Natural Resources Conservation Service

CONSERVATION PRACTICE STANDARD

FILTER STRIP

CODE 393

(ac)

DEFINITION

A strip or area of herbaceous vegetation, located at the lower edge(s) of a field, that removes contaminants from overland flow.

PURPOSE

This practice is used to accomplish one or more of the following purposes—

- Reduce suspended solids and associated contaminants in runoff and excessive sediment in surface waters.
- Reduce dissolved contaminant loadings in runoff to surface waters.
- Reduce suspended solids and associated contaminants in irrigation tailwater and excessive sediment in surface waters.

CONDITIONS WHERE PRACTICE APPLIES

Filter strips are established where environmentally sensitive areas need to be protected from sediment, other suspended solids, and dissolved contaminants in runoff.

CRITERIA

General Criteria Applicable to All Purposes

The filter strip will be located immediately downslope from the source area of contaminants.

Overland flow entering the filter strip will be uniform sheet flow.

Concentrated flow will be dispersed before it enters the filter strip.

The maximum gradient along the leading edge of filter strip will not exceed one-half of the up-and-down-hill slope percent, immediately upslope from the filter strip, up to a maximum of five percent.

Filter strips will not be used as a travel lane for equipment or livestock.

Vegetation

Plant species, rates of seeding (lbs/ac), vegetative planting (plants/ac), minimum quality of planting stock (pure live seed [PLS] or stem caliper), and method of establishment shall be specified before application. Only viable, high quality seed or planting stock will be used.

Perform site preparation and seeding/planting at a time and in a manner that best ensures survival and growth of selected species. Successful establishment parameters, (e.g., minimum percent ground/canopy cover, percent survival, stand density) will be specified before application.
Additional Criteria to Reduce Dissolved Contaminants, Suspended Solids and Associated Contaminants in Runoff and Excessive Sediment in Surface Waters

The filter strip will be designed to have a 10-year life span, following the procedure in Agronomy Technical Note No. 2, “Using Revised Universal Soil Loss Equation, Version 2 (RUSLE2) for the Design and Predicted Effectiveness of Vegetative Filter Strips (VFS) for Sediment.” This is based on the amount of sediment delivery to the upper edge of the filter strip and ratio of filter strip flow length to length of flow path from the contributing area. The flow length through the filter strip will be based on Agronomy Technical Note No. 2 with a minimum length of 20 feet for suspended solids and associated contaminants in runoff and 30 feet for dissolved contaminants and pathogens in runoff.

The drainage area immediately above the filter strip will have a slope of one percent or greater.

Vegetation

The filter strip will be established to permanent herbaceous vegetation.

Species selected will be—

• Able to withstand partial burial from sediment deposition.
• Tolerant of herbicides used on the area that contributes runoff to the filter strip.
• Stiff stemmed and a high stem density near the ground surface.
• Suited to current site conditions and intended uses.
• Able to achieve adequate density and vigor within an appropriate period to stabilize the site sufficiently to permit suited uses with ordinary management activities.

Schedule planting during periods when soil moisture is adequate for germination and establishment. Seeding will be timed so that tillage for adjacent crop does not damage the seeded filter strip.

Do not burn the filter strip more than once every 10 years.

Where the purpose is to remove phosphorus, remove (or harvest) the filter strip aboveground biomass at least once each year.

The minimum seeding and stem density will be equivalent to the seeding rate for a high quality grass hay seeding rate for the climate area or the density of vegetation selected in current water erosion technology to determine trapping efficiency, whichever is the higher seeding rate.

Additional Criteria to Reduce Suspended Solids and Associated Contaminants in Irrigation Tailwater and Excessive Sediment in Surface Waters

Filter strip vegetation will be a small grain or other suitable annual plant.

The seeding rate shall be sufficient to ensure that the plant stem spacing does not exceed one inch (about 144 plant stems per square foot).

Establish the filter strip prior to the irrigation season so that the vegetation is mature enough to filter sediment from the first irrigation.

CONSIDERATIONS

General Considerations

Filter strip width (flow length) can be increased as necessary to accommodate harvest and maintenance equipment.

A filter strip with the leading edge on the contour will function better than those with a gradient along the leading edge.
Seeding rates that establish a higher stem density than the normal density for a high quality grass hay crop will be more effective in trapping and treating contaminants.

When needed, control invasive plant species.

Consideration for Reducing Suspended Solids and Associated Contaminants in Runoff
Increasing the width of the filter strip beyond the minimum required will increase the potential for capturing more contaminants in runoff.

While this practice reduces pathogen movement in the agricultural landscape, it should not be assumed that it will reliably reduce pathogens in receiving water to levels consistent with food safety standards for produce crops. See the U.S. Food & Drug Administration Food Safety Modernization Act Final Rule on Produce Safety at http://www.fda.gov/food/guidanceregulation/fsma/ucm334114.htm.

Considerations for Creating, Restoring or Enhancing Herbaceous Habitat for Wildlife and Beneficial Insects and Pollinators
Filter strips are often the only break in the monotony of intensively cropped areas. The wildlife and pollinator benefits of this herbaceous cover can be enhanced by the following:

- When appropriate, use native grass species that fulfill the purpose(s) of the practice while also providing habitat for priority wildlife.
- Add herbaceous plant species (including native forbs) to the seeding mix that are beneficial to wildlife and pollinators and are compatible for one of the listed purposes. Changing the seeding mix should not detract from the purpose for which the filter strip is established.
- Increase the width beyond the minimum required. The additional area can increase food and cover for wildlife and pollinators.
- Management activities on filter strips (mowing, burning, or light disking), should not be done more often than every other year with frequency dependent on geographical location to maintain the purpose(s) of the practice.
- Management activities should be completed outside of the primary nesting, fawning, and calving seasons. Activities should be timed to allow for regrowth before the growing season ends.
- Organic producers should submit plans and specifications to their certifying agent for approval prior to installation, as part of the organic producer’s organic system plan.

Considerations to Maintain or Enhance Watershed Functions and Values
Filter strips may be used to enhance connectivity of corridors and non-cultivated patches of vegetation within the watershed, enhance the aesthetics of a watershed, and be strategically located to reduce runoff, and increase infiltration and groundwater recharge throughout the watershed.

Considerations to Increase Carbon Storage
Increasing the width of the filter strip beyond the minimum required will increase potential for carbon sequestration.

PLANS AND SPECIFICATIONS
Develop plans and specifications for each field or treatment unit according to the Criteria section requirements above, and operation and maintenance section requirements below. Specifications must describe the requirements to apply this practice to achieve the intended purpose. Record the following specification components in an approved Filter Strip (Code 393) implementation requirements document.

- Practice purpose(s).
- Length, width (width refers to flow length through the filter strip), and slope of the filter strip to accomplish the planned purpose(s).
- Plant species selection and seeding/planting/sprigging rates to accomplish the planned purpose.
- Planting dates and planting method(s).
• Specific care and handling requirements of the seed or plant material to ensure that planted materials have an acceptable rate of survival.
• A statement that only viable, high quality, and adapted seed will be used.
• Site preparation instructions sufficient to establish and grow selected species.

OPERATION AND MAINTENANCE

For the purposes of filtering contaminants and nutrients (phosphorus), permanent filter strip vegetative plantings will be harvested and removed as appropriate to encourage dense growth, maintain an upright growth habit and remove nutrients and other contaminants that are contained in the plant tissue.

Control undesired weed species, especially State-listed noxious weeds.

If Conservation Practice Standard (CPS) Prescribed Burning (Code 338) is used to manage and maintain the filter strip, an approved burn plan must be developed and consistent with Additional Criteria to Reduce Dissolved Contaminants, Suspended Solids and Associated Contaminants in Runoff and Excessive Sediment in Surface Waters, do not burn the filter strip more than once every ten years.

Inspect the filter strip after storm events and repair any gullies that have formed, remove unevenly deposited sediment accumulation that will disrupt sheet flow, reseed disturbed areas and take other measures to prevent concentrated flow through the filter strip.

Apply supplemental nutrients as needed to maintain the desired species composition and stand density.

Periodically regrade and reestablish the filter strip area when sediment deposition at the filter strip-field interface jeopardizes its function. Reestablish the filter strip vegetation in regraded areas, if needed.

If grazing is used to harvest vegetation from the filter strip, the grazing plan must ensure that the integrity and function of the filter strip is not adversely affected.

REFERENCES

