APPENDIX C Support Maps

- C-1 Area of Interest / Benefit Area
- C-2 Upstream Assessment Area
- C-3 Existing Conditions Topography
- C-4 Existing Conditions Overall Site Plan
- C-5 Existing Principal Spillway Cross Section
- C-6 Breach Inundation Overall
- C-7 Breach Inundation 1
- C-8 Breach Inundation 2
- C-9 Breach Inundation 3
- C-10 Breach Inundation 4
- C-11 LiDAR
- C-12 Land Use
- C-13 Farmland Classification
- C-14 Assessment Areas
- C-15 2-year Inundation
- C-16 5-year Inundation
- C-17 10-year Inundation
- C-18 25-year Inundation
- C-19 50-year Inundation
- C-20 100-year Inundation
- C-21 500-year Inundation
- C-22 Alternative 2 (Structural) Overall Site Plan
- C-23 Alternative 1 (FWOFI) Aquatic Resource Impacts
- C-24 Alternative 2 (Structural) Aquatic Resource Impacts
- C-25 Alternative 3 (No Action) Aquatic Resource Impacts Upstream
- C-26 Land Rights

DEFINITIONS

Upstream Assessment Area (U-AA): the zone near the reservoir where there may be a direct impact. The U-AA includes the dam site, the flood pool upstream from the dam, and a short stretch of river immediately downstream from the dam, for a total of approximately 950 acres.

Downstream Assessment Area (D-AA): the zone downstream where the environment may be affected if there would be changes in the flow of the North Branch Forest River. The D-AA includes 23 miles of the North Branch Forest River and the adjacent floodplain to the confluence of the North Branch Forest River with the Middle Branch Forest River, just west of Fordville, North Dakota

Upstream Area: the area that is not expected to be affected by the project but describes the context of the environmental conditions where appropriate (e.g., soils and erodibility potential).

MAPPING NOTES

Digital orthophotography shown on this figure is from the North Dakota 2019 30cm (0.98t) 4-band Image collection. Originally collected in Summer, 2019, through the National Agricultural Imagery Program (NAIP) with higher resolution than NAIP program specifications funded by the North Dakota Dept of Water Resources. Accessed through WMS.

The coordinate system used in the preparation of this map is North Dakota Walsh County State Plane 1983 Ground Coordinates, Lambert Conformal Conic Projection. Horizontal Datum is NAD 83, GRS80 Spheroid, Elevations on this map are referenced to the North American Vertical Datum of 1988.

Streets, Townships, Counties, and other locational data are sourced from the North Dakota Information Technology Geographic Information Systems HUB Data portal, or locally surveyed where appropriate.

LEGEND

MAJOR CONTOURS1360
MINOR CONTOURS
GROUND SURVEY LIMITS
BATHYMETRIC SURVEY LIMITS

				-
				Date
				Revision
				No.
		APPENDIX C-3		EXISTING CONDITIONS TOPOGRAPHY
HC		ST		DN Inc.
[A	Draw JK,	/n SN	B) // I	/ H
U	PE	DL		,y

12-29-21 Scale As Shown Project No 7135-0037 SHEET C-3

LEGEND

MAJOR CONTOURS		- 1360
MINOR CONTOURS		
GROUND SURVEY LIN	/ITS	
BATHYMETRIC SURVI	EY LIMITS	\$ <u> </u>
SOIL BORING		•
CONTROL POINT		•
TOPO SURVEY POINT	r	+
GRAVEL		
DELINEATED WETLAN	NDS	

-

DRAINAGE DIRECTION

- NOTE: 1. REFER TO SHEET B1 FOR GENERAL NOTES.
- 2. MAJOR CONTOUR INTERVAL IS 10 FEET AND MINOR CONTOUR INTERVAL IS 2 FEET
- 3. IMAGERY OBTAINED FROM DRONE FLIGHT IN SEPTEMBER OF 2020

onlhei\JBN\710017135\7135_0037\CADIPlan\Cross Section at Spillway with 4to1.dwg-Bylin EXISTING-11/13/2023 11:11 AM-(z

Label	Finished Floor Elevation (ft)	Maximum Depth (ft)	Maximum Velocity (ft/s)
S1	1475.187	8.566	3.236
S2	1456.163	19.412	4.316
S3	1447.876	23.762	5.329
S4	1438.282	23.896	8.042
S5	1440.189	14.891	3.387
S6	1383.104*	29.464	0.479
S7	1232.429	-	2.633
S8	1228.687	-	0.007
S9	1193.439	0.054	0.255
S10	1180.41	0.546	0.679
S11	1178.629	1.072	1.826
S12	1179.035*	0.059	0.723
S13	1178.522	0.510	0.450
S14	1175.652	0.343	1.265
S15	1172.958	-	0.335
S16	1167.996	1.181	1.627
S17	1164.042*	0.006	0.155
S18	1163.351*	-	0.457
S19	1161.253*	0.219	0.678
*Survey p	oint inaccesible. F availat	loor elevation estir ble LiDAR	nated from

The peak breach discharge was computed using USDA-NRCS TR 210-60 breach equations.

The starting water surface elevation used was the proposed top of dam elevation

The breach hydrograph was computed using breach dimensions identified from the Froehlich Equations (2008). The development time of the breach was varied within the HEC-RAS hydraulic model to attain the peak breach discharge computed based on equations in TR 210-60.

HEC-RAS 5.0.7 Unsteady Flow Module was used to route the breach hydrograph downstream.

The International Water Institute's Multi-jurisdictional Spring 2008 Red River Basin Mapping Initiative LiDAR collection and field survey data were used to create cross section geometry and to plot the inundation areas.

The dam breach inundation area represents a rapidly developing dam failure resulting from piping failure. In the event of an actual dam failure, conditions may vary resulting in variation of the breach inundation area.

MAPPING NOTES

Digital orthophotography shown on this figure is from the North Dakota 2019 30cm (0.98ft) 4-band Image collection. Originally collected in Summer, 2019, through the National Agricultural Imagery Program (NAIP) with higher resolution than NAIP program specifications funded by the North Dakota Dept of Water Resources. Accessed through WMS.

The coordinate system used in the preparation of this map is North Dakota Walsh County State Plane 1983 Ground Coordinates, Lambert Conformal Conic Projection. Horizontal Datum is NAD 83, GRS80 Spheroid. Elevations on this map are referenced to the North American Vertical Datum of 1988.

Streets, Townships, Counties, and other locational data are sourced from the North Dakota Information Technology Geographic Information Systems HUB Data portal, or locally surveyed where appropriate.

Map page size is Tabloid (11" x 17"). Accuracy of the map scales for varying paper sizes and is valid only if printed at this page size.

DISCLAIMER

SHEET INDEX

1

N

This map has been compiled using the best information available and is believed to be accurate; however, its preparation required many assumptions. Actual conditions during a failure may vary from those assumed, so the accuracy cannot be guaranteed. The limits of flooding shown and the temporal data should only be used as a guideline for emergency planning and response actions. Actual areas inundated will depend on specific flooding and failure conditions and may differ from the areas shown on the maps

Label	Finished Floor Elevation (ft)	Maximum Depth (ft)	Maximum Velocity (ft/s)
S1	1475.187	8.566	3.236
S2	1456.163	19.412	4.316
\$3	1447.876	23.762	5.329
S4	1438.282	23.896	8.042
S5	1440.189	14.891	3.387
S6	1383.104*	29.464	0.479
S7	1232.429	-	2.633
S8	1228.687	-	0.007
S9	1193.439	0.054	0.255
S10	1180.41	0.546	0.679
S11	1178.629	1.072	1.826
S12	1179.035*	0.059	0.723
S13	1178.522	0.510	0.450
S14	1175.652	0.343	1.265
S15	1172.958	-	0.335
S16	1167.996	1.181	1.627
S17	1164.042*	0.006	0.155
S18	1163.351*	-	0.457
S19	1161.253*	0.219	0.678
*Survey p	oint inaccesible. F availat	loor elevation estin ple LiDAR	nated from

The peak breach discharge was computed using USDA-NRCS TR 210-60 breach equations.

The starting water surface elevation used was the proposed top of dam elevation

The breach hydrograph was computed using breach dimensions identified from the Froehlich Equations (2008). The development time of the breach was varied within the HEC-RAS hydraulic model to attain the peak breach discharge computed based on equations in TR 210-60.

HEC-RAS 5.0.7 Unsteady Flow Module was used to route the breach hydrograph downstream.

The International Water Institute's Multi-jurisdictional Spring 2008 Red River Basin Mapping Initiative LiDAR collection and field survey data were used to create cross section geometry and to plot the inundation areas.

The dam breach inundation area represents a rapidly developing dam failure resulting from piping failure. In the event of an actual dam failure, conditions may vary resulting in variation of the breach inundation area.

MAPPING NOTES

Digital orthophotography shown on this figure is from the North Dakota 2019 30cm (0.98ft) 4-band Image collection. Originally collected in Summer, 2019, through the National Agricultural Imagery Program (NAIP) with higher resolution than NAIP program specifications funded by the North Dakota Dept of Water Resources. Accessed through WMS.

The coordinate system used in the preparation of this map is North Dakota Walsh County State Plane 1983 Ground Coordinates, Lambert Conformal Conic Projection. Horizontal Datum is NAD 83, GRS80 Spheroid. Elevations on this map are referenced to the North American Vertical Datum of 1988.

Streets, Townships, Counties, and other locational data are sourced from the North Dakota Information Technology Geographic Information Systems HUB Data portal, or locally surveyed where appropriate.

Map page size is Tabloid (11" x 17"). Accuracy of the map scales for varying paper sizes and is valid only if printed at this page size.

DISCLAIMER

DISCLAIMER This map has been compiled using the best information available and is believed to be accurate; however, its preparation required many assumptions. Actual conditions during a failure may vary from those assumed, so the accuracy cannot be guaranteed. The limits of flooding shown and the temporal data should only be used as a guideline for emergency planning and response actions. Actual areas inundated will depend on specific flooding and failure conditions and may differ from the areas shown on the maps

	Habitabl	Structures	
		Structures	1
Label	Finished Floor Elevation (ft)	Maximum Depth (ft)	Maximum Velocity (ft/s)
S1	1475.187	8.566	3.236
S2	1456.163	19.412	4.316
S3	1447.876	23.762	5.329
S4	1438.282	23.896	8.042
S5	1440.189	14.891	3.387
S6	1383.104*	29.464	0.479
S7	1232.429	-	2.633
S8	1228.687	-	0.007
S9	1193.439	0.054	0.255
S10	1180.41	0.546	0.679
S11	1178.629	1.072	1.826
S12	1179.035*	0.059	0.723
S13	1178.522	0.510	0.450
S14	1175.652	0.343	1.265
S15	1172.958	-	0.335
S16	1167.996	1.181	1.627
S17	1164.042*	0.006	0.155
S18	1163.351*	-	0.457
S19	1161.253*	0.219	0.678
*Survey p	oint inaccesible. F availat	loor elevation estir ple LiDAR	nated from
- de	notes WSE did no	t exceed floor eleva	ation

The peak breach discharge was computed using USDA-NRCS TR 210-60 breach equations.

The starting water surface elevation used was the propose top of dam elevation

The breach hydrograph was computed using breach dimensions identified from the Froehlich Equations (2008). The development time of the breach was varied within the HEC-RAS hydraulic model to attain the peak breach discharge computed based on equations in TR 210-60.

HEC-RAS 5.0.7 Unsteady Flow Module was used to route the breach hydrograph downstream.

The International Water Institute's Multi-jurisdictional Spring 2008 Red River Basin Mapping Initiative LiDAR collection and field survey data were used to create cross section geometry and to plot the inundation areas.

The dam breach inundation area represents a rapidly developing dam failure resulting from piping failure. In the event of an actual dam failure, conditions may vary resulting in variation of the breach inundation area.

MAPPING NOTES

Digital orthophotography shown on this figure is from the North Dakota 2019 30cm (0.98ft) 4-band Image collection. Originally collected in Summer, 2019, through the National Agricultural Imagery Program (NAIP) with higher resolution than NAIP program specifications funded by the North Dakota Dept of Water Resources. Accessed through WMS.

The coordinate system used in the preparation of this map is North Dakota Walsh County State Plane 1983 Ground Coordinates, Lambert Conformal Conic Projection. Horizontal Datum is NAD 83, GRS80 Spheroid, Elevations on this map are referenced to the North American Vertical Datum of 1988.

Streets, Townships, Counties, and other locational data are sourced from the North Dakota Information Technology Geographic Information Systems HUB Data portal, or locally surveyed where appropriate.

Map page size is Tabloid (11" x 17"). Accuracy of the map scales for varying paper sizes and is valid only if printed at this page size.

DISCLAIMER

SHEET INDEX

1

N

DISCLAIMER This map has been compiled using the best information available and is believed to be accurate; however, its preparation required many assumptions. Actual conditions during a failure may vary from those assumed, so the accuracy cannot be guaranteed. The limits of flooding shown and the temporal data should only be used as a guideline for emergency planning and response actions. Actual areas inundated will depend on specific flooding and failure conditions and may differ from the areas shown on the maps

2

Label	Finished Floor Elevation (ft)	Maximum Depth (ft)	Maximum Velocity (ft/s)
S1	1475.187	8.566	3.236
S2	1456.163	19.412	4.316
S3	1447.876	23.762	5.329
S4	1438.282	23.896	8.042
S5	1440.189	14.891	3.387
S6	1383.104*	29.464	0.479
S7	1232.429	-	2.633
S8	1228.687	-	0.007
S9	1193.439	0.054	0.255
S10	1180.41	0.546	0.679
S11	1178.629	1.072	1.826
S12	1179.035*	0.059	0.723
S13	1178.522	0.510	0.450
S14	1175.652	0.343	1.265
S15	1172.958	-	0.335
S16	1167.996	1.181	1.627
S17	1164.042*	0.006	0.155
S18	1163.351*	-	0.457
S19	1161.253*	0.219	0.678
*Survey p	oint inaccesible. F availat	loor elevation estir ble LiDAR	nated from

The peak breach discharge was computed using USDA-NRCS TR 210-60 breach equations.

The starting water surface elevation used was the proposed top of dam elevation

The breach hydrograph was computed using breach dimensions identified from the Froehlich Equations (2008). The development time of the breach was varied within the HEC-RAS hydraulic model to attain the peak breach discharge computed based on equations in TR 210-60.

HEC-RAS 5.0.7 Unsteady Flow Module was used to route the breach hydrograph downstream.

The International Water Institute's Multi-jurisdictional Spring 2008 Red River Basin Mapping Initiative LiDAR collection and field survey data were used to create cross section geometry and to plot the inundation areas.

The dam breach inundation area represents a rapidly developing dam failure resulting from piping failure. In the event of an actual dam failure, conditions may vary resulting in variation of the breach inundation area.

MAPPING NOTES

Digital orthophotography shown on this figure is from the North Dakota 2019 30cm (0.98ft) 4-band Image collection. Originally collected in Summer, 2019, through the National Agricultural Imagery Program (NAIP) with higher resolution than NAIP program specifications funded by the North Dakota Dept of Water Resources. Accessed through WMS.

The coordinate system used in the preparation of this map is North Dakota Walsh County State Plane 1983 Ground Coordinates, Lambert Conformal Conic Projection. Horizontal Datum is NAD 83, GRS80 Spheroid. Elevations on this map are referenced to the North American Vertical Datum of 1988.

Streets, Townships, Counties, and other locational data are sourced from the North Dakota Information Technology Geographic Information Systems HUB Data portal, or locally surveyed where appropriate.

Map page size is Tabloid (11" x 17"). Accuracy of the map scales for varying paper sizes and is valid only if printed at this page size.

DISCLAIMER

This map has been compiled using the best information available and is believed to be accurate; however, its preparation required many assumptions. Actual conditions during a failure may vary from those assumed, so the accuracy cannot be guaranteed. The limits of flooding shown and the temporal data should only be used as a guideline for emergency planning and response actions. Actual areas inundated will depend on specific flooding and failure conditions and may differ from the areas shown on the maps

Label	Finished Floor Elevation (ft)	Maximum Depth (ft)	Maximum Velocity (ft/s)
S1	1475.187	8.566	3.236
S2	1456.163	19.412	4.316
S3	1447.876	23.762	5.329
S4	1438.282	23.896	8.042
S5	1440.189	14.891	3.387
S6	1383.104*	29.464	0.479
S7	1232.429	-	2.633
S8	1228.687	-	0.007
S9	1193.439	0.054	0.255
S10	1180.41	0.546	0.679
S11	1178.629	1.072	1.826
S12	1179.035*	0.059	0.723
S13	1178.522	0.510	0.450
S14	1175.652	0.343	1.265
S15	1172.958	-	0.335
S16	1167.996	1.181	1.627
S17	1164.042*	0.006	0.155
S18	1163.351*	-	0.457
S19	1161.253*	0.219	0.678
*Survey p	oint inaccesible. F availat	loor elevation estir de LiDAR	nated from

The peak breach discharge was computed using USDA-NRCS TR 210-60 breach equations.

The starting water surface elevation used was the proposed top of dam elevation

The breach hydrograph was computed using breach dimensions identified from the Froehlich Equations (2008). The development time of the breach was varied within the HEC-RAS hydraulic model to attain the peak breach discharge computed based on equations in TR 210-60.

HEC-RAS 5.0.7 Unsteady Flow Module was used to route the breach hydrograph downstream.

The International Water Institute's Multi-jurisdictional Spring 2008 Red River Basin Mapping Initiative LiDAR collection and field survey data were used to create cross section geometry and to plot the inundation areas.

The dam breach inundation area represents a rapidly developing dam failure resulting from piping failure. In the event of an actual dam failure, conditions may vary resulting in variation of the breach inundation area.

MAPPING NOTES

Digital orthophotography shown on this figure is from the North Dakota 2019 30cm (0.98ft) 4-band Image collection. Originally collected in Summer, 2019, through the National Agricultural Imagery Program (NAIP) with higher resolution than NAIP program specifications funded by the North Dakota Dept of Water Resources. Accessed through WMS.

The coordinate system used in the preparation of this map is North Dakota Walsh County State Plane 1983 Ground Coordinates, Lambert Conformal Conic Projection. Horizontal Datum is NAD 83, GRS80 Spheroid. Elevations on this map are referenced to the North American Vertical Datum of 1988.

Streets, Townships, Counties, and other locational data are sourced from the North Dakota Information Technology Geographic Information Systems HUB Data portal, or locally surveyed where appropriate.

Map page size is Tabloid (11" x 17"). Accuracy of the map scales for varying paper sizes and is valid only if printed at this page size.

DISCLAIMER

DISCLAIMER This map has been compiled using the best information available and is believed to be accurate; however, its preparation required many assumptions. Actual conditions during a failure may vary from those assumed, so the accuracy cannot be guaranteed. The limits of flooding shown and the temporal data should only be used as a guideline for emergency planning and response actions. Actual areas inundated will depend on specific flooding and failure conditions and may differ from the areas shown on the maps

Landcover	Total Area (ac.)	Percentage
Open Water	283	0.7%
Developed, Open Space	1,197	3.0%
Developed, Low Intensity	314	0.8%
Developed, Medium Intensity	75	0.2%
Developed, High Intensity	11	0.0%
Barren Land	158	0.4%
Deciduous Forest	709	1.7%
Evergreen Forest	50	0.1%
Mixed Forest	30	0.1%
Shrub/Scrub	26	0.1%
Herbaceous	1,252	3.1%
Hay/Pasture	5,516	13.6%
Cultivated Crops	29,120	71.8%
Woody Wetlands	29	0.1%
Emergent Herbaceous Wetlands	1,768	4.4%

DEFINITIONS

Upstream Assessment Area (U-AA): the zone near the reservoir where there may be a direct impact. The U-AA includes the dam site, the flood pool upstream from the dam, and a short stretch of river immediately downstream from the dam, for a total of approximately 950 acres.

Downstream Assessment Area (D-AA): the zone downstream where the environment may be affected if there would be changes in the flow of the North Branch Forest River. The D-AA includes 23 miles of the North Branch Forest River and the adjacent floodplain to the confluence of the North Branch Forest River with the Middle Branch Forest River, just west of Fordville, North Dakota

Upstream Area: the area that is not expected to be affected by the project but describes the context of the environmental conditions where appropriate (e.g., soils and erodibility potential).

MAPPING NOTES

Digital orthophotography shown on this figure is from the North Dakota 2019 30cm (0.98ft) 4-band Image collection. Originally collected in Summer, 2019, through the National Agricultural Imagery Program (NAIP) with higher resolution than NAIP program specifications funded by the North Dakota Dept of Water Resources. Accessed through WMS.

The coordinate system used in the preparation of this map is North Dakota Walsh County State Plane 1983 Ground Coordinates, Lambert Conformal Conic Projection. Horizontal Datum is NAD 83, GRS80 Spheroid, Elevations on this map are referenced to the North American Vertical Datum of 1988.

Streets, Townships, Counties, and other locational data are sourced from the North Dakota Information Technology Geographic Information Systems HUB Data portal, or locally surveyed where appropriate.

DEFINITIONS

Upstream Assessment Area (U-AA): the zone near the reservoir where there may be a direct impact. The U-AA includes the dam site, the flood pool upstream from the dam, and a short stretch of river immediately downstream from the dam, for a total of approximately 950 acres.

Downstream Assessment Area (D-AA): the zone downstream where the environment may be affected if there would be changes in the flow of the North Branch Forest River. The D-AA includes 23 miles of the North Branch Forest River and the adjacent floodplain to the confluence of the North Branch Forest River with the Middle Branch Forest River, just west of Fordville, North Dakota

Upstream Area: the area that is not expected to be affected by the project but describes the context of the environmental conditions where appropriate (e.g., soils and erodibility potential).

MAPPING NOTES

Digital orthophotography shown on this figure is from the North Dakota 2019 30cm (0.98ft) 4-band Image collection Originally collected in Summer, 2019, through the National Agricultural Imagery Program (NAIP) with higher resolution than NAIP program specifications funded by the North Dakota Dept of Water Resources. Accessed through WMS.

FEMA Flood Hazard Information sourced from FEMA Map Service Center (MSC): Panels within study area include: 38035C0050E (Eff. 12/17/2010); 38099C06098D, 38099C0650D, 38099C0910D, 38099C0625D, 38099C0620D, 38099C0351D, 38099C0600D, 38099C0600D, 38099C0350D, 38099C0610D, 38099C0600D, 38099C0325D, and 38099C0600D (Eff. 11/2/2012)

The coordinate system used in the preparation of this map is North Dakota Waish County State Plane 1983 Ground Coordinates, Lambert Conformal Conic Projection. Horizontal Datum is NAD 83, GRS80 Spheroid. Elevations on this map are referenced to the North American Vertical Datum of 1988.

Streets, Townships, Counties, and other locational data are sourced from the North Dakota Information Technology Geographic Information Systems HUB Data portal, or locally surveyed where appropriate.

Recurrence Interval	Total Inundation without Dam (Acres)	Total Inundation with Proposed Alternative (Acres)	Percent Reduction	
2-Year	734.74	531.15	27.71%	
5-Year	1377.32	943.54	31.49%	
10-Year	2058.64	1390.76	32.44%	
25-Year	2855.52	2026.58	29.03%	
50-Year	3331.74	2506.87	24.76%	
100-Year	3728.68	2970.53	20.33%	
500-Year	4746.95	3785.92	20.25%	

Synthetic rainfall events were developed based on rainfall depths obtained from NOAA Atlas 14.

Hydraulic routing of the simulated synthetic rainfall events was completed using a HEC-RAS version 5.0.7 hydraulic model.

Hydrologic parameters such as time of concentration and Clark's storage coefficient were develeoped from calibration of the hydraulic model based on historic rainfall events.

Other information on the development of the hydraulic model is available in Appendix D-1.

IWI Spring 2008 LiDAR collect in conjuction with field survey data was used to create cross section geometry and to plot the inundation areas.

MAPPING NOTES

Digital orthophotography shown on this figure is from the North Dakota 2019 30cm (0.98ft) 4-band Image collection. Originally collected in Summer, 2019, through the National Agricultural Imagery Program (NAIP) with higher resolution than NAIP program specifications funded by the North Dakota Dept of Water Resources. Accessed through WMS.

The coordinate system used in the preparation of this map is North Dakota Walsh County State Plane 1983 Ground Coordinates, Lambert Conformal Conic Projection. Horizontal Datum is NAD 83, GRS80 Spheroid. Elevations on this map are referenced to the North American Vertical Datum of 1988.

Streets, Townships, Counties, and other locational data are sourced from the North Dakota Information Technology Geographic Information Systems HUB Data portal, or locally surveyed where appropriate.

Map page size is Tabloid (11" x 17"). Accuracy of the map scales for varying paper sizes and is valid only if printed at this page size.

DISCLAIMER

Recurrence Interval	Total Inundation without Dam (Acres)	Total Inundation with Proposed Alternative (Acres)	Percent Reduction	
2-Year	734.74	531.15	27.71%	
5-Year	1377.32	943.54	31.49%	
10-Year	2058.64	1390.76	32.44%	
25-Year	2855.52	2026.58	29.03%	
50-Year	3331.74	2506.87	24.76%	
100-Year	3728.68	2970.53	20.33%	
500-Year	4746.95	3785.92	20.25%	

Synthetic rainfall events were developed based on rainfall depths obtained from NOAA Atlas 14.

Hydraulic routing of the simulated synthetic rainfall events was completed using a HEC-RAS version 5.0.7 hydraulic model.

Hydrologic parameters such as time of concentration and Clark's storage coefficient were develeoped from calibration of the hydraulic model based on historic rainfall events.

Other information on the development of the hydraulic model is available in Appendix D-1.

IWI Spring 2008 LiDAR collect in conjuction with field survey data was used to create cross section geometry and to plot the inundation areas.

MAPPING NOTES

Digital orthophotography shown on this figure is from the North Dakota 2019 30cm (0.98ft) 4-band Image collection. Originally collected in Summer, 2019, through the National Agricultural Imagery Program (NAIP) with higher resolution than NAIP program specifications funded by the North Dakota Dept of Water Resources. Accessed through WMS.

The coordinate system used in the preparation of this map is North Dakota Walsh County State Plane 1983 Ground Coordinates, Lambert Conformal Conic Projection. Horizontal Datum is NAD 83, GRS80 Spheroid. Elevations on this map are referenced to the North American Vertical Datum of 1988.

Streets, Townships, Counties, and other locational data are sourced from the North Dakota Information Technology Geographic Information Systems HUB Data portal, or locally surveyed where appropriate.

Map page size is Tabloid (11" x 17"). Accuracy of the map scales for varying paper sizes and is valid only if printed at this page size.

DISCLAIMER

Recurrence Interval	Total Inundation without Dam (Acres)	Total Inundation with Proposed Alternative (Acres)	Percent Reduction	
2-Year	734.74	531.15	27.71%	
5-Year	1377.32	943.54	31.49%	
10-Year	2058.64	1390.76	32.44%	
25-Year	2855.52	2026.58	29.03%	
50-Year	3331.74	2506.87	24.76%	
100-Year	3728.68	2970.53	20.33%	
500-Year	4746.95	3785.92	20.25%	

Synthetic rainfall events were developed based on rainfall depths obtained from NOAA Atlas 14.

Hydraulic routing of the simulated synthetic rainfall events was completed using a HEC-RAS version 5.0.7 hydraulic model.

Hydrologic parameters such as time of concentration and Clark's storage coefficient were develeoped from calibration of the hydraulic model based on historic rainfall events.

Other information on the development of the hydraulic model is available in Appendix D-1.

IWI Spring 2008 LiDAR collect in conjuction with field survey data was used to create cross section geometry and to plot the inundation areas.

MAPPING NOTES

Digital orthophotography shown on this figure is from the North Dakota 2019 30cm (0.98ft) 4-band Image collection. Originally collected in Summer, 2019, through the National Agricultural Imagery Program (NAIP) with higher resolution than NAIP program specifications funded by the North Dakota Dept of Water Resources. Accessed through WMS.

The coordinate system used in the preparation of this map is North Dakota Walsh County State Plane 1983 Ground Coordinates, Lambert Conformal Conic Projection. Horizontal Datum is NAD 83, GRS80 Spheroid. Elevations on this map are referenced to the North American Vertical Datum of 1988.

Streets, Townships, Counties, and other locational data are sourced from the North Dakota Information Technology Geographic Information Systems HUB Data portal, or locally surveyed where appropriate.

Map page size is Tabloid (11" x 17"). Accuracy of the map scales for varying paper sizes and is valid only if printed at this page size.

DISCLAIMER

Recurrence Interval	Total Inundation without Dam (Acres)	Total Inundation with Proposed Alternative (Acres)	Percent Reduction	
2-Year	734.74	531.15	27.71%	
5-Year	1377.32	943.54	31.49%	
10-Year	2058.64	1390.76	32.44%	
25-Year	2855.52	2026.58	29.03%	
50-Year	3331.74	2506.87	24.76%	
100-Year	3728.68	2970.53	20.33%	
500-Year	4746.95	3785.92	20.25%	

Synthetic rainfall events were developed based on rainfall depths obtained from NOAA Atlas 14.

Hydraulic routing of the simulated synthetic rainfall events was completed using a HEC-RAS version 5.0.7 hydraulic model.

Hydrologic parameters such as time of concentration and Clark's storage coefficient were develeoped from calibration of the hydraulic model based on historic rainfall events.

Other information on the development of the hydraulic model is available in Appendix D-1.

IWI Spring 2008 LiDAR collect in conjuction with field survey data was used to create cross section geometry and to plot the inundation areas.

MAPPING NOTES

Digital orthophotography shown on this figure is from the North Dakota 2019 30cm (0.98ft) 4-band Image collection. Originally collected in Summer, 2019, through the National Agricultural Imagery Program (NAIP) with higher resolution than NAIP program specifications funded by the North Dakota Dept of Water Resources. Accessed through WMS.

The coordinate system used in the preparation of this map is North Dakota Walsh County State Plane 1983 Ground Coordinates, Lambert Conformal Conic Projection. Horizontal Datum is NAD 83, GRS80 Spheroid. Elevations on this map are referenced to the North American Vertical Datum of 1988.

Streets, Townships, Counties, and other locational data are sourced from the North Dakota Information Technology Geographic Information Systems HUB Data portal, or locally surveyed where appropriate.

Map page size is Tabloid (11" x 17"). Accuracy of the map scales for varying paper sizes and is valid only if printed at this page size.

DISCLAIMER

Recurrence Interval	Total Inundation without Dam (Acres)	Total Inundation with Proposed Alternative (Acres)	Percent Reduction	
2-Year	734.74	531.15	27.71%	
5-Year	1377.32	943.54	31.49%	
10-Year	2058.64	1390.76	32.44%	
25-Year	2855.52	2026.58	29.03%	
50-Year	3331.74	2506.87	24.76%	
100-Year	3728.68	2970.53	20.33%	
500-Year	4746.95	3785.92	20.25%	

Synthetic rainfall events were developed based on rainfall depths obtained from NOAA Atlas 14.

Hydraulic routing of the simulated synthetic rainfall events was completed using a HEC-RAS version 5.0.7 hydraulic model.

Hydrologic parameters such as time of concentration and Clark's storage coefficient were develeoped from calibration of the hydraulic model based on historic rainfall events.

Other information on the development of the hydraulic model is available in Appendix D-1.

IWI Spring 2008 LiDAR collect in conjuction with field survey data was used to create cross section geometry and to plot the inundation areas.

MAPPING NOTES

Digital orthophotography shown on this figure is from the North Dakota 2019 30cm (0.98ft) 4-band Image collection. Originally collected in Summer, 2019, through the National Agricultural Imagery Program (NAIP) with higher resolution than NAIP program specifications funded by the North Dakota Dept of Water Resources. Accessed through WMS.

The coordinate system used in the preparation of this map is North Dakota Walsh County State Plane 1983 Ground Coordinates, Lambert Conformal Conic Projection. Horizontal Datum is NAD 83, GRS80 Spheroid. Elevations on this map are referenced to the North American Vertical Datum of 1988.

Streets, Townships, Counties, and other locational data are sourced from the North Dakota Information Technology Geographic Information Systems HUB Data portal, or locally surveyed where appropriate.

Map page size is Tabloid (11" x 17"). Accuracy of the map scales for varying paper sizes and is valid only if printed at this page size.

DISCLAIMER

Recurrence Interval	Total Inundation without Dam (Acres)	Total Inundation with Proposed Alternative (Acres)	Percent Reduction	
2-Year	734.74	531.15	27.71%	
5-Year	1377.32	943.54	31.49%	
10-Year	2058.64	1390.76	32.44%	
25-Year	2855.52	2026.58	29.03%	
50-Year	3331.74	2506.87	24.76%	
100-Year	3728.68	2970.53	20.33%	
500-Year	4746.95	3785.92	20.25%	

Synthetic rainfall events were developed based on rainfall depths obtained from NOAA Atlas 14.

Hydraulic routing of the simulated synthetic rainfall events was completed using a HEC-RAS version 5.0.7 hydraulic model.

Hydrologic parameters such as time of concentration and Clark's storage coefficient were develeoped from calibration of the hydraulic model based on historic rainfall events.

Other information on the development of the hydraulic model is available in Appendix D-1.

IWI Spring 2008 LiDAR collect in conjuction with field survey data was used to create cross section geometry and to plot the inundation areas.

MAPPING NOTES

Digital orthophotography shown on this figure is from the North Dakota 2019 30cm (0.98ft) 4-band Image collection. Originally collected in Summer, 2019, through the National Agricultural Imagery Program (NAIP) with higher resolution than NAIP program specifications funded by the North Dakota Dept of Water Resources. Accessed through WMS.

The coordinate system used in the preparation of this map is North Dakota Walsh County State Plane 1983 Ground Coordinates, Lambert Conformal Conic Projection. Horizontal Datum is NAD 83, GRS80 Spheroid. Elevations on this map are referenced to the North American Vertical Datum of 1988.

Streets, Townships, Counties, and other locational data are sourced from the North Dakota Information Technology Geographic Information Systems HUB Data portal, or locally surveyed where appropriate.

Map page size is Tabloid (11" x 17"). Accuracy of the map scales for varying paper sizes and is valid only if printed at this page size.

DISCLAIMER

Recurrence Interval	Total Inundation without Dam (Acres)	Total Inundation with Proposed Alternative (Acres)	Percent Reduction	
2-Year	734.74	531.15	27.71%	L
5-Year	1377.32	943.54	31.49%	I
10-Year	2058.64	1390.76	32.44%	I
25-Year	2855.52	2026.58	29.03%	L
50-Year	3331.74	2506.87	24.76%	L
100-Year	3728.68	2970.53	20.33%	
500-Year	4746.95	3785.92	20.25%	I

Synthetic rainfall events were developed based on rainfall depths obtained from NOAA Atlas 14.

Hydraulic routing of the simulated synthetic rainfall events was completed using a HEC-RAS version 5.0.7 hydraulic model.

Hydrologic parameters such as time of concentration and Clark's storage coefficient were develeoped from calibration of the hydraulic model based on historic rainfall events.

Other information on the development of the hydraulic model is available in Appendix D-1.

IWI Spring 2008 LiDAR collect in conjuction with field survey data was used to create cross section geometry and to plot the inundation areas.

MAPPING NOTES

Digital orthophotography shown on this figure is from the North Dakota 2019 30cm (0.98ft) 4-band Image collection. Originally collected in Summer, 2019, through the National Agricultural Imagery Program (NAIP) with higher resolution than NAIP program specifications funded by the North Dakota Dept of Water Resources. Accessed through WMS.

The coordinate system used in the preparation of this map is North Dakota Walsh County State Plane 1983 Ground Coordinates, Lambert Conformal Conic Projection. Horizontal Datum is NAD 83, GRS80 Spheroid. Elevations on this map are referenced to the North American Vertical Datum of 1988.

Streets, Townships, Counties, and other locational data are sourced from the North Dakota Information Technology Geographic Information Systems HUB Data portal, or locally surveyed where appropriate.

Map page size is Tabloid (11" x 17"). Accuracy of the map scales for varying paper sizes and is valid only if printed at this page size.

DISCLAIMER

MAPPING NOTES

Digital orthophotography shown on this figure is from the North Dakota 2019 30cm (0.98ft) 4-band Image collection. Originally collected in Summer, 2019, through the National Agricultural Imagery Program (NAIP) with higher resolution than NAIP program specifications funded by the North Dakota Dept of Water Resources. Accessed through WMS.

The coordinate system used in the preparation of this map is North Dakota Walsh County State Plane 1983 Ground Coordinates, Lambert Conformal Conic Projection. Horizontal Datum is NAD 83, GRS80 Spheroid. Elevations on this map are referenced to the North American Vertical Datum of 1988.

Streets, Townships, Counties, and other locational data are sourced from the North Dakota Information Technology Geographic Information Systems HUB Data portal, or locally surveyed where appropriate.

MAPPING NOTES

Digital orthophotography shown on this figure is from the North Dakota 2019 30cm (0.98ft) 4-band Image collection. Originally collected in Summer, 2019, through the National Agricultural Imagery Program (NAIP) with higher resolution than NAIP program specifications funded by the North Dakota Dept of Water Resources. Accessed through WMS.

The coordinate system used in the preparation of this map is North Dakota Waish County State Plane 1983 Ground Coordinates, Lambert Conformal Conic Projection. Horizontal Datum is NAD 83, GRS80 Spheroid. Elevations on this map are referenced to the North American Vertical Datum of 1988.

Streets, Townships, Counties, and other locational data are sourced from the North Dakota Information Technology Geographic Information Systems HUB Data portal, or locally surveyed where appropriate.

Parcel ID	Parcel ID Owner		ted Acres
Farcerib	Owner	Existing Proposed	
27000006694000	Jeff Flaten Life Est.	22.1	24.8
27000006693000	Walsh County Water Res. Dist.	44.2	46.5
27000006695000	Jeff Flaten Life Est.	21.8	24.9
27000006696000	John R Karas Life Est.	4.8	7.8
27000006691000	John R Karas Life Est.	5.0	8.0
27000006692000	Kevin J & Kent E Drevecky	3.6	6.3
27000006701000	Walsh County Water Res. Dist.	54.6	60.8
27000006699000	Garrett Skorheim	0.6	1.4
27000006700000	Keith J Bylin	2.8	4.1
26000006360020	Don A Bylin	0.6	1.1
26000006356030	Earl D Samuelson Etal	0.0	<0.1
26000006362000	Keith J Bylin	22.7	26.2
31000007443000	Joann Bylin	0.6	1.8
31000007444000	Tara Shirek	0.1	3.3
31000007445000	Charlotte Johnson Family	0.0	<0.1
31000007446000	Skorheim Land	12.8	18.9
26000006360000	Lowell D Bylin	0.7	1.7
26000006357000	Walsh County Water Res. Dist.	9.5	11.3
26000006361000	Walsh County Water Res. Dist.	60.1	62.5
26000006360010	Don A Bylin	1.1	1.9
31000007493000	Jeff Flaten Life Est.	17.7	22.2
3000007139000	Justin W Sobak	0.0	0.1
		205.4	225.5
		285.4	335.5

MAPPING NOTES

Digital orthophotography shown on this figure is from the North Dakota 2019 30cm (0.98ft) 4-band Image collection Originally collected in Summer, 2019, through the National Agricultural Imagery Program (NAIP) with higher resolution than NAIP program specifications funded by the North Dakota Dept of Water Resources. Accessed through WMS.

The coordinate system used in the preparation of this map is North Dakota Walsh County State Plane 1983 Ground Coordinates, Lambert Conformal Conic Projection. Horizontal Datum is NAD 83, GRS80 Spheroid. Elevations on this map are referenced to the North American Vertical Datum of 1988.

Walsh County Parcel Data obtained from Walsh County GIS, January 2022. Parcel data accessible at "https://wchs.maps.arcgis.com/apps/webappviewer/index.html?id=cff db5034b314a0a9e7/dc67242ee6e7*

Streets, Townships, Counties, and other locational data are sourced from the North Dakota Information Technology Geographic Information Systems HUB Data portal, or locally surveyed where appropriate.

Map page size is Tabloid (11" x 17"). Accuracy of the map scales for varying paper sizes and is valid only if printed at this page size.

DISCLAIMER

This map has been compiled using the best information available and is believed to be accurate; however, its preparation required many assumptions. Actual conditions during a failure may vary from those assumed, so the accuracy cannot be guaranteed. The limits of flooding shown and the temporal data should only be used as a guildiene for emergency planning and response actions. Actual areas inundated will depend on specific flooding and failure conditions and may differ from the areas shown on the maps

