			Exce	ellent					Go	ood					Fa	air						Poor													
tion	Ney	Oateg	ory		0	Descriptio	n		Rating		0	Descriptio	n		Rating		[Descriptio	n		Rating			Desc	ription	Rating												
	1	Landform slope	ו	Bank sl	ope gra	dient <3	0%.		2	Bank sl	ank slope gradient 30–40%.		4	Bank s	ank slope gradient 40–60%.			3ank slope gradient 40–60%.			slope gradient 40–60%.			3ank slope gradient 40–60%.			Bank slope gradient 40–60%.		Bank slope gradient 40–60%.		Bank slope gradient 40–60%.		6	Bank s	lope gra	dient >	· 60%.	8
banks	2	Mass ero	sion	No evid erosion	lence of	f past or	future m	lass	3	Infreque future p	ent. Mos otential.	stly heal	ed over.	Low	6	Freque nearly	ent or lar yearlong	ge, caus J.	e, causing sediment			Freque yearlor	ent or larg	ge, cau Iminen	using sediment nearly t danger of same.	12												
pper	3	Debris jai potential	m	Essenti channe	ally abs I area.	ent from	n immedi	ate	2	Presen [:] limbs.	t, but mo	ostly sm	all twigs	and	4	Moderate to heavy amounts, mostly larger sizes.			nostly	6	Modera larger s	ate to he sizes.	avy an	nounts, predominantly	[′] 8													
Ď	4	Vegetativ bank protectior	/e n	> 90% sugges root ma	plant de t a deep iss.	nsity. Vi o, dense	igor and , soil-bin	variety ding	3	70–90% less vig root ma	6 densit <u>y</u> or sugg Iss.	y. Fewe est less	r specie dense c	s or or deep	6	50–709 fewer s discont	% densit species f tinuous r	ensity. Lower vigor and cies from a shallow, ous root mass.			9	<50% o vigor in shallow	density p idicating v root ma	lus fev poor, o ass.	ver species and less discontinuous, and	12												
	5	Channel capacity		Bank heig stage. Wie width/dep = 1.0.	hts sufficient hth/depthe th ratio = 1	ent to cont ratio depar 1.0. Bank-ł	ain the bar rture from r Height Rati	nkfull eference o (BHR)	1	Bankfull s Width/dep width/dep (BHR) = 1	tage is cor oth ratio de th ratio = 1 .0–1.1.	ntained wite parture fro 1.0–1.2. Ba	thin banks. om referen ank-Height	ce Ratio	2	Bankfull : departure 1.2–1.4.	stage is no e from refe Bank-Heig	t contained rence widt ht Ratio (B	d. Width/d h/depth ra HR) = 1.1	lepth ratio atio = I–1.3.	3	3 Bankfull stage is not cor common with flows less departure from referenc Height Ratio (BHR) > 1.			ed; over-bank flows are bankfull. Width/depth ratio hth/depth ratio > 1.4. Bank-	4												
nks	6	Bank rocl content	k	> 65% v 12"+ co	with larg mmon.	ge angul	ar bould	ers.	2	40–65% cobbles	6. Mostl <u>y</u> 6–12".	y boulde	ers and s	small	4	20–40° class.	%. Most	in the 3-	-6" diar	neter	6	<20% r or less.	rock frag	ments	of gravel sizes, 1–3"	8												
/er ba	7	Obstruction to flow	ons	Rocks a pattern Stable I	and logs w/o cuti bed.	s firmly i ting or d	mbedde epositio	d. Flow n.	2	Some pr currents fewer an	esent cau and mino d less firi	using ero or pool fill m.	sive cros ling. Obst	s ructions	4	Modera move w and poo	tely frequ ith high fl ol filling.	ent, unsta ows caus	able obs ing bank	tructions c cutting	6	Frequent obstruct bank erosion year channel migration			and deflectors cause g. Sediment traps full, curring.	8												
Low	8	Cutting		Little or <6".	none. I	nfreque	nt raw ba	anks	4	Some, i constric to 12".	intermitt tions. R	tently at Raw ban	outcurve ks may l	es and be up	6	Signific mat ov	cant. Cut erhangs	ts 12–24 and slo	l" high. ughing	Root evident.	12	2 Almost continuous cuts high. Failure of overhar			ts, some over 24" angs frequent.	16												
	9	Depositio	on	Little or point ba	no enla ars.	argemen	it of char	nnel or	4	Some r coarse	new bar gravel.	increase	e, mostly	/ from	8	Modera and co new ba	ate depo arse sar ars.	stion of nd on old	new gr d and so	avel ome	12	12 Extensive particles.		12 Extensive deposit of particles. Accelerated		sit of p erated	predominantly fine bar development.	16										
	10	Rock angularity	y	Sharp e surface	edges ai s rough	nd corne	ers. Plan	e	1	Rounde Surface	ed corne es smoo	ers and e th and fl	edges. lat.		2	Corner two din	corners and edges well-rounded in wo dimensions. 3 Well-rounded in all smooth.		and edges well-rounded in ensions.			n all dir	mensions, surfaces	4														
	11	Brightnes	ss	Surface Genera	es dull, c Illy not b	dark, or : pright.	stained.		1	Mostly surface	dull, but s.	may ha	ve <35%	6 bright	2	Mixture mixture	Aixture dull and bright, i.e., 35–65% nixture range.		Aixture dull and bright, i.e., 35–65% nixture range.		3	Predon scoure	ninantly d surfac	bright, es.	> 65%, exposed or	4												
E	12	Consolidation of particles		Assorte overlap	orted sizes tightly packed or 2 lapping.			2	Modera overlap	verlapping. Mostly loose assortment with no apparent overlap.				Aostly loose assortment with no apparent overlap.			6	No pac easily r	king evi moved.	dent. L	oose assortment,	8																
Bottc	13	Bottom si distributio	ize on	No size materia	o size change evident. Stable naterial 80–100%.		4	Distribu 50–80%	Moderate change in sizes. Stable material 8 Moderate change in sizes. Stable materials 20–50%.		Jistribution shift light. Stable material 50–80%.		8 Moderate change in sizes. Stable materials 20–50%.		<i>l</i> oderate change in sizes. Stable naterials 20–50%.		Moderate change in sizes. Stable materials 20–50%.		Moderate change in sizes. Stable materials 20–50%.		Aoderate change in sizes. Stable naterials 20–50%.		Moderate change in sizes. Stable materials 20–50%.		12	Markeo materia	d distribu als 0–20'	ition ch %.	ange. Stable	16								
	14	Scouring deposition	and n	<5% of deposit	bottom ion.	affected	l by scou	ır or	6	5–30% constric steeper	affected tions ar 1. Some	a. Scour nd where deposit	at e grades tion in po	ools.	12	30–50° at obst bends.	% affecte ructions <u>Some fi</u>	ed. Depo , constri illing of p	ctions, an ctions, a cools.	d scour and	18	More th	nan 50% change	of the nearly	bottom in a state of yearlong.	24												
	15	Aquatic vegetatio	'n	Abunda green p	ant grow perennia	rth moss II. In swi	-like, da ft water t	rk too.	1	Commo and poo	on. Alga ol areas.	e forms . Moss ł	in low vo nere too.	elocity	2	Preser backwa makes	it but spo ater. Sea rocks sl	otty, mo: asonal a ick.	stly in Igae gr	owth	3	Perenn green,	ial types short-tei	s scarc m bloc	e or absent. Yellow- om may be present.	4												
						Exc	ellent 1	otal =	25				Good 1	「otal =	22				Fair	Total =	0				Poor Total	- 8												
Stream typ	е	A1	A2	A3	A4	A5	A6	B1	B2	B3	B4	B5	B6	C1	C2	C3	C4	C5	C6	D3	D4	D5	D6		Crond Total -	E E												
Good (Stable)	38-43	38-43	54-90	60-95	60-95	50-80	38-45	38-45	40-60	40-64	48-68	40-60	38-50	38-50	60-85	70-90	70-90	60-85	85-107	85-107	85-107	67-98		Grand Total =	55												
Fair (Mod. un	stable)	44-47	44-47	91-129	96-132	96-142	81-110	46-58	46-58	61-78	65-84	69-88	61-78	51-61	51-61	86-105	91-110	91-110	86-105	108-132	108-132	108-132	99-125		Existing Stream	F4												
Poor (Unstab	le)	48+	48+	130+	133+	143+	111+	59+	59+	79+	85+	89+	79+	62+	62+	106+	111+	111+	106+	133+	133+	133+	126+		Type =													
Stream typ	e	DA3	DA4	DA5	DA6	E3	E4	E5	E6	F1	F2	F3	F4	F5	F6	G1	G2	G3	G4	G5	G6	ļ			*Potential	E4												
Good (Stable) atable)	40-63 4	40-63	40-63	40-63	40-63	50-75	50-75	40-63	60-85	60-85	85-110	85-110	90-115	80-95	40-60	40-60	85-107	85-107	90-112	85-107				Stream Type =	nnol												
Pair (Mod. un	siable)	04-80 (97±	04-00 97±	04-80 97±	04-86 97±	04-86 97±	/0-90 07+	/0-96 07±	04-80 97±	106+	106-105	111-125	126-	1314	30-110	01-78	01-78 70+	108-120	108-120	126-	108-120				stability ratio	nuel												
	io <i>)</i>	017	017	077	0/+	0/+	517	517	017	100+	1007	1207	1207	*Ratir	ng is a	djuste	d to po	tential	strear	n type,	not exi	isting s	stream	type	Good	·9 -												

Worksheet 3-11. Form to calculate an overall Bank Erosion Hazard Index (BEHI) rating. Use **Figure 3-7** to determine individual BEHI scores.

Copyright © 2014 Wildland Hydrology

Worksheet 3-12. Various field methods of estimating Near-Bank Stress (NBS) risk ratings to calculate an erosion rate.

	Estimating Near-Bank Stress (NBS)												
Stream:	Forest	River			Location: Upstream Bylin - 1								
Station:				St	ream Type:	E4	١	/alley Type:	U-GL-TP				
Observe	rs:	Paul LeCla	aire					Date:	6/9/2020				
			Methods fo	or Estimati	ng Near-B	ank Stress	s (NBS)						
(1) Cha	annel pat	tern, transve	erse bar, or o	central bar ci	reating NBS		Level I	Level I Reconaissance					
(2) Rac	lius of cu	urvature to b	ankfull width	(R_c/W_{bkf})			Level II General Prediction						
(3) Poc	l slope t	o average w	ater surface	slope (S_p/s	S)		Level II	General Prediction					
(4) Poc	l slope t	o riffle slope	(S _p / S _{rif})				Level II	General	Prediction				
(5) Nea	ar-bank r	naximum de	pth to bankfu	ull mean dep	oth(d _{nb} /d _{bk}	f)	Level III	Detailed	Prediction				
(6) Nea	ar-bank s	hear stress	to bankfull s	hear stress ((τ_{nb} / τ_{bkf})		Level III	Detailed	Prediction				
(7) Velo	ocity pro	files / Isovels	s / Velocity g	radient			Level IV	Valio	lation				
el I	(1)	I ransverse o	r central bars	- short or disc	continuous			NBS = High	/ Very High S = Extromo				
-ev	(1)	Chute cutoffs	s down-valley	/ meander mi	gration conve	eraina flow		ND NB	S – Extreme S = Extreme				
		Radius of	Bankfull	inicalidor ini	Near-Bank	signig nottin							
	(0)	Curvature	Width	Ratio	Stress								
	(2)	R _c (ft)	W _{bkf} (ft)	R _c / W _{bkf}	(NBS)	ſ							
		89.95	13.57	6.6285925	Very Low								
=		Deal Clane	Average	D. ().	Near-Bank		Dom	in a mt					
vel	(3)	S.	Siope	Ratio S., / S	Stress (NBS)		Near-Bar	nant nk Stress					
Le		μ		p ·	(.120)								
					Near-Bank	l							
	(4)	Pool Slope	Riffle Slope	Ratio	Stress								
	(4)	S _p	S _{rif}	S _p / S _{rif}	(NBS)	ſ							
		Near-Bank	Mean Depth	Patio	Near-Bank								
	(5)	d _{nb} (ft)	d _{bkf} (ft)	d _{nb} /d _{bkf}	(NBS)								
≡													
vel				Near-Bank			Bankfull						
Le		Near-Bank	Near-Bank	Shear	Moon Donth	Average	Shear	Patio	Near-Bank				
	(6)	d _{pb} (ft)	Siope	$\tau_{\rm nb}$ (lb/ft ²)	d _{bkf} (ft)	Siope	$\tau_{\rm bkf}$ (lb/ft ²)	τ _{nh} / τ _{hkf}	Stress				
			110		DRI ()				(NB3)				
				Near-Bank									
N Ié	(7)	Velocity	Gradient	Stress									
eve.	(7)	(ft / se	ec / ft)	(NBS)	1								
		Cor	verting Va	alues to a l	Near-Bank	Stress (NI	3S) Rating						
Near-B	ank Str	ess (NBS)			Me	ethod Numl	per						
	Rating	js	(1)	(2)	(3)	(4)	(5)	(6)	(7)				
	Very Lo	ow.	N/A	> 3.00	< 0.20	< 0.40	< 1.00	< 0.80	< 0.50				
	Low	4-	N / A	2.21 - 3.00	0.20 - 0.40	0.41 - 0.60	1.00 - 1.50	0.80 - 1.05	0.50 - 1.00				
	WODEra Line	ile		2.01 - 2.20	0.41 - 0.60	0.61 - 0.80	1.51 - 1.80	1.06 - 1.14	1.01 - 1.60				
	Voru Li	ah	(1)	1.81 - 2.00	0.61 - 0.80	0.81 - 1.00	1.81 - 2.50	1.15 - 1.19	1.61 - 2.00				
	Extren	yıı 1e	Above	< 1.50	> 1 00	> 1 20	2.31 - 3.00	> 1.60	> 2 40				
						+ 1.20	Boting		- 2. 1 0				
				Overall Ne	ear-вапк S	tress (NBS	b) Kating	very	LOW				

Streambank Erosion Prediction													
Stream: Fo	orest River			Location:	Upstream B	ylin - 1							
Graph Used:		Total Stream	Total Stream Length (ft):Date: 6/9/2020										
Observers: Pa	aul LeClaire		Valley Type:	U-GL-TP	Stream Type: E4								
(1)	(2)	(3)	(4) Bank	(5)	(6) Study Benk	(7) Erecion	(8)						
	(Worksheet 3-11) (adjective)	(Worksheet 3-12) (adjective)	Erosion Rate (Figure 3-9 or 3-10) (ft/yr)	Bank (ft)	Height (ft)	Subtotal [(4)×(5)×(6)] (ft ³ /yr)	Rate (tons/yr/ft) {[(7)/27] × 1.3 / (5)}						
1.	High	Very Low	0.165	1.00	2.91	0.48	0.02315						
2.													
3.													
4.													
5.													
6.													
7.													
8.													
9.													
10.													
11.													
12.													
13.													
14.													
15.													
Sum erosion su	ibtotals in Colu	mn (7) for eac	h BEHI/NBS	combination	Total Erosion (ft ³ /yr)	0.48							
Convert erosior {divide <i>Total Er</i> o	n in ft/yr to yds [°] o <i>sion (ft³/vr</i>) b	°∕yr v 27}			Erosion	0.02							
Convert erosior {multiply <i>Total</i>	n in yd³/yr to to Erosion (yds³/		Total Erosion (tons/yr)	0.02									
Calculate erosid (tons/yr) by Tot	on per unit leng al Stream Leng	gth of channel g <i>th (ft)</i> surveye	{divid <i>eTotal E</i> ed}	Erosion	Erosion Rate								

Worksheet 3-13. Annual streambank erosion estimates for various study reaches.

Sediment Competence using Dimensional and Dimensionless Shear Stress Methods											
Stream:		Forest Riv	er	S	Stream Type:	E4					
Location:		Upstream	Bylin - 1	Sylin - 1Valley Type: U-GL-TP							
Observers	Observers: Paul LeClaire Date: 6/9/2020										
Enter Required Information for Existing Condition											
9.1		D ₅₀	Median particle size of ri	ffle bed material (mm	n)						
		D 50	Median particle size of b	ar or sub-pavement s	sample (mr	n)					
		D _{max}	Largest particle from bar	Largest particle from bar sample (ft)0(mm)30mmm							
0.0029	9	S	Existing average water s	urface slope (ft/ft)							
1.44		d	Existing bankfull mean d	epth (ft)							
1.65		γ _s -γ/γ	Immersed specific gravit	y of sediment							
Select the	Appr	opriate Eq	uation and Calculate Crit	ical Dimensionless	Shear Str	ess					
D_{50}/D_{50}^{2}			Range: 3 – 7	Use EQUATION 1:	τ* = 0.083	34 (D ₅₀ / D ₅	^) ^{-0.872}				
0.00 D _{max} /D ₅₀			Range: 1.3 – 3.0	Range: 1.3 – 3.0 Use EQUATION 2: $\tau^* = 0.0384 (D_{max}/D_{50})^2$							
	τ [*] Bankfull Dimensionless Shear Stress EQUATION USED:										
Calculate E	Bankfi	ull Mean De	pth Required for Entrainn	nent of Largest Parti	cle in Bar S	Sample					
	d Required bankfull mean depth (ft) $d = \frac{\mathcal{T} * (\gamma_s - 1) D_{max}}{S}$ (use D_{max} in					D _{max} in ft)					
Calculate	Avera	ige Water S	Surface Slope Required f	or Entrainment of L	argest Par.	ticle in Bar	Sample				
		S	Required average water su	urface slope (ft/ft) S =	$rac{\mathcal{T}^*(\gamma_s-1)}{d}$	D _{max} (use	$D_{\rm max}$ in ft)				
		Check:	Stable 🗹 Aggrading	Degrading							
Sediment	Sediment Competence Using Dimensional Shear Stress										
0.261	0.261 Bankfull shear stress $\tau = \gamma dS$ (lbs/ft ²) (substitute hydraulic radius, R, with mean depth, d) $\gamma = 62.4$, d = existing depth, S = existing slope						d) γ=				
Shields 19	со 57	Predicted largest moveable particle size (mm) at bankfull shear stress $ au$ (Figure 3-11)									
Shields	CO 000	Predicted shear stress required to initiate movement of measured D_{max} (mm) (Figure 3-11)									
Shields	CO	Predicted mean depth required to initiate movement of measured D_{\max} (mm) . τ									
0.00 0	0.00	T = predicted shear stress $V = 62.4$ S = existing slope $d = \frac{v}{\gamma S}$									
Shields	CO	Predicted s	slope required to initiate mov	ement of measured D _r	_{max} (mm)	τ					
0.0000 0.	.0000	$\tau = \text{predict}$	ted shear stress, γ = 62.4, d	= existing depth		$S = \frac{\gamma d}{\gamma d}$					
		Check:	Stable 🗌 Aggrading								

Worksheet 3-14. Sediment competence calculation form to assess bed stat	oility.
---	---------

Stream Succession Stage Shifts							
Stream: Forest River	Stream Type: E4						
Location: Upstream Bylin - 1	Valley Type: U-GL-TP						
Observers: Paul LeClaire	Date: 6/9/2020						
Stream Type Stage Shifts (Figure 3-14)	Stability Rating (Check ✓ Appropriate Rating)						
Stream Type at Potential, $(C \rightarrow E)$, $(F_b \rightarrow B)$, $(F \rightarrow B_c)$, $(F \rightarrow C)$, $(G \rightarrow B)$, $(D \rightarrow C)$	Stable						
(E→C), (B→High W/d B), (C→High W/d C)	Moderately Unstable						
$(G_c \rightarrow F)$, $(G \rightarrow F_b)$, $(F \rightarrow D)$, $(C \rightarrow F)$	Unstable						
$(C \rightarrow D), (A \rightarrow G), (B \rightarrow G), (D \rightarrow G), (C \rightarrow G), (E \rightarrow G), (E \rightarrow A)$	Highly Unstable						

Worksheet 3-15. Stability ratings for stream type stage shifts.

Worksheet 3-16.	Lateral stability predictior	summary.
-----------------	------------------------------	----------

	Lateral Stability Prediction							
Stream: Forest River			Stream Ty	/pe: E4				
Location: Upstream Bylin -	1		Valley Ty	pe: U-GL-TP				
Observers: Paul LeClaire			Da	ate: 6/9/2020				
Lateral stability criteria		Lateral Stability Categories						
(choose one stability category for each criterion 1–5)	Stable	Moderately Unstable	Unstable	Highly Unstable	Selected Points (from each row)			
W/d Ratio State (Worksheet 3-8)	< 1.2	1.2 – 1.4	1.4 – 1.6	> 1.6	2			
	(2)	(4)	(6)	(8)				
Depositional Patterns (Worksheet 3-5)	B1, B2	B4, B8	B3	B5, B6, B7	2			
	(1)	(2)	(3)	(4)				
Meander Patterns (Worksheet 3-4)	M1, M3, M4		M2, M5, M6, M7, M8		1			
, , , , , , , , , , , , , , , , , , ,	(1)		(3)					
Streambank Erosion: 4 Unit Rate	< 0.006	0.006 – 0.04	0.041 – 0.07	> 0.07	4			
(WORKSheet 3-13)	(2)	(4)	(6)	(8)				
Degree of Confinement 5 (MWR / MWR _{ref})	f Confinement > 0.8 0.3 - 0.79		0.1 – 0.29	< 0.1	1			
(worksneet 3-9)	(1)	(2)	(3)	(4)				
Total Points 10								
	Lateral Stability Category Point Range chosen							
Overall Lateral Stability Category (use total points and check ✓ stability rating)	<i>Stable</i> < 10 □	Moderately Unstable 10 – 12 ☑	Unstable 13 – 21 □	Highly Unstable > 21 □	Moderately Unstable			

	Vertical Stability Prediction for Excess Deposition and Aggradation						
Stream:	Forest River			Stream Type:	E4		
Location:	Upstream Byl	in - 1		Valley Type:	U-GL-TP		
Observers:	Paul LeClaire			Date:	6/9/2020		
Vertical Stability Criteria (choose one stability category for each criterion 1–6)		Vertical Stabi	Selected				
		No Deposition	Moderate Deposition	Excess Deposition	Aggradation	Points (from each row)	
Sediment 1 Competence (Worksheet 3-14)		Sufficient depth and slope to transport largest size available	Trend toward insufficient depth or slope- slightly incompetent	Cannot move D_{35} of bed material and/or D_{100} of bar material	Cannot move <i>D</i> ₁₆ of bed material and/or <i>D</i> ₁₀₀ of bar or sub- pavement size	2	
		(2)	(4)	(6)	(8)		
2 Sediment Capacity (POWERSED)		Sufficient capacity to transport annual load	Trend toward insufficient sediment capacity	rend toward sufficient ediment apacity Reduction up to 25% of annual sediment yield of bedload or suspended sand		2	
		(2)	(4)	(6)	(8)		
W/d Ratio State (Worksheet 3-8)		< 1.2	1.2 – 1.4	1.4 – 1.6	> 1.6	2	
		(2)	(4)	(6)	(8)		
Stream Succession 4 Stage Shifts (Worksheet 3-15)		Current stream type at potential or does not indicate deposition/ aggradation	(E→C)	$\begin{array}{l} (B \rightarrow High \ W/d \ B), \\ (C \rightarrow High \ W/d \ C), \\ (C \rightarrow F), \ (G_c \rightarrow F), \\ (G \rightarrow F_b) \end{array}$	(C→D), (F→D)	4	
		(2)	(4)	(6)	(8)		
Deposi 5 Patterr	tional ıs (Worksheet	B1	B2, B4	B3, B5	B6, B7, B8	2	
3-5)		(1)	(2)	(3)	(4)		
6 Debris (Works	/ Blockages heet 3-6)	D1, D2, D3	D4, D7	D5, D8	D6, D9, D10	1	
		(1)	(2)	(3)	(4)		
					Total Points	13	
Vertical Stability Category Point Range for Excess Deposition and Aggradation							
Vertical Stability for Excess Deposition / Aggradation (use total points and check ✓ stability rating)		No Deposition < 15 □	Moderate Deposition 15 – 20 ☑	Excess Deposition 21 – 30	Aggradation > 30 □	No Deposition	

Worksheet 3-17. Vertical stability prediction for excess deposition and aggradation.

Vertical Stability Prediction for Channel Incision and Degradation							
Stream: Forest River			Stream Type:	E4			
Location: Upstream By	lin - 1		Valley Type:	U-GL-TP			
Observers: Paul LeClaire	•		Date:	6/9/2020			
Vertical Stability	Vertical Stabil	Selected					
Criteria (choose one stability category for each criterion 1–5)	Not Incised Slightly Incised Moderately Incised		Degradation	Points (from each row)			
Sediment 1 Competence (Worksheet 3-14)	Does not indicate excess competence	Trend to move larger sizes than <i>D</i> ₁₀₀ of bar or <i>D</i> ₈₄ of bed	D_{100} of bed moved	Particles much larger than <i>D</i> ₁₀₀ of bed moved	2		
	(2)	(4)	(6)	(8)			
² Sediment Capacity (POWERSED)	Does not indicate excess capacity	Slight excess energy: up to 10% increase above reference	Excess energy sufficient to increase load up to 50% of annual load	Excess energy transporting more than 50% of annual load	2		
	(2)	(2) (4)		(8)			
Degree of Channel 3 Incision (BHR) (Worksheet 3-7)	1.00 – 1.10	1.11 – 1.30	1.31 – 1.50	> 1.50	2		
	(2)	(4)	(6)	(8)			
Stream Succession 4 States (Worksheets 3-15 and 3-7)	Does not indicate incision or degradation	If BHR > 1.1 and stream type has W/d between 5–10	If BHR > 1.1 and stream type has W/d less than 5	$\begin{array}{l} (B \rightarrow G), \ (C \rightarrow G), \\ (E \rightarrow G), \ (D \rightarrow G), \\ (A \rightarrow G), \ (E \rightarrow A) \end{array}$	2		
	(2)	(4)	(6)	(8)			
Confinement 5 (MWR / MWR _{ref})	0.80 – 1.00	0.30 – 0.79	0.10 – 0.29	< 0.10	1		
(Worksneet 3-9)	(1)	(2)	(3)	(4)			
				Total Points	9		
	Vertical Stability Category Point Range for Channel Incision and Degradation						
Vertical Stability for Channel Incision/ Degradation (use total points and check ✓ stability rating)	Not Incised < 12 ☑	Slightly Incised 12 – 18 □	Moderately Incised 19 – 27	Degradation > 27 □	Not Incised		

Worksheet 3-18. Vertical stability prediction for channel incision and degradation.

Channel Enlargement Prediction								
Stream: Forest River			Stream Type:	E4				
Location: Upstream Bylin	า - 1		Valley Type:	U-GL-TP				
Observers: Paul LeClaire			Date:	6/9/2020				
Channel Enlargement	Char	Channel Enlargement Prediction Categories						
Choose one stability category for each criterion 1–4)	No Increase	Slight Increase Moderate Increase		Extensive	Points (from each row)			
Stream Succession 1 Stage Shifts (Worksheet 3-15)	$\begin{array}{l} \text{Stream Type at} \\ \text{Potential, } (C {\rightarrow} E), \\ (F_b {\rightarrow} B), (G {\rightarrow} B), \\ (F {\rightarrow} B_c), (F {\rightarrow} C), \\ (D {\rightarrow} C) \end{array}$	$(B \rightarrow High W/d B),$ $(C \rightarrow High W/d C),$ $(E \rightarrow C)$	(G→F), (F→D)	$\begin{array}{l} (C \rightarrow D), \ (A \rightarrow G), \\ (B \rightarrow G), \ (D \rightarrow G), \\ (C \rightarrow G), \ (E \rightarrow G), \\ (E \rightarrow A), \ (C \rightarrow F) \end{array}$	4			
	(2)	(4)	(6)	(8)				
Lateral Stability (Worksheet 3-16)	Stable	Moderately Unstable	Unstable	Highly Unstable	4			
	(2)	(2) (4)		(8)				
Vertical Stability Excess Deposition and Aggradation	No Deposition	Moderate Deposition	Excess Deposition	Aggradation	2			
(Worksheet 3-17)	(2)	(2) (4) (6)		(8)				
Vertical Stability Channel Incision and Degradation	Not Incised	Slightly Incised	Moderately Incised	Degradation	2			
(Worksheet 3-18)	(2)	(4)	(6)	(8)				
Total Point								
Category Point Range								
Channel Enlargement Prediction (use total points and check ✓ stability rating)	No Increase <11 □	Slight Increase 11 – 16 ☑	Moderate Increase 17 – 24	Extensive > 24	Slight Increase			

Overall Sediment Supply Prediction						
Stream: Forest River			Stream Type:	E4		
Location: Upstream Byl	in - 1		Valley Type:	U-GL-TP		
Observers: Paul LeClaire			Date:	6/9/2020		
Overall Sediment Supply Prediction Criteria (choose corresponding points for each criterion 1–5)	/ Stabilit	Stability Rating		Selected Points		
	Stable		1			
1 Lateral Stability	Mod. Unstat	ole	2	2		
· (Worksheet 3-16)	Unstable		3	-		
	Highly Unst	able	4			
Vertical Stability	No Depositi	on	1			
2 Excess Deposition or	Mod. Depos	ition	2	1		
Aggradation	Excess Dep	osition	3			
(worksneet 3-17)	Aggradation		4			
Vertical Stability	Not incised		1			
³ Degradation	Slightly Incl.	sea J	2	1		
(Worksheet 3-18)	Mod. Incised	3	3			
(WORSheet 5-10)	No Incrosso		4			
Channel Enlargement	Slight Increase	250	2			
4 Prediction (Workshee	t Mod Increas	50	2	2		
3-19)	Extensive		4			
	Good: Stab	le	1			
Pfankuch Channel	Fair: Mod. U	Instable	2			
5 Stability (Worksheet 3	-			1		
10)	Poor: Unsta	able	4			
Total Points 7						
Category Point Range						
Overall Sediment Supply Rating (use total points and check ✓ stability rating)	/ <i>Low</i> < 6 □	<i>Moderate</i> 6 – 10 ☑	High 11 – 15	Very High > 15		

Worksheet 3-20. Overall sediment supply rating determined from individual stability rating categories.

Attachment D-8-2: River Stability Prediction Worksheets

	initially of otability		togonioo.										
	Summary of Stability Conditions												
Stream:	Forest River					Locatio	on: Ups	tream I	Bylin - 1				
Observers:	Paul LeClaire		Date:	6/9/2020		Str	eam Typ	be: E4	-	Valley	y Type:	U-GL-TP	
Channel Dimension	Bankfull Mean Depth (ft): 1.4	14 Bankfull W (ft):	idth 13.5	7 Cross-S Area (ft	Sectional ²):	19	.6 Widt Ratio	h/Depth o:	9.3	393231	Entren Ratio:	chment	8.35
Channel Pattern	Mean: Range: λ/W _{bkf} :	121	L _m /W _{bkf} :	124	R_/	W _{bkf} :	62		MWR:	1.2	28	Sinuosity:	1.13
Streamflow	Bankfull Mean Ve (ū _{bkf}) (ft/sec):	elocity 3.33	Bankfu Discha	ıll ırge (Q _{bkf}):	65.3	3	Estimatio Method:	on		1		Drainage Area (mi ²):	13.644
	Check: 🗹 Riffle/Pool	Step/P	ool	Plane Bed		Conver	gence/Di	ivergenc	e 🗌	Dunes//	Antidun	es/Smooth Be	t
River Profile & Bed Features	Bankfull Max Riffle Depth (ft): 2.88	e Pool	Depth Rat to mea	tio (max an):	Riffle 1.99	Pool	Poo Poo Spa	ol-to- F ool icing:	Ratio V	/alley:		Slope Water Surface:	0.0029
	Riparian Cu Vegetation	rrent Composition	/Density:	Potentia	al Compositio	on/Densit	y:	R	emarks: Co	ondition, V	′igor & U	sage of Existing R	each:
Level III Stream	Flow Regime: P1 & C	eam Size)rder:	S-3(3)	Meander Patterns:		M1	Depo Patte	ositional erns:	E	32	Debris/ Blocka	'Channel ges:	D2
Stability Indices	Degree of Incision (Bank-Height Ratio):	1.01	Degree of Stability Ra	Incision ating:	Sta	ble	Modi (Nun	ified Pfa neric & <i>F</i>	nkuch Sta Adjective	ability Ra Rating):	ating	55 (Good
	W/d Ratio State (W/d) / (W/d _{ref}):	1.00 W/d Ra Stability	itio State / Rating:	Stat	le	Degree (MWR /	of Confi ′ MWR _{ref}	nement _f):	1.00	MWR / Stability	MWR _{re} / Rating	յ։ Dep	e or No arture
Bank Erosion Summary	Length of Reach Studied (ft):	1 0.02	Annual Stre (tor	ambank Ero ns/yr) 0.02	sion Rate: 3 (tons	s/yr/ft)	Cur LO	ve Used W BEHI	: Re	emarks:			
Sediment Capacity (POWERSED)	Sufficient Capac	city 🗌 Insu	fficient Cap	acity	Excess C	apacity	,	Rem	arks:				
Entrainment/ Competence	Largest Particle from Bar Sample (mm):		$\tau = 0.2$	261 7 ⁺ =	0.0000	Existing Depth:	1.4	4 Requi	iired h: 0	.0 Exis	sting be:	0.0029 Requ Slope	ired a: 0
Stream Succession	_ →	→					E	Existing State (Ty	Stream /pe):	E	4 Pot (Ty	tential Stream S pe):	State
Lateral Stability	Stable	🗹 Mod. Uns	table	Unstable] Hi	ghly Uns	table	Remark	(S:			
Vertical Stability (Aggradation)	✓ No Deposition	🔲 Mod. Dep	osition	Ex. Depo	sition] Ag	gradatio	on	Remark	(S:			
Vertical Stability (Degradation)	☑ Not Incised	Slightly In	ncised	Mod. Incis	sed] De	egradatic	on	Remark	(S:			
Channel Enlargement	🔲 No Increase	Slight Inc	rease	Mod. Incr	ease] Ex	tensive		Remark	(S:			
Sediment Supply (Channel Source)	Low	✓ Moderat	e 🗌	High 🗌	Very Hig	gh Rem	arks:						

Worksheet 3-21. Summary of stability condition categories.

Worksheet 3-2. Flow regime variables that influence channel characteristics, sediment regime, and biological interpretations.

Flow Regime						
Stream:	Forest River North Branch Stream Type: E4					
Location:	Downstream Bylin - 1Valley Type: C-AL-AD					
Observers:	Paul LeClaire Date: 6/9/2020					
List ALL	COMBINATIONS that P1 P2 P7 P9					
API						
General Category						
E	E Ephemeral stream channel: Flows only in response to precipitation.					
S	Subterranean stream channel: Flows parallel to and near the surface for various seasons – a sub-surface flow that follows the stream bed.					
Т	<i>Intermittent stream channel:</i> Surface water flows discontinuously along its length. Often associated with sporadic or seasonal flows and also with Karst (limestone) geology where losing/gaining reaches create flows that disappear then reappear farther downstream.					
Р	Perennial stream channels: Surface water persists yearlong.					
Specific (Specific Category					
1	1 Seasonal variation in streamflow dominated primarily by snowmelt runoff.					
2	Seasonal variation in streamflow dominated primarily by stormflow runoff.					
3	Uniform stage and associated streamflow due to spring-fed condition, backwater, etc.					
4	Streamflow regulated by glacial melt.					
5	Ice flows/ice torrents from ice dam breaches.					
6	Alternating flow/backwater due to tidal influence.					
7	Regulated streamflow due to diversions, dam release, dewatering, etc.					
8	Altered due to development, such as urban streams, cut-over watersheds, or vegetation conversions (forested to grassland) that change flow response to precipitation events.					
9	Rain-on-snow generated runoff.					

Worksheet 3-3. Stream order and stream size categories for stratification by stream type.

Stream Size and Order								
Stream:	Forest River N	orth Branch						
Location:	Downstream B	Bylin - 1						
Observers: Paul LeClaire Stream Type: E4								
Valley Type:	C-AL-AD Date: 6/9/2020							
Stream Size	Category and (Order 🖙	S-3(3)					
Category	STREA Bankfu	M SIZE: II Width	Check (✓) Appropriate					
	meters	feet	Category					
S-1	0.305	<1						
S-2	0.3 – 1.5	1 – 5						
S-3	1.5 – 4.6	1.5 – 4.6 5 – 15						
S-4	4.6 - 9.0	15 – 30						
S-5	9.0 - 15.0	30 - 50						
S-6	15.0 – 22.8	50 – 75						
S-7	22.8 - 30.5	75 – 100						
S-8	30.5 - 46.0	100 – 150						
S-9	46 – 76	150 – 250						
S-10	76 – 107	250 - 350						
S-11	107 – 150	350 - 500						
S-12	150 – 305	500 - 1000						
S-13	>305	>1000						
	Stream	n Order						
Add categories For example, a meters (20 fee	in parenthesis fo third-order strear t) would be indexe	r specific stream o m with a bankfull v ed as: S-4(3).	order of reach. vidth of 6.1					

Worksheet 3-6. Various categories of in-channel debris, dams, and channel blockages used to evaluate channel stability.

	Channel Blockages										
Stream	: Forest Rive	r North Branch Stream Type: E4									
Locatio	n: Downstream	n Bylin - 1 Valley Type: C-AL-AD									
Observ	ers: Paul LeClai	re Date: 6/9/2020									
Desc	ription/Extent	Materials that upon placement into the active channel or flood- prone area may cause adjustments in channel dimensions or conditions due to influences on the existing flow regime.	Check (✔) all that apply								
D1	None	Minor amounts of small, floatable material.									
D2	Infrequent	Debris consists of small, easily moved, floatable material, e.g., leaves, needles, small limbs, and twigs.									
D3	Moderate	Increasing frequency of small- to medium-sized material, such as large limbs, branches, and small logs, that when accumulated affect 10% or less of the active channel cross-sectional area.	7								
D4	Numerous	Significant build-up of medium- to large-sized materials, e.g., large limbs, branches, small logs, or portions of trees, occupying 10–30% of the active channel cross-sectional area.									
D5	Extensive	Debris "dams" of predominantly larger materials, e.g., branches, logs, and trees, occupying 30–50% of the active channel cross-sectional area, often extending across the width of the active channel.									
D6	Dominating	Large, somewhat continuous, debris "dams," extensive in nature and occupying over 50% of the active channel cross-sectional area. Such accumulations may divert water into the flood-prone areas and form fish migration barriers, even when flows are at less than bankfull.									
D7	Beaver Dams: Few	An infrequent number of dams spaced such that normal streamflow and expected channel conditions exist in the reaches between dams.									
D8	Beaver Dams: Frequent	Frequency of dams is such that backwater conditions exist for channel reaches between structures where streamflow velocities are reduced and channel dimensions or conditions are influenced.									
D9	Beaver Dams: Abandoned	Numerous abandoned dams, many of which have filled with sediment or breached, initiating a series of channel adjustments, such as streambank erosion, lateral migration, avulsion, aggradation, or degradation.									
D10	Human Influences	Structures, facilities, or materials related to land uses or development located within the flood-prone area, such as diversions or low-head dams, controlled by-pass channels, velocity control structures, and various transportation encroachments that have an influence on the existing flow regime, such that significant channel adjustments occur.									

Worksheet 3-7. Relationship of Bank-Height Ratio (BHR) ranges to corresponding stream stability ratings.

Worksheet 3-8. Stability ratings based on departure of width/depth ratio from reference condition.

Worksheet 3-9. Degree of confinement departure based on Meander Width Ratio (MWR) divided by reference condition Meander Width Ratio (MWR_{ref}).

Attachment D-8-2: River Stability Prediction Worksheets

Worksheet 3-10. Pfankuch (1975) channel stability rating procedure, as modified by Rosgen (1996, 2006b).

Stream:	Forest	River N	lorth	Branc	h		Loc	ation:	Down	stream	n Bylin	า - 1		Valley	Type:	C-AL	-AD	Obs	ervers:	Paul I	LeClai	eClaire			Date: 6/9/2020				
Loca tion	Kov	Cato	norv			Exce	ellent					Go	ood					F	air						Poor				
Loca-tion	Ney	Cale	yory		[Descriptic	n		Rating		D	Descriptic	on		Rating		[Descriptio	on		Rating			Descr	ription	Rating			
(0	1	Landforr slope	n	Bank sl	ope gra	dient <3	0%.		2	Bank slo	ope grad	dient 30	-40%.		4	Bank s	lope gra	dient 40	-60%.		6	Bank slope gradient > 60%.		60%.	8				
banks	2	Mass er	osion	No evid erosion	lence of	past or	future m	ass	3	Infreque future p	ent. Mos otential.	tly heal	ed over.	Low	6	Freque nearly	ent or larg yearlong	ge, caus I.	causing sediment 9		9	Frequent yearlong	or larg OR im	e, cau minent	sing sediment nearly t danger of same.	12			
oper	3	Debris ja potentia	am I	Essenti channe	ally abs I area.	ent from	immedia	ate	2	Present limbs.	esent, but mostly small twigs and 4		Modera larger s	ate to he sizes.	avy amo	ounts, m	s, mostly 6		Moderate larger siz	e to hea es.	avy am	ounts, predominantly	8						
'n	4	Vegetati bank protectic	ive on	> 90% sugges root ma	plant de t a deep iss.	nsity. Vi , dense,	gor and v soil-bind	/ariety ding	3	70–90% less vig root ma	% density. Fewer species or gor suggest less dense or deep ass. 50–70% density. Lower vigor and fewer species from a shallow, discontinuous root mass.		9	<50% de vigor indi shallow r	nsity pl icating oot ma	us few poor, d ss.	ver species and less discontinuous, and	12											
	5	Channel capacity	ļ	Bank heig stage. Wi width/dep = 1.0.	ghts suffici dth/depth th ratio = 1	ent to cont ratio depai 1.0. Bank-l	ain the bar ture from r Height Rati	ikfull eference o (BHR)	1	Bankfull s Width/dep width/dept (BHR) = 1	tage is cor th ratio de th ratio = 1 .0–1.1.	ntained wi eparture fro 1.0–1.2. Bi	thin banks om referer ank-Heigh	i. nce t Ratio	2	Bankfull departure 1.2–1.4.	stage is no e from refe Bank-Heig	t containe rence widt ht Ratio (E	d. Width/d th/depth ra 3HR) = 1.1	epth ratio itio = –1.3.	3	Bankfull stage is not contained common with flows less than h departure from reference widf Height Ratio (BHR) > 1.3.			ed; over-bank flows are i bankfull. Width/depth ratic ith/depth ratio > 1.4. Bank-	4			
nks	6	Bank roo content	ck	> 65% v 12"+ co	with larg mmon.	e angula	ar boulde	ers.	2	40–65% cobbles	. Mostly 6–12".	y boulde	ers and s	small	4	20–409 class.	%. Most	in the 3-	-6" diam	neter	6	<20% roo or less.	ck fragr	ments o	of gravel sizes, 1–3"	8			
/er ba	7	Obstruct to flow	tions	Rocks a pattern Stable I	and logs w/o cutt bed.	firmly ir ing or d	nbedded eposition	. Flow	2	Some pro currents fewer an	esent cau and mino d less firr	using erc or pool fil m.	osive cros lling. Obs	ss tructions	4	Modera move w and poo	itely frequ rith high flo ol filling.	ent, unst ows caus	able obst sing bank	cutting	6	Frequent obstructions a bank erosion yearlong. channel migration occu			and deflectors cause . Sediment traps full, urring.	8			
Low	8	Cutting		Little or <6".	none. li	nfrequer	nt raw ba	nks	4	Some, i constric 12".	ntermitte tions. R	ently at aw banl	outcurve ks may l	es and be up to	6	Signific mat ov	cant. Cut erhangs	s 12–24 and slo	l" high. F ughing e	Root evident.	12	Almost continuous cuts high. Failure of overhai		Almost continuous cuts high. Failure of overhan		s, some over 24" ings frequent.	16		
	9	Depositi	on	Little or point ba	no enla ars.	rgemen	t of chan	nel or	4	Some n coarse g	ew bar i gravel.	increase	e, mostly	/ from	8	Modera coarse bars.	ate depo sand on	stion of i old and	new gra d some r	ivel and new	12	Extensive deposit of properticles. Accelerated b		Extensive deposit of predominantly fine particles. Accelerated bar development.		16			
	10	Rock angulari	ty	Sharp e surface	edges ar s rough.	nd corne	ers. Plane	9	1	Rounde Surface	d corne s smoot	rs and e th and fl	edges. at.		2	Corner two din	rs and ec mensions	lges wel s.	ll-rounde	ed in	3	Well-rounded in all dimens smooth. Predominantly bright, > 65 scoured surfaces.		Well-rounded in all dimensions smooth.		Well-rounded in all dime smooth.		nensions, surfaces	4
	11	Brightne	SS	Surface Genera	es dull, d Ily not b	lark, or s right.	stained.		1	Mostly of surfaces	dull, but s.	may ha	ve <35%	6 bright	2	Mixture mixture	e dull and e range.	d bright,	i.e., 35-	-65%	3			Predominantly bright, > 65 ^o scoured surfaces.		4			
Ε	12	Consolida particles	ation of	Assorte overlap	ed sizes ping.	tightly p	acked or		2	Modera overlap	tely pac ping.	ked with	n some		4	Mostly appare	loose as ent overla	sortmer ap.	nt with n	0	6	No packing evident. Loose assort easily moved.		oose assortment,	8				
Bottc	13	Bottom s distributi	size ion	No size materia	change I 80–10	evident 0%.	. Stable		4	Distribu 50–80%	tion shif	t light. S	Stable m	aterial	8	Modera materia	ate chan als 20–50	ge in siz 0%.	zes. Stat	ole	12	Marked o 0–20%.	distribut	ion ch	ange. Stable materia	s 16			
_	14	Scourinç depositio	g and on	<5% of deposit	bottom ion.	affected	by scou	r or	6	5–30% and whe depositi	affected ere grad on in po	I. Scour les stee ools.	at cons pen. So	trictions me	12	30–50 at obst bends.	% affecte ructions, Some fi	ed. Depo constrie lling of p	osits and ctions, a pools.	d scour Ind	18	More tha flux or ch	n 50% iange n	of the early y	bottom in a state of /earlong.	24			
	15	Aquatic vegetati	on	Abunda green p	ant grow perennia	th moss I. In swif	-like, dar t water to	k bo.	1	Commo and poc	Common. Algae forms and pool areas. Moss		in low v nere too.	elocity	2	Presen backwa makes	nt but spo ater. Sea rocks sli	otty, mos isonal a ick.	stly in Igae gro	wth	3	Perennia green, sł	I types nort-terr	scarce n bloo	e or absent. Yellow- m may be present.	4			
						Exc	ellent T	otal =	15				Good	Total =	38				Fair	Total =	3				Poor Total	- 8			
Stream type	е	A1	A2	A3	A4	A5	A6	B1	B2	B3	B4	B5	B6	C1	C2	C3	C4	C5	C6	D3	D4	D5	D6		Grand Total -	64			
Good (Stable))	38-43	38-43	54-90	60-95	60-95	50-80	38-45	38-45	40-60	40-64	48-68	40-60	38-50	38-50	60-85	70-90	70-90	60-85	85-107	85-107	85-107	67-98		Grand Total =	04			
Fair (Mod. un	stable)	44-47	44-47	91-129	96-132	96-142	81-110	46-58	46-58	61-78	65-84	69-88	61-78	51-61	51-61	86-105	91-110	91-110	86-105	108-132	108-132	108-132	99-125		Existing Stream	E4			
Poor (Unstabl	le)	48+	48+	130+	133+	143+	111+	59+	59+	79+	85+	89+	79+	62+	62+	106+	111+	111+	106+	133+	133+	133+	126+		Type =				
Stream type	e	DA3	DA4	DA5	DA6	E3	E4	E5	E6	F1	F2	F3	F4	F5	F6	G1	G2	G3	G4	G5	G6				*Potential	E4			
Good (Stable)) stable)	40-63 64-86	40-63 64-86	40-63 64-86	40-63 64-86	40-63 64-86	50-75 76-96	50-75 76-96	40-63 64-86	00-85 86-105	00-85 86_105	05-110 111-125	05-110 111-125	90-115	80-95 96-110	40-60 61-72	40-60 61-79	05-107 108-120	85-107 108-120	90-112	05-107 108-120				Modified channel	l stability			
Poor (Unstabl	le)	87+	87+	87+	87+	87+	97+	97+	87+	106+	106+	126+	126+	131+	111+	79+	79+	121+	121+	126+	121+				rating	stubility			
	,			1			1 I			-	-			*Rat	ing is a	adjuste	ed to po	otentia	stream	n type,	not ex	isting st	ream	type	Good				

Worksheet 3-11. Form to calculate an overall Bank Erosion Hazard Index (BEHI) rating. Use **Figure 3-7** to determine individual BEHI scores.

Copyright © 2014 Wildland Hydrology

River Stability Field Guide page 3-54

Worksheet 3-12. Various field methods of estimating Near-Bank Stress (NBS) risk ratings to calculate an erosion rate.

			Estim	ating Nea	r-Bank St	ress (NB	S)			
Strea	m: Forest	River Nort	th Branch		Location:	Downstre	am Bylin -	1		
Statio	n:			St	tream Type:	E4	١	/alley Type:	C-AL-AD	
Obser	vers:	Paul LeCla	aire					Date:	6/9/2020	
			Methods for	or Estimati	ing Near-B	ank Stress	s (NBS)			
(1) C	hannel pa	ttern, transve	erse bar, or o	central bar c	reating NBS		Level I	Recona	aissance	
(2) F	adius of cu	urvature to b	ankfull width	(R_c/W_{bkf})	 - `		Level II	General Prediction		
(3) F	ool slope t	o average w	ater surface	slope(S _p /	S)		Level II	General Prediction		
(4) ⊢	ool slope t	o riffle slope	(S_p/S_{rif})			<u> </u>	Level II	General Prediction		
(5) N	lear-bank r	naximum de	ptn to bankti	uli mean dep	$\frac{d_{nb}}{d_{bk}}$	f)	Level III	Detailed	Prediction	
(0) N (7) N	elocity pro	files / leovel	to pankiuli s	near stress (radient	、τ _{nb} / τ _{bkf})			Detailed	Prediction	
(7) V		Transverse o	r central bars	- short or disc	continuous			NBS = Hiah	/ Verv Hiah	
vel	(1)	Extensive de	position (con	tinuous, cross	s-channel)			NB	S = Extreme	
Le		Chute cutoffs	s, down-valley	/ meander mi	gration, conve	erging flow		NB	S = Extreme	
		Radius of	Bankfull	D. ().	Near-Bank					
	(2)	Curvature R _a (ft)	Width White (ft)	Ratio Ra / Wala	Stress (NBS)					
		88.05	12	7.3375	Verv Low					
			Average		Near-Bank	l				
el II	(2)	Pool Slope	Slope	Ratio	Stress		Dom	inant		
Lev	(3)	S _p	S	S _p / S	(NBS)		Near-Bar	nk Stress		
		Pool Slope	Riffle Slope	Patio	Near-Bank					
	(4)	Sp	S _{rif}	S _p / S _{rif}	(NBS)					
		Near-Bank			Near-Bank	L				
	(5)	Max Depth	Mean Depth	Ratio	Stress					
=		u _{nb} (II)	u _{bkf} (It)	u _{nb} / u _{bkf}	(NBS)	1				
rel I				Near-Bank			Bankfull			
Lev		Near-Bank	Near-Bank	Shear		Average	Shear		Near-Bank	
	(6)	Max Depth	Slope	Stress τ (lb/ft^2)	Mean Depth	Slope	Stress π (lb/ft ²)	Ratio	Stress	
		u _{nb} (It)	J _{nb}		u _{bkf} (It)		ubkf (ID/IL)	€nb / €bkf	(NBS)	
				Noor Ponk						
2	(-)	Velocity	Gradient	Stress						
eve	(7)	(ft / se	ec / ft)	(NBS)	1					
		Cor	verting Va	alues to a l	Near-Bank	Stress (NE	3S) Rating			
Nea	r-Bank Str	ess (NBS)			Me	ethod Num	per			
	Rating	<u>js</u>	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
	Very Lo	OW	N/A	> 3.00	< 0.20	< 0.40	< 1.00	< 0.80	< 0.50	
	Low	ato	N/A	2.21 - 3.00	0.20 - 0.40	0.41 - 0.60	1.00 - 1.50	0.80 - 1.05	0.50 - 1.00	
	Hiah	115	See	1.81 - 2.20	0.41 - 0.00 0.61 - 0.80	0.81 - 1.00	1.81 - 2.50	1 15 - 1 10	1.61 - 2.00	
	Verv H	iqh	(1)	1.50 - 1.80	0.81 - 1.00	1.01 – 1.20	2.51 - 3.00	1.20 - 1.60	2.01 – 2.40	
	Extren	ne	Above	< 1.50	> 1.00	> 1.20	> 3.00	> 1.60	> 2.40	
				Overall Ne	ar-Bank S	tress (NBS	6) Rating	Very	Low	

	Streambank Erosion Prediction										
Stream: Fo	orest River No	orth Branch		Location:	Downstream	n Bylin - 1					
Graph Used:		Total Strea	m Length (ft):			Date:	6/9/2020				
Observers: Pa	aul LeClaire		Valley Type:	C-AL-AD	Stream Type: E4						
(1)	(2)	(3)	(4)	(5)	(6) Otaala Daala	(7)	(8)				
Station (ft)	(Worksheet 3-11) (adjective)	NBS Rating (Worksheet 3-12) (adjective)	Bank Erosion Rate (Figure 3-9 or 3-10) (ft/yr)	Length of Bank (ft)	Height (ft)	Erosion Subtotal [(4)×(5)×(6)] (ft ³ /yr)	Rate (tons/yr/ft) {[(7)/27] × 1.3 / (5)}				
1.	High	Very Low	0.165	1.00	4.51	0.75	0.03588				
2.											
3.											
4.											
5.											
6.											
7.											
8.											
9.											
10.											
11.											
12.											
13.											
14.											
15.											
Sum erosion su	btotals in Colu	mn (7) for eac	h BEHI/NBS	combination	Total Erosion (ft ³ /yr)	0.75					
Convert erosior {divide <i>Total Erc</i>		Erosion (vds ³ /vr)	0.03								
Convert erosior {multiply <i>Total</i> I		Total Erosion (tons/yr)	0.04								
Calculate erosic (tons/yr) by Tot	on per unit leng al Stream Leng	gth of channel g <i>th (ft)</i> surveye	{divid <i>eTotal E</i> ed}	Erosion	Erosion Rate						

Worksheet 3-13. Annual streambank erosion estimates for various study reaches.

Se	diment	Competer	ice using Dimensional and Dimensionle	ss Shear	Stress Me	thods			
Stream	1:	Forest Riv	er North Branch S	Stream Type:	E4				
Locatio	on:	Downstrea	m Bylin - 1	Valley Type:	C-AL-AD				
Observ	ers:	Paul LeCla	ire	Date:	6/9/2020				
Enter R	equired	Informatio	n for Existing Condition						
7.	.0	D 50	Median particle size of riffle bed material (mn	n)					
		∂ ₅₀	\hat{D}_{50} Median particle size of bar or sub-pavement sample (mm)						
		D _{max}	Largest particle from bar sample (ft)	0	(mm)	304.8 mm/ft			
0.0	026	S	Existing average water surface slope (ft/ft)						
1.	58	d	Existing bankfull mean depth (ft)						
1.	65	$\gamma_{s}-\gamma/\gamma$	Immersed specific gravity of sediment						
Select t	he Appr	opriate Eq	uation and Calculate Critical Dimensionless	Shear Stre	ess				
		$D_{50}^{\prime}/D_{50}^{\prime}$	Range: 3 – 7 Use EQUATION 1:	τ* = 0.083	34 (D ₅₀ / D ₅₀	^) ^{-0.872}			
0.	00	D _{max} /D ₅₀	Range: 1.3 – 3.0 Use EQUATION 2:	τ* = 0.038	84 (D _{max} /D	₅₀) ^{-0.887}			
		τ*	Bankfull Dimensionless Shear Stress	EQUATIO	ON USED:				
Calculat	te Bankf	ull Mean De	pth Required for Entrainment of Largest Parti	cle in Bar S	Sample				
		d	Required bankfull mean depth (ft) $d = \frac{\tau *}{\tau}$	$(\gamma_{s} - 1)\boldsymbol{D}_{n}$	use	$D_{\rm max}$ in ft)			
Calcula	te Avera	age Water S	Surface Slope Required for Entrainment of L	argest Par.	ticle in Bar	Sample			
		S	Required average water surface slope (ft/ft) $S =$	$rac{\mathcal{T}^*(\gamma_s-1)}{d}$	D _{max} (use	$D_{\rm max}$ in ft)			
		Check:	🗌 Stable 🗹 Aggrading 🗌 Degrading						
Sedime	nt Com	petence Us	ing Dimensional Shear Stress						
0.2	257	Bankfull sh 62.4, d = e	ear stress $\tau = \gamma ds$ (lbs/ft ²) (substitute hydraulic rank xisting depth, S = existing slope	dius, R, with	mean depth,	d) γ=			
Shields 19	со 56	Predicted I	argest moveable particle size (mm) at bankfull shea	ar stress τ (F	igure 3-11)				
Shields	CO								
0.000	0.000	Predicted s	shear stress required to initiate movement of measu	ured D _{max} (m	nm) (Figure 3	i-11)			
Shields	CO	Predicted I	nean depth required to initiate movement of measu	red D_{max} (m	m) $\mathbf{d} = \frac{\boldsymbol{\tau}}{2}$	_			
0.00	0.00	τ = predict	ed shear stress, γ = 62.4, S = existing slope	, .	γς	5			
Shields		Predicted slope required to initiate movement of measured D_{max} (mm) $S = \frac{\tau}{\tau}$							
0.0000	0.0000	τ = predict	ed shear stress, γ = 62.4, d = existing depth		γα				
		Check:	_ Stable						

Worksheet 3-14.	Sediment	competence	calculation	form t	to assess	bed stability
-----------------	----------	------------	-------------	--------	-----------	---------------

Stream Succession Stage Shifts							
Stream: Forest River North Branch	Stream Type: E4						
Location: Downstream Bylin - 1	Valley Type: C-AL-AD						
Observers: Paul LeClaire	Date: 6/9/2020						
Stream Type Stage Shifts (Figure 3-14)	Stability Rating (Check ✓ Appropriate Rating)						
Stream Type at Potential, $(C \rightarrow E)$, $(F_b \rightarrow B)$, $(F \rightarrow B_c)$, $(F \rightarrow C)$, $(G \rightarrow B)$, $(D \rightarrow C)$	Stable						
(E \rightarrow C), (B \rightarrow High W/d B), (C \rightarrow High W/d C)	Moderately Unstable						
$(G_c \rightarrow F)$, $(G \rightarrow F_b)$, $(F \rightarrow D)$, $(C \rightarrow F)$	Unstable						
$(C \rightarrow D)$, $(A \rightarrow G)$, $(B \rightarrow G)$, $(D \rightarrow G)$, $(C \rightarrow G)$, $(E \rightarrow G)$, $(E \rightarrow A)$	☐ Highly Unstable						

Worksheet 3-15. Stability ratings for stream type stage shifts
--

	Lateral Stability Prediction									
Stream: Forest River Nor	th Branch		Stream Ty	/pe: E4						
Location: Downstream Byl	in - 1		Valley Ty	/pe: C-AL-AD						
Observers: Paul LeClaire			D	ate: 6/9/2020						
Lateral stability criteria		Lateral Stabilit	ty Categories		Onlandari					
(choose one stability category for each criterion 1–5)	Stable	Moderately Unstable	Unstable	Highly Unstable	Selected Points (from each row)					
W/d Ratio State (Worksheet 3-8)	< 1.2	1.2 – 1.4	1.4 – 1.6	> 1.6	2					
	(2)	(4)	(6)	(8)						
Depositional Patterns (Worksheet 3-5)	B1, B2	B4, B8	B3	B5, B6, B7	1					
	(1)	(2)	(3)	(4)						
Meander Patterns (Worksheet 3-4)	M1, M3, M4		M2, M5, M6, M7, M8		1					
	(1)		(3)							
Streambank Erosion: 4 Unit Rate	< 0.006	0.006 – 0.04	0.041 – 0.07	> 0.07	4					
(WORKSneet 3-13)	(2)	(4)	(6)	(8)						
Degree of Confinement 5 (MWR / MWR _{ref})	> 0.8	0.3 – 0.79	0.1 – 0.29	< 0.1	1					
(Worksheet 3-9)	(1)	(2)	(3)	(4)						
Total Points										
Lateral Stability Category Point Range										
Overall Lateral Stability Category (use total points and check ✓ stability rating)	<i>Stable</i> < 10 □	Moderately Unstable 10 – 12 ☑	Unstable 13 – 21 □	Highly Unstable > 21 □	Stable					

	Vertical	Stability Predict	ction for Exces	s Deposition an	d Aggradation		
Stre	am: Forest River N	North Branch		Stream Type:	E4		
Loca	ation: Downstream I	Bylin - 1		Valley Type:	C-AL-AD		
Obs	ervers: Paul LeClaire			Date:	6/9/2020	1	
Ve	rtical Stability	Vertical Stabi	Selected				
Criteria (choose one stability category for each criterion 1–6)		No Deposition	Moderate Deposition	Excess Deposition	Aggradation	(from each row)	
Sediment 1 Competence (Worksheet 3-14)		Sufficient depth and slope to transport largest size available	Trend toward insufficient depth or slope- slightly incompetent	Cannot move D_{35} of bed material and/or D_{100} of bar material	Cannot move <i>D</i> ₁₆ of bed material and/or <i>D</i> ₁₀₀ of bar or sub- pavement size	2	
		(2)	(4)	(6)	(8)		
2	Sediment Capacity (POWERSED)	Sufficient capacity to transport annual load	Trend toward insufficient sediment capacity	Reduction up to 25% of annual sediment yield of bedload or suspended sand	Reduction over 25% of annual sediment yield for bedload or suspended sand	2	
		(2)	(4)	(6)	(8)		
3	W/d Ratio State (Worksheet 3-8)	< 1.2	1.2 – 1.4	1.4 – 1.6	> 1.6	2	
		(2)	(4)	(6)	(8)		
4	Stream Succession Stage Shifts (Worksheet 3-15)	Current stream type at potential or does not indicate deposition/ aggradation	(E→C)	$\begin{array}{l} (B{\rightarrow} High \; W/d \; B), \\ (C{\rightarrow} High \; W/d \; C), \\ (C{\rightarrow} F), \; (G_c{\rightarrow} F), \\ (G{\rightarrow} F_b) \end{array}$	(C→D), (F→D)	4	
		(2)	(4)	(6)	(8)		
5	Depositional Patterns (Worksheet	B1	B2, B4	B3, B5	B6, B7, B8	1	
	3-5)	(1)	(2)	(3)	(4)		
6	Debris / Blockages (Worksheet 3-6)	D1, D2, D3	D4, D7	D5, D8	D6, D9, D10	2	
		(1)	(2)	(3)	(4)		
					Total Points	13	
Vertical Stability Category Point Range for Excess Deposition and Aggradation							
Vertical Stability for Excess Deposition / Aggradation (use total points and check ✓ stability rating)		No Deposition < 15 ☑	Moderate Deposition 15 – 20	Excess Deposition 21 – 30	Aggradation > 30 □	No Deposition	

Worksheet 3-17. Vertical stability prediction for excess deposition and aggradation.

Vertical Stability Prediction for Channel Incision and Degradation						
Stream: Forest River North Branch Stream Type: E4						
Location: Downstream	Bylin - 1 Valley Type: C-AL-AD					
Observers: Paul LeClaire Date: 6/9/2020						
Vertical Stability	Vertical Stabi	Selected				
Criteria (choose one stability category for each criterion 1–5)	Not Incised	Slightly Incised	Moderately Incised	Degradation	Points (from each row)	
Sediment 1 Competence (Worksheet 3-14)	Does not indicate excess competence	Trend to move larger sizes than <i>D</i> ₁₀₀ of bar or <i>D</i> ₈₄ of bed	D_{100} of bed moved	Particles much larger than <i>D</i> ₁₀₀ of bed moved	2	
	(2)	(4)	(6)	(8)		
² Sediment Capacity (POWERSED)	Does not indicate excess capacity	Slight excess energy: up to 10% increase above reference	Excess energy sufficient to increase load up to 50% of annual load	Excess energy transporting more than 50% of annual load	2	
	(2)	(4)	(6)	(8)		
Degree of Channel 3 Incision (BHR) (Worksheet 3-7)	1.00 – 1.10	1.11 – 1.30	1.31 – 1.50	> 1.50	8	
	(2)	(4)	(6)	(8)		
Stream Succession 4 States (Worksheets 3-15 and 3-7)	Does not indicate incision or degradation	If BHR > 1.1 and stream type has W/d between 5–10	If BHR > 1.1 and stream type has W/d less than 5	$\begin{array}{l} (B \rightarrow G), \ (C \rightarrow G), \\ (E \rightarrow G), \ (D \rightarrow G), \\ (A \rightarrow G), \ (E \rightarrow A) \end{array}$	4	
	(2)	(4)	(6)	(8)		
Confinement 5 (MWR / MWR _{ref})	0.80 – 1.00	0.30 – 0.79	0.10 – 0.29	< 0.10	1	
(Worksneet 3-9)	(1)	(2)	(3)	(4)		
Total Points						
Vertical Stability Category Point Range for Channel Incision and Degradation					chosen	
Vertical Stability for Channel Incision/ Degradation (use total points and check ✓ stability rating)	Not Incised < 12 □	Slightly Incised 12 – 18 ☑	Moderately Incised 19 – 27	Degradation > 27	Slightly Incised	

Worksheet 3-18. Vertical stability prediction for channel incision and degradation.

Worksheet 3-19.	Channel	enlargement	prediction	summary.
-----------------	---------	-------------	------------	----------

Channel Enlargement Prediction						
Stream: Forest River North Branch Stream Type: E4						
Location: Downstream B	Downstream Bylin - 1 Valley Type: C-AL-AD					
Observers: Paul LeClaire			Date:	6/9/2020		
Channel Enlargement	Char	nel Enlargement	Prediction Categ	ories		
Prediction Criteria (choose one stability category for each criterion 1–4)	No Increase	Slight Increase Moderate Extensive		Extensive	Points (from each row)	
Stream Succession 1 Stage Shifts (Worksheet 3-15)	Stream Type at Potential, $(C \rightarrow E)$, $(F_b \rightarrow B)$, $(G \rightarrow B)$, $(F \rightarrow B_c)$, $(F \rightarrow C)$, $(D \rightarrow C)$	(B→High W/d B), (C→High W/d C), (E→C)	(G→F), (F→D)	$\begin{array}{l} (C \rightarrow D), \ (A \rightarrow G), \\ (B \rightarrow G), \ (D \rightarrow G), \\ (C \rightarrow G), \ (E \rightarrow G), \\ (E \rightarrow A), \ (C \rightarrow F) \end{array}$	4	
	(2)	(4)	(6)	(8)		
2 Lateral Stability (Worksheet 3-16)	Stable	Moderately Unstable	Unstable	Highly Unstable	2	
	(2)	(4)	(6)	(8)		
Vertical Stability Excess Deposition and Aggradation	No Deposition	Moderate Deposition	Excess Deposition	Aggradation	2	
(Worksheet 3-17)	(2)	(4)	(6)	(8)		
Vertical Stability Channel Incision and Degradation	Not Incised	Slightly Incised	Moderately Incised	Degradation	4	
(Worksheet 3-18)	(2)	(4)	(6)	(6) (8)		
Total Points						
Category Point Range					chosen	
Channel Enlargement Prediction (use total points and check ✓ stability rating)No Increase Increase Slight Increase 11 - 16Moderate Increase 17 - 24Extensive > 24Image: Slight Increase Image: Slight Image: Slig				Slight Increase		

Overall Sediment Supply Prediction						
Stream: Forest River North Branch				Stream Type: E4		
Location: Downstream Bylin - 1			Valley Type: C-AL-AD			
Observers: Paul LeClaire			Date:	6/9/2020		
Overall Sediment Supply Prediction Criteria (choose corresponding points for each criterion 1–5)		Stability Rating		Points	Selected Points	
		Stable		1	4	
₁ Latera	al Stability	Mod. Unstab	le	2		
' (Work	sheet 3-16)	Unstable		3	1	
		Highly Unsta	able	4		
Vertic	al Stability	No Depositio	on	1		
2 Exces	s Deposition or	Mod. Deposi	ition	2	1	
- Aggra	dation	Excess Dep	osition	3		
(Work	(sheet 3-17)	Aggradation		4		
Vertic	al Stability	Not Incised		1	2	
Chan	nel Incision or	Slightly Incis	sed	2		
Degra	Idation	Mod. Incised		3		
(Work	(sheet 3-18)	Degradation		4		
Chan	nel Enlargement	No Increase		1		
4 Predi	ction (Worksheet	Slight Increa	ISE	2	2	
3-19)	·	Mod. Increas	se	3		
		Extensive		4		
Pfank	uch Channel	Good: Stable		1		
5 Stability (Worksheet 3	ity (Worksheet 3-	Fair: Mod. Unstable		۷	1	
10)		Poor: Unsta	ble	4		
				Total Points	7	
Category Point Range						
Overall Sediment Supply Rating (use total points and check ✓ stability rating)		Low < 6	<i>Moderate</i> 6 – 10 ☑	High 11 – 15	Very High > 15	

Worksheet 3-20. Overall sediment supply rating determined from individual stability rating categories.

Attachment D-8-2: River Stability Prediction Worksheets

Summary of Stability Conditions							
Stream:	Forest River North Branch		Location: Downstream Bylin - 1				
Observers:	Paul LeClaire	Date: 6/9/2020	Strea	am Type: E4	Valley Type:	C-AL-AD	
Channel Dimension	Bankfull Mean Depth (ft): 1.58 Bankfull W (ft):	/idth 12 Cross-Sect Area (ft ²):	tional 18.98	B Width/Depth Ratio:	7.586934 Entreno Ratio:	chment 3.13	
Channel Pattern	Mean: Range: λ/W _{bkf} : 226	L _m /W _{bkf} : 360	R _c /W _{bkf} :	56 MW	R: 14.28	Sinuosity: 1.80	
Streamflow	Bankfull Mean Velocity (ū _{bkf}) (ft/sec): 3.9 4	4 Bankfull Discharge (Q _{bkf}):	74.80 Es Me	stimation ethod:	1	Drainage Area (mi ²): 21.0545	
	Check: 🗹 Riffle/Pool 🗌 Step/F	Pool 🗌 Plane Bed	Converge	ence/Divergence 🗌	Dunes/Antidun	es/Smooth Bed	
River Profile & Bed Features	Bankfull Max Riffle Pool Depth (ft): 2.77	Depth Ratio (max Rif to mean): 1. 7	fle Pool 75	Pool-to- Ratio Pool Spacing:	Valley: 0.2	Slope Water Surface: 0.0026	
	Riparian Current Composition Vegetation	n/Density: Potential Co	omposition/Density:	Remark	s: Condition, Vigor & Us	sage of Existing Reach:	
Level III Stream	Flow P1 Stream Size & Order:	S-3(3) Meander Patterns:	М3	Depositional Patterns:	B1 Debris/ Blockag	Channel D3 ges:	
Stability Indices	Degree of Incision (Bank-Height Ratio): 1.63	Degree of Incision Stability Rating:	Deeply Incised	Modified Pfankuc (Numeric & Adjec	h Stability Rating tive Rating):	64 Good	
	W/d Ratio State (W/d) / (W/d _{ref}): 0.81 W/d Ra Stability	atio State y Rating: Stable	Degree of (MWR / N	of Confinement MWR _{ref}): 1 1	I.16 MWR / MWR _{rei}	f Little or No : Departure	
Bank Erosion Summary	Length of Reach Studied (ft): 1 0.04	Annual Streambank Erosior 4 (tons/yr) 0.036	ו Rate: (tons/yr/ft)	Curve Used: Moderate BEHI	Remarks:		
Sediment Capacity (POWERSED)	Sufficient Capacity 🔲 Insu	ufficient Capacity 🔲 Ex	cess Capacity	Remarks:			
Entrainment/ Competence	Largest Particle from Bar Sample (mm):	$\tau = 0.257$ $\tau = 0.257$.0000 Existing Depth:	1.58 Required Depth:	0.0 Existing Slope:	0.0026 Required Slope: 0	
Stream Succession	\rightarrow \rightarrow	\rightarrow \rightarrow	>	Existing Strea State (Type):	m E4 Pot (Ty	ential Stream State pe):	
Lateral Stability	🗹 Stable 🗌 Mod. Uns	stable 🗌 Unstable	🗌 High	hly Unstable	marks:		
Vertical Stability (Aggradation)	🗹 No Deposition 🔲 Mod. Dep	position 📃 Ex. Depositio	on 🗌 Aggr	radation	marks:		
Vertical Stability (Degradation)	□ Not Incised ☑ Slightly Ir	ncised 🗌 Mod. Incised	Degr	radation	marks:		
Channel Enlargement	🗌 No Increase 🛛 Slight Inc	crease 🗌 Mod. Increas	e 🗌 Exte	ensive	marks:		
Sediment Supply (Channel Source)	🗆 Low 🖂 Moderat	te 🗌 High 🗌 V	/ery High	rks:			

Worksheet 3-21. Summary of stability condition categories.