

Memorandum

То:	Walsh County Water Resources Board
From:	Donna Jacob PhD, PWS; Houston Engineering, Inc.
Subject:	Reservoir Sediments Characterization Memorandum
Date:	May 8, 2022
Project:	HEI 7135-0037 Bylin Dam

INTRODUCTION

The Walsh County Water Resource District (WCWRD) applied to the Natural Resources Conservation Service (NRCS) for the Watershed Rehabilitation Program for the North Branch Forest River Watershed Dam No. 1 (Bylin Dam). Bylin Dam, near Adams, North Dakota, was constructed in 1964 through funding and technical assistance provided by the NRCS Watershed Program and is currently owned and operated by the WCWRD. The NRCS and the WCWRD entered into a Cooperative Agreement to complete a Watershed Plan-Environmental Assessment for the review of rehabilitation of Bylin Dam. The agreement regarding environmental inventory scoping with NRCS specifies collection of samples of accumulated sediments and analysis of these samples for polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), hydrocarbons (fuels), trace metals, and nutrients at two locations within the reservoir.

MATERIALS AND METHODS

Houston Engineering, Inc. (HEI) staff (Chris Myers and Dan Sunram) collected sediment samples during a bathymetric survey on June 23, 2020. They used a Vibecore-D to obtain core samples from two strata in the sediment column: sediments present at the site before the dam was built (original sediments) and from sediments accumulated after the dam was completed (accumulated sediments). These were collected at two sampling sites (**Figure D-7-1**): one from the reservoir in the upstream portion (inlet site) and one in deeper water depths closer to the dam (reservoir pool). **Figure D-7-1** also shows the estimated depth of sediments, ranging from 0 to 2.1 m, that have accumulated behind the dam.

The sediment samples were sent to Pace Analytical Services, LLC (laboratory network) for analysis of polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), hydrocarbons (fuels), trace metals, and nutrients in the sample containers provided and following the laboratory sample collection procedures. The analyses followed standard EPA methods (see **Appendix D-7-A** for methods and results) after drying and sieving. No replicate samples were collected so statistical analysis is not appropriate, but generalized, quantitative descriptions can be made. Particle size analysis and bulk density determination were not done on these samples, but the sediment textures were noted by observation during sampling and an estimate of bulk density was compiled from the literature.

Calculations followed and evaluations included 1) the percent change between pre- and post-dam sediment analyte concentrations, 2) an estimation of the total mass of the analytes accumulated sediments (postconstruction only), and 3) the accumulation rate of these analytes over the life of the dam. Many

concentration results were below the detection limits of the analyses. Where this occurred for all the values in a calculation, the result was shown as non-detectable. Where at least one value in the calculation was detectable, detectable, the other, non-detectable values (censored data) were replaced with a value equivalent to 50 % of the detection limit (Crane 2007). In order to estimate the mass of a substance in the accumulated sediments, a range and a median "typical" value for sediment density was used. A literature search for density of accumulated reservoir sediments yielded several articles where this value was reported. These reports described accumulated sediments in the channel in a Kansas reservoir (Christensen 1999, 783-1458 kg m⁻³), a reservoir in Mississippi (Bennett and Rhoton 2003, 1500 kg m⁻³), sediments in a river reservoir in Maryland (Schellick et al. 2013, 80-1080 kg m⁻³, sediments in Dougherty Dam (Dendy and Champion 1978 (401 kg m⁻³), which is a dam located in the vicinity on the North-branch Forest River, and a "typical" density (960 kg m⁻³) used by Minear and Kondolf (2009) from their analysis of the median value of a large database of dams in the US (Dendy and Champion 1978). From these, a range of densities was compiled (low to high values) and the median value from Minear and Kondolf (2009) to calculate the amounts of analytes (mass) in the volume of sediment accumulated in the dam. This accumulated volume was determined by comparing the current existing ground surface with the historic, or original soil surface. Surfaces for the current existing ground elevation and original ground elevation below the reservoir were developed based on multi-frequency sonar data collected in the field. The total difference in volume between the two surfaces is used as the total accumulated sediment volume in the reservoir. The volume was determined to be 173,921 m³ (141 acre-feet). For more details see the Existing Conditions Report (Houston Engineering, Inc. 2021). Once the total amount of analyte was determined, this value was divided by the number of years of accumulation (the dam was constructed in 1964).

RESULTS

Results show detectable concentrations of various trace metals in the original sediments and in the accumulated sediments on a dry weight basis and follow the assumption the metal concentrations in the original sediments have not been significantly altered since construction of the dam by the presence of the overlying water column. The original sediment data reflect background concentrations for soils in the area and the data for the accumulated sediments represent the metal concentrations in sediments during the past 56 years.

Core logs showing the depths of the accumulated sediments and the observations of sediment textures are shown in Table D-7-1. The original sediments were fine-grained materials (clay and silty clay). The accumulated sediments show other textures, with the Inlet Site core having an upper layer of muck, clay, and medium-grained sand and the Pool Site having muck and clay. The Pool Site core had finer textured particles at the surface but coarser particles in the original sediments than the Inlet Site core.

able D-7-1: Core log information: sediment strata and textures with depth.							
Stratum	Inlet Site (Core 5)	Pool Site (Core 4)					
Accumulated Sediments	0-41 cm: muck and clay 41-69 cm: medium sand	0-94 cm: muck and clay					
Original Sediments	> 69 cm: clay	> 94 cm: silty clay					

informed in a dimension to the term of the structure of the density

Results of the analyses are shown in **Table D-7-2.** The hydrocarbon concentrations were below detection limits with the exception of diesel range organics. Most of the trace metals (**Figure D-7-2**) and phosphorus (P) (**Figure D-7-3**), showed similar concentrations in the original sediments between both sites, whereas the copper (Cu) was approximately double at the upstream site, and N, TOC (**Figure D-7-4**), and diesel range organics were approximately 50 % higher upstream. For the accumulated sediments, diesel range organics showed higher concentrations in the reservoir pool site sediments, and many of the trace metals and nutrients showed approximately 40-50 % higher concentration here as well (As, Cu, Pb, Ni, Zn, total N, total P, TOC). At the Inlet Site over time, the concentrations show decreases in Cu, Zn, N, P, and toc. At the Pool Site, the concentrations increase for As and N, while all other analytes remained similar. In the accumulated sediments at the Inlet Site, the metals with the highest concentrations were zinc (Zn 39.2 mg kg⁻¹), nickel (Ni, 18.5 mg kg⁻¹), and chromium (15.1 mg kg⁻¹). At the Pool Site, the highest concentration of metals in the accumulated sediments were Zn (77.1 mg kg⁻¹) and Ni (28.7 mg kg⁻¹).

Table D-7-2: Sediment analyte concentrations in original sediments and in sediments accumulated after dam construction, and the percent change at two sampling sites within the reservoir, Inlet Site (Core 5 is at the western end) and Pool Site (Core 4 is closer to the dam) Values with < indicate detection limits, < DL indicates non-detectable calculation.

Analyte	Units	Inlet Site Original	Inlet Site Accumulated	Inlet Site % change	Pool Site Original	Pool Site Accumulated	Pool Site % change
PCB-1016 (Aroclor 1016)	ug/kg	< 62.9	< 52.2	< DL	< 52.4	< 91.3	< DL
PCB-1221 (Aroclor 1221)	ug/kg	< 62.9	< 52.2	< DL	< 52.4	< 91.3	< DL
PCB-1232 (Aroclor 1232)	ug/kg	< 62.9	< 52.2	< DL	< 52.4	< 91.3	< DL
PCB-1242 (Aroclor 1242)	ug/kg	< 62.9	< 52.2	< DL	< 52.4	< 91.3	< DL
PCB-1248 (Aroclor 1248)	ug/kg	< 62.9	< 52.2	< DL	< 52.4	< 91.3	< DL
PCB-1254 (Aroclor 1254)	ug/kg	< 62.9	< 52.2	< DL	< 52.4	< 91.3	< DL
PCB-1260 (Aroclor 1260)	ug/kg	< 62.9	< 52.2	< DL	< 52.4	< 91.3	< DL
PCB-1262 (Aroclor 1262)	ug/kg	< 62.9	< 52.2	< DL	< 52.4	< 91.3	< DL
PCB-1268 (Aroclor 1268)	ug/kg	< 62.9	< 52.2	< DL	< 52.4	< 91.3	< DL
PCB, Total	ug/kg	< 62.9	< 52.2	< DL	< 52.4	< 91.3	< DL
Acenaphthene	ug/kg	< 62.9	< 52.2	< DL	< 52.4	< 91.3	< DL
Acenaphthylene	ug/kg	< 62.9	< 52.2	< DL	< 52.4	< 91.3	< DL
Anthracene	ug/kg	< 62.9	< 52.2	< DL	< 52.4	< 91.3	< DL
Benzo(a)anthracene	ug/kg	< 62.9	< 52.2	< DL	< 52.4	< 91.3	< DL
Benzo(a)pyrene	ug/kg	< 62.9	< 52.2	< DL	< 52.4	< 91.3	< DL
Benzo(b)fluoranthene	ug/kg	< 19.1	< 16	< DL	< 16	< 27.8	< DL
Benzo(g,h,i)perylene	ug/kg	< 19.1	< 16	< DL	< 16	< 27.8	< DL
Benzo(k)fluoranthene	ug/kg	< 19.1	< 16	< DL	< 16	< 27.8	< DL
Chrysene	ug/kg	< 19.1	< 16	< DL	< 16	< 27.8	< DL
Dibenz(a,h)anthracene	ug/kg	< 19.1	< 16	< DL	< 16	< 27.8	< DL
Fluoranthene	ug/kg	< 19.1	< 16	< DL	< 16	< 27.8	< DL
Fluorene	ug/kg	< 19.1	< 16	< DL	< 16	< 27.8	< DL

Table D-7-2: Continued

Analyte	Units	Inlet Site Original	Inlet Site Accumulated	Inlet Site % change	Pool Site Original	Pool Site Accumulated	Pool Site % change
Indeno(1,2,3-cd)pyrene	ug/kg	< 19.1	< 16	< DL	< 16	< 27.8	< DL
Naphthalene	ug/kg	< 19.1	< 16	< DL	< 16	< 27.8	< DL
Phenanthrene	ug/kg	< 19.1	< 16	< DL	< 16	< 27.8	< DL
Pyrene	ug/kg	< 19.1	< 16	< DL	< 16	< 27.8	< DL
Diesel Range Organics	mg/kg	20.70	18.40	-13	< 7.95	54.00	85
Gasoline Range Organics	mg/kg	< 25.7	< 17.3	< DL	< 18	< 30.4	< DL
Arsenic	mg/kg	4.10	3.60	-14	3.80	6.80	44
Cadmium	mg/kg	0.29	< 0.23	-152	< 0.23	< 0.41	44
Chromium	mg/kg	24.10	15.10	-60	15.40	18.60	17
Copper	mg/kg	36.70	9.30	-295	14.20	19.60	28
Lead	mg/kg	11.40	7.00	-63	11.30	16.60	32
Nickel	mg/kg	22.30	18.50	-21	35.00	28.70	-22
Zinc	mg/kg	71.40	39.20	-82	69.90	77.10	9
Nitrogen, Kjeldahl, Total	mg/kg	4500	1890	-138	2810	3350	16
Nitrogen, NO ₂ / NO ₃	mg/kg	< 0.94	< 0.79	< DL	0.93	< 1.4	-33
Nitrogen total	mg/kg	4500	1890	-138	2811	3350	16
Phosphorus	mg/kg	234	105	-123	274	245	-12
Mean Total Organic Carbon (<i>n</i> =2)	mg/kg	42900	25100	-71	30300	39700	24

Figure D-7-1: Trace metal concentrations in original sediments (pre) and in accumulated sediments (post), both within the reservoir, Inlet Site (Site 5 at the western end) and Pool Site (Site 4 closer to the dam).

Figure D-7-2: Total nitrogen and total phosphorus concentrations in original sediments (pre) and in accumulated sediments (post), both within the reservoir, Inlet Site (Site 5 at the western end) and Pool Site (Site 4 closer to the dam).

Figure D-7-3: Total organic carbon concentrations original sediments and in accumulated sediments, both within the reservoir, Inlet Site (Site 5 at the western end) and Pool Site (Site 4 closer to the dam).

Results of the estimated mass in the accumulated sediments and the and accumulation rate per year are shown in **Table D-7-3**. Diesel range organics are estimated to be 3,000 to 12,000 mg with accumulation of

100 mg yr ⁻¹. Trace metals were between 14 and 19,000 kg with Zn showing the highest amounts with between 5,000 to 19,000 kg. Zinc accumulation was estimated as 200 kg yr ⁻¹. The amounts of N (230 to 868 t) and P (15 to 58 t) were estimated to have accumulated at rates of 10,000 kg yr ⁻¹ for N and 660 kg yr ⁻¹ for P. TOC ranged from 2,865 to 10,730 t (metric tonnes) in the sediments, with an estimated rate of accumulation of 123 t yr ⁻¹.

	Estimated s	Mean				
Analyte	Low 400	Low High 400 1500		accumulation pe year (using Median density, kg yr ⁻¹)		
	Mass in accumulated sediments (mean kg, n=2)					
Diesel Range Organics	3,201	11,989	7,673	137		
Arsenic	460	1,722	1,102	20		
Cadmium	14	53	34	1		
Chromium	1,490	5,581	3,572	64		
Copper	1,278	4,786	3,063	55		
Lead	1,043	3,908	2,501	45		
Nickel	2,087	7,816	5,002	89		
Zinc	5,142	19,259	12,326	220		
Nitrogen total	231,729	867,899	555,455	9,919		
Phosphorus total	15,475	57,958	37,093	662		
Mean Total Organic Carbon (n=4)	2,865,057	10,730,551	6,867,552	122,635		

Table D-7-3: Estimated mass of analytes in the accumulated sediments and the accumulation rate per year.

DISCUSSION

The accumulated sediments at the inlet site consisted of a lower proportion of fine particles relative to the original sediments, and the reservoir pool site consisted of slightly finer textured particles compared with the original sediments. Enrichment of clays typically results in increased concentrations of metals because smaller particles, particularly the proportion of clay, increases the binding capacity of cations. Bennett and Roton (2003) also observed concentrations increasing by 100 % in post-impoundment reservoir sediments correlating with a change in sediment texture to finer particles. From these textures, higher concentrations would also be expected in the accumulated sediments of the reservoir pool (compared with the inlet sediments) and the original sediments at the inlet (compared with the accumulated sediments) would be higher than in the inlet sediments. Other studies have reported this pattern. For example, Bennett and Roton (2003) reported P and trace elements to be 2-3 times higher in the pool compared to upstream and this correlated with enrichment of clay in pool. This is the pattern seen for Bylin metal accumulation.

Concentrations of PCBs, PAHs, other hydrocarbons were below detection limits, indicating these substances are not a problem at this reservoir. Nitrogen showed concentrations similar other reservoirs (Christensen 1999, 30-3210 mg kg⁻¹). The P concentrations were somewhat lower than other reports (Christensen 1999, 251-904 mg kg⁻¹). Reports from other reservoirs show TOC concentrations ranging from

3440-19,900 mg kg⁻¹, Christensen 1999), while those for accumulated sediments at Bylin Dam were much higher at 25,100 to 39,700 mg kg⁻¹. The very high concentration of TOC in the sediments may be a controlling factor in the concentrations of other nutrients and some metals (Khaledian et al 2017), including total N and Zn (**Figure D-7-5**).

Figure D-7-4: Total nitrogen and zinc as a function of total organic carbon in Fordville Dam and Bylin Dam reservoir accumulated sediments.

Variables that affect sediment concentrations in reservoirs include sediment particle size (Strand and Pemberton 1982, Christensen 1999), management (stable pool versus drawdown, Strand and Pemberton 1982), depth of sediments (Bennett and Rhoton 2003), sediment type, reservoir management (stable pool versus drawdown, Strand and Pemberton 1982), depth of sediments (Bennett and Rhoton 2003), and surrounding land use (tilled land, e.g. fertilizers increasing Zn and Ni in sediments, Mortvedt 1995, Camelo et al. 1997). Full evaluation is beyond the scope of this study, but a more comprehensive research effort may be able to determine stronger causal relationships and reach conclusions. Possible explanations for the higher concentrations of metals and organics at the inlet accumulated sediments, as opposed to the expected increase in the pool, may include recent sedimentation at a delta or fluctuating water cover at the shallower location.

For all analytes examined, none were exceeding the US Environmental Protection Agency (EPA) guidelines for deleterious impacts on aquatic organisms (Ingersoll et al. 2000, MacDonald et al. 2000, **Table D-7-5**).

Table D-7-4: Mean concentrations (n=2) in accumulated sediments (post-construction) and the consensus-based probable effect concentration (PEC) (Ingersoll et al. 2000,MacDonald et al. 2000), < value or < DL indicates below detection limits, - indicates no threshold specified.

Analyte	Units	Mean sediment concentration (<i>n</i> =2)	PEC
PCB, Total		< DL	676
Acenaphthene		< DL	-
Acenaphthylene		< DL	-
Anthracene		< DL	845
Benzo(a)anthracene		< DL	1050
Benzo(a)pyrene		< DL	1450
Benzo(b)fluoranthene		< DL	-
Benzo(g,h,i)perylene		< DL	-
Benzo(k)fluoranthene	ug/kg	< DL	-
Chrysene		< DL	1290
Dibenz(a,h)anthracene		< DL	-
Fluoranthene		< DL	2230
Fluorene		< DL	536
Indeno(1,2,3-cd)pyrene		< DL	-
Naphthalene		< DL	561
Phenanthrene		< DL	1170
Pyrene		< DL	1520
Diesel Range Organics		36.2	-
Gasoline Range Organics		< DL	-
Arsenic		5.20	33.0
Cadmium		< 0.23	4.98
Chromium	mg/kg	16.9	111
Copper		14.5	149
Lead		11.8	128
Nickel		23.6	48.6
Zinc		58.2	459

The mass of the analytes in the accumulated sediments depends upon the analyte concentration (measured), sediment density (estimated), and the sedimentation rate (known). Because the bulk density was not directly measured for this study, but calculated using a "typical" value, the true mass is an estimate. The accumulation rates of N and P were compared with the results of the PTMApp model (**Appendix D-7-B**), which also estimated the overland sediment delivery rate with concomitant N and P contribution to the

reservoir sediments. The PTMApp results estimated similar sediment contribution into the reservoir, and N and P results were higher with the model (**Table D-7-6**).

Parameter	PTMApp Modeling Overland Contribution Appendix D-7-B)	Current Accumulation Analysis
Sediment t yr ⁻¹	3,887	3,943 measured
Total nitrogen kg yr -1	23,337	9,919 estimated
Total phosphorus kg yr -1	1,133	662 estimated

Table D-7-5: Comparison between estimated accumulation rates in other studies and the current estimation.

CONCLUSION

Since Bylin Dam was constructed, large volumes of sediment have accumulated in the reservoir (pool sediments). In these sediments polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) are not problematic. Diesel range organics and arsenic showed increased concentrations in the accumulated sediments (compared with original sediments), and a suite of trace metals showed increasing concentrations (cadmium, lead, copper, chromium), but a decrease in nickel. These metals showed amounts accumulated in the reservoir sediments in the magnitude 34 to 12,000 kg. Phosphorus and nitrogen concentrations have decreased slightly compared with original sediments, likely as a result of a change in particle texture (increased sand proportion). None of the analytes exceed toxicity thresholds (probable effect concentration). The sedimentation rate was calculated to be over 3,900 t yr ⁻¹, concomitant with estimated contribution rates for total nitrogen (9,919 kg yr⁻¹) and total phosphorus (662 kg yr ⁻¹). Nitrogen loading may be related to loading of organic carbon, which may be the result sediment transport with organic-rich sediments.

REFERENCES

- Bennett SJ, Rhoton FE (2003) Physical and Chemical Characteristics of Sediment Impoundment within Grenada Lake, MS. US Department of Agriculture Research Report no. 36.National Sedimentation Laboratory, Oxford, Mississippi. Pp. 161.
- Carnelo LGL, Ratto de Miguez S, Marbán L (1997) Heavy metals input with phosphate fertilizers used in Argentina. Science of The Total Environment, 204 (3): 245-250. https://doi.org/10.1016/S0048-9697(97)00187-3.
- Christensen VG (1999) Deposition of Selenium and Other Constituents in Reservoir Bottom Sediment of the Solomon River Basin, North-Central Kansas. Water-Resources Investigations Report 99-4230. Bureau of Reclamation, Lawrence, Kansas.
- Crane JL, Hennes S (2007) Guidance for the Use and Application of Sediment Quality Targets for the Protection of Sediment-Dwelling Organisms in Minnesota. Environmental Analysis and Outcomes Division, Minnesota Pollution Control Agency, St. Paul. MN.

Dendy FE, Champion WA (1978) Sediment Deposition in US Reservoirs, Summary of data Reported Through 1975.
US Department of Agriculture Miscellaneous Publication No. 1362. Agricultural Research Service, Washington DC.

Houston Engineering, Inc. (2021) Dam Existing Conditions Assessment Report.

- Ingersoll CG, MacDonald DD, Wang N, Crane JL, Field J, Haverland PS, Kemble NE, Lindskoog RA, Severn C, Smorong DE (2000) Prediction of sediment toxicity using consensus-based freshwater sediment quality guidelines. US EPA, Chicago, IL.
- Khaledian Y, Pereira P, Brevik EC, Pundyte N, Paliulis D (2017) The influence of organic carbon and pH on heavy metals, potassium, and magnesium levels in Lithuanian podzols. Land degradation and Development 28: 345-354.
- MacDonald DD, Ingersoll CG, Berger T (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology. 39:20-31.
- Minear JT, Kondolf GM (2009) Estimating reservoir sedimentation rates at large spatial and temporal scales: A case study of California. Water Resources Research 45:W12502.
- Mortvedt JJ (1995) Heavy metal contaminants in inorganic and organic fertilizers. Fertilizer Research, 43 (1-3): 55–61.
- Schellick AJ, Banks WSL, Myers, Jr MK. (2013) Water Volume and Sediment Volume and Density in Lake Linganore between Boyers Mill Road Bridge and Bens Branch, Frederick County, Maryland, 2012. Scientific Investigations Report 2013-5082. US Geological Survey, Reston, Virginia.
- Strand RI, Pemberton EL (1982) Reservoir Sedimentation. Technical Guideline for Bureau of Reclamation, Sedimentation and River Hydraulics Section, Hydrology Branch, Division of Planning Technical Services, Engineering and Research Center, Denver, Colorado.

Appendix D-7 - Exhibit 1

APPENDIX D-7-A

Analysis Methods and Results

Pace Analytical Services, LLC 150 N Ninth Street Billings, MT 59101 (406)254-7226

December 03, 2020

Donna Jacob Houston Engineering, Inc. 11502 240th St. N. Hawley, MN 56549

RE: Project: 7135-0037 Bylin Dam-Revised Report Pace Project No.: 10523306

Dear Donna Jacob:

Enclosed are the analytical results for sample(s) received by the laboratory on June 30, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Minneapolis
- Pace Analytical Services Montana
- Pace Analytical Services Virginia

This report was revised December 3, 2020, to correct the total nitrogen calculation error.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kassh Kly

Kang Khang kang.khang@pacelabs.com (406)254-7226 Project Manager

Enclosures

cc: Moriya Rufer, Houston Engineering, Inc.

REPORT OF LABORATORY ANALYSIS

CERTIFICATIONS

Project: 7135-0037 Bylin Dam-Revised Report Pace Project No.: 10523306

Pace Analytical Services - Minneapolis MN

1700 Elm Street SE, Minneapolis, MN 55414 1800 Elm Street SE, Minneapolis, MN 55414--Satellite Air Lab A2LA Certification #: 2926.01* Alabama Certification #: 40770 Alaska Contaminated Sites Certification #: 17-009* Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014* Arkansas DW Certification #: MN00064 Arkansas WW Certification #: 88-0680 California Certification #: 2929 Colorado Certification #: MN00064 Connecticut Certification #: PH-0256 EPA Region 8+Wyoming DW Certification #: via MN 027-053-137 Florida Certification #: E87605* Georgia Certification #: 959 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky DW Certification #: 90062 Kentucky WW Certification #: 90062 Louisiana DEQ Certification #: AI-03086* Louisiana DW Certification #: MN00064 Maine Certification #: MN00064* Maryland Certification #: 322 Massachusetts DWP Certification #: via MN 027-053-137 Michigan Certification #: 9909 Minnesota Certification #: 027-053-137* Minnesota Dept of Ag Certifcation #: via MN 027-053-137 Minnesota Petrofund Certification #: 1240*

Mississippi Certification #: MN00064 Missouri Certification #: 10100 Montana Certification #: CERT0092 Nebraska Certification #: NE-OS-18-06 Nevada Certification #: MN00064 New Hampshire Certification #: 2081* New Jersey Certification #: MN002 New York Certification #: 11647* North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507* Oregon Primary Certification #: MN300001 Oregon Secondary Certification #: MN200001* Pennsylvania Certification #: 68-00563* Puerto Rico Certification #: MN00064 South Carolina Certification #:74003001 Tennessee Certification #: TN02818 Texas Certification #: T104704192* Utah Certification #: MN00064* Vermont Certification #: VT-027053137 Virginia Certification #: 460163* Washington Certification #: C486* West Virginia DEP Certification #: 382 West Virginia DW Certification #: 9952 C Wisconsin Certification #: 999407970 Wyoming UST Certification #: via A2LA 2926.01 USDA Permit #: P330-19-00208 *Please Note: Applicable air certifications are denoted with an asterisk (*).

Pace Analytical Services Montana

150 N. 9th Street, Billings, MT 59101 A2LA Certification: # 3590.01 EPA Region 8 Certification #: 8TMS-L Idaho Certification #: MT00012 Minnesota Dept of Health Certification #: 030-999-442

Pace Analytical Services Virginia Minnesota

315 Chestnut Street, Virginia, MN 55792 Alaska Certification UST-107 Montana Certificate #CERT0103 Minnesota Dept of Health Certification #: 027-137-445 Montana Certification #: MT CERT0040 North Dakota Dept. Of Health #: R-209 Washington Department of Ecology #: C993 Nevada Certificate # : MT00012

North Dakota Certification: # R-203 Wisconsin DNR Certification # : 998027470 WA Department of Ecology Lab ID# C1007

REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

Project: 7135-0037 Bylin Dam-Revised Report

Pace Project No.: 10523306

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10523306001	Bylin Core4 Pre Impound	Solid	06/23/20 12:30	06/30/20 09:50
10523306002	Bylin Core4 Post Impound	Solid	06/23/20 12:30	06/30/20 09:50
10523306003	Bylin Core5 Pre Impound	Solid	06/23/20 17:30	06/30/20 09:50
10523306004	Bylin Core5 Post Impound	Solid	06/23/20 17:30	06/30/20 09:50
10523306005	Trip Blank	Solid	06/23/20 00:00	06/30/20 09:50

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: 7135-0037 Bylin Dam-Revised Report

Pace Project No.: 10523306

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10523306001	Bylin Core4 Pre Impound	EPA 8082A	RAG	12	PASI-M
		EPA 6010D	IP	7	PASI-M
		EPA 8270D by SIM	JNG	18	PASI-M
		EPA 8015C	NMB	2	PASI-MT
		EPA 8015C	NH1	2	PASI-MT
		ASTM D2974	MAM	1	PASI-MT
		TKN+NO3+NO2 Calculation	LM2	1	PASI-V
		EPA 351.2	DMB	1	PASI-V
		EPA 353.2	DMB	1	PASI-V
		EPA 365.1	DMB	1	PASI-V
		EPA 9060A	BE1	Analysts Reported L RAG 12 IP 7 JNG 18 1 JNG 18 1 NMB 2 1 MAM 1 1 LM2 1 1 DMB 1 2 NMB 2 1 DMB 1 2 IP 7 1 ZT 18 1 DMB 1 2 NMB 2 1 NMA 1 2 <	PASI-V
10523306002	Bylin Core4 Post Impound	EPA 8082A	RAG	12	PASI-M
		EPA 6010D	IP	7	PASI-M
		EPA 8270D by SIM	ZT	18	PASI-M
		EPA 8015C	NMB	2	PASI-MT
		EPA 8015C	NH1	2	PASI-MT
		ASTM D2974	MAM	1	PASI-MT
		TKN+NO3+NO2 Calculation	LM2	1	PASI-V
		EPA 351.2	DMB	1	PASI-V
		EPA 353.2	DMB	1	PASI-V
		EPA 365.1	DMB	1	PASI-V
		EPA 9060A	BE1	4	PASI-V
10523306003	Bylin Core5 Pre Impound	EPA 8082A	RAG	12	PASI-M
		EPA 6010D	IP	7	PASI-M
		EPA 8270D by SIM	ZT	18	PASI-M
		EPA 8015C	NMB	2	PASI-MT
		EPA 8015C	NH1	2	PASI-MT
		ASTM D2974	MAM	1	PASI-MT
		TKN+NO3+NO2 Calculation	LM2	1	PASI-V
		EPA 351.2	DMB	1	PASI-V
		EPA 353.2	DMB	1	PASI-V
		EPA 365.1	DMB	1	PASI-V
		EPA 9060A	BE1	4	PASI-V
10523306004	Bylin Core5 Post Impound	EPA 8082A	RAG	12	PASI-M
		EPA 6010D	IP	7	PASI-M
		EPA 8270D by SIM	ZT	18	PASI-M
		EPA 8015C	NMB	2	PASI-MT

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project:	7135-0037 Bylin Dam-Revised Report
Pace Project No.:	10523306

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 8015C	NH1	2	PASI-MT
		ASTM D2974	MAM	1	PASI-MT
		TKN+NO3+NO2 Calculation	LM2	1	PASI-V
		EPA 351.2	DMB	1	PASI-V
		EPA 353.2	DMB	1	PASI-V
		EPA 365.1	DMB	1	PASI-V
		EPA 9060A	BE1	4	PASI-V
10523306005	Trip Blank	EPA 8015C	NH1	2	PASI-MT

PASI-M = Pace Analytical Services - Minneapolis

PASI-MT = Pace Analytical Services - Montana

PASI-V = Pace Analytical Services - Virginia

REPORT OF LABORATORY ANALYSIS

Project: 7135-0037 Bylin Dam-Revised Report

Pace Project No.: 10523306

Sample: Bylin Core4 Pre Impound	Lab ID: 105	23306001	Collected: 06/23/2	0 12:30	Received: 06	/30/20 09:50 N	latrix: Solid	
Results reported on a "dry weight" b	asis and are adj	iusted for p	ercent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8082A GCS PCB	Analytical Meth	hod: EPA 80	82A Preparation Me	thod: E	PA 3550			
	Pace Analytica	al Services -	Minneapolis					
PCB-1016 (Aroclor 1016)	ND	ua/ka	52.4	1	07/01/20 14:33	07/06/20 13:20	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	ua/ka	52.4	1	07/01/20 14:33	07/06/20 13:20	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	ua/ka	52.4	1	07/01/20 14:33	07/06/20 13:20	11141-16-5	
PCB-1242 (Aroclor 1242)	ND	ua/ka	52.4	1	07/01/20 14:33	07/06/20 13:20	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	ua/ka	52.4	1	07/01/20 14:33	07/06/20 13:20	12672-29-6	
PCB-1254 (Aroclor 1254)	ND	ua/ka	52.4	1	07/01/20 14:33	07/06/20 13:20	11097-69-1	
PCB-1260 (Aroclor 1260)	ND	ua/ka	52.4	1	07/01/20 14:33	07/06/20 13:20	11096-82-5	
PCB-1262 (Aroclor 1262)	ND	ua/ka	52.4	1	07/01/20 14:33	07/06/20 13:20	37324-23-5	
PCB-1268 (Aroclor 1268)	ND	ua/ka	52.4	1	07/01/20 14:33	07/06/20 13:20	11100-14-4	
PCB. Total	ND	ua/ka	52.4	1	07/01/20 14:33	07/06/20 13:20	1336-36-3	
Surrogates		- 3, - 3		-				
Tetrachloro-m-xylene (S)	79	%.	46-146	1	07/01/20 14:33	07/06/20 13:20	877-09-8	
Decachlorobiphenyl (S)	74	%.	48-139	1	07/01/20 14:33	07/06/20 13:20	2051-24-3	
6010D MET ICP	Analvtical Met	hod: EPA 60	10D Preparation Me	ethod: E	PA 3050B			
	Pace Analytica	al Services -	Minneapolis					
Arsenic	3.8	ma/ka	1.5	1	07/07/20 16:26	07/08/20 17:00	7440-38-2	
Cadmium	ND	ma/ka	0.23	1	07/07/20 16:26	07/08/20 17:00	7440-43-9	
Chromium	15.4	ma/ka	0.77	1	07/07/20 16:26	07/08/20 17:00	7440-47-3	
Copper	14.2	ma/ka	0.77	1	07/07/20 16:26	07/08/20 17:00	7440-50-8	
Lead	11.3	ma/ka	0.77	1	07/07/20 16:26	07/08/20 17:00	7439-92-1	
Nickel	35.0	ma/ka	1.5	1	07/07/20 16:26	07/08/20 17:00	7440-02-0	
Zinc	69.9	mg/kg	3.1	1	07/07/20 16:26	07/09/20 13:17	7440-66-6	
8270D MSSV PAH by SIM	Analytical Meth	hod: FPA 82	70D by SIM Prepara	ation Me	ethod: EPA 35500	2		
	Pace Analytica	al Services -	Minneapolis			-		
Acenaphthene	ND	ug/kg	16.0	1	07/01/20 13:13	07/09/20 16:00	83-32-9	
Acenaphthylene	ND	ug/kg	16.0	1	07/01/20 13:13	07/09/20 16:00	208-96-8	
Anthracene	ND	ug/kg	16.0	1	07/01/20 13:13	07/09/20 16:00	120-12-7	
Benzo(a)anthracene	ND	ug/kg	16.0	1	07/01/20 13:13	07/09/20 16:00	56-55-3	
Benzo(a)pyrene	ND	ug/kg	16.0	1	07/01/20 13:13	07/09/20 16:00	50-32-8	
Benzo(b)fluoranthene	ND	ug/kg	16.0	1	07/01/20 13:13	07/09/20 16:00	205-99-2	
Benzo(g,h,i)perylene	ND	ug/kg	16.0	1	07/01/20 13:13	07/09/20 16:00	191-24-2	
Benzo(k)fluoranthene	ND	ug/kg	16.0	1	07/01/20 13:13	07/09/20 16:00	207-08-9	
Chrysene	ND	ug/kg	16.0	1	07/01/20 13:13	07/09/20 16:00	218-01-9	
Dibenz(a,h)anthracene	ND	ug/kg	16.0	1	07/01/20 13:13	07/09/20 16:00	53-70-3	
Fluoranthene	ND	ug/kg	16.0	1	07/01/20 13:13	07/09/20 16:00	206-44-0	
Fluorene	ND	ug/kg	16.0	1	07/01/20 13:13	07/09/20 16:00	86-73-7	
Indeno(1,2,3-cd)pyrene	ND	ug/kg	16.0	1	07/01/20 13:13	07/09/20 16:00	193-39-5	
Naphthalene	ND	ug/kg	16.0	1	07/01/20 13:13	07/09/20 16:00	91-20-3	
Phenanthrene	ND	ug/ka	16.0	1	07/01/20 13:13	07/09/20 16:00	85-01-8	
Pyrene	ND	ug/kg	16.0	1	07/01/20 13:13	07/09/20 16:00	129-00-0	
Surrogates		5.5						
2-Fluorobiphenyl (S)	32	%.	30-138	1	07/01/20 13:13	07/09/20 16:00	321-60-8	
p-Terphenyl-d14 (S)	41	%.	30-143	1	07/01/20 13:13	07/09/20 16:00	1718-51-0	

REPORT OF LABORATORY ANALYSIS

Date: 12/03/2020 11:30 AM

Project: 7135-0037 Bylin Dam-Revised Report

Pace Project No.: 10523306

Sample: Bylin Core4 Pre Impoun	d Lab ID: 105	23306001	Collected: 06/23/2	0 12:3	80 Received: 06	/30/20 09:50 N	latrix: Solid	
Results reported on a "dry weight	t" basis and are adj	iusted for pe	rcent moisture, sa	mple	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 C GCS THC-Diesel	Analytical Metl Pace Analytica	hod: EPA 801 al Services - N	5C Preparation Me Iontana	ethod:	EPA 3550C Sonica	ation		
Diesel Range Organics Surrogates	ND	mg/kg	15.9	1	07/03/20 14:18	07/09/20 04:54		
n-Pentacosane (S)	83	%.	60-125	1	07/03/20 14:18	07/09/20 04:54	629-99-2	
8015 C GCV TPHGAS	Analytical Metl Pace Analytica	hod: EPA 801 Il Services - N	5C Preparation Me Iontana	ethod:	EPA 5030 MT			
Gasoline Range Organics	ND	mg/kg	18.0	1	07/01/20 11:12	07/07/20 08:03		
a,a,a-Trifluorotoluene (S)	90	%.	70-130	1	07/01/20 11:12	07/07/20 08:03	98-08-8	
Dry Weight, MT	Analytical Metl Pace Analytica	hod: ASTM D al Services - N	2974 Nontana					
Percent Moisture	37.8	%	0.10	1		07/06/20 11:45		AL,N2
Total Nitrogen Calculation	Analytical Metl Pace Analytica	hod: TKN+NC Il Services - V	03+NO2 Calculatior /irginia	1				
Nitrogen	2810	mg/kg	0.55	1		11/24/20 08:18	7727-37-9	
351.2 Total Kjeldahl Nitrogen	Analytical Metl Pace Analytica	hod: EPA 351 Il Services - V	.2 Preparation Met /irginia	hod: E	EPA 351.2			
Nitrogen, Kjeldahl, Total	2810	mg/kg	96.5	1	07/10/20 09:24	07/13/20 13:26	7727-37-9	
353.2 Nitrogen, NO2/NO3	Analytical Metl Pace Analytica	hod: EPA 353 Il Services - V	.2 Preparation Met /irginia	hod: E	PA 353.2			
Nitrogen, NO2 plus NO3	0.93	mg/kg	0.80	1	07/13/20 08:14	07/15/20 08:53		N3
365.1 Phosphorus, Total	Analytical Metl Pace Analytica	hod: EPA 365 Il Services - V	.1 Preparation Met /irginia	hod: S	SM 4500P B			
Phosphorus	274	mg/kg	4.0	1	07/08/20 12:48	07/09/20 11:58	7723-14-0	
Total Organic Carbon	Analytical Metl Pace Analytica	hod: EPA 906 Il Services - V	0A /irginia					
RPD%	0.94	%		1		07/14/20 15:14		
Total Organic Carbon	30400	mg/kg	9490	1		07/14/20 15:06	7440-44-0	
Iotal Organic Carbon	30100	mg/kg	9490	1		07/14/20 15:14	7440-44-0	
Total Organic Carbon Mean Total Organic Carbon	30100 30300	mg/kg ma/ka	9490 9490	1 1		07/14/20 15:14 07/14/20 15:14	7440-44-0 7440-44-0	

REPORT OF LABORATORY ANALYSIS

Date: 12/03/2020 11:30 AM

Project: 7135-0037 Bylin Dam-Revised Report

Pace Project No.: 10523306

Sample: Bylin Core4 Post Impound	Lab ID: 10	523306002	Collected: 06/23/2	20 12:3	0 Received: 06	/30/20 09:50 N	latrix: Solid	
Results reported on a "dry weight" b	asis and are ad	ljusted for p	percent moisture, sa	ample s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8082A GCS PCB	Analytical Me	thod: EPA 80	082A Preparation Me	ethod: E	EPA 3550			
	Pace Analytic	al Services -	Minneapolis					
PCB-1016 (Aroclor 1016)	ND	ua/ka	91.3	1	07/01/20 14:33	07/06/20 13:36	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	ua/ka	91.3	1	07/01/20 14:33	07/06/20 13:36	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	ua/ka	91.3	1	07/01/20 14:33	07/06/20 13:36	11141-16-5	
PCB-1242 (Aroclor 1242)	ND	ua/ka	91.3	1	07/01/20 14:33	07/06/20 13:36	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	ua/ka	91.3	1	07/01/20 14:33	07/06/20 13:36	12672-29-6	
PCB-1254 (Aroclor 1254)	ND	ua/ka	91.3	1	07/01/20 14:33	07/06/20 13:36	11097-69-1	
PCB-1260 (Aroclor 1260)	ND	ua/ka	91.3	1	07/01/20 14:33	07/06/20 13:36	11096-82-5	
PCB-1262 (Aroclor 1262)	ND	ua/ka	91.3	1	07/01/20 14:33	07/06/20 13:36	37324-23-5	
PCB-1268 (Aroclor 1268)	ND	ua/ka	91.3	1	07/01/20 14:33	07/06/20 13:36	11100-14-4	
PCB. Total	ND	ua/ka	91.3	1	07/01/20 14:33	07/06/20 13:36	1336-36-3	
Surrogates		5.0						
Tetrachloro-m-xylene (S)	87	%.	46-146	1	07/01/20 14:33	07/06/20 13:36	877-09-8	
Decachlorobiphenyl (S)	83	%.	48-139	1	07/01/20 14:33	07/06/20 13:36	2051-24-3	
6010D MET ICP	Analytical Me	thod: EPA 60	010D Preparation Me	ethod: E	EPA 3050B			
	Pace Analytic	al Services -	Minneapolis					
Arsenic	6.8	mg/kg	2.7	1	07/07/20 16:26	07/08/20 17:03	7440-38-2	
Cadmium	ND	mg/kg	0.41	1	07/07/20 16:26	07/08/20 17:03	7440-43-9	
Chromium	18.6	mg/kg	1.4	1	07/07/20 16:26	07/08/20 17:03	7440-47-3	
Copper	19.6	mg/kg	1.4	1	07/07/20 16:26	07/08/20 17:03	7440-50-8	
Lead	16.6	mg/kg	1.4	1	07/07/20 16:26	07/08/20 17:03	7439-92-1	
Nickel	28.7	mg/kg	2.7	1	07/07/20 16:26	07/08/20 17:03	7440-02-0	
Zinc	77.1	mg/kg	5.5	1	07/07/20 16:26	07/09/20 13:20	7440-66-6	
8270D MSSV PAH by SIM	Analytical Me	thod: EPA 82	270D by SIM Prepar	ation M	ethod: EPA 35500	;		
	Pace Analytic	al Services -	Minneapolis					
Acenaphthene	ND	ug/kg	27.8	1	07/01/20 13:13	07/08/20 17:24	83-32-9	
Acenaphthylene	ND	ug/kg	27.8	1	07/01/20 13:13	07/08/20 17:24	208-96-8	
Anthracene	ND	ug/kg	27.8	1	07/01/20 13:13	07/08/20 17:24	120-12-7	
Benzo(a)anthracene	ND	ug/kg	27.8	1	07/01/20 13:13	07/08/20 17:24	56-55-3	
Benzo(a)pyrene	ND	ug/kg	27.8	1	07/01/20 13:13	07/08/20 17:24	50-32-8	
Benzo(b)fluoranthene	ND	ug/kg	27.8	1	07/01/20 13:13	07/08/20 17:24	205-99-2	
Benzo(g,h,i)perylene	ND	ug/kg	27.8	1	07/01/20 13:13	07/08/20 17:24	191-24-2	
Benzo(k)fluoranthene	ND	ug/kg	27.8	1	07/01/20 13:13	07/08/20 17:24	207-08-9	
Chrysene	ND	ug/kg	27.8	1	07/01/20 13:13	07/08/20 17:24	218-01-9	
Dibenz(a,h)anthracene	ND	ug/kg	27.8	1	07/01/20 13:13	07/08/20 17:24	53-70-3	
Fluoranthene	ND	ug/kg	27.8	1	07/01/20 13:13	07/08/20 17:24	206-44-0	
Fluorene	ND	ug/kg	27.8	1	07/01/20 13:13	07/08/20 17:24	86-73-7	
Indeno(1,2,3-cd)pyrene	ND	ug/kg	27.8	1	07/01/20 13:13	07/08/20 17:24	193-39-5	
Naphthalene	ND	ug/kg	27.8	1	07/01/20 13:13	07/08/20 17:24	91-20-3	
Phenanthrene	ND	ug/kg	27.8	1	07/01/20 13:13	07/08/20 17:24	85-01-8	
Pyrene	ND	ug/kg	27.8	1	07/01/20 13:13	07/08/20 17:24	129-00-0	
Surrogates								
2-Fluorobiphenyl (S)	67	%.	30-138	1	07/01/20 13:13	07/08/20 17:24	321-60-8	
p-Terphenyl-d14 (S)	80	%.	30-143	1	07/01/20 13:13	07/08/20 17:24	1718-51-0	

REPORT OF LABORATORY ANALYSIS

Date: 12/03/2020 11:30 AM

Project: 7135-0037 Bylin Dam-Revised Report

Pace Project No.: 10523306

Sample: Bylin Core4 Post Impoun	d Lab ID: 105	23306002	Collected: 06/23/2	0 12:3	80 Received: 06	5/30/20 09:50 N	Aatrix: Solid	
Results reported on a "dry weight"	' basis and are ad	justed for pe	rcent moisture, sa	mple	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 C GCS THC-Diesel	Analytical Met Pace Analytica	hod: EPA 801 al Services - N	5C Preparation Me Iontana	thod:	EPA 3550C Sonica	ation		
Diesel Range Organics Surrogates	54.0	mg/kg	26.9	1	07/03/20 14:18	07/09/20 07:12		
n-Pentacosane (S)	90	%.	60-125	1	07/03/20 14:18	07/09/20 07:12	629-99-2	
8015 C GCV TPHGAS	Analytical Met Pace Analytica	hod: EPA 801 al Services - N	5C Preparation Me Iontana	thod:	EPA 5030 MT			
Gasoline Range Organics <i>Surrogates</i>	ND	mg/kg	30.4	1	07/01/20 11:12	07/07/20 08:31		
a,a,a-Trifluorotoluene (S)	92	%.	70-130	1	07/01/20 11:12	07/07/20 08:31	98-08-8	
Dry Weight, MT	Analytical Met Pace Analytica	hod: ASTM D al Services - N	2974 Nontana					
Percent Moisture	64.2	%	0.10	1		07/06/20 11:45		AL,N2
Total Nitrogen Calculation	Analytical Met Pace Analytica	hod: TKN+NC al Services - V	03+NO2 Calculatior /irginia	l				
Nitrogen	3350	mg/kg	0.55	1		11/24/20 08:22	7727-37-9	
351.2 Total Kjeldahl Nitrogen	Analytical Met Pace Analytica	hod: EPA 351 al Services - V	.2 Preparation Met /irginia	hod: E	PA 351.2			
Nitrogen, Kjeldahl, Total	3350	mg/kg	160	1	07/10/20 09:24	07/13/20 13:28	7727-37-9	
353.2 Nitrogen, NO2/NO3	Analytical Met Pace Analytica	hod: EPA 353 al Services - V	.2 Preparation Met /irginia	hod: E	PA 353.2			
Nitrogen, NO2 plus NO3	ND	mg/kg	1.4	1	07/13/20 08:14	07/15/20 08:55		N3
365.1 Phosphorus, Total	Analytical Met Pace Analytica	hod: EPA 365 al Services - V	.1 Preparation Met /irginia	hod: S	M 4500P B			
Phosphorus	245	mg/kg	7.0	1	07/08/20 12:48	07/09/20 11:59	7723-14-0	
Total Organic Carbon	Analytical Met Pace Analytica	hod: EPA 906 al Services - V	0A /irginia					
RPD%	0.70	%		1		07/14/20 15:29		
Total Organic Carbon	39600	mg/kg	9840	1		07/14/20 15:21	7440-44-0	
Total Organic Carbon	39800	mg/kg	9850	1		07/14/20 15:29	7440-44-0	
iviean Total Organic Carpon	39700	ma/ka	9840	1		07/14/20 15:29	7440-44-()	

REPORT OF LABORATORY ANALYSIS

Date: 12/03/2020 11:30 AM

Project: 7135-0037 Bylin Dam-Revised Report

Pace Project No.: 10523306

Sample: Bylin Core5 Pre Impound	d Lab ID: 105	23306003	Collected: 06/23/2	0 17:30	0 Received: 06	/30/20 09:50 N	latrix: Solid	
Results reported on a "dry weight	t" basis and are ad	justed for pe	rcent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8082A GCS PCB	Analytical Met	hod: EPA 808	2A Preparation Me	thod: E	PA 3550			
	Pace Analytica	al Services - N	linneapolis					
PCB-1016 (Aroclor 1016)	ND	ug/kg	62.9	1	07/01/20 14:33	07/06/20 13:52	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	ug/kg	62.9	1	07/01/20 14:33	07/06/20 13:52	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	ug/kg	62.9	1	07/01/20 14:33	07/06/20 13:52	11141-16-5	
PCB-1242 (Aroclor 1242)	ND	ug/kg	62.9	1	07/01/20 14:33	07/06/20 13:52	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	ug/kg	62.9	1	07/01/20 14:33	07/06/20 13:52	12672-29-6	
PCB-1254 (Aroclor 1254)	ND	ug/kg	62.9	1	07/01/20 14:33	07/06/20 13:52	11097-69-1	
PCB-1260 (Aroclor 1260)	ND	ug/kg	62.9	1	07/01/20 14:33	07/06/20 13:52	11096-82-5	
PCB-1262 (Aroclor 1262)	ND	ug/kg	62.9	1	07/01/20 14:33	07/06/20 13:52	37324-23-5	
PCB-1268 (Aroclor 1268)	ND	ug/kg	62.9	1	07/01/20 14:33	07/06/20 13:52	11100-14-4	
PCB, Total	ND	ug/kg	62.9	1	07/01/20 14:33	07/06/20 13:52	1336-36-3	
Surrogates								
Tetrachloro-m-xylene (S)	88	%.	46-146	1	07/01/20 14:33	07/06/20 13:52	877-09-8	
Decachlorobiphenyl (S)	77	%.	48-139	1	07/01/20 14:33	07/06/20 13:52	2051-24-3	
6010D MET ICP	Analytical Met	hod: EPA 601	0D Preparation Me	thod: E	PA 3050B			
	Pace Analytica	al Services - N	linneapolis					
Arsenic	4.1	mg/kg	1.8	1	07/07/20 16:26	07/08/20 17:06	7440-38-2	
Cadmium	0.29	mg/kg	0.27	1	07/07/20 16:26	07/08/20 17:06	7440-43-9	
Chromium	24.1	mg/kg	0.91	1	07/07/20 16:26	07/08/20 17:06	7440-47-3	
Copper	36.7	mg/kg	0.91	1	07/07/20 16:26	07/08/20 17:06	7440-50-8	
Lead	11.4	mg/kg	0.91	1	07/07/20 16:26	07/08/20 17:06	7439-92-1	
Nickel	22.3	mg/kg	1.8	1	07/07/20 16:26	07/08/20 17:06	7440-02-0	
Zinc	71.4	mg/kg	3.6	1	07/07/20 16:26	07/09/20 13:23	7440-66-6	
8270D MSSV PAH by SIM	Analytical Met	hod: EPA 827	0D by SIM Prepara	ation M	ethod: EPA 35500	2		
	Pace Analytica	al Services - N	linneapolis					
Acenaphthene	ND	ug/kg	19.1	1	07/01/20 13:13	07/08/20 18:29	83-32-9	
Acenaphthylene	ND	ug/kg	19.1	1	07/01/20 13:13	07/08/20 18:29	208-96-8	
Anthracene	ND	ug/kg	19.1	1	07/01/20 13:13	07/08/20 18:29	120-12-7	
Benzo(a)anthracene	ND	ug/kg	19.1	1	07/01/20 13:13	07/08/20 18:29	56-55-3	
Benzo(a)pyrene	ND	ug/kg	19.1	1	07/01/20 13:13	07/08/20 18:29	50-32-8	
Benzo(b)fluoranthene	ND	ug/kg	19.1	1	07/01/20 13:13	07/08/20 18:29	205-99-2	
Benzo(g,h,i)perylene	ND	ug/kg	19.1	1	07/01/20 13:13	07/08/20 18:29	191-24-2	
Benzo(k)fluoranthene	ND	ug/kg	19.1	1	07/01/20 13:13	07/08/20 18:29	207-08-9	
Chrysene	ND	ug/kg	19.1	1	07/01/20 13:13	07/08/20 18:29	218-01-9	
Dibenz(a,h)anthracene	ND	ug/kg	19.1	1	07/01/20 13:13	07/08/20 18:29	53-70-3	
Fluoranthene	ND	ug/kg	19.1	1	07/01/20 13:13	07/08/20 18:29	206-44-0	
Fluorene	ND	ug/kg	19.1	1	07/01/20 13:13	07/08/20 18:29	86-73-7	
Indeno(1,2,3-cd)pyrene	ND	ug/kg	19.1	1	07/01/20 13:13	07/08/20 18:29	193-39-5	
Naphthalene	ND	ug/kg	19.1	1	07/01/20 13:13	07/08/20 18:29	91-20-3	
Phenanthrene	ND	ug/kg	19.1	1	07/01/20 13:13	07/08/20 18:29	85-01-8	
Pyrene	ND	ug/kg	19.1	1	07/01/20 13:13	07/08/20 18:29	129-00-0	
Surrogates								
2-Fluorobiphenyl (S)	71	%.	30-138	1	07/01/20 13:13	07/08/20 18:29	321-60-8	
p-Terphenyl-d14 (S)	79	%.	30-143	1	07/01/20 13:13	07/08/20 18:29	1718-51-0	

REPORT OF LABORATORY ANALYSIS

Date: 12/03/2020 11:30 AM

Project: 7135-0037 Bylin Dam-Revised Report

Pace Project No.: 10523306

Sample: Bylin Core5 Pre Impoun	d Lab ID: 105	23306003	Collected: 06/23/2	0 17:3	80 Received: 06	/30/20 09:50 N	latrix: Solid	
Results reported on a "dry weight	t" basis and are adj	iusted for pe	rcent moisture, sa	mple	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 C GCS THC-Diesel	Analytical Meth Pace Analytica	nod: EPA 801 Il Services - N	5C Preparation Me Iontana	thod:	EPA 3550C Sonica	ation		
Diesel Range Organics Surrogates	20.7	mg/kg	18.2	1	07/03/20 14:18	07/09/20 06:02		
n-Pentacosane (S)	87	%.	60-125	1	07/03/20 14:18	07/09/20 06:02	629-99-2	
8015 C GCV TPHGAS	Analytical Metl Pace Analytica	nod: EPA 801 Il Services - N	5C Preparation Me Iontana	thod:	EPA 5030 MT			
Gasoline Range Organics	ND	mg/kg	25.7	1	07/01/20 11:12	07/07/20 08:58		
a,a,a-Trifluorotoluene (S)	92	%.	70-130	1	07/01/20 11:12	07/07/20 08:58	98-08-8	
Dry Weight, MT	Analytical Metl Pace Analytica	nod: ASTM D Il Services - N	2974 Iontana					
Percent Moisture	47.6	%	0.10	1		07/06/20 11:45		AL,N2
Total Nitrogen Calculation	Analytical Metl Pace Analytica	nod: TKN+NC Il Services - V	03+NO2 Calculatior ⁄irginia	I				
Nitrogen	4500	mg/kg	0.55	1		11/24/20 08:24	7727-37-9	
351.2 Total Kjeldahl Nitrogen	Analytical Metl Pace Analytica	nod: EPA 351 Il Services - V	.2 Preparation Met /irginia	hod: E	PA 351.2			
Nitrogen, Kjeldahl, Total	4500	mg/kg	521	5	07/10/20 09:24	07/13/20 14:12	7727-37-9	
353.2 Nitrogen, NO2/NO3	Analytical Metl Pace Analytica	nod: EPA 353 Il Services - V	.2 Preparation Met /irginia	hod: E	PA 353.2			
Nitrogen, NO2 plus NO3	ND	mg/kg	0.94	1	07/13/20 08:14	07/15/20 08:56		N3
365.1 Phosphorus, Total	Analytical Metl Pace Analytica	nod: EPA 365 Il Services - V	.1 Preparation Met ⁄irginia	hod: S	M 4500P B			
Phosphorus	234	mg/kg	4.7	1	07/08/20 12:48	07/09/20 12:00	7723-14-0	
Total Organic Carbon	Analytical Metl Pace Analytica	nod: EPA 906 Il Services - V	0A ⁄irginia					
RPD%	1.8	%		1		07/14/20 15:45		
Total Organic Carbon	43300	mg/kg	9460	1		07/14/20 15:37	7440-44-0	
Iotal Organic Carbon	42500	mg/kg	9580	1		07/14/20 15:45	7440-44-0	
wean total Organic Carpon	42900	πα/κα	9320			07/14/20 15:45	1440-44-0	

REPORT OF LABORATORY ANALYSIS

Date: 12/03/2020 11:30 AM

Project: 7135-0037 Bylin Dam-Revised Report

Pace Project No.: 10523306

Sample: Bylin Core5 Post Impound	Lab ID: 105	23306004	Collected: 06/23/2	0 17:3	0 Received: 06	/30/20 09:50 N	latrix: Solid	
Results reported on a "dry weight" b	asis and are ad	justed for p	percent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8082A GCS PCB	Analytical Met	hod: EPA 80	082A Preparation Me	thod: E	EPA 3550			
	Pace Analytica	al Services -	- Minneapolis					
PCB-1016 (Aroclor 1016)	ND	ua/ka	52.2	1	07/01/20 14:33	07/06/20 14:08	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	ua/ka	52.2	1	07/01/20 14:33	07/06/20 14:08	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	ua/ka	52.2	1	07/01/20 14:33	07/06/20 14:08	11141-16-5	
PCB-1242 (Aroclor 1242)	ND	ua/ka	52.2	1	07/01/20 14:33	07/06/20 14:08	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	ug/kg	52.2	1	07/01/20 14:33	07/06/20 14:08	12672-29-6	
PCB-1254 (Aroclor 1254)	ND	ug/kg	52.2	1	07/01/20 14:33	07/06/20 14:08	11097-69-1	
PCB-1260 (Aroclor 1260)	ND	ug/kg	52.2	1	07/01/20 14:33	07/06/20 14:08	11096-82-5	
PCB-1262 (Aroclor 1262)	ND	ua/ka	52.2	1	07/01/20 14:33	07/06/20 14:08	37324-23-5	
PCB-1268 (Aroclor 1268)	ND	ua/ka	52.2	1	07/01/20 14:33	07/06/20 14:08	11100-14-4	
PCB, Total	ND	ug/kg	52.2	1	07/01/20 14:33	07/06/20 14:08	1336-36-3	
Surrogates		0 0						
Tetrachloro-m-xylene (S)	83	%.	46-146	1	07/01/20 14:33	07/06/20 14:08	877-09-8	
Decachlorobiphenyl (S)	77	%.	48-139	1	07/01/20 14:33	07/06/20 14:08	2051-24-3	
6010D MET ICP	Analytical Met	hod: EPA 60	010D Preparation Me	thod: I	EPA 3050B			
	Pace Analytica	al Services ·	Minneapolis					
Arsenic	3.6	mg/kg	1.5	1	07/07/20 16:26	07/08/20 17:09	7440-38-2	
Cadmium	ND	mg/kg	0.23	1	07/07/20 16:26	07/08/20 17:09	7440-43-9	
Chromium	15.1	mg/kg	0.75	1	07/07/20 16:26	07/08/20 17:09	7440-47-3	
Copper	9.3	mg/kg	0.75	1	07/07/20 16:26	07/08/20 17:09	7440-50-8	
Lead	7.0	mg/kg	0.75	1	07/07/20 16:26	07/08/20 17:09	7439-92-1	
Nickel	18.5	mg/kg	1.5	1	07/07/20 16:26	07/08/20 17:09	7440-02-0	
Zinc	39.2	mg/kg	3.0	1	07/07/20 16:26	07/09/20 13:26	7440-66-6	
8270D MSSV PAH by SIM	Analytical Met	hod: EPA 82	270D by SIM Prepara	ation M	lethod: EPA 35500	;		
	Pace Analytica	al Services ·	Minneapolis					
Acenaphthene	ND	ug/kg	16.0	1	07/01/20 13:13	07/08/20 18:51	83-32-9	
Acenaphthylene	ND	ug/kg	16.0	1	07/01/20 13:13	07/08/20 18:51	208-96-8	
Anthracene	ND	ug/kg	16.0	1	07/01/20 13:13	07/08/20 18:51	120-12-7	
Benzo(a)anthracene	ND	ug/kg	16.0	1	07/01/20 13:13	07/08/20 18:51	56-55-3	
Benzo(a)pyrene	ND	ug/kg	16.0	1	07/01/20 13:13	07/08/20 18:51	50-32-8	
Benzo(b)fluoranthene	ND	ug/kg	16.0	1	07/01/20 13:13	07/08/20 18:51	205-99-2	
Benzo(g,h,i)perylene	ND	ug/kg	16.0	1	07/01/20 13:13	07/08/20 18:51	191-24-2	
Benzo(k)fluoranthene	ND	ug/kg	16.0	1	07/01/20 13:13	07/08/20 18:51	207-08-9	
Chrysene	ND	ug/kg	16.0	1	07/01/20 13:13	07/08/20 18:51	218-01-9	
Dibenz(a,h)anthracene	ND	ug/kg	16.0	1	07/01/20 13:13	07/08/20 18:51	53-70-3	
Fluoranthene	ND	ug/kg	16.0	1	07/01/20 13:13	07/08/20 18:51	206-44-0	
Fluorene	ND	ug/kg	16.0	1	07/01/20 13:13	07/08/20 18:51	86-73-7	
Indeno(1,2,3-cd)pyrene	ND	ug/kg	16.0	1	07/01/20 13:13	07/08/20 18:51	193-39-5	
Naphthalene	ND	ug/kg	16.0	1	07/01/20 13:13	07/08/20 18:51	91-20-3	
Phenanthrene	ND	ug/kg	16.0	1	07/01/20 13:13	07/08/20 18:51	85-01-8	
Pyrene	ND	ug/kg	16.0	1	07/01/20 13:13	07/08/20 18:51	129-00-0	
Surrogates								
2-Fluorobiphenyl (S)	72	%.	30-138	1	07/01/20 13:13	07/08/20 18:51	321-60-8	
p-Terphenyl-d14 (S)	79	%.	30-143	1	07/01/20 13:13	07/08/20 18:51	1718-51-0	

REPORT OF LABORATORY ANALYSIS

Date: 12/03/2020 11:30 AM

Project: 7135-0037 Bylin Dam-Revised Report

Pace Project No.: 10523306

Sample: Bylin Core5 Post Impou	nd Lab ID: 105	23306004	Collected: 06/23/2	0 17:3	30 Received: 06	6/30/20 09:50 N	Aatrix: Solid	
Results reported on a "dry weight	t" basis and are ad	iusted for pe	rcent moisture, sa	mple	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 C GCS THC-Diesel	Analytical Met Pace Analytica	hod: EPA 801 al Services - N	5C Preparation Me Iontana	thod:	EPA 3550C Sonica	ation		
Diesel Range Organics Surrogates	18.4	mg/kg	15.9	1	07/03/20 14:18	07/09/20 05:28		
n-Pentacosane (S)	83	%.	60-125	1	07/03/20 14:18	07/09/20 05:28	629-99-2	
8015 C GCV TPHGAS	Analytical Met Pace Analytica	hod: EPA 801 Il Services - N	5C Preparation Me Iontana	thod:	EPA 5030 MT			
Gasoline Range Organics <i>Surrogates</i>	ND	mg/kg	17.3	1	07/01/20 11:12	07/07/20 09:25		
a,a,a-Trifluorotoluene (S)	93	%.	70-130	1	07/01/20 11:12	07/07/20 09:25	98-08-8	
Dry Weight, MT	Analytical Met Pace Analytica	hod: ASTM D: al Services - N	2974 Iontana					
Percent Moisture	37.5	%	0.10	1		07/06/20 11:45		AL,N2
Total Nitrogen Calculation	Analytical Met Pace Analytica	hod: TKN+NC Il Services - V	03+NO2 Calculatior ⁄irginia	l				
Nitrogen	1890	mg/kg	0.55	1		11/24/20 08:25	7727-37-9	
351.2 Total Kjeldahl Nitrogen	Analytical Met Pace Analytica	hod: EPA 351 al Services - V	.2 Preparation Met /irginia	hod: E	PA 351.2			
Nitrogen, Kjeldahl, Total	1890	mg/kg	101	1	07/10/20 09:24	07/13/20 13:34	7727-37-9	
353.2 Nitrogen, NO2/NO3	Analytical Met Pace Analytica	hod: EPA 353 al Services - V	.2 Preparation Met /irginia	hod: E	PA 353.2			
Nitrogen, NO2 plus NO3	ND	mg/kg	0.79	1	07/13/20 08:14	07/15/20 09:03		N3
365.1 Phosphorus, Total	Analytical Met Pace Analytica	hod: EPA 365 Il Services - V	.1 Preparation Met /irginia	hod: S	SM 4500P B			
Phosphorus	105	mg/kg	4.0	1	07/08/20 12:48	07/09/20 12:02	7723-14-0	
Total Organic Carbon	Analytical Met Pace Analytica	hod: EPA 906 Il Services - V	0A ⁄irginia					
RPD%	4.5	%		1		07/14/20 16:00		
Total Organic Carbon	24500	mg/kg	10000	1		07/14/20 15:52	7440-44-0	
Total Organic Carbon	25700	mg/kg	9620	1		07/14/20 16:00	7440-44-0	
iviean Total Ordanic Carbon	25100	ma/ka	9820	1		07/14/20 16:00	1440-44-0	

REPORT OF LABORATORY ANALYSIS

Date: 12/03/2020 11:30 AM

Project: 7135-0037 Bylin Dam-Revised Report

Pace Project No.: 10523306

Sample: Trip Blank	Lab ID: 1	0523306005	Collected: 06/23/2	20 00:00	Received: 06	6/30/20 09:50 N	Matrix: Solid	
Results reported on a "wet-weight	ght" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 C GCV TPHGAS	Analytical M Pace Analyt	lethod: EPA 80 ical Services -	15C Preparation Me Montana	ethod: EF	PA 5030 MT			
Gasoline Range Organics <i>Surrogates</i>	ND	mg/kg	10.0	1	07/01/20 11:12	07/07/20 02:09		
a,a,a-Trifluorotoluene (S)	91	%.	70-130	1	07/01/20 11:12	07/07/20 02:09	98-08-8	

REPORT OF LABORATORY ANALYSIS

Date: 12/03/2020 11:30 AM

						-		~ ~ ~		75 405		~~	
Parameter	Units	10523281001 Result	Spike S Conc. C	Spike Conc.	MS Result	F	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
MATRIX SPIKE & MATRIX	SPIKE DUPL	LICATE: 36645	69 MS /	MSD	366457	0							
ZINC		тіу/ку	40.9		40.4		10:	נ	00-120				
Nickei		mg/kg	45.9		47.0 19.4		104	+	00-120 90 120				
Lead		mg/kg	45.9		47.5		104	4	80-120				
Copper		mg/kg	45.9		44.5		97	(80-120				
Chromium		mg/kg	45.9		47.5		104	4	80-120				
Cadmium		mg/kg	45.9		48.0		105	5	80-120				
Arsenic		mg/kg	45.9		47.7		104	4	80-120				
Parameter		Units	Conc.	Res	ult	%	6 Rec	Lim	nits	Qualifiers			
LABORATORY CONTROL	_ SAMPLE:	3664568	Spike	LC	S		LCS	% F	Rec				
					-		2.,00/20						
Zinc		ma/ka		ND	2	2.0	07/08/20) 15:56					
Nickol		mg/kg			0.	30 00	07/08/20	15.50					
Lood		mg/kg			0.	50 50	07/08/20	J 15:50					
Chromium		mg/kg			0.	50 50	07/08/20	J 15:56					
Cadmium		mg/kg		ND	0.	15	07/08/20	0 15:56					
Arsenic		mg/kg		ND	0.	99	07/08/20	0 15:56					
Parameter		Units	Result		Limit		Analy	/zed	Qualifier	rs			
			Blank	I	Reporting								
Associated Lab Samples:	105233060	01, 10523306002	, 105233060	03, 105	23306004								
METHOD BLANK: 3664	567		М	atrix: So	olid								
Associated Lab Samples:	105233060	01, 10523306002	, 105233060	03, 105	23306004								
			Laborat	ory:		Ра	ce Analyt	ical Servi	ces - Minne	apolis			
QC Batch Method: EPA	A 3050B		Analysis	s Descrij	otion:	60 ⁻	10D Solid	ls					
QC Batch: 685	123		Analysis	s Method	d:	EP	PA 6010D						
	3300												
Project: /135-	-0037 Bylin Da	am-Revised Repoi	rt										
Uroloot: 740F	11197 Dulia De	m Downood Domes	**										

Arsenic	mg/kg	5.1	73.1	75.9	76.5	79.5	98	98	75-125	4	20	
Cadmium	mg/kg	ND	73.1	75.9	66.4	72.3	91	95	75-125	8	20	
Chromium	mg/kg	15.1	73.1	75.9	84.2	87.7	95	96	75-125	4	20	
Copper	mg/kg	10.3	73.1	75.9	78.6	80.3	93	92	75-125	2	20	
Lead	mg/kg	13.3	73.1	75.9	81.4	83.2	93	92	75-125	2	20	
Nickel	mg/kg	22.7	73.1	75.9	102	97.0	109	98	75-125	5	20	
Zinc	mg/kg	53.2	73.1	75.9	144	136	124	109	75-125	6	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Date: 12/03/2020 11:30 AM

QUALITY CONTROL DATA

Project:	7135-0037 Bylin D	am-Revised Repo	rt									
Pace Project No.:	10523306											
QC Batch:	684534		Analy	sis Metho	d:	EPA 8015C						
QC Batch Method:	EPA 5030 MT		Analy	sis Descri	ption:	8015 C TPH	l-Gas MT					
			Labo	ratory:		Pace Analyt	tical Service	es - Montar	na			
Associated Lab Sam	ples: 10523306	001, 10523306002	2, 1052330	6003, 105	23306004,	105233060	05					
METHOD BLANK:	3661586			Matrix: So	olid							
Associated Lab Sam	ples: 10523306	001, 10523306002	2, 1052330	6003, 105	23306004,	105233060	05					
			Blar	ık	Reporting							
Param	eter	Units	Res	ult	Limit	Anal	yzed	Qualifiers	5			
Gasoline Range Org	anics	mg/kg		ND	9	.8 07/07/2	0 01:14					
a,a,a-Trifluorotoluen	e (S)	%.		93	70-13	30 07/07/2	0 01:14					
LABORATORY CON	ITROL SAMPLE:	3661587										
			Spike	LC	s	LCS	% R	ес				
Param	eter	Units	Conc.	Res	sult	% Rec	Limi	ts (Qualifiers			
Gasoline Range Org	anics	mg/kg	47.	5	42.5	8	9 6			_		
a,a,a-Trifluorotoluen	e (S)	%.				10	2 7	70-130				
MATRIX SPIKE & M	ATRIX SPIKE DUF	PLICATE: 36615	88		366158	9						
			MS	MSD								
		10523306001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Gasoline Range Org	anics mg/kg		92.8	92.8	76.1	70.5	82	76	30-150	8	20	
a,a,a-Trifluorotoluene	e (S) %.						101	101	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Date: 12/03/2020 11:30 AM

QUALITY CONTROL DATA

Project:	7135-0037 Bylin D	am-Revised Repor	t						
Pace Project No.:	10523306								
QC Batch:	685000		Analysis Meth	od:	ASTM D2974				
QC Batch Method:	ASTM D2974		Analysis Desc	ription:	Dry Weight/Per	cent Moist	ure		
			Laboratory:		Pace Analytical	Services -	Montan	na	
Associated Lab Sar	nples: 105233060	001, 10523306002	, 10523306003, 10	523306004					
SAMPLE DUPLICA	TE: 3664072								
_			10524712001	Dup		N	lax		
Parar	neter	Units	Result	Result	RPD	R	PD	Qualifiers	
Percent Moisture		%	23.0	22	7	1	30) AL,N2	
SAMPLE DUPLICA	TE: 3664073								
			10524712002	Dup		Ν	lax		
Parar	neter	Units	Result	Result	RPD	R	PD	Qualifiers	
Percent Moisture		%	22.6	22	.5	1	30	AL,N2	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Date: 12/03/2020 11:30 AM

Project:	7135-0037 Bylin Da	am-Revised Repo	ort										
Pace Project No .:	10523306												
QC Batch:	684825		Analy	sis Method	: 6	EPA 80150	C						
QC Batch Method:	EPA 3550C Sonic	ation	Analy	Analysis Description:			8015 C THC-Diesel MT						
			Laboi	Laboratory:			ytical Serv	vices - Mont	tana				
Associated Lab Sar	mples: 105233060	01, 1052330600	2, 1052330	6003, 1052	3306004								
METHOD BLANK:	3663455			Matrix: Sol	lid								
Associated Lab Sar	mples: 105233060	01, 1052330600	2, 1052330	6003, 1052	3306004								
			Blan	k R	Reporting								
Parar	Resu	Result		Analyzed		Qualifiers							
Diesel Range Organics mg/kg			ND		4 07/08/2	20 12:53							
n-Pentacosane (S)		%.		84	60-12	5 07/08/2	20 12:53						
LABORATORY CO	NTROL SAMPLE & L	CSD: 366345	6		3663457								
			Spike	LCS	LCSD	LCS	LCSD	% Rec		Max			
Parar	neter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua	alifiers	
Diesel Range Organ	nics	mg/kg	140) 121	1 13	82 87	90	50-125	9	20			
n-Pentacosane (S)		%.				93	93	60-125					
MATRIX SPIKE & N	ATRIX SPIKE DUPL	-ICATE: 3663	458		3663459)							
			MS	MSD									
		10523571001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max		
Paramete	r Units	Result	Conc.	Conc.	Result	Result	% Rec	Rec	Limits	RPD	RPD	Qual	
Diesel Range Organ	nics mg/kg	ND	421	421	391	387		92 9	91 30-13	7 1	20		
n-Pentacosane (S)	%.						ę	95 9	93 60-12	5			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Date: 12/03/2020 11:30 AM

Project:	7135-0	037 Bylin D	am-Revise	d Repo	ort									
Pace Project No.:	105233	306												
QC Batch:	6845	26			Analy	sis Metho	d: I	EPA 8082A	١					
QC Batch Method:	EPA 3	3550			Analy	sis Descri	ption:	3082A GC	S PCB					
					Labor	atory:		Pace Analy	tical Ser	vices - Minr	neapolis			
Associated Lab Sar	mples:	105233060	001, 10523	30600	2, 1052330	6003, 105	23306004				iospono			
METHOD BLANK:	366154	14				Matrix: So	olid							
Associated Lab Sar	mples:	105233060	001, 10523	30600	2, 1052330	6003, 105	23306004							
					Blan	k	Reporting							
Parar	neter		Unit	s	Resu	ılt	Limit	Ana	lyzed	Qualifi	ers			
PCB-1016 (Aroclor	1016)		ug/k	g		ND	33.	0 07/06/2	20 12:01					
PCB-1221 (Aroclor	1221)		ug/k	g		ND	33.	0 07/06/2	20 12:01					
PCB-1232 (Aroclor	1232)		ug/k	g		ND	33.	0 07/06/2	20 12:01					
PCB-1242 (Aroclor	1242)		ug/k	g		ND	33.	0 07/06/2	20 12:01					
PCB-1248 (Aroclor	1248)		ug/k	g		ND	33.	0 07/06/2	20 12:01					
PCB-1254 (Aroclor	1254)		ug/k	g		ND	33.	0 07/06/2	20 12:01					
PCB-1260 (Aroclor	1260)		ug/k	g		ND	33.	0 07/06/2	20 12:01					
PCB-1262 (Aroclor 1262)			ug/k	g		ND	33.	0 07/06/2	20 12:01					
PCB-1268 (Aroclor 1268)		ug/k	g		ND	33.	0 07/06/2	20 12:01						
Decachlorobiphenyl (S)		%.			90	48-13	9 07/06/2	20 12:01						
letrachioro-m-xyler	ie (S)		%.			94	46-14	6 07/06/2	20 12:01					
LABORATORY CO	NTROL	SAMPLE:	3661545											
					Spike	LC	S	LCS	%	Rec				
Parar	neter		Unit	S	Conc.	Res	sult	% Rec	L	imits	Qualifiers			
PCB-1016 (Aroclor	1016)		ug/k	g	66	7	588	8	38	68-125				
PCB-1260 (Aroclor	1260)		ug/k	g	66	7	591	8	39	69-125				
Decachlorobipheny	l (S)		%.					8	39	48-139				
Tetrachloro-m-xyler	ne (S)		%.					ę	94	46-146				
MATRIX SPIKE & N	/ATRIX :	SPIKE DUP	LICATE:	36618	310		3661811							
					MS	MSD								
			10523302	2004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r	Units	Res	ult	Conc.	Conc.	Result	Result	% Rec	: % Rec	: Limits	RPD	RPD	Qual
PCB-1016 (Aroclor	1016)	ug/kg		ND	1390	1380	1220	1220	8	38 8	38 49-125	0	30	
PCB-1260 (Aroclor	1260)	ug/kg		ND	1390	1380	1210	1210	8	87 8	38 43-125	5 1	30	
Decachlorobipheny	l (S)	%.							8	81 8	33 48-139)		
Tetrachloro-m-xylen	ie (S)	%.							8	B9 9	90 46-146	i		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Date: 12/03/2020 11:30 AM

Project:	7135-0037 Bylin Dam-Revised Report
FIDJECI.	7 133-0037 Byllin Dani-Revised Report

Pace Project No.:	10523306
-------------------	----------

Associated Lab Samples:

QC Batch:	684525
QC Batch Method:	EPA 3550C

Analysis Method: Analysis Description: Laboratory:

8270D Solid PAH by SIM MSSV Pace Analytical Services - Minneapolis 10523306001, 10523306002, 10523306003, 10523306004

EPA 8270D by SIM

METHOD BLANK:	3661540	Matrix:	Solid

Associated Lab Samples:	10523306001, 10523306002, 1	0523306003, 10	523306004			
		Blank	Reporting			
Parameter	Units	Result	Limit	Analyzed	Qualifiers	
Acenaphthene	ug/kg	ND	10.0	07/08/20 15:58		
Acenaphthylene	ug/kg	ND	10.0	07/08/20 15:58		
Anthracene	ug/kg	ND	10.0	07/08/20 15:58		
Benzo(a)anthracene	ug/kg	ND	10.0	07/08/20 15:58		
Benzo(a)pyrene	ug/kg	ND	10.0	07/08/20 15:58		
Benzo(b)fluoranthene	ug/kg	ND	10.0	07/08/20 15:58		
Benzo(g,h,i)perylene	ug/kg	ND	10.0	07/08/20 15:58		
Benzo(k)fluoranthene	ug/kg	ND	10.0	07/08/20 15:58		
Chrysene	ug/kg	ND	10.0	07/08/20 15:58		
Dibenz(a,h)anthracene	ug/kg	ND	10.0	07/08/20 15:58		
Fluoranthene	ug/kg	ND	10.0	07/08/20 15:58		
Fluorene	ug/kg	ND	10.0	07/08/20 15:58		
Indeno(1,2,3-cd)pyrene	ug/kg	ND	10.0	07/08/20 15:58		
Naphthalene	ug/kg	ND	10.0	07/08/20 15:58		
Phenanthrene	ug/kg	ND	10.0	07/08/20 15:58		
Pyrene	ug/kg	ND	10.0	07/08/20 15:58		
2-Fluorobiphenyl (S)	%.	72	30-138	07/08/20 15:58		
p-Terphenyl-d14 (S)	%.	91	30-143	07/08/20 15:58		

LABORATORY CONTROL SAMPLE: 3661541

Paramotor	Linite	Spike	LCS Bosult	LCS	% Rec	Qualifiera
				70 IXEC		Quaimers
Acenaphthene	ug/kg	33.3	25.2	75	49-125	
Acenaphthylene	ug/kg	33.3	22.5	68	53-125	
Anthracene	ug/kg	33.3	28.9	87	59-125	
Benzo(a)anthracene	ug/kg	33.3	26.2	78	58-125	
Benzo(a)pyrene	ug/kg	33.3	27.0	81	64-125	
Benzo(b)fluoranthene	ug/kg	33.3	31.6	95	61-125	
Benzo(g,h,i)perylene	ug/kg	33.3	32.1	96	64-125	
Benzo(k)fluoranthene	ug/kg	33.3	33.5	101	62-125	
Chrysene	ug/kg	33.3	29.6	89	65-125	
Dibenz(a,h)anthracene	ug/kg	33.3	31.8	95	63-125	
Fluoranthene	ug/kg	33.3	31.1	93	68-125	
Fluorene	ug/kg	33.3	25.3	76	54-125	
Indeno(1,2,3-cd)pyrene	ug/kg	33.3	31.2	94	63-125	
Naphthalene	ug/kg	33.3	23.9	72	45-125	
Phenanthrene	ug/kg	33.3	27.4	82	63-125	
Pyrene	ug/kg	33.3	30.8	92	65-125	
2-Fluorobiphenyl (S)	%.			75	30-138	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Date: 12/03/2020 11:30 AM

Project: 7135-0037 Bylin Dam-Revised Report

Pace Project No.: 10523306

LABORATORY CONTROLS	SAMPLE:	3661541										
			Spike	LC	S	LCS	% Re	ес				
Parameter		Units	Conc.	Res	sult	% Rec	Limi	ts (Qualifiers			
p-Terphenyl-d14 (S)		%.				9.	2 3	30-143				
MATRIX SPIKE & MATRIX S	SPIKE DUPI	LICATE: 3661	691		3661692	2						
			MS	MSD								
		10523306002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Acenaphthene	ug/kg	ND	92.5	92.8	65.9	65.7	71	71	30-125	0	30	
Acenaphthylene	ug/kg	ND	92.5	92.8	65.2	68.6	71	74	30-150	5	30	
Anthracene	ug/kg	ND	92.5	92.8	77.0	94.7	83	102	30-150	21	30	
Benzo(a)anthracene	ug/kg	ND	92.5	92.8	71.4	83.3	77	90	30-150	15	30	
Benzo(a)pyrene	ug/kg	ND	92.5	92.8	74.5	79.6	81	86	30-150	7	30	
Benzo(b)fluoranthene	ug/kg	ND	92.5	92.8	67.5	75.8	73	82	30-150	12	30	
Benzo(g,h,i)perylene	ug/kg	ND	92.5	92.8	73.2	78.2	79	84	30-150	7	30	
Benzo(k)fluoranthene	ug/kg	ND	92.5	92.8	71.4	77.7	77	84	30-150	8	30	
Chrysene	ug/kg	ND	92.5	92.8	68.9	75.4	74	81	30-150	9	30	
Dibenz(a,h)anthracene	ug/kg	ND	92.5	92.8	69.2	75.6	75	81	30-147	9	30	
Fluoranthene	ug/kg	ND	92.5	92.8	79.1	95.6	86	103	30-150	19	30	
Fluorene	ug/kg	ND	92.5	92.8	68.5	74.6	74	80	30-150	9	30	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	92.5	92.8	70.8	74.4	77	80	30-150	5	30	
Naphthalene	ug/kg	ND	92.5	92.8	58.4	54.5	63	59	30-141	7	30	
Phenanthrene	ug/kg	ND	92.5	92.8	69.1	83.0	75	89	30-150	18	30	
Pyrene	ug/kg	ND	92.5	92.8	76.9	90.2	83	97	30-150	16	30	
2-Fluorobiphenyl (S)	%.						64	63	30-138			
p-Terphenyl-d14 (S)	%.						68	78	30-143			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Date: 12/03/2020 11:30 AM

QUALITY CONTROL DATA

Project:	7135-003	37 Bylin Da	m-Revised Repo	ort										
Pace Project No.:	1052330	6												
QC Batch:	193277	,		Anal	ysis Method	d:	EPA 351.2							
QC Batch Method:	EPA 35	1.2		Anal	Analysis Description:			351.2 TKN						
				Labo	oratory:		Pace Analy	tical Service	es - Virginia	а				
Associated Lab Sar	mples: 1	052330600	01, 1052330600	2, 1052330	06003, 1052	23306004								
METHOD BLANK:	762133				Matrix: So	olid								
Associated Lab Sar	nples: 1	052330600	01, 1052330600	2, 1052330	06003, 1052	23306004								
				Bla	nk l	Reporting								
Parar	neter		Units	Res	ult	Limit	Anal	yzed	Qualifier	s				
Nitrogen, Kjeldahl,	Total		mg/kg	_	ND	60	.0 07/13/2	0 13:00						
LABORATORY CO	NTROL SA	MPLE: 7	762132											
_				Spike	LC	S	LCS	% R	ec					
Parar	neter		Units	Conc.	Res	sult	% Rec	Limi	ts (Qualifiers	_			
Nitrogen, Kjeldahl,	Total		mg/kg	100	00	1020	10	2 9	90-110					
MATRIX SPIKE & N	/ATRIX SF	PIKE DUPL	ICATE: 76213	34	MSD	762135								
			10523281001	IVIJ Spike	IVISD Snike	MS	MSD	MS	MSD	% Rec		Max		
Paramete	r	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual	
Nitrogen, Kjeldahl, T	Fotal	mg/kg	1660	1550	1470	3450	3290	116	111	90-110	5	15	E,M1	
MATRIX SPIKE & N			ICATE: 7621:	36		762137								
				MS	MSD									
			10523302003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max		
Paramete	r	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual	
Nitrogen, Kjeldahl, T	Total	mg/kg	1880	1640	1720	3830	4010	119	124	90-110	5	15	E,M1	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Date: 12/03/2020 11:30 AM

QUALITY CONTROL DATA

Project:	7135-0	037 Bylin Da	am-Revised Repo	ort										
Pace Project No.:	105233	806												
QC Batch:	19338	33		Anal	ysis Method	d:	EPA 353.2							
QC Batch Method:	EPA 3	353.2		Anal	Analysis Description:			353.2 Nitrate + Nitrite						
				Labo	oratory:		Pace Analy	tical Servic	es - Virginia	а				
Associated Lab Sar	mples:	105233060	01, 10523306002	2, 1052330	06003, 1052	23306004								
METHOD BLANK:	762585	5			Matrix: So	olid								
Associated Lab Sar	mples:	105233060	01, 10523306002	2, 1052330	06003, 1052	23306004								
				Bla	nk l	Reporting								
Parar	neter		Units	Res	ult	Limit	Anal	yzed	Qualifier	S				
Nitrogen, NO2 plus	NO3		mg/kg	_	ND	0.5	50 07/15/2	0 08:23	N3					
LABORATORY CO	NTROLS	SAMPLE:	762584											
				Spike	LC	S	LCS	% R	lec					
Parar	neter		Units	Conc.	Res	sult	% Rec	Lim	its (Qualifiers				
Nitrogen, NO2 plus	NO3		mg/kg	9	.9	9.6	9	6	90-110 N3					
MATRIX SPIKE & N	/ATRIX S	SPIKE DUPL	ICATE: 76258	36		762587								
			40500004004	MS	MSD					04 B				
Paramoto	r	Linite	10523281001 Recult	Spike Сорс	Spike	MS Rocult	MSD Rocult	MS % Roc	MSD % Roc	% Rec	חסס	Max	Qual	
						Kesuit								
Nitrogen, NO2 plus	NO3	mg/kg	ND	15.5	15.5	14.8	14.9	91	92	80-120	1	10	N3	
MATRIX SPIKE & N	ATRIX S	SPIKE DUPL	ICATE: 76258	38		762589								
				MS	MSD									
_			10523302004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max		
Paramete	r	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual	
Nitrogen, NO2 plus	NO3	mg/kg	ND	20.7	20.7	18.3	18.4	85	86	80-120	0	10	N3	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Date: 12/03/2020 11:30 AM

QUALITY CONTROL DATA

Project:	7135-0037 By	lin Dar	m-Revised Repo	ort										
Pace Project No.:	10523306													
QC Batch:	193045			Anal	ysis Method	d:	EPA 365.1							
QC Batch Method:	SM 4500P E	3		Anal	ysis Descrij	ption:	365.1 Phosphorus, Total							
				Labo	Laboratory: Pace Analytical Services - Virginia									
Associated Lab Sar	mples: 1052	330600	1, 1052330600	2, 1052330	6003, 1052	23306004								
METHOD BLANK:	761245				Matrix: So	olid						-		
Associated Lab Sar	mples: 1052	330600	1, 1052330600	2, 1052330	6003, 105	23306004								
				Blank Reporting			ıg							
Parar	neter		Units	Res	ult	Limit	Anal	yzed	Qualifiers	6				
Phosphorus mg/kg			mg/kg		ND	2	.5 07/09/2	0 11:31						
LABORATORY CO	NTROL SAMPI	_E: 7	61244											
				Spike	LC	S	LCS	% R	ec					
Parar	neter		Units	Conc.	Res	sult	% Rec	Limi	ts (Qualifiers	_			
Phosphorus			mg/kg	24	.3	23.8	9	8 9	90-110					
MATRIX SPIKE & N	ATRIX SPIKE	DUPLI	CATE: 76124	46		761247								
				MS	MSD									
Deremete	~	linita	10523281001	Spike	Spike	MS	MSD	MS % Dee	MSD	% Rec	חחח	Max	Qual	
Paramete	·	Units		Conc.	Conc.	Result	Result	% Rec	% Rec	Limits			Quai	
Phosphorus	r	ng/kg	106	37.2	37.2	119	109	34	9	80-120	8	20	M1	
MATRIX SPIKE & N	ATRIX SPIKE	DUPLI	CATE: 76124	48		761249								
				MS	MSD									
			10523302003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	<u> </u>	
Paramete	r	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual	
Phosphorus	r	ng/kg	265	38.9	39.3	158	223	-274	-106	80-120	34	20	M1,R1	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Date: 12/03/2020 11:30 AM

QUALITY CONTROL DATA

Project:	7135-00	37 Bylin Da	am-Revised Repo	ort									
Pace Project No .:	1052330	6											
QC Batch:	192900)		Anal	ysis Method	d:	EPA 9060A						
QC Batch Method:	EPA 90	60A		Anal	ysis Descrij	otion:	9060 TOC /	Average					
				Labo	oratory:		Pace Analy	tical Servic	es - Virginia	ì			
Associated Lab Sam	ples: ´	105233060	01, 10523306002	2, 1052330	06003, 1052	23306004							
METHOD BLANK:	760572				Matrix: So	olid							
Associated Lab Sam	ples:	105233060	01, 10523306002	2, 1052330	06003, 1052	23306004							
				Bla	nk l	Reporting							
Parame	eter		Units	Res	ult	Limit	Anal	yzed	Qualifiers	3			
Mean Total Organic C	Carbon		mg/kg		ND	60	07/13/2	0 14:03					
LABORATORY CON	TROL SA	AMPLE:	760573										
				Spike	LC	S	LCS	% R	ес				
Parame	eter		Units	Conc.	Res	sult	% Rec	Limi	ts (Qualifiers			
Mean Total Organic C	Carbon		mg/kg	327	70	3220	9	9 4	49-151				
MATRIX SPIKE & MA	ATRIX SI		ICATE: 76057	74		760575							
				MS	MSD								
Doromotor		Linite	10523281001	Spike	Spike	MS	MSD	MS % Dee	MSD	% Rec	חחח	Max	Qual
Falameter			Result			Result		70 Rec					Quai
Mean Total Organic C	Carbon	mg/kg	22800	118000	117000	136000	136000	96	97	70-130	0	25	
MATRIX SPIKE & MA	ATRIX SE		ICATE: 76057	76		760577							
				MS	MSD								
-			10523281002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	. .
Parameter		Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Mean Total Organic C	Carbon	mg/kg	17000	108000	108000	120000	121000	95	97	70-130	1	25	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Date: 12/03/2020 11:30 AM

QUALIFIERS

Project: 7135-0037 Bylin Dam-Revised Report

Pace Project No.: 10523306

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- AL The lab does not hold A2LA accreditation for this parameter.
- E Analyte concentration exceeded the calibration range. The reported result is estimated.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.
- N3 Accreditation is not offered by the relevant laboratory accrediting body for this parameter.
- R1 RPD value was outside control limits.

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 71	35-0037 Bylin Dam-Revised Report
-------------	----------------------------------

Pace Project No.: 10523306

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10523306001	Bylin Core4 Pre Impound	EPA 3550	684526	 EPA 8082A	684914
10523306002	Bylin Core4 Post Impound	EPA 3550	684526	EPA 8082A	684914
10523306003	Bylin Core5 Pre Impound	EPA 3550	684526	EPA 8082A	684914
10523306004	Bylin Core5 Post Impound	EPA 3550	684526	EPA 8082A	684914
10523306001	Bylin Core4 Pre Impound	EPA 3050B	685123	EPA 6010D	685373
10523306002	Bylin Core4 Post Impound	EPA 3050B	685123	EPA 6010D	685373
10523306003	Bylin Core5 Pre Impound	EPA 3050B	685123	EPA 6010D	685373
10523306004	Bylin Core5 Post Impound	EPA 3050B	685123	EPA 6010D	685373
10523306001	Bylin Core4 Pre Impound	EPA 3550C	684525	EPA 8270D by SIM	684769
10523306002	Bylin Core4 Post Impound	EPA 3550C	684525	EPA 8270D by SIM	684769
10523306003	Bylin Core5 Pre Impound	EPA 3550C	684525	EPA 8270D by SIM	684769
10523306004	Bylin Core5 Post Impound	EPA 3550C	684525	EPA 8270D by SIM	684769
10523306001	Bylin Core4 Pre Impound	EPA 3550C Sonication	684825	EPA 8015C	685324
10523306002	Bylin Core4 Post Impound	EPA 3550C Sonication	684825	EPA 8015C	685324
10523306003	Bylin Core5 Pre Impound	EPA 3550C Sonication	684825	EPA 8015C	685324
10523306004	Bylin Core5 Post Impound	EPA 3550C Sonication	684825	EPA 8015C	685324
10523306001	Bylin Core4 Pre Impound	EPA 5030 MT	684534	EPA 8015C	684602
10523306002	Bylin Core4 Post Impound	EPA 5030 MT	684534	EPA 8015C	684602
10523306003	Bylin Core5 Pre Impound	EPA 5030 MT	684534	EPA 8015C	684602
10523306004	Bylin Core5 Post Impound	EPA 5030 MT	684534	EPA 8015C	684602
10523306005	Trip Blank	EPA 5030 MT	684534	EPA 8015C	684602
10523306001	Bylin Core4 Pre Impound	ASTM D2974	685000		
10523306002	Bylin Core4 Post Impound	ASTM D2974	685000		
10523306003	Bylin Core5 Pre Impound	ASTM D2974	685000		
10523306004	Bylin Core5 Post Impound	ASTM D2974	685000		
10523306001	Bylin Core4 Pre Impound	TKN+NO3+NO2 Calculation			
10523306002	Bylin Core4 Post Impound	TKN+NO3+NO2			
	, ,	Calculation			
10523306003	Bylin Core5 Pre Impound	TKN+NO3+NO2			
10523306004	Bylin Core5 Post Impound	TKN+NO3+NO2			
	_ ,	Calculation			
10523306001	Bylin Core4 Pre Impound	EPA 351.2	193277	EPA 351.2	193318
10523306002	Bylin Core4 Post Impound	EPA 351.2	193277	EPA 351.2	193318
10523306003	Bylin Core5 Pre Impound	EPA 351.2	193277	EPA 351.2	193318
10523306004	Bylin Core5 Post Impound	EPA 351.2	193277	EPA 351.2	193318
10523306001	Bylin Core4 Pre Impound	EPA 353.2	193383	EPA 353.2	193397
10523306002	Bylin Core4 Post Impound	EPA 353.2	193383	EPA 353.2	193397
10523306003	Bylin Core5 Pre Impound	EPA 353.2	193383	EPA 353.2	193397
10523306004	Bylin Core5 Post Impound	EPA 353.2	193383	EPA 353.2	193397
10523306001	Bylin Core4 Pre Impound	SM 4500P B	193045	EPA 365.1	193154
10523306002	Bylin Core4 Post Impound	SM 4500P B	193045	EPA 365.1	193154
10523306003	Bylin Core5 Pre Impound	SM 4500P B	193045	EPA 365.1	193154
10523306004	Bylin Core5 Post Impound	SM 4500P B	193045	EPA 365.1	193154

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:7135-0037 Bylin Dam-Revised ReportPace Project No.:10523306

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10523306001	Bylin Core4 Pre Impound	EPA 9060A	192900		
10523306001	Bylin Core4 Pre Impound	EPA 9060A	192901		
10523306002	Bylin Core4 Post Impound	EPA 9060A	192900		
10523306002	Bylin Core4 Post Impound	EPA 9060A	192901		
10523306003	Bylin Core5 Pre Impound	EPA 9060A	192900		
10523306003	Bylin Core5 Pre Impound	EPA 9060A	192901		
10523306004	Bylin Core5 Post Impound	EPA 9060A	192900		
10523306004	Bylin Core5 Post Impound	EPA 9060A	192901		

REPORT OF LABORATORY ANALYSIS

Date: 12/03/2020 11:30 AM w

APPENDIX D-7-B PTMApp Results

Technical Memorandum

To:	Christi Fisher, PE
	State Conservation Engineer (ND)
From:	Paul LeClaire, PE
	Houston Engineering, Inc.
Subject:	Bylin Dam Feasibility Report and Plan of Work: Sediment Delivery
Date:	January 24, 2020
Project:	HEI 7135-0037 Bylin Dam

BACKGROUND

Bylin Dam is located on the North Branch Forest River in Walsh County, North Dakota. It was constructed in 1964 and has exceeded its design life. The Dam is now in need of a rehabilitation. As part of the rehabilitation effort, a summary of sediment delivery to the dam is required.

DATA ANALYSIS

The Prioritize, Target, and Measure Application (PTMApp) data for the Forest River Watershed were provided in November of 2019 from the International Water Institute. The PTMApp data shows major nutrient or sediment sources within the watershed upstream of Bylin Dam. The data was used to gain a better understanding of sediment delivery into the project area and sediment storage for the design of the dam moving forward.

The areas contributing overland sediment, total nitrogen, and total phosphorus are shown in Figure D-7-B-1, Figure D-7-B-2, and Figure D-7-B-3, respectively. The blank areas within the Bylin Dam drainage area represent the non-contributing areas. Areas shown as red indicate high contributions for sediment and nutrient delivery to Bylin Dam. For overland sediment delivery, areas near the reservoir seem to be the largest contributors of sediment deposits. Based on the data provided by PTMApp the large red area in Figure D-7-B-1 would produce more than 180 tons of sediment to the reservoir annually. Areas with high contributions for total phosphorus and nitrogen are more sporadic, with higher contributing areas generally located in the southern part of the drainage area to Bylin Dam. In Figure D-7-B-2, the red areas represent total nitrogen amounts in excess of 600 pounds annually. In Figure D-7-B-3, the red and dark orange areas represent total phosphorus amounts in excess of 30 pounds annually. A summation of the predicted total overland sediment, total nitrogen, and total phosphorus delivered to Bylin Dam annually is displayed in Table D-7-B-1.

Table D-7-B-1: Overland Sediment and Nutrient Totals to Bylin Dam

Parameter	Total Load
Overland sediment (tons/yr)	4,285
Overland total nitrogen (lb/yr)	51,450
Overland total phosphorus (lb/yr)	2,498

Appendix D-7: Reservoir Sediments Characterization Memorandum

Appendix D-7: Reservoir Sediments Characterization Memorandum

Document Path: \\houston\hei\JBN\7100\7135\7135_0037\GIS\PTMApp Output Maps.mxd