Practice: 101-CNMP Design and Implementation Activity

Scenario: \#13-Design-CNMP Revision

Scenario Description:

A Comprehensive Nutrient Management Plan (CNMP) will be revised to address changes in manure management, volume or analysis, plants and crops, or plant and crop management or to adjust the nutrient balance on an Animal Feeding Operation (AFO). No modifications are required to engineered practices in the farmstead/production area. This scenario is where the services of a professional engineer are typically not required. The producer may export manure or organic products from the farm. The producer has an animal production area and land applies nutrients.

Before Situation:
The owner/operator of an AFO has an existing written Comprehensive Nutrient Management Plan (CNMP) that addresses the current required resource concerns and client objectives present on the facility production area and land application areas. The CNMP is out of date or does not meet current needs or objectives. Various levels of management and conservation implementation have changed on the operation. Soil tests, manure analyses, or changes in cropping system require that the nutrient balance be adjusted to bring the CNMP up to date.

After Situation:
Utilize a certified Technical Service Provider (TSP) to design planned conservation practices that address the handling, storage, and application of animal waste in an environmentally safe manner. Design and implementation will meet the general and additional applicable criteria found in each conservation practice. Design all conservation practices found in Comprehensive Nutrient Management Plan (CPA 102)or Conservation Plan that addresses the planned practices for land application of manure and nutrients, and the handling, transfer, storage and treatment of animal wastes. Management and conservation practices in the CNMP document delivered to the client ensure that, if implemented, the AFO will properly, within applicable NRCS standards and specifications, store, handle, and contain manure and wastewater materials generated by the AFO; dispose of AFO mortality; implement conservation practices to reduce soil erosion on land application areas to sustainable levels; land apply waste material nutrients in a manner than meets NRCS 590 Nutrient Management standard technical criteria.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00

Scenario Total Cost:	\$4,874.00					
Scenario Cost/Unit:	\$4,8					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding, physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.	Hours	\$108.51	40	\$4,340.40
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	5	\$533.60

Practice: 101 - CNMP Design and Implementation Activity

Scenario: \#29-Design- Livestock Operations greater than 300 AU without Land Application and Minimal Engineering

Scenario Description:

Animal Feeding Operation (AFO) currently greater than 300 animal units (AU). The producer exports (material transferred to another owner with written documentation of the transfer) manure or organic products from the farm. The operation has an animal production area, cropland, and applies most nutrients (manure and commercial fertilizers). No State requirement for Professional Engineer.

Before Situation:
Currently the production area and land application areas do not meet NRCS quality criteria for water quality and soil erosion. Soil tests are not current. Manure not frequently tested. Various levels of management and conservation implementation have occurred on the farm. Little documentation of the systems used and practices installed exists. The producer may or may not have a conservation plan or a nutrient management plan. Partial implementation of CNMP-related practices for the AFO has potentially occurred.

After Situation:

Utilize a certified Technical Service Provider (TSP) to design planned conservation practices that address the handling, storage, and application of animal waste in an environmentally safe manner. Design and implementation will meet the general and additional applicable criteria found in each conservation practice. Design all conservation practices found in Comprehensive Nutrient Management Plan (CPA 102) or Conservation Plan that addresses the planned practices for land application of manure and nutrients, and the handling, transfer, storage and treatment of animal wastes. Management and conservation practices in the CNMP document delivered to the client ensure that, if implemented, the AFO will properly, within applicable NRCS standards and specifications, store, handle, and contain manure and wastewater materials generated by the AFO; dispose of AFO mortality; implement conservation practices to reduce soil erosion on land application areas to sustainable levels; land apply waste material nutrients in a manner than meets NRCS 590 Nutrient Management standard technical criteria.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$4,973.56
Scenario Cost/Unit: \$4,973.56
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding, physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.	Hours	\$108.51	36	\$3,906.36
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	10	\$1,067.20

Practice: 101-CNMP Design and Implementation Activity
Scenario: \#45 - Design- Dairy less than 300 AU Land Application

Scenario Description:

Dairy Animal Feeding Operation (AFO) currently less than 300 animal units (AU) land application. The producer may export (material transferred to another owner with written documentation of the transfer) modest amounts of the manure or organic products from the farm. The operation has an animal production area, cropland, and applies most nutrients (manure and commercial fertilizers).

Before Situation:

Currently the production area and land application areas do not meet NRCS quality criteria for water quality and soil erosion. Soil tests are not current. Manure not frequently tested.

After Situation:
Utilize a certified Technical Service Provider (TSP) to design planned conservation practices that address the handling, storage, and application of animal waste in an environmentally safe manner. Design and implementation will meet the general and additonal applicable criteria found in each conservation practice. Job sheets and implementation requirement documents found in State's eFOTG Section IV Conservation practices may be used. Design all conservation practices found in Comprehensive Nutrient Management Plan (CPA 102) or Conservation Plan that address the planned practices for land application of manure and nutrients, and the handling, transfer, storage and treatment of animal wastes.

Feature Measure: Number

Scenario Unit: Number

Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 10,779.40$
Scenario Cost/Unit: \$10,779.40

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding, physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.	Hours	\$108.51	60	\$6,510.60
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	40	\$4,268.80

Practice: 101 - CNMP Design and Implementation Activity
Scenario: \#61 - Design- Dairy greater than 300 AU and less than 700 AU with Land Application

Scenario Description:

Dairy Animal Feeding Operation (AFO) currently greater than 300 animal units (AU) and less than 700 AU with land application. The producer may export (material transferred to another owner with written documentation of the transfer) modest amounts of the manure or organic products from the farm. The operation has an animal production area, cropland, and applies most nutrients (manure and commercial fertilizers).

Before Situation:

Currently the production area and land application areas do not meet NRCS quality criteria for water quality and soil erosion. Soil tests are not current. Manure not frequently tested.

After Situation:

Utilize a certified Technical Service Provider (TSP) to design planned conservation practices that address the handling, storage, and application of animal waste in an environmentally safe manner. Design and implementation will meet the general and additonal applicable criteria found in each conservation practice. Job sheets and implementation requirement documents found in State's eFOTG Section IV Conservation practices may be used. Design all conservation practices found in Comprehensive Nutrient Management Plan (CPA 102) or Conservation Plan that address the planned practices for land application of manure and nutrients, and the handling, transfer, storage and treatment of animal wastes.

Feature Measure: Number

Scenario Unit: Number

Scenario Typical Size: 1.00

Scenario Total Cost:	$\$ 11,430.46$
Scenario Cost/Unit:	$\$ 11,430.46$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding, physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.	Hours	\$108.51	66	\$7,161.66
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	40	\$4,268.80

Practice: 101 - CNMP Design and Implementation Activity
Scenario: \#77-Design- Non Dairy Operation greater than 300 AU and less than 700 AU with Land Application

Scenario Description:

Animal Feeding Operation (AFO) currently greater than 300 animal units (AU) and less than 700 AU with land application. The producer may export (material transferred to another owner with written documentation of the transfer) modest amounts of the manure or organic products from the farm. The operation has an animal production area, cropland, and applies most nutrients (manure and commercial fertilizers).

Before Situation:

Currently the production area and land application areas do not meet NRCS quality criteria for water quality and soil erosion. Soil tests are not current. Manure not frequently tested.

After Situation:
Utilize a certified Technical Service Provider (TSP) to design planned conservation practices that address the handling, storage, and application of animal waste in an environmentally safe manner. Design and implementation will meet the general and additonal applicable criteria found in each conservation practice. Job sheets and implementation requirement documents found in State's eFOTG Section IV Conservation practices may be used. Design all conservation practices found in Comprehensive Nutrient Management Plan (CPA 102) or Conservation Plan that address the planned practices for land application of manure and nutrients, and the handling, transfer, storage and treatment of animal wastes.

Feature Measure: Number

Scenario Unit: Number

Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 10,786.56$
Scenario Cost/Unit: \$10,786.56

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding, physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.	Hours	\$108.51	64	\$6,944.64
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	36	\$3,841.92

Practice: 101-CNMP Design and Implementation Activity
Scenario: \#93-Design- Non Dairy Operation Less than 300 AU with Land Application

Scenario Description:

Animal Feeding Operation (AFO) currently less than 300 animal units (AU) with land application. The producer may export (material transferred to another owner with written documentation of the transfer) modest amounts of the manure or organic products from the farm. The operation has an animal production area, cropland, and applies most nutrients (manure and commercial fertilizers).

Before Situation:

Currently the production area and land application areas do not meet NRCS quality criteria for water quality and soil erosion. Soil tests are not current. Manure not frequently tested.

After Situation:
Utilize a certified Technical Service Provider (TSP) to design planned conservation practices that address the handling, storage, and application of animal waste in an environmentally safe manner. Design and implementation will meet the general and additonal applicable criteria found in each conservation practice. Job sheets and implementation requirement documents found in State's eFOTG Section IV Conservation practices may be used. Design all conservation practices found in Comprehensive Nutrient Management Plan (CPA 102) or Conservation Plan that address the planned practices for land application of manure and nutrients, and the handling, transfer, storage and treatment of animal wastes.

Feature Measure: Number

Scenario Unit: Number

Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 9,609.06$
Scenario Cost/Unit: \$9,609.06

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding, physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.	Hours	\$108.51	62	\$6,727.62
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	27	\$2,881.44

Practice: 101-CNMP Design and Implementation Activity
Scenario: \#109-Design- Non Dairy Operation greater 700 AU with Land Application

Scenario Description:

Animal Feeding Operation (AFO) currently greater than 700 animal units (AU) with land application. The producer may export (material transferred to another owner with written documentation of the transfer) modest amounts of the manure or organic products from the farm. The operation has an animal production area, cropland, and applies most nutrients (manure and commercial fertilizers).

Before Situation:

Currently the production area and land application areas do not meet NRCS quality criteria for water quality and soil erosion. Soil tests are not current. Manure not frequently tested.

After Situation:
Utilize a certified Technical Service Provider (TSP) to design planned conservation practices that address the handling, storage, and application of animal waste in an environmentally safe manner. Design and implementation will meet the general and additonal applicable criteria found in each conservation practice. Job sheets and implementation requirement documents found in State's eFOTG Section IV Conservation practices may be used. Design all conservation practices found in Comprehensive Nutrient Management Plan (CPA 102) or Conservation Plan that address the planned practices for land application of manure and nutrients, and the handling, transfer, storage and treatment of animal wastes.

Feature Measure: Number

Scenario Unit: Number

Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 12,942.44$
Scenario Cost/Unit: \$12,942.44

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding, physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.	Hours	\$108.51	76	\$8,246.76
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	44	\$4,695.68

Practice: 101 - CNMP Design and Implementation Activity
Scenario: \#125-Design- Small Livestock Operations less than 300 AU without Land Application

Scenario Description:

Animal Feeding Operation (AFO) currently less than 300 animal units (AU). The producer exports (material transferred to another owner with written documentation of the transfer) the manure or organic products from the farm. The operation has an animal production area, cropland, and applies most nutrients (manure and commercial fertilizers).

Before Situation:
Currently the production area and land application areas do not meet NRCS quality criteria for water quality and soil erosion. Soil tests are not current. Manure not frequently tested. Various levels of management and conservation implementation have occurred on the farm. Little documentation of the systems used and practices installed exists. The producer may or may not have a conservation plan or a nutrient management plan. Partial implementation of CNMP-related practices for the AFO has potentially occurred.

After Situation:

Utilize a certified Technical Service Provider (TSP) to design planned conservation practices that address the handling, storage, and application of animal waste in an environmentally safe manner. Design and implementation will meet the general and additonal applicable criteria found in each conservation practice. Design all conservation practices found in Comprehensive Nutrient Management Plan (CPA 102)or Conservation Plan that addresses the planned practices for land application of manure and nutrients, and the handling, transfer, storage and treatment of animal wastes. Management and conservation practices in the CNMP document delivered to the client ensure that, if implemented, the AFO will properly, within applicable NRCS standards and specifications, store, handle, and contain manure and wastewater materials generated by the AFO; dispose of AFO mortality; implement conservation practices to reduce soil erosion on land application areas to sustainable levels; land apply waste materialnutrients in a manner than meets NRCS 590 Nutrient Management standard technical criteria.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$6,988.71
Scenario Cost/Unit: $\$ 6,988.71$
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding, physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.	Hours	\$108.51	29	\$3,146.79
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	36	\$3,841.92

Practice: 101 - CNMP Design and Implementation Activity
Scenario: \#141-Design- Livestock Operations greater than 300 AU without Land Application

Scenario Description:

Animal Feeding Operation (AFO) currently greater than 300 animal units (AU). The producer exports (material transferred to another owner with written documentation of the transfer) manure or organic products from the farm. The operation has an animal production area, cropland, and applies most nutrients (manure and commercial fertilizers).

Before Situation:
Currently the production area and land application areas do not meet NRCS quality criteria for water quality and soil erosion. Soil tests are not current. Manure not frequently tested. Various levels of management and conservation implementation have occurred on the farm. Little documentation of the systems used and practices installed exists. The producer may or may not have a conservation plan or a nutrient management plan. Partial implementation of CNMP-related practices for the AFO has potentially occurred.

After Situation:

Utilize a certified Technical Service Provider (TSP) to design planned conservation practices that address the handling, storage, and application of animal waste in an environmentally safe manner. Design and implementation will meet the general and additional applicable criteria found in each conservation practice. Design all conservation practices found in Comprehensive Nutrient Management Plan (CPA 102) or Conservation Plan that addresses the planned practices for land application of manure and nutrients, and the handling, transfer, storage and treatment of animal wastes. Management and conservation practices in the CNMP document delivered to the client ensure that, if implemented, the AFO will properly, within applicable NRCS standards and specifications, store, handle, and contain manure and wastewater materials generated by the AFO; dispose of AFO mortality; implement conservation practices to reduce soil erosion on land application areas to sustainable levels; land apply waste material nutrients in a manner than meets NRCS 590 Nutrient Management standard technical criteria.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$7,623.66
Scenario Cost/Unit: \$7,623.66
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding, physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.	Hours	\$108.51	26	\$2,821.26
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	45	\$4,802.40

Practice: 101 - CNMP Design and Implementation Activity
Scenario: \#157-Design- Small Livestock Operations greater than 300 AU with Land Application and Minimal Engineering

Scenario Description:

Animal Feeding Operation (AFO) currently greater than 300 animal units (AU) with land application and minimal engineering. The producer exports (material transferred to another owner with written documentation of the transfer) modest amounts of manure or organic products from the farm. The operation has an animal production area, cropland, and applies most nutrients (manure and commercial fertilizers). State laws do not require a PE.

Before Situation:

Currently the production area and land application areas do not meet NRCS quality criteria for water quality and soil erosion. Soil tests are not current. Manure not frequently tested. Various levels of management and conservation implementation have occurred on the farm. Little documentation of the systems used and practices installed exists. The producer may or may not have a conservation plan or a nutrient management plan. Partial implementation of CNMP-related practices for the AFO has potentially occurred.

After Situation:

Utilize a certified Technical Service Provider (TSP) to design planned conservation practices that address the handling, storage, and application of animal waste in an environmentally safe manner. Design and implementation will meet the general and additonal applicable criteria found in each conservation practice. Design all conservation practices found in Comprehensive Nutrient Management Plan (CPA 102)or Conservation Plan that addresses the planned practices for land application of manure and nutrients, and the handling, transfer, storage and treatment of animal wastes. Management and conservation practices in the CNMP document delivered to the client ensure that, if implemented, the AFO will properly, within applicable NRCS standards and specifications, store, handle, and contain manure and wastewater materials generated by the AFO; dispose of AFO mortality; implement conservation practices to reduce soil erosion on land application areas to sustainable levels; land apply waste material nutrients in a manner than meets NRCS 590 Nutrient Management standard technical criteria.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$8,776.78
Scenario Cost/Unit: $\$ 8,776.78$
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding, physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.	Hours	\$108.51	74	\$8,029.74
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	7	\$747.04

Practice: 101 - CNMP Design and Implementation Activity
Scenario: \#173-Design- Small Livestock Operations less than 300 AU with Land Application and Minimal Engineering

Scenario Description:

Animal Feeding Operation (AFO) currently less than 300 animal units (AU) with land application and minimal engineering. The producer exports (material transferred to another owner with written documentation of the transfer) modest amounts of manure or organic products from the farm. The operation has an animal production area, cropland, and applies most nutrients (manure and commercial fertilizers). State laws do not require a PE.

Before Situation:

Currently the production area and land application areas do not meet NRCS quality criteria for water quality and soil erosion. Soil tests are not current. Manure not frequently tested. Various levels of management and conservation implementation have occurred on the farm. Little documentation of the systems used and practices installed exists. The producer may or may not have a conservation plan or a nutrient management plan. Partial implementation of CNMP-related practices for the AFO has potentially occurred.

After Situation:

Utilize a certified Technical Service Provider (TSP) to design planned conservation practices that address the handling, storage, and application of animal waste in an environmentally safe manner. Design and implementation will meet the general and additonal applicable criteria found in each conservation practice. Design all conservation practices found in Comprehensive Nutrient Management Plan (CPA 102)or Conservation Plan that addresses the planned practices for land application of manure and nutrients, and the handling, transfer, storage and treatment of animal wastes. Management and conservation practices in the CNMP document delivered to the client ensure that, if implemented, the AFO will properly, within applicable NRCS standards and specifications, store, handle, and contain manure and wastewater materials generated by the AFO; dispose of AFO mortality; implement conservation practices to reduce soil erosion on land application areas to sustainable levels; land apply waste material nutrients in a manner than meets NRCS 590 Nutrient Management standard technical criteria.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$6,926.74
Scenario Cost/Unit: $\$ 6,926.74$
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding, physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.	Hours	\$108.51	54	\$5,859.54
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	10	\$1,067.20

Practice: 101 - CNMP Design and Implementation Activity

Scenario: \#189-Design- Livestock Operations less than or equal to 300 AU without Land Application and Minimal Engineering

Scenario Description:

Animal Feeding Operation (AFO) currently less than or equal to 300 animal units (AU) with land application and minimal engineering. The producer exports (material transferred to another owner with written documentation of the transfer) modest amount of manure or organic products from the farm. The operation has an animal production area, cropland, and applies most nutrients (manure and commercial fertilizers). No State requirement for Professional Engineer.

Before Situation:

Currently the production area and land application areas do not meet NRCS quality criteria for water quality and soil erosion. Soil tests are not current. Manure not frequently tested. Various levels of management and conservation implementation have occurred on the farm. Little documentation of the systems used and practices installed exists. The producer may or may not have a conservation plan or a nutrient management plan. Partial implementation of CNMP-related practices for the AFO has potentially occurred.

After Situation:

Utilize a certified Technical Service Provider (TSP) to design planned conservation practices that address the handling, storage, and application of animal waste in an environmentally safe manner. Design and implementation will meet the general and additonal applicable criteria found in each conservation practice. Design all conservation practices found in Comprehensive Nutrient Management Plan (CPA 102) or Conservation Plan that addresses the planned practices for land application of manure and nutrients, and the handling, transfer, storage and treatment of animal wastes. Management and conservation practices in the CNMP document delivered to the client ensure that, if implemented, the AFO will properly, within applicable NRCS standards and specifications, store, handle, and contain manure and wastewater materials generated by the AFO; dispose of AFO mortality; implement conservation practices to reduce soil erosion on land application areas to sustainable levels; land apply waste material nutrients in a manner than meets NRCS 590 Nutrient Management standard technical criteria.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$6,709.72
Scenario Cost/Unit: $\$ 6,709.72$
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding, physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.	Hours	\$108.51	52	\$5,642.52
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	10	\$1,067.20

Practice: 101-CNMP Design and Implementation Activity
Scenario: \#205 - Design- Dairy greater than or equal to 700 AU with Land Application

Scenario Description:

Dairy Animal Feeding Operation (AFO) currently greater than or equal to 700 animal units (AU) with land application. The producer may export (material transferred to another owner with written documentation of the transfer) modest amounts of the manure or organic products from the farm. The operation has an animal production area, cropland, and applies most nutrients (manure and commercial fertilizers).

Before Situation:

Currently the production area and land application areas do not meet NRCS quality criteria for water quality and soil erosion. Soil tests are not current. Manure not frequently tested.

After Situation:

Utilize a certified Technical Service Provider (TSP) to design planned conservation practices that address the handling, storage, and application of animal waste in an environmentally safe manner. Design and implementation will meet the general and additonal applicable criteria found in each conservation practice. Job sheets and implementation requirement documents found in State's eFOTG Section IV Conservation practices may be used. Design all conservation practices found in Comprehensive Nutrient Management Plan (CPA 102) or Conservation Plan that address the planned practices for land application of manure and nutrients, and the handling, transfer, storage and treatment of animal wastes.

Feature Measure: Number

Scenario Unit: Number

Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 12,729.00$
Scenario Cost/Unit: $\$ 12,729.00$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding, physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.	Hours	\$108.51	76	\$8,246.76
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	42	\$4,482.24

Practice: 102-Comprehensive Nutrient Management Plan
Scenario: \#359 - Planning Dairy Greater than 300 AU, less than 700 AU with Land

Scenario Description:

Dairy Animal Feeding Operation (AFO) greater than 300 but less than 700 animal units (AU) animal units (AU). The producer utilizes manure or organic products from the farm or may export. The operation has an animal production area, cropland, and applies most nutrients (manure and commercial fertilizers).

Before Situation

Currently the production area and land application areas do not meet NRCS quality criteria for water quality and soil erosion. Soil tests are not current or do not exist. Manure or Organic products are not frequently tested. The production area and land application areas do not meet NRCS quality criteria for water quality and soil erosion. The owner/operator of a Dairy AFO has not received a written Comprehensive Nutrient Management Plan (CNMP) that addresses all resource concerns present on the facility production area and land waste application areas. Various levels of management and conservation implementation have occurred on the farm. Little documentation of the systems used and practices installed exists. The producer may or may not have a conservation plan or a nutrient management plan. Resource concerns on the AFO production area and land application areas remain to be addressed through the development of a complete CPA-CNMP.
After Situation:
Utilize a CNMP certified Technical Service Provider (TSP) to plan conservation practices that address the handling, storage, and application of animal waste in an environmentally safe manner. CPA-CNMP describes the conservation practice solutions to all identified resource concerns on the AFO production area and land application areas. Collection, transfer, and storage of manure and wastewater systems, mortality management facilities, as well as any rainfall or runoff diversion systems will be inventoried-evaluated and planned for adequacy according to applicable NRCS conservation practice standard technical criteria. Decisions presented within the CNMP have been made to mitigate, if feasible, negative air quality impacts and improve farmland safety and security.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 9,627.00$
Scenario Cost/Unit: $\quad \$ 9,627.00$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	50	\$5,336.00
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	50	\$4,291.00

Practice: 102-Comprehensive Nutrient Management Plan
Scenario: \#375-Planning Dairy Less than 300 AU with Land

Scenario Description:

Dairy Animal Feeding Operation (AFO) currently is less than 300 animal units (AU). The producer utilizes manure or organic products from the farm or may export. The operation has an animal production area, cropland, and applies most nutrients (manure and commercial fertilizers).
Before Situation:
Currently the production area and land application areas do not meet NRCS quality criteria for water quality and soil erosion. Soil tests are not current or do not exist. Manure or Organic products are not frequently tested. The production area and land application areas do not meet NRCS quality criteria for water quality and soil erosion. The owner/operator of a Dairy AFO has not received a written Comprehensive Nutrient Management Plan (CNMP) that addresses all resource concerns present on the facility production area and land waste application areas. Various levels of management and conservation implementation have occurred on the farm. Little documentation of the systems used and practices installed exists. The producer may or may not have a conservation plan or a nutrient management plan. Resource concerns on the AFO production area and land application areas remain to be addressed through the development of a complete CPA-CNMP.
After Situation:
Utilize a CNMP Certified Technical Service Provider (TSP) to plan conservation practices that address the handling, storage, and application of animal waste in an environmentally safe manner. CPA-CNMP describes the conservation practice solutions to all identified resource concerns on the AFO production area and land application areas. Collection, transfer, and storage of manure and wastewater systems, mortality management facilities, as well as any rainfall or runoff diversion systems will be inventoried-evaluated and planned for adequacy according to applicable NRCS conservation practice standard technical criteria. Decisions presented within the CNMP have been made to mitigate, if feasible, negative air quality impacts and improve farmland safety and security.

Feature Measure: Number

Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 8,130.70$
Scenario Cost/Unit: $\$ 8,130.70$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	40	\$4,268.80
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	45	\$3,861.90

Practice: 102-Comprehensive Nutrient Management Plan
Scenario: \#391 - Planning Livestock Greater than 300 AU, No-Land

Scenario Description:

Animal Feeding Operation (AFO) currently greater than 300 animal units (AU). The producer exports (material transferred to another owner with written documentation of the transfer) all manure or organic products from the farm. The operation has an animal production area only.

Before Situation:

Currently the production area does not meet NRCS quality criteria for water quality. Manure or Organic products are not frequently tested. The production area does not meet NRCS quality criteria for water quality and soil erosion. The owner/operator of a livestock AFO has not received a written Comprehensive Nutrient Management Plan (CNMP) that addresses all resource concerns present on the facility production area. Various levels of management and conservation implementation have occurred on the farm. Little documentation of the systems used and practices installed exists. The producer may or may not have a conservation plan or a nutrient management plan. Resource concerns on the AFO production area remain to be addressed through the development of a complete CPA-CNMP.

After Situation:
Utilize a CNMP certified Technical Service Provider (TSP) to plan conservation practices that address the handling, storage, and transfer of animal waste in an environmentally safe manner. CPA-CNMP describes the conservation practice solutions to all identified resource concerns on the AFO production area. Collection, transfer, and storage of manure and wastewater systems, mortality management facilities, as well as any rainfall or runoff diversion systems will be inventoried-evaluated and planned for adequacy according to applicable NRCS conservation practice standard technical criteria. Decisions presented within the CNMP have been made to mitigate, if feasible, negative air quality impacts and improve farmland safety and security.

Feature Measure: Number

Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$7,168.00
Scenario Cost/Unit: $\quad \$ 7,168.00$
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	35	\$3,735.20
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	40	\$3,432.80

Practice: 102-Comprehensive Nutrient Management Plan
Scenario: \#407-Planning Livestock Less than 300 AU, No-Land

Scenario Description:

Animal Feeding Operation (AFO) currently less than 300 animal units (AU). The producer exports (material transferred to another owner with written documentation of the transfer) all manure or organic products from the farm. The operation has an animal production area only.

Before Situation:

Currently the production area does not meet NRCS quality criteria for water quality. Manure or Organic products are not frequently tested. The production area does not meet NRCS quality criteria for water quality and soil erosion. The owner/operator of a livestock AFO has not received a written Comprehensive Nutrient Management Plan (CNMP) that addresses all resource concerns present on the facility production area. Various levels of management and conservation implementation have occurred on the farm. Little documentation of the systems used and practices installed exists. The producer may or may not have a conservation plan or a nutrient management plan. Resource concerns on the AFO production area remain to be addressed through the development of a complete CPA-CNMP.

After Situation:
Utilize a CNMP certified Technical Service Provider (TSP) to plan conservation practices that address the handling, storage, and transfer of animal waste in an environmentally safe manner. CPA-CNMP describes the conservation practice solutions to all identified resource concerns on the AFO production area. Collection, transfer, and storage of manure and wastewater systems, mortality management facilities, as well as any rainfall or runoff diversion systems will be inventoried-evaluated and planned for adequacy according to applicable NRCS conservation practice standard technical criteria. Decisions presented within the CNMP have been made to mitigate, if feasible, negative air quality impacts and improve farmland safety and security.

Feature Measure: Number

Scenario Unit: Number

Scenario Typical Size: 1.00
Scenario Total Cost: \$5,242.60
Scenario Cost/Unit: $\$ 5,242.60$
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	25	\$2,668.00
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	30	\$2,574.60

Practice: 102-Comprehensive Nutrient Management Plan
Scenario: \#423-Planning Livestock Greater than 700 AU with Land

Scenario Description:

Animal Feeding Operation (AFO) currently is greater than 700 animal units (AU). The producer utilizes manure or organic products from the farm or may export. The operation has an animal production area, cropland, and applies most nutrients (manure and commercial fertilizers).
Before Situation:
Currently the production area and land application areas do not meet NRCS quality criteria for water quality and soil erosion. Soil tests are not current or do not exist. Manure or Organic products are not frequently tested. The production area and land application areas do not meet NRCS quality criteria for water quality and soil erosion. The owner/operator of a livestock AFO has not received a written Comprehensive Nutrient Management Plan (CNMP) that addresses all resource concerns present on the facility production area and land waste application areas. Various levels of management and conservation implementation have occurred on the farm. Little documentation of the systems used and practices installed exists. The producer may or may not have a conservation plan or a nutrient management plan. Resource concerns on the AFO production area and land waste application areas remain to be addressed through the development of a complete CPA-CNMP.
After Situation:
Utilize a CNMP Certified Technical Service Provider (TSP) to plan conservation practices that address the handling, storage, and application of animal waste in an environmentally safe manner. CPA-CNMP describes the conservation practice solutions to all identified resource concerns on the AFO production area and land application areas. Collection, transfer, and storage of manure and wastewater systems, mortality management facilities, as well as any rainfall or runoff diversion systems will be inventoried-evaluated and planned for adequacy according to applicable NRCS conservation practice standard technical criteria. Decisions presented within the CNMP have been made to mitigate, if feasible, negative air quality impacts and improve farmland safety and security.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 10,914.30$
Scenario Cost/Unit: $\$ 10,914.30$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	50	\$5,336.00
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	65	\$5,578.30

United States Department of Agriculture

Practice: 102-Comprehensive Nutrient Management Plan
Scenario: \#439-Planning Livestock Greater than 300 AU, less than 700 AU with Land

Scenario Description:

Animal Feeding Operation (AFO) currently is greater than 300 but less than 700 animal units (AU). The producer utilizes manure or organic products from the farm or may export. The operation has an animal production area, cropland, and applies most nutrients (manure and commercial fertilizers).

Before Situation:

Currently the production area and land application areas do not meet NRCS quality criteria for water quality and soil erosion. Soil tests are not current or do not exist. Manure or Organic products are not frequently tested. The production area and land application areas do not meet NRCS quality criteria for water quality and soil erosion. The owner/operator of a livestock AFO has not received a written Comprehensive Nutrient Management Plan (CNMP) that addresses all resource concerns present on the facility production area and land waste application areas. Various levels of management and conservation implementation have occurred on the farm. Little documentation of the systems used and practices installed exists. The producer may or may not have a conservation plan or a nutrient management plan. Resource concerns on the AFO production area and land waste application areas remain to be addressed through the development of a complete CPA-CNMP.

After Situation:
Utilize a CNMP Certified Technical Service Provider (TSP) to plan conservation practices that address the handling, storage, and application of animal waste in an environmentally safe manner. CPA-CNMP describes the conservation practice solutions to all identified resource concerns on the AFO production area and land application areas. Collection, transfer, and storage of manure and wastewater systems, mortality management facilities, as well as any rainfall or runoff diversion systems will be inventoried-evaluated and planned for adequacy according to applicable NRCS conservation practice standard technical criteria. Decisions presented within the CNMP have been made to mitigate, if feasible, negative air quality impacts and improve farmland safety and security.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 8,988.90$
Scenario Cost/Unit: $\$ 8,988.90$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	40	\$4,268.80
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	55	\$4,720.10

Practice: 102-Comprehensive Nutrient Management Plan
Scenario: \#455-Planning Livestock Less than 300 AU with Land

Scenario Description:

Animal Feeding Operation (AFO) currently is less than 300 animal units (AU). The producer utilizes manure or organic products from the farm or may export. The operation has an animal production area, cropland, and applies most nutrients (manure and commercial fertilizers).
Before Situation:
Currently the production area and land application areas do not meet NRCS quality criteria for water quality and soil erosion. Soil tests are not current or do not exist. Manure or Organic products are not frequently tested. The production area and land application areas do not meet NRCS quality criteria for water quality and soil erosion. The owner/operator of a livestock AFO has not received a written Comprehensive Nutrient Management Plan (CNMP) that addresses all resource concerns present on the facility production area and land waste application areas. Various levels of management and conservation implementation have occurred on the farm. Little documentation of the systems used and practices installed exists. The producer may or may not have a conservation plan or a nutrient management plan. Resource concerns on the AFO production area and land waste application areas remain to be addressed through the development of a complete CPA-CNMP.
After Situation:
Utilize a CNMP Certified Technical Service Provider (TSP) to plan conservation practices that address the handling, storage, and application of animal waste in an environmentally safe manner. CPA-CNMP identifies the conservation practice solutions to all identified resource concerns on the AFO production area and land application areas. Collection, transfer, and storage of manure and wastewater systems, mortality management facilities, as well as any rainfall or runoff diversion systems will be inventoried-evaluated and planned for adequacy according to applicable NRCS conservation practice standard technical criteria. Decisions presented within the CNMP have been made to mitigate, if feasible, negative air quality impacts and improve farmland safety and security.

Feature Measure: Number

Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 6,678.42$
Scenario Cost/Unit: $\$ 6,678.42$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	28	\$2,988.16
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	43	\$3,690.26

Practice: 102-Comprehensive Nutrient Management Plan
Scenario: \#471-Planning Dairy Greater than 700 AU with Land

Scenario Description:

Dairy Animal Feeding Operation (AFO) greater than 700 animal units (AU). The producer utilizes manure or organic products from the farm or may export. The operation has an animal production area, cropland, and applies most nutrients (manure and commercial fertilizers).
Before Situation:
Currently the production area and land application areas do not meet NRCS quality criteria for water quality and soil erosion. Soil tests are not current or do not exist. Manure or Organic products are not frequently tested. The production area and land application areas do not meet NRCS quality criteria for water quality and soil erosion. The owner/operator of a Dairy AFO has not received a written Comprehensive Nutrient Management Plan (CNMP) that addresses all resource concerns present on the facility production area and land waste application areas. Various levels of management and conservation implementation have occurred on the farm. Little documentation of the systems used and practices installed exists. The producer may or may not have a conservation plan or a nutrient management plan. Resource concerns on the AFO production area and land application areas remain to be addressed through the development of a complete CPA-CNMP.
After Situation:
Utilize a CNMP certified Technical Service Provider (TSP) to plan conservation practices that address the handling, storage, and application of animal waste in an environmentally safe manner. CPA-CNMP describes the conservation practice solutions to all identified resource concerns on the AFO production area and land application areas. Collection, transfer, and storage of manure and wastewater systems, mortality management facilities, as well as any rainfall or runoff diversion systems will be inventoried-evaluated and planned for adequacy according to applicable NRCS conservation practice standard technical criteria. Decisions presented within the CNMP have been made to mitigate, if feasible, negative air quality impacts and improve farmland safety and security.

Feature Measure: Number

Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 12,086.00$
Scenario Cost/Unit: $\$ 12,086.00$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	65	\$6,936.80
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	60	\$5,149.20

Practice: 106 - Forest Management Plan
Scenario: \#68-FMP Less Than or Equal to 20 acres

Scenario Description:

Nonindustrial Private Forest Land typically unmanaged or limited management activities. Typical site is approximately 1 to 20 acres in size and consists of existing unevenaged mixed species stands of harvestable trees. Natural Resource Concern: Fish and Wildlife; Soil Erosion; Soil Condition; Water Quality; Plant Condition; on Forest Land.

Before Situation:

The producer currently manages forested lands without an existing forest management plan, or with an outdated plan. Resource concerns exist which are not addressed by a management plan. A Forest Management Plan or Conservation Plan Activities (CPA), as defined by EQIP regulation, is needed to allow the producer to apply for financial assistance through EQIP or other programs to help implement needed conservation practices. Associated Practices: 472, 666, 654,655,384, 394, 383, 379, 338, 381, 391, 791, 490, 612, 660, 311, 380, 314, 315.

After Situation:
After EQIP contract approval, participant has obtained services from a certified TSP for development of the Forest Management Conservation Plan Activities (CPA). The CPA criteria requires the plan to identify approved Field Office Technical Guide conservation practices where needed to address identified resource concerns. The Forest Management CPA is not considered a Forest Harvest Plan, but should complement the needs for harvest if desired by the land user. Additional CPA plan criteria is detailed in the Field Office Technical Guide.

Feature Measure: Number

Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$1,607.21

Scenario Cost/Unit: \$1,607.21
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, forester	1302	Conservation Activity Plan labor to manage nonindustrial private forest lands for conservation, economic, and recreational purposes. Will inventory the type, amount, and location of standing timber and appraise the timber's condition. Will determine how to conserve wildlife habitats, improve water quality and soil stability, and how best to comply with environmental regulations. May devise plans for planting and growing new trees, monitoring trees for healthy growth, determining optimal thinning schedules, and increasing carbon capture and storage.	Hours	\$84.59	19	\$1,607.21

Practice: 106 - Forest Management Plan
Scenario: \#69-FMP 21 to 100 acres
Scenario Description:
Nonindustrial Private Forest Land typically unmanaged or limited management activities. Typical site is approximately 21 to 100 acres in size and consists of existing uneven-aged mixed species stands of harvestable trees. Natural Resource Concern: Fish and Wildlife; Soil Erosion; Soil Condition; Water Quality; Plant Condition; on Forest Land.

Before Situation:

The producer currently manages forested lands without an existing forest management plan, or with an outdated plan. Resource concerns exist which are not addressed by a management plan. A Forest Management Plan or Conservation Plan Activities (CPA), as defined by EQIP regulation, is needed to allow the producer to apply for financial assistance through EQIP or other programs to help implement needed conservation practices. Associated Practices: 472, 666, 654, 655,384, 394, 383, 379, 338, 381, 391, 791, 490, 612, 660, 311, 380, 314, 315.

After Situation:
After EQIP contract approval, participant has obtained services from a certified TSP for development of the Forest Management Conservation Plan Activities (CPA). The CPA criteria requires the plan to identify approved Field Office Technical Guide conservation practices where needed to address identified resource concerns. The Forest Management CPA is not considered a Forest Harvest Plan, but should complement the needs for harvest if desired by the land user. Additional CPA plan criteria is detailed in the Field Office Technical Guide.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$2,368.52
Scenario Cost/Unit: \$2,368.52

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, forester	1302	Conservation Activity Plan labor to manage nonindustrial private forest lands for conservation, economic, and recreational purposes. Will inventory the type, amount, and location of standing timber and appraise the timber's condition. Will determine how to conserve wildlife habitats, improve water quality and soil stability, and how best to comply with environmental regulations. May devise plans for planting and growing new trees, monitoring trees for healthy growth, determining optimal thinning schedules, and increasing carbon capture and storage.	Hours	\$84.59	28	\$2,368.52

Practice: 106 - Forest Management Plan
Scenario: \#70-FMP 101 to 250 acres
Scenario Description:
Nonindustrial Private Forest Land typically unmanaged or limited management activities. Typical site is approximately 101 to 250 acres in size and consists of existing uneven-aged mixed species stands of harvestable trees. Natural Resource Concern: Fish and Wildlife; Soil Erosion; Soil Condition; Water Quality; Plant Condition; on Forest Land.

Before Situation:

The producer currently manages forested lands without an existing forest management plan, or with an outdated plan. Resource concerns exist which are not addressed by a management plan. A Forest Management Plan or Conservation Plan Activities (CPA), as defined by EQIP regulation, is needed to allow the producer to apply for financial assistance through EQIP or other programs to help implement needed conservation practices. Associated Practices: 472, 666, 654, 655,384, 394, 383, 379, 338, 381, 391, 791, 490, 612, 660, 311, 380, 314, 315.

After Situation:
After EQIP contract approval, participant has obtained services from a certified TSP for development of the Forest Management Conservation Plan Activities (CPA). The CPA criteria requires the plan to identify approved Field Office Technical Guide conservation practices where needed to address identified resource concerns. The Forest Management CPA is not considered a Forest Harvest Plan, but should complement the needs for harvest if desired by the land user. Additional CPA plan criteria is detailed in the Field Office Technical Guide.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 3,891.14$
Scenario Cost/Unit: $\$ 3,891.14$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, forester	1302	Conservation Activity Plan labor to manage nonindustrial private forest lands for conservation, economic, and recreational purposes. Will inventory the type, amount, and location of standing timber and appraise the timber's condition. Will determine how to conserve wildlife habitats, improve water quality and soil stability, and how best to comply with environmental regulations. May devise plans for planting and growing new trees, monitoring trees for healthy growth, determining optimal thinning schedules, and increasing carbon capture and storage.	Hours	\$84.59	46	\$3,891.14

Practice: 106 - Forest Management Plan
Scenario: \#71-FMP Greater Than 1000 acres
Scenario Description:
Nonindustrial Private Forest Land typically unmanaged or limited management activities. Typical site is approximately 1001 acres or greater in size and consists of existing uneven-aged mixed species stands of harvestable trees. Natural Resource Concern: Fish and Wildlife; Soil Erosion; Soil Condition; Water Quality; Plant Condition; on Forest Land.

Before Situation:

The producer currently manages forested lands without an existing forest management plan, or with an outdated plan. Resource concerns exist which are not addressed by a management plan. A Forest Management Plan or Conservation Plan Activities (CPA), as defined by EQIP regulation, is needed to allow the producer to apply for financial assistance through EQIP or other programs to help implement needed conservation practices. Associated Practices: 472, 666, 654, 655,384, 394, 383, 379, 338, 381, 391, 791, 490, 612, 660, 311, 380, 314, 315.

After Situation:
After EQIP contract approval, participant has obtained services from a certified TSP for development of the Forest Management Conservation Plan Activities (CPA). The CPA criteria requires the plan to identify approved Field Office Technical Guide conservation practices where needed to address identified resource concerns. The Forest Management CPA is not considered a Forest Harvest Plan, but should complement the needs for harvest if desired by the land user. Additional CPA plan criteria is detailed in the Field Office Technical Guide.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$9,135.72

Scenario Cost/Unit: \$9,135.72
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, forester	1302	Conservation Activity Plan labor to manage nonindustrial private forest lands for conservation, economic, and recreational purposes. Will inventory the type, amount, and location of standing timber and appraise the timber's condition. Will determine how to conserve wildlife habitats, improve water quality and soil stability, and how best to comply with environmental regulations. May devise plans for planting and growing new trees, monitoring trees for healthy growth, determining optimal thinning schedules, and increasing carbon capture and storage.	Hours	\$84.59	108	\$9,135.72

Practice: 106 - Forest Management Plan
Scenario: \#72-FMP 251 to 500 acres
Scenario Description:
Nonindustrial Private Forest Land typically unmanaged or limited management activities. Typical site is approximately 251 to 500 acres in size and consists of existing uneven-aged mixed species stands of harvestable trees. Natural Resource Concern: Fish and Wildlife; Soil Erosion; Soil Condition; Water Quality; Plant Condition; on Forest Land.

Before Situation:

The producer currently manages forested lands without an existing forest management plan, or with an outdated plan. Resource concerns exist which are not addressed by a management plan. A Forest Management Plan or Conservation Plan Activities (CPA), as defined by EQIP regulation, is needed to allow the producer to apply for financial assistance through EQIP or other programs to help implement needed conservation practices. Associated Practices: 472, 666, 654, 655,384, 394, 383, 379, 338, 381, 391, 791, 490, 612, 660, 311, 380, 314, 315.

After Situation:
After EQIP contract approval, participant has obtained services from a certified TSP for development of the Forest Management Conservation Activity Plan (CPA). The CPA requires the plan to identify approved Field Office Technical Guide conservation practices where needed to address identified resource concerns. The Forest Management CPA is not considered a Forest Harvest Plan, but should complement the needs for harvest if desired by the land user. Additional CPA plan requirements are detailed in the Field Office Technical Guide.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$5,752.12

Scenario Cost/Unit: \$5,752.12
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, forester	1302	Conservation Activity Plan labor to manage nonindustrial private forest lands for conservation, economic, and recreational purposes. Will inventory the type, amount, and location of standing timber and appraise the timber's condition. Will determine how to conserve wildlife habitats, improve water quality and soil stability, and how best to comply with environmental regulations. May devise plans for planting and growing new trees, monitoring trees for healthy growth, determining optimal thinning schedules, and increasing carbon capture and storage.	Hours	\$84.59	68	\$5,752.12

Practice: 106 - Forest Management Plan
Scenario: \#73-FMP 501 to 1000 acres
Scenario Description:
Nonindustrial Private Forest Land typically unmanaged or limited management activities. Typical site is approximately 501 to 1000 acres in size and consists of existing uneven-aged mixed species stands of harvestable trees. Natural Resource Concern: Fish and Wildlife; Soil Erosion; Soil Condition; Water Quality; Plant Condition; on Forest Land.

Before Situation:

The producer currently manages forested lands without an existing forest management plan, or with an outdated plan. Resource concerns exist which are not addressed by a management plan. A Forest Management Plan or Conservation Plan Activities (CPA), as defined by EQIP regulation, is needed to allow the producer to apply for financial assistance through EQIP or other programs to help implement needed conservation practices. Associated Practices: 472, 666, 654, 655,384, 394, 383, 379, 338, 381, 391, 791, 490, 612, 660, 311, 380, 314, 315.

After Situation:
After EQIP contract approval, participant has obtained services from a certified TSP for development of the Forest Management Conservation Plan Activities (CPA). The CPA criteria requires the plan to identify approved Field Office Technical Guide conservation practices where needed to address identified resource concerns. The Forest Management CPA is not considered a Forest Harvest Plan, but should complement the needs for harvest if desired by the land user. Additional CPA plan criteria is detailed in the Field Office Technical Guide.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$7,020.97

Scenario Cost/Unit: \$7,020.97
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, forester	1302	Conservation Activity Plan labor to manage nonindustrial private forest	Hours	\$84.59	83	\$7,020.97

Practice: 110-Grazing Management Plan
Scenario: \#79-Conservation Plan for Grazed Lands 101 to 500 acres

Scenario Description:

Site specific conservation plan for grazed lands for an agricultural operation with 101 to 500 acres grazed land. Natural Resource Concern: Soil erosion, water quality, fish and wildlife, plant condition, and all other appropriate resource concerns.

Before Situation:
Producer has no plan or limited knowledge of management of livestock or other animals on grazed land resources. The producer currently manages animals without a plan to address identified natural resource concerns. Producer is interested in management of animals to maximize profit margins, reduce costs, improve or address wildlife opportunities, and for other environmental benefit. Producer is willing to collaborate with a certified TSP to develop a plan and idenify problems and opportunities, determine objectives, inventory resources, analyze resource data, formulate alternatives, evaluate alternatives, and make decisions to meet objectives.

After Situation:						
After EQIP contract approval, participant has obtained services from a certified TSP for development of the Conservation Planning Activity (CPA) plan for grazing lands. The CPA requires the plan to meet the General Requirements (steps 1-7) of the planning process. Step 1-Identify Problems and Opportunities, Step 2- Determine Objectives, Step 3-Inventory Resources, Step 4-Analyze Resource Data, Step 5-Formulate Alternatives, Step 6-Evaluate Alternatives, and Step 7-Make Decisions (Select Preferrred Alternative).						
Feature Measure: 1						
Scenario Unit: Number						
Scenario Typical Size: 1.00						
Scenario Total Cost:	\$3,136.20					
Scenario Cost/Unit:	\$3,136.20					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, range conservation	1299	Conservation Activity Plan labor to study, plan the use and management of rangelands to maximize their use in a sustainable manner. Range managers may inventory soils, plants, and animals; develop resource management plans; identify monitoring methods and collect data using those methods to determine if resource management objectives are being met or if adjustments to management activities are needed. For example, they may help ranchers attain optimum livestock production by determining the number and kind of animals to graze, the grazing system to use, and the best season for grazing. Cost associated with this component includes overhead and benefits (market price).	Hours	\$104.54	30	\$3,136.20

Practice: 110-Grazing Management Plan
Scenario: \#95 - Conservation Plan for Grazed Lands <100 acres.

Scenario Description:

Site specific conservation plan for agricultural operation with less than 100 acres grazed land. The plan will address the following natural resource concerns: soil erosion, water quality, fish and wildlife, plant condition, and all other appropriate resource concerns.

Before Situation

Producer has no plan or limited knowledge of management of livestock or other animals on grazed land resources. The producer currently manages animals without a plan to address identified natural resource concerns. Producer is interested in management of animals to maximize profit margins, reduce costs, improve or address wildlife opportunities, and for other environmental benefit. Producer is willing to collaborate with a certified TSP to develop a plan and identify problems and opportunities, determine objectives, inventory resources, analyze resource data, formulate alternatives, evaluate alternatives, and make decisions to meet objectives.

After Situation:

After EQIP contract approval, participant has obtained services from a certified TSP for development of the Conservation Planning Activity (CPA) plan for grazing lands. The CPA requires the plan to meet the General Requirements (steps 1-7) of the planning process. Step 1- Identify Problems and Opportunities, Step 2- Determine Objectives, Step 3-Inventory Resources, Step 4-Analyze Resource Data, Step 5-Formulate Alternatives, Step 6-Evaluate Alternatives, and Step 7-Make Decisions (Select Preferred Alternative). The plan may include recommendations for associated conservation practices which address other related resource concerns. The CPA meets the basic quality criteria for the CPA 110 plan as cited in the NRCS Field Office Technical Guide.

Feature Measure: 1
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$2,508.96
Scenario Cost/Unit: \$2,508.96

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, range conservation	1299	Conservation Activity Plan labor to study, plan the use and	Hours	\$104.54	24	\$2,508.96

management of rangelands to maximize their use in a sustainable manner. Range managers may inventory soils, plants, and animals; develop resource management plans; identify monitoring methods and collect data using those methods to determine if resource management objectives are being met or if adjustments to management activities are needed. For example, they may help ranchers attain optimum livestock production by determining the number and kind of animals to graze, the grazing system to use, and the best season for grazing. Cost associated with this component includes overhead and benefits (market price).

Practice: 110-Grazing Management Plan
Scenario: \#111 - Conservation Plan for Grazed Lands 501 to 1,500 acres

Scenario Description:

Site specific conservation plan for grazed lands for an agricultural operation with 501 to 1,500 acres of grazed land. The plan will address the following natural resource concerns: soil erosion, water quality, fish and wildlife, plant condition and all other appropriate resource concerns.

Before Situation:
Producer has no plan or limited knowledge of management of livestock or other animals on grazed land resources. The producer currently manages animals without a plan to address identified natural resource concerns. Producer is interested in management of animals to maximize profit margins, reduce costs, improve or address wildlife opportunities, and for other environmental benefit. Producer is willing to collaborate with a certified TSP to develop a plan and idenify problems and opportunities, determine objectives, inventory resources, analyze resource data, formulate alternatives, evaluate alternatives, and make decisions to meet objectives.

After Situation:

After EQIP contract approval, participant has obtained services from a certified TSP for development of the Conservation Planning Activity (CPA) plan for grazing lands. The CPA requires the plan to meet the General Requirements (steps 1-7) of the planning process. Step 1- Identify Problems and Opportunities, Step 2- Determine Objectives, Step 3-Inventory Resources, Step 4-Analyze Resource Data, Step 5-Formulate Alternatives, Step 6-Evaluate Alternatives, and Step 7-Make Decisions (Select Preferrred Alternative). The plan may include recommendations for associated conservation practices which address other related resource concerns. The CPA meets the basic quality criteria for the CPA 110 plan as cited in the NRCS Field Office Technical Guide.

Feature Measure: 1
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 3,763.44$
Scenario Cost/Unit: \$3,763.44

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, range conservation	1299	Conservation Activity Plan labor to study, plan the use and	Hours	\$104.54	36	\$3,763.44

management of rangelands to maximize their use in a sustainable manner. Range managers may inventory soils, plants, and animals; develop resource management plans; identify monitoring methods and collect data using those methods to determine if resource management objectives are being met or if adjustments to management activities are needed. For example, they may help ranchers attain optimum livestock production by determining the number and kind of animals to graze, the grazing system to use, and the best season for grazing. Cost associated with this component includes overhead and benefits (market price).

Practice: 110-Grazing Management Plan
Scenario: \#127 - Conservation Plan for Grazed Lands 1,501 to 5,000 acres

Scenario Description:

Site specific conservation plan for grazed lands for an agricultural operation with 1,501 to 5,000 acres grazed land. The following natural resource concerns will be addressed: soil erosion, water quality, fish and wildlife, plant condition, and all other appropriate resource concerns.

Before Situation:

Producer has no plan or limited knowledge of management of livestock or other animals on grazed land resources. The producer currently manages animals without a plan to address identified natural resource concerns. Producer is interested in management of animals to maximize profit margins, reduce costs, improve or address wildlife opportunities, and for other environmental benefit. Producer is willing to collaborate with a certified TSP to develop a plan and idenify problems and opportunities, determine objectives, inventory resources, analyze resource data, formulate alternatives, evaluate alternatives, and make decisions to meet objectives.

After Situation:

After EQIP contract approval, participant has obtained services from a certified TSP for development of the Conservation Planning Activity (CPA) plan for grazing lands. The CPA requires the plan to meet the General Requirements (steps 1-7) of the planning process. Step 1- Identify Problems and Opportunities, Step 2- Determine Objectives, Step 3-Inventory Resources, Step 4-Analyze Resource Data, Step 5-Formulate Alternatives, Step 6-Evaluate Alternatives, and Step 7-Make Decisions (Select Preferrred Alternative). The plan may include recommendations for associated conservation practices which address other related resource concerns. The CPA meets the basic quality criteria for the CPA 110 plan as cited in the NRCS Field Office Technical Guide.

Feature Measure: 1
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 4,390.68$
Scenario Cost/Unit: \$4,390.68

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, range conservation	1299	Conservation Activity Plan labor to study, plan the use and	Hours	\$104.54	42	\$4,390.68

management of rangelands to maximize their use in a sustainable manner. Range managers may inventory soils, plants, and animals; develop resource management plans; identify monitoring methods and collect data using those methods to determine if resource management objectives are being met or if adjustments to management activities are needed. For example, they may help ranchers attain optimum livestock production by determining the number and kind of animals to graze, the grazing system to use, and the best season for grazing. Cost associated with this component includes overhead and benefits (market price).

Practice: 110-Grazing Management Plan
Scenario: \#143-Conservation Plan for Grazed Lands 5,001 to 10,000 acres

Scenario Description:

Site specific conservation plan for grazed lands for an agricultural operation with 5,001 to 10,000 acres grazed land. The following natural resource concerns will be addressed: soil erosion, water quality, fish and wildlife, plant condition, and all other appropriate resource concerns.

Before Situation:

Producer has no plan or limited knowledge of management of livestock or other animals on grazed land resources. The producer currently manages animals without a plan to address identified natural resource concerns. Producer is interested in management of animals to maximize profit margins, reduce costs, improve or address wildlife opportunities, and for other environmental benefit. Producer is willing to collaborate with a certified TSP to develop a plan and idenify problems and opportunities, determine objectives, inventory resources, analyze resource data, formulate alternatives, evaluate alternatives, and make decisions to meet objectives.

After Situation:

After EQIP contract approval, participant has obtained services from a certified TSP for development of the Conservation Planning Activity (CPA) plan for grazing lands. The CPA requires the plan to meet the General Requirements (steps 1-7) of the planning process. Step 1- Identify Problems and Opportunities, Step 2- Determine Objectives, Step 3-Inventory Resources, Step 4-Analyze Resource Data, Step 5-Formulate Alternatives, Step 6-Evaluate Alternatives, and Step 7-Make Decisions (Select Preferrred Alternative). The plan may include recommendations for associated conservation practices which address other related resource concerns. The CPA meets the basic quality criteria for the CPA 110 plan as cited in the NRCS Field Office Technical Guide.

Feature Measure: 1
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$5,017.92
Scenario Cost/Unit: \$5,017.92

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, range conservation	1299	Conservation Activity Plan labor to study, plan the use and	Hours	\$104.54	48	\$5,017.92

management of rangelands to maximize their use in a sustainable manner. Range managers may inventory soils, plants, and animals; develop resource management plans; identify monitoring methods and collect data using those methods to determine if resource management objectives are being met or if adjustments to management activities are needed. For example, they may help ranchers attain optimum livestock production by determining the number and kind of animals to graze, the grazing system to use, and the best season for grazing. Cost associated with this component includes overhead and benefits (market price).

Practice: 110-Grazing Management Plan
Scenario: \#159 - Conservation Plan for Grazed Lands >10,000 acres

Scenario Description:

Site specific conservation plan for grazed lands for an agricultural operation with greater than 10,000 acres grazed land. The following natural resource concerns will be addressed: soil erosion, water quality, fish and wildlife, plant condition, and all other appropriate resource concerns.

Before Situation:

Producer has no plan or limited knowledge of management of livestock or other animals on grazed land resources. The producer currently manages animals without a plan to address identified natural resource concerns. Producer is interested in management of animals to maximize profit margins, reduce costs, improve or address wildlife opportunities, and for other environmental benefit. Producer is willing to collaborate with a certified TSP to develop a plan and identify problems and opportunities, determine objectives, inventory resources, analyze resource data, formulate alternatives, evaluate alternatives, and make decisions to meet objectives.

After Situation:

After EQIP contract approval, participant has obtained services from a certified TSP for development of the Conservation Planning Activity (CPA) plan for grazing lands. The CPA requires the plan to meet the General Requirements (steps 1-7) of the planning process. Step 1- Identify Problems and Opportunities, Step 2- Determine Objectives, Step 3-Inventory Resources, Step 4-Analyze Resource Data, Step 5-Formulate Alternatives, Step 6-Evaluate Alternatives, and Step 7-Make Decisions (Select Preferred Alternative). The plan may include recommendations for associated conservation practices which address other related resource concerns. The CPA meets the basic quality criteria for the CPA 110 plan as cited in the NRCS Field Office Technical Guide.

Feature Measure: 1
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 5,645.16$
Scenario Cost/Unit: \$5,645.16

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, range conservation	1299	Conservation Activity Plan labor to study, plan the use and	Hours	\$104.54	54	\$5,645.16

management of rangelands to maximize their use in a sustainable manner. Range managers may inventory soils, plants, and animals; develop resource management plans; identify monitoring methods and collect data using those methods to determine if resource management objectives are being met or if adjustments to management activities are needed. For example, they may help ranchers attain optimum livestock production by determining the number and kind of animals to graze, the grazing system to use, and the best season for grazing. Cost associated with this component includes overhead and benefits (market price).

Practice: 116-Soil Health Management Plan

Scenario: \#93-Organic Crops + Livestock, <5

Scenario Description:

Evaluate soil health concerns and develop a transitional cropping management plan to improve overall soil health and address all 4 soil health principles. The plan includes management activities or land management practices associated with crop and forage production. The soil health management plan ensures that the purposes of crop and forage production and preservation of natural resources related to soil health are compatible. May simultaneously implement 216 Soil Health Testing CEMA to evaluate baseline soil health and inventory basic or additional soil health indicators. The plan is developed for fewer than 5 Soil Health Management Units (SHMU) for organic crops and livestock. A SHMU is 1 or more planning land units with similar soil type, land use, and management. A SHMU can vary in size or acreage depending on soil texture, topography, and cropping system.

Before Situation:

The producer currently manages without an existing soil health management plan, or with an outdated plan. Resource concerns exist which are not addressed by a management plan.

After Situation:

After EQIP contract approval, participant has obtained services from a certified TSP for development of a Soil Health Conservation Plan Activity (CPA). The CPA criteria requires the plan to identify approved Field Office Technical Guide conservation practices where needed to address identified resource concerns.

Feature Measure: Number

Scenario Unit: Number

Scenario Typical Size: 1.00
Scenario Total Cost: \$2,917.88
Scenario Cost/Unit: \$2,917.88
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect	Hours	\$85.82	34	\$2,917.88

Practice: 116-Soil Health Management Plan

Scenario: \#109- Organic Crops, 5 or more

Scenario Description:

Evaluate soil health concerns and develop a transitional cropping management plan to improve overall soil health and address all 4 soil health principles. The plan includes management activities or land management practices associated with crop and forage production. The soil health management plan ensures that the purposes of crop and forage production and preservation of natural resources related to soil health are compatible. May simultaneously implement 216 Soil Health Testing CEMA to evaluate baseline soil health and inventory basic or additional soil health indicators. The plan is developed for 5 or more Soil Health Management Units (SHMU) for organic crops. A SHMU is 1 or more planning land units with similar soil type, land use, and management. A SHMU can vary in size or acreage depending on soil texture, topography, and cropping system.

Before Situation:

The producer currently manages without an existing soil health management plan, or with an outdated plan. Resource concerns exist which are not addressed by a management plan.

After Situation:

After EQIP contract approval, participant has obtained services from a certified TSP for development of a Soil Health Conservation Plan Activity (CPA). The CPA criteria requires the plan to identify approved Field Office Technical Guide conservation practices where needed to address identified resource concerns.

Feature Measure: Number

Scenario Unit: Number

Scenario Typical Size: 1.00
Scenario Total Cost: \$2,746.24
Scenario Cost/Unit: \$2,746.24

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect	Hours	\$85.82	32	\$2,746.24

Practice: 116-Soil Health Management Plan
Scenario: \#125-Small Farm

Scenario Description:

Evaluate soil health concerns and develop a transitional cropping management plan to improve overall soil health and address all 4 soil health principles. The plan includes management activities or land management practices associated with crop and forage production. The soil health management plan ensures that the purposes of crop and forage production and preservation of natural resources related to soil health are compatible. May simultaneously implement 216 Soil Health Testing CEMA to evaluate baseline soil health and inventory basic or additional soil health indicators. The plan is developed for a small farm (<10 acres).

Before Situation:
The producer currently manages without an existing soil health management plan, or with an outdated plan. Resource concerns exist which are not addressed by a management plan.

After Situation:
After EQIP contract approval, participant has obtained services from a certified TSP for development of a Soil Health Conservation Plan Activity (CPA). The CPA criteria requires the plan to identify approved Field Office Technical Guide conservation practices where needed to address identified resource concerns.

Feature Measure: Number

Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\quad \$ 1,716.40$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	20	\$1,716.40

Practice: 116-Soil Health Management Plan
Scenario: \#141- Organic Crops + Livestock, 5 or more

Scenario Description:

Evaluate soil health concerns and develop a transitional cropping management plan to improve overall soil health and address all 4 soil health principles. The plan includes management activities or land management practices associated with crop and forage production. The soil health management plan ensures that the purposes of crop and forage production and preservation of natural resources related to soil health are compatible. May simultaneously implement 216 Soil Health Testing CEMA to evaluate baseline soil health and inventory basic or additional soil health indicators. The plan is developed for 5 or more Soil Health Management Units (SHMU) for organic crops and livestock. A SHMU is 1 or more planning land units with similar soil type, land use, and management. A SHMU can vary in size or acreage depending on soil texture, topography, and cropping system.

Before Situation:
The producer currently manages without an existing soil health management plan, or with an outdated plan. Resource concerns exist which are not addressed by a management plan.

After Situation:
After EQIP contract approval, participant has obtained services from a certified TSP for development of a Soil Health Conservation Plan Activity (CPA). The CPA criteria requires the plan to identify approved Field Office Technical Guide conservation practices where needed to address identified resource concerns.

Feature Measure: Number

Scenario Unit: Number

Scenario Typical Size: 1.00
Scenario Total Cost: \$3,089.52

Scenario Cost/Unit: $\$ 3,089.52$
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect	Hours	\$85.82	36	\$3,089.52

Practice: 116-Soil Health Management Plan

Scenario: \#157-Crops+Livestock, 5 or more

Scenario Description:

Evaluate soil health concerns and develop a transitional cropping management plan to improve overall soil health and address all 4 soil health principles. The plan includes management activities or land management practices associated with crop and forage production. The soil health management plan ensures that the purposes of crop and forage production and preservation of natural resources related to soil health are compatible. May simultaneously implement 216 Soil Health Testing CEMA to evaluate baseline soil health and inventory basic or additional soil health indicators. The plan is developed for 5 or more Soil Health Management Units (SHMU) for crops and livestock. A SHMU is 1 or more planning land units with similar soil type, land use, and management. A SHMU can vary in size or acreage depending on soil texture, topography, and cropping system.

Before Situation:

The producer currently manages without an existing soil health management plan, or with an outdated plan. Resource concerns exist which are not addressed by a management plan.

After Situation:

After EQIP contract approval, participant has obtained services from a certified TSP for development of a Soil Health Conservation Plan Activity (CPA). The CPA criteria requires the plan to identify approved Field Office Technical Guide conservation practices where needed to address identified resource concerns.

Feature Measure: Number

Scenario Unit: Number

Scenario Typical Size: 1.00
Scenario Total Cost: \$2,574.60

Scenario Cost/Unit: \$2,574.60
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect	Hours	\$85.82	30	\$2,574.60

Practice: 116-Soil Health Management Plan

Scenario: \#173-Crops+Livestock, <5

Scenario Description:

Evaluate soil health concerns and develop a transitional cropping management plan to improve overall soil health and address all 4 soil health principles. The plan includes management activities or land management practices associated with crop and forage production. The soil health management plan ensures that the purposes of crop and forage production and preservation of natural resources related to soil health are compatible. May simultaneously implement 216 Soil Health Testing CEMA to evaluate baseline soil health and inventory basic or additional soil health indicators. The plan is developed for fewer than 5 Soil Health Management Units (SHMU) for crops and livestock. A SHMU is 1 or more planning land units with similar soil type, land use, and management. A SHMU can vary in size or acreage depending on soil texture, topography, and cropping system.

Before Situation:

The producer currently manages without an existing soil health management plan, or with an outdated plan. Resource concerns exist which are not addressed by a management plan.

After Situation:

After EQIP contract approval, participant has obtained services from a certified TSP for development of a Soil Health Conservation Plan Activity (CPA). The CPA criteria requires the plan to identify approved Field Office Technical Guide conservation practices where needed to address identified resource concerns.

Feature Measure: Number

Scenario Unit: Number

Scenario Typical Size: 1.00
Scenario Total Cost: \$2,059.68
Scenario Cost/Unit: \$2,059.68
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect	Hours	\$85.82	24	\$2,059.68

Practice: 116-Soil Health Management Plan

Scenario: \#189- Organic Crops, <5

Scenario Description:

Evaluate soil health concerns and develop a transitional cropping management plan to improve overall soil health and address all 4 soil health principles. The plan includes management activities or land management practices associated with crop and forage production. The soil health management plan ensures that the purposes of crop and forage production and preservation of natural resources related to soil health are compatible. May simultaneously implement 216 Soil Health Testing CEMA to evaluate baseline soil health and inventory basic or additional soil health indicators. The plan is developed for fewer than 5 Soil Health Management Units (SHMU) for organic crops. A SHMU is 1 or more planning land units with similar soil type, land use, and management. A SHMU can vary in size or acreage depending on soil texture, topography, and cropping system.

Before Situation:

The producer currently manages without an existing soil health management plan, or with an outdated plan. Resource concerns exist which are not addressed by a management plan.

After Situation:

After EQIP contract approval, participant has obtained services from a certified TSP for development of a Soil Health Conservation Plan Activity (CPA). The CPA criteria requires the plan to identify approved Field Office Technical Guide conservation practices where needed to address identified resource concerns.

Feature Measure: Number

Scenario Unit: Number

Scenario Typical Size: 1.00
Scenario Total Cost: \$2,231.32

Scenario Cost/Unit: \$2,231.32
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect	Hours	\$85.82	26	\$2,231.32

Practice: 116-Soil Health Management Plan

Scenario: \#205-Crops, 5 or more

Scenario Description:

Evaluate soil health concerns and develop a transitional cropping management plan to improve overall soil health and address all 4 soil health principles. The plan includes management activities or land management practices associated with crop and forage production. The soil health management plan ensures that the purposes of crop and forage production and preservation of natural resources related to soil health are compatible. May simultaneously implement 216 Soil Health Testing CEMA to evaluate baseline soil health and inventory basic or additional soil health indicators. The plan is developed for 5 or more Soil Health Management Units (SHMU) for crops. A SHMU is 1 or more planning land units with similar soil type, land use, and management. A SHMU can vary in size or acreage depending on soil texture, topography, and cropping system.

Before Situation:

The producer currently manages without an existing soil health management plan, or with an outdated plan. Resource concerns exist which are not addressed by a management plan.

After Situation:

After EQIP contract approval, participant has obtained services from a certified TSP for development of a Soil Health Conservation Plan Activity (CPA). The CPA criteria requires the plan to identify approved Field Office Technical Guide conservation practices where needed to address identified resource concerns.

Feature Measure: Number

Scenario Unit: Number

Scenario Typical Size: 1.00
Scenario Total Cost: \$2,402.96
Scenario Cost/Unit: \$2,402.96

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect	Hours	\$85.82	28	\$2,402.96

Practice: 116-Soil Health Management Plan

Scenario: \#221-Crops, <5

Scenario Description:

Evaluate soil health concerns and develop a transitional cropping management plan to improve overall soil health and address all 4 soil health principles. The plan includes management activities or land management practices associated with crop and forage production. The soil health management plan ensures that the purposes of crop and forage production and preservation of natural resources related to soil health are compatible. May simultaneously implement 216 Soil Health Testing CEMA to evaluate baseline soil health and inventory basic or additional soil health indicators. The plan is developed for fewer than 5 Soil Health Management Units (SHMU) for crops. A SHMU is 1 or more planning land units with similar soil type, land use, and management. A SHMU can vary in size or acreage depending on soil texture, topography, and cropping system.

Before Situation:

The producer currently manages without an existing soil health management plan, or with an outdated plan. Resource concerns exist which are not addressed by a management plan.

After Situation:

After EQIP contract approval, participant has obtained services from a certified TSP for development of a Soil Health Conservation Plan Activity (CPA). The CPA criteria requires the plan to identify approved Field Office Technical Guide conservation practices where needed to address identified resource concerns.

Feature Measure: Number

Scenario Unit: Number

Scenario Typical Size: 1.00
Scenario Total Cost: \$1,888.04
Scenario Cost/Unit: \$1,888.04

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect	Hours	\$85.82	22	\$1,888.04

Practice: 120-Agricultural Energy Design
Scenario: \#13-High Complexity, 6+ Designs

Scenario Description:

An agricultural producer wishes to conserve energy through an EQIP contract with multiple energy practice scenarios. Associated scenario(s) provide for retrofits that impose several variables in the design process. The scenarios may involve a change in service levels that cannot be evaluated or designed through use of simple tools or manual calculations. Four factors typically indicate a ???High Complexity??? system, as follows. 1) Client objectives require a change of output (hp, Btu/hr, lux, etc.) that varies more than about 30% from old devices. 2) System constraints prevent new devices from being installed in the same location as the old devices. 3) The retrofit requires substantive changes to two or more of the electrical, mechanical, plumbing, or structural systems. 4) Complex analysis to evaluate alternatives is required to confirm level of service and appropriate device output, placement, etc. (For example, a detailed simulation is required to determine systems sizing and layout.) ???High Complexity??? practice scenarios include but are not limited to: comprehensive lighting system redesign; radiant heating systems; convert to tunnel ventilation; or convert to bench heating. Each ???Design??? indicates that new devices or components are closely related to other devices or components even if numerous scenarios are contracted. If more than five practices are contracted, then, at a minimum, ???6+ Designs??? shall be contracted for the Ag Energy DIA. Use this scenario if at least one design is deemed high complexity. The Ag Energy DIA includes reviewing, and, when needed, revising alternatives to address energy concerns. The Ag Energy DIA documents: a) the client???s final decisions related to the associated energy practice scenarios, b) estimated energy and greenhouse gas benefits; and c) design deliverables described in the associated NRCS Conservation Practice Statements of Work. Natural Resource Concern: Energy Efficiency of Equipment and Facilities.

Before Situation:
Producer wants to transition their agricultural operation to become more energy efficient. Producer intends to work with a certified TSP to develop designs to implement one or more practice scenarios to address Energy Efficiency resource concerns using the Ag Energy DIA. The DIA 120 criteria incorporates recommended measures to increase energy conservation and efficiency. Associated Practices: 374 Farmstead Energy Improvement, 670 Energy Efficient Lighting System, 672 Energy Efficient Building Envelope, 533 Pumping Plant, or other applicable practices in the NRCS Field Office Technical Guide.

After Situation:

The producer has obtained services from a certified TSP to develop practice scenario designs using the Ag Energy DIA. The DIA 120 criteria include tasks needed to document the client???s decision, energy savings and design of conservation practices which address energy efficiency. The Ag Energy DIA meets the quality criteria for the DIA 120 activity as cited in the NRCS Field Office Technical Guide.

Feature Measure: Number

Scenario Unit: Number

Scenario Typical Size: 1.00

Scenario Total Cost:	\$11,048.97					
Scenario Cost/Unit:	\$11,048.97					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	78	\$8,324.16
CAP Labor, Manager	1603	Conservation Activity Plan labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$51.35	15	\$770.25
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	6	\$205.20
CAP Labor, Energy Auditor	1740	Conservation Activity Plan labor involving analyzing energy efficient measures and conducting energy audits of industrial areas and facilities.	Hours	\$72.89	24	\$1,749.36

Practice: 120-Agricultural Energy Design
Scenario: \#29-Medium Complexity, 6+ Designs

Scenario Description:

An agricultural producer wishes to conserve energy through an EQIP contract with multiple energy practice scenarios. Associated scenario(s) provide for retrofits that impose some variables in the design process. The scenarios may involve a change in service levels that can be evaluated or designed through use of simple tools or manual calculations. Four factors typically indicate a ???Medium Complexity??? system, as follows. 1) Client objectives require a change of output (hp, Btu/hr, lux, etc.) that varies more than about 10% from old devices. 2) System constraints prevent new devices from being installed in the same location as the old devices. 3) The retrofit requires substantive changes to either electrical, mechanical, plumbing, or structural systems. 4) Analysis beyond the scope of NRCS methodology to evaluate alternatives is required to confirm level of service and appropriate device output, placement, etc. (For example, a simplified heat transfer model to determine heating, ventilation, and cooling loads may be required if existing device capacity cannot be estimated.) ???Medium Complexity??? practice scenarios include but are not limited to: change of lighting fixture counts or layout; wall insulation; grain dryers; add reverse osmosis to syrup production; or add evaporative cooling systems (cooling cells). Each ???Design??? indicates that new devices or components are closely related to other devices or components even if numerous scenarios are contracted. If more than five practices are contracted, then, at a minimum, ???6+ Designs??? shall be contracted for the Ag Energy DIA. If at least 1 scenario is more complex than indicated herein, use an alternate scenario for contracting. The Ag Energy DIA includes reviewing, and, when needed, revising alternatives to address energy concerns. The Ag Energy DIA documents: a) the client???s final decisions related to the associated energy practice scenarios, b) estimated energy and greenhouse gas benefits; and c) design deliverables described in the associated NRCS Conservation Practice Statements of Work. Natural Resource Concern: Energy Efficiency of Equipment and Facilities.

Before Situation:
Producer wants to transition their agricultural operation to become more energy efficient. Producer intends to work with a certified TSP to develop designs to implement one or more practice scenarios to address Energy Efficiency resource concerns using the Ag Energy DIA. The DIA 120 criteria incorporates recommended measures to increase energy conservation and efficiency. Associated Practices: 374 Farmstead Energy Improvement, 670 Energy Efficient Lighting System, 672 Energy Efficient Building Envelope, 533 Pumping Plant, or other applicable practices in the NRCS Field Office Technical Guide.

After Situation:
The producer has obtained services from a certified TSP to develop practice scenario designs using the Ag Energy DIA. The DIA 120 criteria include tasks needed to document the client???s decision, energy savings and design of conservation practices which address energy efficiency. The Ag Energy DIA meets the quality criteria for the DIA 120 activity as cited in the NRCS Field Office Technical Guide.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 9,537.00$
Scenario Cost/Unit: $\$ 9,537.00$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	66	\$7,043.52
CAP Labor, Manager	1603	Conservation Activity Plan labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$51.35	14	\$718.90
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	5	\$171.00
CAP Labor, Energy Auditor	1740	Conservation Activity Plan labor involving analyzing energy efficient measures and conducting energy audits of industrial areas and facilities.	Hours	\$72.89	22	\$1,603.58

Practice: 120-Agricultural Energy Design

Scenario: \#45-Low Complexity, 6+ Designs

Scenario Description:

An agricultural producer wishes to conserve energy through an EQIP contract with multiple energy practice scenarios. Associated scenario(s) provide for one-to-one device retrofits. The scenario(s) may provide for a new component to modify the operation of an existing device (e.g., timer to reduce run-time). Three factors typically indicate a ???Low Complexity??? system, as follows. 1) New devices maintain output (hp, Btu/hr, lux, etc.) of the old devices within a roughly 10% range. 2) New devices are installed in the same location as the old devices. 3) The retrofit does not require substantive changes to electrical, mechanical, plumbing, or structural systems. ???Low Complexity??? practice scenarios include but are not limited to: lamp or fixture upgrades; attic insulation; fans; or washer-extractors. Each ???Design??? indicates that new devices or components are closely related to other devices or components even if numerous scenarios are contracted. If more than five practices are contracted, then, at a minimum, ???6+ Designs??? shall be contracted for the Ag Energy DIA. If at least 1 scenario is more complex than indicated herein, use an alternate scenario for contracting. The Ag Energy DIA includes reviewing, and, when needed, revising alternatives to address energy concerns. The Ag Energy DIA documents: a) the client???s final decisions related to the associated energy practice scenarios, b) estimated energy and greenhouse gas; and c) design deliverables described in the associated NRCS Conservation Practice Statements of Work. Natural Resource Concern: Energy Efficiency of Equipment and Facilities.

Before Situation:

Producer wants to transition their agricultural operation to become more energy efficient. Producer intends to work with a certified TSP to develop designs to implement one or more practice scenarios to address Energy Efficiency resource concerns using the Ag Energy DIA. The DIA 120 criteria incorporates recommended measures to increase energy conservation and efficiency. Associated Practices: 374 Farmstead Energy Improvement, 670 Energy Efficient Lighting System, 672 Energy Efficient Building Envelope, 533 Pumping Plant, or other applicable practices in the NRCS Field Office Technical Guide.

After Situation:

The producer has obtained services from a certified TSP to develop practice scenario designs using the Ag Energy DIA. The DIA 120 criteria include tasks needed to document the client???s decision, energy savings and design of conservation practices which address energy efficiency. The Ag Energy DIA meets the quality criteria for the DIA 120 activity as cited in the NRCS Field Office Technical Guide.

Feature Measure: Number

Scenario Unit: Number

Scenario Typical Size: 1.00

Scenario Total Cost:	\$8,025.03					
Scenario Cost/Unit:	\$8,025.03					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	54	\$5,762.88
CAP Labor, Manager	1603	Conservation Activity Plan labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$51.35	13	\$667.55
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	4	\$136.80
CAP Labor, Energy Auditor	1740	Conservation Activity Plan labor involving analyzing energy efficient measures and conducting energy audits of industrial areas and facilities.	Hours	\$72.89	20	\$1,457.80

Practice: 120-Agricultural Energy Design
Scenario: \#61-High Complexity, 4-5 Designs

Scenario Description:

An agricultural producer wishes to conserve energy through an EQIP contract with multiple energy practice scenarios. Associated scenario(s) provide for retrofits that impose several variables in the design process. The scenarios may involve a change in service levels that cannot be evaluated or designed through use of simple tools or manual calculations. Four factors typically indicate a ???High Complexity??? system, as follows. 1) Client objectives require a change of output (hp, Btu/hr, lux, etc.) that varies more than about 30% from old devices. 2) System constraints prevent new devices from being installed in the same location as the old devices. 3) The retrofit requires substantive changes to two or more of the electrical, mechanical, plumbing, or structural systems. 4) Complex analysis to evaluate alternatives is required to confirm level of service and appropriate device output, placement, etc. (For example, a detailed simulation is required to determine systems sizing and layout.) ???High Complexity??? practice scenarios include but are not limited to: comprehensive lighting system redesign; radiant heating systems; convert to tunnel ventilation; or convert to bench heating. Each ???Design??? indicates that new devices or components are closely related to other devices or components even if numerous scenarios are contracted. If more than three practices are contracted, then, at a minimum, ???4-5 Designs??? shall be contracted for the Ag Energy DIA. Use this scenario if at least one design is deemed high complexity. The Ag Energy DIA includes reviewing, and, when needed, revising alternatives to address energy concerns. The Ag Energy DIA documents: a) the client???s final decisions related to the associated energy practice scenarios, b) estimated energy and greenhouse gas benefits; and c) design deliverables described in the associated NRCS Conservation Practice Statements of Work. Natural Resource Concern: Energy Efficiency of Equipment and Facilities.

Before Situation:
Producer wants to transition their agricultural operation to become more energy efficient. Producer intends to work with a certified TSP to develop designs to implement one or more practice scenarios to address Energy Efficiency resource concerns using the Ag Energy DIA. The DIA 120 criteria incorporates recommended measures to increase energy conservation and efficiency. Associated Practices: 374 Farmstead Energy Improvement, 670 Energy Efficient Lighting System, 672 Energy Efficient Building Envelope, 533 Pumping Plant, or other applicable practices in the NRCS Field Office Technical Guide.

After Situation:

The producer has obtained services from a certified TSP to develop practice scenario designs using the Ag Energy DIA. The DIA 120 criteria include tasks needed to document the client???s decision, energy savings and design of conservation practices which address energy efficiency. The Ag Energy DIA meets the quality criteria for the DIA 120 activity as cited in the NRCS Field Office Technical Guide.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$9,391.22
Scenario Cost/Unit: \$9,391.22
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	66	\$7,043.52
CAP Labor, Manager	1603	Conservation Activity Plan labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$51.35	14	\$718.90
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	5	\$171.00
CAP Labor, Energy Auditor	1740	Conservation Activity Plan labor involving analyzing energy efficient measures and conducting energy audits of industrial areas and facilities.	Hours	\$72.89	20	\$1,457.80

Practice: 120-Agricultural Energy Design
Scenario: \#77-Medium Complexity, 4-5 Designs

Scenario Description:

An agricultural producer wishes to conserve energy through an EQIP contract with multiple energy practice scenarios. Associated scenario(s) provide for retrofits that impose some variables in the design process. The scenarios may involve a change in service levels that can be evaluated or designed through use of simple tools or manual calculations. Four factors typically indicate a ???Medium Complexity??? system, as follows. 1) Client objectives require a change of output (hp, Btu/hr, lux, etc.) that varies more than about 10% from old devices. 2) System constraints prevent new devices from being installed in the same location as the old devices. 3) The retrofit requires substantive changes to either electrical, mechanical, plumbing, or structural systems. 4) Analysis beyond the scope of NRCS methodology to evaluate alternatives is required to confirm level of service and appropriate device output, placement, etc. (For example, a simplified heat transfer model to determine heating, ventilation, and cooling loads may be required if existing device capacity cannot be estimated.) ???Medium Complexity??? practice scenarios include but are not limited to: change of lighting fixture counts or layout; wall insulation; grain dryers; add reverse osmosis to syrup production; or add evaporative cooling systems (cooling cells). Each ???Design??? indicates that new devices or components are closely related to other devices or components even if numerous scenarios are contracted. If more than three practices are contracted, then, at a minimum, ???4-5 Designs??? shall be contracted for the Ag Energy DIA. If at least 1 scenario is more complex than indicated herein, use an alternate scenario for contracting. The Ag Energy DIA includes reviewing, and, when needed, revising alternatives to address energy concerns. The Ag Energy DIA documents: a) the client???s final decisions related to the associated energy practice scenarios, b) estimated energy and greenhouse gas benefits; and c) design deliverables described in the associated NRCS Conservation Practice Statements of Work. Natural Resource Concern: Energy Efficiency of Equipment and Facilities.

Before Situation:
Producer wants to transition their agricultural operation to become more energy efficient. Producer intends to work with a certified TSP to develop designs to implement one or more practice scenarios to address Energy Efficiency resource concerns using the Ag Energy DIA. The DIA 120 criteria incorporates recommended measures to increase energy conservation and efficiency. Associated Practices: 374 Farmstead Energy Improvement, 670 Energy Efficient Lighting System, 672 Energy Efficient Building Envelope, 533 Pumping Plant, or other applicable practices in the NRCS Field Office Technical Guide.

After Situation:
The producer has obtained services from a certified TSP to develop practice scenario designs using the Ag Energy DIA. The DIA 120 criteria include tasks needed to document the client???s decision, energy savings and design of conservation practices which address energy efficiency. The Ag Energy DIA meets the quality criteria for the DIA 120 activity as cited in the NRCS Field Office Technical Guide.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\quad \$ 7,879.25$
Scenario Cost/Unit: \$7,879.25

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	54	\$5,762.88
CAP Labor, Manager	1603	Conservation Activity Plan labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$51.35	13	\$667.55
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	4	\$136.80
CAP Labor, Energy Auditor	1740	Conservation Activity Plan labor involving analyzing energy efficient measures and conducting energy audits of industrial areas and facilities.	Hours	\$72.89	18	\$1,312.02

Practice: 120-Agricultural Energy Design

Scenario: \#93 - Low Complexity, 4-5 Designs

Scenario Description:

An agricultural producer wishes to conserve energy through an EQIP contract with multiple energy practice scenarios. Associated scenario(s) provide for one-to-one device retrofits. The scenario(s) may provide for a new component to modify the operation of an existing device (e.g., timer to reduce run-time). Three factors typically indicate a ???Low Complexity??? system, as follows. 1) New devices maintain output (hp, Btu/hr, lux, etc.) of the old devices within a roughly 10% range. 2) New devices are installed in the same location as the old devices. 3) The retrofit does not require substantive changes to electrical, mechanical, plumbing, or structural systems. ???Low Complexity??? practice scenarios include but are not limited to: lamp or fixture upgrades; attic insulation; fans; or washer-extractors. Each ???Design??? indicates that new devices or components are closely related to other devices or components even if numerous scenarios are contracted. If more than three practices are contracted, then, at a minimum, ???4-5 Designs??? shall be contracted for the Ag Energy DIA. If at least 1 scenario is more complex than indicated herein, use an alternate scenario for contracting. The Ag Energy DIA includes reviewing, and, when needed, revising alternatives to address energy concerns. The Ag Energy DIA documents: a) the client???s final decisions related to the associated energy practice scenarios, b) estimated energy and greenhouse gas benefits; and c) design deliverables described in the associated NRCS Conservation Practice Statements of Work. Natural Resource Concern: Energy Efficiency of Equipment and Facilities.

Before Situation:

Producer wants to transition their agricultural operation to become more energy efficient. Producer intends to work with a certified TSP to develop designs to implement one or more practice scenarios to address Energy Efficiency resource concerns using the Ag Energy DIA. The DIA 120 criteria incorporates recommended measures to increase energy conservation and efficiency. Associated Practices: 374 Farmstead Energy Improvement, 670 Energy Efficient Lighting System, 672 Energy Efficient Building Envelope, 533 Pumping Plant, or other applicable practices in the NRCS Field Office Technical Guide.

After Situation:

The producer has obtained services from a certified TSP to develop practice scenario designs using the Ag Energy DIA. The DIA 120 criteria include tasks needed to document the client???s decision, energy savings and design of conservation practices which address energy efficiency. The Ag Energy DIA meets the quality criteria for the DIA 120 activity as cited in the NRCS Field Office Technical Guide.

Feature Measure: Number

Scenario Unit: Number

Scenario Typical Size: 1.00

Scenario Total Cost:	\$6,367.28					
Scenario Cost/Unit:	\$6,367.28					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	42	\$4,482.24
CAP Labor, Manager	1603	Conservation Activity Plan labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$51.35	12	\$616.20
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	3	\$102.60
CAP Labor, Energy Auditor	1740	Conservation Activity Plan labor involving analyzing energy efficient measures and conducting energy audits of industrial areas and facilities.	Hours	\$72.89	16	\$1,166.24

Practice: 120-Agricultural Energy Design
Scenario: \#109 - High Complexity, 2-3 Designs

Scenario Description:

An agricultural producer wishes to conserve energy through an EQIP contract with multiple energy practice scenarios. Associated scenario(s) provide for retrofits that impose several variables in the design process. The scenarios may involve a change in service levels that cannot be evaluated or designed through use of simple tools or manual calculations. Four factors typically indicate a ???High Complexity??? system, as follows. 1) Client objectives require a change of output (hp, Btu/hr, lux, etc.) that varies more than about 30% from old devices. 2) System constraints prevent new devices from being installed in the same location as the old devices. 3) The retrofit requires substantive changes to two or more of the electrical, mechanical, plumbing, or structural systems. 4) Complex analysis to evaluate alternatives is required to confirm level of service and appropriate device output, placement, etc. (For example, a detailed simulation is required to determine systems sizing and layout.) ???High Complexity??? practice scenarios include but are not limited to: comprehensive lighting system redesign; radiant heating systems; convert to tunnel ventilation; or convert to bench heating. Each ???Design??? indicates that new devices or components are closely related to other devices or components even if numerous scenarios are contracted. If more than one practice is contracted, then, at a minimum, ???2-3 Designs??? shall be contracted for the Ag Energy DIA. Use this scenario if at least one design is deemed high complexity. The Ag Energy DIA includes reviewing, and, when needed, revising alternatives to address energy concerns. The Ag Energy DIA documents: a) the client???s final decisions related to the associated energy practice scenarios, b) estimated energy and greenhouse gas; and c) design deliverables described in the associated NRCS Conservation Practice Statements of Work. Natural Resource Concern: Energy Efficiency of Equipment and Facilities.

Before Situation:
Producer wants to transition their agricultural operation to become more energy efficient. Producer intends to work with a certified TSP to develop designs to implement one or more practice scenarios to address Energy Efficiency resource concerns using the Ag Energy DIA. The DIA 120 criteria incorporates recommended measures to increase energy conservation and efficiency. Associated Practices: 374 Farmstead Energy Improvement, 670 Energy Efficient Lighting System, 672 Energy Efficient Building Envelope, 533 Pumping Plant, or other applicable practices in the NRCS Field Office Technical Guide.

After Situation:

The producer has obtained services from a certified TSP to develop practice scenario designs using the Ag Energy DIA. The DIA 120 criteria include tasks needed to document the client???s decision, energy savings and design of conservation practices which address energy efficiency. The Ag Energy DIA meets the quality criteria for the DIA 120 activity as cited in the NRCS Field Office Technical Guide.

Feature Measure: Number

Scenario Unit: Number

Scenario Typical Size: 1.00

Scenario Total Cost:	\$7,733.47					
Scenario Cost/Unit:	\$7,733.47					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	54	\$5,762.88
CAP Labor, Manager	1603	Conservation Activity Plan labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$51.35	13	\$667.55
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	4	\$136.80
CAP Labor, Energy Auditor	1740	Conservation Activity Plan labor involving analyzing energy efficient measures and conducting energy audits of industrial areas and facilities.	Hours	\$72.89	16	\$1,166.24

Practice: 120-Agricultural Energy Design
Scenario: \#125-Medium Complexity, 2-3 Designs

Scenario Description:

An agricultural producer wishes to conserve energy through an EQIP contract with multiple energy practice scenarios. Associated scenario(s) provide for retrofits that impose some variables in the design process. The scenarios may involve a change in service levels that can be evaluated or designed through use of simple tools or manual calculations. Four factors typically indicate a ???Medium Complexity??? system, as follows. 1) Client objectives require a change of output (hp, Btu/hr, lux, etc.) that varies more than about 10% from old devices. 2) System constraints prevent new devices from being installed in the same location as the old devices. 3) The retrofit requires substantive changes to either electrical, mechanical, plumbing, or structural systems. 4) Analysis beyond the scope of NRCS methodology to evaluate alternatives is required to confirm level of service and appropriate device output, placement, etc. (For example, a simplified heat transfer model to determine heating, ventilation, and cooling loads may be required if existing device capacity cannot be estimated.) ???Medium Complexity??? practice scenarios include but are not limited to: change of lighting fixture counts or layout; wall insulation; grain dryers; add reverse osmosis to syrup production; or add evaporative cooling systems (cooling cells). Each ???Design??? indicates that new devices or components are closely related to other devices or components even if numerous scenarios are contracted. If more than one practice is contracted, then, at a minimum, ???2-3 Designs??? shall be contracted for theAg Energy DIA. If at least 1 scenario is more complex than indicated herein, use an alternate scenario for contracting. The Ag Energy DIA includes reviewing, and, when needed, revising alternatives to address energy concerns. The Ag Energy DIA documents: a) the client???s final decisions related to the associated energy practice scenarios, b) estimated energy and greenhouse gas benefits; and c) design deliverables described in the associated NRCS Conservation Practice Statements of Work. Natural Resource Concern: Energy Efficiency of Equipment and Facilities.

Before Situation:
Producer wants to transition their agricultural operation to become more energy efficient. Producer intends to work with a certified TSP to develop designs to implement one or more practice scenarios to address Energy Efficiency resource concerns using the Ag Energy DIA. The DIA 120 criteria incorporates recommended measures to increase energy conservation and efficiency. Associated Practices: 374 Farmstead Energy Improvement, 670 Energy Efficient Lighting System, 672 Energy Efficient Building Envelope, 533 Pumping Plant, or other applicable practices in the NRCS Field Office Technical Guide.

After Situation:
The producer has obtained services from a certified TSP to develop practice scenario designs using the Ag Energy DIA. The DIA 120 criteria include tasks needed to document the client???s decision, energy savings and design of conservation practices which address energy efficiency. The Ag Energy DIA meets the quality criteria for the DIA 120 activity as cited in the NRCS Field Office Technical Guide.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00

Scenario Total Cost:	$\$ 6,221.50$
Scenario Cost/Unit:	$\$ 6,221.50$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	42	\$4,482.24
CAP Labor, Manager	1603	Conservation Activity Plan labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$51.35	12	\$616.20
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	3	\$102.60
CAP Labor, Energy Auditor	1740	Conservation Activity Plan labor involving analyzing energy efficient measures and conducting energy audits of industrial areas and facilities.	Hours	\$72.89	14	\$1,020.46

Practice: 120-Agricultural Energy Design

Scenario: \#141-Low Complexity, 2-3 Designs

Scenario Description:

An agricultural producer wishes to conserve energy through an EQIP contract with multiple energy practice scenarios. Associated scenario(s) provide for one-to-one device retrofits. The scenario(s) may provide for a new component to modify the operation of an existing device (e.g., timer to reduce run-time). Three factors typically indicate a ???Low Complexity??? system, as follows. 1) New devices maintain output (hp, Btu/hr, lux, etc.) of the old devices within a roughly 10% range. 2) New devices are installed in the same location as the old devices. 3) The retrofit does not require substantive changes to electrical, mechanical, plumbing, or structural systems. ???Low Complexity??? practice scenarios include but are not limited to: lamp or fixture upgrades; attic insulation; fans; or washer-extractors. Each ???Design??? indicates that new devices or components are closely related to other devices or components even if numerous scenarios are contracted. If more than one practice is contracted, then, at a minimum, ???2-3 Designs??? shall be contracted for the Ag Energy DIA. If at least 1 scenario is more complex than indicated herein, use an alternate scenario for contracting. The Ag Energy DIA includes reviewing, and, when needed, revising alternatives to address energy concerns. The Ag Energy DIA documents: a) the client???s final decisions related to the associated energy practice scenarios, b) estimated energy and greenhouse gas benefits; and c) design deliverables described in the associated NRCS Conservation Practice Statements of Work. Natural Resource Concern: Energy Efficiency of Equipment and Facilities.

Before Situation:

Producer wants to transition their agricultural operation to become more energy efficient. Producer intends to work with a certified TSP to develop designs to implement one or more practice scenarios to address Energy Efficiency resource concerns using the Ag Energy DIA. The DIA 120 criteria incorporates recommended measures to increase energy conservation and efficiency. Associated Practices: 374 Farmstead Energy Improvement, 670 Energy Efficient Lighting System, 672 Energy Efficient Building Envelope, 533 Pumping Plant, or other applicable practices in the NRCS Field Office Technical Guide.

After Situation:

The producer has obtained services from a certified TSP to develop practice scenario designs using the Ag Energy DIA. The DIA 120 criteria include tasks needed to document the client???s decision, energy savings and design of conservation practices which address energy efficiency. The Ag Energy DIA meets the quality criteria for the DIA 120 activity as cited in the NRCS Field Office Technical Guide.

Feature Measure: Number

Scenario Unit: Number

Scenario Typical Size: 1.00

Scenario Total Cost:	\$4,709.53					
Scenario Cost/Unit:	\$4,709.53					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	30	\$3,201.60
CAP Labor, Manager	1603	Conservation Activity Plan labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$51.35	11	\$564.85
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	2	\$68.40
CAP Labor, Energy Auditor	1740	Conservation Activity Plan labor involving analyzing energy efficient measures and conducting energy audits of industrial areas and facilities.	Hours	\$72.89	12	\$874.68

Practice: 120-Agricultural Energy Design

Scenario: \#157-High Complexity, 1 Design

Scenario Description:

An agricultural producer wishes to conserve energy through an EQIP contract with at least one (1) energy practice scenario. Associated scenario(s) provide for retrofits that impose several variables in the design process. The scenarios may involve a change in service levels that cannot be evaluated or designed through use of simple tools or manual calculations. Four factors typically indicate a ???High Complexity??? system, as follows. 1) Client objectives require a change of output (hp, Btu/hr, lux, etc.) that varies more than about 30% from old devices. 2) System constraints prevent new devices from being installed in the same location as the old devices. 3) The retrofit requires substantive changes to two or more of the electrical, mechanical, plumbing, or structural systems. 4) Complex analysis to evaluate alternatives is required to confirm level of service and appropriate device output, placement, etc. (For example, a detailed simulation is required to determine systems sizing and layout.) ???High Complexity??? practice scenarios include but are not limited to: comprehensive lighting system redesign; radiant heating systems; convert to tunnel ventilation; or convert to bench heating. ???One Design??? indicates that each new device or component is closely related to other devices or components even if numerous scenarios are contracted. The Ag Energy DIA includes reviewing, and, when needed, revising alternatives to address energy concerns. The Ag Energy DIA documents: a) the client???s final decisions related to the associated energy practice scenarios, b) estimated energy and greenhouse gas benefits; and c) design deliverables described in the associated NRCS Conservation Practice Statements of Work. Natural Resource Concern: Energy Efficiency of Equipment and Facilities.
Before Situation:
Producer wants to transition their agricultural operation to become more energy efficient. Producer intends to work with a certified TSP to develop designs to implement one or more practice scenarios to address Energy Efficiency resource concerns using the Ag Energy DIA. The DIA 120 criteria incorporates recommended measures to increase energy conservation and efficiency. Associated Practices: 374 Farmstead Energy Improvement, 670 Energy Efficient Lighting System, 672 Energy Efficient Building Envelope, 533 Pumping Plant, or other applicable practices in the NRCS Field Office Technical Guide.

After Situation:

The producer has obtained services from a certified TSP to develop practice scenario designs using the Ag Energy DIA. The DIA 120 criteria include tasks needed to document the client???s decision, energy savings and design of conservation practices which address energy efficiency. The Ag Energy DIA meets the quality criteria for the DIA 120 activity as cited in the NRCS Field Office Technical Guide.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$6,075.72
Scenario Cost/Unit: \$6,075.72
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	42	\$4,482.24
CAP Labor, Manager	1603	Conservation Activity Plan labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$51.35	12	\$616.20
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	3	\$102.60
CAP Labor, Energy Auditor	1740	Conservation Activity Plan labor involving analyzing energy efficient measures and conducting energy audits of industrial areas and facilities.	Hours	\$72.89	12	\$874.68

Practice: 120-Agricultural Energy Design
Scenario: \#173-Medium Complexity, 1 Design

Scenario Description:

An agricultural producer wishes to conserve energy through an EQIP contract with at least one (1) energy practice scenario. Associated scenario(s) provide for retrofits that impose some variables in the design process. The scenarios may involve a change in service levels that can be evaluated or designed through use of simple tools or manual calculations. Four factors typically indicate a ???Medium Complexity??? system, as follows. 1) Client objectives require a change of output (hp, Btu/hr, lux, etc.) that varies more than about 10% from old devices. 2) System constraints prevent new devices from being installed in the same location as the old devices. 3) The retrofit requires substantive changes to either electrical, mechanical, plumbing, or structural systems. 4) Analysis beyond the scope of NRCS methodology to evaluate alternatives is required to confirm level of service and appropriate device output, placement, etc. (For example, a simplified heat transfer model to determine heating, ventilation, and cooling loads may be required if existing device capacity cannot be estimated.) ???Medium Complexity??? practice scenarios include but are not limited to: change of lighting fixture counts or layout; wall insulation; grain dryers; add reverse osmosis to syrup production; or add evaporative cooling systems (cooling cells). ???One Design??? indicates that each new device or component is closely related to other devices or components even if numerous scenarios are contracted. The Ag Energy DIA includes reviewing, and, when needed, revising alternatives to address energy concerns. The Ag Energy DIA documents: a) the client???s final decisions related to the associated energy practice scenarios, b) estimated energy and greenhouse gas benefits; and c) design deliverables described in the associated NRCS Conservation Practice Statements of Work. Natural Resource Concern: Energy Efficiency of Equipment and Facilities.

Before Situation:

Producer wants to transition their agricultural operation to become more energy efficient. Producer intends to work with a certified TSP to develop designs to implement one or more practice scenarios to address Energy Efficiency resource concerns using the Ag Energy DIA. The DIA 120 criteria incorporates recommended measures to increase energy conservation and efficiency. Associated Practices: 374 Farmstead Energy Improvement, 670 Energy Efficient Lighting System, 672 Energy Efficient Building Envelope, 533 Pumping Plant, or other applicable practices in the NRCS Field Office Technical Guide.

After Situation:

The producer has obtained services from a certified TSP to develop practice scenario designs using the Ag Energy DIA. The DIA 120 criteria include tasks needed to document the client???s decision, energy savings and design of conservation practices which address energy efficiency. The Ag Energy DIA meets the quality criteria for the DIA 120 activity as cited in the NRCS Field Office Technical Guide.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00

Scenario Total Cost:	\$4,563.75					
Scenario Cost/Unit:	\$4,5	3.75				
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	30	\$3,201.60
CAP Labor, Manager	1603	Conservation Activity Plan labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$51.35	11	\$564.85
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	2	\$68.40
CAP Labor, Energy Auditor	1740	Conservation Activity Plan labor involving analyzing energy efficient measures and conducting energy audits of industrial areas and facilities.	Hours	\$72.89	10	\$728.90

Practice: 120-Agricultural Energy Design
Scenario: \#189-Low Complexity, 1 Design
Scenario Description:
An agricultural producer wishes to conserve energy through an EQIP contract with at least one (1) energy practice scenario. Associated scenario(s) provide for one-to-one device retrofits. The scenario(s) may provide for a new component to modify the operation of an existing device (e.g., timer to reduce run-time). Three factors typically indicate a ???Low Complexity??? system, as follows. 1) New devices maintain output (hp, Btu/hr, lux, etc.) of the old devices within a roughly 10% range. 2) New devices are installed in the same location as the old devices. 3) The retrofit does not require substantive changes to electrical, mechanical, plumbing, or structural systems. ???Low Complexity??? practice scenarios include but are not limited to: lamp or fixture upgrades; attic insulation; fans; or washer-extractors. ???One Design??? indicates that each new device or component is closely related to other devices or components even if numerous scenarios are contracted. The Ag Energy DIA includes reviewing, and, when needed, revising alternatives to address energy concerns. The Ag Energy DIA documents: a) the client???s final decisions related to the associated energy practice scenarios, b) estimated energy and greenhouse gas benefits; and c) design deliverables described in the associated NRCS Conservation Practice Statements of Work. Natural Resource Concern: Energy Efficiency of Equipment and Facilities.

Before Situation:
Producer wants to transition their agricultural operation to become more energy efficient. Producer intends to work with a certified TSP to develop designs to implement one or more practice scenarios to address Energy Efficiency resource concerns using the Ag Energy DIA. The DIA 120 criteria incorporates recommended measures to increase energy conservation and efficiency. Associated Practices: 374 Farmstead Energy Improvement, 670 Energy Efficient Lighting System, 672 Energy Efficient Building Envelope, 533 Pumping Plant, or other applicable practices in the NRCS Field Office Technical Guide.
After Situation:
The producer has obtained services from a certified TSP to develop practice scenario designs using the Ag Energy DIA. The DIA 120 criteria include tasks needed to document the client???s decision, energy savings and design of conservation practices which address energy efficiency. The Ag Energy DIA meets the quality criteria for the DIA 120 activity as cited in the NRCS Field Office Technical Guide.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$3,051.78

Scenario Cost/Unit: \$3,051.78
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	18	\$1,920.96
CAP Labor, Manager	1603	Conservation Activity Plan labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$51.35	10	\$513.50
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	1	\$34.20
CAP Labor, Energy Auditor	1740	Conservation Activity Plan labor involving analyzing energy efficient measures and conducting energy audits of industrial areas and facilities.	Hours	\$72.89	8	\$583.12

Practice: 138-Conservation Plan Supporting Organic Transition
Scenario: \#22 - Conservation Plan Supporting Organic Transition CAP Crops and Livestock

Scenario Description:

Agricultural operation where producer will transition from conventional to organic to meet USDA National Organic Program (NOP) requirements. Natural Resource Concern: Soil Erosion, Water Quality, Plant Condition, and other identified natural resource concerns.

Before Situation:

Agricultural operation currently managed using traditional and conventional methods for farming and/or ranching mixed operation of crops and livestock. The producer currently manages the operation based upon personal knowledge, or other local criteria. The producer is interested in transitioning part or all of the management unit to meet national USDA requirements for a certified operation. The producer is willing to collaborate with a certified TSP to develop a plan and collect/coordinate data recording to monitor per requirements of plan. Associated Practices: Refer to the NRCS Plan Criteria for conservation practices associated with operations transitioning to organic certification and typically needed to address identified natural resource concerns.

After Situation:

After EQIP contract approval, participant has obtained services from a certified TSP to develop the Conservation Plan Supporting Organic Transition Conservation Activity Plan (CAP) The CAP criteria requires the plan to meet quality criteria for applicable resource concerns and provides for opportunities to implement a system of conservation practices which assist the producer to transition from conventional farming or ranching to an organic production system with crops and livestock. The CAP plan will include conservation practices which address related resource concerns. The CAP meets the basic quality criteria for the 138 plan as cited in the NRCS Field Office Technical Guide.

Feature Measure: Number

Scenario Unit: Number

Scenario Typical Size: 1.00
Scenario Total Cost: \$6,436.50
Scenario Cost/Unit: \$6,436.50
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect	Hours	\$85.82	75	\$6,436.50

Practice: 138-Conservation Plan Supporting Organic Transition
Scenario: \#23-Conservation Plan Supporting Organic Transition CAP Crops or Livestock

Scenario Description:

Agricultural operation where producer will transition from conventional to organic to meet USDA National Organic Program (NOP) requirements. Natural Resource Concern: Soil Erosion, Water Quality, Plant Condition, and other identified natural resource concerns.

Before Situation:

Agricultural operation currently managed using traditional and conventional methods for farming with only crops. The producer currently manages the operation based upon personal knowledge, or other local criteria. The producer is interested in transitioning part or all of the management unit to meet national USDA requirements for certified operation. The producer is willing to collaborate with a certified TSP to develop a plan and collect/coordinate data recording to monitor per requirements of plan. Associated Practices: Refer to the NRCS Plan Criteria for conservation practices associated with operations transitioning to organic certification and typically needed to address identified natural resource concerns.

After Situation:

After EQIP contract approval, participant has obtained services from a certified TSP to develop the Conservation Plan Supporting Organic Transition Conservation Activity Plan (CAP) The CAP criteria requires the plan to meet quality criteria for applicable resource concerns and provides for opportunities to implement a system of conservation practices which assist the producer to transition from conventional farming or ranching to an organic production system with crops and livestock. The CAP plan will include conservation practices which address related resource concerns. The CAP meets the basic quality criteria for the 138 plan as cited in the NRCS Field Office Technical Guide.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$5,492.48
Scenario Cost/Unit: \$5,492.48
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect	Hours	\$85.82	64	\$5,492.48

Practice: 138-Conservation Plan Supporting Organic Transition
Scenario: \#45-Transition to Organic- Crop, Low Complexity
Scenario Description:
A site specific conservation plan that contains planned conservation treatment activities for resource concerns resulting from the transition of conventional to organic production systems. At a minimum two alternatives will be developed. The first will be a no-action alternative in which current management activities are assumed to continue. The second will be an action alternative identifying a conservation practice or a system of conservation practices and management activities to address CPA identified resource concern(s). Additional action alternatives may be developed to identify different ways of achieving client objectives.

Before Situation:
Current crops and rotation, farming practices (tillage, nutrient application methods, timing, source, and rate), soils, and equipment and technology utilized are not considered as Organic. The producer objectives are to become organic. The effect of changes to the current cropping system are not known and new resource concerns may emerge.

After Situation:

When evaluating conservation practice effects, the short term and long term effect on natural resources and the applicability and effect on special environmental concerns identified in Step-3 (Resource Inventory) must be documented. Include recommendations that will avoid or mitigate any adverse effects on soil, water, air, plants, animals (including livestock, fish, and wildlife), energy, or human concerns; as well as on special environmental concerns. The Organic System Plan Template supplements are completed as part of NRCS Conservation Planning Activity (CPA) 138 that helps farmers who are interested in transitioning from conventional farming practices to organic production by addressing the natural resource concerns on their operation.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$5,578.30
Scenario Cost/Unit: \$5,578.30
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect	Hours	\$85.82	65	\$5,578.30

Practice: 138-Conservation Plan Supporting Organic Transition
Scenario: \#61 - Transition to Organic- Crop, High Complexity

Scenario Description:

A site specific conservation plan that contains planned conservation treatment activities for resource concerns resulting from the transition of conventional to organic production systems. Crop production system is more complex based on site features, large acreage, specialty crops, irrigation, orchard and vineyards. At a minimum two alternatives will be developed. The first will be a no-action alternative in which current management activities are assumed to continue. The second will be an action alternative identifying a conservation practice or a system of conservation practices and management activities to address CPA identified resource concern(s). Additional action alternatives may be developed to identify different ways of achieving client objectives.

Before Situation:

Current crops and rotation, farming practices (tillage, nutrient application methods, timing, source, and rate), soils, and equipment and technology utilized are not considered as Organic. The producer objectives are to become organic. The effect of changes to the current cropping system are not known and new resource concerns may emerge.

After Situation:
When evaluating conservation practice effects, the short term and long term effect on natural resources and the applicability and effect on special environmental concerns identified in Step-3 (Resource Inventory) must be documented. Include recommendations that will avoid or mitigate any adverse effects on soil, water, air, plants, animals (including livestock, fish, and wildlife), energy, or human concerns; as well as on special environmental concerns. The Organic System Plan Template supplements are completed as part of NRCS Conservation Planning Activity (CPA) 138 that helps farmers who are interested in transitioning from conventional farming practices to organic production by addressing the natural resource concerns on their operation.

Feature Measure: Number

Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 6,436.50$
Scenario Cost/Unit: $\$ 6,436.50$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	75	\$6,436.50

Practice: 138-Conservation Plan Supporting Organic Transition
Scenario: \#77-Transition to Organic-Livestock, Low Complexity
Scenario Description:
A site specific conservation plan that contains planned conservation treatment activities for resource concerns resulting from the transition of conventional to organic livestock systems. At a minimum two alternatives will be developed. The first will be a no-action alternative in which current management activities are assumed to continue. The second will be an action alternative identifying a conservation practice or a system of conservation practices and management activities to address CPA identified resource concern(s). Additional action alternatives may be developed to identify different ways of achieving client objectives.

Before Situation:
Current livestock production, housing, feed, equipment and technology utilized are not considered as Organic. The producer objectives are to become organic. The effect of changes to the current system are not known and new resource concerns may emerge.

After Situation:
When evaluating conservation practice effects, the short term and long term effect on natural resources and the applicability and effect on special environmental concerns identified in Step-3 (Resource Inventory) must be documented. Include recommendations that will avoid or mitigate any adverse effects on soil, water, air, plants, animals (including livestock, fish, and wildlife), energy, or human concerns; as well as on special environmental concerns. The Organic System Plan Template supplements are completed as part of NRCS Conservation Planning Activity (CPA) 138 that helps farmers who are interested in transitioning from conventional farming practices to organic production by addressing the natural resource concerns on their operation.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 6,007.40$
Scenario Cost/Unit: $\$ 6,007.40$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	70	\$6,007.40

Practice: 138-Conservation Plan Supporting Organic Transition
Scenario: \#93 - Transition to Organic-Livestock, High Complexity

Scenario Description:

A site specific conservation plan that contains planned conservation treatment activities for resource concerns resulting from the transition of conventional to organic livestock systems. System is high complexity based on conditions such as large Animal Units, multiple production locations, age segregation and similar management. At a minimum two alternatives will be developed. The first will be a no-action alternative in which current management activities are assumed to continue. The second will be an action alternative identifying a conservation practice or a system of conservation practices and management activities to address CPA identified resource concern(s). Additional action alternatives may be developed to identify different ways of achieving client objectives.

Before Situation:

Current livestock production, housing, feed, equipment and technology utilized are not considered as Organic. The producer objectives are to become organic. The effect of changes to the current system are not known and new resource concerns may emerge.

After Situation:

When evaluating conservation practice effects, the short term and long term effect on natural resources and the applicability and effect on special environmental concerns identified in Step-3 (Resource Inventory) must be documented. Include recommendations that will avoid or mitigate any adverse effects on soil, water, air, plants, animals (including livestock, fish, and wildlife), energy, or human concerns; as well as on special environmental concerns. The Organic System Plan Template supplements are completed as part of NRCS Conservation Planning Activity (CPA) 138 that helps farmers who are interested in transitioning from conventional farming practices to organic production by addressing the natural resource concerns on their operation.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$9,000.00
Scenario Cost/Unit: $\$ 9,000.00$
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	20	\$2,134.40
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	80	\$6,865.60

Practice: 138-Conservation Plan Supporting Organic Transition
Scenario: \#109-Transition to Organic- Crop and Livestock, Low Complexity

Scenario Description:

A site specific conservation plan that contains planned conservation treatment activities for resource concerns resulting from the transition of conventional to organic crop and livestock production systems. At a minimum two alternatives will be developed. The first will be a no-action alternative in which current management activities are assumed to continue. The second will be an action alternative identifying a conservation practice or a system of conservation practices and management activities to address CPA identified resource concern(s). Additional action alternatives may be developed to identify different ways of achieving client objectives.

Before Situation:
Current crops and rotation, livestock management and feeding, farming practices (tillage, nutrient application methods, timing, source, and rate), soils, and equipment and technology utilized are not considered as Organic. The producer objectives are to become organic. The effect of changes to the current cropping system are not known and new resource concerns may emerge.

After Situation:

When evaluating conservation practice effects, the short term and long term effect on natural resources and the applicability and effect on special environmental concerns identified in Step-3 (Resource Inventory) must be documented. Include recommendations that will avoid or mitigate any adverse effects on soil, water, air, plants, animals (including livestock, fish, and wildlife), energy, or human concerns; as well as on special environmental concerns. The Organic System Plan Template supplements are completed as part of NRCS Conservation Planning Activity (CPA) 138 that helps farmers who are interested in transitioning from conventional farming practices to organic production by addressing the natural resource concerns on their operation.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$6,436.50
Scenario Cost/Unit: $\$ 6,436.50$
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect	Hours	\$85.82	75	\$6,436.50

Practice: 138-Conservation Plan Supporting Organic Transition
Scenario: \#125 - Transition to Organic- Crop and Livestock, High Complexity

Scenario Description:

A site specific conservation plan that contains planned conservation treatment activities for resource concerns resulting from the transition of conventional to organic crop and livestock production systems. Increased crop acreage, irrigation, specialty crops, orchards and vineyards, large AUs, age segregation management add complexity to the system. At a minimum two alternatives will be developed. The first will be a no-action alternative in which current management activities are assumed to continue. The second will be an action alternative identifying a conservation practice or a system of conservation practices and management activities to address CPA identified resource concern(s). Additional action alternatives may be developed to identify different ways of achieving client objectives.

Before Situation:

Current crops and rotation, livestock management and feeding, farming practices (tillage, nutrient application methods, timing, source, and rate), soils, and equipment and technology utilized are not considered as Organic. The producer objectives are to become organic. The effect of changes to the current cropping system are not known and new resource concerns may emerge.

After Situation:

When evaluating conservation practice effects, the short term and long term effect on natural resources and the applicability and effect on special environmental concerns identified in Step-3 (Resource Inventory) must be documented. Include recommendations that will avoid or mitigate any adverse effects on soil, water, air, plants, animals (including livestock, fish, and wildlife), energy, or human concerns; as well as on special environmental concerns. The Organic System Plan Template supplements are completed as part of NRCS Conservation Planning Activity (CPA) 138 that helps farmers who are interested in transitioning from conventional farming practices to organic production by addressing the natural resource concerns on their operation.

Feature Measure: Number

Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 9,429.10$
Scenario Cost/Unit: $\quad \$ 9,429.10$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	20	\$2,134.40
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	85	\$7,294.70

Practice: 140-Transition to Organic Design
Scenario: \#13 - Low Complexity 1-4 CPS

Scenario Description:

Agricultural operation where producer will transition from conventional production to organic production. They will meet the USDA National Organic Program (NOP) requirements. All Natural resources will be addressed: Soil, Water, Air, Plants and Animals. Will address resource concerns with 1-4, low complexity conservation practices.

Before Situation:
Agricultural operation currently managed using conventional agricultural production methods. Producer will transition all or part of the farm operation to meet national USDA NOP requirements for organic certification. The producer will collaborate with a certified TSP to develop implementation requirements and/or designs and specifications for all conservation practices required to meet organic certification requirements. Low complexity conservation practices may include: cover crop, crop rotation, reduced tillage, conservation plantings and minor structural practices for erosion control such as grass waterways and diversions.

After Situation:
After NRCS program contract is approved, participant will obtain services from a certified TSP to develop the required implementation requirements and/or designs and specifications for all conservation practices required to meet organic certification requirements. All practices installed according to field office technical guide requirements. Implementation requirements, designs and specifications all complete.

Feature Measure: Number

Scenario Unit: Number

Scenario Typical Size: 1.00

Scenario Total Cost:	\$4,919.40					
Scenario Cost/Unit:	\$4,9	19.40				
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding, physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.	Hours	\$108.51	16	\$1,736.16
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	16	\$1,707.52
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	16	\$1,373.12
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	3	\$102.60

Practice: 140-Transition to Organic Design
Scenario: \#29-Low Complexity, 5+ CPS

Scenario Description:

Agricultural operation where producer will transition from conventional production to organic production. They will meet the USDA National Organic Program (NOP) requirements. All Natural resources will be addressed: Soil, Water, Air, Plants and Animals. Will address resources concerns with 5 or more conservation practices with low complexity.

Before Situation:

Agricultural operation currently managed using conventional agricultural production methods. Producer will transition all or part of the farm operation to meet national USDA NOP requirements for organic certification. The producer will collaborate with a certified TSP to develop implementation requirements and/or designs and specifications for all conservation practices required to meet organic certification requirements. Low complexity conservation practices may include: cover crop, crop rotation, reduced tillage, conservation plantings and minor structural practices for erosion control such as grass waterways and diversions.

After Situation:
After NRCS program contract is approved, participant will obtain services from a certified TSP to develop the required implementation requirements and/or designs and specifications for all conservation practices required to meet organic certification requirements. All practices installed according to field office technical guide requirements. Implementation requirements, designs and specifications all complete.

Feature Measure: Number

Scenario Unit: Number

Scenario Typical Size: 1.00

Scenario Total Cost:	$\$ 9,770.40$
Scenario Cost/Unit:	$\$ 9,770.40$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding, physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.	Hours	\$108.51	32	\$3,472.32
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	32	\$3,415.04
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	32	\$2,746.24
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	4	\$136.80

Practice: 140-Transition to Organic Design
Scenario: \#45-High Complexity, 1-4 CPS

Scenario Description:

Agricultural operation where producer will transition from conventional production to organic production. They will meet the USDA National Organic Program (NOP) requirements. All Natural resources will be addressed: Soil, Water, Air, Plants, and Animals. Will address resource concerns with 1-4, high complexity conservation practices.

Before Situation:
Agricultural operation currently managed using conventional agricultural production methods. Producer will transition all or part of the farm operation to meet national USDA NOP requirements for organic certification. The producer will collaborate with a certified TSP to develop implementation requirements and/or designs and specifications for all conservation practices required to meet organic certification requirements. High complexity conservation practices may include: management practices for nutrients, pests, grazing, irrigation etc. and structural practices such as waste storage facility and wetland practices.

After Situation:

After NRCS program contract is approved, participant will obtain services from a certified TSP to develop the required implementation requirements and/or designs and specifications for all conservation practices required to meet organic certification requirements. All practices installed according to field office technical guide requirements. Implementation requirements, designs and specifications all complete.

Feature Measure: Number

Scenario Unit: Number

Scenario Typical Size: 1.00
Scenario Total Cost: \$12,644.44
Scenario Cost/Unit: \$12,644.44

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding, physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.	Hours	\$108.51	40	\$4,340.40
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	40	\$4,268.80
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	40	\$3,432.80
Cap Labor, Survey and Mapping Technician	1591	Conservation Activity Plan labor to perform surveying and mapping duties, usually under the direction of an engineer, surveyor, cartographer, or photogrammetrist to obtain data used for construction, mapmaking, boundary location, mining, or other purposes. May calculate mapmaking information and create maps from source data, such as surveying notes, aerial photography, satellite data, or other maps to show topographical features, political boundaries, and other features. May verify accuracy and completeness of maps.	Hours	\$62.48	8	\$499.84
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	3	\$102.60

Practice: 140-Transition to Organic Design
Scenario: \#61 - High Complexity, 5+ CPS

Scenario Description:

Agricultural operation where producer will transition from conventional production to organic production. They will meet the USDA National Organic Program (NOP) requirements. All Natural resources will be addressed: Soil, Water, Air, Plants and Animals. Will address resource concerns with 5 or more, high complexity conservation practices.

Before Situation:
Agricultural operation currently managed using conventional agricultural production methods. Producer will transition all or part of the farm operation to meet national USDA NOP requirements for organic certification. The producer will collaborate with a certified TSP to develop implementation requirements and/or designs and specifications for all conservation practices required to meet organic certification requirements. High complexity conservation practices may include: management practices for nutrients, pests, grazing, irrigation etc. and structural practices such as waste storage facility and wetland practices.

After Situation:

After NRCS program contract is approved, participant will obtain services from a certified TSP to develop the required implementation requirements and/or designs and specifications for all conservation practices required to meet organic certification requirements. All practices installed according to field office technical guide requirements. Implementation requirements, designs and specifications all complete.

Feature Measure: Number

Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$16,287.76
Scenario Cost/Unit: \$16,287.76

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding, physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.	Hours	\$108.51	56	\$6,076.56
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	40	\$4,268.80
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	56	\$4,805.92
Cap Labor, Survey and Mapping Technician	1591	Conservation Activity Plan labor to perform surveying and mapping duties, usually under the direction of an engineer, surveyor, cartographer, or photogrammetrist to obtain data used for construction, mapmaking, boundary location, mining, or other purposes. May calculate mapmaking information and create maps from source data, such as surveying notes, aerial photography, satellite data, or other maps to show topographical features, political boundaries, and other features. May verify accuracy and completeness of maps.	Hours	\$62.48	16	\$999.68
CAP Labor, Administrative	1739	Conservation Activity Plan labor involving routine clerical and	Hours	\$34.20	4	\$136.80

Practice: 144 - Fish and Wildlife Habitat Design
Scenario: \#13-Fish \& Wildlife Habitat DIA

Scenario Description:

Various on-farm land uses. Natural Resource Concerns: Terrestrial Habitat and/or Aquatic Habitat on an agricultural operation. The Fish and Wildlife Habitat Design and Implementation Activity (DIA) addresses fish and wildlife habitat management relative to only one land use on the agricultural operation.

Before Situation:

Producer has no plan or knowledge of development or management of fish and/or wildlife habitat. The producer does not currently manage or enhance habitat to promote opportunities for fish and/or wildlife habitat. Within existing land uses, the producer is interested in management of land or water features for establishment of new habitat for benefit of appropriate fish or wildlife species. Associated Practices: Applicable conservation practices cited in the DIA criteria and NRCS Field Office Technical Guide.

After Situation:

After EQIP contract approval, the participant has obtained services from a certified TSP for development of the Fish and Wildlife Habitat DIA. The DIA criteria require the plan to meet quality criteria for the primary fish/wildlife habitat resource concern and provides for opportunities to improve, restore, or enhance habitat that supports native and/or managed species. The DIA may include recommendations for associated conservation practices which address other related resource concerns. The DIA meets the basic quality criteria for the 144 plan as cited in the NRCS Field Office Technical Guide.

Feature Measure: Design \& Implementation Plan
Scenario Unit: Number

Scenario Typical Size: 1.00
Scenario Total Cost: \$3,272.40
Scenario Cost/Unit: $\$ 3,272.40$
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, biologist	1298	Conservation Activity Plan labor to study the origins, behavior, diseases, genetics, and life processes of animals and wildlife. May specialize in wildlife research and management. May collect and analyze biological data to determine the environmental effects of present and potential use of land and water habitats. Cost associated with this component includes overhead and benefits (market price).	Hours	\$90.90	36	\$3,272.40

Practice: 144 - Fish and Wildlife Habitat Design
Scenario: \#29-Fish \& Wildlife Habitat DIA (2 Land Uses)

Scenario Description:

Various on-farm land uses. Natural Resource Concerns: Terrestrial Habitat and/or Aquatic Habitat on an agricultural operation. The Fish and Wildlife Habitat Design and Implementation Activity (DIA) addresses fish and wildlife habitat management relative to two land uses on the agricultural operation of which each land use is at least 20 acres in size.

Before Situation:
Producer has no plan or knowledge of development or management of fish and/or wildlife habitat. The producer does not currently manage or enhance habitat to promote opportunities for fish and/or wildlife habitat. Within existing land uses, the producer is interested in management of land or water features for establishment of new habitat for benefit of appropriate fish or wildlife species. Associated Practices: Applicable conservation practices cited in the DIA criteria and NRCS Field Office Technical Guide.

After Situation:

After EQIP contract approval, the participant has obtained services from a certified TSP for development of the Fish and Wildlife Habitat DIA. The DIA criteria require the plan to meet quality criteria for the primary fish/wildlife habitat resource concern and provides for opportunities to improve, restore, or enhance habitat that supports native and/or managed species. The DIA may include recommendations for associated conservation practices which address other related resource concerns. The DIA meets the basic quality criteria for the 144 plan as cited in the NRCS Field Office Technical Guide.

Feature Measure: Fish and Wildlife Habitat DIA
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 3,999.60$
Scenario Cost/Unit: \$3,999.60

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, biologist	1298	Conservation Activity Plan labor to study the origins, behavior, diseases, genetics, and life processes of animals and wildlife. May specialize in wildlife research and management. May collect and analyze biological data to determine the environmental effects of present and potential use of land and water habitats. Cost associated with this component includes overhead and benefits (market price).	Hours	\$90.90	44	\$3,999.60

Practice: 144 - Fish and Wildlife Habitat Design
Scenario: \#45-Fish \& Wildlife Habitat DIA (3 or More Land Uses)

Scenario Description:

Various on-farm land uses. Natural Resource Concerns: Terrestrial Habitat and/or Aquatic Habitat on an agricultural operation. The Fish and Wildlife Habitat Design and Implementation Activity (DIA) addresses fish and wildlife habitat management relative to three or more land uses on the agricultural operation of which at least three of the land uses are at least 20 acres in size.

Before Situation:

Producer has no plan or knowledge of development or management of fish and/or wildlife habitat. The producer does not currently manage or enhance habitat to promote opportunities for fish and/or wildlife habitat. Within existing land uses, the producer is interested in management of land or water features for establishment of new habitat for benefit of appropriate fish or wildlife species. Associated Practices: Applicable conservation practices cited in the DIA criteria and NRCS Field Office Technical Guide.

After Situation:

After EQIP contract approval, the participant has obtained services from a certified TSP for development of the Fish and Wildlife Habitat DIA. The DIA criteria require the plan to meet quality criteria for the primary fish/wildlife habitat resource concern and provides for opportunities to improve, restore, or enhance habitat that supports native and/or managed species. The DIA may include recommendations for associated conservation practices which address other related resource concerns. The DIA meets the basic quality criteria for the 144 plan as cited in the NRCS Field Office Technical Guide.

Feature Measure: Fish and Wildlife Habitat DIA
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 4,726.80$
Scenario Cost/Unit: \$4,726.80

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, biologist	1298	Conservation Activity Plan labor to study the origins, behavior, diseases, genetics, and life processes of animals and wildlife. May specialize in wildlife research and management. May collect and analyze biological data to determine the environmental effects of present and potential use of land and water habitats. Cost associated with this component includes overhead and benefits (market price).	Hours	\$90.90	52	\$4,726.80

Practice: 148 - Pollinator Habitat Design
Scenario: \#13-Pollinator Habitat Enhancement Plan CAP - No Local TSP

Scenario Description:

Various on-farm land uses, No qualified TSP within 300 miles. Natural Resource Concern: Fish and Wildlife, Plant Condition, Soil Erosion, Water Quality on an agricultural operation.

Before Situation:
Agricultural producer currently has no plan or knowledge of development or management of pollinator habitat. The producer does not currently manage or enhance habitat to promote opportunities for pollinator habitat. Within existing land uses, the producer may be interested in management of land or for establishment of newhabitat for benefit of appropriate pollinator species. Associated Practices: 311, 327, 328, 656, 332, 340, 342, 647, 386, 393, 412, 422, 603, 379, 512, 595, 338, $528,550,329,643,391,390,381,395,580,585,612,645,601,659,657,644,380,650$.

After Situation:

After EQIP contract approval, participant has obtained services from a certified TSP for development of the Pollinator Habitat Enhancement Conservation Activity Plan (CAP). The CAP criteria requires the plan to meet quality criteria for applicable resource concerns and provides for opportunities to improve, restore, orenhance flowerrich habitat that supports native and/or managed pollinator species. The CAP plan may include recommendations for associated conservation practices which address other related resource concerns. The CAP meets the basic quality criteria for the 146 plan as cited in the NRCS Field Office Technical Guide.

Feature Measure: Number

Scenario Unit: Number

Scenario Typical Size: 1.00
Scenario Total Cost: \$5,544.90

Scenario Cost/Unit: \$5,544.90
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, biologist	1298	Conservation Activity Plan labor to study the origins, behavior, diseases, genetics, and life processes of animals and wildlife. May specialize in wildlife research and management. May collect and analyze biological data to determine the environmental effects of present and potential use of land and water habitats. Cost associated with this component includes overhead and benefits (market price).	Hours	\$90.90	61	\$5,544.90

Practice: 148 - Pollinator Habitat Design
Scenario: \#29-Pollinator Habitat Enhancement Plan CAP

Scenario Description:

Various on-farm land uses. Natural Resource Concern: Fish and Wildlife, Plant Condition, Soil Erosion, Water Quality on an agricultural operation.

Before Situation:

Agricultural producer currently has no plan or knowledge of development or management of pollinator habitat. The producer does not currently manage or enhance habitat to promote opportunities for pollinator habitat. Within existing land uses, the producer may be interested in management of land or for establishment of newhabitat for benefit of appropriate pollinator species. Associated Practices: 311, 327, 328, 656, 332, 340, 342, 647, 386, 393, 412, 422, 603, 379, 512, 595, 338, 528, 550, 329, 643, 391, 390, 381, 395, 580, 585, 612, 645, 601, 659, 657, 644, 380, 650.

After Situation:
After EQIP contract approval, participant has obtained services from a certified TSP for development of the Pollinator Habitat Enhancement Conservation Activity Plan (CAP). The CAP criteria requires the plan to meet quality criteria for applicable resource concerns and provides for opportunities to improve, restore, or enhance flowerrich habitat that supports native and/or managed pollinator species. The CAP plan may include recommendations for associated conservation practices which address other related resource concerns. The CAP meets the basic quality criteria for the 146 plan as cited in the NRCS Field Office Technical Guide.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 3,817.80$
Scenario Cost/Unit: \$3,817.80
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, biologist	1298	Conservation Activity Plan labor to study the origins, behavior, diseases, genetics, and life processes of animals and wildlife. May specialize in wildlife research and management. May collect and analyze biological data to determine the environmental effects of present and potential use of land and water habitats. Cost associated with this component includes overhead and benefits (market price).	Hours	\$90.90	42	\$3,817.80

Practice: 157 - Nutrient Management Design and Implementation Activity
Scenario: \#13-Design Nutrient Management for greater than 101 Acres and less than or equal to 300 Acres Fertilizer and Manure

Scenario Description:

Various on-farm land uses where natural or artificial amendments are applied. Natural Resource Concern: Water Quality, Soil Erosion, Water Quantity, and other associated resource concerns. Manure may be imported.

Before Situation:
Agricultural producer has no plan or minimal knowledge for the application and management of nutrients. The producer currently manages nutrient application based upon personal knowledge, or other local criteria. Producer is interested in management of nutrients to maximize yields, improve profit margins, reduce costs, and for environmental benefit. Producer is willing to collaborate with a certified TSP to develop a plan.

After Situation:

After EQIP contract approval, participant has obtained services from a certified TSP for development of the Nutrient Management conservation activity plan consistent with the criteria in DIA 157 and 590 Nutrient Management. The DIA criteria requires the plan to meet quality criteria for Soils, Water Quality and Air Quality resource concerns and other applicable resource concerns and provides for opportunities to manage nutrients for plant production and address offsite movement of nutrients. The design may include recommendations for associated conservation practices which address other related resource concerns. Meets the basic quality criteria for the DIA 157 as cited in the NRCS Field Office Technical Guide and CPS 590 Nutrient Management.

Feature Measure: Number

Scenario Unit: Number

Scenario Typical Size: 1.00
Scenario Total Cost: \$7,595.70

Scenario Cost/Unit: \$7,595.70
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding,	Hours	\$108.51	70	\$7,595.70

Practice: 157 - Nutrient Management Design and Implementation Activity
Scenario: \#29-Design Nutrient Management for 101 to less than 300 Acres and No Manure

Scenario Description:

Various on-farm land uses where natural or artificial amendments are applied. Natural Resource Concern: Water Quality, Soil Erosion, Water Quantity, and other associated resource concerns.

Before Situation:
Agricultural producer has no plan or minimal knowledge for the application and management of nutrients. The producer currently manages nutrient application based upon personal knowledge, or other local criteria. Producer is interested in management of nutrients to maximize yields, improve profit margins, reduce costs, and for environmental benefit. Producer is willing to collaborate with a certified TSP to develop a plan.

After Situation:

After EQIP contract approval, participant has obtained services from a certified TSP for development of the Nutrient Management conservation activity plan consistent with the criteria in DIA 157 and 590 Nutrient Management. The DIA criteria requires the plan to meet quality criteria for Soils, Water Quality and Air Quality resource concerns and other applicable resource concerns and provides for opportunities to manage nutrients for plant production and address offsite movement of nutrients. The design may include recommendations for associated conservation practices which address other related resource concerns. Meets the basic quality criteria for the DIA 157 as cited in the NRCS Field Office Technical Guide and CPS 590 Nutrient Management.

Feature Measure: Number

Scenario Unit: Number

Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 4,340.40$

Scenario Cost/Unit: \$4,340.40
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding,	Hours	\$108.51	40	\$4,340.40

Practice: 157 - Nutrient Management Design and Implementation Activity
Scenario: \#45-Design Nutrient Management for greater than 300 Acres and No Manure

Scenario Description:

Various on-farm land uses where natural or artificial amendments are applied. Natural Resource Concern: Water Quality, Soil Erosion, Water Quantity, and other associated resource concerns.

Before Situation:
Agricultural producer has no plan or minimal knowledge for the application and management of nutrients. The producer currently manages nutrient application based upon personal knowledge, or other local criteria. Producer is interested in management of nutrients to maximize yields, improve profit margins, reduce costs, and for environmental benefit. Producer is willing to collaborate with a certified TSP to develop a plan.

After Situation:

After EQIP contract approval, participant has obtained services from a certified TSP for development of the Nutrient Management conservation activity plan consistent with the criteria in DIA 157 and 590 Nutrient Management. The DIA criteria requires the plan to meet quality criteria for Soils, Water Quality and Air Quality resource concerns and other applicable resource concerns and provides for opportunities to manage nutrients for plant production and address offsite movement of nutrients. The design may include recommendations for associated conservation practices which address other related resource concerns. Meets the basic quality criteria for the DIA 157 as cited in the NRCS Field Office Technical Guide and CPS 590 Nutrient Management.

Feature Measure: Number

Scenario Unit: Number

Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 5,425.50$

Scenario Cost/Unit: \$5,425.50
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding,	Hours	\$108.51	50	\$5,425.50

Practice: 157-Nutrient Management Design and Implementation Activity
Scenario: \#61 - Design Nutrient Management for less than or equal to 100 Acres Fertilizer and Manure

Scenario Description:

Various on-farm land uses where natural or artificial amendments are applied. Natural Resource Concern: Water Quality, Soil Erosion, Water Quantity, and other associated resource concerns. Manure may be imported.

Before Situation:
Agricultural producer has no plan or minimal knowledge for the application and management of nutrients. The producer currently manages nutrient application based upon personal knowledge, or other local criteria. Producer is interested in management of nutrients to maximize yields, improve profit margins, reduce costs, and for environmental benefit. Producer is willing to collaborate with a certified TSP to develop a plan.

After Situation:

After EQIP contract approval, participant has obtained services from a certified TSP for development of the Nutrient Management conservation activity plan consistent with the criteria in DIA 157 and 590 Nutrient Management. The DIA criteria requires the plan to meet quality criteria for Soils, Water Quality and Air Quality resource concerns and other applicable resource concerns and provides for opportunities to manage nutrients for plant production and address offsite movement of nutrients. The design may include recommendations for associated conservation practices which address other related resource concerns. Meets the basic quality criteria for the DIA 157 as cited in the NRCS Field Office Technical Guide and CPS 590 Nutrient Management.

Feature Measure: Number

Scenario Unit: Number

Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 5,425.50$

Scenario Cost/Unit: \$5,425.50
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding,	Hours	\$108.51	50	\$5,425.50

Practice: 157 - Nutrient Management Design and Implementation Activity
Scenario: \#77-Design Nutrient Management for less than or equal to 100 Acres and No Manure

Scenario Description:

Various on-farm land uses where natural or artificial amendments are applied. Natural Resource Concern: Water Quality, Soil Erosion, Water Quantity, and other associated resource concerns.

Before Situation:
Agricultural producer has no plan or minimal knowledge for the application and management of nutrients. The producer currently manages nutrient application based upon personal knowledge, or other local criteria. Producer is interested in management of nutrients to maximize yields, improve profit margins, reduce costs, and for environmental benefit. Producer is willing to collaborate with a certified TSP to develop a plan.

After Situation:

After EQIP contract approval, participant has obtained services from a certified TSP for development of the Nutrient Management conservation activity plan consistent with the criteria in DIA 157 and 590 Nutrient Management. The DIA criteria requires the plan to meet quality criteria for Soils, Water Quality and Air Quality resource concerns and other applicable resource concerns and provides for opportunities to manage nutrients for plant production and address offsite movement of nutrients. The design may include recommendations for associated conservation practices which address other related resource concerns. Meets the basic quality criteria for the DIA 157 as cited in the NRCS Field Office Technical Guide and CPS 590 Nutrient Management.

Feature Measure: Number

Scenario Unit: Number

Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 3,255.30$

Scenario Cost/Unit: $\$ 3,255.30$
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding,	Hours	\$108.51	30	\$3,255.30

Practice: 157 - Nutrient Management Design and Implementation Activity
Scenario: \#93 - Design Nutrient Management for greater than 300 Acres Fertilizer and Manure

Scenario Description:

Various on-farm land uses where natural or artificial amendments are applied. Natural Resource Concern: Water Quality, Soil Erosion, Water Quantity, and other associated resource concerns. Manure may be imported.

Before Situation:
Agricultural producer has no plan or minimal knowledge for the application and management of nutrients. The producer currently manages nutrient application based upon personal knowledge, or other local criteria. Producer is interested in management of nutrients to maximize yields, improve profit margins, reduce costs, and for environmental benefit. Producer is willing to collaborate with a certified TSP to develop a plan.

After Situation:

After EQIP contract approval, participant has obtained services from a certified TSP for development of the Nutrient Management conservation activity plan consistent with the criteria in DIA 157 and 590 Nutrient Management. The DIA criteria requires the plan to meet quality criteria for Soils, Water Quality and Air Quality resource concerns and other applicable resource concerns and provides for opportunities to manage nutrients for plant production and address offsite movement of nutrients. The design may include recommendations for associated conservation practices which address other related resource concerns. Meets the basic quality criteria for the DIA 157 as cited in the NRCS Field Office Technical Guide and CPS 590 Nutrient Management.

Feature Measure: Number

Scenario Unit: Number

Scenario Typical Size: 1.00
Scenario Total Cost: \$9,223.35

Scenario Cost/Unit: \$9,223.35
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding,	Hours	\$108.51	85	\$9,223.35

Practice: 158 - Feed Management Design

Scenario: \#13-Feed Management Plan

Scenario Description:

The owner/operator of an Animal Feeding Operation (AFO) has not received a written Feed Management Plan that addresses all resource concerns present on the facility. Various levels of management and conservation implementation has occurred in the operation. Little documentation of the methods of feed management used and practices installed exists, and the producer is not likely to developed a complete forage inventory or nutrient analysis. The producer may or may not have a conservation plan or a nutrient management plan. Nutrient management related resource concerns on the operation remain to be addressed through the development of a complete activity plan including management and conservation practices for proper quantity and quality of available nutrients, feedstuffs, and/or additives fed to livestock or poultry that may be present on the operation. Present operation and feed methodology poses risk of feeding excessive amounts of nutrients in animal manure which result in negative impacts to water quality and odor resource concerns. Negative water and air quality impacts as well as farmstead safety and security issues may remain on the AFO, and inadequate record-keeping nutrient, inspection and monitoring of the existing operation may need further improvement.

Before Situation:

Producer does not have a plan or has limited knowledge of management of feed, nutrients, feedstuffs, or nutritional additives provided to domestic livestock and poultry. The producer currently manages feed without a plan which would address livestock production limitations and water and air quality resource concern impacts. Producer currently lacks plan to provide proper balance of forage, grains or other feeds and supplements to assure domestic animal nutritional needs are met without negatively impacting water and air quality. Producer is interested in management of feed for domestic animals to maximize profit margin, reduce costs, improve or address livestock production opportunities, and for other environmental benefits. Producer is willing to collaborate with a certified Technical Service Provider (TSP) to develop a plan, and to collect/coordinate data and records to determine current nutritional needs. Associated Practice(s): 590-Nutrient Management

After Situation:

Participant has obtained services from a certified TSP for development of the Feed Management plan (CAP). The criteria requires the plan to meet quality criteria for applicable natural resource concerns and provides for opportunities to identify and implement conservation practices related to management of feed, forages, or delivery of supplements to maximize efficient feeding operations and livestock growth. The plan may serve as the basis for implementation of the primary conservation practice 592 - Feed Management. If applicable, the plan may also be developed to complement Comprehensive Nutrient Management Plans (CNMP) or to help meet requirements of NRCS practice standard 590 - Nutrient Management. The plan may include recommendations for addressing associated natural resource concerns with other conservation practices.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00

Scenario Total Cost:	$\$ 4,340.40$
Scenario Cost/Unit:	$\$ 4,340.40$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding,	Hours	\$108.51	40	\$4,340.40

physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.

Practice: 159-Grazing Management Design
Scenario: \#109 - Design and Implementation Activities for Grazed Lands <100 acres

Scenario Description:

Design and implementation activities for agricultural operation with less than 100 acres grazed land. The following natural resource concerns will be addressed: Soil erosion, water quality, fish and wildlife, plant condition, and all other appropriate resource concerns.

Before Situation:
Producer has no plan or limited knowledge of conservation practices to effectively manage livestock or other animals on grazed land resources. The producer currently manages animals without a plan or implemented conservation practices to address identified natural resource concerns. Producer is interested in management of animals and implementing conservation practices to maximize profit margins, reduce costs, improve or address wildlife opportunities, and for other environmental benefit. Producer is willing to collaborate with a certified TSP to design and implement a plan and/or conservation practices to meet resource concerns. In addition to the Prescribed Grazing Plan (CPS 528) practice, other associated conservation practices standards maybe designed and implemented to meet resource concerns identified in the Conservation Planning Activity (CPA) for grazed lands.

After Situation:

After EQIP contract approval, participant has obtained services from a certified TSP for development of the Grazing Management DIA. The DIA criteria requires the design and implementation of grazing activities as a component of the CPA to address resouce concerns and to meet criteria for applicable conservation practices including practices such as: Prescribed Grazing Management (528), Brush Management (314), Fencing (382), Forage Harvest Management (511), Grazing Land Mechanical Treatment (548), Herbaceous Weed Treatment (315), Pasture and Hay Planting (512), Range Planting (550), and any additional conservation practices which address other related resource concerns. The DIA meets the basic quality criteria for the 159 plan as cited in the NRCS Field Office Technical Guide.

Feature Measure: 1

Scenario Unit: Number

Scenario Typical Size: 1.00

Scenario Total Cost: \$1,672.64
Scenario Cost/Unit: \$1,672.64

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, range conservation	1299	Conservation Activity Plan labor to study, plan the use and management of rangelands to maximize their use in a sustainable manner. Range managers may inventory soils, plants, and animals; develop resource management plans; identify monitoring methods and collect data using those methods to determine if resource management objectives are being met or if adjustments to management activities are needed. For example, they may help ranchers attain optimum livestock production by determining the number and kind of animals to graze, the grazing system to use, and the best season for grazing. Cost associated with this component includes overhead and benefits (market price).	Hours	\$104.54	16	\$1,672.64

Practice: 159-Grazing Management Design
Scenario: \#125-Design and Implementation Activities for Grazed Lands 101 to 500 acres

Scenario Description:

Design and implementation activities for an agricultural operation with 101 to 500 acres grazed land. The following natural resource concerns will be addressed: soil erosion, water quality, fish and wildlife, plant condition, and all other appropriate resource concerns.

Before Situation:
Producer has no plan or limited knowledge of conservation practices to effectively manage livestock or other animals on grazed land resources. The producer currently manages animals without a plan or implemented conservation practices to address identified natural resource concerns. Producer is interested in management of animals and implementing conservation practices to maximize profit margins, reduce costs, improve or address wildlife opportunities, and for other environmental benefit. Producer is willing to collaborate with a certified TSP to design and implement a plan and/or conservation practices to meet resource concerns. In addition to the Prescribed Grazing Plan (CPS 528) practice, other associated conservation practices standards maybe designed and implemented to meet resource concerns identified in the Conservation Planning Activity (CPA) for grazed lands.

After Situation:

After EQIP contract approval, participant has obtained services from a certified TSP for development of the Grazing Management DIA. The DIA criteria requires the design and implementation of grazing activities as a component of the CPA to address resouce concerns and to meet criteria for applicable conservation practices including practices such as: Prescribed Grazing Management (528), Brush Management (314), Fencing (382), Forage Harvest Management (511), Grazing Land Mechanical Treatment (548), Herbaceous Weed Treatment (315), Pasture and Hay Planting (512), Range Planting (550), and any additional conservation practices which address other related resource concerns. The DIA meets the basic quality criteria for the 159 plan as cited in the NRCS Field Office Technical Guide.

Feature Measure: 1

Scenario Unit: Number

Scenario Typical Size: 1.00

Scenario Total Cost:	$\$ 2,090.80$
Scenario Cost/Unit:	$\$ 2,090.80$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, range conservation	1299	Conservation Activity Plan labor to study, plan the use and management of rangelands to maximize their use in a sustainable manner. Range managers may inventory soils, plants, and animals; develop resource management plans; identify monitoring methods and collect data using those methods to determine if resource management objectives are being met or if adjustments to management activities are needed. For example, they may help ranchers attain optimum livestock production by determining the number and kind of animals to graze, the grazing system to use, and the best season for grazing. Cost associated with this component includes overhead and benefits (market price).	Hours	\$104.54	20	\$2,090.80

Practice: 159-Grazing Management Design
Scenario: \#141 - Design and Implementation Activities for Grazed Lands 501 to 1,500 acres

Scenario Description:

Design and implementation activities for agricultural operation with 501 to 1,500 acres grazed land. The following natural resource concerns will be addressed: soil erosion, water quality, fish and wildlife, plant condition, and all other appropriate resource concerns.

Before Situation:
Producer has no plan or limited knowledge of conservation practices to effectively manage livestock or other animals on grazed land resources. The producer currently manages animals without a plan or implemented conservation practices to address identified natural resource concerns. Producer is interested in management of animals and implementing conservation practices to maximize profit margins, reduce costs, improve or address wildlife opportunities, and for other environmental benefit. Producer is willing to collaborate with a certified TSP to design and implement a plan and/or conservation practices to meet resource concerns. In addition to the Prescribed Grazing Plan (CPS 528) practice, other associated conservation practices standards maybe designed and implemented to meet resource concerns identified in the Conservation Planning Activity (CPA) for grazed lands.

After Situation:

After EQIP contract approval, participant has obtained services from a certified TSP for development of the Grazing Management DIA. The DIA criteria requires the design and implementation of grazing activities as a component of the CPA to address resource concerns and to meet criteria for applicable conservation practices including practices such as: Prescribed Grazing Management (528), Brush Management (314), Fencing (382), Forage Harvest Management (511), Grazing Land Mechanical Treatment (548), Herbaceous Weed Treatment (315), Pasture and Hay Planting (512), Range Planting (550), and any additional conservation practices which address other related resource concerns. The DIA meets the basic quality criteria for the 159 plan as cited in the NRCS Field Office Technical Guide.

Feature Measure: 1

Scenario Unit: Number
Scenario Typical Size: 1.00

Scenario Total Cost:	$\$ 2,508.96$

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, range conservation	1299	Conservation Activity Plan labor to study, plan the use and management of rangelands to maximize their use in a sustainable manner. Range managers may inventory soils, plants, and animals; develop resource management plans; identify monitoring methods and collect data using those methods to determine if resource management objectives are being met or if adjustments to management activities are needed. For example, they may help ranchers attain optimum livestock production by determining the number and kind of animals to graze, the grazing system to use, and the best season for grazing. Cost associated with this component includes overhead and benefits (market price).	Hours	\$104.54	24	\$2,508.96

Practice: 159-Grazing Management Design
Scenario: \#157 - Design and Implementation Activities for Grazed Lands 1,501 to 5,000 acres

Scenario Description:

Design and implementation activity for an agricultural operation with 1,501 to 5,000 acres grazed land. The following natural resource concerns will be addressed: Soil erosion, water quality, fish and wildlife, plant condition, and all other appropriate resource concerns.

Before Situation:
Producer has no plan or limited knowledge of conservation practices to effectively manage livestock or other animals on grazed land resources. The producer currently manages animals without a plan or implemented conservation practices to address identified natural resource concerns. Producer is interested in management of animals and implementing conservation practices to maximize profit margins, reduce costs, improve or address wildlife opportunities, and for other environmental benefit. Producer is willing to collaborate with a certified TSP to design and implement a plan and/or conservation practices to meet resource concerns. In addition to the Prescribed Grazing Plan (CPS 528) practice, other associated conservation practices standards maybe designed and implemented to meet resource concerns identified in the Conservation Planning Activity (CPA) for grazed lands.

After Situation:

After EQIP contract approval, participant has obtained services from a certified TSP for development of the Grazing Management DIA. The DIA criteria requires the design and implementation of grazing activities as a component of the CPA to address resource concerns and to meet criteria for applicable conservation practices including practices such as: Prescribed Grazing Management (528), Brush Management (314), Fencing (382), Forage Harvest Management (511), Grazing Land Mechanical Treatment (548), Herbaceous Weed Treatment (315), Pasture and Hay Planting (512), Range Planting (550), and any additional conservation practices which address other related resource concerns. The DIA meets the basic quality criteria for the 159 plan as cited in the NRCS Field Office Technical Guide.

Feature Measure: 1

Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 2,927.12$
Scenario Cost/Unit: \$2,927.12

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, range conservation	1299	Conservation Activity Plan labor to study, plan the use and management of rangelands to maximize their use in a sustainable manner. Range managers may inventory soils, plants, and animals; develop resource management plans; identify monitoring methods and collect data using those methods to determine if resource management objectives are being met or if adjustments to management activities are needed. For example, they may help ranchers attain optimum livestock production by determining the number and kind of animals to graze, the grazing system to use, and the best season for grazing. Cost associated with this component includes overhead and benefits (market price).	Hours	\$104.54	28	\$2,927.12

Practice: 159-Grazing Management Design
Scenario: \#173 - Design and Implementation Activities for Grazed Lands 5,001 to 10,000 acres

Scenario Description:

Design and implementation activities for an agricultural operation with 5,001 to 10,000 acres grazed land. The following natural resource concerns will be addressed: soil erosion, water quality, fish and wildlife, plant condition, and all other appropriate resource concerns.

Before Situation:
Producer has no plan or limited knowledge of conservation practices to effectively manage livestock or other animals on grazed land resources. The producer currently manages animals without a plan or implemented conservation practices to address identified natural resource concerns. Producer is interested in management of animals and implementing conservation practices to maximize profit margins, reduce costs, improve or address wildlife opportunities, and for other environmental benefit. Producer is willing to collaborate with a certified TSP to design and implement a plan and/or conservation practices to meet resource concerns. In addition to the Prescribed Grazing Plan (CPS 528) practice, other associated conservation practices standards maybe designed and implemented to meet resource concerns identified in the Conservation Planning Activity (CPA) for grazed lands.

After Situation:

After EQIP contract approval, participant has obtained services from a certified TSP for development of the Grazing Management DIA. The DIA criteria requires the design and implementation of grazing activities as a component of the CPA to address resouce concerns and to meet criteria for applicable conservation practices including practices such as: Prescribed Grazing Management (528), Brush Management (314), Fencing (382), Forage Harvest Management (511), Grazing Land Mechanical Treatment (548), Herbaceous Weed Treatment (315), Pasture and Hay Planting (512), Range Planting (550), and any additional conservation practices which address other related resource concerns. The DIA meets the basic quality criteria for the 159 plan as cited in the NRCS Field Office Technical Guide.

Feature Measure: 1

Scenario Unit: Number

Scenario Typical Size: 1.00

Scenario Total Cost:	$\$ 3,345.28$
Scenario Cost/Unit:	$\$ 3,345.28$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, range conservation	1299	Conservation Activity Plan labor to study, plan the use and management of rangelands to maximize their use in a sustainable manner. Range managers may inventory soils, plants, and animals; develop resource management plans; identify monitoring methods and collect data using those methods to determine if resource management objectives are being met or if adjustments to management activities are needed. For example, they may help ranchers attain optimum livestock production by determining the number and kind of animals to graze, the grazing system to use, and the best season for grazing. Cost associated with this component includes overhead and benefits (market price).	Hours	\$104.54	32	\$3,345.28

Practice: 159-Grazing Management Design
Scenario: \#189 - Design and Implementation Activities for Grazed Lands >10,000 acres

Scenario Description:

Design and implementation activities for an agricultural operation with greater than 10,000 acres grazed land. The following natural resource concerns will be addressed: soil erosion, water quality, fish and wildlife, plant condition, and all other appropriate resource concerns.

Before Situation:
Producer has no plan or limited knowledge of conservation practices to effectively manage livestock or other animals on grazed land resources. The producer currently manages animals without a plan or implemented conservation practices to address identified natural resource concerns. Producer is interested in management of animals and implementing conservation practices to maximize profit margins, reduce costs, improve or address wildlife opportunities, and for other environmental benefit. Producer is willing to collaborate with a certified TSP to design and implement a plan and/or conservation practices to meet resource concerns. In addition to the Prescribed Grazing Plan (CPS 528) practice, other associated conservation practices standards maybe designed and implemented to meet resource concerns identified in the Conservation Planning Activity (CPA) for grazed lands.

After Situation:

After EQIP contract approval, participant has obtained services from a certified TSP for development of the Grazing Management DIA. The DIA criteria requires the design and implementation of grazing activities as a component of the CPA to address resource concerns and to meet criteria for applicable conservation practices including practices such as: Prescribed Grazing Management (528), Brush Management (314), Fencing (382), Forage Harvest Management (511), Grazing Land Mechanical Treatment (548), Herbaceous Weed Treatment (315), Pasture and Hay Planting (512), Range Planting (550), and any additional conservation practices which address other related resource concerns. The DIA meets the basic quality criteria for the 159 plan as cited in the NRCS Field Office Technical Guide.

Feature Measure: 1

Scenario Unit: Number
Scenario Typical Size: 1.00

Scenario Total Cost:	$\$ 3,763.44$
Scenario Cost/Unit:	$\$ 3,763.44$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, range conservation	1299	Conservation Activity Plan labor to study, plan the use and management of rangelands to maximize their use in a sustainable manner. Range managers may inventory soils, plants, and animals; develop resource management plans; identify monitoring methods and collect data using those methods to determine if resource management objectives are being met or if adjustments to management activities are needed. For example, they may help ranchers attain optimum livestock production by determining the number and kind of animals to graze, the grazing system to use, and the best season for grazing. Cost associated with this component includes overhead and benefits (market price).	Hours	\$104.54	36	\$3,763.44

Practice: 160 - Prescribed Burning Design
Scenario: \#13 - Prescribed Burning Plan DIA less than or equal to 20 acres
Scenario Description:
Non Industrial Private Forest Land, Pasture or Range Land typically less than or equal to 20 acres in size and is dominated by fire tolerant species that are competing with undesirable vegetation and accumulating fuel load. Natural Resource Concern: Fish and Wildlife; Soil Erosion; Soil Condition; Water Quality; Plant Condition.
Before Situation:
Producer has no existing plan or an obsolete plan that is insufficient for current stand condition. A Prescribed Burning Plan or DIA is needed to enable the producer to apply for financial assistance through EQIP or other financial assistance programs in order to implement needed conservation practices. Associated Practices: 394, 383, 384, 528, 314, 315, 550, 644, 645, 659, 342, 647, 460, 643, 666, 595

After Situation:

After EQIP contract approval, participant has obtained services from a certified Technical Service Provider (TSP) for development of the Prescribed Burning DIA. The DIA criteria require the plan to identify approved Field Office Technical Guide conservation practices where needed to address identified resource concerns. The Prescribed Burning Plan DIA is not considered a Forest Management Plan, a Reforestation Plan, a Forest Harvest Plan, or a Prescribed Grazing Plan, but should complement the needs of those plans if they exist and if desired by the decision maker. The DIA plan will fully describe all aspects of the prescribed burn including, but not limited to objectives of the burn (i.e., site preparation, wildlife habitat, etc.), site conditions (i.e., fuel load, fuel type, etc.), implementation strategies (i.e., method of ignition, number of persons required, equipment needs, etc.), tolerable weather parameters (i.e., wind direction, relative humidity, mixing height, etc.) and identification of Smoke Sensitive Areas. Additional DIA plan criteria are detailed in the Field Office Technical Guide and potentially state developed technical criteria.

Feature Measure: 1

Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$1,268.85
Scenario Cost/Unit: \$1,268.85
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, forester	1302	Conservation Activity Plan labor to manage nonindustrial private forest lands for conservation, economic, and recreational purposes. Will inventory the type, amount, and location of standing timber and appraise the timber's condition. Will determine how to conserve wildlife habitats, improve water quality and soil stability, and how best to comply with environmental regulations. May devise plans for planting and growing new trees, monitoring trees for healthy growth, determining optimal thinning schedules, and increasing carbon capture and storage.	Hours	\$84.59	15	\$1,268.85

Practice: 160 - Prescribed Burning Design
Scenario: \#29-Prescribed Burning Plan (DIA) greater than 1,000 acres
Scenario Description:
Non Industrial Private Forest Land, Pasture or Range Land typically greater than 1,000 acres in size and is dominated by fire tolerant species that are competing with undesirable vegetation and accumulating fuel load. Natural Resource Concern: Fish and Wildlife; Soil Erosion; Soil Condition; Water Quality; Plant Condition.

Before Situation:

Producer has no existing plan or an obsolete plan that is insufficient for current stand condition. A Prescribed Burning Plan or DIA is needed to enable the producer to apply for financial assistance through EQIP or other financial assistance programs in order to implement needed conservation practices. Associated Practices: 394, 383, $384,528,314,315,550,644,645,659,342,647,460,643,666,595$

After Situation:

After EQIP contract approval, participant has obtained services from a certified Technical Service Provider (TSP) for development of the Prescribed Burning Plan (DIA). The DIA criteria require the plan to identify approved Field Office Technical Guide conservation practices where needed to address identified resource concerns. The Prescribed Burning Plan DIA is not considered a Forest Management Plan, a Reforestation Plan, a Forest Harvest Plan, or a Prescribed Grazing Plan, but should complement the needs of those plans if they exist and if desired by the decision maker. The DIA plan will fully describe all aspects of the prescribed burn including, but not limited to objectives of the burn (i.e., site preparation, wildlife habitat, etc.), site conditions (i.e., fuel load, fuel type, etc.), implementation strategies (i.e., method of ignition, number of persons required, equipment needs, etc.), tolerable weather parameters (i.e., wind direction, relative humidity, mixing height, etc.) and identification of Smoke Sensitive Areas. Additional DIA plan criteria are detailed in the Field Office Technical Guide and potentially state developed technical criteria.

Feature Measure: 1

Scenario Unit: Number

Scenario Typical Size: 1.00
Scenario Total Cost: \$5,075.40
Scenario Cost/Unit: \$5,075.40
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, forester	1302	Conservation Activity Plan labor to manage nonindustrial private forest lands for conservation, economic, and recreational purposes. Will inventory the type, amount, and location of standing timber and appraise the timber's condition. Will determine how to conserve wildlife habitats, improve water quality and soil stability, and how best to comply with environmental regulations. May devise plans for planting and growing new trees, monitoring trees for healthy growth, determining optimal thinning schedules, and increasing carbon capture and storage.	Hours	\$84.59	60	\$5,075.40

Practice: 160 - Prescribed Burning Design
Scenario: \#45-Prescribed Burning Plan-DIA greater than 501 acres and less than 1,000 acres

Scenario Description:

Non Industrial Private Forest Land, Pasture or Range Land typically greater than 501 acres and less than 1,000 acres in size and is dominated by fire tolerant species that are competing with undesirable vegetation and accumulating fuel load. Natural Resource Concern: Fish and Wildlife; Soil Erosion; Soil Condition; Water Quality; Plant Condition.

Before Situation:

Producer has no existing plan or an obsolete plan that is insufficient for current stand condition. A Prescribed Burning Plan or DIA is needed to enable the producer to apply for financial assistance through EQIP or other financial assistance programs in order to implement needed conservation practices. Associated Practices: 394, 383, $384,528,314,315,550,644,645,659,342,647,460,643,666,595$

After Situation:

After EQIP contract approval, participant has obtained services from a certified Technical Service Provider (TSP) for development of the Prescribed Burning Plan DIA. The DIA criteria require the plan to identify approved Field Office Technical Guide conservation practices where needed to address identified resource concerns. The Prescribed Burning Plan DIA is not considered a Forest Management Plan, a Reforestation Plan, a Forest Harvest Plan, or a Prescribed Grazing Plan, but should complement the needs of those plans if they exist and if desired by the decision maker. The DIA plan will fully describe all aspects of the prescribed burn including, but not limited to objectives of the burn (i.e., site preparation, wildlife habitat, etc.), site conditions (i.e., fuel load, fuel type, etc.), implementation strategies (i.e., method of ignition, number of persons required, equipment needs, etc.), tolerable weather parameters (i.e., wind direction, relative humidity, mixing height, etc.) and identification of Smoke Sensitive Areas. Additional DIA plan criteria are detailed in the Field Office Technical Guide and potentially state developed technical criteria.

Feature Measure: 1
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 3,383.60$
Scenario Cost/Unit: \$3,383.60

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, forester	1302	Conservation Activity Plan labor to manage nonindustrial private forest lands for conservation, economic, and recreational purposes. Will inventory the type, amount, and location of standing timber and appraise the timber's condition. Will determine how to conserve wildlife habitats, improve water quality and soil stability, and how best to comply with environmental regulations. May devise plans for planting and growing new trees, monitoring trees for healthy growth, determining optimal thinning schedules, and increasing carbon capture and storage.	Hours	\$84.59	40	\$3,383.60

Practice: 160 - Prescribed Burning Design
Scenario: \#61 - Prescribed Burning Plan -DIA greater than 251 acres and less than 500 acres

Scenario Description:

Non Industrial Private Forest Land, Pasture or Range Land typically greater than 251 acres and less than 500 acres in size and is dominated by fire tolerant species that are competing with undesirable vegetation and accumulating fuel load. Natural Resource Concern: Fish and Wildlife; Soil Erosion; Soil Condition; Water Quality; Plant Condition.

Before Situation:
Producer has no existing plan or an obsolete plan that is insufficient for current stand condition. A Prescribed Burning Plan or DIA is needed to enable the producer to apply for financial assistance through EQIP or other financial assistance programs in order to implement needed conservation practices. Associated Practices: 394, 383, 384, 528, 314, 315, 550, 644, 645, 659, 342, 647, 460, 643, 666, 595

After Situation:

After EQIP contract approval, participant has obtained services from a certified Technical Service Provider (TSP) for development of the Prescribed Burning Plan or DIA. The DIA criteria require the plan to identify approved Field Office Technical Guide conservation practices where needed to address identified resource concerns. The Prescribed Burning Plan DIA is not considered a Forest Management Plan, a Reforestation Plan, a Forest Harvest Plan, or a Prescribed Grazing Plan, but should complement the needs of those plans if they exist and if desired by the decision maker. The DIA plan will fully describe all aspects of the prescribed burn including, but not limited to objectives of the burn (i.e., site preparation, wildlife habitat, etc.), site conditions (i.e., fuel load, fuel type, etc.), implementation strategies (i.e., method of ignition, number of persons required, equipment needs, etc.), tolerable weather parameters (i.e., wind direction, relative humidity, mixing height, etc.) and identification of Smoke Sensitive Areas. Additional DIA plan criteria are detailed in the Field Office Technical Guide and potentially state developed technical criteria.

Feature Measure: 1

Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 2,537.70$
Scenario Cost/Unit: \$2,537.70

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, forester	1302	Conservation Activity Plan labor to manage nonindustrial private forest lands for conservation, economic, and recreational purposes. Will inventory the type, amount, and location of standing timber and appraise the timber's condition. Will determine how to conserve wildlife habitats, improve water quality and soil stability, and how best to comply with environmental regulations. May devise plans for planting and growing new trees, monitoring trees for healthy growth, determining optimal thinning schedules, and increasing carbon capture and storage.	Hours	\$84.59	30	\$2,537.70

Practice: 160 - Prescribed Burning Design
Scenario: \#77-Prescribed Burning Plan (DIA) greater than 101 acres and less than 250 acres
Scenario Description:
Non Industrial Private Forest Land, Pasture or Range Land typically greater that 101 acres in size and less than 250 acres and is dominated by fire tolerant species that are competing with undesirable vegetation and accumulating fuel load. Natural Resource Concern: Fish and Wildlife; Soil Erosion; Soil Condition; Water Quality; Plant Condition.

Before Situation:
Producer has no existing plan or an obsolete plan that is insufficient for current stand condition. A Prescribed Burning Plan or DIA is needed to enable the producer to apply for financial assistance through EQIP or other financial assistance programs in order to implement needed conservation practices. Associated Practices: 394, 383, $384,528,314,315,550,644,645,659,342,647,460,643,666,595$

After Situation:

After EQIP contract approval, participant has obtained services from a certified Technical Service Provider (TSP) for development of the Prescribed Burning Plan DIA. The DIA criteria require the plan to identify approved Field Office Technical Guide conservation practices where needed to address identified resource concerns. The Prescribed Burning Plan DIA is not considered a Forest Management Plan, a Reforestation Plan, a Forest Harvest Plan, or a Prescribed Grazing Plan, but should complement the needs of those plans if they exist and if desired by the decision maker. The DIA plan will fully describe all aspects of the prescribed burn including, but not limited to objectives of the burn (i.e., site preparation, wildlife habitat, etc.), site conditions (i.e., fuel load, fuel type, etc.), implementation strategies (i.e., method of ignition, number of persons required, equipment needs, etc.), tolerable weather parameters (i.e., wind direction, relative humidity, mixing height, etc.) and identification of Smoke Sensitive Areas. Additional DIA plan criteria are detailed in the Field Office Technical Guide and potentially state developed technical criteria.

Feature Measure: 1

Scenario Unit: Number

Scenario Typical Size: 1.00

Scenario Total Cost: $\$ 2,114.75$
Scenario Cost/Unit: \$2,114.75

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, forester	1302	Conservation Activity Plan labor to manage nonindustrial private forest lands for conservation, economic, and recreational purposes. Will inventory the type, amount, and location of standing timber and appraise the timber's condition. Will determine how to conserve wildlife habitats, improve water quality and soil stability, and how best to comply with environmental regulations. May devise plans for planting and growing new trees, monitoring trees for healthy growth, determining optimal thinning schedules, and increasing carbon capture and storage.	Hours	\$84.59	25	\$2,114.75

Practice: 160 - Prescribed Burning Design
Scenario: \#93 - Prescribed Burning Plan (DIA) greater than 21 acres and less than 100 acres

Scenario Description:

Non Industrial Private Forest Land, Pasture or Range Land typically greater than 21 acres and less than 100 acres in size and is dominated by fire tolerant species that are competing with undesirable vegetation and accumulating fuel load. Natural Resource Concern: Fish and Wildlife; Soil Erosion; Soil Condition; Water Quality; Plant Condition.

Before Situation:
Producer has no existing plan or an obsolete plan that is insufficient for current stand condition. A Prescribed Burning Plan or DIA is needed to enable the producer to apply for financial assistance through EQIP or other financial assistance programs in order to implement needed conservation practices. Associated Practices: 394, 383, $384,528,314,315,550,644,645,659,342,647,460,643,666,595$

After Situation:

After EQIP contract approval, participant has obtained services from a certified Technical Service Provider (TSP) for development of the Prescribed Burning Plan or DIA. The DIA criteria require the plan to identify approved Field Office Technical Guide conservation practices where needed to address identified resource concerns. The Prescribed Burning Plan DIA is not considered a Forest Management Plan, a Reforestation Plan, a Forest Harvest Plan, or a Prescribed Grazing Plan, but should complement the needs of those plans if they exist and if desired by the decision maker. The DIA plan will fully describe all aspects of the prescribed burn including, but not limited to objectives of the burn (i.e., site preparation, wildlife habitat, etc.), site conditions (i.e., fuel load, fuel type, etc.), implementation strategies (i.e., method of ignition, number of persons required, equipment needs, etc.), tolerable weather parameters (i.e., wind direction, relative humidity, mixing height, etc.) and identification of Smoke Sensitive Areas. Additional DIA plan criteria are detailed in the Field Office Technical Guide and potentially state developed technical criteria.

Feature Measure: 1

Scenario Unit: Number

Scenario Typical Size: 1.00

Scenario Total Cost: $\$ 1,691.80$
Scenario Cost/Unit: \$1,691.80

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, forester	1302	Conservation Activity Plan labor to manage nonindustrial private forest lands for conservation, economic, and recreational purposes. Will inventory the type, amount, and location of standing timber and appraise the timber's condition. Will determine how to conserve wildlife habitats, improve water quality and soil stability, and how best to comply with environmental regulations. May devise plans for planting and growing new trees, monitoring trees for healthy growth, determining optimal thinning schedules, and increasing carbon capture and storage.	Hours	\$84.59	20	\$1,691.80

Practice: 161 - Pest Management Conservation System Design
Scenario: \#13-High Complexity, 5+ CPS

Scenario Description:

Agricultural operation where producer will implement high complexity conservation practices and PAMS activities as part of an overall Pest Management Conservation System. Natural resources relating to CPS 595 Pest Management Conservation System will be addressed. Will address resource concerns with 5 or more, high complexity conservation practices and/or PAMS activities.

Before Situation:

Agricultural operation currently managed using few pest management strategies. The producer will collaborate with a certified TSP to develop implementation requirements and/or designs and specifications for all conservation practices and PAMS activities to address resource concerns. High complexity conservation practices may include: prescribed grazing, irrigation water management, diverse conservation plantings and complex practices for such as Agrichemical Handling Facility and Vegetated Treatment Area. High Complexity PAMS activities include: field sanitation , intensive scouting etc.

After Situation:

After NRCS program contract is approved, participant will obtain services from a certified TSP to develop the required implementation requirements and/or designs and specifications for all conservation practices required to address resource concerns. All practices installed according to field office technical guide requirements. PAMS activities according to IPM plan and Land Grant University guidelines. Implementation requirements, designs and specifications all complete.

Feature Measure: Number

Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 8,409.84$
Scenario Cost/Unit: $\$ 8,409.84$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding, physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.	Hours	\$108.51	40	\$4,340.40
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	40	\$3,432.80
Cap Labor, Survey and Mapping Technician	1591	Conservation Activity Plan labor to perform surveying and mapping duties, usually under the direction of an engineer, surveyor, cartographer, or photogrammetrist to obtain data used for construction, mapmaking, boundary location, mining, or other purposes. May calculate mapmaking information and create maps from source data, such as surveying notes, aerial photography, satellite data, or other maps to show topographical features, political boundaries, and other features. May verify accuracy and completeness of maps.	Hours	\$62.48	8	\$499.84
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	4	\$136.80

Practice: 161 - Pest Management Conservation System Design
Scenario: \#29-High Complexity, 1-4 CPS

Scenario Description:

Agricultural operation where producer will implement high complexity conservation practices and PAMS activities as part of an overall Pest Management Conservation System. Natural resources relating to CPS 595 Pest Management Conservation System will be addressed. Will address resource concerns with $1-4$, high complexity conservation practices and/or PAMS activities.

Before Situation:

Agricultural operation currently managed using few pest management strategies. The producer will collaborate with a certified TSP to develop implementation requirements and/or designs and specifications for all conservation practices and PAMS activities to address resource concerns. High complexity conservation practices may include: prescribed grazing, irrigation water management, diverse conservation plantings and complex practices for such as Agrichemical Handling Facility and Vegetated Treatment Area. High Complexity PAMS activities include: field sanitation , intensive scouting etc.

After Situation:

After NRCS program contract is approved, participant will obtain services from a certified TSP to develop the required implementation requirements and/or designs and specifications for all conservation practices required to address resource concerns. All practices installed according to field office technical guide requirements. PAMS activities according to IPM plan and Land Grant University guidelines. Implementation requirements, designs and specifications all complete.

Feature Measure: Number

Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 6,821.00$
Scenario Cost/Unit: \$6,821.00

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding, physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.	Hours	\$108.51	32	\$3,472.32
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	32	\$2,746.24
Cap Labor, Survey and Mapping Technician	1591	Conservation Activity Plan labor to perform surveying and mapping duties, usually under the direction of an engineer, surveyor, cartographer, or photogrammetrist to obtain data used for construction, mapmaking, boundary location, mining, or other purposes. May calculate mapmaking information and create maps from source data, such as surveying notes, aerial photography, satellite data, or other maps to show topographical features, political boundaries, and other features. May verify accuracy and completeness of maps.	Hours	\$62.48	8	\$499.84
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	3	\$102.60

Practice: 161 - Pest Management Conservation System Design
Scenario: \#45-Low Complexity, 5+ CPS

Scenario Description:

Agricultural operation where producer will implement low complexity conservation practices and PAMS activities as part of an overall Pest Management Conservation System. Natural resources relating to CPS 595 Pest Management Conservation System will be addressed. Will address resource concerns with 5 or more, low complexity conservation practices.

Before Situation:

Agricultural operation currently managed using few pest management strategies. The producer will collaborate with a certified TSP to develop implementation requirements and/or designs and specifications for all conservation practices and PAMS activities to address resource concerns. Low complexity conservation practices may include: cover crop, crop rotation, reduced tillage, conservation plantings and minor structural practices for erosion control such as grass waterways and diversions. Low Complexity PAMS activities include: using pest resistant varieties, trap crops, scouting etc.

After Situation:

After NRCS program contract is approved, participant will obtain services from a certified TSP to develop the required implementation requirements and/or designs and specifications for all conservation practices required to address resource concerns. All practices installed according to field office technical guide requirements. PAMS activities according to IPM plan and Land Grant University guidelines. Implementation requirements, designs and specifications all complete.

Feature Measure: Number

Scenario Unit: Number

Scenario Typical Size: 1.00
Scenario Total Cost: $\quad \$ 4,800.72$
Scenario Cost/Unit: $\$ 4,800.72$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding, physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.	Hours	\$108.51	24	\$2,604.24
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	24	\$2,059.68
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	4	\$136.80

Practice: 161 - Pest Management Conservation System Design
Scenario: \#61-Low Complexity 1-4 CPS

Scenario Description:

Agricultural operation where producer will implement low complexity conservation practices and PAMS activities as part of an overall Pest Management Conservation System. Natural resources relating to CPS 595 Pest Management Conservation System will be addressed. Will address resource concerns with $1-4$, low complexity conservation practices.

Before Situation:

Agricultural operation currently managed using few pest management strategies. The producer will collaborate with a certified TSP to develop implementation requirements and/or designs and specifications for all conservation practices and PAMS activities to address resource concerns. Low complexity conservation practices may include: cover crop, crop rotation, reduced tillage, conservation plantings and minor structural practices for erosion control such as grass waterways and diversions. Low Complexity PAMS activities include: using pest resistant varieties, trap crops, scouting etc.

After Situation:

After NRCS program contract is approved, participant will obtain services from a certified TSP to develop the required implementation requirements and/or designs and specifications for all conservation practices required to address resource concerns. All practices installed according to field office technical guide requirements. PAMS activities according to IPM plan and Land Grant University guidelines. Implementation requirements, designs and specifications all complete.

Feature Measure: Number

Scenario Unit: Number

Scenario Typical Size: 1.00

Scenario Total Cost:	$\$ 3,211.88$
Scenario Cost/Unit:	$\$ 3,211.88$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding, physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.	Hours	\$108.51	16	\$1,736.16
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	16	\$1,373.12
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	3	\$102.60

Practice: 162 - Soil Health Management System Design
Scenario: \#13-Organic Crops + Livestock, <5
Scenario Description:
Evaluate soil health concerns and develop a transitional cropping management plan to improve overall soil health and address all 4 soil health principles. The plan includes management activities or land management practices associated with crop and forage production. The soil health management plan ensures that the purposes of crop and forage production and preservation of natural resources related to soil health are compatible. May simultaneously implement 216 Soil Health Testing CEMA to evaluate baseline soil health and inventory basic or additional soil health indicators. The plan is developed for up to 5 Soil Health Management Units (SHMU) for organic crops and livestock. A SHMU is 1 or more planning land units with similar soil type, land use, and management. A SHMU and can vary in size or acreage depending on soil texture, topography, and cropping system.

Before Situation:
Agricultural producer has been farming a system that has not addressed all 4 of the soil health principles. Producer has noticed yield declines, soil degradation, or is simply interested in learning more about soil health management. Producer has collaborated with a certified TSP to develop a written Soil Health Management Plan (116).

After Situation:

After EQIP contract approval, participant has obtained services from a certified TSP for development of the Soil Health Management Plan consistent with the criteria in DIA 162. The DIA criteria requires the plan address all 4 soil health principles. Meets the planning criteria for DIA 162 and facilitating soil health practices as referenced in FOTG.

Feature Measure: each

Scenario Unit: Number

Scenario Typical Size: 1.00
Scenario Total Cost: \$6,944.64

Scenario Cost/Unit: $\$ 6,944.64$
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding,	Hours	\$108.51	64	\$6,944.64

Practice: 162 - Soil Health Management System Design
Scenario: \#29-Crops, 5 or more

Scenario Description:

Evaluate soil health concerns and develop a transitional cropping management plan to improve overall soil health and address all 4 soil health principles. The plan includes management activities or land management practices associated with crop and forage production. The soil health management plan ensures that the purposes of crop and forage production and preservation of natural resources related to soil health are compatible. May simultaneously implement 216 Soil Health Testing CEMA to evaluate baseline soil health and inventory basic or additional soil health indicators. The plan is developed for more than 5 Soil Health Management Units (SHMU) for crops. A SHMU is 1 or more planning land units with similar soil type, land use, and management. A SHMU can vary in size or acreage depending on soil texture, topography, and cropping system.

Before Situation:
Agricultural producer has been farming a system that has not addressed all 4 of the soil health principles. Producer has noticed yield declines, soil degradation, or is simply interested in learning more about soil health management. Producer has a written conservation plan including core soil health practices or has collaborated with a certified TSP to develop a written Soil Health Management Plan (CPA 116).

After Situation:

After EQIP contract approval, participant has obtained services from a certified TSP for development of the Soil Health Management Plan consistent with the criteria in DIA 162. The DIA criteria requires the plan address all 4 soil health principles. Meets the planning criteria for DIA 162 and facilitating soil health practices as referenced in FOTG.

Feature Measure: each
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 4,991.46$
Scenario Cost/Unit: \$4,991.46

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding,	Hours	\$108.51	46	\$4,991.46

physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.

Practice: 162 - Soil Health Management System Design
Scenario: \#45-Crops + Livestock, 5 or more

Scenario Description:

Evaluate soil health concerns and develop a transitional cropping management plan to improve overall soil health and address all 4 soil health principles. The plan includes management activities or land management practices associated with crop and forage production. The soil health management plan ensures that the purposes of crop and forage production and preservation of natural resources related to soil health are compatible. May simultaneously implement 216 Soil Health Testing CEMA to evaluate baseline soil health and inventory basic or additional soil health indicators. The plan is developed for 5 or more Soil Health Management Units (SHMU) for crops and livestock. A SHMU is 1 or more planning land units with similar soil type, land use, and management. A SHMU can vary in size or acreage depending on soil texture, topography, and cropping system.

Before Situation:
Agricultural producer has been farming a system that has not addressed all 4 of the soil health principles. Producer has noticed yield declines, soil degradation, or is simply interested in learning more about soil health management. Producer has a written conservation plan including core soil health practices or has collaborated with a certified TSP to develop a written Soil Health Management Plan (CPA 116).

After Situation:

After EQIP contract approval, participant has obtained services from a certified TSP for development of the Soil Health Management Plan consistent with the criteria in DIA 162. The DIA criteria requires the plan address all 4 soil health principles. Meets the planning criteria for DIA 162 and facilitating soil health practices as referenced in FOTG.

Feature Measure: each
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 5,425.50$
Scenario Cost/Unit: \$5,425.50
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding,	Hours	\$108.51	50	\$5,425.50

physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.

United States Department of Agriculture

Practice: 162 - Soil Health Management System Design
Scenario: \#61-Small Farm

Scenario Description:

Evaluate soil health concerns and develop a transitional cropping management plan to improve overall soil health and address all 4 soil health principles. The plan includes management activities or land management practices associated with crop and forage production. The soil health management plan ensures that the purposes of crop and forage production and preservation of natural resources related to soil health are compatible. May simultaneously implement 216 Soil Health Testing CEMA to evaluate baseline soil health and inventory basic or additional soil health indicators. The plan is developed for a small farm operation of less than 10 acres.

Before Situation:
Agricultural producer has been farming a system that has not addressed all 4 of the soil health principles. Producer has noticed yield declines, soil degradation, or is simply interested in learning more about soil health management. Producer has collaborated with a certified TSP to develop a written Soil Health Management Plan (116).

After Situation:

After EQIP contract approval, participant has obtained services from a certified TSP for development of the Soil Health Management Plan consistent with the criteria in DIA 162. The DIA criteria requires the plan address all 4 soil health principles. Meets the planning criteria for DIA 162 and facilitating soil health practices as referenced in FOTG.

Feature Measure: each

Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 3,255.30$
Scenario Cost/Unit: \$3,255.30

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding,	Hours	\$108.51	30	\$3,255.30

Practice: 162 - Soil Health Management System Design
Scenario: \#77-Crops, <5

Scenario Description:

Evaluate soil health concerns and develop a transitional cropping management plan to improve overall soil health and address all 4 soil health principles. The plan includes management activities or land management practices associated with crop and forage production. The soil health management plan ensures that the purposes of crop and forage production and preservation of natural resources related to soil health are compatible. May simultaneously implement 216 Soil Health Testing CEMA to evaluate baseline soil health and inventory basic or additional soil health indicators. The plan is developed for fewer than 5 Soil Health Management Units (SHMU) for crops. A SHMU is 1 or more planning land units with similar soil type, land use, and management. A SHMU and can vary in size or acreage depending on soil texture, topography, and cropping system.

Before Situation:
Agricultural producer has been farming a system that has not addressed all 4 of the soil health principles. Producer has noticed yield declines, soil degradation, or is simply interested in learning more about soil health management. Producer has collaborated with a certified TSP to develop a written Soil Health Management Plan (116).

After Situation:

After EQIP contract approval, participant has obtained services from a certified TSP for development of the Soil Health Management Plan consistent with the criteria in DIA 162. The DIA criteria requires the plan address all 4 soil health principles. Meets the planning criteria for DIA 162 and facilitating soil health practices as referenced in FOTG.

Feature Measure: each

Scenario Unit: Number

Scenario Typical Size: 1.00
Scenario Total Cost: \$4,123.38
Scenario Cost/Unit: \$4,123.38
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding,	Hours	\$108.51	38	\$4,123.38

Practice: 162 - Soil Health Management System Design
Scenario: \#93-Organic Crops, <5

Scenario Description:

Evaluate soil health concerns and develop a transitional cropping management plan to improve overall soil health and address all 4 soil health principles. The plan includes management activities or land management practices associated with crop and forage production. The soil health management plan ensures that the purposes of crop and forage production and preservation of natural resources related to soil health are compatible. May simultaneously implement 216 Soil Health Testing CEMA to evaluate baseline soil health and inventory basic or additional soil health indicators. The plan is developed for fewer than 5 Soil Health Management Units (SHMU) for organic crops. A SHMU is 1 or more planning land units with similar soil type, land use, and management. A SHMU and can vary in size or acreage depending on soil texture, topography, and cropping system.

Before Situation:

Agricultural producer has been farming a system that has not addressed all 4 of the soil health principles. Producer has noticed yield declines, soil degradation, or is simply interested in learning more about soil health management. Producer has collaborated with a certified TSP to develop a written Soil Health Management Plan (CPA 116).

After Situation:

After EQIP contract approval, participant has obtained services from a certified TSP for development of the Soil Health Management Plan consistent with the criteria in DIA 162. The DIA criteria requires the plan address all 4 soil health principles. Meets the planning criteria for DIA 162 and facilitating soil health practices as referenced in FOTG.

Feature Measure: each

Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 4,774.44$

Scenario Cost/Unit: \$4,774.44
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding,	Hours	\$108.51	44	\$4,774.44

Practice: 162 - Soil Health Management System Design
Scenario: \#109-Crops + Livestock, <5

Scenario Description:

Evaluate soil health concerns and develop a transitional cropping management plan to improve overall soil health and address all 4 soil health principles. The plan includes management activities or land management practices associated with crop and forage production. The soil health management plan ensures that the purposes of crop and forage production and preservation of natural resources related to soil health are compatible. May simultaneously implement 216 Soil Health Testing CEMA to evaluate baseline soil health and inventory basic or additional soil health indicators. The plan is developed for fewer than 5 Soil Health Management Units (SHMU) for crops and livestock. A SHMU is 1 or more planning land units with similar soil type, land use, and management. A SHMU can vary in size or acreage depending on soil texture, topography, and cropping system.

Before Situation:
Agricultural producer has been farming a system that has not addressed all 4 of the soil health principles. Producer has noticed yield declines, soil degradation, or is simply interested in learning more about soil health management. Producer has a written conservation plan including core soil health practices or has collaborated with a certified TSP to develop a written Soil Health Management Plan (CPA 116).

After Situation:

After EQIP contract approval, participant has obtained services from a certified TSP for development of the Soil Health Management Plan consistent with the criteria in DIA 162. The DIA criteria requires the plan address all 4 soil health principles. Meets the planning criteria for DIA 162 and facilitating soil health practices as referenced in FOTG.

Feature Measure: each
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 4,340.40$
Scenario Cost/Unit: \$4,340.40

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding,	Hours	\$108.51	40	\$4,340.40

physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.

Practice: 162 - Soil Health Management System Design
Scenario: \#125-Organic Crops, 5 or more

Scenario Description:

Evaluate soil health concerns and develop a transitional cropping management plan to improve overall soil health and address all 4 soil health principles. The plan includes management activities or land management practices associated with crop and forage production. The soil health management plan ensures that the purposes of crop and forage production and preservation of natural resources related to soil health are compatible. May simultaneously implement 216 Soil Health Testing CEMA to evaluate baseline soil health and inventory basic or additional soil health indicators. The plan is developed for 5 or more Soil Health Management Units (SHMU) for organic crops. A SHMU is 1 or more planning land units with similar soil type, land use, and management. A SHMU can vary in size or acreage depending on soil texture, topography, and cropping system.

Before Situation:

Agricultural producer has been farming a system that has not addressed all 4 of the soil health principles. Producer has noticed yield declines, soil degradation, or is simply interested in learning more about soil health management. Producer has a written conservation plan including core soil health practices or has collaborated with a certified TSP to develop a written Soil Health Management Plan (CPA 116).

After Situation:

After EQIP contract approval, participant has obtained services from a certified TSP for development of the Soil Health Management Plan consistent with the criteria in DIA 162. The DIA criteria requires the plan address all 4 soil health principles. Meets the planning criteria for DIA 162 and facilitating soil health practices as referenced in FOTG.

Feature Measure: each
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 6,510.60$
Scenario Cost/Unit: $\$ 6,510.60$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding,	Hours	\$108.51	60	\$6,510.60

physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.

Practice: 162 - Soil Health Management System Design
Scenario: \#141- Organic Crops + Livestock, 5 or more

Scenario Description:

Evaluate soil health concerns and develop a transitional cropping management plan to improve overall soil health and address all 4 soil health principles. The plan includes management activities or land management practices associated with crop and forage production. The soil health management plan ensures that the purposes of crop and forage production and preservation of natural resources related to soil health are compatible. May simultaneously implement 216 Soil Health Testing CEMA to evaluate baseline soil health and inventory basic or additional soil health indicators. The plan is developed for 5 or more Soil Health Management Units (SHMU) for organic crops and livestock. A SHMU is 1 or more planning land units with similar soil type, land use, and management. A SHMU can vary in size or acreage depending on soil texture, topography, and cropping system.

Before Situation:
Agricultural producer has been farming a system that has not addressed all 4 of the soil health principles. Producer has noticed yield declines, soil degradation, or is simply interested in learning more about soil health management. Producer has a written conservation plan including core soil health practices or has collaborated with a certified TSP to develop a written Soil Health Management Plan (CPA 116).

After Situation:

After EQIP contract approval, participant has obtained services from a certified TSP for development of the Soil Health Management Plan consistent with the criteria in DIA 162. The DIA criteria requires the plan address all 4 soil health principles. Meets the planning criteria for DIA 162 and facilitating soil health practices as referenced in FOTG.

Feature Measure: each
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 8,680.80$
Scenario Cost/Unit: $\$ 8,680.80$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding,	Hours	\$108.51	80	\$8,680.80

physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.

Practice: 163 - Irrigation Water Management Design
Scenario: \#13-1-2 Designs - Without Pump Test

Scenario Description:

An agricultural producer wishes to address irrigation water use inefficiency and all other appropriate resource concerns through an EQIP contract with at least one (1) irrigation practice scenario. The pump for the irrigation system is of known performance and less then 3 years old. Each 'Design' indicates that new devices or components is closely related to other devices or components of the irrigation water management system even if numerous practices are contracted. The Irrigation Water Management DIA includes reviewing, and when needed, revising alternatives to address the identified concern(s). The Irrigation Water Management DIA documents: a) the client???s final decisions related to the associated irrigation practice scenarios; and b) design deliverables described in the associated NRCS Conservation Practice Statements of Work. Natural Resource Concern(s): Insufficient Water - Inefficient Irrigation Water Use; Water Quality Degradation - Excessive sediment in surface waters, Nutrients transported to surface and groundwater, pesticides transported to surface and groundwater, pathogens and chemicals from manure, and biosolids or compost applications transported to surface and groundwater, excess salts in surface and groundwater; Degraded Plant Condition - Undesirable plant productivity and health; Inefficient Energy Use - Equipment and facilities.

Before Situation:

Producer wants to improve irrigation water management on their agricultural operation to address insufficient water, water quality degradation, degraded plant condition, or inefficient energy use concerns. Producer intends to work with a certified TSP to develop designs to implement one or more practice scenarios to address identified resource concerns using the Irrigation Water Management DIA. The DIA 163 criteria incorporates recommended measures to address insufficient water, water quality degradation, degraded plant condition, or inefficient energy use concerns. Associated Practices: Code 449-Irrigation Water Management, Code 441-Irrigation System, Microirrigation, Code 442-Sprinkler System, Code 443-Irrigation System, Surface and Subsurface, Code 430-Irrigation Pipeline, Code 428-Irrigation Ditch Lining, Code 388-Irrigation Field Ditch, Code 320-Irrigation Canal or Lateral, Code 587-Structure for Water Control, Code 436-Irrigation Reservoir, Code 447-Irrigation and Drainage Tailwater Recovery, Code 533-Pumping Plant, Code 464-Irrigation Land Leveling, Code 450-Anionic Polyacrylamide (PAM) Application, Code 610-Saline and Sodic Soil Management, or other applicable practices in the NRCS Field Office Technical Guide.

After Situation:
The producer has obtained services from a certified TSP to develop practice scenario designs using the Irrigation Water Management DIA. The DIA 163 criteria include tasks needed to document the client???s decisions and design of conservation practices which address insufficient water, water quality degradation, degraded plant condition, or inefficient energy use. The Irrigation Water Management DIA meets the quality criteria for the DIA 164 activity as cited in the NRCS Field Office Technical Guide.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$7,006.56
Scenario Cost/Unit: \$7,006.56
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, small surveying crew	1296	Conservation Activity Plan labor to perform surveying and mapping duties, usually under the direction of an engineer, surveyor, cartographer, or photogrammetrist to obtain data used for construction, mapmaking, boundary location, mining, or other purposes. May calculate mapmaking information and create maps from source data, such as surveying notes, aerial photography, satellite data, or other maps to show topographical features, political boundaries, and other features. Cost associated with this component includes two man field crew, equipment, vehicle, overhead, and miscellaneous supplies.	Hours	\$122.89	8	\$983.12
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	40	\$4,268.80
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	8	\$686.56

Cap Labor, Survey and Mapping Technician	1591	Conservation Activity Plan labor to perform surveying and mapping duties, usually under the direction of an engineer, surveyor, cartographer, or photogrammetrist to obtain data used for construction, mapmaking, boundary location, mining, or other purposes. May calculate mapmaking information and create maps from source data, such as surveying notes, aerial photography, satellite data, or other maps to show topographical features, political boundaries, and other features. May verify accuracy and completeness of maps.	Hours	\$62.48	16	\$999.68
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	2	\$68.40

Practice: 163 - Irrigation Water Management Design
Scenario: \#29-3 or More Designs - Without Pump Test

Scenario Description:

An agricultural producer wishes to address irrigation water use inefficiency and all other appropriat resource concerns through an EQIP contract with multiple irrigation practice scenario. The pump for the irrigation system is of known performance and less then 3 years old. Each 'Design' indicates that new devices or components is closely related to other decives or components of the irrigation water management system even if numerous practices are contracted. The Irrigation Water Management DIA includes reviewing, and, when needed, revising alternatives to address the identified concern(s). The Irrigation Water Management DIA documents: a) the client???s final decisions related to the associated irrigation practice scenarios; and b) design deliverables described in the associated NRCS Conservation Practice Statements of Work. Natural Resource Concern(s): Insufficient Water - Inefficient Irrigation Water Use; Water Quality Degradation - Excessive sediment in surface waters, Nutrients transported to surface and groundwater, pesticides transported to surface and groundwater, pathogens and chemicals from manure, and biosolids or compost applications transported to surface and groundwater, excess salts in surface and groundwater; Degraded Plant Condition - Undesirable plant productivity and health; Inefficient Energy Use-Equipment and facilities.
Before Situation:
Producer wants to improve irrigation water management on their agricultural operation to address insufficient water, water quality degradation, degraded plant condition, or inefficient energy use concerns. Producer intends to work with a certified TSP to develop designs to implement one or more practice scenarios to address identified resource concerns using the Irrigation Water Management DIA. The DIA 163 criteria incorporates recommended measures to address insufficient water, water quality degradation, degraded plant condition, or inefficient energy use concerns. Associated Practices: Associated Practices: Code 449-Irrigation Water Management, Code 441-Irrigation System, Microirrigation, Code 442-Sprinkler System, Code 443-Irrigation System, Surface and Subsurface, Code 430-Irrigation Pipeline, Code 428Irrigation Ditch Lining, Code 388-Irrigation Field Ditch, Code 320-Irrigation Canal or Lateral, Code 587-Structure for Water Control, Code 436-Irrigation Reservoir, Code 447Irrigation and Drainage Tailwater Recovery, Code 533-Pumping Plant, Code 464-Irrigation Land Leveling, Code 450-Anionic Polyacrylamide (PAM) Application, Code 610Saline and Sodic Soil Management, or other applicable practices in the NRCS Field Office Technical Guide.

After Situation:
The producer has obtained services from a certified TSP to develop practice scenario designs using the Drainage Water Management DIA. The DIA 164 criteria include tasks needed to document the client???s decisions and design of conservation practices which address water quality, plant condition, or soil health. The Drainage Water Management DIA meets the quality criteria for the DIA 164 activity as cited in the NRCS Field Office Technical Guide.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00

Scenario Total Cost:	$\$ 11,417.64$
	$\$ 11,417.64$

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, small surveying crew	1296	Conservation Activity Plan labor to perform surveying and mapping duties, usually under the direction of an engineer, surveyor, cartographer, or photogrammetrist to obtain data used for construction, mapmaking, boundary location, mining, or other purposes. May calculate mapmaking information and create maps from source data, such as surveying notes, aerial photography, satellite data, or other maps to show topographical features, political boundaries, and other features. Cost associated with this component includes two man field crew, equipment, vehicle, overhead, and miscellaneous supplies.	Hours	\$122.89	16	\$1,966.24
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	56	\$5,976.32
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the	Hours	\$85.82	16	\$1,373.12

Cap Labor, Survey and Mapping Technician	1591	Conservation Activity Plan labor to perform surveying and mapping duties, usually under the direction of an engineer, surveyor, cartographer, or photogrammetrist to obtain data used for construction, mapmaking, boundary location, mining, or other purposes. May calculate mapmaking information and create maps from source data, such as surveying notes, aerial photography, satellite data, or other maps to show topographical features, political boundaries, and other features. May verify accuracy and completeness of maps.	Hours	\$62.48	32	\$1,999.36
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	3	\$102.60

Practice: 163 - Irrigation Water Management Design
Scenario: \#45-1-2 Designs - With Pump Test

Scenario Description:

An agricultural producer wishes to address irrigation water use inefficiency and all other appropriat resource concerns through an EQIP contract with multiple irrigation practice scenario through an EQIP contract with at least one (1) irrigation practice scenario. The pump for the irrigation system is of unknown performance and older than 3 years. Each 'Design' indicates that new devices or components is closely related to other devices or components of the irrigation water managment system even if numerous practices are contracted. The Irrigation Water Management DIA includes reviewing, and, when needed, revising alternatives to address the identified concern(s). The Irrigation Water Management DIA documents: a) the client???s final decisions related to the associated irrigation practice scenarios; and b) design deliverables described in the associated NRCS Conservation Practice Statements of Work. Natural Resource Concern(s): Insufficient Water - Inefficient Irrigation Water Use; Water Quality Degradation - Excessive sediment in surface waters, Nutrients transported to surface and groundwater, pesticides transported to surface and groundwater, pathogens and chemicals from manure, and biosolids or compost applications transported to surface and groundwater, excess salts in surface and groundwater; Degraded Plant Condition - Undesirable plant productivity and health; Inefficient Energy Use - Equipment and facilities.

Before Situation:

Producer wants to improve irrigation water management on their agricultural operation to address insufficient water, water quality degradation, degraded plant condition, or inefficient energy use concerns. The pump for the irrigation system is of unknown performance and older than 3 years. Producer intends to work with a certified TSP to develop designs to implement one or more practice scenarios to address identified resource concerns using the Irrigation Water Management DIA. The DIA 163 criteria incorporates recommended measures to address insufficient water, water quality degradation, degraded plant condition, or inefficient energy use concerns. Associated Practices: Code 449-Irrigation Water Management, Code 441-Irrigation System, Microirrigation, Code 442-Sprinkler System, Code 443-Irrigation System, Surface and Subsurface, Code 430-Irrigation Pipeline, Code 428-Irrigation Ditch Lining, Code 388-Irrigation Field Ditch, Code 320-Irrigation Canal or Lateral, Code 587-Structure for Water Control, Code 436-Irrigation Reservoir, Code 447-Irrigation and Drainage Tailwater Recovery, Code 533-Pumping Plant, Code 464-Irrigation Land Leveling, Code 450Anionic Polyacrylamide (PAM) Application, Code 610-Saline and Sodic Soil Management, or other applicable practices in the NRCS Field Office Technical Guide.

After Situation:
The producer has obtained services from a certified TSP to develop practice scenario designs using the Irrigation Water Management DIA. The DIA 163 criteria include tasks needed to document the client???s decisions and design of conservation practices which address address insufficient water, water quality degradation, degraded plant condition, or inefficient energy use. The Irrigation Water Management DIA meets the quality criteria for the DIA 163 activity as cited in the NRCS Field Office Technical Guide.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$8,339.96
Scenario Cost/Unit: \$8,339.96
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, small surveying crew	1296	Conservation Activity Plan labor to perform surveying and mapping duties, usually under the direction of an engineer, surveyor, cartographer, or photogrammetrist to obtain data used for construction, mapmaking, boundary location, mining, or other purposes. May calculate mapmaking information and create maps from source data, such as surveying notes, aerial photography, satellite data, or other maps to show topographical features, political boundaries, and other features. Cost associated with this component includes two man field crew, equipment, vehicle, overhead, and miscellaneous supplies.	Hours	\$122.89	8	\$983.12
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	48	\$5,122.56
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	8	\$686.56

Cap Labor, Survey and Mapping Technician	1591	Conservation Activity Plan labor to perform surveying and mapping duties, usually under the direction of an engineer, surveyor, cartographer, or photogrammetrist to obtain data used for construction, mapmaking, boundary location, mining, or other purposes. May calculate mapmaking information and create maps from source data, such as surveying notes, aerial photography, satellite data, or other maps to show topographical features, political boundaries, and other features. May verify accuracy and completeness of maps.	Hours	\$62.48	16	\$999.68
CAP Labor, Skilled	1604	Conservation Activity Plan labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$39.97	12	\$479.64
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	2	\$68.40

Practice: 163 - Irrigation Water Management Design
Scenario: \#61-3 or More Designs - With Pump Test

Scenario Description:

An agricultural producer wishes to address irrigation water use inefficiency and all other appropriat resource concerns through an EQIP contract with multiple irrigation practice scenario through an EQIP contract with at least one (1) irrigation practice scenario. The pump for the irrigation system is of unknown performance and older than 3 years. Each 'Design' indicates that new devices or components is closely related to other devices or components of the irrigation water management system even if numerous practices are contracted. The Irrigation Water Management DIA includes reviewing, and, when needed, revising alternatives to address the identified concern(s). The Irrigation Water Management DIA documents: a) the client???s final decisions related to the associated irrigation practice scenarios; and b) design deliverables described in the associated NRCS Conservation Practice Statements of Work. Natural Resource Concern(s): Insufficient Water - Inefficient Irrigation Water Use; Water Quality Degradation - Excessive sediment in surface waters, Nutrients transported to surface and groundwater, pesticides transported to surface and groundwater, pathogens and chemicals from manure, and biosolids or compost applications transported to surface and groundwater, excess salts in surface and groundwater; Degraded Plant Condition - Undesirable plant productivity and health; Inefficient Energy Use - Equipment and facilities.

Before Situation:

Producer wants to improve irrigation water management on their agricultureal operation to address insufficient water, water quality degradation, degraded plant condition, or inefficient energy use concerns. The pump for the irrigation system is of unknown performance and older than 3 years. Producer intends to work with a certified TSP to develop designs to implement one or more practice scenarios to address identified resource concerns using the Irrigation Water Management DIA. The DIA 163 criteria incorporates recommended measures toaddress insufficient water, water quality degradation, degraded plant condition, or inefficient energy use concerns. Associated Practices: Code 449-Irrigation Water Management, Code 441-Irrigation System, Microirrigation, Code 442-Sprinkler System, Code 443-Irrigation System, Surface and Subsurface, Code 430-Irrigation Pipeline, Code 428-Irrigation Ditch Lining, Code 388-Irrigation Field Ditch, Code 320-Irrigation Canal or Lateral, Code 587-Structure for Water Control, Code 436-Irrigation Reservoir, Code 447-Irrigation and Drainage Tailwater Recovery, Code 533-Pumping Plant, Code 464-Irrigation Land Leveling, Code 450Anionic Polyacrylamide (PAM) Application, Code 610-Saline and Sodic Soil Management, or other applicable practices in the NRCS Field Office Technical Guide.

After Situation:
The producer has obtained services from a certified TSP to develop practice scenario designs using the Irrigation Water Management DIA. The DIA 163 criteria include tasks needed to document the client???s decisions and design of conservation practices which address insufficient water, water quality degradation, degraded plant condition, or inefficient energy use. The Irrigation Water Management DIA meets the quality criteria for the DIA 163 activity as cited in the NRCS Field Office Technical Guide.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$13,230.68
Scenario Cost/Unit: \$13,230.68
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, small surveying crew	1296	Conservation Activity Plan labor to perform surveying and mapping duties, usually under the direction of an engineer, surveyor, cartographer, or photogrammetrist to obtain data used for construction, mapmaking, boundary location, mining, or other purposes. May calculate mapmaking information and create maps from source data, such as surveying notes, aerial photography, satellite data, or other maps to show topographical features, political boundaries, and other features. Cost associated with this component includes two man field crew, equipment, vehicle, overhead, and miscellaneous supplies.	Hours	\$122.89	16	\$1,966.24
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	64	\$6,830.08
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	16	\$1,373.12

Cap Labor, Survey and Mapping Technician	1591	Conservation Activity Plan labor to perform surveying and mapping duties, usually under the direction of an engineer, surveyor, cartographer, or photogrammetrist to obtain data used for construction, mapmaking, boundary location, mining, or other purposes. May calculate mapmaking information and create maps from source data, such as surveying notes, aerial photography, satellite data, or other maps to show topographical features, political boundaries, and other features. May verify accuracy and completeness of maps.	Hours	\$62.48	32	\$1,999.36
CAP Labor, Skilled	1604	Conservation Activity Plan labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$39.97	24	\$959.28
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	3	\$102.60

Practice: 164 - Improved Management of Drainage Water Design
Scenario: \#13-1-2 Designs - Tile Map Available

Scenario Description:

An agricultural producer wishes to address water quality degradation, poor plant productivity and health, and/or oxidation of organic matter in soils on a relatively flat crop field with a patterned drainage system through an EQIP contract with at least one (1) drainage practice scenario. A map of the tile system is available. Each 'Design??? indicates that each new device or component is closely related to other devices or components of the drainage water management system even if numerous practices are contracted. The Drainage Water Management DIA includes reviewing, and when needed, revising alternatives to address the identified concern(s). The Drainage Water Management DIA documents: a) the client???s final decisions related to the associated drainage practice scenarios; and b) design deliverables described in the associated NRCS Conservation Practice Statements of Work. Natural Resource Concern(s): Water Quality - Excess nutrients in surface and groundwaters, Plant Condition - Plant Productivity and Health, and Soil Health - Subsidence.

Before Situation:
Producer wants to improve drainage water management on their agricultural operation to address water quality, plant condition, or soil health concerns. Producer intends to work with a certified TSP to develop designs to implement one or more practice scenarios to address identified resource concerns using the Drainage Water Management DIA. The DIA 164 criteria incorporates recommended measures to increase water quality, plant condition, or soil health. Associated Practices: 554-Drainage Water Management, 604-Saturated Buffer, 605-Denitrifying Bioreactor, 606-Subsurface Drain, 607-Surface Drain, Field Ditch, 608-Surface Drain, Main or Lateral, 587Structure for Water Control, 590-Nutrient Management, 340-Cover Crop, or other applicable practices in the NRCS Field Office Technical Guide.

After Situation:
The producer has obtained services from a certified TSP to develop practice scenario designs using the Drainage Water Management DIA. The DIA 164 criteria include tasks needed to document the client???s decisions and design of conservation practices which address water quality, plant condition, or soil health. The Drainage Water Management DIA meets the quality criteria for the DIA 164 activity as cited in the NRCS Field Office Technical Guide.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 6,839.36$

Scenario Cost/Unit: \$6,839.36
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, small surveying crew	1296	Conservation Activity Plan labor to perform surveying and mapping duties, usually under the direction of an engineer, surveyor, cartographer, or photogrammetrist to obtain data used for construction, mapmaking, boundary location, mining, or other purposes. May calculate mapmaking information and create maps from source data, such as surveying notes, aerial photography, satellite data, or other maps to show topographical features, political boundaries, and other features. Cost associated with this component includes two man field crew, equipment, vehicle, overhead, and miscellaneous supplies.	Hours	\$122.89	8	\$983.12
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	32	\$3,415.04
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	16	\$1,373.12
Cap Labor, Survey and Mapping Technician	1591	Conservation Activity Plan labor to perform surveying and mapping duties, usually under the direction of an engineer, surveyor, cartographer, or photogrammetrist to obtain data used for construction, mapmaking, boundary location, mining, or other purposes. May calculate mapmaking information and create maps from source data, such as surveying notes, aerial photography, satellite data, or other maps to show topographical features, political boundaries, and other features. May verify accuracy and completeness of maps.	Hours	\$62.48	16	\$999.68

Practice: 164 - Improved Management of Drainage Water Design
Scenario: \#29-3 or More Designs - Tile Map Available

Scenario Description:

An agricultural producer wishes to address water quality degradation, poor plant productivity and health, and/or oxidation of organic matter in soils on a relatively flat crop field with a patterned drainage system through an EQIP contract with multiple drainage practice scenario. A map of the tile system is available. Each 'Design??? indicates that each new device or component is closely related to other devices or components of the drainage water management system even if numerous practices are contracted. The Drainage Water Management DIA includes reviewing, and when needed, revising alternatives to address the identified concern(s). The Drainage Water Management DIA documents: a) the client???s final decisions related to the associated drainage practice scenarios; and b) design deliverables described in the associated NRCS Conservation Practice Statements of Work. Natural Resource Concern(s): Water Quality - Excess nutrients in surface and groundwaters, Plant Condition - Plant Productivity and Health, and Soil Health - Subsidence.

Before Situation:
Producer wants to improve drainage water management on their agricultural operation to address water quality, plant condition, or soil health concerns. Producer intends to work with a certified TSP to develop designs to implement one or more practice scenarios to address identified resource concerns using the Drainage Water Management DIA. The DIA 164 criteria incorporates recommended measures to increase water quality, plant condition, or soil health. Associated Practices: 554-Drainage Water Management, 604-Saturated Buffer, 605-Denitrifying Bioreactor, 606-Subsurface Drain, 607-Surface Drain, Field Ditch, 608-Surface Drain, Main or Lateral, 587Structure for Water Control, 590-Nutrient Management, 340-Cover Crop, or other applicable practices in the NRCS Field Office Technical Guide.

After Situation:
The producer has obtained services from a certified TSP to develop practice scenario designs using the Drainage Water Management DIA. The DIA 164 criteria include tasks needed to document the client???s decisions and design of conservation practices which address water quality, plant condition, or soil health. The Drainage Water Management DIA meets the quality criteria for the DIA 164 activity as cited in the NRCS Field Office Technical Guide.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 10,750.60$
cenario Cost/Unit:
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, small surveying crew	1296	Conservation Activity Plan labor to perform surveying and mapping duties, usually under the direction of an engineer, surveyor, cartographer, or photogrammetrist to obtain data used for construction, mapmaking, boundary location, mining, or other purposes. May calculate mapmaking information and create maps from source data, such as surveying notes, aerial photography, satellite data, or other maps to show topographical features, political boundaries, and other features. Cost associated with this component includes two man field crew, equipment, vehicle, overhead, and miscellaneous supplies.	Hours	\$122.89	16	\$1,966.24
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	48	\$5,122.56
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	24	\$2,059.68
Cap Labor, Survey and Mapping Technician	1591	Conservation Activity Plan labor to perform surveying and mapping duties, usually under the direction of an engineer, surveyor, cartographer, or photogrammetrist to obtain data used for construction, mapmaking, boundary location, mining, or other purposes. May calculate mapmaking information and create maps from source data, such as surveying notes, aerial photography, satellite data, or other maps to show topographical features, political boundaries, and other features. May verify accuracy and completeness of maps.	Hours	\$62.48	24	\$1,499.52

Practice: 164 - Improved Management of Drainage Water Design
Scenario: \#45-1-2 Designs - No Tile Map Available

Scenario Description:

An agricultural producer wishes to address water quality degradation, poor plant productivity and health, and/or oxidation of organic matter in soils on a relatively flat crop field with a patterned drainage system through an EQIP contract with at least one (1) drainage practice scenario. A map of the tile system is not available. Each 'Design??? indicates that each new device or component is closely related to other devices or components of the drainage water management system even if numerous practices are contracted. The Drainage Water Management DIA includes reviewing, and when needed, revising alternatives to address the identified concern(s). The Drainage Water Management DIA documents: a) the client???s final decisions related to the associated drainage practice scenarios; and b) design deliverables described in the associated NRCS Conservation Practice Statements of Work. Natural Resource Concern(s): Water Quality - Excess nutrients in surface and groundwaters, Plant Condition - Plant Productivity and Health, and Soil Health - Subsidence.

Before Situation:

Producer wants to improve drainage water management on their agricultural operation to address water quality, plant condition, or soil health concerns. Producer intends to work with a certified TSP to develop designs to implement one or more practice scenarios to address identified resource concerns using the Drainage Water Management DIA. The DIA 164 criteria incorporates recommended measures to increase water quality, plant condition, or soil health. Associated Practices: 554-Drainage Water Management, 604-Saturated Buffer, 605-Denitrifying Bioreactor, 606-Subsurface Drain, 607-Surface Drain, Field Ditch, 608-Surface Drain, Main or Lateral, 587Structure for Water Control, 590-Nutrient Management, 340-Cover Crop, or other applicable practices in the NRCS Field Office Technical Guide.

After Situation:

The producer has obtained services from a certified TSP to develop practice scenario designs using the Drainage Water Management DIA. The DIA 164 criteria include tasks needed to document the client???s decisions and design of conservation practices which address water quality, plant condition, or soil health. The Drainage Water Management DIA meets the quality criteria for the DIA 164 activity as cited in the NRCS Field Office Technical Guide.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 9,315.76$

Scenario Cost/Unit: \$9,315.76
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, small surveying crew	1296	Conservation Activity Plan labor to perform surveying and mapping duties, usually under the direction of an engineer, surveyor, cartographer, or photogrammetrist to obtain data used for construction, mapmaking, boundary location, mining, or other purposes. May calculate mapmaking information and create maps from source data, such as surveying notes, aerial photography, satellite data, or other maps to show topographical features, political boundaries, and other features. Cost associated with this component includes two man field crew, equipment, vehicle, overhead, and miscellaneous supplies.	Hours	\$122.89	16	\$1,966.24
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	40	\$4,268.80
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	16	\$1,373.12
Cap Labor, Survey and Mapping Technician	1591	Conservation Activity Plan labor to perform surveying and mapping duties, usually under the direction of an engineer, surveyor, cartographer, or photogrammetrist to obtain data used for construction, mapmaking, boundary location, mining, or other purposes. May calculate mapmaking information and create maps from source data, such as surveying notes, aerial photography, satellite data, or other maps to show topographical features, political boundaries, and other features. May verify accuracy and completeness of maps.	Hours	\$62.48	16	\$999.68

Practice: 164 - Improved Management of Drainage Water Design
Scenario: \#61-3 or More Designs - No Tile Map Available

Scenario Description:

An agricultural producer wishes to address water quality degradation, poor plant productivity and health, and/or oxidation of organic matter in soils on a relatively flat crop field with a patterned drainage system through an EQIP contract with multiple drainage practice scenario. A map of the tile system is not available. Each 'Design' indicates that new devices or components are closely related to other devices or components of the drainage water management system even if numerous designs are contracted. If more than one practice is contracted, then '2-5 Designs' shall be contracted for the Drainage Water Management DIA. The Drainage Water Management DIA includes reviewing, and, when needed, revising alternatives to address the identified concern(s). The Drainage Water Management DIA documents: a) the client???s final decisions related to the associated drainage practice scenarios; and b) design deliverables described in the associated NRCS Conservation Practice Statements of Work. Natural Resource Concern(s): Water Quality - Excess nutrients in surface and groundwaters, Plant Condition - Plant Productivity and Health, and Soil Health - Subsidence.

Before Situation:

Producer wants to improve drainage water management on their agricultural operation to address water quality, plant condition, or soil health concerns. Producer intends to work with a certified TSP to develop designs to implement one or more practice scenarios to address identified resource concerns using the Drainage Water Management DIA. The DIA 164 criteria incorporates recommended measures to increase water quality, plant condition, or soil health. Associated Practices: 554-Drainage Water Management, 604-Saturated Buffer, 605-Denitrifying Bioreactor, 606-Subsurface Drain, 607-Surface Drain, Field Ditch, 608-Surface Drain, Main or Lateral, 587Structure for Water Control, 590-Nutrient Management, 340-Cover Crop, or other applicable practices in the NRCS Field Office Technical Guide.

After Situation:
The producer has obtained services from a certified TSP to develop practice scenario designs using the Drainage Water Management DIA. The DIA 164 criteria include tasks needed to document the client???s decisions and design of conservation practices which address water quality, plant condition, or soil health. The Drainage Water Management DIA meets the quality criteria for the DIA 164 activity as cited in the NRCS Field Office Technical Guide.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 11,709.88$

Cenario Cost/Unit:
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, small surveying crew	1296	Conservation Activity Plan labor to perform surveying and mapping duties, usually under the direction of an engineer, surveyor, cartographer, or photogrammetrist to obtain data used for construction, mapmaking, boundary location, mining, or other purposes. May calculate mapmaking information and create maps from source data, such as surveying notes, aerial photography, satellite data, or other maps to show topographical features, political boundaries, and other features. Cost associated with this component includes two man field crew, equipment, vehicle, overhead, and miscellaneous supplies.	Hours	\$122.89	16	\$1,966.24
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	48	\$5,122.56
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	24	\$2,059.68
Cap Labor, Survey and Mapping Technician	1591	Conservation Activity Plan labor to perform surveying and mapping duties, usually under the direction of an engineer, surveyor, cartographer, or photogrammetrist to obtain data used for construction, mapmaking, boundary location, mining, or other purposes. May calculate mapmaking information and create maps from source data, such as surveying notes, aerial photography, satellite data, or other maps to show topographical features, political boundaries, and other features. May verify accuracy and completeness of maps.	Hours	\$62.48	24	\$1,499.52

CAP Labor, Skilled	1604	Conservation Activity Plan labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$39.97	24	\$959.28
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	3	\$102.60

Practice: 165 - Forest Management Practice Design
Scenario: \#13-DIA Less Than or Equal to 20 acres

Scenario Description:

Nonindustrial Private Forest Land with a forest management plan. Typical site is approximately 1 to 20 acres in size and consists of existing uneven-aged mixed species stands of harvestable trees. Natural Resource Concern: Fish and Wildlife; Soil Erosion; Soil Condition; Water Quality; Plant Condition; on Forest Land.

Before Situation:
The producer currently manages forested lands with an existing forest management plan. Resource concerns exist which are not addressed by a management plan. A Design and Implementation Activities is needed to allow the producer to apply for financial assistance through EQIP or other programs to develop implementation requirements for conservation practices. Associated Practices: 472, 666, 654, 655,384, 394, 383, 379, 338, 381, 391, 791, 490, 612, 660, 311, 380, $314,315$.

After Situation:
After EQIP contract approval, participant has obtained services from a certified TSP for development of the Forest Management Design and Implementation Activities (DIA). The DIA criteria requires the design of site-specific forestry activities as a component of a forest management plan to address identified resource concerns. Additional DIA criteria are detailed in the Field Office Technical Guide.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$422.95

Scenario Cost/Unit: \$422.95
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, forester	1302	Conservation Activity Plan labor to manage nonindustrial private forest lands for conservation, economic, and recreational purposes. Will inventory the type, amount, and location of standing timber and appraise the timber's condition. Will determine how to conserve wildlife habitats, improve water quality and soil stability, and how best to comply with environmental regulations. May devise plans for planting and growing new trees, monitoring trees for healthy growth, determining optimal thinning schedules, and increasing carbon capture and storage.	Hours	\$84.59	5	\$422.95

Practice: 165 - Forest Management Practice Design
Scenario: \#29-DIA 501 to 1000 acres

Scenario Description:

Nonindustrial Private Forest Land with a forest management plan. Typical site is approximately 501 to 1000 acres in size and consists of existing uneven-aged mixed species stands of harvestable trees. Natural Resource Concern: Fish and Wildlife; Soil Erosion; Soil Condition; Water Quality; Plant Condition; on Forest Land.

Before Situation:

The producer currently manages forested lands with an existing forest management plan. Resource concerns exist which are not addressed by a management plan. A Design and Implementation Activities is needed to allow the producer to apply for financial assistance through EQIP or other programs to develop implementation requirements for conservation practices. Associated Practices: 472, 666, 654, 655,384, 394, 383, 379, 338, 381, 391, 791, 490, 612, 660, 311, 380, $314,315$.

After Situation:

After EQIP contract approval, participant has obtained services from a certified TSP for development of the Forest Management Design and Implementation Activities (DIA). The DIA criteria requires the design of site-specific forestry activities as a component of a forest management plan to address identified resource concerns. Additional DIA criteria are detailed in the Field Office Technical Guide.

Feature Measure: Number

Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$1,607.21
Scenario Cost/Unit: \$1,607.21

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, forester	1302	Conservation Activity Plan labor to manage nonindustrial private forest lands for conservation, economic, and recreational purposes. Will inventory the type, amount, and location of standing timber and appraise the timber's condition. Will determine how to conserve wildlife habitats, improve water quality and soil stability, and how best to comply with environmental regulations. May devise plans for planting and growing new trees, monitoring trees for healthy growth, determining optimal thinning schedules, and increasing carbon capture and storage.	Hours	\$84.59	19	\$1,607.21

Practice: 165 - Forest Management Practice Design
Scenario: \#45-DIA 101 to 250 acres

Scenario Description:

Nonindustrial Private Forest Land with a forest management plan. Typical site is approximately 101 to 250 acres in size and consists of existing uneven-aged mixed species stands of harvestable trees. Natural Resource Concern: Fish and Wildlife; Soil Erosion; Soil Condition; Water Quality; Plant Condition; on Forest Land.

Before Situation:
The producer currently manages forested lands with an existing forest management plan. Resource concerns exist which are not addressed by a management plan. A Design and Implementation Activities is needed to allow the producer to apply for financial assistance through EQIP or other programs to develop implementation requirements for conservation practices. Associated Practices: 472, 666, 654, 655,384, 394, 383, 379, 338, 381, 391, 791, 490, 612, 660, 311, 380, $314,315$.

After Situation:
After EQIP contract approval, participant has obtained services from a certified TSP for development of the Forest Management Design and Implementation Activities (DIA). The DIA criteria requires the design of site-specific forestry activities as a component of a forest management plan to address identified resource concerns. Additional DIA criteria are detailed in the Field Office Technical Guide.

Feature Measure: Number

Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$1,015.08
Scenario Cost/Unit: \$1,015.08

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, forester	1302	Conservation Activity Plan labor to manage nonindustrial private forest lands for conservation, economic, and recreational purposes. Will inventory the type, amount, and location of standing timber and appraise the timber's condition. Will determine how to conserve wildlife habitats, improve water quality and soil stability, and how best to comply with environmental regulations. May devise plans for planting and growing new trees, monitoring trees for healthy growth, determining optimal thinning schedules, and increasing carbon capture and storage.	Hours	\$84.59	12	\$1,015.08

Practice: 165 - Forest Management Practice Design
Scenario: \#61 - DIA Greater Than 1000 acres

Scenario Description:

Nonindustrial Private Forest Land with a forest management plan. Typical site is approximately 1001 acres or greater in size and consists of existing uneven-aged mixed species stands of harvestable trees. Natural Resource Concern: Fish and Wildlife; Soil Erosion; Soil Condition; Water Quality; Plant Condition; on Forest Land.

Before Situation:

The producer currently manages forested lands with an existing forest management plan. Resource concerns exist which are not addressed by a management plan. A Design and Implementation Activities is needed to allow the producer to apply for financial assistance through EQIP or other programs to develop implementation requirements for conservation practices. Associated Practices: 472, 666, 654, 655,384, 394, 383, 379, 338, 381, 391, 791, 490, 612, 660, 311, 380, $314,315$.

After Situation:

After EQIP contract approval, participant has obtained services from a certified TSP for development of the Forest Management Design and Implementation Activities (DIA). The DIA criteria requires the design of site-specific forestry activities as a component of a forest management plan to address identified resource concerns. Additional DIA criteria are detailed in the Field Office Technical Guide.

Feature Measure: Number

Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$1,945.57
Scenario Cost/Unit: \$1,945.57

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, forester	1302	Conservation Activity Plan labor to manage nonindustrial private forest lands for conservation, economic, and recreational purposes. Will inventory the type, amount, and location of standing timber and appraise the timber's condition. Will determine how to conserve wildlife habitats, improve water quality and soil stability, and how best to comply with environmental regulations. May devise plans for planting and growing new trees, monitoring trees for healthy growth, determining optimal thinning schedules, and increasing carbon capture and storage.	Hours	\$84.59	23	\$1,945.57

Practice: 165 - Forest Management Practice Design
Scenario: \#77-DIA 251 to 500 acres

Scenario Description:

Nonindustrial Private Forest Land with a forest management plan. Typical site is approximately 251 to 500 acres in size and consists of existing uneven-aged mixed species stands of harvestable trees. Natural Resource Concern: Fish and Wildlife; Soil Erosion; Soil Condition; Water Quality; Plant Condition; on Forest Land.

Before Situation:
The producer currently manages forested lands with an existing forest management plan. Resource concerns exist which are not addressed by a management plan. A Design and Implementation Activities is needed to allow the producer to apply for financial assistance through EQIP or other programs to develop implementation requirements for conservation practices. Associated Practices: 472, 666, 654, 655,384, 394, 383, 379, 338, 381, 391, 791, 490, 612, 660, 311, 380, $314,315$.

After Situation:
After EQIP contract approval, participant has obtained services from a certified TSP for development of the Forest Management Design and Implementation Activities (DIA). The DIA criteria requires the design of site-specific forestry activities as a component of a forest management plan to address identified resource concerns. Additional DIA criteria are detailed in the Field Office Technical Guide.

Feature Measure: Number

Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$1,353.44
Scenario Cost/Unit: \$1,353.44

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, forester	1302	Conservation Activity Plan labor to manage nonindustrial private forest lands for conservation, economic, and recreational purposes. Will inventory the type, amount, and location of standing timber and appraise the timber's condition. Will determine how to conserve wildlife habitats, improve water quality and soil stability, and how best to comply with environmental regulations. May devise plans for planting and growing new trees, monitoring trees for healthy growth, determining optimal thinning schedules, and increasing carbon capture and storage.	Hours	\$84.59	16	\$1,353.44

Practice: 165 - Forest Management Practice Design
Scenario: \#93-DIA 21 to 100 acres

Scenario Description:

Nonindustrial Private Forest Land with a forest management plan. Typical site is approximately 21 to 100 acres in size and consists of existing uneven-aged mixed species stands of harvestable trees. Natural Resource Concern: Fish and Wildlife; Soil Erosion; Soil Condition; Water Quality; Plant Condition; on Forest Land.
Before Situation:
The producer currently manages forested lands with an existing forest management plan. Resource concerns exist which are not addressed by a management plan. A Design and Implementation Activities is needed to allow the producer to apply for financial assistance through EQIP or other programs to develop implementation requirements for conservation practices. Associated Practices: 472, 666, 654, 655,384, 394, 383, 379, 338, 381, 391, 791, 490, 612, 660, 311, 380, $314,315$.

After Situation:
After EQIP contract approval, participant has obtained services from a certified TSP for development of the Forest Management Design and Implementation Activities (DIA). The DIA criteria requires the design of site-specific forestry activities as a component of a forest management plan to address identified resource concerns. Additional DIA criteria are detailed in the Field Office Technical Guide.

Feature Measure: Number

Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$676.72

Scenario Cost/Unit: \$676.72
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, forester	1302	Conservation Activity Plan labor to manage nonindustrial private forest	Hours	\$84.59	8	\$676.72

Practice: 199-Conservation Plan
Scenario: \#29-Small Farm - less than or equal to 10 acres

Scenario Description:

Conservation plan developed by a Technical Service Provider (TSP) for a participant enrolled in a Farm Bill program contract. The TSP completes NRCS conservation planning process, steps 1 through 7 as described in NRCS National Planning Procedures Handbook. The steps identify problems and opportunities (step 1), determine objectives (step 2), include inventory and analyze resources (steps 3 and 4), formulate and evaluate alternatives (steps 5 and 6) and document client???s preferred alternative(s) (step 7). The small farm planning scenario involves combinations of various specialty crops, small fruits, tree and vine crops, and small livestock enterprises on less than or equal to 10 acres.

Before Situation:

Client and NRCS have identified a need to develop a conservation plan to address resource concern(s) using a Technical Service Provider.
After Situation:
TSP has met with client and visited the planning area, in order to develop at least one conservation system alternative for each planning land unit that meet the producer's objectives; and obtain the client's decision for a schedule of practices to implement. TSP provides deliverables that meet the requirements of the CPA 199, or (if applicable to the enterprise) the requirements of conservation activities CPA 102 CNMP or CPA 106 Forestry Plan.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$3,311.98
Scenario Cost/Unit: \$3,311.98

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding, physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.	Hours	\$108.51	10	\$1,085.10
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	8	\$853.76
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	16	\$1,373.12

Practice: 199-Conservation Plan
Scenario: \#45 - Low Complexity Plan, <200 acres

Scenario Description:

Conservation plan developed by a Technical Service Provider (TSP) for a participant enrolled in a Farm Bill program contract. The TSP completes NRCS conservation planning process, steps 1 through 7 as described in NRCS National Planning Procedures Handbook. The steps identify problems and opportunities (step 1), determine objectives (step 2), include inventory and analyze resources (steps 3 and 4), formulate and evaluate alternatives (steps 5 and 6) and document client???s preferred alternative(s) (step 7). The Planning Land Unit involves one land use and one agricultural enterprise covering up to less than 200 acres.

Before Situation:
Client and NRCS have identified a need to develop a conservation plan to address resource concern(s) using a Technical Service Provider.
After Situation:
TSP has met with client and visited the planning area, in order to develop at least one conservation system alternative for each planning land unit that meet the producer's objectives; and obtain the client's decision for a schedule of practices to implement. TSP provides deliverables that meet the requirements of the CPA 199, or (if applicable to the enterprise) the requirements of conservation activities CPA 102 CNMP or CPA 106 Forestry Plan.

Feature Measure: Number

Scenario Unit: Number
Scenario Typical Size: 1.00

Scenario Total Cost:	$\$ 4,208.40$
Scenario Cost/Unit:	$\$ 4,208.40$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding, physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.	Hours	\$108.51	8	\$868.08
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	12	\$1,280.64
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	24	\$2,059.68

Practice: 199-Conservation Plan
Scenario: \#61 - Low Complexity Plan, 200-1,000 acres

Scenario Description:

Conservation plan developed by a Technical Service Provider (TSP) for a participant enrolled in a Farm Bill program contract. The TSP completes NRCS conservation planning process, steps 1 through 7 as described in NRCS National Planning Procedures Handbook. The steps identify problems and opportunities (step 1), determine objectives (step 2), include inventory and analyze resources (steps 3 and 4), formulate and evaluate alternatives (steps 5 and 6) and document client???s preferred alternative(s) (step 7). The Planning Land Unit involves one land use and one agricultural enterprise covering 200-1,000 acres.

Before Situation:
Client and NRCS have identified a need to develop a conservation plan to address resource concern(s) using a Technical Service Provider.
After Situation:
TSP has met with client and visited the planning area, in order to develop at least one conservation system alternative for each planning land unit that meet the producer's objectives; and obtain the client's decision for a schedule of practices to implement. TSP provides deliverables that meet the requirements of the CPA 199, or (if applicable to the enterprise) the requirements of conservation activities CPA 102 CNMP or CPA 106 Forestry Plan.

Feature Measure: Number

Scenario Unit: Number
Scenario Typical Size: 1.00

Scenario Total Cost:	$\$ 6,189.92$
Scenario Cost/Unit:	$\$ 6,189.92$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding, physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.	Hours	\$108.51	16	\$1,736.16
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	16	\$1,707.52
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	32	\$2,746.24

Practice: 199-Conservation Plan
Scenario: \#77 - Low Complexity Plan, >1,000 acres

Scenario Description:

Conservation plan developed by a Technical Service Provider (TSP) for a participant enrolled in a Farm Bill program contract. The TSP completes NRCS conservation planning process, steps 1 through 7 as described in NRCS National Planning Procedures Handbook. The steps identify problems and opportunities (step 1), determine objectives (step 2), include inventory and analyze resources (steps 3 and 4), formulate and evaluate alternatives (steps 5 and 6) and document client???s preferred alternative(s) (step 7). The Planning Land Unit involves one land use and one agricultural enterprise covering more than 1,000 acres.

Before Situation:
Client and NRCS have identified a need to develop a conservation plan to address resource concern(s) using a Technical Service Provider.
After Situation:
TSP has met with client and visited the planning area, in order to develop at least one conservation system alternative for each planning land unit that meet the producer's objectives; and obtain the client's decision for a schedule of practices to implement. TSP provides deliverables that meet the requirements of the CPA 199, or (if applicable to the enterprise) the requirements of conservation activities CPA 102 CNMP or CPA 106 Forestry Plan.

Feature Measure: Number

Scenario Unit: Number
Scenario Typical Size: 1.00

Scenario Total Cost:	$\$ 8,249.60$
Scenario Cost/Unit:	$\$ 8,249.60$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding, physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.	Hours	\$108.51	16	\$1,736.16
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	16	\$1,707.52
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	56	\$4,805.92

Practice: 199-Conservation Plan
Scenario: \#93 - Medium Complexity Plan, <200 acres

Scenario Description:

Conservation plan developed by a Technical Service Provider (TSP) for a participant enrolled in a Farm Bill program contract. The TSP completes NRCS conservation planning process, steps 1 through 7 as described in NRCS National Planning Procedures Handbook. The steps identify problems and opportunities (step 1), determine objectives (step 2), include inventory and analyze resources (steps 3 and 4), formulate and evaluate alternatives (steps 5 and 6) and document client???s preferred alternative(s) (step 7). The Planning Land Unit involves one land use with two agricultural enterprises, or two land uses with one agricultural enterprise (ex. farmstead and cropland used for a dairy enterprise) covering less than 200 acres.

Before Situation:

Client and NRCS have identified a need to develop a conservation plan to address resource concern(s) using a Technical Service Provider.
After Situation:
TSP has met with client and visited the planning area, in order to develop at least one conservation system alternative for each planning land unit that meet the producer's objectives; and obtain the client's decision for a schedule of practices to implement. TSP provides deliverables that meet the requirements of the CPA 199, and/or (if applicable to the enterprises) the requirements of conservation activities CPA 102 CNMP or CPA 106 Forestry Plan.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$6,189.92
Scenario Cost/Unit: \$6,189.92
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding, physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.	Hours	\$108.51	16	\$1,736.16
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	16	\$1,707.52
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	32	\$2,746.24

Practice: 199-Conservation Plan
Scenario: \#109 - Medium Complexity Plan, 200-1,000 acres

Scenario Description:

Conservation plan developed by a Technical Service Provider (TSP) for a participant enrolled in a Farm Bill program contract. The TSP completes NRCS conservation planning process, steps 1 through 7 as described in NRCS National Planning Procedures Handbook. The steps identify problems and opportunities (step 1), determine objectives (step 2), include inventory and analyze resources (steps 3 and 4), formulate and evaluate alternatives (steps 5 and 6) and document client???s preferred alternative(s) (step 7). The Planning Land Unit involves one land use with two agricultural enterprises, or two land uses with one agricultural enterprise (ex. farmstead and cropland used for a dairy enterprise) covering 200-1000 acres.

Before Situation:

Client and NRCS have identified a need to develop a conservation plan to address resource concern(s) using a Technical Service Provider.
After Situation:
TSP has met with client and visited the planning area, in order to develop at least one conservation system alternative for each planning land unit that meet the producer's objectives; and obtain the client's decision for a schedule of practices to implement. TSP provides deliverables that meet the requirements of the CPA 199, and/or (if applicable to the enterprises) the requirements of conservation activities CPA 102 CNMP or CPA 106 Forestry Plan.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$8,249.60
Scenario Cost/Unit: \$8,249.60
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding, physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.	Hours	\$108.51	16	\$1,736.16
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	16	\$1,707.52
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	56	\$4,805.92

Practice: 199-Conservation Plan
Scenario: \#125 - Medium Complexity Plan, >1,000 acres

Scenario Description:

Conservation plan developed by a Technical Service Provider (TSP) for a participant enrolled in a Farm Bill program contract. The TSP completes NRCS conservation planning process, steps 1 through 7 as described in NRCS National Planning Procedures Handbook. The steps identify problems and opportunities (step 1), determine objectives (step 2), include inventory and analyze resources (steps 3 and 4), formulate and evaluate alternatives (steps 5 and 6) and document client???s preferred alternative(s) (step 7). The Planning Land Unit involves one land use with two agricultural enterprises, or two land uses with one agricultural enterprise (ex. farmstead and cropland used for a dairy enterprise) covering more than 1,000 acres.

Before Situation:

Client and NRCS have identified a need to develop a conservation plan to address resource concern(s) using a Technical Service Provider.
After Situation:
TSP has met with client and visited the planning area, in order to develop at least one conservation system alternative for each planning land unit that meet the producer's objectives; and obtain the client's decision for a schedule of practices to implement. TSP provides deliverables that meet the requirements of the CPA 199, and/or (if applicable to the enterprises) the requirements of conservation activities CPA 102 CNMP or CPA 106 Forestry Plan.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$10,053.18

Scenario Cost/Unit: \$10,053.18
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding, physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.	Hours	\$108.51	18	\$1,953.18
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	18	\$1,920.96
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	72	\$6,179.04

Practice: 199-Conservation Plan
Scenario: \#141-High Complexity Plan, <200 acres

Scenario Description:

Conservation plan developed by a Technical Service Provider (TSP) for a participant enrolled in a Farm Bill program contract. The TSP completes NRCS conservation planning process, steps 1 through 7 as described in NRCS National Planning Procedures Handbook. The steps identify problems and opportunities (step 1), determine objectives (step 2), include inventory and analyze resources (steps 3 and 4), formulate and evaluate alternatives (steps 5 and 6) and document client???s preferred alternative(s) (step 7). The Planning Land Unit involves one land use supporting three or more agricultural enterprises, two land uses supporting two or more agricultural enterprises, or three or more land uses and any number of enterprises on up to less than 200 acres.

Before Situation:

Client and NRCS have identified a need to develop a conservation plan to address resource concern(s) using a Technical Service Provider.
After Situation:
TSP has met with client and visited the planning area, in order to develop at least one conservation system alternative for each planning land unit that meet the producer's objectives; and obtain the client's decision for a schedule of practices to implement. TSP provides deliverables that meet the requirements of the CPA 199, and/or (if applicable to the enterprises) the requirements of conservation activities CPA 102 CNMP or CPA 106 Forestry Plan.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$8,249.60
Scenario Cost/Unit: \$8,249.60
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding, physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.	Hours	\$108.51	16	\$1,736.16
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	16	\$1,707.52
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	56	\$4,805.92

Practice: 199-Conservation Plan
Scenario: \#157 - High Complexity Plan, 200-1,000 acres

Scenario Description:

Conservation plan developed by a Technical Service Provider (TSP) for a participant enrolled in a Farm Bill program contract. The TSP completes NRCS conservation planning process, steps 1 through 7 as described in NRCS National Planning Procedures Handbook. The steps identify problems and opportunities (step 1), determine objectives (step 2), include inventory and analyze resources (steps 3 and 4), formulate and evaluate alternatives (steps 5 and 6) and document client???s preferred alternative(s) (step 7). The Planning Land Unit involves three or more agricultural enterprises, two land uses supporting two or more agricultural enterprises, or three or more land uses and any number of enterprises on 200-1000 acres.

Before Situation:

Client and NRCS have identified a need to develop a conservation plan to address resource concern(s) using a Technical Service Provider.
After Situation:
TSP has met with client and visited the planning area, in order to develop at least one conservation system alternative for each planning land unit that meet the producer's objectives; and obtain the client's decision for a schedule of practices to implement. TSP provides deliverables that meet the requirements of the CPA 199, and/or (if applicable to the enterprises) the requirements of conservation activities CPA 102 CNMP or CPA 106 Forestry Plan.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$10,053.18

Scenario Cost/Unit: \$10,053.18
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding, physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.	Hours	\$108.51	18	\$1,953.18
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	18	\$1,920.96
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	72	\$6,179.04

Practice: 199-Conservation Plan
Scenario: \#173 - High Complexity Plan, >1,000 acres

Scenario Description:

Conservation plan developed by a Technical Service Provider (TSP) for a participant enrolled in a Farm Bill program contract. The TSP completes NRCS conservation planning process, steps 1 through 7 as described in NRCS National Planning Procedures Handbook. The steps identify problems and opportunities (step 1), determine objectives (step 2), include inventory and analyze resources (steps 3 and 4), formulate and evaluate alternatives (steps 5 and 6) and document client???s preferred alternative(s) (step 7). The Planning Land Unit involves one land use supporting three or more agricultural enterprises, two land uses supporting two or more agricultural enterprises, or three or more land uses and any number of enterprises on more than 1,000 acres.

Before Situation:

Client and NRCS have identified a need to develop a conservation plan to address resource concern(s) using a Technical Service Provider.
After Situation:
TSP has met with client and visited the planning area, in order to develop at least one conservation system alternative for each planning land unit that meet the producer's objectives; and obtain the client's decision for a schedule of practices to implement. TSP provides deliverables that meet the requirements of the CPA 199, and/or (if applicable to the enterprises) the requirements of conservation activities CPA 102 CNMP or CPA 106 Forestry Plan.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$11,600.66
Scenario Cost/Unit: \$11,600.66

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding, physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.	Hours	\$108.51	22	\$2,387.22
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	22	\$2,347.84
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	80	\$6,865.60

Practice: 201 - Edge-of-Field Water Quality Monitoring-Data Collection and Evaluation
Scenario: \#1 - Data Collect Surface Year 1 plus - NO QAPP

Scenario Description:

This practice scenario provides for the use of an edge-of-field WQ monitoring station(s) for surface run-off for one control and one treatment site. The scenario requires the collection and analysis of edge-of-field water quality data with an average sample collection of 20 per year per station, with each sample analyzed for 6 separate parameters (2 sites $\times 20$ samples $\times 6$ parameters $=240$ total water quality tests). The data will be transferred through semi-annual submittal and annual report which include some preliminary annual analysis. This scenario will normally be used in year 1 to next to the last year of monitoring of the contract when a monitoring plan and QAPP will be not prepared as this is for an existing monitoring system that has been accepted as meeting both Activity 201 and 202 . THIS IS PLACED IN A PAIRED SITUATION IF THE CONTROL AND TREATMENT ARE ON DIFFERENT LANDOWNERS FIELDS THEN A JOINT CONTRACT WILL BE NECESSARY.

Before Situation:

The agricultural operation prior to installing this practice will have an existing system for collecting water quality data but not have been operating with a long enough time frame to measure practice effectiveness.

After Situation:
This practice scenario after installation of the WQ monitoring stations, provides for the data collection, analysis, semiannual submittal, and annual report for one control and one treatment site. This scenario will normally be used in year 1 of the contract when a monitoring plan and QAPP have been prepared as part of an existing monitoring system installation where the QAPP and monitoring plan meets Activity 201 requirements and no major changes are needed to meet Activity 202 requirements. The operator will be able to collect field level water quality data of sufficient quality to measure loss of nutrients as listed in 201.

Feature Measure: Measuring Site
Scenario Unit: Each

Scenario Typical Size: 1.00
Scenario Total Cost: \$24,170.10
Scenario Cost/Unit: $\$ 24,170.10$
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	130	\$4,403.10
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	60	\$7,872.00
Materials						
Testing, Blanks Samples	2612	Blanks or Duplicate Samples; Includes materials only.	Each	\$48.75	4	\$195.00
Testing, Water Quality	2613	Ammonium, Nitrite plus Nitrate, Total Kjeldahl Nitrogen, Soluble Reactive P (Orthophosphate), Total Phosphorus, Suspended Sediment Concentration ??? Preferred, or Total Suspended Solids. Includes materials only.	Each	\$48.75	240	\$11,700.00

Practice: 201 - Edge-of-Field Water Quality Monitoring-Data Collection and Evaluation

Scenario: \#138 - Data Collect Tile Year 1-QAPP

Scenario Description:

This practice scenario provides for the design and use of an edge-of-field WQ monitoring station(s) for tile and subsurface drainage run-off for one control and one treatment site with an average of 40 samples per year per station, with each sample analyzed for 6 separate parameters (2 sites $\times 40$ samples $\times 6$ parameters $=480$ total water quality tests). A subsurface system also requires the addition of a surface sampling system at the same outlet to capture overland flow with 20 samples per year, with each sample analyzed for 6 separate parameters (2 sites $\times 20$ samples $\times 6$ parameters $=240$ total water quality tests). Without the surface system then not all runoff is captured for calculating a true event mean concentration as per the 201 Standard. The scenario requires the creation of a survey to site a monitoring station, preparation of monitoring plan and a quality assurance project plan to detail how data will be collected, handled and analyzed, provides for the data collection, analysis, semiannual report, and annual report. This scenario will normally be used in year 1 of the contract when a monitoring plan and QAPP need to be prepared prior to installation under Edge-of-Field Water Quality Monitoring - System Installation (202). THIS IS PLACED IN A PAIRED SITUATION IF THE CONTROL AND TREATMENT ARE ON DIFFERENT LANDOWNERS FIELDS THEN A JOINT CONTRACT WILL BE NECESSARY

Before Situation:

The agricultural operation prior to installing this practice will not have a plan or quality assurance project plan prepared for installing equipment nor collecting data for sediment and nutrients leaving the edge of field.

After Situation:
This practice scenario after installation of the WQ monitoring stations, provides for the data collection, analysis, semiannual report, and annual report for one control and one treatment site. This scenario will normally be used in year 1 of the contract when a monitoring plan and QAPP have been prepared prior to installation under Edge-ofField Water Quality Monitoring - System Installation (202). The operator will be able to collect field level water quality data of sufficient quality to measure loss of nutrients as listed in 201.

Feature Measure: Measuring Site
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$68,031.64
Scenario Cost/Unit: \$68,031.64

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	312	\$10,567.44
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	166	\$21,779.20
Materials						
Testing, Blanks Samples	2612	Blanks or Duplicate Samples; Includes materials only.	Each	\$48.75	12	\$585.00
Testing, Water Quality	2613	Ammonium, Nitrite plus Nitrate, Total Kjeldahl Nitrogen, Soluble Reactive P (Orthophosphate), Total Phosphorus, Suspended Sediment Concentration ??? Preferred, or Total Suspended Solids. Includes materials only.	Each	\$48.75	720	\$35,100.00

Practice: 201 - Edge-of-Field Water Quality Monitoring-Data Collection and Evaluation
Scenario: \#145-Data Collect Tile Year 1+ less QAPP (pre-install information) with two treatment sites

Scenario Description:

This practice scenario provides for the design and use of an edge-of-field WQ monitoring station(s) for tile and subsurface drainage run-off for one control and two treatment sites with an average of 40 samples per year per station, with each sample analyzed for 6 separate parameters (3 sites $\times 40$ samples $\times 6$ parameters $=720$ total water quality tests). A subsurface system also requires the addition of a surface sampling system at the same outlet to capture overland flow with 20 samples per year, with each sample analyzed for 6 separate parameters (3 sites $\times 20$ samples $\times 6$ parameters $=360$ total water quality tests). Without the surface system then not all runoff is captured for calculating a true event mean concentration as per the 201 Standard. The data will be transferred through semi-annual submittal and annual reports, which include some preliminary annual analysis. This scenario will normally be used in year 1 of the contract when a monitoring plan and QAPP will not be prepared as this is for an existing monitoring system be accepted as meeting both Activity 201 and 202. THIS IS PLACED IN A PAIRED SITUATION IF THE CONTROL AND TREATMENT ARE ON DIFFERENT LANDOWNERS FIELDS THEN A JOINT CONTRACT WILL BE NECESSARY.

Before Situation:

The agricultural operation prior to installing this practice will have an existing system for collecting water quality data but not have been operating with a long enough time frame to measure practice effectiveness.

After Situation:
This practice scenario after installation of the WQ monitoring stations, provides for the data collection, analysis, semiannual submittal, and annual report for one control and two treatment sites. This scenario will normally be used in year 1 of the contract when a monitoring plan and QAPP have been prepared as part of an existing monitoring system installation where the QAPP and monitoring plan meets Activity 201 requirements and no major changes are needed to meet Activity 202 requirements. The operator will be able to collect field level water quality data of sufficient quality to measure loss of nutrients as listed in 201.

Feature Measure: Measuring site
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost:
Scenario Cost/Unit: \$83,568.18

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	364	\$12,328.68
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	135	\$17,712.00
Materials						
Testing, Blanks Samples	2612	Blanks or Duplicate Samples; Includes materials only.	Each	\$48.75	18	\$877.50
Testing, Water Quality	2613	Ammonium, Nitrite plus Nitrate, Total Kjeldahl Nitrogen, Soluble Reactive P (Orthophosphate), Total Phosphorus, Suspended Sediment Concentration ??? Preferred, or Total Suspended Solids. Includes materials only.	Each	\$48.75	1080	\$52,650.00

Practice: 201 - Edge-of-Field Water Quality Monitoring-Data Collection and Evaluation

Scenario: \#152-Data Collect Tile Year 1 plus - NO QAPP

Scenario Description:

This practice scenario provides for the design and use of an edge-of-field WQ monitoring station(s) for tile and subsurface drainage run-off for one control and one treatment site with an average of 40 samples per year per station, with each sample analyzed for 6 separate parameters (2 sites $\times 40$ samples $\times 6$ parameters $=480$ total water quality tests). A subsurface system also requires the addition of a surface sampling system at the same outlet to capture overland flow with 20 samples per year, with each sample analyzed for 6 separate parameters (2 sites $\times 20$ samples $\times 6$ parameters $=240$ total water quality tests). Without the surface system then not all runoff is captured for calculating a true event mean concentration as per the 201 Standard. The data will be transferred through semi-annual submittal and annual reports, which include some preliminary annual analysis. This scenario will normally be used in year 1 to next to the last year of monitoring of the contract when a monitoring plan and QAPP will be not prepared as this is for an existing monitoring system be accepted as meeting both Activity 201 and 202. THIS IS PLACED IN A PAIRED SITUATION IF THE CONTROL AND TREATMENT ARE ON DIFFERENT LANDOWNERS FIELDS THEN A JOINT CONTRACT WILL BE NECESSARY.

Before Situation:

The agricultural operation prior to installing this practice will have an existing system for collecting water quality data but not have been operating with a long enough time frame to measure practice effectiveness.

After Situation:
This practice scenario after installation of the WQ monitoring stations, provides for the data collection, analysis, semiannual submittal, and annual report for one control and one treatment site. This scenario will normally be used in year 1 of the contract when a monitoring plan and QAPP have been prepared as part of an existing monitoring system installation where the QAPP and monitoring plan meets Activity 201 requirements and no major changes are needed to meet Activity 202 requirements. The operator will be able to collect field level water quality data of sufficient quality to measure loss of nutrients as listed in 201.

Feature Measure: Measuring Site
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost:
Scenario Cost/Unit: \$58,060.44

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	312	\$10,567.44
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	90	\$11,808.00
Materials						
Testing, Blanks Samples	2612	Blanks or Duplicate Samples; Includes materials only.	Each	\$48.75	12	\$585.00
Testing, Water Quality	2613	Ammonium, Nitrite plus Nitrate, Total Kjeldahl Nitrogen, Soluble Reactive P (Orthophosphate), Total Phosphorus, Suspended Sediment Concentration ??? Preferred, or Total Suspended Solids. Includes materials only.	Each	\$48.75	720	\$35,100.00

Practice: 201 - Edge-of-Field Water Quality Monitoring-Data Collection and Evaluation
Scenario: \#159-Data Collect Tile Last Year with two treatment sites

Scenario Description:

This practice scenario provides for the design and use of an edge-of-field WQ monitoring station(s) for tile and subsurface drainage run-off for one control and two treatment sites with an average of 40 samples per year per station with each sample analyzed for 6 separate parameters (3 sites $\times 40$ samples $\times 6$ parameters $=720$ total water quality tests). A subsurface system also requires the addition of a surface sampling system at the same outlet to capture overland flow with 20 samples per year with each sample analyzed for 6 separate parameters (3 sites $\times 20$ samples $\times 6$ parameters $=360$ total water quality tests). Without the surface system then not all runoff is captured for calculating a true event mean concentration as per the 201 Standard. The scenario requires the collection and analysis of edge-of-field water quality data along with a comprehensive report to statistically prove relationship between select conservation practices and water quality. The data will be transferred through semiannual submittal and annual report and a comprehensive report of practice effectiveness. This scenario will be used in the last year of monitoring. THIS IS PLACED IN A PAIRED SITUATION IF THE CONTROL AND TREATMENT ARE ON DIFFERENT LANDOWNERS FIELDS THEN A JOINT CONTRACT WILL BE NECESSARY.

Before Situation:

The agricultural operation prior to installing this practice will have an existing system for collecting water quality data but not have been operating with a long enough time frame to measure practice effectiveness.

After Situation:
This practice scenario after installation of the WQ monitoring stations, provides for the data collection, analysis, semiannual submittal, and annual report for one control and two treatment sites. The operator will be able to collect field level water quality data of sufficient quality to measure loss of nutrients as listed in 201 to provide a comprehensive report of statistical testing of data collected during to complete monitoring period.

Feature Measure: Measuring site

Scenario Unit: Each

Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 91,440.18$
Scenario Cost/Unit: $\quad \$ 91,440.18$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	364	\$12,328.68
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	195	\$25,584.00
Materials						
Testing, Blanks Samples	2612	Blanks or Duplicate Samples; Includes materials only.	Each	\$48.75	18	\$877.50
Testing, Water Quality	2613	Ammonium, Nitrite plus Nitrate, Total Kjeldahl Nitrogen, Soluble Reactive P (Orthophosphate), Total Phosphorus, Suspended Sediment Concentration ??? Preferred, or Total Suspended Solids. Includes materials only.	Each	\$48.75	1080	\$52,650.00

Practice: 201 - Edge-of-Field Water Quality Monitoring-Data Collection and Evaluation
Scenario: \#166 - Data Collect Tile Last Year

Scenario Description:

This practice scenario provides for the design and use of an edge-of-field WQ monitoring station(s) for tile and subsurface drainage run-off for one control and one treatment site with an average of 40 samples per year per station, with each sample analyzed for 6 separate parameters (2 sites $\times 40$ samples $\times 6$ parameters $=480$ total water quality tests). A subsurface system also requires the addition of a surface sampling system at the same outlet to capture overland flow with 20 samples per year, with each sample analyzed for 6 separate parameters (2 sites $\times 20$ samples $\times 6$ parameters $=240$ total water quality tests). Without the surface system then not all runoff is captured for calculating a true event mean concentration as per the 201 Standard. The scenario requires the collection and analysis of edge-of-field water quality data along with a comprehensive report to statistically prove relationship between select conservation practices and water quality. The data will be transferred through semiannual submittal and annual report and a comprehensive report of practice effectiveness. This scenario will be used in the last year of monitoring. THIS IS PLACED IN A PAIRED SITUATION IF THE CONTROL AND TREATMENT ARE ON DIFFERENT LANDOWNERS FIELDS THEN A JOINT CONTRACT WILL BE NECESSARY.

Before Situation:

The agricultural operation prior to installing this practice will have an existing system for collecting water quality data but not have been operating with a long enough time frame to measure practice effectiveness.

After Situation:
This practice scenario after installation of the WQ monitoring stations, provides for the data collection, analysis, semiannual submittal, and annual report for one control and one treatment site. The operator will be able to collect field level water quality data of sufficient quality to measure loss of nutrients as listed in 201 to provide a comprehensive report of statistical testing of data collected during to complete monitoring period.

Feature Measure: Measuring site
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 63,308.44$
Scenario Cost/Unit: $\$ 63,308.44$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	312	\$10,567.44
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	130	\$17,056.00
Materials						
Testing, Blanks Samples	2612	Blanks or Duplicate Samples; Includes materials only.	Each	\$48.75	12	\$585.00
Testing, Water Quality	2613	Ammonium, Nitrite plus Nitrate, Total Kjeldahl Nitrogen, Soluble Reactive P (Orthophosphate), Total Phosphorus, Suspended Sediment Concentration ??? Preferred, or Total Suspended Solids. Includes materials only.	Each	\$48.75	720	\$35,100.00

Practice: 201 - Edge-of-Field Water Quality Monitoring-Data Collection and Evaluation
Scenario: \#173 - Data Collect Surface Year 1-QAPP with two treatment Sites

Scenario Description:

This practice scenario provides for the design and use of an edge-of-field WQ monitoring station(s) for surface run-off for one control and two treatment sites with an average of 20 samples per year per station, with each sample analyzed for 6 separate parameters (3 sites $\times 20$ samples $\times 6$ parameters $=360$ total water quality tests). The scenario requires the creation of a survey to site a monitoring station, preparation of monitoring plan and a quality assurance project plan to detail how data will be collected, handled and analyzed, provides for the data collection, analysis, semiannual report, and annual report. This scenario will normally be used in year 1 of the contract when a monitoring plan and QAPP need to be prepared prior to installation under Edge-of-Field Water Quality Monitoring - System Installation (202). THIS IS PLACED IN A PAIRED SITUATION IF THE CONTROL AND TREATMENT ARE ON DIFFERENT LANDOWNERS FIELDS THEN A JOINT CONTRACT WILL BE NECESSARY.

Before Situation:
The agricultural operation prior to installing this practice will not have a plan or quality assurance project plan prepared for installing equipment nor collecting data for sediment and nutrients leaving the edge of field.

After Situation:

This practice scenario after installation of the WQ monitoring stations, provides for the data collection, analysis, semiannual report, and annual report for one control and one treatment site. This scenario will normally be used in year 1 of the contract when a monitoring plan and QAPP have been prepared prior to installation under Edge-ofField Water Quality Monitoring - System Installation (202). The operator will be able to collect field level water quality data of sufficient quality to measure loss of nutrients as listed in 201.

Feature Measure: Measuring Sites
Scenario Unit: Each

Scenario Typical Size: 1.00
Scenario Total Cost: \$47,267.02
Scenario Cost/Unit: \$47,267.02
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	156	\$5,283.72
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	184	\$24,140.80
Materials						
Testing, Blanks Samples	2612	Blanks or Duplicate Samples; Includes materials only.	Each	\$48.75	6	\$292.50
Testing, Water Quality	2613	Ammonium, Nitrite plus Nitrate, Total Kjeldahl Nitrogen, Soluble Reactive P (Orthophosphate), Total Phosphorus, Suspended Sediment Concentration ??? Preferred, or Total Suspended Solids. Includes materials only.	Each	\$48.75	360	\$17,550.00

Practice: 201 - Edge-of-Field Water Quality Monitoring-Data Collection and Evaluation
Scenario: \#180 - Data Collect Surface Year 1-QAPP

Scenario Description:

This practice scenario provides for the design and use of an edge-of-field WQ monitoring station(s) for surface run-off for one control and one treatment site with an average of 20 samples per year per station, with each sample analyzed for 6 separate parameters (2 sites $\times 20$ samples $\times 6$ parameters $=240$ total water quality tests). The scenario requires the creation of a survey to site a monitoring station, preparation of monitoring plan and a quality assurance project plan to detail how data will be collected, handled and analyzed, provides for the data collection, analysis, semiannual report, and annual report. This scenario will normally be used in year 1 of the contract when a monitoring plan and QAPP need to be prepared prior to installation under Edge-of-Field Water Quality Monitoring - System Installation (202). THIS IS PLACED IN A PAIRED SITUATION IF THE CONTROL AND TREATMENT ARE ON DIFFERENT LANDOWNERS FIELDS THEN A JOINT CONTRACT WILL BE NECESSARY.

Before Situation:
The agricultural operation prior to installing this practice will not have a plan or quality assurance project plan prepared for installing equipment nor collecting data for sediment and nutrients leaving the edge of field.

After Situation:

This practice scenario after installation of the WQ monitoring stations, provides for the data collection, analysis, semiannual report, and annual report for one control and one treatment site. This scenario will normally be used in year 1 of the contract when a monitoring plan and QAPP have been prepared prior to installation under Edge-ofField Water Quality Monitoring - System Installation (202). The operator will be able to collect field level water quality data of sufficient quality to measure loss of nutrients as listed in 201.

Feature Measure: Measuring Sites
Scenario Unit: Each

Scenario Typical Size: 1.00
Scenario Total Cost: \$34,141.30
Scenario Cost/Unit: \$34,141.30
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	130	\$4,403.10
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	136	\$17,843.20
Materials						
Testing, Blanks Samples	2612	Blanks or Duplicate Samples; Includes materials only.	Each	\$48.75	4	\$195.00
Testing, Water Quality	2613	Ammonium, Nitrite plus Nitrate, Total Kjeldahl Nitrogen, Soluble Reactive P (Orthophosphate), Total Phosphorus, Suspended Sediment Concentration ??? Preferred, or Total Suspended Solids. Includes materials only.	Each	\$48.75	240	\$11,700.00

Practice: 201 - Edge-of-Field Water Quality Monitoring-Data Collection and Evaluation
Scenario: \#189-Data Collect Surface Year 1+ less QAPP (pre-install information) with two treatment sites

Scenario Description:

This practice scenario provides for the use of an edge-of-field WQ monitoring station(s) for surface run-off for one control and two treatment sites. The scenario requires the collection and analysis of edge-of-field water quality data with an average sample collection of 20 per year for each surface system, with each sample analyzed for 6 separate parameters (3 sites $\times 20$ samples $\times 6$ parameters $=360$ total water quality tests). The data will be transferred through semi-annual submittal and annual report, which include some preliminary annual analysis. This scenario will normally be used in year 1 of the contract when a monitoring plan and QAPP will not be prepared as this is for an existing monitoring system be accepted as meeting both Activity 201 and 202. THIS IS PLACED IN A PAIRED SITUATION IF THE CONTROL AND TREATMENT ARE ON DIFFERENT LANDOWNERS FIELDS THEN A JOINT CONTRACT WILL BE NECESSARY.

Before Situation:
The agricultural operation prior to installing this practice will have an existing system for collecting water quality data but not have been operating with a long enough time frame to measure practice effectiveness.

After Situation:
This practice scenario after installation of the WQ monitoring stations, provides for the data collection, analysis, semi-annual submittal, and annual report for one control and two treatment sites. This scenario will normally be used in year 1 of the contract when a monitoring plan and QAPP have been prepared as part of an existing monitoring system installation where the QAPP and monitoring plan meets Activity 201 requirements and no major changes are needed to meet Activity 202 requirements. The operator will be able to collect field level water quality data of sufficient quality to measure loss of nutrients as listed in 201.

Feature Measure: Measuring site
Scenario Unit: Each

Scenario Typical Size: 1.00
Scenario Total Cost: \$34,934.22
Scenario Cost/Unit: \$34,934.22
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	156	\$5,283.72
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	90	\$11,808.00
Materials						
Testing, Blanks Samples	2612	Blanks or Duplicate Samples; Includes materials only.	Each	\$48.75	6	\$292.50
Testing, Water Quality	2613	Ammonium, Nitrite plus Nitrate, Total Kjeldahl Nitrogen, Soluble Reactive P (Orthophosphate), Total Phosphorus, Suspended Sediment Concentration ??? Preferred, or Total Suspended Solids. Includes materials only.	Each	\$48.75	360	\$17,550.00

Practice: 201 - Edge-of-Field Water Quality Monitoring-Data Collection and Evaluation

Scenario: \#196 - Data Collect Surface Last Year

Scenario Description:

This practice scenario provides for the use of an edge-of-field WQ monitoring station(s) for surface run-off for one control and one treatment site with an average of 20 samples per year per station, with each sample analyzed for 6 separate parameters (2 sites $\times 20$ samples $\times 6$ parameters $=240$ total water quality tests). The scenario requires the collection and analysis of edge-of-field water quality data along with a comprehensive report to statistically prove relationship between select conservation practices and water quality. The data will be transferred through semi-annual submittal and annual report and a comprehensive report of practice effectiveness. This scenario will be used in the last year of monitoring. THIS IS PLACED IN A PAIRED SITUATION IF THE CONTROL AND TREATMENT ARE ON DIFFERENT LANDOWNERS FIELDS THEN A JOINT CONTRACT WILL BE NECESSARY.

Before Situation:

The agricultural operation prior to installing this practice will have an existing system for collecting water quality data but not have been operating with a long enough time frame to measure practice effectiveness.

After Situation:
This practice scenario after installation of the WQ monitoring stations, provides for the data collection, analysis, semiannual submittal, and annual report for one control and one treatment site. The operator will be able to collect field level water quality data of sufficient quality to measure loss of nutrients as listed in 201 to provide a comprehensive report of statistical testing of data collected to complete monitoring period.

Feature Measure: Measuring Site
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 29,418.10$
Scenario Cost/Unit: \$29,418.10

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	130	\$4,403.10
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	100	\$13,120.00
Materials						
Testing, Blanks Samples	2612	Blanks or Duplicate Samples; Includes materials only.	Each	\$48.75	4	\$195.00
Testing, Water Quality	2613	Ammonium, Nitrite plus Nitrate, Total Kjeldahl Nitrogen, Soluble Reactive P (Orthophosphate), Total Phosphorus, Suspended Sediment Concentration ??? Preferred, or Total Suspended Solids. Includes materials only.	Each	\$48.75	240	\$11,700.00

Practice: 201 - Edge-of-Field Water Quality Monitoring-Data Collection and Evaluation
Scenario: \#203 - Data Collect Surface Last Year with two treatment sites

Scenario Description:

This practice scenario provides for the use of an edge-of-field WQ monitoring station(s) for surface run-off for one control and two treatment sites with an average of 20 samples per year per station, with each sample analyzed for 6 separate parameters (3 sites $\times 20$ samples $\times 6$ parameters $=360$ total water quality tests). The scenario requires the collection and analysis of edge-of-field water quality data along with a comprehensive report to statistically prove relationship between select conservation practices and water quality. The data will be transferred through semi-annual submittal and annual report and a comprehensive report of practice effectiveness. This scenario will be used in the last year of monitoring. THIS IS PLACED IN A PAIRED SITUATION IF THE CONTROL AND TREATMENT ARE ON DIFFERENT LANDOWNERS FIELDS THEN A JOINT CONTRACT WILL BE NECESSARY.

Before Situation:

The agricultural operation prior to installing this practice will have an existing system for collecting water quality data but not have been operating with a long enough time frame to measure practice effectiveness.

After Situation:
This practice scenario after installation of the WQ monitoring stations, provides for the data collection, analysis, semiannual submittal, and annual report for one control and two treatment sites. The operator will be able to collect field level water quality data of sufficient quality to measure loss of nutrients as listed in 201 to provide a comprehensive report of statistical testing of data collected during to complete monitoring period.

Feature Measure: Measuring site
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 42,806.22$
Scenario Cost/Unit: $\$ 42,806.22$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	156	\$5,283.72
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	150	\$19,680.00
Materials						
Testing, Blanks Samples	2612	Blanks or Duplicate Samples; Includes materials only.	Each	\$48.75	6	\$292.50
Testing, Water Quality	2613	Ammonium, Nitrite plus Nitrate, Total Kjeldahl Nitrogen, Soluble Reactive P (Orthophosphate), Total Phosphorus, Suspended Sediment Concentration ??? Preferred, or Total Suspended Solids. Includes materials only.	Each	\$48.75	360	\$17,550.00

Practice: 201 - Edge-of-Field Water Quality Monitoring-Data Collection and Evaluation
Scenario: \#223 - Data Collect - Discrete Sampling, Year 1, Single Parameter

Scenario Description:

This scenario is to be used for targeted, periodic WQ grab sampling design and implementation for evaluating and assessing conservation practice performance. This scenario provides for collection and analysis of one of the following water quality constituents: Ammonium, Nitrite plus Nitrate, Total Kjeldahl Nitrogen, Soluble Reactive P (Orthophosphate), Total Phosphorus, Suspended Sediment Concentration, or Total Suspended Solids. A monitoring plan is created by a qualified individual to achieve monitoring goals. Event-based or regularly re-occurring grab samples are acquired from the concentrated flow streams at 2 locations, typically in a before-and-after or a side-by-side sampling design and then analyzed at a laboratory

Before Situation:

The agricultural operation prior to implementing this activity will not have a monitoring plan prepared for evaluating and assessing the performance of a conservation practice.

After Situation:

The agricultural operation after implementing this activity will have produced and implemented a water quality monitoring plan for a single water quality constituent to evaluate and assess the performance of a conservation practice with respect to that constituent.

Feature Measure: Measuring sites
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$7,267.84
Scenario Cost/Unit: \$7,267.84
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	72	\$2,438.64
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	16	\$2,099.20
Materials						
Testing, Blanks Samples	2612	Blanks or Duplicate Samples; Includes materials only.	Each	\$48.75	8	\$390.00
Testing, Water Quality	2613	Ammonium, Nitrite plus Nitrate, Total Kjeldahl Nitrogen, Soluble Reactive P (Orthophosphate), Total Phosphorus, Suspended Sediment Concentration ??? Preferred, or Total Suspended Solids. Includes materials only.	Each	\$48.75	48	\$2,340.00

Practice: 201 - Edge-of-Field Water Quality Monitoring-Data Collection and Evaluation
Scenario: \#239-Data Collect - Discrete Sampling, Single Parameter, Additional Year

Scenario Description:

This scenario extends, by an additional year, discreet WQ grab sampling design and implementation for evaluating and assessing conservation practice performance. This scenario provides for analysis of one of the following water quality constituents: Ammonium, Nitrite plus Nitrate, Total Kjeldahl Nitrogen, Soluble Reactive P (Orthophosphate), Total Phosphorus, Suspended Sediment Concentration, or Total Suspended Solids. A monitoring plan is created by a qualified individual to achieve monitoring goals. Event-based or regularly re-occurring synoptic grab samples are acquired from the concentrated flow streams at 2 locations, typically in a before-andafter or a side-by-side sampling design and then analyzed at a laboratory.

Before Situation:
The agricultural operation prior to implementing this activity will not have a monitoring plan prepared for evaluating and assessing the performance of a conservation practice.

After Situation:

The agricultural operation after implementing this activity will have produced and implemented a water quality monitoring plan for a single water quality constituent to evaluate and assess the performance of a conservation practice with respect to that constituent.

Feature Measure: Measuring Sites
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$5,693.44
Scenario Cost/Unit: \$5,693.44

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	72	\$2,438.64
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	4	\$524.80
Materials						
Testing, Blanks Samples	2612	Blanks or Duplicate Samples; Includes materials only.	Each	\$48.75	8	\$390.00
Testing, Water Quality	2613	Ammonium, Nitrite plus Nitrate, Total Kjeldahl Nitrogen, Soluble Reactive P (Orthophosphate), Total Phosphorus, Suspended Sediment Concentration ??? Preferred, or Total Suspended Solids. Includes materials only.	Each	\$48.75	48	\$2,340.00

Practice: 202 - Edge-of-Field Water Quality Monitoring-System Installation
Scenario: \#99-System Installation-Tile Cold Climate

Scenario Description:

This edge-of-field water quality monitoring system is applicable to a single control or treatment site that has a field defined with tile or other subsurface drainage runoff that can be captured and sampled at the edge of a field before entering a ditch or receiving water body or water course. The component monitoring equipment are associated with a typical system for northern latitudes where winter time heating is required for sampling. It will allow for installation of automated sampling data collection system for a subsurface collection and separate surface automated sample collection system with protective housing to reduce potential for vandalism, battery backup for operation during periods when electricity is down or solar panels are not creating an electrical current, an area velocity sensor for pipe flow and estimation of submerged flow, a calf hut or other structure with heat is required over the flume to allow sampling under northern latitude winter conditions and a berm or other directional flow structure to guide the runoff to a sampling flume.
Before Situation:
The agricultural operation prior to installing the monitoring equipment is guessing about the effects of the conservation system with regards to meeting practice intent of avoid, controlling, or trapping sediment and nutrients. Nothing is known about the volume or mass of sediment and nutrients leaving the edge of field through the tile or other subsurface drainage system.

After Situation:
The agricultural operation after installing the monitoring equipment will be receiving feedback in the form of edge-of-field runoff water quality samples. The samples will allow the operator to understand the relationship between rain/irrigation, practice choice, and nutrient inputs effecting nutrient and sediment loss for the field. Thus, providing an opportunity to make adaptive management changes to the agricultural operation to reduce sediment and nutrient loss and/or profitability.

Feature Measure: System installed
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$39,079.41
Scenario Cost/Unit: \$39,079.41

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	100	\$3,387.00
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	6	\$787.20
Materials						
Solar Panels, fixed cost portion	1031	Fixed cost portion of the Solar Panels. This portion is a base cost for all Solar Panels and is not dependent on Kilowatt. The total cost of any Solar Panels will include this fixed cost plus a variable cost portion. The completed Solar Panels will include all materials (electrical, controllers, service drops and etc.).	Each	\$859.26	1	\$859.26
Solar Panels, variable cost portion	1135	Variable cost portion of the Solar Panels. This portion IS dependent on the total Kilowatt for the Solar Panels. The total cost of Solar Panels will include this variable cost plus the fixed cost portion. The completed Solar Panels will include all materials (electrical, controllers, service drop, etc.). Includes materials only.	Kilowatt	\$2,563.62	0.12	\$307.63
Heater, high efficiency	1165	Natural gas, propane, or fuel oil unit heater or boiler and venting materials. Based on input kBTU/hour. Includes materials and shipping only.	$\begin{gathered} 1,000 \\ \text { BTU/Hour } \end{gathered}$	\$22.00	1	\$22.00
Weather Station, Advanced	2550	Advance Weather Station which collects and records recording rainfall, humidity, barometric pressure, wind speed, temperature, and solar radiation from a solar powered self-standing tripod to an advance weather recording console. Used for both 449 advance irrigation water management and for Activity 202 water quality monitoring .	Each	\$973.44	1	\$973.44
Automated sampler with bottles and tubing	2606	Equipment used to collect the water samples on a flow weighted interval of 1.27 mm of runoff (volumetric depth) during a storm event.	Each	\$2,555.63	2	\$5,111.26
Connectors, cables, platform materials	2607	Miscellaneous (connectors, cables, berm, platform materials); Includes materials only.	Each	\$9,638.96	1	\$9,638.96
Depth (stage) sensor	2608	Device used to relay information to the Data logger about incremental increases in runoff. ISCO 730 Module with $1 / 8$-in x $25-\mathrm{ft}$ vinyl bubble line. Includes equipment only. Used for A202 water quality monitering	Each	\$3,645.15	2	\$7,290.30
Equipment shelter	2609	Building designed to house and reduce the risk of equipment damage from weather, animals, and vandalism.	Each	\$1,734.29	2	\$3,468.58

Pre-calibrated flow control structure-surface	2610	Pre-calibrated flow control structure-surface. Used for A202 water quality monitering	Each	\$3,010.00	1	\$3,010.00
Pre-calibrated flow control structure-subsurface (pipe flow)	2615	Equipment used to collect runoff for ease in measure of flow, sample collection and to reduce time in constructing and calibrating of a flow structure.	Each	\$1,006.08	1	\$1,006.08
Device, communications	2616	Piece of equipment or hardware designed to transmit real time data or information collected prior to site visits. Includes equipment only.	Each	\$2,449.63	1	\$2,449.63
Equipment Shed	2617	Equipment shed (10×10 foot) made of steel applied over the sampling flume to allow collection of water samples during the winter in colder climates.	Each	\$768.07	1	\$768.07

Practice: 202 - Edge-of-Field Water Quality Monitoring-System Installation

Scenario: \#108-System Installation-Tile

Scenario Description:

This edge-of-field water quality monitoring system is applicable to a single control or treatment site that has a field defined with tile or other subsurface drainage runoff that can be captured and sampled at the edge of a field before entering a ditch or receiving water body or water course. The component monitoring equipment are associated with a typical system for southern latitudes where winter time heating is not required for sampling. It will allow for installation of automated sampling data collection system for a subsurface collection and separate surface automated sample collection system with protective housing to reduce potential for vandalism, battery backup for operation during periods when electricity is down or solar panels are not creating an electrical current, an area velocity sensor for pipe flow and estimation of submerged flow, and a berm or other directional flow structure to guide the runoff to a sampling flume.

Before Situation:
The agricultural operation prior to installing the monitoring equipment is guessing about the effects of the conservation system with regards to meeting practice intent of avoid, controlling, or trapping sediment and nutrients. Nothing is known about the volume or mass of sediment and nutrients leaving the edge of field through the tile or other subsurface drainage system.

After Situation:

The agricultural operation after installing the monitoring equipment will be receiving feedback in the form of edge-of-field runoff water quality samples. The samples will allow the operator to understand the relationship between rain/irrigation, practice choice, and nutrient inputs effecting nutrient and sediment loss for the field. Thus, providing an opportunity to make adaptive management changes to the agricultural operation to reduce sediment and nutrient loss and/or profitability.

Feature Measure: System installed
Scenario Unit: Each

Scenario Typical Size: 1.00
Scenario Total Cost: \$39,079.41
Scenario Cost/Unit: \$39,079.41
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	100	\$3,387.00
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	6	\$787.20
Materials						
Solar Panels, fixed cost portion	1031	Fixed cost portion of the Solar Panels. This portion is a base cost for all Solar Panels and is not dependent on Kilowatt. The total cost of any Solar Panels will include this fixed cost plus a variable cost portion. The completed Solar Panels will include all materials (electrical, controllers, service drops and etc.).	Each	\$859.26	1	\$859.26
Solar Panels, variable cost portion	1135	Variable cost portion of the Solar Panels. This portion IS dependent on the total Kilowatt for the Solar Panels. The total cost of Solar Panels will include this variable cost plus the fixed cost portion. The completed Solar Panels will include all materials (electrical, controllers, service drop, etc.). Includes materials only.	Kilowatt	\$2,563.62	0.12	\$307.63
Heater, high efficiency	1165	Natural gas, propane, or fuel oil unit heater or boiler and venting materials. Based on input kBTU/hour. Includes materials and shipping only.	$\begin{gathered} \text { 1,000 } \\ \text { BTU/Hour } \end{gathered}$	\$22.00	1	\$22.00
Weather Station, Advanced	2550	Advance Weather Station which collects and records recording rainfall, humidity, barometric pressure, wind speed, temperature, and solar radiation from a solar powered self-standing tripod to an advance weather recording console. Used for both 449 advance irrigation water management and for Activity 202 water quality monitoring .	Each	\$973.44	1	\$973.44
Automated sampler with bottles and tubing	2606	Equipment used to collect the water samples on a flow weighted interval of 1.27 mm of runoff (volumetric depth) during a storm event.	Each	\$2,555.63	2	\$5,111.26
Connectors, cables, platform materials	2607	Miscellaneous (connectors, cables, berm, platform materials); Includes materials only.	Each	\$9,638.96	1	\$9,638.96
Depth (stage) sensor	2608	Device used to relay information to the Data logger about incremental increases in runoff. ISCO 730 Module with $1 / 8$-in x $25-\mathrm{ft}$ vinyl bubble line. Includes equipment only. Used for A202 water quality monitering	Each	\$3,645.15	2	\$7,290.30
Equipment shelter	2609	Building designed to house and reduce the risk of equipment damage from weather, animals, and vandalism.	Each	\$1,734.29	2	\$3,468.58

Pre-calibrated flow control structure-surface	2610	Pre-calibrated flow control structure-surface. Used for A202 water quality monitering	Each	\$3,010.00	1	\$3,010.00
Pre-calibrated flow control structure-subsurface (pipe flow)	2615	Equipment used to collect runoff for ease in measure of flow, sample collection and to reduce time in constructing and calibrating of a flow structure.	Each	\$1,006.08	1	\$1,006.08
Device, communications	2616	Piece of equipment or hardware designed to transmit real time data or information collected prior to site visits. Includes equipment only.	Each	\$2,449.63	1	\$2,449.63
Equipment Shed	2617	Equipment shed (10×10 foot) made of steel applied over the sampling flume to allow collection of water samples during the winter in colder climates.	Each	\$768.07	1	\$768.07

Practice: 202 - Edge-of-Field Water Quality Monitoring-System Installation

Scenario: \#115-System Installation-Surface Cold Climate

Scenario Description:

This edge-of-field water quality monitoring system is applicable to a single control or treatment site that has a field defined with surface runoff that can be captured and sampled at the edge of a field before entering a ditch or receiving water body or water course. The component monitoring equipment are associated with a typical system for northern latitudes where winter time heating is required for sampling. It will allow for installation of automated sampling data collection system with protective housing to reduce potential for vandalism, battery backup for operation during periods when electricity is down or solar panels are not creating an electrical current, a calf hut or other structure with heat is required over the flume to allow sampling under northern latitude winter conditions, and a berm or other directional flow structure to guide the runoff to a sampling flume.

Before Situation:
The agricultural operation prior to installing the monitoring equipment is guessing about the effects of the conservation system with regards to meeting practice intent of avoid, controlling, or trapping sediment and nutrients. Nothing is known about the volume or mass of sediment and nutrients leaving the edge of field through the tile or other subsurface drainage system.

After Situation:

The agricultural operation after installing the monitoring equipment will be receiving feedback in the form of edge-of-field runoff water quality samples. The samples will allow the operator to understand the relationship between rain/irrigation, practice choice, and nutrient inputs effecting nutrient and sediment loss for the field. Thus, providing an opportunity to make adaptive management changes to the agricultural operation to reduce sediment and nutrient loss and/or profitability.

Feature Measure: System installed
Scenario Unit: Each

Scenario Typical Size: 1.00
Scenario Total Cost: \$28,652.26
Scenario Cost/Unit: \$28,652.26
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	60	\$2,032.20
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	5	\$656.00
Materials						
Solar Panels, fixed cost portion	1031	Fixed cost portion of the Solar Panels. This portion is a base cost for all Solar Panels and is not dependent on Kilowatt. The total cost of any Solar Panels will include this fixed cost plus a variable cost portion. The completed Solar Panels will include all materials (electrical, controllers, service drops and etc.).	Each	\$859.26	1	\$859.26
Solar Panels, variable cost portion	1135	Variable cost portion of the Solar Panels. This portion IS dependent on the total Kilowatt for the Solar Panels. The total cost of Solar Panels will include this variable cost plus the fixed cost portion. The completed Solar Panels will include all materials (electrical, controllers, service drop, etc.). Includes materials only.	Kilowatt	\$2,563.62	0.12	\$307.63
Heater, high efficiency	1165	Natural gas, propane, or fuel oil unit heater or boiler and venting materials. Based on input kBTU/hour. Includes materials and shipping only.	$\begin{gathered} \text { 1,000 } \\ \text { BTU/Hour } \end{gathered}$	\$22.00	1	\$22.00
Weather Station, Advanced	2550	Advance Weather Station which collects and records recording rainfall, humidity, barometric pressure, wind speed, temperature, and solar radiation from a solar powered self-standing tripod to an advance weather recording console. Used for both 449 advance irrigation water management and for Activity 202 water quality monitoring .	Each	\$973.44	1	\$973.44
Automated sampler with bottles and tubing	2606	Equipment used to collect the water samples on a flow weighted interval of 1.27 mm of runoff (volumetric depth) during a storm event.	Each	\$2,555.63	1	\$2,555.63
Connectors, cables, platform materials	2607	Miscellaneous (connectors, cables, berm, platform materials); Includes materials only.	Each	\$9,638.96	1	\$9,638.96
Depth (stage) sensor	2608	Device used to relay information to the Data logger about incremental increases in runoff. ISCO 730 Module with $1 / 8$-in x $25-\mathrm{ft}$ vinyl bubble line. Includes equipment only. Used for A202 water quality monitering	Each	\$3,645.15	1	\$3,645.15
Equipment shelter	2609	Building designed to house and reduce the risk of equipment damage from weather, animals, and vandalism.	Each	\$1,734.29	1	\$1,734.29

Pre-calibrated flow control structure-surface	2610	Pre-calibrated flow control structure-surface. Used for A202 water quality monitering	Each	\$3,010.00	1	\$3,010.00
Device, communications	2616	Piece of equipment or hardware designed to transmit real time data or information collected prior to site visits. Includes equipment only.	Each	\$2,449.63	1	\$2,449.63
Equipment Shed	2617	Equipment shed (10×10 foot) made of steel applied over the sampling flume to allow collection of water samples during the winter in colder climates.	Each	\$768.07	1	\$768.07

Practice: 202 - Edge-of-Field Water Quality Monitoring-System Installation

Scenario: \#122-System Installation-Surface

Scenario Description:

This edge-of-field water quality monitoring system is applicable to a single control or treatment site that has a field defined with surface runoff that can be captured and sampled at the edge of a field before entering a ditch or receiving water body or water course. The component monitoring equipment are associated with a typical system for southern latitudes where winter time heating is not required for sampling. It will allow for installation of automated sampling data collection system with protective housing to reduce potential for vandalism, battery backup for operation during periods when electricity is down or solar panels are not creating an electrical current, and a berm or other directional flow structure to guide the runoff to a sampling flume.

Before Situation:

The agricultural operation prior to installing the monitoring equipment is guessing about the effects of the conservation system with regards to meeting practice intent of avoid, controlling, or trapping sediment and nutrients.

After Situation:

The agricultural operation after installing the monitoring equipment will be receiving feedback in the form of edge-of-field runoff water quality samples. The samples will allow the operator to understand the relationship between rain/irrigation, practice choice, and nutrient inputs effecting nutrient and sediment loss for the field. Thus, providing an opportunity to make adaptive management changes to the agricultural operation to reduce sediment and nutrient loss and/or profitability.

Feature Measure: System installed
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: $\quad \$ 27,862.19$
Scenario Cost/Unit: $\quad \$ 27,862.19$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	60	\$2,032.20
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	5	\$656.00
Materials						
Solar Panels, fixed cost portion	1031	Fixed cost portion of the Solar Panels. This portion is a base cost for all Solar Panels and is not dependent on Kilowatt. The total cost of any Solar Panels will include this fixed cost plus a variable cost portion. The completed Solar Panels will include all materials (electrical, controllers, service drops and etc.).	Each	\$859.26	1	\$859.26
Solar Panels, variable cost portion	1135	Variable cost portion of the Solar Panels. This portion IS dependent on the total Kilowatt for the Solar Panels. The total cost of Solar Panels will include this variable cost plus the fixed cost portion. The completed Solar Panels will include all materials (electrical, controllers, service drop, etc.). Includes materials only.	Kilowatt	\$2,563.62	0.12	\$307.63
Weather Station, Advanced	2550	Advance Weather Station which collects and records recording rainfall, humidity, barometric pressure, wind speed, temperature, and solar radiation from a solar powered self-standing tripod to an advance weather recording console. Used for both 449 advance irrigation water management and for Activity 202 water quality monitoring .	Each	\$973.44	1	\$973.44
Automated sampler with bottles and tubing	2606	Equipment used to collect the water samples on a flow weighted interval of 1.27 mm of runoff (volumetric depth) during a storm event.	Each	\$2,555.63	1	\$2,555.63
Connectors, cables, platform materials	2607	Miscellaneous (connectors, cables, berm, platform materials); Includes materials only.	Each	\$9,638.96	1	\$9,638.96
Depth (stage) sensor	2608	Device used to relay information to the Data logger about incremental increases in runoff. ISCO 730 Module with $1 / 8$-in $\times 25$-ft vinyl bubble line. Includes equipment only. Used for A202 water quality monitering	Each	\$3,645.15	1	\$3,645.15
Equipment shelter	2609	Building designed to house and reduce the risk of equipment damage from weather, animals, and vandalism.	Each	\$1,734.29	1	\$1,734.29
Pre-calibrated flow control structure-surface	2610	Pre-calibrated flow control structure-surface. Used for A202 water quality monitering	Each	\$3,010.00	1	\$3,010.00
Device, communications	2616	Piece of equipment or hardware designed to transmit real time data or information collected prior to site visits. Includes equipment only.	Each	\$2,449.63	1	\$2,449.63

Practice: 202 - Edge-of-Field Water Quality Monitoring-System Installation
Scenario: \#130-System Installation-Retrofit Above and Below 1

Scenario Description:

This edge-of-field water quality monitoring system is to retrofit an existing above and below monitoring designed system that is being used in associated with the 799 interim practice or comparable system. The retrofit is applicable to an above and below system that has a field defined with surface or subsurface drainage runoff that can be captured and sampled at the edge of a field before entering a ditch or receiving water body or water course. The data represents the installation of an automated and manual backup rain gauge and two back-up/solar power supply be added to existing paired system.

Before Situation:
The agricultural operation prior to retrofit has an edge-of-field data collection system but it does not meet the present standards for accuracy or reliability as detailed in either or both of Activity 201 and Activity 202.

After Situation:
The agricultural operation after installing the monitoring equipment will be receiving feedback in the form of edge-of-field runoff water quality samples. The samples will allow the operator to understand the relationship between rain/irrigation, practice choice, and nutrient inputs effecting nutrient and sediment loss for the field. Thus, providing an opportunity to make adaptive management changes to the agricultural operation to reduce sediment and nutrient loss and/or profitability.

Feature Measure: System installed
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$4,187.81
Scenario Cost/Unit: \$4,187.81
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	32	\$1,083.84
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	5	\$656.00
Materials						
Solar Panels, fixed cost portion	1031	Fixed cost portion of the Solar Panels. This portion is a base cost for all Solar Panels and is not dependent on Kilowatt. The total cost of any Solar Panels will include this fixed cost plus a variable cost portion. The completed Solar Panels will include all materials (electrical, controllers, service drops and etc.).	Each	\$859.26	1	\$859.26
Solar Panels, variable cost portion	1135	Variable cost portion of the Solar Panels. This portion IS dependent on the total Kilowatt for the Solar Panels. The total cost of Solar Panels will include this variable cost plus the fixed cost portion. The completed Solar Panels will include all materials (electrical, controllers, service drop, etc.). Includes materials only.	Kilowatt	\$2,563.62	0.24	\$615.27
Weather Station, Advanced	2550	Advance Weather Station which collects and records recording rainfall, humidity, barometric pressure, wind speed, temperature, and solar radiation from a solar powered self-standing tripod to an advance weather recording console. Used for both 449 advance irrigation water management and for Activity 202 water quality monitoring .	Each	\$973.44	1	\$973.44

Practice: 202 - Edge-of-Field Water Quality Monitoring-System Installation

Scenario: \#139-System Installation-Retrofit Above 3

Scenario Description:

This edge-of-field water quality monitoring system is to retrofit an existing above and below monitoring designed system that is being used in associated with the 799 interim practice or comparable system. The retrofit is applicable to an above and below system that has a field defined with surface or subsurface drainage runoff that can be captured and sampled at the edge of a field before entering a ditch or receiving water body or water course. The data represents the installation of an automated and manual backup rain gauge, two back-up/solar power supplies, two communications devices, two pre-calibrated flumes, and two depth (stage) sensors to be added to existing paired system.

Before Situation:
The agricultural operation prior to retrofit has an edge-of-field data collection system but it does not meet the present standards for accuracy or reliability as detailed in either or both of Activity 201 and Activity 202.

After Situation:

The agricultural operation after installing the monitoring equipment will be receiving feedback in the form of edge-of-field runoff water quality samples. The samples will allow the operator to understand the relationship between rain/irrigation, practice choice, and nutrient inputs effecting nutrient and sediment loss for the field. Thus, providing an opportunity to make adaptive management changes to the agricultural operation to reduce sediment and nutrient loss and/or profitability.

Feature Measure: System installed
Scenario Unit: Each

Scenario Typical Size: 1.00
Scenario Total Cost: \$22,799.53
Scenario Cost/Unit: \$22,799.53

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	40	\$1,354.80
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	6	\$787.20
Materials						
Solar Panels, fixed cost portion	1031	Fixed cost portion of the Solar Panels. This portion is a base cost for all Solar Panels and is not dependent on Kilowatt. The total cost of any Solar Panels will include this fixed cost plus a variable cost portion. The completed Solar Panels will include all materials (electrical, controllers, service drops and etc.).	Each	\$859.26	1	\$859.26
Solar Panels, variable cost portion	1135	Variable cost portion of the Solar Panels. This portion IS dependent on the total Kilowatt for the Solar Panels. The total cost of Solar Panels will include this variable cost plus the fixed cost portion. The completed Solar Panels will include all materials (electrical, controllers, service drop, etc.). Includes materials only.	Kilowatt	\$2,563.62	0.24	\$615.27
Weather Station, Advanced	2550	Advance Weather Station which collects and records recording rainfall, humidity, barometric pressure, wind speed, temperature, and solar radiation from a solar powered self-standing tripod to an advance weather recording console. Used for both 449 advance irrigation water management and for Activity 202 water quality monitoring .	Each	\$973.44	1	\$973.44
Depth (stage) sensor	2608	Device used to relay information to the Data logger about incremental increases in runoff. ISCO 730 Module with $1 / 8$-in x $25-\mathrm{ft}$ vinyl bubble line. Includes equipment only. Used for A202 water quality monitering	Each	\$3,645.15	2	\$7,290.30
Pre-calibrated flow control structure-surface	2610	Pre-calibrated flow control structure-surface. Used for A202 water quality monitering	Each	\$3,010.00	2	\$6,020.00
Device, communications	2616	Piece of equipment or hardware designed to transmit real time data or information collected prior to site visits. Includes equipment only.	Each	\$2,449.63	2	\$4,899.26

Practice: 202 - Edge-of-Field Water Quality Monitoring-System Installation

Scenario: \#147-System Installation-Retrofit 3

Scenario Description:

This edge-of-field water quality monitoring system is to retrofit an existing system that is being used in associated with the 799 interim practice or comparable system. The retrofit is applicable to a single control or treatment site that has a field defined with surface or subsurface drainage runoff that can be captured and sampled at the edge of a field before entering a ditch or receiving water body or water course. The data represents the installation of an automated and manual backup rain gauge, backup/solar power supply, communications device, pre-calibrated flow control structure, and depth (stage) sensor to be added to existing system.

Before Situation:

The agricultural operation prior to retrofit has an edge-of-field data collection system but it does not meet the present standards for accuracy or reliability as detailed in either or both of Activity 201 and Activity 202.

After Situation:
The agricultural operation after installing the monitoring equipment will be receiving feedback in the form of edge-of-field runoff water quality samples. The samples will allow the operator to understand the relationship between rain/irrigation, practice choice, and nutrient inputs effecting nutrient and sediment loss for the field. Thus, providing an opportunity to make adaptive management changes to the agricultural operation to reduce sediment and nutrient loss and/or profitability.

Feature Measure: System installed
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$12,984.95

Scenario Cost/Unit: \$12,984.95

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	32	\$1,083.84
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	5	\$656.00
Materials						
Solar Panels, fixed cost portion	1031	Fixed cost portion of the Solar Panels. This portion is a base cost for all Solar Panels and is not dependent on Kilowatt. The total cost of any Solar Panels will include this fixed cost plus a variable cost portion. The completed Solar Panels will include all materials (electrical, controllers, service drops and etc.).	Each	\$859.26	1	\$859.26
Solar Panels, variable cost portion	1135	Variable cost portion of the Solar Panels. This portion IS dependent on the total Kilowatt for the Solar Panels. The total cost of Solar Panels will include this variable cost plus the fixed cost portion. The completed Solar Panels will include all materials (electrical, controllers, service drop, etc.). Includes materials only.	Kilowatt	\$2,563.62	0.12	\$307.63
Weather Station, Advanced	2550	Advance Weather Station which collects and records recording rainfall, humidity, barometric pressure, wind speed, temperature, and solar radiation from a solar powered self-standing tripod to an advance weather recording console. Used for both 449 advance irrigation water management and for Activity 202 water quality monitoring .	Each	\$973.44	1	\$973.44
Depth (stage) sensor	2608	Device used to relay information to the Data logger about incremental increases in runoff. ISCO 730 Module with $1 / 8$-in x 25 -ft vinyl bubble line. Includes equipment only. Used for A202 water quality monitering	Each	\$3,645.15	1	\$3,645.15
Pre-calibrated flow control structure-surface	2610	Pre-calibrated flow control structure-surface. Used for A202 water quality monitering	Each	\$3,010.00	1	\$3,010.00
Device, communications	2616	Piece of equipment or hardware designed to transmit real time data or information collected prior to site visits. Includes equipment only.	Each	\$2,449.63	1	\$2,449.63

Practice: 202 - Edge-of-Field Water Quality Monitoring-System Installation

Scenario: \#155-System Installation-Retrofit 2

Scenario Description:

This edge-of-field water quality monitoring system is to retrofit an existing system that is being used in associated with the 799 interim practice or comparable system. The retrofit is applicable to a single control or treatment site that has a field defined with surface or subsurface drainage runoff that can be captured and sampled at the edge of a field before entering a ditch or receiving water body or water course. The data represents the installation of an automated and manual backup rain gauge, backup/solar power supply, communications device, and depth (stage) sensor to be added to existing system.

Before Situation:

The agricultural operation prior to retrofit has an edge-of-field data collection system but it does not meet the present standards for accuracy or reliability as detailed in either or both of Activity 201 and Activity 202.

After Situation:
The agricultural operation after installing the monitoring equipment will be receiving feedback in the form of edge-of-field runoff water quality samples. The samples will allow the operator to understand the relationship between rain/irrigation, practice choice, and nutrient inputs effecting nutrient and sediment loss for the field. Thus, providing an opportunity to make adaptive management changes to the agricultural operation to reduce sediment and nutrient loss and/or profitability.

Feature Measure: System installed
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$9,568.51
Scenario Cost/Unit: \$9,568.51
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	20	\$677.40
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	5	\$656.00
Materials						
Solar Panels, fixed cost portion	1031	Fixed cost portion of the Solar Panels. This portion is a base cost for all Solar Panels and is not dependent on Kilowatt. The total cost of any Solar Panels will include this fixed cost plus a variable cost portion. The completed Solar Panels will include all materials (electrical, controllers, service drops and etc.).	Each	\$859.26	1	\$859.26
Solar Panels, variable cost portion	1135	Variable cost portion of the Solar Panels. This portion IS dependent on the total Kilowatt for the Solar Panels. The total cost of Solar Panels will include this variable cost plus the fixed cost portion. The completed Solar Panels will include all materials (electrical, controllers, service drop, etc.). Includes materials only.	Kilowatt	\$2,563.62	0.12	\$307.63
Weather Station, Advanced	2550	Advance Weather Station which collects and records recording rainfall, humidity, barometric pressure, wind speed, temperature, and solar radiation from a solar powered self-standing tripod to an advance weather recording console. Used for both 449 advance irrigation water management and for Activity 202 water quality monitoring .	Each	\$973.44	1	\$973.44
Depth (stage) sensor	2608	Device used to relay information to the Data logger about incremental increases in runoff. ISCO 730 Module with $1 / 8$-in x 25 -ft vinyl bubble line. Includes equipment only. Used for A202 water quality monitering	Each	\$3,645.15	1	\$3,645.15
Device, communications	2616	Piece of equipment or hardware designed to transmit real time data or information collected prior to site visits. Includes equipment only.	Each	\$2,449.63	1	\$2,449.63

Practice: 202 - Edge-of-Field Water Quality Monitoring-System Installation
Scenario: \#163-System Installation-Retrofit 1

Scenario Description:

This edge-of-field water quality monitoring system is to retrofit an existing system that is being used in associated with the 799 interim practice or comparable system. The retrofit is applicable to a single control or treatment site that has a field defined with surface or subsurface drainage runoff that can be captured and sampled at the edge of a field before entering a ditch or receiving water body or water course. The data represents the installation of an automated and manual backup rain gauge and back-up/solar power supply be added to existing system.

Before Situation:
The agricultural operation prior to retrofit has an edge-of-field data collection system but it does not meet the present standards for accuracy or reliability as detailed in either or both of Activity 201 and Activity 202.

After Situation:
The agricultural operation after installing the monitoring equipment will be receiving feedback in the form of edge-of-field runoff water quality samples. The samples will allow the operator to understand the relationship between rain/irrigation, practice choice, and nutrient inputs effecting nutrient and sediment loss for the field. Thus, providing an opportunity to make adaptive management changes to the agricultural operation to reduce sediment and nutrient loss and/or profitability.

Feature Measure: System installed
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$3,338.25
Scenario Cost/Unit: \$3,338.25
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	16	\$541.92
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	5	\$656.00
Materials						
Solar Panels, fixed cost portion	1031	Fixed cost portion of the Solar Panels. This portion is a base cost for all Solar Panels and is not dependent on Kilowatt. The total cost of any Solar Panels will include this fixed cost plus a variable cost portion. The completed Solar Panels will include all materials (electrical, controllers, service drops and etc.).	Each	\$859.26	1	\$859.26
Solar Panels, variable cost portion	1135	Variable cost portion of the Solar Panels. This portion IS dependent on the total Kilowatt for the Solar Panels. The total cost of Solar Panels will include this variable cost plus the fixed cost portion. The completed Solar Panels will include all materials (electrical, controllers, service drop, etc.). Includes materials only.	Kilowatt	\$2,563.62	0.12	\$307.63
Weather Station, Advanced	2550	Advance Weather Station which collects and records recording rainfall, humidity, barometric pressure, wind speed, temperature, and solar radiation from a solar powered self-standing tripod to an advance weather recording console. Used for both 449 advance irrigation water management and for Activity 202 water quality monitoring .	Each	\$973.44	1	\$973.44

Practice: 202 - Edge-of-Field Water Quality Monitoring-System Installation

Scenario: \#171-System Installation-Above And Below cold climate

Scenario Description:

This edge-of-field water quality monitoring system is applicable where a conservation practice has a pre- and post treatment area in the same field drainage with surface or subsurface drainage runoff that can be captured and sampled at the edge of a field before entering a ditch or receiving water body or water course. The component monitoring equipment are associated with a typical system for northern latitudes where winter time heating is required for sampling. It will allow for installation of automated sampling data collection system with protective housing to reduce potential for vandalism, battery backup for operation during periods when electricity is down or solar panels are not creating an electrical current, a calf hut or other structure with heat is required over the flume to allow sampling under northern latitude winter conditions, and a berm or other directional flow structure to guide the runoff to a sampling flume. The actual installation will different on the subsurface flow by allowing a smaller pre-calibrated flume with the addition of a velocity sensor meter as in the tile alternative.

Before Situation:

The agricultural operation prior to installing the monitoring equipment is guessing about the effects of the conservation system with regards to meeting practice intent of avoid, controlling, or trapping sediment and nutrients. Nothing is known about the volume or mass of sediment and nutrients leaving the edge of field through the tile or other subsurface drainage system.

After Situation:
The agricultural operation after installing the monitoring equipment will be receiving feedback in the form of edge-of-field runoff water quality samples. The samples will allow the operator to understand the relationship between rain/irrigation, practice choice, and nutrient inputs effecting nutrient and sediment loss for the field. Thus, providing an opportunity to make adaptive management changes to the agricultural operation to reduce sediment and nutrient loss and/or profitability.

Feature Measure: System installed
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 42,968.23$
Scenario Cost/Unit: \$42,968.23

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	60	\$2,032.20
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	6	\$787.20
Materials						
Solar Panels, fixed cost portion	1031	Fixed cost portion of the Solar Panels. This portion is a base cost for all Solar Panels and is not dependent on Kilowatt. The total cost of any Solar Panels will include this fixed cost plus a variable cost portion. The completed Solar Panels will include all materials (electrical, controllers, service drops and etc.).	Each	\$859.26	1	\$859.26
Solar Panels, variable cost portion	1135	Variable cost portion of the Solar Panels. This portion IS dependent on the total Kilowatt for the Solar Panels. The total cost of Solar Panels will include this variable cost plus the fixed cost portion. The completed Solar Panels will include all materials (electrical, controllers, service drop, etc.). Includes materials only.	Kilowatt	\$2,563.62	0.12	\$307.63
Heater, high efficiency	1165	Natural gas, propane, or fuel oil unit heater or boiler and venting materials. Based on input kBTU/hour. Includes materials and shipping only.	$\begin{gathered} 1,000 \\ \text { BTU/Hour } \end{gathered}$	\$22.00	2	\$44.00
Weather Station, Advanced	2550	Advance Weather Station which collects and records recording rainfall, humidity, barometric pressure, wind speed, temperature, and solar radiation from a solar powered self-standing tripod to an advance weather recording console. Used for both 449 advance irrigation water management and for Activity 202 water quality monitoring .	Each	\$973.44	1	\$973.44
Automated sampler with bottles and tubing	2606	Equipment used to collect the water samples on a flow weighted interval of 1.27 mm of runoff (volumetric depth) during a storm event.	Each	\$2,555.63	2	\$5,111.26
Connectors, cables, platform materials	2607	Miscellaneous (connectors, cables, berm, platform materials); Includes materials only.	Each	\$9,638.96	1	\$9,638.96
Depth (stage) sensor	2608	Device used to relay information to the Data logger about incremental increases in runoff. ISCO 730 Module with $1 / 8$-in x $25-\mathrm{ft}$ vinyl bubble line. Includes equipment only. Used for A202 water quality monitering	Each	\$3,645.15	2	\$7,290.30
Equipment shelter	2609	Building designed to house and reduce the risk of equipment damage from weather, animals, and vandalism.	Each	\$1,734.29	2	\$3,468.58

Pre-calibrated flow control structure-surface	2610	Pre-calibrated flow control structure-surface. Used for A202 water quality monitering	Each	\$3,010.00	2	\$6,020.00
Device, communications	2616	Piece of equipment or hardware designed to transmit real time data or information collected prior to site visits. Includes equipment only.	Each	\$2,449.63	2	\$4,899.26
Equipment Shed	2617	Equipment shed (10×10 foot) made of steel applied over the sampling flume to allow collection of water samples during the winter in colder climates.	Each	\$768.07	2	\$1,536.14

Practice: 202 - Edge-of-Field Water Quality Monitoring-System Installation

Scenario: \#179-System Installation-Above And Below

Scenario Description:

This edge-of-field water quality monitoring system is applicable where a conservation practice has a pre- and post treatment area in the same field drainage with surface or subsurface drainage runoff that can be captured and sampled at the edge of a field before entering a ditch or receiving water body or water course. The component monitoring equipment are associated with a typical system for southern latitudes where winter time heating is not required for sampling. It will allow for installation of automated sampling data collection system with protective housing to reduce potential for vandalism, battery backup for operation during periods when electricity is down or solar panels are not creating an electrical current, and a berm or other directional flow structure to guide the runoff to a sampling flume. The actual installation will different on the subsurface flow by allowing a smaller precalibrated flume with the addition of a velocity sensor meter as in the tile alternative.

Before Situation:
The agricultural operation prior to installing the monitoring equipment is guessing about the effects of the conservation system with regards to meeting practice intent of avoid, controlling, or trapping sediment and nutrients.

After Situation:

The agricultural operation after installing the monitoring equipment will be receiving feedback in the form of edge-of-field runoff water quality samples. The samples will allow the operator to understand the relationship between rain/irrigation, practice choice, and nutrient inputs effecting nutrient and sediment loss for the field. Thus, providing an opportunity to make adaptive management changes to the agricultural operation to reduce sediment and nutrient loss and/or profitability.

Feature Measure: System installed
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 38,938.46$
Scenario Cost/Unit: \$38,938.46
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	60	\$2,032.20
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	6	\$787.20

Materials

Solar Panels, fixed cost portion
1031 Fixed cost portion of the Solar Panels. This portion is a base cost for all Solar Panels and is not dependent on Kilowatt. The total cost of any Solar Panels will include this fixed cost plus a variable cost portion. The completed Solar Panels will include all materials (electrical, controllers, service drops and etc.).
Solar Panels, variable cost portion 1135 Variable cost portion of the Solar Panels. This portion IS dependent on the total Kilowatt for the Solar Panels. The total cost of Solar Panels will include this variable cost plus the fixed cost portion. The completed Solar Panels will include all materials (electrical, controllers, service drop, etc.). Includes materials only.
Weather Station, Advanced 2550 Advance Weather Station which collects and records recording rainfall, humidity, barometric pressure, wind speed, temperature, and solar radiation from a solar powered self-standing tripod to an advance weather recording console. Used for both 449 advance irrigation water management and for Activity 202 water quality monitoring .

Automated sampler with bottles and tubing
Connectors, cables, platform materials
Depth (stage) sensor

Equipment shelter

2610 Pre-calibrated flow control structure-surface. Used for A202 water quality monitering
2616 Equipment used to collect the water samples on a flow weighted interval of 1.27 mm of runoff (volumetric depth) during a storm event.
2607 Miscellaneous (connectors, cables, berm, platform materials); Includes materials only.
2608 Device used to relay information to the Data logger about incremental increases in runoff. ISCO 730 Module with $1 / 8$-in x 25 -ft vinyl bubble line. Includes equipment only. Used for A202 water quality monitering
2609 Building designed to house and reduce the risk of equipment damage from weather, animals, and vandalism.
Pre-calibrated flow control structure-surface
Device, communications Piece of equipment or hardware designed to transmit real time data or

Each
$\$ 859.26$
1
\$859.26
Kilowatt $\quad \$ 2,563.62 \quad 0.12 \quad \$ 307.63$

Each
Each information collected prior to site visits. Includes equipment only.

Practice: 206 - Feed and Forage Analysis
Scenario: \#13-Feed or Forage Nutrient Composition Analysis

Scenario Description:

Testing of feed or forage for nutrient composition. Each lot (forage lot or lot of feed) should be sampled and tested separately. Testing of bale or stack forage for nutrient composition. Factors to consider when determining lot size include forage species, stage of maturity, cutting schedule, soil type, soil fertility, presence of weeds, harvest conditions, storage effects. Each lot should be sampled and tested separately. Testing of standing forage for nutrient composition. Forage can be tested to determine if it is worth cutting for hay or to determine if grazing animals require supplemental feed. Select at lease eight representative locations and clip the forage at grazing or harvest height from a one square foot area at each location. In grazing situations try and select the species being selectively grazed. Cut the samples into 2 - to 3 inch pieces, combine in a bucket and mix well. Spread the sample on paper and allow it to air-dry for two days or place in a pan and dry overnight in an oven at 150 ?? F before mailing it to the laboratory.Analysis of silage (fresh or silo) for nutrient composition. Remove two to three gallons of silage from different sections of a load and save about a quart using the quartering method. Freeze the samples until all loads are sampled. Combine samples, mix thoroughly, and reduce to about one quart by quartering. The final sample should be placed in the cloth forage sample bag, and the full forage bag inserted into a plastic bag to prevent moisture loss during mailing. Remove excess air from the plastic bag before sealing. Do not insert the plastic bag inside the cloth forage bag since damage may result when it is processed by the laboratory. Freeze the sample prior to mailing and mail samples early in the week to avoid weekend delays and reduce chances of molding. Upright silos- 12 handfuls of silage as it is discharged from the silo. Horizontal silos-hand grab same as upright but access the entire surface of the open face.Analysis of dietary ration, feed, or diet for nutrient composition.

Before Situation:
Producer wishes to reduce nutrient excretion or emission from livestock or poultry to air, soil, or water. To accomplish a reduction in nutrient excretion and emissions, knowledge of nutrient input from silage is required to optimally balance the diet for best nutrient utilization by the animal.

After Situation:
Animal diet is optimally balanced for nutrient composition and nutrients excreted or emitted by the animal are reduced.
Feature Measure: Each
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$2,287.53

Scenario Cost/Unit: \$2,287.53
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Portable Post Driver	2722	Gas or Hydraulic Powered Post Driver, Portable, <300 lbs, labor not included	Hours	\$17.49	1	\$17.49
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	12	\$325.92
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	12	\$1,574.40
Materials						
Test, Feed Analysis	1989	Representative sample of feed. Includes materials and shipping only.	Each	\$30.81	12	\$369.72

United States Department of Agriculture Natural Resources Conservation Service				Texas			
				Practice Scenarios - Fiscal Year 2024			
Practice: 207 - Site Assessment and Soil Testing for Contaminants Activity							
Scenario: \#13-Site Evaluation for Potential Contaminants							
Scenario Description:							
This practice applies to urban sites where the desired land use is cropland. Sites may have been residential, industrial or commercial land use in the past and the risk for soil contaminants is unknown.							
Before Situation:							
Soil suitability for agricultural production is unknown with potential risk of contamination from prior land use activities.							
After Situation:							
Site history has been researched and findings indicate a potential for the presence of contaminants. Final report provides the landowner with the level of risk and recommendation for further testing. Reports may be used in the conservation planning process to explore non-remedial conservation practices to reduce risk of contaminants entering the food products.							
Feature Measure: Each Site							
Scenario Unit: Number							
Scenario Typical Size: 1.00							
Scenario Total Cost:	\$5,248.00						
Scenario Cost/Unit:		8.00					
Cost Details:							
Component Name	ID		Description	Unit	Cost	QTY	Total
Labor							
Specialist Labor	235	Labor requiring Biologists, etc. t planning and im TSP services.	skill set: Inclu ditional techni n of the practi	Hours	\$131.20	40	\$5,248.00

Practice: 207-Site Assessment and Soil Testing for Contaminants Activity

Scenario: \#45-Soil Testing and Subsurface Investigation

Scenario Description:

This practice applies to urban sites where the desired land use is cropland. Sites may have been residential, industrial or commercial land use in the past and the risk for soil contaminants is unknown. The landowner has a prior Environmental Site Assessment completed by an Environmental Professional. The ESA report recommends further subsurface investigation. OR Landowner has NRCS report from portable Xray Flouresence screening that detected soil contaminants.

Before Situation:

Soil suitability for agricultural production is unknown with potential risk of contamination from prior land use activities.

After Situation:

Site history has been researched and findings indicate a potential for the presence of contaminants. The soil has been collected and tested for heavy metals, VOCs and PAHs. Final reports provide the landowner with the level of risk. Reports may be used in the conservation planning process to explore non-remedial conservation practices to reduce risk of contaminants entering the food products.

Feature Measure: Each Site
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$10,496.00
Scenario Cost/Unit: \$10,496.00
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	80	\$10,496.00

Practice: 207 - Site Assessment and Soil Testing for Contaminants Activity
Scenario: \#61-Soil Testing for Contaminants on Low Risk Sites

Scenario Description:

This practice applies to urban sites where the desired land use is cropland. Sites may have been residential, industrial or commercial land use in the past and the risk for soil contaminants is unknown. The landowner has a prior Environmental Site Assessment completed by an Environmental Professional. The ESA report does not require further investigation. OR Landowner has NRCS report from portable Xray Flouresence screening that detected soil contaminants. Screening detection levels are below the State Environmental Protection Agency or equivalent agency published safety thresholds for bare soil residential use.

Before Situation:
Soil suitability for agricultural production is unknown with potential risk of contamination from prior land use activities.

After Situation:

Site history has been researched and findings indicate a potential for the presence of contaminants. The soil has been collected and tested for heavy metals only. Soil test reports provide the landowner with the level of risk. Reports may be used in the conservation planning process to explore non-remedial conservation practices to reduce risk of contaminants entering the food products.

Feature Measure: Area of Soil Tested
Scenario Unit: 1,000 Square Foot
Scenario Typical Size: 4.00
Scenario Total Cost: $\quad \$ 765.20$

Practice: 209 - PFAS Testing in Water or Soil
Scenario: \#13 - PFAS Testing: Simple (Low Complexity) Sampling - Single Sample
Scenario Description:
A single sample of water or soil is required to provide prescreening information to the landowner to determine if PFAS may be present in water or soils at their operation.

In this scenario, the environmental media being sampled by the qualified individual is of low complexity: there is little temporal or spatial variation to account for in sampling, therefore no pre-sampling planning needed. This could include a single well used for stockwater or irrigation systems. The typical number of tests is 1 , assuming that a landowner has a single well or a single field that can be represented by a single composite sample.

Before Situation:

Water or soil on an agricultural operation are of unknown PFAS status. PFAS laboratory analysis has not been conducted on the water or soil of interest.
After Situation:
A laboratory PFAS analysis was completed, and the results were interpreted and explained to the landowner. The landowner now has pre-screening information that suggests if PFAS may be present in water (or soil) on their operation. If testing detects PFAS in water or soil at levels that exceed State or Federal screening levels, the landowner can decide to pursue non-NRCS sources for follow-up detailed PFAS assessment.

Feature Measure: Each
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$1,336.20
Scenario Cost/Unit: \$1,336.20

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	6	\$787.20
Materials						
PFAS Laboratory Testing in Water and Soils	2801	This component supports data collection on PFAS in soil and water. Soil or water samples are to be collected by trained environmental professionals to be analyzed using the appropriate EPA protocol at an accredited laboratory for PFAS. Includes testing and shipping costs.	Number	\$549.00	1	\$549.00

Practice: 209 - PFAS Testing in Water or Soil
Scenario: \#29 - PFAS Testing: Simple (Low Complexity) Sampling - Multiple Samples

Scenario Description:

Multiple samples of water or soil are needed to provide prescreening information to the landowner to determine if PFAS may be present in water or soils at their operation. In this scenario, the environmental media being sampled by the qualified individual is of low complexity. There is little temporal or spatial variation to account for in sampling, therefore no pre-sampling planning needed. This scenario could apply to small ponds or wells used for stockwater or irrigation systems, a small field, or a small number of fields of uniform soil composition. This scenario assumes that additional time is needed for each collection of multiple samples. The typical number of tests is 5 , assuming that a landowner has four fields and a well and each field can be represented by a single composite sample.

Before Situation:
Water or soil on an agricultural operation are of unknown PFAS status. PFAS laboratory analysis has not been conducted on the water or soil of interest.
After Situation:
A laboratory PFAS analysis was completed, and the results were interpreted and explained to the landowner. The landowner now has pre-screening information that suggests if PFAS may be present in water (or soil) on their operation. If testing detects PFAS in water or soil at levels that exceed State or Federal screening levels, the landowner can decide to pursue non-NRCS sources for follow-up detailed PFAS assessment.

Feature Measure: Each
Scenario Unit: Number
Scenario Typical Size: 5.00
Scenario Total Cost: \$4,581.80

Scenario Cost/Unit: \$916.36
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	14	\$1,836.80
Materials						
PFAS Laboratory Testing in Water and Soils	2801	This component supports data collection on PFAS in soil and water. Soil or water samples are to be collected by trained environmental professionals to be analyzed using the appropriate EPA protocol at an accredited laboratory for PFAS. Includes testing and shipping costs.	Number	\$549.00	5	\$2,745.00

Practice: 209 - PFAS Testing in Water or Soil
Scenario: \#45-PFAS Testing: Complicated (High Complexity) Sampling - Multiple Samples

Scenario Description:

Multiple samples of water or soil are needed to provide prescreening information to the landowner to determine if PFAS may be present in water or soils at their operation. In this scenario, the environmental media being sampled is of high complexity. There is a need to account for this temporal or spatial variation in sampling. Therefore, additional time is needed to prepare and discuss a comprehensive sampling strategy to detect PFAS and the final comprehensive report with the landowner. This scenario could apply to the agricultural use of multiple sources of water (ponds, wells, and reclaimed water) for stockwater or irrigation systems or to assess multiple fields with variable soil composition. This scenario assumes that additional time is needed for each collection of multiple samples. The typical number of tests is 5 , assuming that a farmer has many fields, and the producer doesn't want to test all or has large fields with highly variable soil composition.

Before Situation:
Water or soil on an agricultural operation are of unknown PFAS status. PFAS laboratory analysis has not been conducted on the water or soil of interest.

After Situation:

A laboratory PFAS analysis was completed, and the results were interpreted and explained to the landowner. The landowner now has pre-screening information that suggests if PFAS may be present in water (or soil) on their operation. If testing detects PFAS in water or soil at levels that exceed State or Federal screening levels, the landowner can decide to pursue non-NRCS sources for follow-up detailed PFAS assessment.

Feature Measure: Each
Scenario Unit: Number

Scenario Typical Size: 5.00
Scenario Total Cost: \$5,631.40

Scenario Cost/Unit: \$1,126.28
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	22	\$2,886.40
Materials						
PFAS Laboratory Testing in Water and Soils	2801	This component supports data collection on PFAS in soil and water. Soil or water samples are to be collected by trained environmental professionals to be analyzed using the appropriate EPA protocol at an accredited laboratory for PFAS. Includes testing and shipping costs.	Number	\$549.00	5	\$2,745.00

Practice: 216 - Soil Health Testing
Scenario: \#160-Basic Soil Health Suite + Chemical

Scenario Description:

Soil is collected and analyzed in a lab to assess soil health and fertility. A laboratory soil health assessment is conducted to evaluate and/or monitor conservation practices. Laboratory tests must include 'basic package' indicators: soil organic carbon, aggregation, bioavailable nitrogen, respiration, and active carbon. This scenario also includes a comprehensive chemical soil test (macronutrients + micronutrients). One basic soil health assessment is planned for on Soil Health Management Unit (SHMU). Sample collection is completed by an agricultural service provider, soil scientist, or other agriculture professional and includes time for soil sampling and submission.

Before Situation:
Agricultural producer has been farming a system that has not addressed all 4 of the soil health principles. Producer has noticed yield declines, soil degradation, or is simply interested in learning more about soil health management.

After Situation:

A laboratory soil health test and nutrient analysis were completed, and the results were interpreted and explained to the producer and used to establish benchmark conditions for soil health management practices or evaluate the effectiveness of a conservation practice.

Feature Measure: polygon
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$361.47
Scenario Cost/Unit: \$361.47
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, Skilled	1604	Conservation Activity Plan labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$39.97	4.5	\$179.87
Materials						
Test, Soil Test, Comprehensive	2384	Comprehensive Soil Testing for pH, EC, nitrates, ammonium, phosphorus, potassium, organic matter and other micro-nutrients. Includes materials and shipping only.	Each	\$55.45	1	\$55.45
Test, Soil Health, Basic Package	2734	Basic soil health laboratory assessment for soil organic carbon, aggregation, bioavailable nitrogen, respiration, and active carbon according to technical note 450-03. Includes shipping and handling.	Number	\$126.15	1	\$126.15

Practice: 216 - Soil Health Testing
Scenario: \#176-Basic Soil Health Suite
Scenario Description:
A soil sample is collected, and laboratory soil health assessment is conducted to evaluate and/or monitor conservation practices. Laboratory tests must include 'basic package' indicators: soil organic carbon, aggregation, bioavailable nitrogen, respiration, and active carbon. One basic soil health assessment is planned for on Soil Health Management Unit (SHMU). This scenario assumes that a comprehensive chemical soil test (macronutrients + micronutrients) has been completed on the same management unit in the last 2 years. Sample collection is completed by an agricultural service provider, soil scientist, or other agriculture professional and includes time for soil sampling and submission.

Before Situation:
Agricultural producer has been farming a system that has not addressed all 4 of the soil health principles. Producer has noticed yield declines, soil degradation, or is simply interested in learning more about soil health management.

After Situation:
A laboratory soil health test was completed and the results were interpreted (scored), explained to the producer, and used to establish benchmark conditions for soil health management practices or to evaluate the effectiveness of a conservation practice.

Feature Measure: polygon
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$306.02
Scenario Cost/Unit: \$306.02
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, Skilled	1604	Conservation Activity Plan labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$39.97	4.5	\$179.87
Materials						
Test, Soil Health, Basic Package	2734	Basic soil health laboratory assessment for soil organic carbon, aggregation, bioavailable nitrogen, respiration, and active carbon according to technical note 450-03. Includes shipping and handling.	Number	\$126.15	1	\$126.15

Practice: 216 - Soil Health Testing
Scenario: \#192-Single Indicator
Scenario Description:
A laboratory soil health assessment for a single indictor is conducted to evaluate and/or monitor conservation practices. Laboratory tests for the single indicator may include soil organic carbon, aggregation, bioavailable nitrogen, respiration, active carbon, microbial community structure, enzyme activity or other soil health test. One basic soil health assessment is planned for on Soil Health Management Unit (SHMU). Sample collection is completed by a Qualified Individual and includes time for soil sampling and submission.

Before Situation:
Agricultural producer has been farming a system that has not addressed all 4 of the soil health principles. Producer has noticed yield declines, soil degradation, or is simply interested in learning more about soil health management.

After Situation:
A laboratory soil health test of was completed for a single indicator and the results were interpreted and explained to the producer and used to establish benchmark conditions for soil health management practices or evaluate the effectiveness of a conservation practice.

Feature Measure: polygon

Scenario Unit: Number
Scenario Typical Size: 1.00

Scenario Total Cost:	$\$ 243.02$
Scenario Cost/Unit:	$\$ 243.02$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, Skilled	1604	Conservation Activity Plan labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$39.97	4.5	\$179.87
Materials						
Testing, Soil Health Single Indicator	2795	Single soil health laboratory assessment for soil organic carbon, aggregation, bioavailable nitrogen, respiration, active carbon, microbial activity, or microbial diversity according to technical note 450-03 or standard laboratory methods. Includes shipping and handling.	Each	\$63.15	1	\$63.15

Practice: 216 - Soil Health Testing
Scenario: \#281-Three Indicator Soil Health Measurement
Scenario Description:
A laboratory soil health assessment to measure three soil health indicators. The indicators are soil organic carbon measured by dry combustion lab methods, carbon mineralization potential measured by 24 hour carbon dioxide from rewetting air dry soils, and aggregate stability measured by the wet sieve 10 minute change slake test.

Before Situation:
Agricultural producer has been farming a system that has not addressed all 4 of the soil health principles. Producer has noticed yield declines, soil degradation, or is simply interested in learning more about soil health management.

After Situation:

A laboratory soil health test of was completed to measure the three soil health indicators and the results were interpreted (scored) and explained to the producer and used to establish benchmark conditions for soil health management practices or evaluate the effectiveness of a conservation practice.

Feature Measure: soil health indicator

Scenario Unit: Number

Scenario Typical Size: 1.00
Scenario Total Cost: \$369.32
Scenario Cost/Unit: \$369.32

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, Skilled	1604	Conservation Activity Plan labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$39.97	4.5	\$179.87
Materials						
Testing, Soil Health Single Indicator	2795	Single soil health laboratory assessment for soil organic carbon, aggregation, bioavailable nitrogen, respiration, active carbon, microbial activity, or microbial diversity according to technical note 450-03 or standard laboratory methods. Includes shipping and handling.	Each	\$63.15	3	\$189.45

Practice: 217 - Soil and Source Testing for Nutrient Management
Scenario: \#13-Soil Test Only

Scenario Description:

A qualified individual will develop a nutrient testing strategy, collect soil samples and prepare for laboratory analysis; and interpret soil nutrient needs. Typical management unit is 100 acres. Includes Comprehensive Soil Testing to provide both Macro and micro soil nutrient levels.

Before Situation:
Producer does not have soil test laboratory analysis documenting the level of nitrogen, phosphorus, potassium or pH for each field or management unit in crop production. Nutrients are applied without knowledge of soil test levels.

After Situation:
Soil samples have been collected and analyzed. The strategy for sampling is described and a map if sampling points is provided. Qualified individual concludes nutrients are needed or not based on soil test results. Follow up by developing a nutrient management plan with DIA 157 Nutrient Management Design and Implementation Activity or implement Nutrient Management 590.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$993.83
Scenario Cost/Unit: \$993.83
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	4	\$135.48
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	6	\$787.20
Materials						
Test, Soil Test, Standard	299	Includes materials, shiping, labor, and equipment costs.	Each	\$14.23	5	\$71.15

Practice: 217 - Soil and Source Testing for Nutrient Management
Scenario: \#29-Soil and Source Material Test

Scenario Description:

A qualified individual will develop a nutrient testing strategy, collect soil samples and prepare for laboratory analysis; and interpret soil nutrient needs. Typical whole field soil sampling plus collection of samples for nutrient sources needing to be tested.

Before Situation:
Producer does not have soil test laboratory analysis documenting the level of nitrogen, phosphorus, potassium or pH for each field or management unit in crop production. Nutrients are applied without knowledge of soil test levels.

After Situation:

Soil samples have been collected and analyzed. The strategy for sampling is described and a map if sampling points is provided. Qualified individual concludes nutrients are needed or not based on soil test results. Follow up by developing a nutrient management plan with DIA 157 Nutrient Management Design and Implementation Activity or implement Nutrient Management 590.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$4,039.80
Scenario Cost/Unit: $\$ 4,039.80$
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	8	\$270.96
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	25	\$3,280.00
Materials						
Test, Soil Test, Standard	299	Includes materials, shiping, labor, and equipment costs.	Each	\$14.23	20	\$284.60
Test, Manure Analysis	306	Moisture, Total N, P, K. Includes materials and shipping only.	Each	\$48.54	1.3	\$63.10
Test, Compost Analysis	307	Moisture, Total N, P, K. Includes materials and shipping only.	Each	\$59.82	1.3	\$77.77
Testing, Water Quality	2613	Ammonium, Nitrite plus Nitrate, Total Kjeldahl Nitrogen, Soluble Reactive P (Orthophosphate), Total Phosphorus, Suspended Sediment Concentration ??? Preferred, or Total Suspended Solids. Includes materials only.	Each	\$48.75	1.3	\$63.38

Practice: 217 - Soil and Source Testing for Nutrient Management
Scenario: \#45-Zone or Grid Soil Test

Scenario Description:

A qualified individual will develop a nutrient testing strategy, collect soil samples based on a 2.5 acre grid or zone, and prepare for laboratory analysis; and interpret soil nutrient needs. Typical management unit is 100 acres.

Before Situation:
Producer does not have soil test laboratory analysis documenting the level of nitrogen, phosphorus, potassium or pH for each field or management unit in crop production. Nutrients are applied without knowledge of soil test levels.

After Situation:
Soil samples have been collected and analyzed. The strategy for sampling is described and a map if sampling points is provided. Qualified individual concludes nutrients are needed or not based on soil test results. Follow up by developing a nutrient management plan with DIA 157 Nutrient Management Design and Implementation Activity or implement Nutrient Management 590.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$1,889.76
Scenario Cost/Unit: \$1,889.76
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	8	\$270.96
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	8	\$1,049.60
Materials						
Test, Soil Test, Standard	299	Includes materials, shiping, labor, and equipment costs.	Each	\$14.23	40	\$569.20

Practice: 217-Soil and Source Testing for Nutrient Management
Scenario: \#61 - Manure or Compost Only
Scenario Description:
A qualified individual will develop a nutrient testing strategy, collect manure or compost samples and prepare for laboratory analysis; and interpret crop nutrient needs. Sampling protocol for liquid manure includes agitation per LGU guidelines. Dry manure and compost sampling protocol are performed per LGU guidelines.

Before Situation:
Producer does not have manure or compost laboratory analysis documenting the level of nitrogen, phosphorus, potassium or pH of the organic source. Nutrients are applied without knowledge of manure or compost nutrient levels.

After Situation:

Manure or Compost samples have been collected and analyzed. The strategy for sampling is described. Qualified individual concludes the amount of nutrients needed for the crop based on manure or compost test results. Follow up by developing a nutrient management plan with DIA 157 Nutrient Management Design and Implementation Activity or implement Nutrient Management 590.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$1,161.96
Scenario Cost/Unit: \$1,161.96
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	4	\$135.48
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	6	\$787.20
Materials						
Test, Compost Analysis	307	Moisture, Total N, P, K. Includes materials and shipping only.	Each	\$59.82	4	\$239.28

USDA United States Department of Agriculture

Practice: 217 - Soil and Source Testing for Nutrient Management
Scenario: \#77-Source Water Nutrient Test
Scenario Description:
A qualified individual will develop a nutrient testing strategy, collect source water samples and prepare for laboratory analysis; and interpret crop nutrient needs. Typical irrigation water sampling for nutrients, may include drainage water sampling for monitoring nutrient loss or if drainage water is being reused.

Before Situation:
Producer does not have Source Water Nutrient laboratory analysis documenting the level of nitrogen, phosphorus, potassium or pH of the water source. Nutrients are applied without knowledge of source water nutrient levels.

After Situation:
Water samples have been collected and analyzed. The strategy for sampling is described. Qualified individual concludes the amount of nutrients needed for the crop based on Source Water test results. Follow up by developing a nutrient management plan with DIA 157 Nutrient Management Design and Implementation Activity or implement Nutrient Management 590.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$855.28
Scenario Cost/Unit: \$855.28
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	4	\$135.48
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	4	\$524.80
Materials						
Testing, Water Quality	2613	Ammonium, Nitrite plus Nitrate, Total Kjeldahl Nitrogen, Soluble Reactive P (Orthophosphate), Total Phosphorus, Suspended Sediment Concentration ??? Preferred, or Total Suspended Solids. Includes materials only.	Each	\$48.75	4	\$195.00

Practice: 217 - Soil and Source Testing for Nutrient Management
Scenario: \#93-Soil Test- pH Emphasis

Scenario Description:

Soil analysis is used as a diagnostic tool to identify fields with soil acidification problems in no-till cropping systems. One soil sample is collected every 40 acres from only the top 3 inches of soil and analyzed for both pH and buffer pH . A recommended three cores should be taken from a 4 sq ft sampling area every 40 acres and composited to provide at least 100 grams of soil for the laboratory test. Test results are georeferenced on a map and can be used to build a lime application budget for the field.

Before Situation:

Field shows crop yield decline and areas of lower pH are suspected but not tested. No-till application of nitrogen fertilizers is causing acidification. Soil is sampled to 6 inch depth, multiple sub-samples are collected from random locations in the field and are composited into one main sample, diluting potential low pH results from the top 3-inches of soil. Samples are submitted to the lab to determine pH level in the soil. Fertilizer and liming recommendations are made based on the one composited sample for the whole field.

After Situation:

One composited soil sample is collected in a 4 sq ft area from the top 3 inches of soil every 40 acres,. The sample is analyzed for pH and buffer pH. Sample results are georeferenced on a map and and used to identify and diagnose soil acidification problems. Follow up by developing or updating a nutrient management plan with DIA 157 Nutrient Management Design and Implementation Activity or implement Nutrient Management 590. Producers can then use this diagnostic information to apply lime to raise the soil pH . Topsoil pH and plant productivity and health are both maintained at desirable levels.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$244.93

Scenario Cost/Unit: \$244.93
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	4	\$135.48
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22
Materials						
Test, Soil Test, Standard	299	Includes materials, shiping, labor, and equipment costs.	Each	\$14.23	1	\$14.23

Practice: 217 - Soil and Source Testing for Nutrient Management
Scenario: \#109-Small scale - Soil and Nutrient Source Test

Scenario Description:

A qualified individual will develop a nutrient testing strategy, collect soil and nutrient source samples, prepare for laboratory analysis and interpret soil and crop nutrient needs. Typical field size is less than or equal to 0.5 acres (22000 sq ft). Includes Comprehensive Soil Testing to provide both Macro and micro soil nutrient levels.

Before Situation:
Producer does not have soil and nutrient source laboratory analysis documenting the level of nitrogen, phosphorus, potassium or pH for the soil and nutrient source. Nutrients are applied without knowledge of soil and nutrient source test levels.

After Situation:

Soil and nutrient source samples have been collected and analyzed. The strategy for sampling is described. Qualified individual concludes nutrients are needed or not based on soil test results. The amount of nutrients needed is based on Nutrient Source results. Follow up by developing a nutrient management plan with DIA 157 Nutrient Management Design and Implementation Activity or implement Nutrient Management 590.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$488.52
Scenario Cost/Unit: \$488.52
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	2	\$67.74
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	2	\$262.40
Materials						
Test, Manure Analysis	306	Moisture, Total N, P, K. Includes materials and shipping only.	Each	\$48.54	0.5	\$24.27
Test, Compost Analysis	307	Moisture, Total N, P, K. Includes materials and shipping only.	Each	\$59.82	0.5	\$29.91
Test, Soil Test, Comprehensive	2384	Comprehensive Soil Testing for pH, EC, nitrates, ammonium, phosphorus, potassium, organic matter and other micro-nutrients. Includes materials and shipping only.	Each	\$55.45	1	\$55.45
Testing, Water Quality	2613	Ammonium, Nitrite plus Nitrate, Total Kjeldahl Nitrogen, Soluble Reactive P (Orthophosphate), Total Phosphorus, Suspended Sediment Concentration ??? Preferred, or Total Suspended Solids. Includes materials only.	Each	\$48.75	1	\$48.75

Practice: 217 - Soil and Source Testing for Nutrient Management
Scenario: \#125 - Soil Test Only Garden Plots/Raised Beds

Scenario Description:

A qualified individual will develop a nutrient testing strategy, collect 5 soil subsamples and combine to one representative sample, prepare for laboratory analysis, and interpret soil nutrient needs. This scenario considers costs for 5 or less raised beds. Cost includes comprehensive soil test based on expected specialty crop production.

Before Situation:
Producer does not have soil test laboratory analysis documenting the level of nitrogen, phosphorus, potassium or pH for each field or management unit in crop production. Nutrients are applied without knowledge of soil test levels.

After Situation:

Soil samples have been collected and analyzed. The strategy for sampling is described and a map if sampling points is provided. Qualified individual concludes nutrients are needed or not based on soil test results. A Nutrient Management Plan CPS 590 or DIA 157 may be developed after the report is complete.

Feature Measure: Number

Scenario Unit: Number

Scenario Typical Size: 1.00
Scenario Total Cost: \$607.39
Scenario Cost/Unit: \$607.39

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	2	\$67.74
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	2	\$262.40
Materials						
Test, Soil Test, Comprehensive	2384	Comprehensive Soil Testing for pH, EC, nitrates, ammonium, phosphorus, potassium, organic matter and other micro-nutrients. Includes materials and shipping only.	Each	\$55.45	5	\$277.25

Practice: 218 - Carbon Sequestration and Greenhouse Gas Mitigation Assessment
Scenario: \#13-Low Complexity

Scenario Description:

An evaluation of the quantifiable carbon sequestration and greenhouse gas mitigation effects using the COMET-Farm tool. The information on the type of operation, land use, and management history is collected initially as part of the planning process for a conservation plan focused on carbon sequestration and greenhouse gas mitigation. The carbon sequestration and greenhouse gas mitigation CEMA includes a complete COMET-Farm project designed to evaluate the current conservation plan and the baseline and historic management impacts on carbon sequestration and greenhouse gas mitigation. The COMET-Farm evaluation can occur concurrently or following a conservation plan. Low complexity would include simple systems of a single enterprise, low number of management units, detailed available history.

Before Situation:

The producer's objectives are to improve soil carbon sequestration and greenhouse gas mitigation and to quantify the effects of a conservation plan. The quantifiable effects on soil carbon sequestration and greenhouse gas mitigation of the current and historic management practices are not known.

After Situation:

Producer receives a detailed report from COMET-Farm that quantifies the soil carbon sequestration and greenhouse gas mitigation effects of historic, baseline, and (scenario management) proposed conservation plan.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$1,049.60
Scenario Cost/Unit: \$1,049.60

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	8	\$1,049.60

Practice: 218 - Carbon Sequestration and Greenhouse Gas Mitigation Assessment

Scenario: \#29-Medium Complexity

Scenario Description:

An evaluation of the quantifiable carbon sequestration and greenhouse gas mitigation effects using the COMET-Farm tool. The information on the type of operation, land use, and management history is collected initially as part of the planning process for a conservation plan focused on carbon sequestration and greenhouse gas mitigation. The carbon sequestration and greenhouse gas mitigation CEMA includes a complete COMET-Farm project designed to evaluate the current conservation plan and the baseline and historic management impacts on carbon sequestration and greenhouse gas mitigation. The COMET-Farm evaluation can occur concurrently or following a conservation plan. Medium complexity would include systems with more than one enterprises, a moderate number of management units, complex or difficult to define history.

Before Situation:
The producer objectives are to improve soil carbon sequestration and greenhouse gas mitigation and quantify the effects of a conservation plan. The quantifiable effects on soil carbon sequestration and greenhouse gas mitigation of the current and historic management practices are not known.

After Situation:

Producer receives a detailed COMET-Farm report that quantifies the soil carbon sequestration and greenhouse gas mitigation effects of historic, baseline, and (scenario management) proposed conservation plan.

Feature Measure: Number

Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$1,574.40

Scenario Cost/Unit: \$1,574.40
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	12	\$1,574.40

Practice: 219-Prescribed Grazing Conservation Evaluation and Monitoring Activity
Scenario: \#13-Conservation, Evaluation and Monitoring Activity less than 100 acres

Scenario Description:

Small agricultural operation with less than 100 acres grazed land. Natural Resource Concern: soil erosion, water quality, fish and wildlife, plant condition, or approprite resource concerns.

Before Situation:
Producer is not utlizing a certified Technical Service Provider (TSP) to evaluate and monitor all practices planned in a Conservation Plan, CPA 110, Implentation Requirement (IR), and/or DIA 159. Information is not being gathered to evaluate the effectiveness of the grazing management plan (CPS 528) and any associated practices. A monitoring plan has not been developed to ascertain whether the stragegy(s) identified in the grazing management plan is resulting in a movement toward meeting goals and objectives; particularly regarding the pertinent resource concern assessments identified in the Conservation Plan or CPA. Evaluation and monitoring of CPS 528 and any supporting practices has not been conducted to determine effectiveness of implemented practices.

After Situation:

Producer will utilize a certified Technical Service Provider (TSP) to evaluate and monitor all grazing management practices planned in a Conservation Plan, CPA 110, Implementation Requirement (IR) and/or DIA 159. Evaluation and monitoring activities will provide all needed information to evaluate the effectiveness of the grazing management plan (CPS 528) and any associated practices. A monitoring plan will be implemented with appropriate protocols and data records that evaluate whether the grazing strategy identified in the grazing plan is resulting in a movement toward meeting goals and objectives. Specific evaluation activities will be chosen based on stated objectives and pertinent resource concerns assessments identified in the Conservation Plan, CPA, Implementation Requirement (IR) and/or DIA. Evaluation and monitoring will meet the applicable 'plans and specifications' and 'operation and maintenance' sections found in CPS 528. Other supporting and facilitating conservation practices will also be monitored and evaluated. The CEMA narrative will describe the overall methodology, decision support tools and recommended management actions to meet purposes and criteria within practice standards. Job sheets and implementation requirement documents found in State's FOTG Section IV Conservation practices may be used.

Feature Measure: number
Scenario Unit: Number
Scenario Typical Size: 1.00

Scenario Total Cost:	$\$ 1,045.40$
Scenario Cost/Unit:	$\$ 1,045.40$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, range conservation	1299	Conservation Activity Plan labor to study, plan the use and management of rangelands to maximize their use in a sustainable manner. Range managers may inventory soils, plants, and animals; develop resource management plans; identify monitoring methods and collect data using those methods to determine if resource management objectives are being met or if adjustments to management activities are needed. For example, they may help ranchers attain optimum livestock production by determining the number and kind of animals to graze, the grazing system to use, and the best season for grazing. Cost associated with this component includes overhead and benefits (market price).	Hours	\$104.54	10	\$1,045.40

Practice: 219 - Prescribed Grazing Conservation Evaluation and Monitoring Activity
Scenario: \#29-Conservation, Evaluation and Monitoring Activity between 101 and 500 acres

Scenario Description:

Agricultural operation between 101 and 500 acres grazed land. Natural Resource Concern: soil erosion, water quality, fish and wildlife, plant condition, or appropriate resource concerns.

Before Situation:

Producer is not utlizing a certified Technical Service Provider (TSP) to evaluate and monitor all practices planned in a Conservation Plan, CPA 110, Implentation Requirement (IR), and/or DIA 159. Information is not being gathered to evaluate the effectiveness of the grazing management plan (CPS 528) and any associated practices. A monitoring plan has not been developed to ascertain whether the stragegy(s) identified in the grazing management plan is resulting in a movement toward meeting goals and objectives; particularly regarding the pertinent resource concern assessments identified in the Conservation Plan or CPA. Evaluation and monitoring of CPS 528 and any supporting practices has not been conducted to determine effectiveness of implemented practices.

After Situation:

Producer will utilize a certified Technical Service Provider (TSP) to evaluate and monitor all grazing managment practices planned in a Conservation Plan, CPA 110, Implementation Requirement (IR) and/or DIA 159. Evaluation and monitoring activities will provide all needed information to evaluate the effectiveness of the grazing management plan (CPS 528) and any associated practices. A monitoring plan will be implemented with appropriate protocols and data records that evaluate whether the grazing strategy identified in the grazing plan is resulting in a movement toward meeting goals and objectives. Specific evaluation activities will be chosen based on stated objectives and pertinent resource concerns assessments identified in the Conservation Plan, CPA, Implementation Requirment (IR) and/or DIA. Evaluation and monitoring will meet the applicable 'plans and specifications' and 'operation and maintenance' sections found in CPS 528. Other supporting and facilitating conservation practices will also be monitored and evaluated. The CEMA narrative will describe the overall methodology, decision support tools and recommended management actions to meet purposes and criteria within practice standards. Job sheets and implementation requirement documents found in State's FOTG Section IV Conservation practices may be used.

Feature Measure: number
Scenario Unit: Number
Scenario Typical Size: 1.00

Scenario Total Cost:	$\$ 1,568.10$
Scenario Cost/Unit:	$\$ 1,568.10$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, range conservation	1299	Conservation Activity Plan labor to study, plan the use and management of rangelands to maximize their use in a sustainable manner. Range managers may inventory soils, plants, and animals; develop resource management plans; identify monitoring methods and collect data using those methods to determine if resource management objectives are being met or if adjustments to management activities are needed. For example, they may help ranchers attain optimum livestock production by determining the number and kind of animals to graze, the grazing system to use, and the best season for grazing. Cost associated with this component includes overhead and benefits (market price).	Hours	\$104.54	15	\$1,568.10

Practice: 219 - Prescribed Grazing Conservation Evaluation and Monitoring Activity
Scenario: \#45-Conservation, Evaluation and Monitoring Activity between 501 and 1,500 acres

Scenario Description:

Small agricultural operation with 501 to 1,500 acres grazed land. Natural Resource Concern: Soil erosion, water quality, fish and wildlife, plant condition, or appropriate resource concerns.

Before Situation:
Producer is not utilizing a certified Technical Service Provider (TSP) to evaluate and monitor all practices planned in a Conservation Plan, CPA 110, Implementation Requirement (IR), and/or DIA 159. Information is not being gathered to evaluate the effectiveness of the grazing management plan (CPS 528) and any associated practices. A monitoring plan has not been developed to ascertain whether the stragegy(s) identified in the grazing management plan is resulting in a movement toward meeting goals and objectives; particularly regarding the pertinent resource concern assessments identified in the Conservation Plan or CPA. Evaluation and monitoring of CPS 528 and any supporting practices has not been conducted to determine effectiveness of implemented practices.

After Situation:

Producer will utilize a certified Technical Service Provider (TSP) to evaluate and monitor all grazing management practices planned in a Conservation Plan, CPA 110, Implementation Requirement (IR) and/or DIA 159. Evaluation and monitoring activities will provide all needed information to evaluate the effectiveness of the grazing management plan (CPS 528) and any associated practices. A monitoring plan will be implemented with appropriate protocols and data records that evaluate whether the grazing strategy identified in the grazing plan is resulting in a movement toward meeting goals and objectives. Specific evaluation activities will be chosen based on stated objectives and pertinent resource concerns assessments identified in the Conservation Plan, CPA, Implementation Requirement (IR) and/or DIA. Evaluation and monitoring will meet the applicable 'plans and specifications' and 'operation and maintenance' sections found in CPS 528. Other supporting and facilitating conservation practices will also be monitored and evaluated. The CEMA narrative will describe the overall methodology, decision support tools and recommended management actions to meet purposes and criteria within practice standards. Job sheets and implementation requirement documents found in State's FOTG Section IV Conservation practices may be used.

Feature Measure: number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 2,613.50$

Scenario Cost/Unit: \$2,613.50
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, range conservation	1299	Conservation Activity Plan labor to study, plan the use and	Hours	\$104.54	25	\$2,613.50

management of rangelands to maximize their use in a sustainable manner. Range managers may inventory soils, plants, and animals; develop resource management plans; identify monitoring methods and collect data using those methods to determine if resource management objectives are being met or if adjustments to management activities are needed. For example, they may help ranchers attain optimum livestock production by determining the number and kind of animals to graze, the grazing system to use, and the best season for grazing. Cost associated with this component includes overhead and benefits (market price).

Practice: 219 - Prescribed Grazing Conservation Evaluation and Monitoring Activity
Scenario: \#61 - Conservation, Evaluation and Monitoring Activity between 1,501 and 5,000 acres

Scenario Description:

Agricultural operation with 1,501 to 5,000 acres grazed land. Natural Resource Concern: Soil erosion, water quality, fish and wildlife, plant condition, or appropriate resource concerns.

Before Situation:

Producer is not utilizing a certified Technical Service Provider (TSP) to evaluate and monitor all practices planned in a Conservation Plan, CPA 110, Implementation Requirement (IR), and/or DIA 159. Information is not being gathered to evaluate the effectiveness of the grazing management plan (CPS 528) and any associated practices. A monitoring plan has not been developed to ascertain whether the stragegy(s) identified in the grazing management plan is resulting in a movement toward meeting goals and objectives; particularly regarding the pertinent resource concern assessments identified in the Conservation Plan or CPA. Evaluation and monitoring of CPS 528 and any supporting practices has not been conducted to determine effectiveness of implemented practices.

After Situation:

Producer will utilize a certified Technical Service Provider (TSP) to evaluate and monitor all grazing management practices planned in a Conservation Plan, CPA 110, Implementation Requirement (IR) and/or DIA 159. Evaluation and monitoring activities will provide all needed information to evaluate the effectiveness of the grazing management plan (CPS 528) and any associated practices. A monitoring plan will be implemented with appropriate protocols and data records that evaluate whether the grazing strategy identified in the grazing plan is resulting in a movement toward meeting goals and objectives. Specific evaluation activities will be chosen based on stated objectives and pertinent resource concerns assessments identified in the Conservation Plan, CPA, Implementation Requirement (IR) and/or DIA. Evaluation and monitoring will meet the applicable 'plans and specifications' and 'operation and maintenance' sections found in CPS 528. Other supporting and facilitating conservation practices will also be monitored and evaluated. The CEMA narrative will describe the overall methodology, decision support tools and recommended management actions to meet purposes and criteria within practice standards. Job sheets and implementation requirement documents found in State's FOTG Section IV Conservation practices may be used.

Feature Measure: number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 3,658.90$

Scenario Cost/Unit: \$3,658.90
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, range conservation	1299	Conservation Activity Plan labor to study, plan the use and	Hours	\$104.54	35	\$3,658.90

Practice: 219 - Prescribed Grazing Conservation Evaluation and Monitoring Activity
Scenario: \#77-Conservation, Evaluation and Monitoring Activity between 5,001 and 10,000 acres

Scenario Description:

Agricultural operation with 5,001 to 10,000 acres grazed land. Natural Resource Concern: Soil erosion, water quality, fish and wildlife, plant condition, or appropriate resource concerns.

Before Situation:

Producer is not utilizing a certified Technical Service Provider (TSP) to evaluate and monitor all practices planned in a Conservation Plan, CPA 110, Implementation Requirement (IR), and/or DIA 159. Information is not being gathered to evaluate the effectiveness of the grazing management plan (CPS 528) and any associated practices. A monitoring plan has not been developed to ascertain whether the stragegy(s) identified in the grazing management plan is resulting in a movement toward meeting goals and objectives; particularly regarding the pertinent resource concern assessments identified in the Conservation Plan or CPA. Evaluation and monitoring of CPS 528 and any supporting practices has not been conducted to determine effectiveness of implemented practices.

After Situation:

Producer will utilize a certified Technical Service Provider (TSP) to evaluate and monitor all grazing management practices planned in a Conservation Plan, CPA 110, Implementation Requirement (IR) and/or DIA 159. Evaluation and monitoring activities will provide all needed information to evaluate the effectiveness of the grazing management plan (CPS 528) and any associated practices. A monitoring plan will be implemented with appropriate protocols and data records that evaluate whether the grazing strategy identified in the grazing plan is resulting in a movement toward meeting goals and objectives. Specific evaluation activities will be chosen based on stated objectives and pertinent resource concerns assessments identified in the Conservation Plan, CPA, Implementation Requirement (IR) and/or DIA. Evaluation and monitoring will meet the applicable 'plans and specifications' and 'operation and maintenance' sections found in CPS 528. Other supporting and facilitating conservation practices will also be monitored and evaluated. The CEMA narrative will describe the overall methodology, decision support tools and recommended management actions to meet purposes and criteria within practice standards. Job sheets and implementation requirement documents found in State's FOTG Section IV Conservation practices may be used.

Feature Measure: number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$4,704.30

Scenario Cost/Unit: \$4,704.30
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, range conservation	1299	Conservation Activity Plan labor to study, plan the use and	Hours	\$104.54	45	\$4,704.30

management of rangelands to maximize their use in a sustainable manner. Range managers may inventory soils, plants, and animals; develop resource management plans; identify monitoring methods and collect data using those methods to determine if resource management objectives are being met or if adjustments to management activities are needed. For example, they may help ranchers attain optimum livestock production by determining the number and kind of animals to graze, the grazing system to use, and the best season for grazing. Cost associated with this component includes overhead and benefits (market price).

Practice: 219 - Prescribed Grazing Conservation Evaluation and Monitoring Activity
Scenario: \#93 - Conservation, Evaluation and Monitoring Activity greater than 10,000 acres

Scenario Description:

Agricultural operation with greater than 10,000 acres grazed land. Natural Resource Concern: Soil erosion, water quality, fish and wildlife, plant condition, or appropriate resource concerns.

Before Situation:

Producer is not utilizing a certified Technical Service Provider (TSP) to evaluate and monitor all practices planned in a Conservation Plan, CPA 110, Implementation Requirement (IR), and/or DIA 159. Information is not being gathered to evaluate the effectiveness of the grazing management plan (CPS 528) and any associated practices. A monitoring plan has not been developed to ascertain whether the stragegy(s) identified in the grazing management plan is resulting in a movement toward meeting goals and objectives; particularly regarding the pertinent resource concern assessments identified in the Conservation Plan or CPA. Evaluation and monitoring of CPS 528 and any supporting practices has not been conducted to determine effectiveness of implemented practices.

After Situation:

Producer will utilize a certified Technical Service Provider (TSP) to evaluate and monitor all grazing management practices planned in a Conservation Plan, CPA 110, Implementation Requirement (IR) and/or DIA 159. Evaluation and monitoring activities will provide all needed information to evaluate the effectiveness of the grazing management plan (CPS 528) and any associated practices. A monitoring plan will be implemented with appropriate protocols and data records that evaluate whether the grazing strategy identified in the grazing plan is resulting in a movement toward meeting goals and objectives. Specific evaluation activities will be chosen based on stated objectives and pertinent resource concerns assessments identified in the Conservation Plan, CPA, Implementation Requirement (IR) and/or DIA. Evaluation and monitoring will meet the applicable 'plans and specifications' and 'operation and maintenance' sections found in CPS 528. Other supporting and facilitating conservation practices will also be monitored and evaluated. The CEMA narrative will describe the overall methodology, decision support tools and recommended management actions to meet purposes and criteria within practice standards. Job sheets and implementation requirement documents found in State's FOTG Section IV Conservation practices may be used.

Feature Measure: number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 6,272.40$

Scenario Cost/Unit: \$6,272.40
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, range conservation	1299	Conservation Activity Plan labor to study, plan the use and	Hours	\$104.54	60	\$6,272.40

management of rangelands to maximize their use in a sustainable manner. Range managers may inventory soils, plants, and animals; develop resource management plans; identify monitoring methods and collect data using those methods to determine if resource management objectives are being met or if adjustments to management activities are needed. For example, they may help ranchers attain optimum livestock production by determining the number and kind of animals to graze, the grazing system to use, and the best season for grazing. Cost associated with this component includes overhead and benefits (market price).

Practice: 221 - Soil Organic Carbon Stock Monitoring
Scenario: \#13-Carbon Stock Monitoring

Scenario Description:

Soil is collected for organic carbon testing to evaluate and monitor the change in soil carbon stocks before and after the implementation of a conservation practice or conservation plan An area of interest (AOI) of <20 acres is identified in a region that is relatively uniform and is representative of a larger management unit. There are no inclusions or small map units of dissimilar soils, and the topography and vegetation appear uniform. Soil samples are collected by a Qualified Individual (QI) from 4 different depths at 6 different locations within the AOI. Soil bulk density is measured before being analyzed for organic carbon by dry combustion. Payment includes time for soil sampling and sample preparation, submission to the laboratory, and interpretation/delivery of results.

Before Situation:
No recent measurements of soil organic carbon stocks have been made in the AOI. Conservation practices are planned or installed for the purpose of improving soil health and sequestering carbon.

After Situation:
Soil bulk density was measured before being analyzed for organic carbon by dry combustion. The results were interpreted and explained to the producer. Initial measurements are used to establish benchmark conditions for soil organic carbon stocks. Subsequent measurement are used to evaluate the effectiveness of a conservation practice on carbon sequestration and report the change over time.

Feature Measure: Area of Interest Polygon
Scenario Unit: Number

Scenario Typical Size: 1.00
Scenario Total Cost: \$2,450.17
Scenario Cost/Unit: \$2,450.17

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	3	\$74.97
Auger, Truck Mounted	2049	Truck mounted auger for large diameter excavation. Includes equipment and labor.	Hours	\$111.60	3	\$334.80
Labor						
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	4	\$524.80

Materials

Testing, Soil Health Single Indicator

2795 Single soil health laboratory assessment for soil organic carbon, aggregation, bioavailable nitrogen, respiration, active carbon, microbial activity, or microbial diversity according to technical note 450-03 or standard laboratory methods. Includes shipping and handling.

Practice: 221 - Soil Organic Carbon Stock Monitoring
Scenario: \#45-Carbon Stock Monitoring - Intensive Data Collection

Scenario Description:

Soil is collected for organic carbon testing following the measurement, monitoring, reporting and verification (MMRV) protocol. PODS land use and management information is collected and documented. Soil sample collection strategy is planned in an area of interest (AOI) of <10 acres. Soil samples are collected by a Qualified Individual (QI). Up to 3 soil map units will be sectioned into 3 with e sample holes/cores. Samples are collected at 4 depths. Soil bulk density is measured before being analyzed for organic carbon by dry combustion. Payment includes time for collecting management information, developing sampling strategy, soil sampling and sample preparation, submission to the laboratory, and interpretation/delivery of results.

Before Situation:
No recent measurements of soil organic carbon stocks have been made in the AOI. Conservation practices are planned or installed for the purpose of improving soil health and sequestering carbon.

After Situation:
Land use and management information is collected. Soil bulk density was measured before being analyzed for organic carbon by dry combustion. The results were interpreted and explained to the producer. Initial measurements are used to establish benchmark conditions for soil organic carbon stocks. Subsequent measurements are used to evaluate the effectiveness of a conservation practice on carbon sequestration and report the change over time.

Feature Measure: Area of Interest - Polygon
Scenario Unit: Number

Scenario Typical Size: 1.00
Scenario Total Cost: \$10,159.49
Scenario Cost/Unit: \$10,159.49

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	11	\$274.89
Auger, Truck Mounted	2049	Truck mounted auger for large diameter excavation. Includes equipment and labor.	Hours	\$111.60	11	\$1,227.60
Labor						
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	14	\$1,836.80

Materials

Testing, Soil Health Single Indicator

2795 Single soil health laboratory assessment for soil organic carbon, aggregation, bioavailable nitrogen, respiration, active carbon, microbial activity, or microbial diversity according to technical note 450-03 or standard laboratory methods. Includes shipping and handling.

Practice: 221 - Soil Organic Carbon Stock Monitoring
Scenario: \#61 - Intensive Data Collection Carbon Monitoring 9

Scenario Description:

Soil is collected for organic carbon testing following the measurement, monitoring, reporting and verification (MMRV) protocol. PODS land use and management information is collected and documents. Soil sample collection strategy is planned in an area of interest (AOI) of <10 acres. Soil samples are collected by a Qualified Individual (QI) at 9 different locations within the AOI (3 locations in 3 different strata). Soil bulk density is measured before being analyzed for organic carbon by dry combustion. Payment includes time for collecting management information, developing sampling strategy, soil sampling and sample preparation, submission to the laboratory, and interpretation/delivery of results.

Before Situation:
No recent measurements of soil organic carbon stocks have been made in the AOI. Conservation practices are planned or installed for the purpose of improving soil health and sequestering carbon.

After Situation:
Land use and management information is collected. Soil bulk density was measured before being analyzed for organic carbon by dry combustion. The results were interpreted and explained to the producer. Initial measurements are used to establish benchmark conditions for soil organic carbon stocks. Subsequent measurement are used to evaluate the effectiveness of a conservation practice on carbon sequestration and report the change over time.

Feature Measure: per 9 samples collected
Scenario Unit: Number

Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 4,721.19$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	9	\$224.91
Auger, Truck Mounted	2049	Truck mounted auger for large diameter excavation. Includes equipment and labor.	Hours	\$111.60	7	\$781.20
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	3	\$81.48
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	9	\$1,180.80
Materials						
Testing, Soil Health Single Indicator	2795	Single soil health laboratory assessment for soil organic carbon, aggregation, bioavailable nitrogen, respiration, active carbon, microbial activity, or microbial diversity according to technical note 450-03 or standard laboratory methods. Includes shipping and handling.	Each	\$63.15	36	\$2,273.40
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40

Practice: 221 - Soil Organic Carbon Stock Monitoring
Scenario: \#77-Intensive Data Collection 12 Carbon Samples

Scenario Description:

Soil is collected for organic carbon testing following the measurement, monitoring, reporting and verification (MMRV) protocol. PODS land use and management information is collected and documents. Soil sample collection strategy is planned in an area of interest (AOI) of <10 acres. Soil samples are collected by a Qualified Individual (QI) at 12 different locations within the AOI). Soil bulk density is measured before being analyzed for organic carbon by dry combustion. Payment includes time for collecting management information, developing sampling strategy, soil sampling and sample preparation, submission to the laboratory, and interpretation/delivery of results.

Before Situation:
No recent measurements of soil organic carbon stocks have been made in the AOI. Conservation practices are planned or installed for the purpose of improving soil health and sequestering carbon.

After Situation:
Land use and management information is collected. Soil bulk density was measured before being analyzed for organic carbon by dry combustion. The results were interpreted and explained to the producer. Initial measurements are used to establish benchmark conditions for soil organic carbon stocks. Subsequent measurement are used to evaluate the effectiveness of a conservation practice on carbon sequestration and report the change over time.

Feature Measure: per 12 sample locations

Scenario Unit: Number

Scenario Typical Size: 1.00
Scenario Total Cost: \$5,835.17
Scenario Cost/Unit: \$5,835.17

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	11	\$274.89
Auger, Truck Mounted	2049	Truck mounted auger for large diameter excavation. Includes equipment and labor.	Hours	\$111.60	9	\$1,004.40
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	3	\$81.48
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	11	\$1,443.20
Materials						
Testing, Soil Health Single Indicator	2795	Single soil health laboratory assessment for soil organic carbon, aggregation, bioavailable nitrogen, respiration, active carbon, microbial activity, or microbial diversity according to technical note 450-03 or standard laboratory methods. Includes shipping and handling.	Each	\$63.15	48	\$3,031.20

Practice: 222 - Indigenous Stewardship Methods Evaluation
Scenario: \#13-ISME 301 to 1,000 Acres

Scenario Description:

The scenario involves obtaining assistance from a Qualified Individual, designated by the governing body of a Tribe or Indigenous culture, to evaluate the designated planning area, then gather knowledge about indigenous knowledge, and deliver results to the client and NRCS. The resulting information can be used to inform the conservation planning and implementation processes, meet the client's objectives by addressing one or more NRCS-recognized resource concerns using techniques that align with Tribal or Indigenous knowledge.

Before Situation:
Through the NRCS conservation planning process, a conservation planner has identified client objectives for addressing natural resource concerns (Soil, Water, Animals, Plants, Air + Energy) and socio-economic considerations such as increasing capacity for Indigenous people to develop sustainable food systems. A deeper understanding of the planning area's context for Indigenous people is desired and/or greater knowledge about Indigenous Stewardship Methods (ISM) for land stewardship are desired. A Qualified Individual (QI), designated by the governing body of a Tribe or Indigenous culture is available for the program participant to hire (separately from the NRCS program contract)to evaluate the land, gather Indigenous knowledge, and provide results to meet the client's objectives and support the conservation planning process.

After Situation

The client hired a QI to provide the CEMA assistance. The QI has met with client and visited the planning area, in order to develop an understanding of its capabilities, limitations, and needs within a culturally appropriate context. Indigenous knowledge about the planning area has been gathered from sources approved by a Tribe or Indigenous culture. The QI verifies with the Tribe's or Indigenous culture's governing body, that the information gathered is accurate- then provides a report, map and other supporting documentation of their ISM evaluation of the planning area to the client; and a copy is shared with NRCS. In the future, the information this CEMA provides can assists the participant and the planner refine conservation objectives; and realize opportunities to incorporate Indigenous knowledge into a conservation plan and/or conservation practice implementations.

Feature Measure: Number

Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\quad \$ 16,879.15$
Scenario Cost/Unit: $\$ 16,879.15$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	39	\$974.61
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	40	\$714.40
Labor						
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect	Hours	\$85.82	177	\$15,190.14

Practice: 222 - Indigenous Stewardship Methods Evaluation
Scenario: \#29-ISME 1001 to 3,000 Acres

Scenario Description:

The scenario involves obtaining assistance from a Qualified Individual, designated by the governing body of a Tribe or Indigenous culture, to evaluate the designated planning area, then gather knowledge about indigenous knowledge, and deliver results to the client and NRCS. The resulting information can be used to inform the conservation planning and implementation processes, meet the client's objectives by addressing one or more NRCS-recognized resource concerns using techniques that align with Tribal or Indigenous knowledge.

Before Situation:
Through the NRCS conservation planning process, a conservation planner has identified client objectives for addressing natural resource concerns (Soil, Water, Animals, Plants, Air + Energy) and socio-economic considerations such as increasing capacity for Indigenous people to develop sustainable food systems. A deeper understanding of the planning area's context for Indigenous people is desired and/or greater knowledge about Indigenous Stewardship Methods (ISM) for land stewardship are desired. A Qualified Individual (QI), designated by the governing body of a Tribe or Indigenous culture is available for the program participant to hire (separately from the NRCS program contract)to evaluate the land, gather Indigenous knowledge, and provide results to meet the client's objectives and support the conservation planing process.

After Situation:

The client hired a QI to provide the CEMA assistance. The QI has met with client and visited the planning area, in order to develop an understanding of its capabilities, limitations, and needs within a culturally appropriate context. Indigenous knowledge about the planning area has been gathered from sources approved by a Tribe or Indigenous culture. The QI verifies with the Tribe's or Indigenous culture's governing body, that the information gathered is accurate- then provides a report, map and other supporting documentation of their ISM evaluation of the planning area to the client; and a copy is shared with NRCS. In the future, the information this CEMA provides can assists the participant and the planner refine conservation objectives; and realize opportunities to incorporate Indigenous knowledge into a conservation plan and/or conservation practice implementations.

Feature Measure: Number

Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 22,471.37$
Scenario Cost/Unit: \$22,471.37

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	39	\$974.61
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	60	\$1,071.60
Labor						
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect	Hours	\$85.82	238	\$20,425.16

Practice: 222 - Indigenous Stewardship Methods Evaluation
Scenario: \#45-ISME Less Than or Equal to 10 Acres

Scenario Description:

The scenario involves obtaining assistance from a Qualified Individual, designated by the governing body of a Tribe or Indigenous culture, to evaluate the designated planning area, then gather knowledge about indigenous knowledge, and deliver results to the client and NRCS. The resulting information can be used to inform the conservation planning and implementation processes, meet the client's objectives by addressing one or more NRCS-recognized resource concerns using techniques that align with Tribal or Indigenous knowledge.

Before Situation:
Through the NRCS conservation planning process, a conservation planner has identified client objectives for addressing natural resource concerns (Soil, Water, Animals, Plants, Air + Energy) and socio-economic considerations such as increasing capacity for Indigenous people to develop sustainable food systems. A deeper understanding of the planning area's context for Indigenous people is desired and/or greater knowledge about Indigenous Stewardship Methods (ISM) for land stewardship are desired. A Qualified Individual (QI), designated by the governing body of a Tribe or Indigenous culture is available for the program participant to hire (separately from the NRCS program contract)to evaluate the land, gather Indigenous knowledge, and provide results to meet the client's objectives and support the conservation planing process.

After Situation

The client hired a QI to provide the CEMA assistance. The QI has met with client and visited the planning area, in order to develop an understanding of its capabilities, limitations, and needs within a culturally appropriate context. Indigenous knowledge about the planning area has been gathered from sources approved by a Tribe or Indigenous culture. The QI verifies with the Tribe's or Indigenous culture's governing body, that the information gathered is accurate- then provides a report, map and other supporting documentation of their ISM evaluation of the planning area to the client; and a copy is shared with NRCS. In the future, the information this CEMA provides can assists the participant and the planner refine conservation objectives; and realize opportunities to incorporate Indigenous knowledge into a conservation plan and/or conservation practice implementations.

Feature Measure: Number

Scenario Unit: Number
Scenario Typical Size: 1.00

Scenario Total Cost:	\$6,810.37					
Scenario Cost/Unit:	\$6,8	0.37				
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	39	\$974.61
Labor						
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	68	\$5,835.76

Practice: 222 - Indigenous Stewardship Methods Evaluation
Scenario: \#61 - ISME 11 to 300 Acres

Scenario Description:

The scenario involves obtaining assistance from a Qualified Individual, designated by the governing body of a Tribe or Indigenous culture, to evaluate the designated planning area, then gather knowledge about indigenous knowledge, and deliver results to the client and NRCS. The resulting information can be used to inform the conservation planning and implementation processes, meet the client's objectives by addressing one or more NRCS-recognized resource concerns using techniques that align with Tribal or Indigenous knowledge.

Before Situation:
Through the NRCS conservation planning process, a conservation planner has identified client objectives for addressing natural resource concerns (Soil, Water, Animals, Plants, Air + Energy) and socio-economic considerations such as increasing capacity for Indigenous people to develop sustainable food systems. A deeper understanding of the planning area's context for Indigenous people is desired and/or greater knowledge about Indigenous Stewardship Methods (ISM) for land stewardship are desired. A Qualified Individual (QI), designated by the governing body of a Tribe or Indigenous culture is available for the program participant to hire (separately from the NRCS program contract)to evaluate the land, gather Indigenous knowledge, and provide results to meet the client's objectives and support the conservation planing process.

After Situation

The client hired a QI to provide the CEMA assistance. The QI has met with client and visited the planning area, in order to develop an understanding of its capabilities, limitations, and needs within a culturally appropriate context. Indigenous knowledge about the planning area has been gathered from sources approved by a Tribe or Indigenous culture. The QI verifies with the Tribe's or Indigenous culture's governing body, that the information gathered is accurate- then provides a report, map and other supporting documentation of their ISM evaluation of the planning area to the client; and a copy is shared with NRCS. In the future, the information this CEMA provides can assists the participant and the planner refine conservation objectives; and realize opportunities to incorporate Indigenous knowledge into a conservation plan and/or conservation practice implementations.

Feature Measure: Number

Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$9,084.37
Scenario Cost/Unit: \$9,084.37

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	39	\$974.61
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	12	\$214.32
Labor						
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect	Hours	\$85.82	92	\$7,895.44

Practice: 223 - Forest Management Assessment
Scenario: \#13-CEMA less than or equal to 20 acres

Scenario Description:

Nonindustrial Private Forest Land with a forest management plan. Typical site is approximately 1 to 20 acres in size and consists of existing uneven-aged mixed species stands of harvestable trees. Natural Resource Concern: Fish and Wildlife; Soil Erosion; Soil Condition; Water Quality; Plant Condition; on Forest Land.

Before Situation:
The producer currently manages forested lands with an existing forest management plan. Resource concerns exist which are not addressed by a management plan. A Conservation Evaluation and Monitoring Activity is needed to provide a forest inventory to allow the producer to apply for financial assistance through EQIP or other programs to develop and implement needed conservation practices. Associated Practices: 472, 666, 654, 655,384, 394, 383, 379, 338, 381, 391, 791, 490, 612, 660, 311, 380, 314, 315.

After Situation:
After EQIP contract approval, participant has obtained services from a qualified individual for development of the Conservation Evaluation and Monitoring Activities (CEMA) - Forest Inventory. The CEMA criteria requires a forest inventory as a component of a forest management plan to determine current site condition and identify resource concerns. Additional CEMA criteria are detailed in the Field Office Technical Guide.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$845.90
Scenario Cost/Unit: \$845.90
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, forester	1302	Conservation Activity Plan labor to manage nonindustrial private forest lands for conservation, economic, and recreational purposes. Will inventory the type, amount, and location of standing timber and appraise the timber's condition. Will determine how to conserve wildlife habitats, improve water quality and soil stability, and how best to comply with environmental regulations. May devise plans for planting and growing new trees, monitoring trees for healthy growth, determining optimal thinning schedules, and increasing carbon capture and storage.	Hours	\$84.59	10	\$845.90

Practice: 223 - Forest Management Assessment
Scenario: \#29-CEMA 21 to 100 acres

Scenario Description:

Nonindustrial Private Forest Land with a forest management plan. Typical site is approximately 21 to 100 acres in size and consists of existing uneven-aged mixed species stands of harvestable trees. Natural Resource Concern: Fish and Wildlife; Soil Erosion; Soil Condition; Water Quality; Plant Condition; on Forest Land.

Before Situation:
The producer currently manages forested lands with an existing forest management plan. Resource concerns exist which are not addressed by a management plan. A Conservation Evaluation and Monitoring Activity is needed to provide a forest inventory to allow the producer to apply for financial assistance through EQIP or other programs to develop and implement needed conservation practices. Associated Practices: 472, 666, 654, 655,384, 394, 383, 379, 338, 381, 391, 791, 490, 612, 660, 311, 380, 314, 315.

After Situation:
After EQIP contract approval, participant has obtained services from a qualified individual for development of the Conservation Evaluation and Monitoring Activities (CEMA) - Forest Inventory. The CEMA criteria requires a forest inventory as a component of a forest management plan to determine current site condition and identify resource concerns. Additional CEMA criteria are detailed in the Field Office Technical Guide.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$1,607.21
Scenario Cost/Unit: \$1,607.21
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, forester	1302	Conservation Activity Plan labor to manage nonindustrial private forest lands for conservation, economic, and recreational purposes. Will inventory the type, amount, and location of standing timber and appraise the timber's condition. Will determine how to conserve wildlife habitats, improve water quality and soil stability, and how best to comply with environmental regulations. May devise plans for planting and growing new trees, monitoring trees for healthy growth, determining optimal thinning schedules, and increasing carbon capture and storage.	Hours	\$84.59	19	\$1,607.21

Practice: 223 - Forest Management Assessment
Scenario: \#45-CEMA 101 to 250 acres

Scenario Description:

Nonindustrial Private Forest Land with a forest management plan. Typical site is approximately 101 to 250 acres in size and consists of existing uneven-aged mixed species stands of harvestable trees. Natural Resource Concern: Fish and Wildlife; Soil Erosion; Soil Condition; Water Quality; Plant Condition; on Forest Land.

Before Situation:
The producer currently manages forested lands with an existing forest management plan. Resource concerns exist which are not addressed by a management plan. A Conservation Evaluation and Monitoring Activity is needed to provide a forest inventory to allow the producer to apply for financial assistance through EQIP or other programs to develop and implement needed conservation practices. Associated Practices: 472, 666, 654, 655,384, 394, 383, 379, 338, 381, 391, 791, 490, 612, 660, 311, 380, 314, 315.

After Situation:
After EQIP contract approval, participant has obtained services from a qualified individual for development of the Conservation Evaluation and Monitoring Activities (CEMA) - Forest Inventory. The CEMA criteria requires a forest inventory as a component of a forest management plan to determine current site condition and identify resource concerns. Additional CEMA criteria are detailed in the Field Office Technical Guide.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$3,045.24
Scenario Cost/Unit: \$3,045.24
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, forester	1302	Conservation Activity Plan labor to manage nonindustrial private forest lands for conservation, economic, and recreational purposes. Will inventory the type, amount, and location of standing timber and appraise the timber's condition. Will determine how to conserve wildlife habitats, improve water quality and soil stability, and how best to comply with environmental regulations. May devise plans for planting and growing new trees, monitoring trees for healthy growth, determining optimal thinning schedules, and increasing carbon capture and storage.	Hours	\$84.59	36	\$3,045.24

Practice: 223 - Forest Management Assessment
Scenario: \#61-CEMA 251 to 500 acres

Scenario Description:

Nonindustrial Private Forest Land with a forest management plan. Typical site is approximately 251 to 500 acres in size and consists of existing uneven-aged mixed species stands of harvestable trees. Natural Resource Concern: Fish and Wildlife; Soil Erosion; Soil Condition; Water Quality; Plant Condition; on Forest Land.

Before Situation:
The producer currently manages forested lands with an existing forest management plan. Resource concerns exist which are not addressed by a management plan. A Conservation Evaluation and Monitoring Activity is needed to provide a forest inventory to allow the producer to apply for financial assistance through EQIP or other programs to develop and implement needed conservation practices. Associated Practices: 472, 666, 654, 655,384, 394, 383, 379, 338, 381, 391, 791, 490, 612, 660, 311, 380, 314, 315.

After Situation:
After EQIP contract approval, participant has obtained services from a qualified individual for development of the Conservation Evaluation and Monitoring Activities (CEMA) - Forest Inventory. The CEMA criteria requires a forest inventory as a component of a forest management plan to determine current site condition and identify resource concerns. Additional CEMA criteria are detailed in the Field Office Technical Guide.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$4,567.86
Scenario Cost/Unit: \$4,567.86
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, forester	1302	Conservation Activity Plan labor to manage nonindustrial private forest lands for conservation, economic, and recreational purposes. Will inventory the type, amount, and location of standing timber and appraise the timber's condition. Will determine how to conserve wildlife habitats, improve water quality and soil stability, and how best to comply with environmental regulations. May devise plans for planting and growing new trees, monitoring trees for healthy growth, determining optimal thinning schedules, and increasing carbon capture and storage.	Hours	\$84.59	54	\$4,567.86

Practice: 223 - Forest Management Assessment
Scenario: \#77-CEMA 501 to 1000 acres

Scenario Description:

Nonindustrial Private Forest Land with a forest management plan. Typical site is approximately 501 to 1000 acres in size and consists of existing uneven-aged mixed species stands of harvestable trees. Natural Resource Concern: Fish and Wildlife; Soil Erosion; Soil Condition; Water Quality; Plant Condition; on Forest Land.

Before Situation:

The producer currently manages forested lands with an existing forest management plan. Resource concerns exist which are not addressed by a management plan. A Conservation Evaluation and Monitoring Activity is needed to provide a forest inventory to allow the producer to apply for financial assistance through EQIP or other programs to develop implement needed conservation practices. Associated Practices: 472, 666, 654, 655,384, 394, 383, 379, 338, 381, 391, 791, 490, 612, 660, 311, 380, 314, 315.

After Situation:
After EQIP contract approval, participant has obtained services from a qualified individual for development of the Conservation Evaluation and Monitoring Activities (CEMA) - Forest Inventory. The CEMA criteria requires a forest inventory as a component of a forest management plan to determine current site condition and identify resource concerns. Additional CEMA criteria are detailed in the Field Office Technical Guide.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$5,752.12
Scenario Cost/Unit: \$5,752.12
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, forester	1302	Conservation Activity Plan labor to manage nonindustrial private forest lands for conservation, economic, and recreational purposes. Will inventory the type, amount, and location of standing timber and appraise the timber's condition. Will determine how to conserve wildlife habitats, improve water quality and soil stability, and how best to comply with environmental regulations. May devise plans for planting and growing new trees, monitoring trees for healthy growth, determining optimal thinning schedules, and increasing carbon capture and storage.	Hours	\$84.59	68	\$5,752.12

Practice: 223 - Forest Management Assessment
Scenario: \#93-CEMA Greater Than 1000 acres
Scenario Description:
Nonindustrial Private Forest Land with a forest management plan. Typical site is approximately 1001 acres or greater in size and consists of existing uneven-aged mixed species stands of harvestable trees. Natural Resource Concern: Fish and Wildlife; Soil Erosion; Soil Condition; Water Quality; Plant Condition; on Forest Land.

Before Situation:

The producer currently manages forested lands with an existing forest management plan. Resource concerns exist which are not addressed by a management plan. A Conservation Evaluation and Monitoring Activity is needed to provide a forest inventory to allow the producer to apply for financial assistance through EQIP or other programs to develop implement needed conservation practices. Associated Practices: 472, 666, 654, 655,384, 394, 383, 379, 338, 381, 391, 791, 490, 612, 660, 311, 380, 314, 315.

After Situation:
After EQIP contract approval, participant has obtained services from a qualified individual for development of the Conservation Evaluation and Monitoring Activities (CEMA) - Forest Inventory. The CEMA criteria requires a forest inventory as a component of a forest management plan to determine current site condition and identify resource concerns. Additional CEMA criteria are detailed in the Field Office Technical Guide.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$7,697.69
Scenario Cost/Unit: \$7,697.69
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, forester	1302	Conservation Activity Plan labor to manage nonindustrial private forest lands for conservation, economic, and recreational purposes. Will inventory the type, amount, and location of standing timber and appraise the timber's condition. Will determine how to conserve wildlife habitats, improve water quality and soil stability, and how best to comply with environmental regulations. May devise plans for planting and growing new trees, monitoring trees for healthy growth, determining optimal thinning schedules, and increasing carbon capture and storage.	Hours	\$84.59	91	\$7,697.69

Practice: 224 - Aquifer Flow Test
Scenario: \#14-Aquifer Flow Test

Scenario Description:

The typical scenario supports the utilization of an existing or planned vertical turbine or submersible pump in an existing or planned water well for pressurizing an irrigation or stockwater system where water well flow rate is unknown. An aquifer flow test (e.g., step drawdown or constant rate) will be done to determine the flow rate from the well and select a pumping plant to match the pumping requirements of the irrigation or livestock system. Resource Concerns: Water Quality degradation - Excess nutrients in surface and ground waters; Insufficient water for livestock - Inefficient use of irrigation water; inefficient energy use. Associated Practices: 374 - Farmstead Energy Improvement; 430-Irrigation Pipeline; 441 - Irrigation System, Micro-irrigation; 449 - Irrigation Water Management, 642 - Water Well, 516 - Livestock Pipeline

Before Situation:

Livestock or irrigation system is delivering insufficient water due to unknown volume and flow rate of the aquifer.
After Situation:
With the completion of the aquifer flow test, a known flow rate of the well will determine the correct flow rate and TDH on which a pump can be selected to support an irrigation of stockwater system.

Feature Measure: Number

Scenario Unit: Number
Scenario Typical Size: 1.00

Scenario Total Cost:	$\$ 2,246.17$
Scenario Cost/Unit:	$\$ 2,246.17$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Materials						
Aquifer Flow Test	1817	High-volume aquifer flow test. Includes labor and equipment.	Hours	\$186.60	8	\$1,492.80
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 226 - Waste Facility Site Suitability and Feasibility Assessment
Scenario: \#13-Site Evaluation for Planned Storage- Non-dairy Operation

Scenario Description:

Non-Dairy livestock operation. A Qualified Individual will conduct an onsite investigation. Soil data collection, investigation and interpretation of the properties and characteristics, results of tests and samples will be used to determine the appropriateness of the site for the storage facility. Scenario based on one proposed location for the planned storage.

Before Situation:

A waste storage, handling or treatment facility is planned for the operation. The proposed location has not be investigated for determination of suitability and feasibility
After Situation:
An onsite investigation for soil properties and characteristics was conducted. The proposed location met the criteria to allow the type and size of the planned storage facility. The report documents all data and results.

Feature Measure: One site evaluated

Scenario Unit: Number

Scenario Typical Size: 1.00

Scenario Total Cost:	\$4,279.44					
Scenario Cost/Unit:	\$4,2	79.44				
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, small surveying crew	1296	Conservation Activity Plan labor to perform surveying and mapping duties, usually under the direction of an engineer, surveyor, cartographer, or photogrammetrist to obtain data used for construction, mapmaking, boundary location, mining, or other purposes. May calculate mapmaking information and create maps from source data, such as surveying notes, aerial photography, satellite data, or other maps to show topographical features, political boundaries, and other features. Cost associated with this component includes two man field crew, equipment, vehicle, overhead, and miscellaneous supplies.	Hours	\$122.89	10	\$1,228.90
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	22	\$2,347.84
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	5	\$429.10
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	8	\$273.60

Practice: 226 - Waste Facility Site Suitability and Feasibility Assessment
Scenario: \#29-Site Evaluation for Planned Storage- Dairy Operation

Scenario Description:

Livestock operation is Dairy. A Qualified Individual will conduct an onsite investigation. Soil data collection, investigation and interpretation of the properties and characteristics, results of tests and samples will be used to determine the appropriateness of the site for the storage facility. Scenario based on one proposed location for the planned storage.

Before Situation:

A waste storage, handling or treatment facility is planned for the operation. The proposed location has not be investigated for determination of suitability and feasibility
After Situation:
An onsite investigation for soil properties and characteristics was conducted. The proposed location met the criteria to allow the type and size of the planned storage facility. The report documents all data and results.

Feature Measure: One site evaluated

Scenario Unit: Number

Scenario Typical Size: 1.00

Scenario Total Cost: $\$ 4,972.96$
Scenario Cost/Unit: \$4,972.96

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, small surveying crew	1296	Conservation Activity Plan labor to perform surveying and mapping duties, usually under the direction of an engineer, surveyor, cartographer, or photogrammetrist to obtain data used for construction, mapmaking, boundary location, mining, or other purposes. May calculate mapmaking information and create maps from source data, such as surveying notes, aerial photography, satellite data, or other maps to show topographical features, political boundaries, and other features. Cost associated with this component includes two man field crew, equipment, vehicle, overhead, and miscellaneous supplies.	Hours	\$122.89	10	\$1,228.90
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	24	\$2,561.28
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	9	\$772.38
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	12	\$410.40

Practice: 227 - Evaluation of Existing Waste Storage Facility Components
Scenario: \#13 - Evaluation of Existing Components- small operation
Scenario Description:
A Qualified Individual conducts an on-site investigation of up to 2 manure and wastewater handling and storage structures and equipment at the facilities where the livestock are housed. The investigation report will determine whether or not an existing component is in good operating condition. Typical evaluation of 1-2 storage structures, collection, may include pump.

Before Situation:
A waste storage facility and associated equipment is in use on the production area. The existing structure has not been evaluated for good operating condition. New or expanded waste storage and handling facilities could fail is the existing structure is not evaluated.

After Situation:
The Qualified Individual concludes that the existing storage components are in good working order OR has identified the component needs corrective. The CEMA report contains all data and recommendations.

Feature Measure: Per Production Site structures
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$3,902.08
Scenario Cost/Unit: \$3,902.08
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	34	\$3,628.48
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	8	\$273.60

Practice: 227 - Evaluation of Existing Waste Storage Facility Components
Scenario: \#29-Evaluation of Existing Components-medium operation
Scenario Description:
A Qualified Individual conducts an on-site investigation of all manure and wastewater handling and storage structures and equipment at the facilities where the livestock are housed. The investigation report will determine whether or not an existing component is in good operating condition. Typical livestock production site has $2-5$ storage and collection structures and may include pump.

Before Situation:
A waste storage facility and associated equipment is in use on the production area. The existing structure has not been evaluated for good operating condition. New or expanded waste storage and handling facilities could fail is the existing structure is not evaluated.

After Situation:
The Qualified Individual concludes that the existing storage components are in good working order OR has identified the component needs corrective. The CEMA report contains all data and recommendations.

Feature Measure: Per Operation 2-5 Structures
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$4,610.80
Scenario Cost/Unit: $\$ 4,610.80$
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	40	\$4,268.80
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	10	\$342.00

Practice: 227 - Evaluation of Existing Waste Storage Facility Components
Scenario: \#45-Evaluation of Existing Components- large operation
Scenario Description:
A Qualified Individual conducts an on-site investigation of all manure and wastewater handling and storage structures and equipment at the facilities where the livestock are housed. The investigation report will determine whether or not an existing component is in good operating condition. Typical livestock production site has 5 or more storage and collection structures and pump(s).

Before Situation:
A waste storage facility and associated equipment is in use on the production area. The existing structure has not been evaluated for good operating condition. New or expanded waste storage and handling facilities could fail is the existing structure is not evaluated.

After Situation:
The Qualified Individual concludes that the existing storage components are in good working order OR has identified the component needs corrective. The CEMA report contains all data and recommendations.

Feature Measure: Per Operation Structures
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$5,959.84

Scenario Cost/Unit: \$5,959.84
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	52	\$5,549.44
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	12	\$410.40

Practice: 228 - Agricultural Energy Assessment
Scenario: \#13-Large size, 3 Enterprises

Scenario Description:

An agricultural producer wishes to obtain an energy assessment of their agricultural operation. The operation has 3 enterprises where at least I consists of >2500 acres of crops, > 1000 animal units, more than 6 irrigation pumps, or $>40,000 \mathrm{sq}$. ft. of heated greenhouse. An enterprise is defined in the ASABE S612 Performing On-farm Energy Audits Standard. Large operations are described above. The Ag Energy CEMA is an assessment of the energy consuming activities and components of an agricultural operation and includes the requirements of a Type 2 energy audit as described in the ASABE S612 standard. An Ag Energy CEMA includes a baseline assessment of the of systems, equipment, and facilities using a typical year of energy use and recommended measures to prioritize on-farm opportunities to increase energy efficiency and reduce energy use. A Certified TSP will accomplish all work in accordance with the requirements of the CEMA 228 Agricultural Energy Assessment Activity. Natural Resource Concern: Energy Efficiency of Equipment and Facilities.

Before Situation

Producer currently has minimal knowledge of and no plan for energy conservation. The producer currently manages an operation as described above. Producer intends to collaborate with a certified TSP to develop an energy use assessment of their entire operation. The CEMA 228 incorporates recommended measures to maximize energy conservation and efficiency. Associated Practices: 374 Farmstead Energy Improvement, 670 Energy Efficient Lighting System, 672 Energy Efficient Building Envelope, 533 Pumping Plant, or other applicable practices in the NRCS Field Office Technical Guide.

After Situation:

The producer has obtained services from a certified TSP to develop an energy assessment. The CEMA 228 criteria include a baseline assessment using a typical year of energy use, energy savings of recommended improvement measures, and information useful for prioritizing implementation of the measures. The documentation may include recommendations for associated conservation practices which address energy efficiency. The Ag Energy CEMA meets the basic quality criteria for the CEMA 228 activity as cited in the NRCS Field Office Technical Guide.

Feature Measure: Number

Scenario Unit: Number
Scenario Typical Size: 1.00

Scenario Total Cost:	\$8,462.20					
Scenario Cost/Unit:	\$8,4	62.20				
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	34	\$3,628.48
CAP Labor, Manager	1603	Conservation Activity Plan labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$51.35	24	\$1,232.40
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	3	\$102.60
CAP Labor, Energy Auditor	1740	Conservation Activity Plan labor involving analyzing energy efficient measures and conducting energy audits of industrial areas and facilities.	Hours	\$72.89	48	\$3,498.72

Practice: 228-Agricultural Energy Assessment
Scenario: \#29 - Large size, 4+ Enterprises

Scenario Description:

An agricultural producer wishes to obtain an energy assessment of their agricultural operation. The operation has 4 or more enterprises where at least I consists of >2500 acres of crops, > 1000 animal units, more than 6 irrigation pumps, or $>40,000 \mathrm{sq}$. ft. of heated greenhouse. An enterprise is defined in the ASABE S612 Performing On-farm Energy Audits Standard. Large operations are described above. The Ag Energy CEMA is an assessment of the energy consuming activities and components of an agricultural operation and includes the requirements of a Type 2 energy audit as described in the ASABE S612 standard. An Ag Energy CEMA includes a baseline assessment of the of systems, equipment, and facilities using a typical year of energy use and recommended measures to prioritize on-farm opportunities to increase energy efficiency and reduce energy use. A Certified TSP will accomplish all work in accordance with the requirements of the CEMA 228 Agricultural Energy Assessment Activity. Natural Resource Concern: Energy Efficiency of Equipment and Facilities.

Before Situation

Producer currently has minimal knowledge of and no plan for energy conservation. The producer currently manages an operation as described above. Producer intends to collaborate with a certified TSP to develop an energy use assessment of their entire operation. The CEMA 228 incorporates recommended measures to maximize energy conservation and efficiency. Associated Practices: 374 Farmstead Energy Improvement, 670 Energy Efficient Lighting System, 672 Energy Efficient Building Envelope, 533 Pumping Plant, or other applicable practices in the NRCS Field Office Technical Guide.

After Situation:

The producer has obtained services from a certified TSP to develop an energy assessment. The CEMA 228 criteria include a baseline assessment using a typical year of energy use, energy savings of recommended improvement measures, and information useful for prioritizing implementation of the measures. The documentation may include recommendations for associated conservation practices which address energy efficiency. The Ag Energy CEMA meets the basic quality criteria for the CEMA 228 activity as cited in the NRCS Field Office Technical Guide.

Feature Measure: Number

Scenario Unit: Number
Scenario Typical Size: 1.00

Scenario Total Cost:	\$10,138.68					
Scenario Cost/Unit:	\$10,138.68					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	42	\$4,482.24
CAP Labor, Manager	1603	Conservation Activity Plan labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$51.35	28	\$1,437.80
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	4	\$136.80
CAP Labor, Energy Auditor	1740	Conservation Activity Plan labor involving analyzing energy efficient measures and conducting energy audits of industrial areas and facilities.	Hours	\$72.89	56	\$4,081.84

Practice: 228 - Agricultural Energy Assessment
Scenario: \#45-Large size, 2 Enterprises

Scenario Description:

An agricultural producer wishes to obtain an energy assessment of their agricultural operation. The operation has 2 enterprises where at least I consists of >2500 acres of crops, > 1000 animal units, more than 6 irrigation pumps, or $>40,000 \mathrm{sq}$. ft. of heated greenhouse. An enterprise is defined in the ASABE S612 Performing On-farm Energy Audits Standard. Large operations are described above. The Ag Energy CEMA is an assessment of the energy consuming activities and components of an agricultural operation and includes the requirements of a Type 2 energy audit as described in the ASABE S612 standard. An Ag Energy CEMA includes a baseline assessment of the of systems, equipment, and facilities using a typical year of energy use and recommended measures to prioritize on-farm opportunities to increase energy efficiency and reduce energy use. A Certified TSP will accomplish all work in accordance with the requirements of the CEMA 228 Agricultural Energy Assessment Activity. Natural Resource Concern: Energy Efficiency of Equipment and Facilities.

Before Situation

Producer currently has minimal knowledge of and no plan for energy conservation. The producer currently manages an operation as described above. Producer intends to collaborate with a certified TSP to develop an energy use assessment of their entire operation. The CEMA 228 incorporates recommended measures to maximize energy conservation and efficiency. Associated Practices: 374 Farmstead Energy Improvement, 670 Energy Efficient Lighting System, 672 Energy Efficient Building Envelope, 533 Pumping Plant, or other applicable practices in the NRCS Field Office Technical Guide.

After Situation:

The producer has obtained services from a certified TSP to develop an energy assessment. The CEMA 228 criteria include a baseline assessment using a typical year of energy use, energy savings of recommended improvement measures, and information useful for prioritizing implementation of the measures. The documentation may include recommendations for associated conservation practices which address energy efficiency. The Ag Energy CEMA meets the basic quality criteria for the CEMA 228 activity as cited in the NRCS Field Office Technical Guide.

Feature Measure: Number

Scenario Unit: Number
Scenario Typical Size: 1.00

Scenario Total Cost:	\$6,785.72					
Scenario Cost/Unit:	\$6,78	85.72				
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	26	\$2,774.72
CAP Labor, Manager	1603	Conservation Activity Plan labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$51.35	20	\$1,027.00
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	2	\$68.40
CAP Labor, Energy Auditor	1740	Conservation Activity Plan labor involving analyzing energy efficient measures and conducting energy audits of industrial areas and facilities.	Hours	\$72.89	40	\$2,915.60

Practice: 228-Agricultural Energy Assessment
Scenario: \#61-Medium size, 4+ Enterprises

Scenario Description:

An agricultural producer wishes to obtain an energy assessment of their agricultural operation. The operation has 4 or more enterprises where at least I consists of 301 to 2500 acres of crops, < 301 to 1000 animal units, $3-6$ irrigation pumps, or 20,001 to $40,000 \mathrm{sq}$. ft. of heated greenhouse. An enterprise is defined in the ASABE S612 Performing On-farm Energy Audits Standard. Medium operations are described above. The Ag Energy CEMA is an assessment of the energy consuming activities and components of an agricultural operation and includes the requirements of a Type 2 energy audit as described in the ASABE S612 standard. An Ag Energy CEMA includes a baseline assessment of the of systems, equipment, and facilities using a typical year of energy use and recommended measures to prioritize on-farm opportunities to increase energy efficiency and reduce energy use. A Certified TSP will accomplish all work in accordance with the requirements of the CEMA 228 Agricultural Energy Assessment Activity. Natural Resource Concern: Energy Efficiency of Equipment and Facilities.

Before Situation:

Producer currently has minimal knowledge of and no plan for energy conservation. The producer currently manages an operation as described above. Producer intends to collaborate with a certified TSP to develop an energy use assessment of their entire operation. The CEMA 228 incorporates recommended measures to maximize energy conservation and efficiency. Associated Practices: 374 Farmstead Energy Improvement, 670 Energy Efficient Lighting System, 672 Energy Efficient Building Envelope, 533 Pumping Plant, or other applicable practices in the NRCS Field Office Technical Guide.

After Situation:

The producer has obtained services from a certified TSP to develop an energy assessment. The CEMA 228 criteria include a baseline assessment using a typical year of energy use, energy savings of recommended improvement measures, and information useful for prioritizing implementation of the measures. The documentation may include recommendations for associated conservation practices which address energy efficiency. The Ag Energy CEMA meets the basic quality criteria for the CEMA 228 activity as cited in the NRCS Field Office Technical Guide.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00

Scenario Total Cost:	\$8,915.24					
Scenario Cost/Unit:	\$8,9	15.24				
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	36	\$3,841.92
CAP Labor, Manager	1603	Conservation Activity Plan labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$51.35	28	\$1,437.80
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	4	\$136.80
CAP Labor, Energy Auditor	1740	Conservation Activity Plan labor involving analyzing energy efficient measures and conducting energy audits of industrial areas and facilities.	Hours	\$72.89	48	\$3,498.72

Practice: 228-Agricultural Energy Assessment
Scenario: \#77-Small size, 4+ Enterprises

Scenario Description:

An agricultural producer wishes to obtain an energy assessment of their agricultural operation. The operation has 4 or more enterprises where 1 is not larger than < 300 acres of crops, < 300 animal units, 1-2 irrigation pumps, $<20,000 \mathrm{sq}$. ft . of heated greenhouse, or maple syrup processing. An enterprise is defined in the ASABE S612 Performing On-farm Energy Audits Standard. Small operations are described above. The Ag Energy CEMA is an assessment of the energy consuming activities and components of an agricultural operation and includes the requirements of a Type 2 energy audit as described in the ASABE S612 standard. An Ag Energy CEMA includes a baseline assessment of the of systems, equipment, and facilities using a typical year of energy use and recommended measures to prioritize on-farm opportunities to increase energy efficiency and reduce energy use. A Certified TSP will accomplish all work in accordance with the requirements of the CEMA 228 Agricultural Energy Assessment Activity. Natural Resource Concern: Energy Efficiency of Equipment and Facilities.

Before Situation

Producer currently has minimal knowledge of and no plan for energy conservation. The producer currently manages an operation as described above. Producer intends to collaborate with a certified TSP to develop an energy use assessment of their entire operation. The CEMA 228 incorporates recommended measures to maximize energy conservation and efficiency. Associated Practices: 374 Farmstead Energy Improvement, 670 Energy Efficient Lighting System, 672 Energy Efficient Building Envelope, 533 Pumping Plant, or other applicable practices in the NRCS Field Office Technical Guide.

After Situation:

The producer has obtained services from a certified TSP to develop an energy assessment. The CEMA 228 criteria include a baseline assessment using a typical year of energy use, energy savings of recommended improvement measures, and information useful for prioritizing implementation of the measures. The documentation may include recommendations for associated conservation practices which address energy efficiency. The Ag Energy CEMA meets the basic quality criteria for the CEMA 228 activity as cited in the NRCS Field Office Technical Guide.

Feature Measure: Number

Scenario Unit: Number
Scenario Typical Size: 1.00

Scenario Total Cost:	\$7,905.24					
Scenario Cost/Unit:	\$7,905.24					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	32	\$3,415.04
CAP Labor, Manager	1603	Conservation Activity Plan labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$51.35	28	\$1,437.80
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	4	\$136.80
CAP Labor, Energy Auditor	1740	Conservation Activity Plan labor involving analyzing energy efficient measures and conducting energy audits of industrial areas and facilities.	Hours	\$72.89	40	\$2,915.60

Practice: 228-Agricultural Energy Assessment
Scenario: \#93-Medium size, 3 Enterprises

Scenario Description:

An agricultural producer wishes to obtain an energy assessment of their agricultural operation. The operation has 3 enterprises where at least I consists of 301 to 2500 acres of crops, < 301 to 1000 animal units, $3-6$ irrigation pumps, or 20,001 to $40,000 \mathrm{sq}$. ft. of heated greenhouse. An enterprise is defined in the ASABE S612 Performing On-farm Energy Audits Standard. Medium operations are described above. The Ag Energy CEMA is an assessment of the energy consuming activities and components of an agricultural operation and includes the requirements of a Type 2 energy audit as described in the ASABE S612 standard. An Ag Energy CEMA includes a baseline assessment of the of systems, equipment, and facilities using a typical year of energy use and recommended measures to prioritize on-farm opportunities to increase energy efficiency and reduce energy use. A Certified TSP will accomplish all work in accordance with the requirements of the CEMA 228 Agricultural Energy Assessment Activity. Natural Resource Concern: Energy Efficiency of Equipment and Facilities.

Before Situation:

Producer currently has minimal knowledge of and no plan for energy conservation. The producer currently manages an operation as described above. Producer intends to collaborate with a certified TSP to develop an energy use assessment of their entire operation. The CEMA 228 incorporates recommended measures to maximize energy conservation and efficiency. Associated Practices: 374 Farmstead Energy Improvement, 670 Energy Efficient Lighting System, 672 Energy Efficient Building Envelope, 533 Pumping Plant, or other applicable practices in the NRCS Field Office Technical Guide.

After Situation:

The producer has obtained services from a certified TSP to develop an energy assessment. The CEMA 228 criteria include a baseline assessment using a typical year of energy use, energy savings of recommended improvement measures, and information useful for prioritizing implementation of the measures. The documentation may include recommendations for associated conservation practices which address energy efficiency. The Ag Energy CEMA meets the basic quality criteria for the CEMA 228 activity as cited in the NRCS Field Office Technical Guide.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00

Scenario Total Cost:	\$7,238.76					
Scenario Cost/Unit:	\$7,23	8.76				
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	28	\$2,988.16
CAP Labor, Manager	1603	Conservation Activity Plan labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$51.35	24	\$1,232.40
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	3	\$102.60
CAP Labor, Energy Auditor	1740	Conservation Activity Plan labor involving analyzing energy efficient measures and conducting energy audits of industrial areas and facilities.	Hours	\$72.89	40	\$2,915.60

Practice: 228-Agricultural Energy Assessment
Scenario: \#109-Small size, 3 Enterprises

Scenario Description:

An agricultural producer wishes to obtain an energy assessment of their agricultural operation. The operation has 3 enterprises where 1 is not larger than < 300 acres of crops, < 300 animal units, 1-2 irrigation pumps, $<20,000 \mathrm{sq}$. ft. of heated greenhouse, or maple syrup processing. An enterprise is defined in the ASABE S612 Performing On-farm Energy Audits Standard. Small operations are described above. The Ag Energy CEMA is an assessment of the energy consuming activities and components of an agricultural operation and includes the requirements of a Type 2 energy audit as described in the ASABE S612 standard. An Ag Energy CEMA includes a baseline assessment of the of systems, equipment, and facilities using a typical year of energy use and recommended measures to prioritize on-farm opportunities to increase energy efficiency and reduce energy use. A Certified TSP will accomplish all work in accordance with the requirements of the CEMA 228 Agricultural Energy Assessment Activity. Natural Resource Concern: Energy Efficiency of Equipment and Facilities.

Before Situation:

Producer currently has minimal knowledge of and no plan for energy conservation. The producer currently manages an operation as described above. Producer intends to collaborate with a certified TSP to develop an energy use assessment of their entire operation. The CEMA 228 incorporates recommended measures to maximize energy conservation and efficiency. Associated Practices: 374 Farmstead Energy Improvement, 670 Energy Efficient Lighting System, 672 Energy Efficient Building Envelope, 533 Pumping Plant, or other applicable practices in the NRCS Field Office Technical Guide.

After Situation:

The producer has obtained services from a certified TSP to develop an energy assessment. The CEMA 228 criteria include a baseline assessment using a typical year of energy use, energy savings of recommended improvement measures, and information useful for prioritizing implementation of the measures. The documentation may include recommendations for associated conservation practices which address energy efficiency. The Ag Energy CEMA meets the basic quality criteria for the CEMA 228 activity as cited in the NRCS Field Office Technical Guide.

Feature Measure: Number

Scenario Unit: Number
Scenario Typical Size: 1.00

Scenario Total Cost:	\$6,228.76					
Scenario Cost/Unit:	\$6,228.76					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	24	\$2,561.28
CAP Labor, Manager	1603	Conservation Activity Plan labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$51.35	24	\$1,232.40
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	3	\$102.60
CAP Labor, Energy Auditor	1740	Conservation Activity Plan labor involving analyzing energy efficient measures and conducting energy audits of industrial areas and facilities.	Hours	\$72.89	32	\$2,332.48

Practice: 228-Agricultural Energy Assessment
Scenario: \#125-Medium size, 2 Enterprises

Scenario Description:

An agricultural producer wishes to obtain an energy assessment of their agricultural operation. The operation has 2 enterprises where at least I consists of 301 to 2500 acres of crops, < 301 to 1000 animal units, $3-6$ irrigation pumps, or 20,001 to $40,000 \mathrm{sq}$. ft. of heated greenhouse. An enterprise is defined in the ASABE S612 Performing On-farm Energy Audits Standard. Medium operations are described above. The Ag Energy CEMA is an assessment of the energy consuming activities and components of an agricultural operation and includes the requirements of a Type 2 energy audit as described in the ASABE S612 standard. An Ag Energy CEMA includes a baseline assessment of the of systems, equipment, and facilities using a typical year of energy use and recommended measures to prioritize on-farm opportunities to increase energy efficiency and reduce energy use. A Certified TSP will accomplish all work in accordance with the requirements of the CEMA 228 Agricultural Energy Assessment Activity. Natural Resource Concern: Energy Efficiency of Equipment and Facilities.

Before Situation:

Producer currently has minimal knowledge of and no plan for energy conservation. The producer currently manages an operation as described above. Producer intends to collaborate with a certified TSP to develop an energy use assessment of their entire operation. The CEMA 228 incorporates recommended measures to maximize energy conservation and efficiency. Associated Practices: 374 Farmstead Energy Improvement, 670 Energy Efficient Lighting System, 672 Energy Efficient Building Envelope, 533 Pumping Plant, or other applicable practices in the NRCS Field Office Technical Guide.

After Situation:

The producer has obtained services from a certified TSP to develop an energy assessment. The CEMA 228 criteria include a baseline assessment using a typical year of energy use, energy savings of recommended improvement measures, and information useful for prioritizing implementation of the measures. The documentation may include recommendations for associated conservation practices which address energy efficiency. The Ag Energy CEMA meets the basic quality criteria for the CEMA 228 activity as cited in the NRCS Field Office Technical Guide.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00

Scenario Total Cost:	\$5,562.28					
Scenario Cost/Unit:	\$5,562.28					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	20	\$2,134.40
CAP Labor, Manager	1603	Conservation Activity Plan labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$51.35	20	\$1,027.00
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	2	\$68.40
CAP Labor, Energy Auditor	1740	Conservation Activity Plan labor involving analyzing energy efficient measures and conducting energy audits of industrial areas and facilities.	Hours	\$72.89	32	\$2,332.48

Practice: 228-Agricultural Energy Assessment
Scenario: \#141-Small size, 2 Enterprises

Scenario Description:

An agricultural producer wishes to obtain an energy assessment of their agricultural operation. The operation has 2 enterprises where 1 is not larger than < 300 acres of crops, < 300 animal units, 1-2 irrigation pumps, $<20,000 \mathrm{sq}$. ft. of heated greenhouse, or maple syrup processing. An enterprise is defined in the ASABE S612 Performing On-farm Energy Audits Standard. Small operations are described above. The Ag Energy CEMA is an assessment of the energy consuming activities and components of an agricultural operation and includes the requirements of a Type 2 energy audit as described in the ASABE S612 standard. An Ag Energy CEMA includes a baseline assessment of the of systems, equipment, and facilities using a typical year of energy use and recommended measures to prioritize on-farm opportunities to increase energy efficiency and reduce energy use. A Certified TSP will accomplish all work in accordance with the requirements of the CEMA 228 Agricultural Energy Assessment Activity. Natural Resource Concern: Energy Efficiency of Equipment and Facilities.

Before Situation:

Producer currently has minimal knowledge of and no plan for energy conservation. The producer currently manages an operation as described above. Producer intends to collaborate with a certified TSP to develop an energy use assessment of their entire operation. The CEMA 228 incorporates recommended measures to maximize energy conservation and efficiency. Associated Practices: 374 Farmstead Energy Improvement, 670 Energy Efficient Lighting System, 672 Energy Efficient Building Envelope, 533 Pumping Plant, or other applicable practices in the NRCS Field Office Technical Guide.

After Situation:

The producer has obtained services from a certified TSP to develop an energy assessment. The CEMA 228 criteria include a baseline assessment using a typical year of energy use, energy savings of recommended improvement measures, and information useful for prioritizing implementation of the measures. The documentation may include recommendations for associated conservation practices which address energy efficiency. The Ag Energy CEMA meets the basic quality criteria for the CEMA 228 activity as cited in the NRCS Field Office Technical Guide.

Feature Measure: Number

Scenario Unit: Number
Scenario Typical Size: 1.00

Scenario Total Cost:	\$4,552.28					
Scenario Cost/Unit:	\$4,552.28					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	16	\$1,707.52
CAP Labor, Manager	1603	Conservation Activity Plan labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$51.35	20	\$1,027.00
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	2	\$68.40
CAP Labor, Energy Auditor	1740	Conservation Activity Plan labor involving analyzing energy efficient measures and conducting energy audits of industrial areas and facilities.	Hours	\$72.89	24	\$1,749.36

Practice: 228-Agricultural Energy Assessment
Scenario: \#157-Large size, 1 Enterprise
Scenario Description:
An agricultural producer wishes to obtain an energy assessment of their agricultural operation. The operation has either >2500 acres of crops, >1000 animal units, more than 6 irrigation pumps, or $>40,000 \mathrm{sq}$. ft. of heated greenhouse. An enterprise is defined in the ASABE S612 Performing On-farm Energy Audits Standard. A large operation is described above. The Ag Energy CEMA is an assessment of the energy consuming activities and components of an agricultural operation and includes the requirements of a Type 2 energy audit as described in the ASABE S612 standard. An Ag Energy CEMA includes a baseline assessment of the of systems, equipment, and facilities using a typical year of energy use and recommended measures to prioritize on-farm opportunities to increase energy efficiency and reduce energy use. A Certified TSP will accomplish all work in accordance with the requirements of the CEMA 228 Agricultural Energy Assessment Activity. Natural Resource Concern: Energy Efficiency of Equipment and Facilities.

Before Situation:
Producer currently has minimal knowledge of and no plan for energy conservation. The producer currently manages an operation as described above. Producer intends to collaborate with a certified TSP to develop an energy use assessment of their entire operation. The CEMA 228 incorporates recommended measures to maximize energy conservation and efficiency. Associated Practices: 374 Farmstead Energy Improvement, 670 Energy Efficient Lighting System, 672 Energy Efficient Building Envelope, 533 Pumping Plant, or other applicable practices in the NRCS Field Office Technical Guide.

After Situation:

The producer has obtained services from a certified TSP to develop an energy assessment. The CEMA 228 criteria include a baseline assessment using a typical year of energy use, energy savings of recommended improvement measures, and information useful for prioritizing implementation of the measures. The documentation may include recommendations for associated conservation practices which address energy efficiency. The Ag Energy CEMA meets the basic quality criteria for the CEMA 228 activity as cited in the NRCS Field Office Technical Guide.

Feature Measure: Number

Scenario Unit: Number
Scenario Typical Size: 1.00

Scenario Total Cost:	\$5,109.24					
Scenario Cost/Unit:	\$5,10	9.24				
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	18	\$1,920.96
CAP Labor, Manager	1603	Conservation Activity Plan labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$51.35	16	\$821.60
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	1	\$34.20
CAP Labor, Energy Auditor	1740	Conservation Activity Plan labor involving analyzing energy efficient measures and conducting energy audits of industrial areas and facilities.	Hours	\$72.89	32	\$2,332.48

Practice: 228-Agricultural Energy Assessment
Scenario: \#173-Medium size, 1 Enterprise

Scenario Description:

An agricultural producer wishes to obtain an energy assessment of their agricultural operation. The operation has either 301 to 2500 acres of crops, < 301 to 1000 animal units, $3-6$ irrigation pumps, or 20,001 to 40,000 sq. ft. of heated greenhouse. An enterprise is defined in the ASABE S612 Performing On-farm Energy Audits Standard. A medium operation is described above. The Ag Energy CEMA is an assessment of the energy consuming activities and components of an agricultural operation and includes the requirements of a Type 2 energy audit as described in the ASABE S612 standard. An Ag Energy CEMA includes a baseline assessment of the of systems, equipment, and facilities using a typical year of energy use and recommended measures to prioritize on-farm opportunities to increase energy efficiency and reduce energy use. A Certified TSP will accomplish all work in accordance with the requirements of the CEMA 228 Agricultural Energy Assessment Activity. Natural Resource Concern: Energy Efficiency of Equipment and Facilities.

Before Situation

Producer currently has minimal knowledge of and no plan for energy conservation. The producer currently manages an operation as described above. Producer intends to collaborate with a certified TSP to develop an energy use assessment of their entire operation. The CEMA 228 incorporates recommended measures to maximize energy conservation and efficiency. Associated Practices: 374 Farmstead Energy Improvement, 670 Energy Efficient Lighting System, 672 Energy Efficient Building Envelope, 533 Pumping Plant, or other applicable practices in the NRCS Field Office Technical Guide.

After Situation:

The producer has obtained services from a certified TSP to develop an energy assessment. The CEMA 228 criteria include a baseline assessment using a typical year of energy use, energy savings of recommended improvement measures, and information useful for prioritizing implementation of the measures. The documentation may include recommendations for associated conservation practices which address energy efficiency. The Ag Energy CEMA meets the basic quality criteria for the CEMA 228 activity as cited in the NRCS Field Office Technical Guide.

Feature Measure: Number

Scenario Unit: Number
Scenario Typical Size: 1.00

Scenario Total Cost:	\$3,885.80					
Scenario Cost/Unit:	\$3,885.80					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	12	\$1,280.64
CAP Labor, Manager	1603	Conservation Activity Plan labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$51.35	16	\$821.60
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	1	\$34.20
CAP Labor, Energy Auditor	1740	Conservation Activity Plan labor involving analyzing energy efficient measures and conducting energy audits of industrial areas and facilities.	Hours	\$72.89	24	\$1,749.36

Practice: 228-Agricultural Energy Assessment
Scenario: \#189-Small size, 1 Enterprise

Scenario Description:

An agricultural producer wishes to obtain an energy assessment of their agricultural operation. The operation has either < 300 acres of crops, < 300 animal units, 1 - 2 irrigation pumps, $<20,000 \mathrm{sq}$. ft . of heated greenhouse, or maple syrup processing. An enterprise is defined in the ASABE S612 Performing On-farm Energy Audits Standard. A small operation is described above. The Ag Energy CEMA is an assessment of the energy consuming activities and components of an agricultural operation and includes the requirements of a Type 2 energy audit as described in the ASABE S612 standard. An Ag Energy CEMA includes a baseline assessment of the of systems, equipment, and facilities using a typical year of energy use and recommended measures to prioritize on-farm opportunities to increase energy efficiency and reduce energy use. A Certified TSP will accomplish all work in accordance with the requirements of the CEMA 228 Agricultural Energy Assessment Activity. Natural Resource Concern: Energy Efficiency of Equipment and Facilities.

Before Situation:

Producer currently has minimal knowledge of and no plan for energy conservation. The producer currently manages an operation as described above. Producer intends to collaborate with a certified TSP to develop an energy use assessment of their entire operation. The CEMA 228 incorporates recommended measures to maximize energy conservation and efficiency. Associated Practices: 374 Farmstead Energy Improvement, 670 Energy Efficient Lighting System, 672 Energy Efficient Building Envelope, 533 Pumping Plant, or other applicable practices in the NRCS Field Office Technical Guide.

After Situation:

The producer has obtained services from a certified TSP to develop an energy assessment. The CEMA 228 criteria include a baseline assessment using a typical year of energy use, energy savings of recommended improvement measures, and information useful for prioritizing implementation of the measures. The documentation may include recommendations for associated conservation practices which address energy efficiency. The Ag Energy CEMA meets the basic quality criteria for the CEMA 228 activity as cited in the NRCS Field Office Technical Guide.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00

Scenario Total Cost:	\$2,875.80					
Scenario Cost/Unit:	\$2,875.80					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	8	\$853.76
CAP Labor, Manager	1603	Conservation Activity Plan labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$51.35	16	\$821.60
CAP Labor, Administrative Assistant	1739	Conservation Activity Plan labor involving routine clerical and administrative functions such as drafting correspondence, scheduling appointments, organizing and maintaining paper and electronic files, or providing information to callers.	Hours	\$34.20	1	\$34.20
CAP Labor, Energy Auditor	1740	Conservation Activity Plan labor involving analyzing energy efficient measures and conducting energy audits of industrial areas and facilities.	Hours	\$72.89	16	\$1,166.24

Practice: 311-Alley Cropping

Scenario: \#265-Alley Cropping Single Row - Small Acreage

Scenario Description:

The crop or grass land is planted with rows of trees to increase crop diversity. Final row width, and spacing of trees within the row, is based site size, growth form of trees, light needs of annual crop or grass, and intent of the landowner. The resource concerns are plant condition - inadequate structure and composition.

Before Situation:

The landscape has been cropped or in perennial grass for many years. It is void of any perennial tree vegetation. On grassland competing vegetation control is accomplished prior to tree planting.

After Situation:
Trees have been established to diversify crop production of the field. Typically the area planted is less than 5 acres on approximately 12×40 foot spacing.
Feature Measure: Planted Seedling
Scenario Unit: Each
Scenario Typical Size: 450.00
Scenario Total Cost: \$13,918.83

Scenario Cost/Unit: \$30.93

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	75	\$938.25
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	75	\$2,037.00
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	10	\$476.10
Materials						
Tree, Hardwood, Potted, Medium	1532	Potted hardwood seedling, 2 gallons or larger. Includes materials and shipping only.	Each	\$15.29	450	\$6,880.50
Tree shelter, solid tube type, 5 in. x 48 in.	1571	5 inch $x 48$ inch tree tube for protection from animal damage. Materials and shipping only.	Each	\$5.29	450	\$2,380.50
Cable ties, plastic	1575	Plastic cable ties (typ. 8-12 in.) to assist in securing items. Materials only.	Each	\$0.07	900	\$63.00
Stakes, wood, $3 / 4$ in. x 3/4 in. x 60 in.	1583	3/4 in. x $3 / 4 \mathrm{in}$. x 60 in . wood stakes to fasten items in place. Includes materials only.	Each	\$2.43	450	\$1,093.50

Practice: 313-Waste Storage Facility
Scenario: \#1 - Waste Storage Pond, Small, under 50,000 cu ft Design Storage

Scenario Description:

An earthen waste impoundment constructed to store wastes such as manure, wastewater, and contaminated runoff as part of an agricultural waste management system. This scenario has a design storage volume of less than $50,000 \mathrm{ft} 3$. This practice will address soil and water quality by reducing the pollution potential for surface water and groundwater quality degradation. When a liner is required to prevent seepage, plan the appropriate pond sealing and lining conservation practice standard. Vehicular and equipment access is addressed in Heavy Use Area Protection (561). Adequately protect liner at agitation and access points. Potential Associated Practices: Pond Sealing or Lining, Bentonite Sealant (521C), Pond Sealing or Lining, Compacted Clay Treatment (521D), Pond Sealing or Lining, Flexible Membrane (521A), Pond Sealing or Lining, Soil Dispersant (521B), Fence (382), Critical Area Planting (342), Nutrient Management (590), Waste Transfer (634), Heavy Use Area Protection (561), Roofs and Covers (367), and Solid/Liquid Waste Separation Facility (632), Waste Treatment (629) .

Before Situation:

Operator presently has a dairy or animal feeding operation where animals are confined in a small area for a period of time each day ranging from a couple of hours to 24 hours per day. The operation does not have a waste management system adequate to handle the waste stream leaving the animal production facilities. Manure and other agricultural waste by-products are not being utilized or controlled in an environmentally safe manner. The wastes are either accumulating at the source, or are being transported but not properly utilized or disposed of. This situation poses an environmentally threat of excessive nutrients, organics, and pathogens being transported into surface and groundwater resources.

After Situation:

An earthen storage structure constructed from on-site material provides an environmentally safe facility for storing manure and other agricultural waste by-products. This facility provides the landowner a means of storing waste until it can be utilized in a proper manner in accordance with a nutrient management plan. Typical design size : Design storage volume 45,333 ft3; 50' $\times 50$ ' (bottom); $3: 1$ inside and outside side slopes; cut/fill ratio $=1.25$; total depth below auxiliary spillway $=9.5^{\prime}$ (design depth $=8$ '); (not inclued in volume - 1 ' freeboard below auxiliary spillway, 1 ' freeboard above auxiliary spillway and 0.5 ' sludge accumulation). Excavated Volume $1,350 \mathrm{CY}$, Earthfill Volume 1100 CY,

Feature Measure: Design Storage Volume
Scenario Unit: Cubic Feet
Scenario Typical Size: 45,333.00

Scenario Total Cost:	\$6,079.62					
Scenario Cost/Unit:	\$0.13					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, common earth, large equipment, 150 ft	1223	Bulk excavation of common earth including sand and gravel with dozer $>100 \mathrm{HP}$ with average push distance of 150 feet. Includes equipment and labor.	Cubic Yards	\$3.35	1350	\$4,522.50
Materials						
Structural steel tubing, 2 in. diameter	1120	Structural steel tubing, 2 inch diameter, $1 / 8$ inch wall thickness, materials only	Feet	\$4.58	11	\$50.38
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and	Each	\$753.37	2	\$1,506.74

Practice: 313-Waste Storage Facility
Scenario: \#2 - Waste Storage Pond, Large, 50,000 cu ft or more Design Storage

Scenario Description:

An earthen waste impoundment constructed to store wastes such as manure, wastewater, and contaminated runoff as part of an agricultural waste management system. This scenario has a design storage volume of more than $50,000 \mathrm{ft} 3$. This practice will address soil and water quality by reducing the pollution potential for surface water and groundwater quality degradation. When a liner is required to prevent seepage, plan the appropriate pond sealing and lining standard.. Vehicular and equipment access is addressed in Heavy Use Area Protection (561). Adequately protect liner at agitation and access points.Potential Associated Practices: Pond Sealing or Lining, Bentonite Sealant (521C), Pond Sealing or Lining, Compacted Clay Treatment (521D), Pond Sealing or Lining, Flexible Membrane (521A), Pond Sealing or Lining, Soil Dispersant (521B), Fence (382), Critical Area Planting (342), Nutrient Management (590), Waste Transfer (634), Heavy Use Area Protection (561), Roofs and Covers (367), and Solid/Liquid Waste Separation Facility (632), Waste Treatment (629).

Before Situation:

Operator presently has a dairy or animal feeding operation where animals are confined in a small area for a period of time each day ranging from a couple of hours to 24 hours per day. The operation does not have a waste management system adequate to handle the waste stream leaving the animal production facilities. Manure and other agricultural waste by-products are not being utilized or controlled in an environmentally safe manner. The wastes are either accumulating at the source, or are being transported but not properly utilized or disposed of. This situation poses an environmentally threat of excessive nutrients, organics, and pathogens being transported into surface and groundwater resources.

After Situation:

An earthen storage structure constructed from on-site material provides an environmentally safe facility for storing manure and other agricultural waste by-products. This facility provides the landowner a means of storing waste until it can be utilized in a proper manner in accordance with a nutrient management plan. Typical design size: Design storage volume 239,625 ft3; $75^{\prime} \times 140^{\prime}$ (Bottom); $3: 1$ inside and outside side slopes; cut/fill ratio $=1.25$; total depth below auxiliary spillway $=13.67$ ' (design depth $=$ 12 '); (not inclued in volume - 1' freeboard below auxiliary spillway, 1 ' freeboard above auxiliary spillway and 8 ' sludge accumulation). Excavated Volume 5,800 CY Earthfill Volume 4,700

Feature Measure: Design Storage Volume

Scenario Unit: Cubic Feet
Scenario Typical Size: 239,625.00
Scenario Total Cost: $\$ 22,512.18$
Scenario Cost/Unit: \$0.09

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, common earth, large equipment, 150 ft	1223	Bulk excavation of common earth including sand and gravel with dozer $>100 \mathrm{HP}$ with average push distance of 150 feet. Includes equipment and labor.	Cubic Yards	\$3.35	5800	\$19,430.00
Materials						
Structural steel tubing, 2 in. diameter	1120	Structural steel tubing, 2 inch diameter, $1 / 8$ inch wall thickness, materials only	Feet	\$4.58	15	\$68.70
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	4	\$3,013.48

Practice: 313 - Waste Storage Facility

Scenario: \#3 - Waste Storage Pond requiring 2 ft freeboard in typical areas with more than 2% slopes

Scenario Description:

An earthen waste impoundment constructed to store wastes such as manure, wastewater, and contaminated runoff as part of an agricultural waste management system where volume is created with a partial or complete embankment in areas with more than 2% slope. This scenario has a design storage volume of $600,384 \mathrm{ft} 3$. This practice will address soil and water quality by reducing the pollution potential for surface water and groundwater quality degradation. Earthen storage liners are addressed with another standard. Vehicular and equipment access is addressed in Heavy Use Area Protection (561). Adequately protect liner at agitation and access points. Potential Associated Practices: Pond Sealing or Lining, Bentonite Sealant (521C), Pond Sealing or Lining, Compacted Clay Treatment (521D), Pond Sealing or Lining, Flexible Membrane (521A), Pond Sealing or Lining, Soil Dispersant (521B), Fence (382), Critical Area Planting (342), Nutrient Management (590), Waste Transfer (634), Heavy Use Area Protection (561), Roofs and Covers (367), and Solid/Liquid Waste Separation Facility (632), Waste Treatment (629) .

Before Situation:

Operator presently has a dairy or animal feeding operation where animals are confined typically 24 hours per day. The operation does not have a waste management system adequate to handle the waste stream leaving the animal production facilities. Manure and other agricultural waste by-products are not being utilized or controlled in an environmentally safe manner. The wastes are either accumulating at the source, or are being transported but not properly utilized or disposed of. This situation poses an environmentally threat of excessive nutrients, organics, and pathogens being transported into surface and groundwater resources.

After Situation:

An earthen storage structure constructed from on-site material provides an environmentally safe facility for storing manure and other agricultural waste by-products. This facility provides the landowner a means of storing waste until it can be utilized in a proper manner in accordance with a nutrient management plan. Typical design size : Design storage volume 649,740 ft3; 257' $\times 305^{\prime}$ (top); 3:1 inside and outside side slopes;total depth $=14^{\prime}$ (design volume depth = 12'); (not included in design volume -2 ' freeboard). Total Excavated Volume 18700 CY, Compacted Earthfill Volume 6300 CY , Using a 1.25 cut/fill ratio, the excavated volume that will be paid on is 18700 $(1.25 * 6300)=10825 \mathrm{CY}$

Feature Measure: Design Storage Volume
Scenario Unit: Cubic Feet
Scenario Typical Size: 649,740.00
Scenario Total Cost: \$63,028.81
Scenario Cost/Unit: \$0.10
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	6300	\$23,058.00
Excavation, common earth, large equipment, 150 ft	1223	Bulk excavation of common earth including sand and gravel with dozer $>100 \mathrm{HP}$ with average push distance of 150 feet. Includes equipment and labor.	Cubic Yards	\$3.35	10825	\$36,263.75
Materials						
Structural steel tubing, 2 in. diameter	1120	Structural steel tubing, 2 inch diameter, $1 / 8$ inch wall thickness, materials only	Feet	\$4.58	15	\$68.70
Mobilization						
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	4	\$3,638.36

Practice: 313-Waste Storage Facility

Scenario: \#4 - Waste Storage Pond requiring 2 ft freeboard in very flat areas primarily with excavation

Scenario Description:

An earthen waste impoundment constructed to store wastes such as manure, wastewater, and contaminated runoff as part of an agricultural waste management system where volume is created primarily through excavation in areas with slopes less than or equal to 2%. This scenario has a design storage volume of $600,384 \mathrm{ft} 3$. This practice will address soil and water quality by reducing the pollution potential for surface water and groundwater quality degradation. Earthen storage liners are addressed with another standard. Vehicular and equipment access is addressed in Heavy Use Area Protection (561). Adequately protect liner at agitation and access points. Potential Associated Practices: Pond Sealing or Lining, Bentonite Sealant (521C), Pond Sealing or Lining, Compacted Clay Treatment (521D), Pond Sealing or Lining, Flexible Membrane (521A), Pond Sealing or Lining, Soil Dispersant (521B), Fence (382), Critical Area Planting (342), Nutrient Management (590), Waste Transfer (634), Heavy Use Area Protection (561), Roofs and Covers (367), and Solid/Liquid Waste Separation Facility (632), Waste Treatment (629) .

Before Situation:

Operator presently has a dairy or animal feeding operation where animals are confined typically 24 hours per day. The operation does not have a waste management system adequate to handle the waste stream leaving the animal production facilities. Manure and other agricultural waste by-products are not being utilized or controlled in an environmentally safe manner. The wastes are either accumulating at the source, or are being transported but not properly utilized or disposed of. This situation poses an environmentally threat of excessive nutrients, organics, and pathogens being transported into surface and groundwater resources.

After Situation:

An earthen storage structure constructed from on-site material provides an environmentally safe facility for storing manure and other agricultural waste by-products. This facility provides the landowner a means of storing waste until it can be utilized in a proper manner in accordance with a nutrient management plan. Typical design size : Design storage volume 649,740 ft3; 257' $\times 305^{\prime}$ (top); 3:1 inside and outside side slopes;total depth = 14' (design depth = 12^{\prime}); (not included in design volume - 2^{\prime} freeboard). Total Excavated Volume $22,800 \mathrm{CY}$ with negligible fill.

Feature Measure: Design Storage Volume
Scenario Unit: Cubic Feet

Scenario Typical Size: 649,740.00

Scenario Total Cost: $\$ 78,267.88$
Scenario Cost/Unit: \$0.12

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, common earth, large equipment, 150 ft	1223	Bulk excavation of common earth including sand and gravel with dozer $>100 \mathrm{HP}$ with average push distance of 150 feet. Includes equipment and labor.	Cubic Yards	\$3.35	22800	\$76,380.00
Materials						
Structural steel tubing, 2 in. diameter	1120	Structural steel tubing, 2 inch diameter, $1 / 8$ inch wall thickness, materials only	Feet	\$4.58	15	\$68.70
Mobilization						
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	2	\$1,819.18

Practice: 313-Waste Storage Facility
Scenario: \#5 - Winter Feeding Structure, Concrete Floor, Concrete Curb and Wall
Scenario Description:

A winter feeding facility is constructed to store wastes such as manure, wastewater, and contaminated runoff as part of an agricultural waste management system for dairy cattle. This includes a building designed and installed from approved standard drawings to be used by dairy cows for shelter, a feeding area, and to temporarily store waste. The structure will store approximately 90 days of manure. This scenario is intended for situations where consistency of manure or geological conditions prohibit the use of earthen floors. This practice will address soil and water quality by reducing the pollution potential for surface water and groundwater quality degradation.Potential Associated Practices: Fence (382), Nutrient Management (590), Heavy Use Area Protection (561) and Roofs and Covers (367).

Before Situation:
Operator presently has a dairy without a waste management system adequate to handle the waste stream leaving the animal feeding facilities. Manure and other agricultural waste by-products are not being utilized or controlled in an environmentally safe manner. The wastes are either accumulating at the source, or are being transported but not properly utilized or disposed of. This situation poses an environmentally threat of excessive nutrients, organics, and pathogens being transported into surface and groundwater resources.

After Situation:

This practice applies to the installation of a winter feeding structure on a dairy, as part of an agricultural waste management system for dairy cows. This includes a building designed and installed from approved standard drawings to be used by dairy cows for shelter, a feeding area, and to temporarily store waste. The structure will store approximately 90 days of manure. Unit costs include all labor and materials needed to build the structure. This facility provides the landowner a means of storing waste until it can be utilized in a proper manner in accordance with a nutrient management plan. Typical design: The typical structure is an open sided building with metal trusses and metal roof designed for 100 dairy cows. floor area $5,577 \mathrm{ft} 2$, ($39^{\prime} \mathrm{X} 143^{\prime}$); $3^{\prime} 8^{\prime}$ concrete end wall height, 8^{\prime} concrete curb height, 2^{\prime} footing depth with a 4^{\prime} concrete floor.

Feature Measure: Building Footprint

Scenario Unit: Square Feet
Scenario Typical Size: 5,577.00
Scenario Total Cost: \$56,386.29

Scenario Cost/Unit: \$10.11
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	69	\$27,924.30
Concrete, CIP, formed reinforced	38	Steel reinforced concrete formed and cast-in-placed in formed structures such as walls or suspended slabs by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$457.84	50	\$22,892.00
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	24	\$55.20
Stripping and stockpiling, topsoil	1199	Stripping and stockpiling of topsoil adjacent to stripping area. Includes equipment and labor.	Cubic Yards	\$0.79	103	\$81.37
Excavation, common earth, large equipment, 150 ft	1223	Bulk excavation of common earth including sand and gravel with dozer $>100 \mathrm{HP}$ with average push distance of 150 feet. Includes equipment and labor.	Cubic Yards	\$3.35	69	\$231.15
Materials						
Aggregate, Sand, Graded, Washed	45	Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$42.64	69	\$2,942.16
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	3	\$2,260.11

Practice: 313-Waste Storage Facility
Scenario: \#8 - Dry stack, earthen floor, wood wall

Scenario Description:

This scenario consists of a dry stack facility with compacted earthen floor. This scenario is intended for dryer material such as poultry litter. The purpose of this practice is to properly store manure and other agricultural by-products until they can be hauled away from the site for proper disposal or utilization on land at agronomical rates. This practice will address soil and water quality by reducing the pollution potential to soil, surface water and ground water. To be used in conjunction with 367 - Roofs and Covers. Potential Associated practices: 342-Critical Area Planting,
362-Diversion, 558-Roof Runoff Structure, 317-Composting Facility, 633-Waste Recycling, 634-Waste Transfer.

Before Situation:

Operator presently has a poultry feeding operation where animals are confined in houses 24 hours per day. The operation does not have a waste management system adequate to handle the waste stream leaving the animal production facilities. Poultry litter, manure and other agricultural by-products are not being utilized or controlled in an environmentally safe manner. The wastes are either accumulating at the source, or other location, or are being transported but not properly utilized or disposed of. This situation poses an environmentally threat of excessive nutrients, organics, and pathogens being transported into surface and groundwaters, in addition to the use of excessive amounts of fertilizers.

After Situation:
The typical structure is an partially enclosed building, 40.3 ft (40 '4') wide, 65 ft long, 6.0 ft deep for 100,000 broilers. The earthen floor will be prepared by stripping the top 1^{\prime} of soil and roller compacting it back into floor. Walls are 4' pressure treated wood, 6' x 6' x 7' steel truss support posts set 10' c-c with 2' concrete curbing. Walls allow for greater storage volume. Manure and other agricultural by-products are being controlled, by the collection at the source, and stored temporarily, at an environmentally suitable location, until such time that they are disposed of or utilized in a proper manner, typically in accordance with a nutrient management plan.

Feature Measure: Building Footprint
Scenario Unit: Square Feet
Scenario Typical Size: 2,620.00
Scenario Total Cost:
\$12,430.26

Scenario Cost/Unit: \$4.74

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, formed reinforced	38	Steel reinforced concrete formed and cast-in-placed in formed structures such as walls or suspended slabs by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$457.84	17	\$7,783.28
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	8.5	\$19.55
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	93	\$340.38
Earthfill, Dumped and Spread	51	Earthfill, dumped and spread without compaction effort, includes equipment and labor	Cubic Yards	\$3.15	92	\$289.80
Excavation, common earth, small equipment, 50 ft	1220	Bulk excavation of common earth with dozer <100 HP with average push distance of 50 feet. Includes equipment and labor.	Cubic Yards	\$2.56	183	\$468.48
Materials						
Dimension Lumber, Treated	1044	Treated dimension lumber with nominal thickness equal or less than 2 inches. Includes lumber and fasteners	Board Feet	\$1.82	1176	\$2,140.32
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46
Mobilization, large equipment	1140	Equipment >150HP or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 313-Waste Storage Facility
Scenario: \#9 - Dry Stack, concrete floor, wood wall

Scenario Description:

This scenario consists of a dry stack facility with concrete floor and is applicable when geologic, soil, climate conditions or state and local regulations prohibit the use of an earthen surface. This scenario is intended for dryer material such as poultry litter. The purpose of this practice is to properly store manure and other agricultural byproducts until they can be hauled away from the site for proper disposal or utilization on land at agronomical rates. This practice will address soil and water quality by reducing the pollution potential to soil, surface water and ground water. To be used in conjunction with 367 - Roofs and
Covers. Potential Associated practices: 342-Critical Area Planting,

362-Diversion, 558-Roof Runoff Structure, 317-Composting Facility, 633-Waste Recycling, 634-Waste Transfer.
Before Situation:
Operator presently has a poultry feeding operation where animals are confined in houses 24 hours per day. The operation does not have a waste management system adequate to handle the waste stream leaving the animal production facilities. Poultry litter, manure and other agricultural by-products are not being utilized or controlled in an environmentally safe manner. The wastes are either accumulating at the source, or other location, or are being transported but not properly utilized or disposed of. This situation poses an environmentally threat of excessive nutrients, organics, and pathogens being transported into surface and groundwaters, in addition to the use of excessive amounts of fertilizers.

After Situation:
The typical structure is an partially enclosed building, $40.3 \mathrm{ft}\left(40^{\prime} 4^{\prime}\right)$ wide, 65 ft long, 6.0 ft deep for 100,000 broilers. The earthen floor will be prepared by stripping the top 1^{\prime} of soil and roller compacting it back into floor. Walls are 4' pressure treated wood, 6' x 6' x 7' steel truss support posts set 10' c-c with 2' concrete curbing. Walls allow for greater storage volume. Manure and other agricultural by-products are being controlled, by the collection at the source, and stored temporarily, at an environmentally suitable location, until such time that they are disposed of or utilized in a proper manner, typically in accordance with a nutrient management plan.

Feature Measure: Building Footprint
Scenario Unit: Square Feet
Scenario Typical Size: 2,620.00
Scenario Total Cost: $\$ 25,327.14$

Scenario Cost/Unit: \$9.67
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	31	\$12,545.70
Concrete, CIP, formed reinforced	38	Steel reinforced concrete formed and cast-in-placed in formed structures such as walls or suspended slabs by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$457.84	17	\$7,783.28
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	8.5	\$19.55
Excavation, common earth, small equipment, 50 ft	1220	Bulk excavation of common earth with dozer <100 HP with average push distance of 50 feet. Includes equipment and labor.	Cubic Yards	\$2.56	50	\$128.00
Materials						
Aggregate, Sand, Graded, Washed	45	Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$42.64	31	\$1,321.84
Dimension Lumber, Treated	1044	Treated dimension lumber with nominal thickness equal or less than 2 inches. Includes lumber and fasteners	Board Feet	\$1.82	1176	\$2,140.32
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40
Mobilization, small equipment	1138	Equipment <70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 313-Waste Storage Facility
Scenario: \#11 - Dry stack facility with concrete floor and walls, roof required but not included

Scenario Description:

This scenario consists of a dry stack facility with reinforced concrete floor and concrete walls for a 100 MPH wind load structure that serves as the final storage facility in the waste management train. This scenario is applicable when geologic, soil, climate conditions or state and local regulations or operation prohibit the use of an earthen surface. The purpose of this practice is to properly store manure and other agricultural by-products (including composting of mortality) until they can be hauled away from the site for proper disposal or utilization on land at agronomical rates. This practice will address soil and water quality by reducing the pollution potential to soil, surface water and ground water. Roof components are not included. To be used in conjunction with 367 - Roofs and Covers.

Potential Associated practices: 342-Critical
Area Planting, 362-Diversion, 558-Roof Runoff Structure, 317-Composting Facility, 633-Waste Recycling, 634-Waste Transfer, 635-Vegetated Treatment Area

Before Situation:

Operator presently has a poultry operation or other animal handling or feeding operation without a waste management system adequate to handle the waste stream leaving the facilities. Manure and other agricultural by-products are not being utilized or controlled in an environmentally safe manner. The wastes are either accumulating at the source, or other location, or are being transported but not properly utilized or disposed of. This situation poses an environmentally threat of excessive nutrients, organics, and pathogens being transported into surface and groundwaters, in addition to the use of excessive amounts of fertilizers.

After Situation:

This practice applies to the installation of a dry stack waste storage facility, as part of an agricultural waste management system for animal feeding operations. The structure is the final waste storage facility in the waste management train and will store approximately 90-120 days of manure.Manure and other agricultural by-products are being controlled, by the collection at the source, and stored temporarily, at an environmentally suitable location, until such time that they are disposed of or utilized in a proper manner, typically in accordance with a nutrient management plan.Typical design: The typical structure is a waste storage facility used as a dry stack facility for six house poultry operation is a $50^{\prime} \times 100$ ' nominal builiding size.. The facility floor is 5^{\prime} reinforced concrete with 8^{\prime} reinforced concrete walls (2^{\prime} embedment $+2^{\prime}$ above ground).

Feature Measure: Building Footprint

Scenario Unit: Square Feet
Scenario Typical Size: 5,000.00
Scenario Total Cost: $\$ 68,472.64$

Scenario Cost/Unit: \$13.69
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	77	\$31,161.90
Concrete, CIP, formed reinforced	38	Steel reinforced concrete formed and cast-in-placed in formed structures such as walls or suspended slabs by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$457.84	25	\$11,446.00
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	208	\$761.28
Skidsteer, 80 HP	933	Skidsteer loader with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$56.04	10	\$560.40
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	240	\$8,128.80
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	10	\$277.60
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	60	\$2,856.60
Materials						
Aggregate, Sand, Graded, Washed	45	Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$42.64	104	\$4,434.56
Corrugated Steel, 28 gauge	223	Corrugated or ribbed, galvanized, 28 gauge, includes fasteners, materials only.	Square Feet	\$1.37	2322	\$3,181.14
Dimension Lumber, Treated	1044	Treated dimension lumber with nominal thickness equal or less than 2 inches. Includes lumber and fasteners	Board Feet	\$1.82	2100	\$3,822.00
Mobilization						

Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 313-Waste Storage Facility
Scenario: \#12 - Small Concrete Tank, less than 5,000 gallons

Scenario Description:

This scenario consists of installing a small concrete tank with a design storage volume of less than 5,000 gallons that is totally or partially buried with several openings for direct loading from heavy use area, gutter cleaner or gravity pipe. Manure is held for 3 to 14 day on smaller operations or transfered to larger storage facility or direct land applied. Design volume does not include freeboard. This practice will address soil and water quality by reducing the pollution potential to soil, surface water and ground water. Potential Associated Practices: Pond Sealing or Lining, Bentonite Sealant (521C), Pond Sealing or Lining, Compacted Clay Treatment (521D), Pond Sealing or Lining, Flexible Membrane (521A), Pond Sealing or Lining, Soil Dispersant (521B), Fence (382), Critical Area Planting (342), Nutrient Management (590), Access Road (560), Waste Transfer (634), Heavy Use Area Protection (561), Roof and Covers (367), Solid/Liquid Waste Separation Facility (632), Diversion (362), Subsurface Drain (606), Pumping Plant (533), and Underground Outlet (620).

Before Situation:
Manure and other agricultural by-products are not being utilized or controlled in an environmentally safe manner. The wastes are either accumulating at the source, or other location, or are being transported but not properly utilized or disposed of. This situation poses an environmentally threat of excessive nutrients, organics, and pathogens being transported into surface and groundwaters, in addition to the use of excessive amounts of fertilizers.

After Situation:
Manure and other agricultural by-products are being controlled, by the collection at the source, and stored temporarily, at an environmentally suitable location, until such time that they are disposed of or utilized in a proper manner, typically in accordance with a nutrient management plan. Tank typically 4' deep x 10' wide x 10' long, with a design storage volume of 300 cubic feet plus 1 ' freeboard. Sizing based on manure, other wastes, rainfall, lot runoff, etc. Volume does not include freeboard. Tanks associated with open lots sized to handle design storm in tank or in combination with lot as per state regulations.

Feature Measure: Design Storage Volume
Scenario Unit: Cubic Feet
Scenario Typical Size: 300.00
Scenario Total Cost:

$$
\$ 4,338.23
$$

Scenario Cost/Unit: \$14.46

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	2.5	\$1,011.75
Concrete, CIP, formed reinforced	38	Steel reinforced concrete formed and cast-in-placed in formed structures such as walls or suspended slabs by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$457.84	4	\$1,831.36
Excavation, common earth, small equipment, 50 ft	1220	Bulk excavation of common earth with dozer <100 HP with average push distance of 50 feet. Includes equipment and labor.	Cubic Yards	\$2.56	61	\$156.16
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	8	\$270.96
Materials						
Aggregate, Sand, Graded, Washed	45	Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$42.64	2	\$85.28
Waterstop, PVC, ribbed, 3/16 in x 6 in	1614	Waterstop, PVC, ribbed, 3/16 inch thick by 6 inches wide. Includes materials, equipment and labor.	Feet	\$5.11	40	\$204.40
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	2	\$598.92

Practice: 314-Brush Management
Scenario: \#1 - Mechanical Treatment for 11-30\% Canopy Cover

Scenario Description:

Use of mechanical methods, such as bulldozer, grubber, or excavator, to treat brush with canopy cover of 11-30\%. Also includes the use of mechanical methods used for top removal requiring, raking, stacking and/or piling as well as a chemical application of the stump for all root-sprouting species.

Before Situation:
Rangeland health assessment, brush inventory or other approved assessment shows brush species exceed acceptable levels as documented in an ecological site description. Invading brush plants are contributing to degraded plant condition and diversity, degraded wildlife habitat and ecological function. Plants are in the early stages of infesting and canopy cover of brush species is $11-30 \%$ as documented in a brush inventory.

After Situation:

Brush has been treated to a level which results in improved plant condition, forage production, or wildlife habitat. This Practice is for the implementation of brush management on range, pasture or native pasture in Oklahoma or Texas using mechanical methods. The methods of control may be bulldozer, grubber, excavator, hydraulic shears, hydro-ax, or any other piece of equipment that is motorized or pull-behind that meets the specifications described in the Brush Management (Practice Code 314) conservation Practice standard.

Feature Measure: Acres of brush managed
Scenario Unit: Acres
Scenario Typical Size: 120.00
Scenario Total Cost: \$19,044.37
Scenario Cost/Unit: \$158.70

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160. Equipment and power unit costs. Labor not included.	Hours	\$98.78	140	\$13,829.20
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	140	\$4,461.80

Mobilization

Mobilization, medium equipment 1139 Equipment with 70-150 HP or typical weights between 14,000 and \quad Each $\$ 753.37 \quad 1 \quad 153.37$

Practice: 314-Brush Management
Scenario: \#2 - Mechanical Treatment for 31-50\% Canopy Cover

Scenario Description:

Use of mechanical methods, such as bulldozer, grubber, or excavator, to treat brush with canopy cover of 31-50\%. Also includes the use of mechanical methods used for top removal requiring, raking, stacking and/or piling as well as a chemical application of the stump for all root-sprouting species.

Before Situation:
Rangeland health assessment, brush inventory or other approved assessment shows brush species exceed acceptable levels as documented in an ecological site description. Invading brush plants are contributing to degraded plant condition and diversity, degraded wildlife habitat and ecological function. Invading plants are infesting the field and canopy cover of brush species is 31-50\% as documented in a brush inventory.

After Situation:

Brush has been treated to a level which results in improved plant condition, forage production, or wildlife habitat. This Practice is for the implementation of brush management on range, pasture or native pasture in Oklahoma or Texas using mechanical methods. The methods of control may be bulldozer, grubber, excavator, hydraulic shears, hydro-ax, or any other piece of equipment that is motorized or pull-behind that meets the specifications described in the Brush Management (Practice Code 314) conservation Practice standard.

Feature Measure: Acres of brush managed
Scenario Unit: Acres
Scenario Typical Size: 120.00
Scenario Total Cost: $\$ 30,149.62$

Scenario Cost/Unit:
 \$251.25

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160. Equipment and power unit costs. Labor not included.	Hours	\$98.78	225	\$22,225.50
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	225	\$7,170.75

Mobilization

| Mobilization, medium equipment 1139 | Equipment with 70-150 HP or typical weights between 14,000 and \quad Each $\$ 753.37 \quad 1 \quad \$ 753.37$ |
| :--- | :--- | :--- | :--- | :--- |

USDA United States Department of Agriculture

Practice: 314-Brush Management
Scenario: \#3 - Mechanical Treatment for >51\% Canopy Cover

Scenario Description:

Use of mechanical methods, such as bulldozer, grubber, or excavator, to treat brush with canopy cover of greater than 51%. Also includes the use of mechanical methods used for top removal requiring, raking, stacking and/or piling as well as a chemical application of the stump for all root-sprouting species.

Before Situation:
Rangeland health assessment, brush inventory or other approved assessment shows brush species exceed acceptable levels as documented in an ecological site description. Invading brush plants are contributing to degraded plant condition and diversity, degraded wildlife habitat and ecological function. Canopy cover of brush species is greater than 51% as documented in a brush inventory.

After Situation:

Brush has been treated to a level which results in improved plant condition, forage production, or wildlife habitat. This Practice is for the implementation of brush management on range, pasture or native pasture in Oklahoma or Texas using mechanical methods. The methods of control may be bulldozer, grubber, excavator, hydraulic shears, hydro-ax, or any other piece of equipment that is motorized or pull-behind that meets the specifications described in the Brush Management (Practice Code 314) conservation Practice standard.

Feature Measure: Acres of brush managed
Scenario Unit: Acres
Scenario Typical Size: 120.00
Scenario Total Cost: $\$ 53,919.59$

Scenario Cost/Unit:
 \$449.33

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 200 HP	928	Track mounted Dozer with horsepower range of 160 to 250 . Equipment and power unit costs. Labor not included.	Hours	\$180.17	250	\$45,042.50
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	250	\$7,967.50

Mobilization

Mobilization, large equipment
1140 Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or
Each

Practice: 314-Brush Management
Scenario: \#4 - Mechanical, Roller Chop or Rhome Plow
Scenario Description:
Removal of woody vegetation infestations on gentle sloping to moderately deep to deep soils. The practice entails the removal of brush by utilizing a roller chopper or rhome plow to reduce brush density and improve ecological site condition. Brush density has exceeded desired levels based on ecological site potential. Typical unit is 120 acres.

Before Situation:

Rangeland health assessment, brush inventory or other approved assessment shows brush species exceed acceptable levels as documented in an ecological site description. Invading brush plants are contributing to degraded plant condition and diversity, degraded wildlife habitat and ecological function.

After Situation:

Woody species are removed to achieve the desirable plant community based on species composition, structure, density, and canopy cover or height. Ecological site condition is progressing in an upward trend, hydrology and plant health and vigor is returning to near normal levels, and improved wildlife habitat. Brush has been treated to a level which results in improved plant condition, forage production, or wildlife habitat. This Practice is for the implementation of brush management on range, pasture or native pasture in Oklahoma or Texas using mechanical methods. The methods of control may be the use of roller chopper or Rhome plow and the practice implementation that meets the specifications described in the Brush Management (Practice Code 314) conservation Practice standard.

Feature Measure: Acres of brush managed

Scenario Unit: Acres

Scenario Typical Size: 120.00

Scenario Total Cost: \$25,023.74						
Scenario Cost/Unit:	\$208.53					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160 . Equipment and power unit costs. Labor not included.	Hours	\$98.78	180	\$17,780.40
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment $>=150 \mathrm{HP}$, Scrapers, Water Wagons.	Hours	\$31.87	180	\$5,736.60
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and	Each	\$753.37	2	\$1,506.74

Practice: 314-Brush Management
Scenario: \#5 - Individual Plant Treatment Low 50-200 Plant per Acre

Scenario Description:

This Practice is for the implementation of brush management on range, pasture or native pasture in Oklahoma or Texas using Chemical Individual Plant Treatment (IPT) or hand cutting. Hand cutting includes using hand tools, such as axes, shovels, hoes, nippers, brush pullers, or chainsaws to remove or cut off woody plants at or below the root collar. This scenario is for areas with 50-200 plants per acre.

Before Situation:
Rangeland health assessment, brush inventory or other approved assessment shows brush species exceed acceptable levels as documented in an ecological site description. Invading brush plants are contributing to degraded plant condition and diversity, degraded wildlife habitat and ecological function. Cover density, stem counts or other approved assesment has been documented in a brush inventory. Densities of brush exceed levels in the Texas or Oklahoma Conservation Practice Standard 314, Brush Management.

After Situation:
Brush has been treated to a level which results in improved plant condition, forage production, or wildlife habitat. The typical method of control is application of herbicides (basal or foliar location) on selected individual plants. Mechanical (hand grubbing, ax, cut stump, etc.) may also be used. This practice will be applied to fully comply with the Brush Management (Practice Code 314) conservation practice standard.

Feature Measure: Acres of brush managed
Scenario Unit: Acres

Scenario Typical Size: 40.00
Scenario Total Cost: \$1,165.08

Scenario Cost/Unit: \$29.13
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chemical, spot treatment, single stem application	964	Ground applied chemical to individual plants or group of plants, e.g., backpack sprayer treatment. Equipment and labor cost included.	Hours	\$80.61	8	\$644.88
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	10	\$178.60
Materials						
Herbicide, Triclopyor	338	Refer to WIN-PST for product names and active ingredients. Materials and shipping	Acres	\$34.16	10	\$341.60

Practice: 314-Brush Management
Scenario: \#6 - Individual Plant Treatment High 201-400 Plants per Acre

Scenario Description:

This Practice is for the implementation of brush management on range, pasture or native pasture in Oklahoma or Texas using Chemical Individual Plant Treatment (IPT) or hand cutting. Hand cutting includes using hand tools, such as axes, shovels, hoes, nippers, brush pullers, or chainsaws to remove or cut off woody plants at or below the root collar. This scenario is for areas with 201-400 plants per acre.

Before Situation:

Rangeland health assessment, brush inventory or other approved assessment shows brush species exceed acceptable levels as documented in an ecological site description. Invading brush plants are contributing to degraded plant condition and diversity, degraded wildlife habitat and ecological function. Cover density, stem counts or other approved assesment has been documented in a brush inventory. Densities of brush exceed levels in the Texas or Oklahoma Conservation Practice Standard 314, Brush Management.

After Situation:
Brush has been treated to a level which results in improved plant condition, forage production, or wildlife habitat. The typical method of control is application of herbicides (basal or foliar location) on selected individual plants. Mechanical (hand grubbing, ax, cut stump, etc.) may also be used. This practice will be applied to fully comply with the Brush Management (Practice Code 314) conservation practice standard.

Feature Measure: Acres of brush managed
Scenario Unit: Acres

Scenario Typical Size: 40.00
Scenario Total Cost: $\$ 2,834.90$

Scenario Cost/Unit: \$70.87
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chemical, spot treatment, single stem application	964	Ground applied chemical to individual plants or group of plants, e.g., backpack sprayer treatment. Equipment and labor cost included.	Hours	\$80.61	20	\$1,612.20
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	15	\$267.90
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	10	\$271.60
Materials						
Herbicide, Triclopyor	338	Refer to WIN-PST for product names and active ingredients. Materials and shipping	Acres	\$34.16	20	\$683.20

Practice: 314-Brush Management
Scenario: \#7-Chemical Treatment, Broadcast, Aerial or Ground

Scenario Description:

Aerial or ground broadcast use of herbicides to control undesirable brush species, such as mesquite, huisache, osage orange, and other associated brush species.

Before Situation:

Rangeland health assessment, brush inventory or other approved assessment indiciates that brush species exceed acceptable levels as documented in an ecological site description. Invading brush plants are contributing to degraded plant condition and diversity, degraded wildlife habitat and ecological function. Brush species density, canopy cover, canopy height, and or terrain dictate efficient use of broadcast methods.

After Situation:

Brush has been treated to a level which results in improved plant condition, forage production, or wildlife habitat. : This Practice is for the implementation of brush management on range, pasture or native pasture in Oklahoma or Texas using application of approved herbicide. The chemical will be the appropriate type and rate for the identified target brush species as per the Brush Management (Practice Code 314) conservation Practice standard and will be aerial or ground broadcast applications. The purpose is to promote forage productivity and improve ecological condition.

Feature Measure: Acres of brush managed
Scenario Unit: Acres
Scenario Typical Size: 160.00

Scenario Total Cost:	$\$ 7,106.43$
Scenario Cost/Unit:	$\$ 44.42$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	7	\$174.93
Chemical, aerial application, fixed wing	947	Chemical application performed by fixed wing aircraft. Includes equipment, power unit and labor costs.	Acres	\$10.83	160	\$1,732.80
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44
Materials						
Herbicide, Picloram	337	Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$19.28	160	\$3,084.80
Herbicide, Triclopyor	338	Refer to WIN-PST for product names and active ingredients. Materials and shipping	Acres	\$34.16	40	\$1,366.40
Herbicide, Surfactant	1095	Surfactants reduce the surface tension of water to produce more uniform coverage and penetration of herbicides, and weed killers. Paraffin Based Petroleum Surfactant. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$1.61	160	\$257.60
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: 314-Brush Management
Scenario: \#8 - Chemical Broadcast Tebuthiuron . 75 lb Rate

Scenario Description:

Broadcast use of Tebuthiuron applied aerially or by ground to create mosaics or patterns for the control of undesirable brush species, such as creosote, tarbush, cenizo, catclaw, or other associated species.

Before Situation:
Rangeland health assessment, brush inventory or other approved assessment shows brush species exceed acceptable levels as documented in an ecological site description. Invading brush plants are contributing to degraded plant condition and diversity, degraded wildlife habitat and ecological function.

After Situation:

Brush has been treated to a level which results in improved plant condition, forage production, or wildlife habitat. This Practice is for the implementation of brush management on range, pasture or native pasture in Oklahoma or Texas using application of approved herbicide. The chemical will be the appropriate type and rate for the identified target brush species as per the Brush Management (Practice Code 314) conservation Practice Standard.

Feature Measure: Acres of brush managed
Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: \$2,115.32
Scenario Cost/Unit: \$52.88
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Chemical, aerial application, fixed wing	947	Chemical application performed by fixed wing aircraft. Includes equipment, power unit and labor costs.	Acres	\$10.83	40	\$433.20
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22
Materials						
Herbicide, Tebuthiuron	343	A nonselective broad spectrum herbicide used to control weeds, woody and herbaceous plants, and sugar cane. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$46.90	20	\$938.00
Mobilization						
Mobilization, small equipment	1138	Equipment <70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	2	\$598.92

Practice: 314-Brush Management
Scenario: \#9 - Chemical Broadcast Tebuthiuron 1.0 lb Rate

Scenario Description:

Broadcast use of Tebuthiuron applied aerially or by ground to create mosaics or patterns for the control of undesirable brush species, such as shinnery oak or other associated species.

Before Situation:
Rangeland health assessment, brush inventory or other approved assessment shows brush species exceed acceptable levels as documented in an ecological site description. Invading brush plants are contributing to degraded plant condition and diversity, degraded wildlife habitat and ecological function.

After Situation:

Brush has been treated to a level which results in improved plant condition, forage production, or wildlife habitat. This Practice is for the implementation of brush management on range, pasture or native pasture in Oklahoma or Texas using application of approved herbicide. The chemical will be the appropriate type and rate for the identified target brush species as per the Brush Management (Practice Code 314) conservation Practice Standard.

Feature Measure: Acres of brush managed
Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: \$2,443.62
Scenario Cost/Unit: \$61.09
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Chemical, aerial application, fixed wing	947	Chemical application performed by fixed wing aircraft. Includes equipment, power unit and labor costs.	Acres	\$10.83	40	\$433.20
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22
Materials						
Herbicide, Tebuthiuron	343	A nonselective broad spectrum herbicide used to control weeds, woody and herbaceous plants, and sugar cane. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$46.90	27	\$1,266.30
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	2	\$598.92

Practice: 314-Brush Management
Scenario: \#10-Chemical Broadcast Tebuthiuron 1.25 lb Rate

Scenario Description:

Broadcast use of Tebuthiuron applied aerially or by ground to create mosaics or patterns for the control of undesirable brush species, such as white brush or other associated species.

Before Situation:
Rangeland health assessment, brush inventory or other approved assessment shows brush species exceed acceptable levels as documented in an ecological site description. Invading brush plants are contributing to degraded plant condition and diversity, degraded wildlife habitat and ecological function.

After Situation:

Brush has been treated to a level which results in improved plant condition, forage production, or wildlife habitat. This Practice is for the implementation of brush management on range, pasture or native pasture in Oklahoma or Texas using application of approved herbicide. The chemical will be the appropriate type and rate for the identified target brush species as per the Brush Management (Practice Code 314) conservation Practice Standard.

Feature Measure: Acres of brush managed
Scenario Unit: Acres
Scenario Typical Size: 120.00
Scenario Total Cost: \$7,590.06
Scenario Cost/Unit: \$63.25
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	5	\$124.95
Chemical, aerial application, fixed wing	947	Chemical application performed by fixed wing aircraft. Includes equipment, power unit and labor costs.	Acres	\$10.83	120	\$1,299.60
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	5	\$238.05
Materials						
Herbicide, Tebuthiuron	343	A nonselective broad spectrum herbicide used to control weeds, woody and herbaceous plants, and sugar cane. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$46.90	120	\$5,628.00
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: 314-Brush Management
Scenario: \#11-Chemical Broadcast Tebuthiuron 2.0 lb Rate

Scenario Description:

Broadcast use of Tebuthiuron applied aerially or by ground to create mosaics or patterns for the control of undesirable brush species, such as live oak, post oak, mixed brush in the Davis Mountains, or other associated species.

Before Situation:
Rangeland health assessment, brush inventory or other approved assessment shows brush species exceed acceptable levels as documented in an ecological site description. Invading brush plants are contributing to degraded plant condition and diversity, degraded wildlife habitat and ecological function.

After Situation:

Brush has been treated to a level which results in improved plant condition, forage production, or wildlife habitat. This Practice is for the implementation of brush management on range, pasture or native pasture in Oklahoma or Texas using application of approved herbicide. The chemical will be the appropriate type and rate for the identified target brush species as per the Brush Management (Practice Code 314) conservation Practice Standard.

Feature Measure: Acres of brush managed
Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: \$3,517.76
Scenario Cost/Unit: \$87.94
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	8	\$199.92
Chemical, aerial application, fixed wing	947	Chemical application performed by fixed wing aircraft. Includes equipment, power unit and labor costs.	Acres	\$10.83	40	\$433.20
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	8	\$380.88
Materials						
Herbicide, Tebuthiuron	343	A nonselective broad spectrum herbicide used to control weeds, woody and herbaceous plants, and sugar cane. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$46.90	47	\$2,204.30
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: 314-Brush Management
Scenario: \#12 - Forestry, Woody Control using Broadcast Application of Chemical

Scenario Description:

This scenario is a follow-up to mechanical site preparation. The site has undesirable woody vegetation competing with desirable species and establishment of desirable species. The resource concerns include: Air Qualilty - airborne chemical drift; Plant Suitability - adaptability to the site; Plant Condition - plant health and vigor.

Before Situation:

An area that was recently mechanically site prepared has the potential for significant and undesirable woody sprouts. The area needs woody vegetation control to favor the desirable species and this will be accomplished using herbicides. The herbicide(s) can be applied by aerial, ground broadcast or ground individual stems. The specific herbicide needs to be determined based upon the species comprising the woody vegetation to remove and the desirable species that will be established on the site.

After Situation:

The typical size of the tract is 40 acres, however, larger and smaller acreages do occur. Once the practice has been installed, the number of undesirable woody plants will be reduced and the desirable species will be visible and free to grow or the site will be clean enough with the woody sprouts treated to effectively establish the desired species.

Feature Measure: Acres of Brush Managed
Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: \$5,529.93

Scenario Cost/Unit: \$138.25
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	4	\$99.96
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	20	\$132.60
Chemical, spot treatment, single stem application	964	Ground applied chemical to individual plants or group of plants, e.g., backpack sprayer treatment. Equipment and labor cost included.	Hours	\$80.61	20	\$1,612.20
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	8	\$142.88
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	8	\$270.96
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44
Materials						
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	20	\$253.20
Herbicide, Imazapyr	336	Pre and post-emergent, non-selective herbicide for control of undesirable vegetation in non-crop areas. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$42.89	20	\$857.80
Herbicide, Triclopyor	338	Refer to WIN-PST for product names and active ingredients. Materials and shipping	Acres	\$34.16	20	\$683.20
Herbicide, Sulfometuron-methyl	340	Used for the control of annual and perennial grasses and broad leaved weeds in non-crop land. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$19.93	10	\$199.30
Herbicide, Sulfometuron \& metsulfuron	344	A residual sulfonylurea herbicide that kills broadleaf weeds and some annual grasses. It is a systemic compound with foliar and soil activity. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$11.34	10	\$113.40
Herbicide, Surfactant	1095	Surfactants reduce the surface tension of water to produce more uniform coverage and penetration of herbicides, and weed killers. Paraffin Based Petroleum Surfactant. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$1.61	40	\$64.40
Mobilization						
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

[^0]Practice: 314-Brush Management
Scenario: \#13-Individual Stem Injection
Scenario Description:
A densely stocked oak/hickory stand will be thinned to a basal area of 40-60 sqft/acre, in an effort to improve wildlife habitat by creating an open canopy, moderately stocked, mature savanna with an herbaceous understory. Thinning the stand improvement will occur using applications that include hack-n-squirt, basal bark, girdling or stump cut. This practice only applies to a land use meeting the official NRCS definition of 'Rangeland'. For land uses designated as forest, refer to Forest Stand Improvement (666).

Before Situation:

The stand is overstocked resulting in a closed canopy which provides very little sunlight to reach the herbaceous layer of the site. The basal area is excessively high and herbaceous ground cover is minimal. This condition is causing a lack of structure, herbaceous layer, and diversity that is needed to meet the landowner's objectives for improved wildlife habitat and rangeland health. Resource concerns include: Inadequate structure and composition, undesirable plant productivity and health, and habitat degradation.

After Situation:
Selected brush will be targeted for control which will reduce the canopy cover and number of trees per acre. The stand will evolve toward an open canopy, moderately stocked, mature savanna with an herbaceous understory, thus improving the wildlife habitat of the desireable wildlife species. The canopy is opened to the extent necessary to promote herbaceous growth and the work is performed with minimal damage to the residual trees on the site.

Feature Measure: Acres treated
Scenario Unit: Acres
Scenario Typical Size: 10.00
Scenario Total Cost: \$1,312.36
Scenario Cost/Unit: \$131.24

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Chemical, spot treatment, single stem application	964	Ground applied chemical to individual plants or group of plants, e.g., backpack sprayer treatment. Equipment and labor cost included.	Hours	\$80.61	13	\$1,047.93
Materials						
Herbicide, Imazapyr	336	Pre and post-emergent, non-selective herbicide for control of undesirable vegetation in non-crop areas. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$42.89	5	\$214.45

Practice: 314-Brush Management
Scenario: \#366-Brush Management for 1 Ac. or less

Scenario Description:

Using hand tools and small power tools to remove or cut off invasive woody plants at or below the root collar. Typically this scenario is for woody and non-herbaceous species that are in early phases of invasion and are degrading herbaceous plant health and vigor for the 1 acre small farm.

Before Situation:
Small farm area is in various phases of woody non-herbaceous species enroachment that degrades the biotic integrity of the site resulting in poor herbaceous plant health and vigor. Continued degradation results in increased invasive woody species and poor hydrological site characteristics.

After Situation:

Woody species are removed to achieve desirable biotic conditions for herbaceous plant health and vigor. Hydrological site characteristics and plant health and vigor are improved, and plant pest pressure from invasive woody species is reduced.

Feature Measure: Acres

Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$480.45
Scenario Cost/Unit: $\$ 480.45$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	1	\$6.21
Mower, Bush Hog	940	Equipment and power unit costs. Labor not included.	Hours	\$31.13	3	\$93.39
Pruning tools, hand tools	1318	Pruning tools, hand tools, shears, loppers, pole saw, handsaw. Material costs only. Labor not included.	Hours	\$2.31	2	\$4.62
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	1	\$33.87
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	6	\$162.96
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40

Practice: 315 - Herbaceous Weed Treatment
Scenario: \#1-Chemical application by any method

Scenario Description:

Land unit on which targeted herbaceous control would be beneficial in order to set back the plant community succession, improve the ecological condition, and improve forage conditions for domestic livestock or wildlife. The practice entails the eradication of vegetation by use of weed treatment using ground or aerial equipment to apply chemicals, in order to eliminate noxious weeds, promote forage productivity, and improve ecological condition.

Before Situation:
Area consist of excessive stands of herbaceous weeds degrading health and vigor of native herbaceous species promoting noxious and invasive species and degrading wildlife habitat.

After Situation:

Herbaceous weeds are removed to achieve the desirable plant community based on species composition, structure, density, and canopy cover or height. Ecological site condition is progressing in an upward trend, hydrology and plant health and vigor is returning to near normal levels, and improved wildlife habitat. Methods may be ground application (broadcast, spot, band, etc.) or aerial application

Feature Measure: Acres Treated

Scenario Unit: Acres
Scenario Typical Size: 100.00

Scenario Total Cost:	$\$ 2,685.61$
Scenario Cost/Unit:	$\$ 26.86$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	1	\$24.99
Chemical, aerial application, fixed wing	947	Chemical application performed by fixed wing aircraft. Includes equipment, power unit and labor costs.	Acres	\$10.83	100	\$1,083.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	1	\$27.16
Materials						
Herbicide, 2,4-D + Dica	331	Broadleaf herbicide labeled for cropland and pasture. Refer to WIN-PST for product names and active ingredients. Materials and shipping.	Acres	\$10.90	100	\$1,090.00
Herbicide, Surfactant	1095	Surfactants reduce the surface tension of water to produce more uniform coverage and penetration of herbicides, and weed killers. Paraffin Based Petroleum Surfactant. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$1.61	100	\$161.00
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: 315 - Herbaceous Weed Treatment

Scenario: \#2-Mechanical

Scenario Description:

This scenerio is for the mechanical control/suppression of herbaceous vegetation in order to aid in the establishment of perennial vegetation. Methods include mowing, shredding, removal using hand tools, or other mechanical removal/suppresion.

Before Situation:
Area consist of excessive stands of competitive vegetation which endanger the establishment of desirable forage species.
After Situation:
Competitive vegetation is removed/suppressed allowing for the establishment of the desirable forage species and also resulting in potential improvement in wildlife habitat.

Feature Measure: Acres treated
Scenario Unit: Acres
Scenario Typical Size: 20.00
Scenario Total Cost: \$410.55
Scenario Cost/Unit: \$20.53
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Mower, Bush Hog	940	Equipment and power unit costs. Labor not included.	Hours	\$31.13	6.5	\$202.35
Labor						
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	7.5	\$208.20

Practice: 315 - Herbaceous Weed Treatment
Scenario: \#3 - Forestry- Broadcast Aerial

Scenario Description:

Treatment takes place in areas with grass or other herbaceous vegetation competing with newly planted trees or shrubs. A springtime herbicide application is applied through a broadcast helicopter application to the field of newly planted tree seedlgins to control herbaceous vegetative competition. Treatment is needed to ensure the successful establishment of desirable tree species. Areas to be treated using aerial application are above average in size to allow for the helicopter to operate efficiently or ground sprayers can be used.

Before Situation:
Desirable trees are receiving competition for water, sunlight and nutrients from grasses and other weedy species. Typical sites have recently been planted with trees and they have an abundant cover of herbaceous vegetation. The resource concerns addressed include degraded plant condition- undesirable plant productivity and health, and inadequate structure and composition and degraded wildlife habitat.

After Situation:
Newly planted tree seedlings are released from competing vegetation. Herbaceous weed control is conducted soon after the tree seedlings have been planted to enhance their growth and survival. After treatment, the trees are visible and the undesirable vegetation has been reduced providing the trees a better chance of becoming established.

Feature Measure: Acres treated

Scenario Unit: Acres

Scenario Typical Size: 40.00
Scenario Total Cost: \$4,294.40
Scenario Cost/Unit: \$107.36

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	20	\$499.80
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	40	\$265.20
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	20	\$952.20
Materials						
Herbicide, Imazapyr	336	Pre and post-emergent, non-selective herbicide for control of undesirable vegetation in non-crop areas. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$42.89	40	\$1,715.60
Herbicide, Sulfometuron-methyl	340	Used for the control of annual and perennial grasses and broad leaved weeds in non-crop land. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$19.93	40	\$797.20
Herbicide, Surfactant	1095	Surfactants reduce the surface tension of water to produce more uniform coverage and penetration of herbicides, and weed killers. Paraffin Based Petroleum Surfactant. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$1.61	40	\$64.40

Practice: 315 - Herbaceous Weed Treatment
Scenario: \#4 - Forestry - Band Spraying

Scenario Description:

Treatment takes place in areas with grass or other herbaceous vegetation competing with newly planted trees or shrubs. Treatment is needed to ensure the successful establishment of desirable tree species. A springtime herbicide application is applied in a 4 foot swath (33% coveragee if 12 ft planting rows) over the rows of newly planted tree seedlings to control herbaceous vegetative competition. Cost is calculated for the entire acre, no the treated acre.

Before Situation:

Newly planted trees are receiving competition for water, sunlight and nutrients from grasses and other weedy species. The herbaceous weed competion is jeopardizing the survival of the trees. Resource concerns addressed are degraded plant condition - undesirable plnat productivity and health, and inadequate structure and competition and degraded wildlife habitat.

After Situation:
Newly planted tree seedlings are released from competing herbaceous vegetation. The trees are visible and the undesirable vegetation has been reduced providing the trees a better chance of becoming established.

Feature Measure: Acres Treated

Scenario Unit: Acres
Scenario Typical Size: 20.00
Scenario Total Cost: \$1,393.86

Scenario Cost/Unit: \$69.69
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	20	\$132.60
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	8	\$142.88
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Materials						
Herbicide, Imazapyr	336	Pre and post-emergent, non-selective herbicide for control of undesirable vegetation in non-crop areas. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$42.89	10	\$428.90
Herbicide, Sulfometuron \& metsulfuron	344	A residual sulfonylurea herbicide that kills broadleaf weeds and some annual grasses. It is a systemic compound with foliar and soil activity. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$11.34	10	\$113.40
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	2	\$358.80

Practice: 315 - Herbaceous Weed Treatment
Scenario: \#78-Herbaceous Weed Treatment for One Acre or less (not to exceed 1 acre)
Scenario Description:
Using hand and small power tools to remove or cut off herbaceous invasive plants at or below the root collar. Typically this scenario is for herbaceous invasive species that are degrading the 1 acre small farm.

Before Situation:
Small farm area is in various phases of herbaceous species enroachment that degrades the biotic integrity resulting in poor plant health and vigor, and/or wildlife habitat. Continued degradation results in increased plant pest pressure, loss of plant diversity and biotic integrity, and poor hydrological characteristics.

After Situation:

Herbaceous species are removed to achieve desirable biotic conditions and improved plant health and vigor, and/or wildlife habitat. Hydrological site characteristics are improved, and plant pest pressure from invasive herbaceous species are reduced.

Feature Measure: acres

Scenario Unit: Acres

Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 330.50$
Scenario Cost/Unit: \$330.50

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Mower, Bush Hog	940	Equipment and power unit costs. Labor not included.	Hours	\$31.13	1	\$31.13
Pruning tools, hand tools	1318	Pruning tools, hand tools, shears, loppers, pole saw, handsaw. Material costs only. Labor not included.	Hours	\$2.31	2	\$4.62
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	1	\$33.87
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	3	\$81.48
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40

Practice: 315 - Herbaceous Weed Treatment
Scenario: \#99-Mechanical, Hand

Scenario Description:

Using hand tools, such as axes, shovels, hoes, nippers, to remove or cut off herbaceous plants at of below the root collar. Typical area is moderate rolling to gentle sloping moderately deep to deep soils that have herbaceous weed species that are in the early phases of invasions. Typical unit is 20 acres.

Before Situation:
Area is in the very early phases of herbaceous weed encroachment that degrades habitat for desired wildlife species. Future degradation of key forage species and ecological site condition promoting noxious and invasive species and increased soil erosion if woody species are allowed to expand.

After Situation:

Herbaceous weeds are removed to achieve the desirable plant community based on species composition, structure, density, and canopy cover or height. Ecological site condition continues to progressing in an upward trend, hydrology and plant health and vigor are sustained.

Feature Measure: Acres treated

Scenario Unit: Acres

Scenario Typical Size: 20.00

Scenario Total Cost: \$633.42
Scenario Cost/Unit: \$31.67

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	1	\$24.99
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	5	\$89.30
Pruning tools, hand tools	1318	Pruning tools, hand tools, shears, loppers, pole saw, handsaw. Material costs only. Labor not included.	Hours	\$2.31	16	\$36.96
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	1	\$47.61

Practice: 316 - Animal Mortality Facility
Scenario: \#1 - Carcass Composting Facility, roof required but not included

Scenario Description:

This scenario consists of installing a static bin composting facility with primary and secondary bins, or an invessel rotary drum composting facility with secondary bins for the disposal of poultry or swine mortality. Static bin composting facilities consist of a group of small bins (concrete or wood walls) along the front side and a long narrow bin on the back side of a concrete pad to compost poultry or swine mortality in static pile(s) that have sufficient bulking material to allow natural aeration. Piles are turned to go through a second heat cycle and curing prior to final land application (1250 CF of primary bin space is equivalent to $400 \mathrm{lbs} /$ day of mortality). Invessel rotary drum composting facilities consist of a commercially manufactured horizontal rotary drum to compost poultry or swine mortality mixed with a carbon material (i.e. sawdust or wood chips). A secondary composting storage area is required with invessel rotary drums to finish materials. The least cost scenario is based on a static bin system with wood walls. The roofed portion of the facility is addressed with Roofs and Covers (367). Approach apron is addressed with Heavy Use Area Protection (561). Size of facility is based on daily mortality and sizing procedures accepted in particular state. The purpose of the practice is to address resource concerns related to water quality degradation due to excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Air quality impacts due to odors will also be addressed. Roof components are not included. Potential Associated Practices: Roofs and Cover (367), Heavy Use Area Protection (561), Critical Area Planting (342), Nutrient Management (590), and Roof Runoff Structure (558).

Before Situation:

Animal mortality is done in a manner that results in non-point source pollution of excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Improper operation results in odors and spread of pathogens from incomplete composting, incineration, or interaction with predators. No plan was formulated for both normal and catastrophic mortality events.

After Situation:

Animal mortality is being done in a manner that prevents non-point source pollution of excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Proper operation results in little to no odors, complete composting, and protection from predators to minimize pathogen survival or spreading. Selected method for carcass treatment and disposal meet or are permitted by federal, state, and local laws, rules, regulation. Based on a typical broiler operation of 50,000 birds, 6% mortality rate, 63 day flock life, and market weight of 8.4 pounds, daily loss is estimated at $400 \mathrm{lbs} /$ day and requires 1200 cubic feet of primary bin space, which requires the installation of a $15.5 \mathrm{ft} \times 60.3 \mathrm{ft}$ composting facility according to the appropriate standard drawing on a concrete pad. The typical facility has 5 primary bins (5 $\mathrm{ft} \mathrm{H} \times 10 \mathrm{ft} \mathrm{W} \times 5 \mathrm{ft} \mathrm{L}$) along the front side, 1 long (10 ft W by 50 ft L) secondary bin behind the primary bins, and $1(10 \mathrm{ft} \mathrm{W} \times 15.5 \mathrm{ft} \mathrm{L}$) carbon source storage bin along the short side of the primary and secondary bins. Bin wall consist of 5 ft of treated lumber. Site preparation includes topsoil removal, setting posts, installing concrete slab, and installing wooden walls. Installation requires a 15 ft wide, 5 in thick concrete approach apron along the bin side to be planned using Heavy Use Area Protection (561) and a roof structure to be planned using Roofs and Cover (367).

Feature Measure: Daily Mortality
Scenario Unit: Pounds per Day
Scenario Typical Size: 400.00
Scenario Total Cost: \$14,649.50
Scenario Cost/Unit: \$36.62
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	15	\$6,070.50
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	64	\$2,167.68
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	32	\$869.12
Materials						
Aggregate, Sand, Graded, Washed	45	Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$42.64	11.5	\$490.36
Dimension Lumber, Treated	1044	Treated dimension lumber with nominal thickness equal or less than 2 inches. Includes lumber and fasteners	Board Feet	\$1.82	2402	\$4,371.64
Lumber, planks, posts and timbers, treated	1609	Treated dimension lumber with nominal thickness greater than 2 inches. Includes lumber and fasteners. Does not include labor.	Board Feet	\$3.58	190	\$680.20

Practice: 316 - Animal Mortality Facility
Scenario: \#5 - Incinerator with greater than 100 Ibs loading capacity per burn

Scenario Description:

This scenario consists of installing an incinerator with a loading capacity greater than 500 lbs of mortality for the species and size of the operation. System shall use high temperature ($>1,300$ degrees F) incineration with a secondary combustion or afterburner chamber prior to flue discharge. This incinerator has a typical chamber volume greater than 20 cubic feet. For this scenario, the typically used incinerators are: National Incinerator's Destructor with a total chamber volume of 36 CF; Earthsmart LL7 with a total chamber volume of 45.1 CF; Earthsmart LL9 with a total chamber volume of 67.7 CF; and Earthsmart LL15 with a total chamber volume of 83.3 CF was used. The purpose of the practice is to address resource concerns related to water quality degradation due to excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Air quality impacts due to odors will also be addressed, however, in non-attainment areas, certain states may require a higher level of processing such as gasification or other approved methods. Potential Associated Practices: Heavy Use Area Protection (561), Fence (382), Critical Area Planting (342), Access Road (560), Waste Storage Facility (313), Nutrient Management (590), Roofs and Covers (367), Critical Area Planting (342).

Before Situation:
Animal mortality is done in a manner that results in non-point source pollution of excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Improper operation results in odors and spread of pathogens from incomplete composting, incineration, or interaction with predators. No plan was formulated for both normal and catastrophic mortality events.

After Situation:
Animal mortality is being done in a manner that prevents non-point source pollution of excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Proper operation results in little to no odors, complete incineration, and protection from predators to minimize pathogen survival or spreading. An overall plan covers normal and catastrophic mortality events. Selected method for carcass treatment and disposal meet or are permitted by federal, state, and local laws, rules, regulation. Incinerator installed that can handle greater than 500 pounds of mortality per burn, for a small poultry operation. Includes stable foundation. Ash materials to be stored in suitable containers until land disposal as per the nutrient management plan or landfilled.

Feature Measure: Incinerator Chamber Volume
Scenario Unit: Cubic Feet
Scenario Typical Size: 49.60

Scenario Total Cost:	\$17,316.10					
Scenario Cost/Unit:	\$349.11					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	4	\$1,618.80
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	8	\$18.40
Hydraulic Excavator, 1 CY	931	Track mounted hydraulic excavator with bucket capacity range of 0.8 to 1.5 CY. Equipment and power unit costs. Labor not included.	Hours	\$128.59	1	\$128.59
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	1	\$27.16
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	1	\$27.76
Materials						
Aggregate, Gravel, Graded	46	Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$44.85	4	\$179.40
Incinerator, $600 \mathrm{lbs} /$ day	1626	Poultry and livestock incinerator with an approximate chamber capacity of 600 pounds per day. Includes equipment and after burner only.	Each	\$13,809.25	1	\$13,809.25
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 316 - Animal Mortality Facility

Scenario: \#67-Enhanced Mortality Handling Facility

Scenario Description:

This scenario consists of installing an enhanced mortality facility for processing small livestock. Enhanced mortality handling facility includes in-vessel composters, forced air composters, and other technologies that achieve a similar product with improved biosecurity measures and significant reductions in pathogens. The system is sized to handle the maximum daily mortality. The typical scenario consists of a rotary drum composter with a diameter of 5 ft and a length of 44 ft . The rated drum capacity is approximately 732 CF and has a maximum daily moratlity capacity of 740 pounds. A covered secondary composting storage area is not included in the scerario, but may be needed for additional stabilization of the final product. The purpose of the practice is to address resource concerns related to water quality degradation due to excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Air quality impacts due to odors will also be addressed.

Potential Associated Practices: Roofs and Covers (367), Waste Storage Facility (313), Fence (382), Critical Area Planting (342), Nutrient Management (590).

Before Situation:

The current method of animal mortality disposal is inadequate for biosecurity and/or creates water quality concerns.. Improper handling of mortality results in odors and spread of pathogens from incomplete composting or interaction with predators.

After Situation:
Installation of an enhanced mortality handling facility. The properly operated facility has less odors, improves biosecurity and reduces the chance for vectors to carry off mortality. Typical Design: Install a 5' diameter by 44' long rotary drum on a concrete pad that can process a maximum of 732 lbs of mortality per day. Foundation dimension are 10 by 60 with 6 inch slab.

Feature Measure: Maximum Daily Mortality

Scenario Unit: Pounds per Day
Scenario Typical Size: 740.00
Scenario Total Cost: $\$ 82,497.18$
Scenario Cost/Unit: \$111.48
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	11	\$4,451.70
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	8	\$521.68
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	16	\$541.92
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	8	\$222.08
Materials						
Composter, drum, 28 CY	1628	28 CY drum composter unit. Total capacity range is 20-29 CY. Includes equipment, operation controls, and shipping. Labor not included.	Each	\$71,818.50	1	\$71,818.50
Mobilization						
Mobilization, Material, distance > 50 miles	1043	Mobilization cost of materials for special cases where the distance from the supplier delivery point to the job site exceeds 50 miles. The costs for shipping by UPS or bulk freight shipping to a location within 50 miles of the job site have already been included in the component price.	Dollars	\$1.00	3000	\$3,000.00
Mobilization, medium equipment	1139	Equipment with $70-150 \mathrm{HP}$ or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 316 - Animal Mortality Facility
Scenario: \#87-Poultry mortality thermal dehydration - Small

Scenario Description:

This scenario consists of installing a manufactured mortality thermal dehydration unit designed to handle up to 1,300 lbs of average daily mortality for the species and size of the operation. System shall use simultaneous mixing and heating to 194 degrees Fahrenheit and will result in approximately 60% mortality volume reduction over a 12 hour cycle time. After determining average daily mortality in lbs, select the smallest unit that meets capacity. Payment made based on the size of the unit obtained from manufacturers' product literature. This option is not typically least-cost. In most states a roofed static compost pile with concrete floor and bins would be considered least cost. Therefore consider reducing payment rate as per State Conservationist discretion. The purpose of the practice is to address resource concerns related to water quality degradation due to excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Air quality impacts due to odors will also be addressed, however, in non-attainment areas, certain states may require a higher level of processing such as gasification or other approved methods. Potential Associated Practices: Heavy Use Area Protection (561), Fence (382), Critical Area Planting (342), Access Road (560), Waste Storage Facility (313), Nutrient Management (590), Roofs and Covers (367), Critical Area Planting (342).

Before Situation:
Animal mortality is done in a manner that results in non-point source pollution of excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Improper operation results in odors and spread of pathogens from incomplete composting, incineration, or interaction with predators. No plan was formulated for both normal and catastrophic mortality events.

After Situation:
Animal mortality is being done in a manner that prevents non-point source pollution of excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Proper operation results in little to no odors, complete incineration, and protection from predators to minimize pathogen survival or spreading. An overall plan covers normal and catastrophic mortality events. Selected method for carcass treatment and disposal meet or are permitted by federal, state, and local laws, rules, regulation. Typical thermal dehydrator installed to handle up to 1300 lbs per day average mortality for a poultry operation. Included is a 16 'x16' concrete slab to set the thermal dehydrator on. Thermally dehydrated materials to be stored in suitable containers until land disposal as per the nutrient management plan or landfilled.

Feature Measure: Number of units

Scenario Unit: Each
Scenario Typical Size: 1.00

Scenario Total Cost:	\$71,11					
Scenario Cost/Unit:	\$71,11	4.51				
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	5	\$2,023.50
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	10	\$23.00
Hydraulic Excavator, 1 CY	931	Track mounted hydraulic excavator with bucket capacity range of 0.8 to 1.5 CY. Equipment and power unit costs. Labor not included.	Hours	\$128.59	2	\$257.18
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	2	\$54.32
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	2	\$55.52
Materials						
Aggregate, Gravel, Graded	46	Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$44.85	5	\$224.25
Thermal Dehydrator, Small	2806	Poultry mortality thermal dehydrator with a capacity less than or equal to 1,300 pounds per day. Includes equipment, shipping, and installation.	Each	\$66,970.00	1	\$66,970.00
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 317-Composting Facility
Scenario: \#1 - Composter, Concrete Floor, Wood Bins, requires Apron and Roof which is not included

Scenario Description:

The composting facility, with concrete under bins only, is installed to address water quality concerns and disease vectors resulting from improper waste disposal by providing a dedicated facility for storage and treatment, and by creating a compost product that can be used in multiple ways including land application for enrichment of crop ground. All animal mortality composting shall be done using Practice Standard 316 - Animal Mortality Facility. Roof components are not included. To be used in conjunction with 367 - Roofs and Covers.

Potential Associated Practices: Fence (382), Critical Area Planting (342), Nutrient Management (590), Access Road (560), Structure for water control (587), Diversion (362), Pipeline (516), Subsurface Drain (606), Heavy Use Area Protection (561), Roofs and Covers (367), Roof Runoff Structure (558), Waste Storage Facility (313), Waste Recycling (633), Waste Transfer (634), Underground Outlet (620) and Vegetative Treatment Area (635).

Before Situation:

Raw organic by-products are not being utilized or controlled in an environmentally safe manner. The organic by-products are either accumulating at the source, or other location, or are being transported but not properly utilized or disposed of. This situation poses an environmentally threat of excessive nutrients, organics, and pathogens being transported into surface and groundwaters, in addition to the use of excessive amounts of fertilizers.

After Situation:

Raw organic agricultural by-products are being controlled, by the collection at the source, and stored properly, at an environmentally suitable location, until such time that they are disposed of or utilized in a proper manner, typically in accordance with a nutrient management plan. Install a composting facility with a nominal footprint of $18.5^{\prime} \times 60.3^{\prime}$ (1116 square feet). The nominal footprint is equal to the total area of concrete minus the approach apron. Install a $15.5^{\prime} \times 60.3^{\prime}$ composting facility according to the appropriate standard drawing on a concrete pad. The typical facility has 5 bins (5 ' H x 10' W x 6' Length) along the front side and one 10 ' W by 50 ' long secondary bin. Bin wall consist of 5^{\prime} of treated lumber. The bins are used to store and treat organic agricultural by-products from an organic farming facility. The total area of concrete including the approach apron is 33.5^{\prime} wide by 60.3^{\prime} long. Site preparation includes topsoil removal, setting posts, installing concrete slab, and installing wooden walls. Installation requires a 15 ' wide, 4^{\prime} thick concrete approach apron along the bin side to be planned using Heavy Use Area Protection (561) and a roof structure to be planned using Roofs and Cover (367).

Feature Measure: Design Area of Floor
Scenario Unit: Square Feet
Scenario Typical Size: 935.00
Scenario Total Cost:
\$13,435.40
Scenario Cost/Unit:

$$
\$ 14.37
$$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	12	\$4,856.40
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	64	\$2,167.68
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	32	\$869.12
Materials						
Aggregate, Sand, Graded, Washed	45	Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$42.64	11.5	\$490.36
Dimension Lumber, Treated	1044	Treated dimension lumber with nominal thickness equal or less than 2 inches. Includes lumber and fasteners	Board Feet	\$1.82	2402	\$4,371.64
Lumber, planks, posts and timbers, treated	1609	Treated dimension lumber with nominal thickness greater than 2 inches. Includes lumber and fasteners. Does not include labor.	Board Feet	\$3.58	190	\$680.20

Practice: 317-Composting Facility
Scenario: \#14-Bins, wood or concrete walls on concrete slab

Scenario Description:

The composting facility, with concrete under bins, is installed to address water quality concerns and disease vectors resulting from improper waste disposal by providing a dedicated facility for storage and treatment, and by creating a compost product that can be used in multiple ways including land application for enrichment of crop ground. All animal mortality composting shall be done using Practice Standard 316 - Animal Mortality Facility.

Potential Associated
Practices: Fence (382), Critical Area Planting (342), Nutrient Management (590), Access Road (560), Diversion (362), Pipeline (516), Subsurface Drain (606), Heavy Use Area Protection (561), Roofs and Covers (367), Roof Runoff Structure (558), Waste Storage Facility (313), Waste Recycling (633), Waste Transfer (634), Underground Outlet (620) and Vegetative Treatment Area (635).

Before Situation:

Manure and other agricultural by-products are not being utilized or controlled in an environmentally safe manner. The wastes are either accumulating at the source, or other location, or are being transported but not properly utilized or disposed. This situation poses an environmental threat of excessive nutrients, organics, and pathogens being transported into surface and groundwaters, in addition to the use of excessive amounts of fertilizers.

After Situation:

Manure, litter and other agricultural by-products are being controlled, by the collection at the source, and stored properly, at an environmentally suitable location, until such time that they are disposed of or utilized in a proper manner, typically in accordance with a nutrient management plan. The typical composter is designed to handle organic material from a farming operation. The facility will be installed on a $12^{\prime} \times 32^{\prime}$ concrete pad with 4 primary bins ($6^{\prime}(\mathrm{L}) \times 8^{\prime}(\mathrm{W}) \times 5^{\prime}(\mathrm{H})$) and one long secondary bin ($6^{\prime} \times 32^{\prime} \times 5^{\prime}$) on the back side of the primary bins. Typical bin wall consists of 1^{\prime} concrete curb and 4' of treated lumber. Site preparation includes topsoil removal (0.5^{\prime}), installing 4^{\prime} of gravel, setting posts, installing concrete slab (5^{\prime}) and curbing and installing wooden walls.

Feature Measure: Total Bin Capacity
Scenario Unit: Cubic Feet
Scenario Typical Size: 1,920.00
Scenario Total Cost: \$11,149.99
Scenario Cost/Unit: \$5.81
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, formless, non reinforced	36	Non reinforced concrete cast-in-placed without forms by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$177.66	2	\$355.32
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	6	\$2,428.20
Concrete, CIP, formed reinforced	38	Steel reinforced concrete formed and cast-in-placed in formed structures such as walls or suspended slabs by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$457.84	1.5	\$686.76
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	7.5	\$17.25
Skidsteer, 80 HP	933	Skidsteer loader with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$56.04	4	\$224.16
Auger, Post driver attachment	934	Auger or post driver attachment to a tractor or skidsteer. Does not include power unit. Labor not included.	Hours	\$9.74	4	\$38.96
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	80	\$2,172.80
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	4	\$111.04
Materials						
Aggregate, Gravel, Graded	46	Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$44.85	5	\$224.25
Dimension Lumber, Treated	1044	Treated dimension lumber with nominal thickness equal or less than 2 inches. Includes lumber and fasteners	Board Feet	\$1.82	992	\$1,805.44
Lumber, planks, posts and timbers, treated	1609	Treated dimension lumber with nominal thickness greater than 2 inches. Includes lumber and fasteners. Does not include labor.	Board Feet	\$3.58	384	\$1,374.72

Mobilization

Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	2	\$358.80
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	2	\$598.92
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 317-Composting Facility
Scenario: \#16 - Composter, Rotary Drum

Scenario Description:

Installation of a rotary drum or in-vessel composter to facilitate the decomposition of manure and/or other organic material into a final product sufficiently stable for storage, on farm use and application to land as a soil amendment. The raw inputs are primarily obtained for agricultural production or processing. The compost can be reused in the operation, utilized for crop production, soil improvement and/or marketed to the public. Typical size is for an in-vessel composter with a drum capacity of 12 CY with an approximate width of 5 ft and length of 20 ft . The drum capacity is typically 85% of the nominal dimensions of the drum. This includes a concrete foundation for the composter. A secondary storage facility may require additional bin storage, which is not included. This scenario does not apply to routine disposal of livestock or poultry carcasses. Potential associated practices: Roofs and Covers (367), Waste Storage Facility (313), Fence (382), Critical Area Planting (342), Nutrient Management (590)

Before Situation:
Raw materials are stockpiled on-site and hauled to a landfill or directly to a field without treatment. Odors and vectors are routinely an issue following rain events.

After Situation:

An in-vessel composter with a drum capacity of 12 CY is installed to facilitate the composting of the organic materials as described. Potential for runoff, vectors, and odors are significantly reduced. The compost material is more stable and can be reused as described in the standard.

Feature Measure: Drum Capacity
Scenario Unit: Cubic Feet

Scenario Typical Size: 324.00
Scenario Total Cost: $\$ 62,354.05$
Scenario Cost/Unit: \$192.45

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	5.5	\$2,225.85
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	10	\$338.70

Materials

Practice: 317-Composting Facility
Scenario: \#32-Small Farm Pad + Bins

Scenario Description:

The typical facility size is 6 feet by 9 feet and is comprised of a two-bin system, NOT TO EXCEED 75 sq-ft. The composting facility is installed on a small, urban or organic farm to address water quality concerns, pest/rodent concerns, and disease vectors resulting from improper vegetative waste disposal by providing a dedicated facility for storage and treatment, and by creating a compost product that can be used in multiple ways including land application for enrichment of crop ground. Screening is provided to limit access by vermin. Cost may be higher per unit than traditional compost facilities due to construction access limitations.

Potential Associated Practices: Pond Sealing or Lining, Compacted Soil (520), Pond Sealing or Lining, Geomembrane or Geosynthetic Clay Liner (521), Pond Sealing or Lining, Concrete (522), Fence (382), Critical Area Planting (342), Nutrient Management (590), Access Road (560), Structure for Water Control (587), Diversion (362), Livestock Pipeline (516), Subsurface Drain (606), Heavy Use Area Protection (561), Roofs and Covers (367), Roof Runoff Structure (558), Waste Storage Facility (313), Waste Recycling (633), Waste Transfer (634), Underground Outlet (620) and Vegetative Treatment Area (635), Stormwater Runoff Control (570).

Before Situation:

Manure and other vegetative waste are not being utilized or controlled in an environmentally safe manner. The wastes are either accumulating at the source, or other location, or are being transported but not properly utilized or disposed. This situation poses an environmental threat of excessive nutrients, organics, and pathogens being transported into surface and groundwaters.

After Situation:

Manure and other agricultural by-products are being controlled by collection at the source and properly stored at an environmentally suitable location, until such time that they are utilized in a proper manner, typically in accordance with a nutrient management plan. This is incorporated as part of the overall waste management system meeting the National Engineering Handbook (NEH), Part 651, Agricultural Waste Management Field Handbook (AWMFH) that has been developed to also account for end use of the product from the composting facility. This scenario consists of installing a composting structure on a concrete pad. Concrete pad is 6'x9' on a compacted gravel surface. Include sufficient area for accessing compost structure. Site to be located out of drainage areas, off-site water diverted and any runoff to spread out into a grassed area or vegetated treatment area as per regulations. Site preparation includes topsoil removal, compaction of subsoil, and installing a geotextile plus compacted gravel, concrete pad, and composting structure.

Feature Measure: Square Foot Floor Area
Scenario Unit: Square Feet
Scenario Typical Size: 54.00
Scenario Total Cost: $\$ 3,893.68$

Scenario Cost/Unit: \$72.11

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Geotextile, woven	42	Woven Geotextile Fabric. Includes materials, equipment and labor	Square Yard	\$1.11	6	\$6.66
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	2	\$11.40
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	5	\$124.95

Labor

Skilled Labor	230
General Labor	231
Supervisor or Manager	234

Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.

234
 other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.

Materials

Aggregate, Gravel, Graded	46	Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$44.85	2	\$89.70
Concrete mix, bag	1226	Pre-mixed dry concrete mix in 60 pound bag. Materials only.	Each	\$5.20	42	\$218.40
Lumber, planks, posts and timbers, untreated, rot resistant	1612	Untreated dimension lumber with nominal thickness greater than 2 inches, milled from rot resistant species such as cedar. Includes lumber and fasteners. Does not include labor.	Board Feet	\$4.84	264	\$1,277.76

Practice: 317-Composting Facility
Scenario: \#55 - Enhanced Composting Facility

Scenario Description:

This scenario consists of installing an enhanced composting facility to facilitate the decomposition of manure and/or other organic material into a final product sufficiently stable for storage, on farm use and application to land as a soil amendment. The raw inputs are primarily obtained for agricultural production or processing. The compost can be reused in the operation, utilized for crop production, soil improvement and/or marketed to the public. Typical size is for an in-vessel composter with a drum capacity of 12 CY with an approximate width of 5 ft and length of 20 ft . The drum capacity is typically 85% of the nominal dimensions of the drum. This includes a concrete foundation for the composter. A secondary storage facility may require additional bin storage, which is not included. This scenario does not apply to routine disposal of livestock or poultry carcasses. Potential associated practices: Roofs and Covers (367), Waste Storage Facility (313), Fence (382), Critical Area Planting (342), Nutrient Management (590).

Before Situation:
Raw materials are stockpiled on-site and hauled to a landfill or directly to a field without treatment. Odors and vectors are routinely an issue following rain events.
After Situation:
An in-vessel composter with a drum capacity of 12 CY is installed to facilitate the composting of the organic materials as described. Potential for runoff, vectors, and odors are significantly reduced. The compost material is more stable and can be reused as described in the standard.

Feature Measure: Drum Capacity

Scenario Unit: Cubic Feet

Scenario Typical Size: 324.00
Scenario Total Cost: \$62,354.05
Scenario Cost/Unit: \$192.45

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	5.5	\$2,225.85
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	10	\$338.70

Materials

Practice: 317-Composting Facility
Scenario: \#66-In-vessel Composter 1 CY to 8 CY

Scenario Description:

Installation of an in-vessel composter (rotary drum, forced air, or containerized with mechanical turning) to facilitate the decomposition of manure and/or other organic material into a final product sufficiently stable for storage, on farm use and application to land as a soil amendment. The raw inputs are primarily obtained for agricultural production or processing. The compost can be reused in the operation, utilized for crop production, soil improvement and/or marketed to the public. Typical size is for an in-vessel composter with a drum capacity of 4 CY with an approximate width of 4 ft and length of 10 ft . The drum capacity is typically 85% of the nominal dimensions of the drum. This includes a concrete foundation for the composter of $6 \mathrm{ft} \times 20 \mathrm{ft}$ to facilitate an area to collect finished compost. A secondary storage facility may require additional bin storage, which is not included. This scenario does not apply to routine disposal of livestock or poultry carcasses. Potential associated practices: Roofs and Covers (367), Waste Storage Facility (313), Fence (382), Critical Area Planting (342), Nutrient Management (590)

Before Situation:
Raw materials are stockpiled on-site and hauled to a landfill or directly to a field without treatment. Odors and vectors are routinely an issue following rain events.
After Situation:
An in-vessel composter with a drum capacity of 4 CY is installed to facilitate the composting of the organic materials as described. Potential for runoff, vectors, and odors are significantly reduced. The compost material is more stable and can be reused as described in the standard.

Feature Measure: Drum Capacity
Scenario Unit: Cubic Feet

Scenario Typical Size: 108.00
Scenario Total Cost: \$20,717.05
Scenario Cost/Unit: \$191.82

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	2.5	\$1,011.75
Composter, drum, 4 CY	2036	4 CY drum composter unit. Includes equipment and operation controls and shipping. Labor not included.	Each	\$19,366.60	1	\$19,366.60
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	10	\$338.70

Practice: 318 - Short Term Storage of Animal Waste and By-Products
Scenario: \#2 - Poly Cover, Earthen Pad

Scenario Description:

A compacted earthen pad is constructed to store wastes on a short-term basis between collection and utilization as part of an agricultural waste management system. This practice will address soil and water quality by reducing the pollution potential for surface water and groundwater quality degradation. Potential Associated Practices: Nutrient Management (590), Waste Recycling (633)

Before Situation:

Operator presently has a confined animal feeding operation and daily manure spreading operations are not possible due to weather. Manure and other agricultural waste by-products are not being managed in an environmentally safe manner. The wastes are either accumulating at the source, or are being stockpiled in environmentally vulnerable areas and not properly managed. This situation poses an environmental threat of excessive nutrients, organics, and pathogens being transported into surface and groundwater resources.

After Situation:

Using a compacted earthen pad with a cover provides an environmentally safe meaure for temporarily managing manure and other agricultural waste by-products. This facility provides the landowner a means of storing waste until it can be utilized in a proper manner in accordance with a nutrient management plan. This practice will address soil and water quality by reducing the pollution potential to soil, surface water and ground water. Typical design: volume of material temporarily stored 12,576 ft3, pad area $6,000 \mathrm{ft2}\left(60^{\prime} \mathrm{X} 100^{\prime}\right)$; 4^{\prime} width around edge of manure stack to properly anchor and cover the manure; footprint of manure pile: $52^{\prime} \mathrm{X} 92$ ', 6 ' manure stack height on $4: 1$ slopes; cover is a 6 mil poly film; $15^{\prime} \times 1 / 2^{\prime}$ dia auger anchors on 2 ' centers.

Feature Measure: Volume of stored manure solids
Scenario Unit: Cubic Feet
Scenario Typical Size: 12,576.00
Scenario Total Cost: \$7,121.55
Scenario Cost/Unit: \$0.57
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	222	\$812.52
Materials						
Poly film, 6 mil.	245	6 mil, polyethylene, black	Square Feet	\$0.09	222	\$19.98
Earthfill Material, purchased, common	2060	Purchased earthfill materials includes both silt or clay. Material only.	Cubic Yards	\$23.62	234	\$5,527.08
Introduced Perennial Grasses, Legumes and/or Forbs, Low Density	2747	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$47.76	0.18	\$8.60
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 324 - Deep Tillage
Scenario: \#1-Deep Tillage less than 20 inches

Scenario Description:

Fields (80 acres) with adverse soils conditions that restrict plant growth such as compacted layers caused by tillage operations or restrictive layers such as hardpans (duripans) in the root zone. This practice does not apply to normal tillage practices to prepare a seedbed but is meant to fracture the restrictive soil layer.

Before Situation:

In this geographic area, crop plants are observed as having reduced yield, water is not infiltrating into the soil. Soil layers have been compacted by shallow tillage operations, or soils have a hardpan (duripan) layer that is restricting root growth. Typical field size is 80 acres with crop rotations consisting of annual row crops or small grains with conventional tillage or when the harvesting of row crops (onions, sugar beets, potato, and corn silage) use heavy trucks to assist with the harvest. Compaction has been caused when soil moisture is too wet for normal field operations or by excessive shallow tillage or field harvest haul traffic throughout the entire field. Soil structure has been reduced, aggregate strength is weak and soil biological activity is low. Soil organic matter is not adequate and the water holding capacity of the soil is limited for the desired root zone.

After Situation:
Soil compaction is measured with a penetrometer and visual observation of limiting root growth. Deep tillage operations such as subsoiling, paratilling or ripping are performed not as a part of the normal tillage operation for seedbed preparation, but used to relieve compaction at depths less than 20 inches. Soil moisture is less than 30 percent when deep tillage is used. The fractured zone will be sufficient to permit root penetration below the restrictive soil layer. Penetrometers are used to identify the severity (psi) of the compaction and the depth of the restrictive layer. Deep tillage is generally performed in the fall after crop harvest when soil conditions are dry. After deep tillage, harvest operations should be avoided when soil moisture is greater than 50% of field capacity. Field harvest haul traffic should be limited to end rows or haul roads. Using dual tires or tracks beneath tractors or grain wagons can help spread the weight load.

Feature Measure: <Unknown>
Scenario Unit: Acres
Scenario Typical Size: 80.00
Scenario Total Cost: \$2,202.51
Scenario Cost/Unit: \$27.53
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	1	\$24.99
Ripper or subsoiler, 16 to 36 inch depth	1235	Deep ripper or subsoiler, (16-36 inches depth) includes tillage implement, power unit and labor.	Acres	\$23.26	80	\$1,860.80
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	2	\$54.32
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	2	\$262.40

Practice: 324 - Deep Tillage
Scenario: \#2 - Deep Tillage more than 20 inches

Scenario Description:

Fields (80 acres) with adverse soils conditions that restrict plant growth such as compacted layers caused by tillage operations or restrictive layers such as hardpans (duripans) in the root zone. This practice does not apply to normal tillage practices to prepare a seedbed but is meant to fracture the restrictive soil layer.

Before Situation:

In this geographic area, crop plants are observed as having reduced yield, water is not infiltrating into the soil. Soil layers have been compacted by shallow tillage operations, or soils have a hardpan (duripan) layer that is restricting root growth. Typical field size is 80 acres with crop rotations consisting of annual row crops, orchard /vineyards or small grains with conventional tillage or when the harvesting of row crops (onions, sugar beets, potato, and corn silage) use heavy trucks to assist with the harvest. Orchards and vineyards may be deep ripped prior to establishment of perennial crop. Compaction has been caused when soil moisture is too wet for normal field operations or by excessive shallow tillage or field harvest haul traffic throughout the entire field. Soil structure has been reduced, aggregate strength is weak and soil biological activity is low. Soil organic matter is not adequate and the water holding capacity of the soil is limited for the desired root zone.

After Situation:

Soil compaction is measured with a penetrometer and visual observation of limiting root growth. Deep tillage operations such as subsoiling, paratilling or ripping are performed not as a part of the normal tillage operation for seedbed preparation, but used to relieve compaction at depths more than 20 inches. Soil moisture is less than 30 percent when deep tillage is used. The fractured zone will be sufficient to permit root penetration below the restrictive soil layer. Penetrometers are used to identify the severity (psi) of the compaction and the depth of the restrictive layer. Deep tillage is generally performed in the fall after crop harvest when soil conditions are dry. When possible, harvest operations should be avoided when soil moisture is greater than 50% of field capacity. Field harvest haul traffic should be limited to end rows or haul roads. Using dual tires or tracks beneath tractors or grain wagons can help spread the weight load.

Feature Measure: <Unknown>
Scenario Unit: Acres
Scenario Typical Size: 80.00
Scenario Total Cost: \$5,107.31

Scenario Cost/Unit: \$63.84

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	1	\$24.99
Ripper or subsoiler, > 36 inch depth	1236	Deep ripper or subsoiler, (>36 inches depth) includes tillage implement, power unit and labor.	Acres	\$59.57	80	\$4,765.60
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	2	\$54.32
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	2	\$262.40

Practice: 325 - High Tunnel System
Scenario: \#32-High Tunnel, Low Wind or Snow Load, Intensive Sun

Scenario Description:

Use in areas with low expected snow and wind loads. Quonset-style (round) manufactured frame of tubular steel ($30 \times 72 \mathrm{ft}$.) covered with 4 -year 6 mil plastic. Because of extensive sun intensity, shade cloth is provided. Costs are based on purchase of manufactured kit and landowner installation of structure. Structure must be installed to manufacturer's specifications.Associated practices might include CPS Roof Runoff Structure (588), Underground Outlet (620), Critical Area Planting (342), Mulching (484)

Before Situation:
Cropland where extension of the growing season is needed. Primary resource concern addressed will be plant health and vigor. High sun intensity shortens growing season, or decreases crop quality.

After Situation:
High Tunnel structure has been installed and the growing season has been extended for 1-4 months on average. Shade cloth protects crops from high intensity of sun, allowing crop production and quality to continue into summer months. Plant health and vigor is improved.

Feature Measure: Area of Tunnel Installed
Scenario Unit: Square Feet
Scenario Typical Size: 2,160.00
Scenario Total Cost:

Scenario Cost/Unit:
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	71	\$1,928.36
Materials						
High Tunnel, Quonset Style, Fixed Cost	2789	Fixed cost portion of a quonset style high tunnel. Includes the framework complete with all predrilled steel, hardware and instructions. Includes 6 mil 4-year polyethylene film to cover tunnel, and poly-lock for sides and ends for a quonset style (round top) hoop house. Materials and shipping only.	Number	\$2,057.57	1	\$2,057.57
High Tunnel, Quonset style, Variable Cost	2790	Variable cost portion of a quonset style high tunnel. Includes the framework complete with all predrilled steel, hardware and instructions. Includes 6 mil 4-year polyethylene film to cover tunnel, and poly-lock for sides and ends for a quonset style (round top) hoop house. Materials and shipping only.	Square Feet	\$3.27	2160	\$7,063.20
Shade cloth	2793	Knitted or woven, high tensile, UV resistant shade cloth of a minimum of 30% sunlight control. Includes grommets with reinforced edging. Materials and shipping only.	Square Feet	\$0.30	2160	\$648.00
Mobilization						
Mobilization, Material, distance > 50 miles	1043	Mobilization cost of materials for special cases where the distance from the supplier delivery point to the job site exceeds 50 miles. The costs for shipping by UPS or bulk freight shipping to a location within 50 miles of the job site have already been included in the component price.	Dollars	\$1.00	500	\$500.00

Practice: 325 - High Tunnel System
Scenario: \#84-Small High Tunnel, Intensive Sun
Scenario Description:
Use in areas with low expected snow and wind loads on sites less than 1 acre. Quonset-style (round) manufactured frame of tubular steel (less than or equal to 20 ft x 30 ft.) covered with 4 -year warrantee, 6 mil UV resistant plastic. Costs are based on purchase of manufactured kit and landowner installation of structure. Structure must be installed to manufacturer's specifications. Associated practices might include CPS Roof Runoff Structure (588), Underground Outlet (620), Critical Area Planting (342), Mulching (484).

Before Situation:
Cropland where extension of the growing season is needed. Primary resource concern addressed will be plant health and vigor.
After Situation:
High Tunnel structure has been installed and the growing season has been extended for 1-4 months on average. Plant health and vigor is improved.

Feature Measure: Area of High Tunnel Installed
Scenario Unit: Square Feet
Scenario Typical Size: 600.00
Scenario Total Cost: \$5,747.69

Scenario Cost/Unit: \$9.58
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	57	\$1,548.12
Materials						
High Tunnel, Quonset Style, Fixed Cost	2789	Fixed cost portion of a quonset style high tunnel. Includes the framework complete with all predrilled steel, hardware and instructions. Includes 6 mil 4-year polyethylene film to cover tunnel, and poly-lock for sides and ends for a quonset style (round top) hoop house. Materials and shipping only.	Number	\$2,057.57	1	\$2,057.57
High Tunnel, Quonset style, Variable Cost	2790	Variable cost portion of a quonset style high tunnel. Includes the framework complete with all predrilled steel, hardware and instructions. Includes 6 mil 4-year polyethylene film to cover tunnel, and poly-lock for sides and ends for a quonset style (round top) hoop house. Materials and shipping only.	Square Feet	\$3.27	600	\$1,962.00
Shade cloth	2793	Knitted or woven, high tensile, UV resistant shade cloth of a minimum of 30% sunlight control. Includes grommets with reinforced edging. Materials and shipping only.	Square Feet	\$0.30	600	\$180.00

Practice: 325 - High Tunnel System
Scenario: \#118-High Tunnel Round with Gutters

Scenario Description:

Use in areas with low expected snow and wind loads. Quonset-style (round) manufactured frame of tubular steel ($30 \times 72 \mathrm{ft}$.) covered with 4 -year 6 mil plastic. Gutters and downspout on each side direct water away from high tunnel. Costs are based on purchase of manufactured kit and landowner installation of structure. Structure must be installed to manufacturer's specifications.Associated practices might include CPS Roof Runoff Structure (588), Underground Outlet (620), Critical Area Planting (342), Mulching (484).

Before Situation:
Cropland where extension of the growing season is needed. Primary resource concern addressed will be plant health and vigor.
After Situation:
High Tunnel structure has been installed and the growing season has been extended for 1-4 months on average. Plant health and vigor is improved.

Feature Measure: Area of Tunnel Installed
Scenario Unit: Square Feet
Scenario Typical Size: 2,160.00
Scenario Total Cost: $\$ 13,370.41$
Scenario Cost/Unit: \$6.19

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	71	\$1,928.36
Materials						
Gutter, Downspout, PVC, 5 in.	1388	5 inch PVC guttering. Materials only.	Feet	\$1.28	12	\$15.36
Lumber, planks, posts and timbers, treated	1609	Treated dimension lumber with nominal thickness greater than 2 inches. Includes lumber and fasteners. Does not include labor.	Board Feet	\$3.58	48	\$171.84
Gutter, Galvanized Steel, Medium	1693	Galvanized Steel gutter, 7 to 9 in . width with hangers. Materials only.	Feet	\$14.82	144	\$2,134.08
High Tunnel, Quonset Style, Fixed Cost	2789	Fixed cost portion of a quonset style high tunnel. Includes the framework complete with all predrilled steel, hardware and instructions. Includes 6 mil 4-year polyethylene film to cover tunnel, and poly-lock for sides and ends for a quonset style (round top) hoop house. Materials and shipping only.	Number	\$2,057.57	1	\$2,057.57
High Tunnel, Quonset style, Variable Cost	2790	Variable cost portion of a quonset style high tunnel. Includes the framework complete with all predrilled steel, hardware and instructions. Includes 6 mil 4-year polyethylene film to cover tunnel, and poly-lock for sides and ends for a quonset style (round top) hoop house. Materials and shipping only.	Square Feet	\$3.27	2160	\$7,063.20

Practice: 325 - High Tunnel System
Scenario: \#119-Small Tunnel with Gutter

Scenario Description:

Use in areas with low expected snow and wind loads. Quonset-style (round) manufactured frame of tubular steel ($30 \times 72 \mathrm{ft}$.) covered with 4 -year 6 mil plastic. Runoff is captured in gutters placed on tunnel sides and conveys water away from the high tunnel reducing erosion or to catch and reuse water. Costs are based on purchase of manufactured kit and landowner installation of structure. Structure must be installed to manufacturer's specifications. Associated practices might include CPS Roof Runoff Structure (588), Underground Outlet (620), Critical Area Planting (342), Mulching (484).

Before Situation:
Cropland where extension of the growing season is needed. Primary resource concern addressed will be plant health and vigor.

After Situation:

High Tunnel structure has been installed and the growing season has been extended for 1-4 months on average. Plant health and vigor is improved. Gutters convey water to reduce soil erosion, ponding near the high tunnel, and or catchment for water reuse.

Feature Measure: Area of High Tunnel Installed
Scenario Unit: Square Feet
Scenario Typical Size: 600.00
Scenario Total Cost: \$6,580.65
Scenario Cost/Unit: \$10.97
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	57	\$1,548.12
Materials						
Gutter, Downspout, PVC, 5 in.	1388	5 inch PVC guttering. Materials only.	Feet	\$1.28	12	\$15.36
Lumber, planks, posts and timbers, treated	1609	Treated dimension lumber with nominal thickness greater than 2 inches. Includes lumber and fasteners. Does not include labor.	Board Feet	\$3.58	22	\$78.76
Gutter, Galvanized Steel, Medium	1693	Galvanized Steel gutter, 7 to 9 in . width with hangers. Materials only.	Feet	\$14.82	62	\$918.84
High Tunnel, Quonset Style, Fixed Cost	2789	Fixed cost portion of a quonset style high tunnel. Includes the framework complete with all predrilled steel, hardware and instructions. Includes 6 mil 4-year polyethylene film to cover tunnel, and poly-lock for sides and ends for a quonset style (round top) hoop house. Materials and shipping only.	Number	\$2,057.57	1	\$2,057.57
High Tunnel, Quonset style, Variable Cost	2790	Variable cost portion of a quonset style high tunnel. Includes the framework complete with all predrilled steel, hardware and instructions. Includes 6 mil 4-year polyethylene film to cover tunnel, and poly-lock for sides and ends for a quonset style (round top) hoop house. Materials and shipping only.	Square Feet	\$3.27	600	\$1,962.00

Practice: 326-Clearing and Snagging
Scenario: \#18-Clearing and Snagging - Medium

Scenario Description:

Removal of vegetation, logs, or other material that impedes the proper functioning on 200 to 400 linear feet of a stream channel or water course to restore flow capacity; prevent bank erosion by eddies; reduce the formation of sediment bars; and/or minimize blockages by debris. Addresses resource concerns such as water quantity and soi erosion-streambanks.

Before Situation:
Vegetation, logs, or other material provide a flow restriction or divert flowing water against the streambank causing excess erosion. Approximately one-half of the channel flow capacity is obstructed. The flow blockage may encourage depostion in the main channel and may alter the established flow channel.

After Situation:
Vegetation, logs, or other material have been removed to allow unrestricted flow in the channel and appurtenant structures. Material that poses no blockage threat is left in place to enhance aquatic habitat. Channel bed and banks are in equillibrium with the flow.

Feature Measure: Linear Feet
Scenario Unit: Feet
Scenario Typical Size: 300.00
Scenario Total Cost: \$6,247.72
Scenario Cost/Unit: \$20.83
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160 . Equipment and power unit costs. Labor not included.	Hours	\$98.78	10	\$987.80
Hydraulic Excavator, 1 CY	931	Track mounted hydraulic excavator with bucket capacity range of 0.8 to 1.5 CY. Equipment and power unit costs. Labor not included.	Hours	\$128.59	10	\$1,285.90
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	20	\$124.20
Truck, dump, 8 CY	1401	Dump truck for moving bulk material. Typically capacity is 12 ton or 8 cubic yards. Includes equipment only.	Hours	\$54.41	10	\$544.10
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	32	\$888.32
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	10	\$476.10
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 327-Conservation Cover
Scenario: \#1 - Introduced Species

Scenario Description:

The land is covered with permanent non-native grass vegetation resulting in reduced soil erosion and water/sediment runoff, and the elimination of dust emissions which improves air quality significantly. Plants sown for conservation cover may provide cover for beneficial insects and wildlife. This scenario does not apply to plantings for forage production or to critical area plantings. Applies to conventional or organic systems.

Before Situation:

Crops such as corn, soybeans, or cotton may be conventionally or organically grown and harvested. Full width tillage is utilized, weeds controlled by cultivation and/or chemical application. Soil surface residue amounts average 10% or less. Soil erosion exceed allowable tolerance, sediment may be moving offsite into surface water degrading water quality. Soil quality (soil organic matter) declines over time as a result of tillage practices, low residue, and long periods of bare soil. Air quality may be impacted during field operations by the creation of particulates. The system provides little to no wildlife habitat.

After Situation:

The 327 Implementation Requirements have been developed for the site and applied. The land is covered with permanent non-native grass vegetation resulting in reduced soil erosion and water/sediment runoff, and the elimination of significant dust emissions which improves air quality. Plants sown for conservation cover may provide cover for beneficial insects and wildlife. This scenario does not apply to plantings for forage production or to critical area plantings.

Feature Measure: Area planted
Scenario Unit: Acres
Scenario Typical Size: 50.00
Scenario Total Cost: $\$ 10,665.50$
Scenario Cost/Unit: \$213.31

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	150	\$2,017.50
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	50	\$375.00
Mechanical weed control, Vegetation termination	957	Mechanical operations, Includes: Roller/crimper, mower, shredder, etc. Includes equipment, power unit and labor costs.	Acres	\$26.67	50	\$1,333.50
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	50	\$1,006.50
Materials						
Nitrogen (N), Ammonium Nitrate	69	Price per pound of N supplied by Ammonium Nitrate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.69	2500	\$1,725.00
Phosphorus, P2O5	73	Price per pound of P 2 O 5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	2000	\$1,820.00
Introduced Perennial Grasses, Legumes and/or Forbs, Low Density	2747	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$47.76	50	\$2,388.00

Practice: 327-Conservation Cover
Scenario: \#2 - Native Species

Scenario Description:

This practice applies on land to be retired from agricultural production and on other lands needing permanent protective cover. This practice typically involves conversion from a clean-tilled (conventional tilled) intensive cropping system to permanent native vegetation (scenario includes native grass). The typical size of the practice is 50 acres. This practice scenario is typically used to reduce soil erosion, reduce soil quality degradation, improve water quality, develop wildlife habitat, and reduce air quality impacts. Applies to conventional or organic systems

Before Situation:
Crops such as corn, soybeans, or cotton may be conventionally or organically grown and harvested. Full width tillage is utilized, weeds controlled by cultivation and/or chemical application. Soil surface residue amounts average 10% or less. Soil erosion exceeds allowable tolerance, and sediment may be moving offsite into surface water degrading water quality. Soil quality (soil organic matter) declines over time as a result of tillage practices, low residue, and long periods of bare soil. Air quality may be impacted during field operations by the creation of particulates. The system provides little to no wildlife habitat.

After Situation:

The 327 Implementation Requirements have been developed for the site and applied. The land is covered with permanent native grass vegetation which reduces soil erosion and water/sediment runoff, and eliminates dust emissions which improves air quality. Plants sown for conservation cover may provide cover for beneficial insects and wildlife. This scenario does not apply to plantings for forage production or to critical area plantings.

Feature Measure: Area planted
Scenario Unit: Acres
Scenario Typical Size: 50.00
Scenario Total Cost: $\quad \$ 12,439.50$
Scenario Cost/Unit: \$248.79

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	150	\$2,017.50
Mechanical weed control, Vegetation termination	957	Mechanical operations, Includes: Roller/crimper, mower, shredder, etc. Includes equipment, power unit and labor costs.	Acres	\$26.67	100	\$2,667.00
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	50	\$1,006.50

Materials

Native Perennial Grasses, Low Density

2750 Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.

Practice: 327-Conservation Cover
Scenario: \#3 - Orchard or Vineyard Alleyways

Scenario Description:

This practice applies on orchards and vineyards needing permanent protective cover in the alleyways between tree and vine rows. The typical size of this practice is 20 acres. This practice typically involves conversion from a clean-tilled (conventional tilled) intensive cropping system to permanent vegetation (scenario includes non-native grass and legume mix). This practice scenario is typically used to reduce soil erosion, reduce soil quality degradation, improve water quality, enhance wildlife and/or pollinator habitat, manage plant pests, and reduce air quality impacts. Typically 60% of the surface area is conservation cover per acre.

Before Situation:
Orchard or vineyard with bare soil between vine/tree rows. Bare soil is exposed to wind erosion and/or intense rainfall during the fall, winter, and early spring. Over the winter sediment/nutrient runoff from orchards/vineyards increases. Soil erosion exceeds tolerable levels. Runoff from the fields flows into streams, water courses or other water bodies causing degradation to the receiving waters. Soil health (soil organic matter) declines over time as a result of long periods of bare soil. Little to no wildlife/pollinator habitat is present.

After Situation:
The 327 Implementation Requirements have been developed for the site and has been applied. Orchard or Vineyard area between vine/tree rows are planted with permanent introduced grass/legume mix. Area covered has reduced soil erosion, reduced water/sediment runoff, and improved air quality as a result of the elimination of significant amounts of dust emissions.. Plants sown for conservation cover may provide cover for beneficial insects, pollinators, and wildlife.

Feature Measure: Area planted
Scenario Unit: Acres
Scenario Typical Size: 20.00
Scenario Total Cost: $\$ 3,044.76$

Scenario Cost/Unit: \$152.24

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	24	\$322.80
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	12	\$90.00
Mechanical weed control, Vegetation termination	957	Mechanical operations, Includes: Roller/crimper, mower, shredder, etc. Includes equipment, power unit and labor costs.	Acres	\$26.67	24	\$640.08
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	12	\$241.56

Materials
Nitrogen (N), Ammonium Nitrate

Price per pound of N supplied by Ammonium Nitrate. Price is not per pound of total product applied, no conversion is needed.	Pound	$\$ 0.69$	600	$\$ 414.00$
Price per pound of P2O5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	$\$ 0.91$	480	$\$ 436.80$
K2O supplied by Muriate Of Potash. Price is not per pound of total product applied, no conversion is needed.	Pound	$\$ 0.68$	480	$\$ 326.40$
Introduced perennial grasses, legumes, and/or forbs, may include a	Acres	$\$ 47.76$	12	$\$ 573.12$

Introduced Perennial Grasses, Legumes and/or Forbs, Low Density

2747 Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.

Practice: 327-Conservation Cover

Scenario: \#4 - Pollinator Species

Scenario Description:

Permanent vegetation, including a mix of native grasses, legumes, and forbs (mix may also include non-native species), established on any land needing permanent vegetative cover that provides habitat for pollinators. Typical practice size is variable depending on site; this scenario uses 1 ac as the typical size. In addition to providing pollinator habitat, this practice scenario may also reduce sheet, rill, and wind erosion, improve soil quality, improve water quality, and improve air quality. The practice may also provide wildlife habitat. Practice applicable on cropland, odd areas, corners, etc. Applies to conventional or organic systems.

Before Situation:
Crops such as corn, soybeans, or cotton may be conventionally or organically grown and harvested. Full width tillage is utilized, weeds controlled by cultivation and/or chemical application. Soil surface residue amounts average 10% or less. Erosion exceeds tolerable rates and sediment may be moving offsite into surface water degrading water quality. Soil quality (soil organic matter) declines over time as a result of tillage practices, low residue, and long periods of bare soil. Air quality may be impacted during field operations by the creation of particulates. The system provides little to no wildlife or pollinator habitat.

After Situation:
The 327 Implementation Requirements have been developed for the site and applied. Land is covered with permanent pollinator habitat including a mix of native grasses, legumes, forbs (mix may also include non-native species). This practice may also have reduced soil erosion, reduced water/sediment runoff, and improved air quality as a result of the elimination of dust emissions. Plants sown for pollinator habitat may also provide cover for beneficial insects and wildlife. This scenario does not apply to critical area plantings.

Feature Measure: Area planted
Scenario Unit: Acres

Scenario Typical Size: 1.00
Scenario Total Cost: \$744.10
Scenario Cost/Unit: \$744.10
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	1	\$24.99
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	3	\$40.35
Mechanical weed control, Vegetation termination	957	Mechanical operations, Includes: Roller/crimper, mower, shredder, etc. Includes equipment, power unit and labor costs.	Acres	\$26.67	2	\$53.34
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	4	\$135.48
Materials						
Native Perennial Grasses, Legumes and/or Forb Mix for Targeted Wildlife/Pollinator Habitat or Ecological Restoration, moderate commercial availability	2619	Diverse mix of native perennial grasses, legumes and forbs, less than 50% grasses, may include biennials and a small percentage of annual species for establishment purposes and/or if allowed by the CPS. This is a mix composed of species required to meet specific wildlife/pollinator habitat or ecological requirements. Seed is moderately easy to purchase commercially. Includes materials and shipping.	Acres	\$469.81	1	\$469.81

Practice: 327-Conservation Cover

Scenario: \#22-Monarch Species Mix

Scenario Description:

Establish permanent vegetative cover for pollinator habitat according to state specifications. Typically used for high quality nectar and pollen species. Assumes seed/plugs, equipment and labor for seed bed prep/planting, and weed management during establishment. Used for conventional or organic land on small, intensive areas that are central to specialty crop production. Not typically used for large-scale plantings. This is applicable to both organic and non-organic conditions.

Before Situation:
Old hayfields that are mowed typically in the fall lack milkweed needed for monarchs. Other crops such as corn, soybeans, or cotton are conventionally grown and harvested. The system provides little to no wildlife or pollinator habitat.

After Situation:

The 327 Implementation Requirements have been developed and applied for the site. Land covered with permanent monarch habitat including a mix of milkweed species, native grasses, legumes, and forbs. Plants sown for monarch habitat may also provide cover for beneficial insects and wildlife.

Feature Measure: area planted
Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$932.02
Scenario Cost/Unit: \$932.02
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	1	\$24.99
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	3	\$40.35
Mechanical weed control, Vegetation termination	957	Mechanical operations, Includes: Roller/crimper, mower, shredder, etc. Includes equipment, power unit and labor costs.	Acres	\$26.67	2	\$53.34
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	4	\$135.48

Materials

Native Perennial Grasses, Legumes and/or Forb Mix for Targeted Wildlife/Pollinator Habitat or Ecological Restoration, moderate commercial availability

2619 Diverse mix of native perennial grasses, legumes and forbs, less than
species for establishment purposes and/or if allowed by the CPS. This is a mix composed of species required to meet specific wildlife/pollinator habitat or ecological requirements. Seed is moderately easy to purchase commercially. Includes materials and shipping.

Practice: 327-Conservation Cover
Scenario: \#23-PIA - Grass/Legume Establishment

Scenario Description:

This practice applies on land to be retired from agricultural production and on other lands needing permanent protective cover. This practice typically involves conversion from a clean-tilled (conventional tilled) intensive cropping system to permanent native vegetation species on both organic and non-organic operations. The typical size of the practice is 1 acre. This practice scenario is typically used to reduce soil erosion, reduce soil quality degradation, improve water quality, develop wildlife habitat, and reduce air quality impacts.

Before Situation:
Crops such as corn, soybeans, or vegetables are conventionally grown and harvested. Full width tillage is utilized, weeds controlled by cultivation and/or chemical application. Soil surface residue amounts average 10% or less. Soil erosion exceed allowable tolerance, sediment may be moving offsite into surface water degrading water quality. Soil quality (soil organic matter) declines over time as a result of tillage practices, low residue, and long periods of bare soil. Air quality may be impacted during field operations by the creation of particulates. The system provides little to no wildlife habitat.

After Situation:

The 327 Implementation Requirements have been developed for the site and has been applied. The land is covered with permanent native grass vegetation and has reduced soil erosion, reduced water/sediment runoff, and significant dust emissions are eliminated therefore, air quality is improved. Plants sown for conservation cover may provide cover for beneficial insects and wildlife. This scenario does not apply to plantings for forage production or to critical area plantings.

Feature Measure: Acres Established
Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$471.36

Scenario Cost/Unit: \$471.36

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total

Equipment Installation

Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	1	\$13.45
Tillage, Primary	946	Includes heavy disking (offset) or chisel plow. Includes equipment, power unit and labor costs.	Acres	\$20.44	2	\$40.88
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	1	\$6.63
Mechanical weed control, Vegetation termination	957	Mechanical operations, Includes: Roller/crimper, mower, shredder, etc. Includes equipment, power unit and labor costs.	Acres	\$26.67	1	\$26.67
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Materials						
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	1	\$12.66
Native and Introduced Perennial Grasses, Legumes and/or Forbs, Medium Density	2756	A mix of native and introduced perennial grasses, legumes, and/or forbs, grasses typically greater than 50% of the mix, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at medium to high density (41-60 pure live seeds/sq ft). Includes material and shipping.	Acres	\$153.79	1	\$153.79
Mobilization						
Mobilization, Pacific Island	2679	Mobilization cost of materials for sea or air freight services between islands.	Pound	\$0.00	50	\$0.00

Practice: 327-Conservation Cover
Scenario: \#24-Caribbean Area Conservation Cover Introduced Species

Scenario Description:

After applying the practice the land is covered with permanent non-native grass vegetation and has reduced soil erosion, reduced water/sediment runoff, improved wildlife habitat (including pollinator habitat), improved water quality, and improved soil health.

Before Situation:
The land is eroding above the soil loss tolerance, water quality is impaired due to sediment and nutrients, habitat for wildlife is unsuitable, and there is limited pollinator habitat.

After Situation:
The practices is applied per the specification in the 327 Implementation Requirements. Permanent non-native vegetation is established that is suitable to address the planned resource concern(s).

Feature Measure: Acres Planted

Scenario Unit: Acres

Scenario Typical Size: 50.00

Scenario Total Cost: $\$ 10,789.00$
Scenario Cost/Unit: \$215.78

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total

Equipment Installation

Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	50	\$672.50
Tillage, Primary	946	Includes heavy disking (offset) or chisel plow. Includes equipment, power unit and labor costs.	Acres	\$20.44	50	\$1,022.00
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	50	\$1,006.50
Materials						
Nitrogen (N), Ammonium Nitrate	69	Price per pound of N supplied by Ammonium Nitrate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.69	2500	\$1,725.00
Phosphorus, P2O5	73	Price per pound of P2O5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	2500	\$2,275.00
Potassium, K2O	74	K2O supplied by Muriate Of Potash. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.68	2500	\$1,700.00
Introduced Perennial Grasses, Legumes and/or Forbs, Low Density	2747	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$47.76	50	\$2,388.00

Practice: 327-Conservation Cover
Scenario: \#25-Caribbean Orchard or Vineyard Alleyways

Scenario Description:

This practice applies on orchards and vineyards needing permanent protective cover in the alleyways between tree and vine rows. The typical size of this practice is 20 acres. This practice typically involves conversion from a clean-tilled (conventional tilled) intensive cropping system to permanent vegetation (scenario includes non-native grass and legume mix). This practice scenario is typically used to reduce soil erosion, reduce soil quality degradation, improve water quality, enhance wildlife and/or pollinator habitat, manage plant pests, and reduce air quality impacts.

Before Situation:
Orchard or vineyard with bare soil between vine/tree rows. Bare soil is exposed to wind erosion and/or intense rainfall during the fall, winter, and early spring. Over the winter sediment/nutrient runoff from orchards/vineyards increases.

After Situation:
The 327 Implementation Requirements have been developed for the site and has been applied. Orchard or Vineyard area between vine/tree rows are planted with permanent introduced grass/legume mix. Area covered has reduced soil erosion, improved soil quality, improved water quality, and enhanced wildlife and/or pollinator habitat.

Feature Measure: Acres Planted
Scenario Unit: Acres
Scenario Typical Size: 20.00
Scenario Total Cost: $\$ 4,315.60$

Scenario Cost/Unit: \$215.78
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	20	\$269.00
Tillage, Primary	946	Includes heavy disking (offset) or chisel plow. Includes equipment, power unit and labor costs.	Acres	\$20.44	20	\$408.80
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	20	\$402.60
Materials						
Nitrogen (N), Ammonium Nitrate	69	Price per pound of N supplied by Ammonium Nitrate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.69	1000	\$690.00
Phosphorus, P2O5	73	Price per pound of P 2 O 5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	1000	\$910.00
Potassium, K2O	74	K2O supplied by Muriate Of Potash. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.68	1000	\$680.00
Introduced Perennial Grasses, Legumes and/or Forbs, Low Density	2747	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$47.76	20	\$955.20

Practice: 327-Conservation Cover

Scenario: \#26-Pacific Islands Conservation Cover

Scenario Description:

This practice applies on land to be retired from agricultural production and on other lands needing permanent protective cover. This practice typically involves conversion from a clean-tilled (conventional tilled) intensive cropping system to permanent native vegetation species on both organic and non-organic operations. The typical size of the practice is 40 acres. This practice scenario is typically used to reduce soil erosion, reduce soil quality degradation, improve water quality, develop wildlife habitat, and reduce air quality impacts.

Before Situation:
Crops such as corn, soybeans, vegetables, or cotton are conventionally grown and harvested. Full width tillage is utilized, weeds controlled by cultivation and/or chemical application. Soil surface residue amounts average 10% or less. Soil erosion exceed allowable tolerance, sediment may be moving offsite into surface water degrading water quality. Soil quality (soil organic matter) declines over time as a result of tillage practices, low residue, and long periods of bare soil. Air quality may be impacted during field operations by the creation of particulates. The system provides little to no wildlife habitat.

After Situation:
The 327 Implementation Requirements have been developed for the site and has been applied. The land is covered with permanent native grass vegetation and has reduced soil erosion, reduced water/sediment runoff, and significant dust emissions are eliminated therefore, air quality is improved. Plants sown for conservation cover may provide cover for beneficial insects and wildlife. This scenario does not apply to plantings for forage production or to critical area plantings.

Feature Measure: Acres Planted
Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: $\$ 7,559.60$
Scenario Cost/Unit: \$188.99

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	40	\$538.00
Tillage, Primary	946	Includes heavy disking (offset) or chisel plow. Includes equipment, power unit and labor costs.	Acres	\$20.44	40	\$817.60
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	40	\$805.20

Materials

Native Perennial Grasses, Low Density

2750 Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.

Practice: 327-Conservation Cover
Scenario: \#39-Native Species with Forgone Income

Scenario Description:

This practice applies on conventional or organically managed land needing permanent protective cover. This practice typically involves conversion from an intensive cropping system to permanent native vegetation (scenario includes native grass/legume mix). The typical size of the practice is 50 acres. This practice scenario is typically used to reduce soil erosion, reduce soil quality degradation, improve water quality, develop wildlife habitat, and reduce air quality impacts. Applies to conventional or organic systems.

Before Situation:
Crops such as vegetables and small fruit crops may be conventionally or organically grown and harvested. Full width tillage is utilized, weeds controlled mainly by cultivation. Soil surface residue amounts average 10% or less. Soil erosion exceeds tolerable rates and sediment may be moving offsite into surface water degrading water quality. Soil quality (soil organic matter) declines over time as a result of tillage practices, low residue, and long periods of bare soil. Air quality may be impacted during field operations by the creation of particulates. The system provides little to no wildlife habitat.

After Situation:
The 327 Implementation Requirements have been developed for the site and applied. Managed land covered with permanent native grass/legume mix vegetation has reduced soil erosion, reduced water/sediment runoff, and improved air quality due to the elimination of dust emissions. Plants sown for conservation cover may provide cover for beneficial insects and wildlife. This scenario does not apply to plantings for forage production or to critical area plantings.

Feature Measure: Area planted
Scenario Unit: Acres
Scenario Typical Size: 50.00
Scenario Total Cost: \$20,604.75

Scenario Cost/Unit: \$412.10

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	150	\$2,017.50
Mechanical weed control, Vegetation termination	957	Mechanical operations, Includes: Roller/crimper, mower, shredder, etc. Includes equipment, power unit and labor costs.	Acres	\$26.67	100	\$2,667.00
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	50	\$1,006.50
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	25	\$5,691.75
FI, Wheat Dryland	1963	Dryland Wheat is Primary Crop	Acres	\$98.94	25	\$2,473.50

Materials

Native Perennial Grasses, Low Density

2750 Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.

Practice: 327-Conservation Cover
Scenario: \#85-Pollinator, Native and Forbs

Scenario Description:

Permanent vegetation, including a mix of native grasses, legumes, and forbs, established on any land needing permanent vegetative cover that provides habitat for pollinators. Typical practice size is variable depending on site; this scenario uses 20 acres as the typical size. In addition to providing pollinator habitat, this practice scenario may also reduce sheet, rill, and wind erosion, improve soil quality, improve water quality, and improve air quality. The practice may also provide wildlife habitat. Practice applicable on cropland, odd areas, corners, etc. Applies to conventional or organic systems.

Before Situation:
Crops such as corn, wheat, soybeans, or cotton may be conventionally or organically grown and harvested. Full width tillage is utilized, weeds controlled by cultivation and/or chemical application. Soil surface residue amounts average 10% or less. Erosion exceeds tolerable rates and sediment may be moving offsite into surface water degrading water quality. Soil quality (soil organic matter) declines over time as a result of tillage practices, low residue, and long periods of bare soil. Air quality may be impacted during field operations by the creation of particulates. The system provides little to no wildlife or pollinator habitat.

After Situation:

The 327 Implementation Requirements have been developed for the site and applied. Land is covered with permanent pollinator habitat including a mix of native grasses, legumes. This practice may also have reduced soil erosion, reduced water/sediment runoff, and improved air quality as a result of the elimination of dust emissions. Plants sown for pollinator habitat may also provide cover for beneficial insects and wildlife. This scenario does not apply to critical area plantings.

Feature Measure: Area Planted
Scenario Unit: Acres
Scenario Typical Size: 20.00
Scenario Total Cost: $\$ 5,290.20$

Scenario Cost/Unit: \$264.51
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	40	\$538.00
Mechanical weed control, Vegetation termination	957	Mechanical operations, Includes: Roller/crimper, mower, shredder, etc. Includes equipment, power unit and labor costs.	Acres	\$26.67	20	\$533.40
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	20	\$402.60

Materials

Native Perennial Grasses, Legumes and/or Forbs, Low Density
2753 A mix of native perennial grasses, legumes, and/or forbs, grasses \quad Acres $\quad \$ 190.81 \quad 20 \quad \$ 3.816 .20$ typically greater than 50% of the mix, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Species typically easy to purchase. Includes material and shipping.

Practice: 327-Conservation Cover
Scenario: \#103-Pollinator Mix-Small Footprint

Scenario Description:

Permanent vegetation, including a mix of grasses, legumes and forbs established on any land needing permanent vegetative cover that provides habitat, cover, and food for pollinators. Typical size varies depending on the site feasibility for length and width. Urban sites typical size is 2000 square feet ($20 \times 100 \mathrm{ft}$). This scenario included mechanical site preparation. This practice scenario may also reduce wind and water erosion, improve soil quality, reduce water quality degradation and reduce air emissions of particulate matter or greenhouse gases. Applies to conventional and organic systems. This scenario does not applied to areas needing Critical Area Planting.

Before Situation:
Crop rotation include specialty crops such as vegetable and fruit/berry production that benefit from pollinator activity. Urban agricultural sites do not provide for pollinator habitat at this time. Planting operations include mechanical removal of weeds. Land adjacent to the planting beds is not managed for resource concerns.

After Situation:
The 327 implementation requirements have been developed for the site and applied. Land is in permanent vegetative cover reducing erosion and sediment delivery to water. Pollinator habitat has successfully established providing habitat and cover for pollinators and beneficial insects.

Feature Measure: Area of conservation Cover Installe
Scenario Unit: 1,000 Square Foot
Scenario Typical Size: 2.00
Scenario Total Cost: \$281.82
Scenario Cost/Unit: \$140.91

Cost Details:

Component Name	ID	Description		Cost		

Equipment Installation

Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	1	\$13.45
Mechanical weed control, Vegetation termination	957	Mechanical operations, Includes: Roller/crimper, mower, shredder, etc. Includes equipment, power unit and labor costs.	Acres	\$26.67	0.5	\$13.34
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13
Materials						
Native Perennial Grasses, Legumes and/or Forb Mix for Targeted Wildlife/Pollinator Habitat or Ecological Restoration, moderate commercial availability	2619	Diverse mix of native perennial grasses, legumes and forbs, less than 50% grasses, may include biennials and a small percentage of annual species for establishment purposes and/or if allowed by the CPS. This is a mix composed of species required to meet specific wildlife/pollinator habitat or ecological requirements. Seed is moderately easy to purchase commercially. Includes materials and shipping.	Acres	\$469.81	0.5	\$234.91

Practice: 328-Conservation Crop Rotation
Scenario: \#1-Basic Rotation Organic and Non-Organic

Scenario Description:

In this region this practice may be part of a conservation management system on both organic and non-organic operations to: 1) Reduce sheet, rill and wind erosion, 2) Maintain or increase soil health and organic matter content, 3) Reduce water quality degradation due to excess nutrients, 4) Improve soil moisture efficiency, 5) Reduce the concentration of salts and other chemicals from saline seeps, 6) Reduce plant pest pressures, 7) Provide feed and forage for domestic livestock, and 8) Provide food and cover habitat for wildlife, including pollinator forage, and nesting. This practice payment is provided to the producer for the time needed to plan and implement the logistics of changing the rotation to effectively implement a conservation crop rotation on a typical 200 acre cropland farm. No foregone income. Cost represents typical situations for conventional and organic producers.

Before Situation:
The rotation consists primarily of low residue producing row crops. Fields range from nearly flat to C and D slopes. Erosion, soil quality, and pest management are the primary concerns.

After Situation:

A rotation is established that provides additional high residue and/or perennial crops that may treat one or more of the following purposes: reduce sheet, rill and wind erosion, maintain or increase soil health and organic matter content, reduce water quality degradation due to excess nutrients, improve soil moisture efficiency, reduce the concentration of salts and other chemicals from saline seeps, reduce plant pest pressures, provide feed and forage for domestic livestock, or provide food and cover habitat for wildlife, including pollinator forage, and nesting.

Feature Measure: Area planted
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$1,428.30
Scenario Cost/Unit: \$14.28
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	30	\$1,428.30

Practice: 328-Conservation Crop Rotation
Scenario: \#5 - Specialty Crops Organic and Non-Organic

Scenario Description:

In this region a rotation of organic or non-organic specialty crops (fruits and vegetable) are produced as part of a conservation management system to treat one or more of the following resource concerns: 1) Reduce sheet, rill and wind erosion, 2) Maintain or increase soil health and organic matter content, 3) Reduce water quality degradation due to excess nutrients, 4) Improve soil moisture efficiency, 5) Reduce the concentration of salts and other chemicals from saline seeps, 6) Reduce plant pest pressures, 7) Provide feed and forage for domestic livestock, and 8) Provide food and cover habitat for wildlife, including pollinator forage, and nesting. This practice payment is provided to acquire the technical knowledge and skills necessary to effectively implement a conservation crop rotation on a typical 50 acre specialty crop farm. No foregone income. Cost represents typical situations for organic and non-organic producers.

Before Situation:
This rotation consisted of growing specialty crops. Fields range from nearly flat to B and C slopes. Erosion, soil quality, and pest management are the primary concerns.

After Situation:

The rotation established adds higher residue crop(s) to the rotation that will treat one or more of the following resource concerns on organic and non- organic farms: 1) Reduce sheet, rill and wind erosion, 2) Maintain or increase soil health and organic matter content, 3) Reduce water quality degradation due to excess nutrients, 4) Improve soil moisture efficiency, 5) Reduce the concentration of salts and other chemicals from saline seeps, 6) Reduce plant pest pressures, 7) Provide feed and forage for domestic livestock, and 8) Provide food and cover habitat for wildlife, including pollinator forage, and nesting.

Feature Measure: Area planted
Scenario Unit: Acres
Scenario Typical Size: 50.00
Scenario Total Cost: $\$ 1,904.40$
Scenario Cost/Unit: \$38.09

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	40	\$1,904.40

Practice: 328-Conservation Crop Rotation

Scenario: \#63-Rice Residue Management for Waterfowl

Scenario Description:

The resource concern is food and cover for waterfowl where rice is grown in the waterfowl flyway zones. This scenario manages the rice residue after rice harvest to enhance the food and cover for waterfowl. The payment for the practice scenario is based on the cost to roll alternate strips of rice residue flat while leaving the alternate strips of rice residue left undisturbed after rice harvest.

Before Situation:

The typical situation after rice harvest is tilling the soil to bury or mix the rice residue remaining after harvest into the soil. This results in virtually no food or cover for the waterfowl that traverse the waterfowl flyways.

After Situation:

The rice residue after rice harvest will remain standing except for the alternate strip of the rice residue rolled almost flat to provide alternate strip of both cover and food.
The rice residue will be left in this condition until the following spring.
Feature Measure: Residue Cover
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$501.50
Scenario Cost/Unit: \$5.02
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Cultipacking	1100	ncludes equipment, power unit and labor costs.	Acres	\$10.03	50	\$501.50

Practice: 328-Conservation Crop Rotation
Scenario: \#77-Irrigated to Dryland Rotation Organic and Non-Organic
Scenario Description:
In this region this practice may be part of a conservation management system to primarily convert from an irrigated cropping system to dryland farming. In addition to improving water use efficiency the rotation may: 1) Reduce sheet, rill and wind erosion, 2) Maintain or increase soil health and organic matter content, 3) Reduce water quality degradation due to excess nutrients, 4) Improve soil moisture efficiency, 5) Reduce the concentration of salts and other chemicals from saline seeps, 6) Reduce plant pest pressures, 7) Provide feed and forage for domestic livestock, and 8) Provide food and cover habitat for wildlife, including pollinator forage, and nesting. This practice payment is provided to acquire the technical knowledge and skills necessary to effectively implement a conservation crop rotation on a typical 200 acre cropland farm. There is foregone income involved with this conversion from irrigated to dryland farming due to lower yields and net return. Cost represents typical situations for conventional (non-organic) producers converting from irrigated cropping to dryland farming.

Before Situation:

This rotation consisted of growing row crop grains that received a significant (more than half) of the required water via irrigation. The water demands are impacting the area's water availability. Erosion, soil condition, and future water availability are the major concerns.

After Situation:

The dryland rotation, using the same crops or a rotation that grows crops over different periods, will be part of a management system capable of utilizing available rainfall and soil moisture more efficiently and controlling wind and water erosion. Corn yields will be expected to be reduced from 150 to 80 bu/acre.

Feature Measure: Area planted
Scenario Unit: Acres
Scenario Typical Size: 200.00
Scenario Total Cost: \$57,542.30

Scenario Cost/Unit: \$287.71
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	-200	(\$45,534.00)
FI, Corn Irrigated	1960	Irrigated Corn is Primary Crop	Acres	\$508.24	200	\$101,648.00
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	30	\$1,428.30

Practice: 328-Conservation Crop Rotation
Scenario: \#96-Specialty Crop Rotations-Small Scale

Scenario Description:

Scenario applies to Urban sites less than a $1 / 2$ acre with a rotation of organic or non-organic specialty crops (fruits and vegetable) are produced as part of a conservation management system to treat one or more of the following resource concerns: 1) Reduce sheet, rill and wind erosion, 2) Maintain or increase soil health and organic matter content, 3) Reduce water quality degradation due to excess nutrients, 4) Improve soil moisture efficiency, 5) Reduce the concentration of salts and other chemicals from saline seeps, 6) Reduce plant pest pressures, 7) Provide feed and forage for domestic livestock, and 8) Provide food and cover habitat for wildlife, including pollinator forage, and nesting. This practice payment is provided to acquire the technical knowledge and skills necessary to effectively implement a conservation crop rotation on a typical urban specialty crop farm. Cost represents typical situations for organic and non-organic producers.

Before Situation:
This rotation consisted of growing specialty crops. Fields range from nearly flat to B and C slopes. Erosion, soil quality, and pest management are the primary concern. Removal of residue from the planted area is common leaving bare soil.

After Situation:

The rotation established adds diversity of plant material organic matter, higher residue amounts that will treat one or more of the following resource concerns on organic and non- organic farms: reduce sheet, rill and wind erosion, maintain or increase soil health and organic matter content, improve soil moisture efficiency or reduce plant pest pressure.

Feature Measure: area planned
Scenario Unit: 1,000 Square Foot
Scenario Typical Size: 15.00
Scenario Total Cost: \$546.27
Scenario Cost/Unit: \$36.42

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Mechanical weed control, Vegetation termination	957	Mechanical operations, Includes: Roller/crimper, mower, shredder, etc. Includes equipment, power unit and labor costs.	Acres	\$26.67	0.34	\$9.07
Seeding Operation, No Till/Strip Till Planter	1230	No Till/Strip Till row planters for seeding. Includes all costs for equipment, power unit, and labor.	Acres	\$20.90	0.34	\$7.11
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	9	\$244.44
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	6	\$285.66

Practice: 329-Residue and Tillage Management, No Till

Scenario: \#1-No-Till/Strip-Till

Scenario Description:

This practice typically involves conversion from a clean-tilled (conventional tilled) system to no-till or strip-till system on 100 acres of cropland. This involves managing the amount, orientation and distribution of crop and other plant residue on the soil surface year round while limiting soil-disturbing activities used to establish and harvest crops. The practice is used to reduce sheet and rill erosion, reduce wind erosion, improve soil quality, reduce CO2 losses from the soil, reduce energy use, increase plant available moisture and provide food and escape cover for wildlife. The no-till/strip-till system includes non-tillage types of weed control and may also include a period of no till fallow. System is applicable in both irrigated and non-irrigated fields of organic and non-organic operations.

Before Situation:

Row crops or small grains are grown and harvested. Full width tillage is performed prior to planting and weed control during crop production is typically cultivation and chemical application. Fields are disked immediately following harvest, with additional operations in some fields to facilitate drainage, seedbed preparation or additional weed control. Residue amounts after tillage operations average 10% or less, resulting in bare soil being exposed to wind erosion and/or intense rainfall. Any crop residue that is present degrades and sediment/nutrient runoff from fields increases during rainfall events. Sheet and rill erosion occurs with visible rills by spring. Soil health (soil organic matter) declines over time as a result of tillage practices, low residue, and long periods of bare soil. This system will typically have a negative Soil Conditioning Index (SCI) and a high Soil Tillage Intensity Rating (STIR).

After Situation:

The Implementation Requirements for 329 Residue Management, No Till is prepared and installed. Managing crop residue on the surface of a field (typical 100 acre) year around according to the 329 practice plan while limiting soil disturbing activities to those which place nutrients, and plant crops that meet the minimum criteria in the 329 practice standard. All crops are seeded/planted with a no-till drill or no-till/strip-till planter, which minimizes soil disturbance while establishing good seed-soil contact. All residues are to be maintained on the soil surface in a uniform distribution over the entire field and not burned or removed. Crop residues provide soil surface cover throughout the year. Runoff and erosion are reduced and no rills are visible on the soil surface. Wind erosion is reduced by standing residues and surface cover. Over time, soil health is improved due to the additional biomass (crop residues), ground cover, and soil infiltration. Crop residues and/or cover crop residues left on the soil surface may maximize weed control by increasing allelopathic and mulching effect, and provides cover for wildlife. The practice would require reducing soil disturbance and erosion and increasing biomass returned to the soil in sufficient amounts to achieve increased SCI and decreased STIR.

Feature Measure: Area planted
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$2,013.00
Scenario Cost/Unit: \$20.13
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	100	\$2,013.00

Practice: 329-Residue and Tillage Management, No Till

Scenario: \#3 - No Till Adaptive Management

Scenario Description:

The practice scenario is for the implementation of no till in small replicated plots to allow the producer to learn how to manage no till on their operation. Scenario includes implementing replicated strip trials on a field plot to evaluate, identify and implement a particular no till management strategy (e.g., no till vs conventional till, drill vs planter, strip till vs no till, residue row cleaners, vs no row cleaners, etc.) This will be done by following the Agronomy Technical Note 10 - Adaptive Management.

Before Situation:

Row crops or small grains are grown and harvested. Full width tillage is performed prior to planting and weed control during crop production is typically cultivation and chemical application. Fields are disked immediately following harvest, with additional operations in some fields to facilitate drainage or additional weed control. Residue amounts after tillage operations average 10% or less, resulting in bare soil being exposed to wind erosion and/or intense rainfall. Any crop residue that is present degrades and sediment/nutrient runoff from fields increases during rainfall events. Sheet and rill erosion exceeds soil loss tolerances. Soil health (soil organic matter) declines over time as a result of tillage practices, low residue, and long periods of bare soil. This system will typically have a negative Soil Conditioning Index (SCI) and a high Soil Tillage Intensity Rating (STIR). The producer is considering using no till technology, but is unsure how to manage on their operation or needs to improve the management of no till to be successful.

After Situation:

Implementation Requirements are prepared and an Adaptive Management Plan for the plots is developed and implemented. Installation of this scenario will result in establishment of no till replicated plots to compare to different management strategies for no till and other residue management strategies following the guidance in the Agronomy Technical Note 10 - Adaptive Management Process. Implementation involves establishing the replicated plots to evaluate one or more no till management strategies. The plot will consist of at least 4 replicated plots designed, laid out, managed and evaluated with the assistance of a consultant knowledgeable in no till management. Results are used to make no till management decisions to address erosion, soil health, and water quality issues. Yields will be measured and statistically summarized following the procedures in Agronomy Technical Note 10 - Adaptive Management. The yields for each plot will be adjusted to the appropriate moisture content. This would be repeated for 3 years.

Feature Measure: Based on 15 acre plots

Scenario Unit: Each

Scenario Typical Size: 1.00
Scenario Total Cost: \$4,018.13
Scenario Cost/Unit: \$4,018.13

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	7.5	\$150.98
Seeding Operation, No Till/Strip Till Planter	1230	No Till/Strip Till row planters for seeding. Includes all costs for equipment, power unit, and labor.	Acres	\$20.90	7.5	\$156.75
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	40	\$1,086.40
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	20	\$2,624.00

Practice: 329-Residue and Tillage Management, No Till

Scenario: \#33-Small Scale No Till

Scenario Description:

Scenario applies to Urban sites less than a $1 / 2$ acre with a rotation of organic or non-organic specialty crops (fruits and vegetable) are produced as part of a conservation management system to treat one or more of the following resource concerns: 1) Reduce sheet, rill and wind erosion, 2) Maintain or increase soil health and organic matter content, 3) Improve soil moisture efficiency, 4) Reduce plant pest pressures. This practice payment is provided to effectively implement no-till or strip-till management on a typical urban specialty crop farm. Cost represents typical situations for organic and non-organic producers.

Before Situation:

This rotation consisted of growing specialty crops. Fields range from nearly flat to B and C slopes. Erosion, soil quality, and pest management are the primary concern. Removal of residue from the planted area is common leaving bare soil-residue amounts average 10% or less. Full width tillage is performed prior to planting . Weed control typically cultivation.

After Situation:

The implementation requirements are written following CPS 329 Residue and Tillage Management to will treat one or more of the following resource concerns on organic and non- organic farms: reduce sheet, rill and wind erosion, maintain or increase soil health and organic matter content, improve soil moisture efficiency or reduce plant pest pressure. Soil disturbance is minimized with no-till drill or planter use. May include single slot opener and seedling or plugs follow. When pest management requires the removal of crop residue then planting beds are covered with cover crop using the 340 Cover Crop conservation practice. Runoff and erosion are reduced below T. No observed rills. Wind erosion reduced by maintaining surface cover. They system meets the soil condition index and STIR requirements.

Feature Measure: area planted
Scenario Unit: 1,000 Square Foot
Scenario Typical Size: 15.00
Scenario Total Cost: \$618.56
Scenario Cost/Unit: \$41.24
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	0.17	\$3.42
Seeding Operation, No Till/Strip Till Planter	1230	No Till/Strip Till row planters for seeding. Includes all costs for equipment, power unit, and labor.	Acres	\$20.90	0.17	\$3.55
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	12	\$325.92
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	6	\$285.66

Practice: 330-Contour Farming
Scenario: \#1 - Contour Farming

Scenario Description:

This scenario meets the specifications of the NRCS Contour Farming Standard. This scenario applies to fields greater than 5 acres. Payment reflects the extra labor and initial supervision costs in laying out and implementing contour farming. Annual erosion rates for the rotation exceeds tolerance levels. Excessive runoff leads to sedimentation of waterways

Before Situation:

The typical field size in this geographical region for this scenario is 30 acres. The field slope averages 6% while the slope length averages 160 feet. All farming operations on this cropland field including disking, bedding, planting, and cultivation are performed generally up and down the slope. Annual erosion rates for the rotation exceeds tolerance levels. Excessive runoff leads to sedimentation of waterways.

After Situation:
Implementation Requirements are prepared and implemented according to 330 Contour Farming. This practice is installed on the entire field. A survey is completed by trained and certified Federal, State, local personnel or consultant to determine and 'stake' contour row arrangement. Permanent row markers are established to ensure that this practice is maintained for the life of this practice. All field operations including disking, bedding, planting, and cultivation are performed on the contour which is near perpendicular to the field slope. The farm manager is initially on site to ensure that equipment operators are properly following contour methods. Soil erosion rates are reduced by nearly half and may be below tolerance depending on the rotation. Likewise, sedimentation has been significantly reduced.

Feature Measure: acre
Scenario Unit: Acres
Scenario Typical Size: 30.00
Scenario Total Cost: \$306.62

Scenario Cost/Unit: \$10.22
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	1	\$24.99
Labor						
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	5	\$138.80
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	3	\$142.83

Practice: 331-Contour Orchard and Other Perennial Crops
Scenario: \#1 - Contour Orchards/Vineyards

Scenario Description:

This scenario meets the specifications of the NRCS 331 Contour Orchards and Perennial Crops Standard. This scenario applies to fields greater than 5 acres. Payment reflects the extra labor and initial supervision costs in implementing and following contour operations compared to other methods. More time is usually needed when following contour operations due to more equipment time in shorter rows and more equipment turning. Annual erosion rates for the rotation exceeds tolerance levels. Excessive runoff leads to sedimentation of waterways.

Before Situation:
The typical field size in this geographical region for this scenario is 10 acres. The field slope averages 6% while the slope length averages 160 feet. All farming operations are performed up and down the slope. Annual erosion rates for the rotation exceeds tolerance levels. Excessive runoff leads to sedimentation of waterways.

After Situation:
Implementation Requirements are prepared and implemented according to the Contour Orchards and Perennial Crops Standard (331). This practice is installed on the entire field. All field operations including: harvesting, disking, bedding, and planting are performed on the contour which is near perpendicular to the field slope. The farm manager is initially on site to ensure that equipment operators are properly following contour methods. Soil erosion rates are reduced to tolerable soil loss levels.
Likewise, sedimentation has be significantly reduced.
Feature Measure: acre

Scenario Unit: Acres

Scenario Typical Size: 10.00
Scenario Total Cost: \$306.62

Scenario Cost/Unit: \$30.66
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	1	\$24.99
Labor						
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	5	\$138.80
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	3	\$142.83

Practice: 332-Contour Buffer Strips
Scenario: \#39 - Native Species, Foregone Income (Organic and Non-organic)

Scenario Description:

Narrow strips of permanent, herbaceous vegetative cover established around the hill slope and alternated down the slope with wider cropped strips in between that are organically or non-organically farmed on the contour. This practice applies to all cropland. Practice includes seedbed prep and planting of native species. The area of the contour grass strip is taken out of production.

Before Situation:

The NRCS water erosion prediction software indicates that there is a significant amount of sheet and rill erosion and/or a significant amount of sediment potentially delivered to the downslope edge of the field. A secondary concern is that there may not be enough wildlife/pollinator habitat, food source or refugia in the field or farm.

After Situation:

Native grasses, legumes and forbs will be established in strips in the field to meet the Contour buffer Strips (332) criteria, resource needs, and producer objectives.
Minimum widths shall be based on NRCS local design criteria specific to the purpose for installing the practice. Native species shall be selected that do not function as a host for diseases of a field crop and have physical characteristics necessary to control water erosion to tolerable levels in the cropped area of the field.

Feature Measure: number of acres
Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$402.06

Scenario Cost/Unit: \$402.06
Cost Details:

Component Name	ID	Description	Unit	ost	QTY	tal

Equipment Installation

Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	1	\$6.63
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	1	\$227.67
Materials						
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	1	\$12.66
Native Perennial Grasses, Low Density	2750	Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$134.97	1	\$134.97

Practice: 332-Contour Buffer Strips
Scenario: \#40-Introduced Species, Foregone Income (Organic and Non-Organic)

Scenario Description:

Narrow strips of permanent, herbaceous vegetative cover established around the hill slope and alternated down the slope with wider cropped strips in between that are farmed on the contour. This practice applies to all cropland. Practice includes seedbed prep and planting of native species. The area of the contour grass strip is taken out of production. This applies to both organic and non-organic.

Before Situation:
The NRCS water erosion prediction software indicates that there is a significant amount of sheet and rill erosion and/or a significant amount of sediment potentially delivered to the downslope edge of the field. A secondary concern is that there may not be enough wildlife/pollinator habitat, food source or refugia in the field or farm.

After Situation:
Introduced grasses and legumes will be established in strips in the field to meet the Contour buffer Strips (332) criteria, resource needs, and producer objectives. Minimum widths shall be based on NRCS local design criteria specific to the purpose for installing the practice. Introduced species shall be selected that do not function as a host for diseases of a field crop and have physical characteristics necessary to control water erosion to tolerable levels in the cropped area of the field.

Feature Measure: Number of acres
Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 370.55$

Scenario Cost/Unit: \$370.55
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	1	\$6.63
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	1	\$227.67

Materials

Nitrogen (N), Urea	71	Price per pound of N supplied by Urea. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.65	30	\$19.50
Phosphorus, P2O5	73	Price per pound of P2O5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	20	\$18.20
Sulfate of Potash	263	Approved for Organic Systems - Muriate of Potash	Pound	\$0.90	20	\$18.00
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	1	\$12.66
Introduced Perennial Grasses, Legumes and/or Forbs, Low Density	2747	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$47.76	1	\$47.76

Practice: 332-Contour Buffer Strips
Scenario: \#41-Wildlife/Pollinator, Foregone Income (Organic and Non-Organic)

Scenario Description:

Narrow strips of permanent, herbaceous vegetative cover established around the hill slope and alternated down the slope with wider cropped strips in between that are farmed on the contour. This practice applies to all cropland. Practice includes seedbed prep and planting of mainly pollinator friendly species. The area of the field border is taken out of production. This applies to organic and no-organic.

Before Situation:
Water Erosion Calculator (e.g. RUSLE2) indicates that there is a significant amount of sheet and rill erosion and/or a significant amount of sediment potentially delivered to the downslope edge of the field. A secondary concern is that there may not be enough wildlife/pollinator habitat, food source or refugia in the field or farm.

After Situation:
Plant species will be established in strips in the field to meet the Contour buffer Strips (332) criteria, resource needs, producer objectives, and the targeted wildlife/pollinators necessary food and/or cover. Minimum widths shall be based on NRCS local design criteria specific to the purpose for installing the practice. Species selected shall meet the wildlife/pollinator habitat requirements of the state and be adapted to site; not function as a host for diseases of a field crop and; have physical characteristics necessary to control sheet and rill erosion to tolerable levels on the cropped area of the field.

Feature Measure: Number of acres
Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$402.06
Scenario Cost/Unit: \$402.06
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	1	\$6.63
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	1	\$227.67
Materials						
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	1	\$12.66
Native Perennial Grasses, Low Density	2750	Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$134.97	1	\$134.97

Practice: 333 -Amending Soil Properties with Gypsum Products
Scenario: \#1 - Gypsum greater than 1 ton rate

Scenario Description:

Gypsum application of more than one ton/acre rate (typical average 1.5 tons/acre) to improve surface water quality due to phosphorus, pathogens, and soil health (Ca/Mg ratio). Scenario to be used in combination with an implemented nutrient management plan. The producer will use gypsum to improve soil surface structure and reduce concentration of dissolved reactive phosphorus (DRP) in runoff. Scenario includes the cost of material, application, and supervisor/management time to establish and manage new application methodology, including rates, timing, and sequence of application with other nutrient materials (i.e., manures, bio-solids, and fertilizers). The addressed resource concern is water quality and soil health. Associated practices are Nutrient Management (590), Conservation Crop Rotation (328), Cover Crop (340), Residue and Tillage Management, No-till (329) and Residue and Tillage Management, Reduced Till (345).

Before Situation:
Cropland in continuous production having relatively low soil organic matter and moderately high clay content with application of manure with a risk of pathogens. Soil in these fields has poor soil structure and a high risk of phosphorus and pathogen runoff. The soils are susceptible to soil crusting and as a result of long term tillage systems have a high concentration of phosphorous near the soil surface. The combination of poor soil structure and high nutrient levels at the soil surface results in runoff events with high concentrations of DRP that may contribute to degraded water quality.

After Situation:
A determination based on existing soil samples used in normal nutrient management has been made. The Implementation Requirements for Amending Soil Properties with Gypsum (333) has been developed for the site. The application of gypsum to the field based on the existing soil samples will result in reduced runoff and improved runoff water quality. This condition over time in combination with an implemented nutrient management plan and supporting practices to improve soil health will improve surface water quality.

Feature Measure: Acres with a gypsum product applic
Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: \$11,381.41
Scenario Cost/Unit: \$284.54
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Lime application	953	Lime application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$9.10	40	\$364.00
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	1	\$47.61
Materials						
Gypsum, Ground Ag Grade, Bulk	1224	Agricultural grade quarry ground gypsum (CaCO4) for dispersive soil treatment. Materials and delivery only.	Ton	\$182.83	60	\$10,969.80

Practice: 333 -Amending Soil Properties with Gypsum Products
Scenario: \#2-Gypsum less than 1 ton per acre

Scenario Description:

Gypsum application of less than or equal to one ton/acre rate (typical average 1 tons/acre) to improve surface water quality due to phosphorus, pathogens, and soil health ($\mathrm{Ca} / \mathrm{Mg}$ ratio). Scenario to be used in combination with an implemented nutrient management plan. The producer will use gypsum to improve soil surface structure and reduce concentration of dissolved reactive phosphorus (DRP) in runoff. Scenario includes the cost of material, application, and management time to establish and manage new application methodology, including rates, timing, and sequence of application with other nutrient materials (i.e., manures, bio-solids, and fertilizers). . The addressed resource concern is water quality and soil health. Associated practices are Nutrient Management (590), Conservation Crop Rotation (328), Cover Crop (340), Residue and Tillage Management, No-till (329) and Residue and Tillage Management, Reduced Till (345).

Before Situation:
Cropland in continuous production having relatively low soil organic matter and moderately high clay content. Soil in these fields have poor soil structure and a high risk of phosphorus and pathogen runoff. The soils are susceptible to soil crusting and as a result of long term tillage systems have high concentration of phosphorous near the soil surface. The combination of poor soil structure and high nutrient levels at the soil surface results in runoff events with high concentrations of DRP that may contribute to degraded water quality.

After Situation:

A determination based on existing soil samples used in normal nutrient management has been made. The Implementation Requirements for Amending Soil Properties with Gypsum (333) has been developed for the site. The application of gypsum to the field is based on the existing soil samples and will result in reduce runoff and improve runoff water quality. This condition over time in combination with the implemented nutrient management plan and supporting practices to improve soil health will improve surface water quality.

Feature Measure: Acres with a gypsum product applic
Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: \$5,896.51
Scenario Cost/Unit: \$147.41
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Lime application	953	Lime application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$9.10	40	\$364.00
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	1	\$47.61
Materials						
Gypsum, Ground Ag Grade, Bulk	1224	Agricultural grade quarry ground gypsum (CaCO4) for dispersive soil treatment. Materials and delivery only.	Ton	\$182.83	30	\$5,484.90

Practice: 334-Controlled Traffic Farming
Scenario: \#1-Controlled Traffic
Scenario Description:
This practice must be part of a conservation management system to reduce soil compaction. This scenario considers the time needed to modify equipment, develop the technical skills necessary to effectively implement a controlled traffic farming system on a typical 200 acre cropland farm. The controlled traffic generally utilizes RTK automatic steering technology to locate and maintain high load field traffic. This scenario represents the costs associated with reducing the amount of surface area tracked/compacted to 33% or less. Cost represents typical situations for conventional, organic, and transitioning to organic producers.

Before Situation:

The typical scenario for this practice is a 200 acre row crop operation on high clay, poorly drained soils. Studies show that when high wheel load traffic is not controlled, up to 85% of the field is tracked causing some degree of soil compaction. Before the practice is installed traffic is uncontrolled tracking and 85% of the field has compacted soil which limits soil health.

After Situation:

An Implementation Requirement for Controlled Traffic (334) is developed and the controlled traffic lanes installed per the implementation requirements. After the practice is installed wheel/track traffic is confined to designated traffic lanes/tramlines. Wheel/track soil compaction is confined to the traffic lanes to protect the remaining surface area and subsoil from wheel/track compaction. The wheel/track traffic follows the installed traffic lanes/tramlines each year.

Feature Measure: Acre

Scenario Unit: Acres

Scenario Typical Size: 200.00
Scenario Total Cost: $\$ 13,205.60$

Scenario Cost/Unit: \$66.03
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	80	\$2,709.60
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	80	\$10,496.00

Practice: 336-Soil Carbon Amendment
Scenario: \#75-Compost - On Site

Scenario Description:

This scenario uses compost of known origin and production methods to maintain, increase, or improve organic matter content and improve aggregate stability, habitat for soil organisms, and plant productivity and health. Compost produced in a compost facility on farm has been tested according to the Test Methods for the Examination of Composting and Compost (TMECC), or by other Land Grant University (LGU) recognized methods.

Before Situation:
An in-field assessment or a site specific resource assessment tool or test indicates that soil health resource concerns are present and the addition of analyzed and verified compost is needed to improve the condition of the soil.

After Situation:
Compost was tested and applied at the recommended rate that will improve soil organic matter and organism habitat without creating unacceptable risk of N or P loss. A follow up assessment is planned to determine the effect of the application.

Feature Measure: area treated
Scenario Unit: Acres
Scenario Typical Size: 6.00
Scenario Total Cost: \$696.70

Scenario Cost/Unit: \$116.12
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	10	\$134.50
Manure, compost, application	955	Loading, hauling and spreading manure/compost by ground equipment. Includes equipment, power unit and labor costs.	Hours	\$135.28	1.5	\$202.92
Materials						
Test, Compost Analysis	307	Moisture, Total N, P, K. Includes materials and shipping only.	Each	\$59.82	1	\$59.82
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: 336-Soil Carbon Amendment
Scenario: \#76-Compost - Off Site

Scenario Description:

This scenario uses compost from an offsite source to maintain, increase, or improve organic matter content and improve aggregate stability, habitat for soil organisms, and plant productivity and health. Compost has been tested according to the Test Methods for the Examination of Composting and Compost (TMECC), or by other Land Grant University (LGU) recognized methods. Compost is applied at the recommended rate to treat the identified resource concerns. Typical application rate is 3 ton compost/acre.

Before Situation:
An in-field assessment or a site specific resource assessment tool or test indicates that soil health resource concerns are present and the addition of analyzed and verified compost is needed to improve the condition of the soil.

After Situation:
Compost was tested and applied at the recommended rate that will improve soil organic matter and organism habitat without creating unacceptable risk of N or P loss. A follow up assessment is planned to determine the effect of the application.

Feature Measure: acres treated
Scenario Unit: Acres
Scenario Typical Size: 6.00

Scenario Total Cost:	$\$ 1,610.44$
Scenario Cost/Unit:	$\$ 268.41$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	10	\$134.50
Manure, compost, application	955	Loading, hauling and spreading manure/compost by ground equipment. Includes equipment, power unit and labor costs.	Hours	\$135.28	1.5	\$202.92
Materials						
Compost	265	A mixture of decaying organic matter, as from leaves and manure, used to improve soil structure and provide nutrients.	Ton	\$52.20	18	\$939.60
Test, Compost Analysis	307	Moisture, Total N, P, K. Includes materials and shipping only.	Each	\$59.82	1	\$59.82

Mobilization

Aggregate, Shipping, Cubic Yard-	2360	Mobilization of aggregate material beyond 20 miles of local delivery	Cubic Yard	$\$ 0.38$	720	$\$ 273.60$
mile						

Practice: 336-Soil Carbon Amendment
Scenario: \#77-100\% Biochar

Scenario Description:

Apply 100\% biochar to sequester carbon, reduce N losses, and improve other soil health related resource concerns. Biochar has been tested according to the Test Methods for the Examination of Composting and Compost (TMECC), or by other Land Grant University (LGU) recognized methods and is imported from an outside source. Biochar is applied at the recommended rate to treat the identified resource concerns. Typical application is 4 cubic yards per acre.

Before Situation:

An in-field assessment or a site-specific resource assessment tool or test indicates that soil health resource concerns are present and the addition of analyzed and verified biochar is needed to improve the condition of the soil.

After Situation:

Biochar was applied at the recommended rate and proportion. Soil health resource concerns were treated. A follow up assessment is planned to determine the effect of the biochar application.

Feature Measure: Acres Treated
Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$1,013.55
Scenario Cost/Unit: \$1,013.55
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	1	\$13.45
Manure, compost, application	955	Loading, hauling and spreading manure/compost by ground equipment. Includes equipment, power unit and labor costs.	Hours	\$135.28	0.5	\$67.64
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	1	\$27.16
Materials						
Test, Compost Analysis	307	Moisture, Total N, P, K. Includes materials and shipping only.	Each	\$59.82	1	\$59.82
Biochar	2743	Solid material obtained from thermochemical conversion of biomass in an oxygen-limited environment (pyrolysis). Biochar is typically produced from woody biomass, but other carbon sources may be used. Materials only.	Cubic Yards	\$201.87	4	\$807.48
Mobilization						
Aggregate, Shipping, Cubic Yardmile	2360	Mobilization of aggregate material beyond 20 miles of local delivery from quarry to construction site. Cubic Yard-mile (Cubic Yard * miles of haul).	Cubic Yard Mile	\$0.38	100	\$38.00

Practice: 336-Soil Carbon Amendment
Scenario: \#78-Compost - Small Areas

Scenario Description:

This scenario uses compost from an offsite source to maintain, increase, or improve organic matter content and improve aggregate stability, habitat for soil organisms, and plant productivity and health. This scenario is used for situations where manual labor is typically used to apply or incorporate compost amendments. Compost has been tested according to the Test Methods for the Examination of Composting and Compost (TMECC), or by other Land Grant University (LGU) recognized methods. Compost is applied at the recommended rate to treat the identified resource concerns.

Before Situation:
An in-field assessment or a site specific resource assessment tool or test indicates that soil health resource concerns are present and the addition of analyzed and verified compost is needed to improve the condition of the soil.

After Situation:
Compost was tested and applied at the recommended rate that will improve soil organic matter and organism habitat without creating unacceptable risk of N or P loss. A follow up assessment is planned to determine the effect of the compost application.

Feature Measure: Area treated.
Scenario Unit: 1,000 Square Foot
Scenario Typical Size: 10.00
Scenario Total Cost: \$516.07

Scenario Cost/Unit: \$51.61
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	0.25	\$3.36
Manure, compost, application	955	Loading, hauling and spreading manure/compost by ground equipment. Includes equipment, power unit and labor costs.	Hours	\$135.28	0.5	\$67.64
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	12	\$325.92
Materials						
Compost	265	A mixture of decaying organic matter, as from leaves and manure, used to improve soil structure and provide nutrients.	Ton	\$52.20	1	\$52.20
Test, Compost Analysis	307	Moisture, Total N, P, K. Includes materials and shipping only.	Each	\$59.82	1	\$59.82
Mobilization						
Aggregate, Shipping, Cubic Yardmile	2360	Mobilization of aggregate material beyond 20 miles of local delivery from quarry to construction site. Cubic Yard-mile (Cubic Yard * miles of haul).	Cubic Yard Mile	\$0.38	18.75	\$7.13

Practice: 336-Soil Carbon Amendment
Scenario: \#79-Compost + Biochar - Small Areas

Scenario Description:

Apply a blend of $>=50 \%$ biochar and $<=50 \%$ compost pr manure (by volume) to sequester carbon, reduce nitrogen loss, improve organic matter content and improve aggregate stability, habitat for soil organisms, and plant productivity and health. Biochar and compost has been tested according to the Test Methods for the Examination of Composting and Compost (TMECC), or by other Land Grant University (LGU) recognized methods and is imported from an outside source. The bland contains at least 50% biochar and is applied at the recommended rates to treat the identified resource concerns.

Before Situation:
An in-field assessment or a site-specific resource assessment tool or test indicates that soil health resource concerns are present and the addition of analyzed and verified compost or manure and biochar is needed to improve the condition of the soil.

After Situation:

Compost or manure and biochar were tested and applied at the recommended rate that will improve soil organic matter and organism habitat without creating unacceptable risk of N or P loss. A follow up assessment is planned to determine the effect of the application.

Feature Measure: Area treated
Scenario Unit: 1,000 Square Foot
Scenario Typical Size: 10.00
Scenario Total Cost: $\$ 626.50$

Scenario Cost/Unit: \$62.65
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	0.25	\$3.36
Manure, compost, application	955	Loading, hauling and spreading manure/compost by ground equipment. Includes equipment, power unit and labor costs.	Hours	\$135.28	0.5	\$67.64
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	12	\$325.92
Materials						
Compost	265	A mixture of decaying organic matter, as from leaves and manure, used to improve soil structure and provide nutrients.	Ton	\$52.20	0.5	\$26.10
Test, Compost Analysis	307	Moisture, Total N, P, K. Includes materials and shipping only.	Each	\$59.82	2	\$119.64
Biochar	2743	Solid material obtained from thermochemical conversion of biomass in an oxygen-limited environment (pyrolysis). Biochar is typically produced from woody biomass, but other carbon sources may be used. Materials only.	Cubic Yards	\$201.87	0.38	\$76.71
Mobilization						
Aggregate, Shipping, Cubic Yardmile	2360	Mobilization of aggregate material beyond 20 miles of local delivery from quarry to construction site. Cubic Yard-mile (Cubic Yard * miles of haul).	Cubic Yard Mile	\$0.38	18.75	\$7.13

Practice: 336-Soil Carbon Amendment
Scenario: \#80-60\% Biochar-40\% Compost

Scenario Description:

Apply a blend of $>=60 \%$ biochar and $<=40 \%$ compost or manure (by volume) to sequester carbon, reduce nitrogen loss, and improve other soil health related resource concerns. Biochar and compost has been tested according to the Test Methods for the Examination of Composting and Compost (TMECC), or by other Land Grant University (LGU) recognized methods and is imported from an outside source. The blend contains at least 60\% biochar and is applied at the recommended rate to treat the identified resource concerns.

Before Situation:
An in-field assessment or a site-specific resource assessment tool or test indicates that soil health resource concerns are present and the addition of analyzed and verified biochar and compost or manure is needed to improve the condition of the soil.

After Situation:
Biochar and compost or manure were tested and applied at the recommended rate that will improve soil organic matter and organism habitat without creating unacceptable risk of N or P loss. A follow up assessment is planned to determine the effect of the application.

Feature Measure: Area

Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$838.06

Scenario Cost/Unit: \$838.06
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	1	\$13.45
Manure, compost, application	955	Loading, hauling and spreading manure/compost by ground equipment. Includes equipment, power unit and labor costs.	Hours	\$135.28	0.5	\$67.64
Materials						
Compost	265	A mixture of decaying organic matter, as from leaves and manure, used to improve soil structure and provide nutrients.	Ton	\$52.20	2.2	\$114.84
Test, Compost Analysis	307	Moisture, Total N, P, K. Includes materials and shipping only.	Each	\$59.82	2	\$119.64
Biochar	2743	Solid material obtained from thermochemical conversion of biomass in an oxygen-limited environment (pyrolysis). Biochar is typically produced from woody biomass, but other carbon sources may be used. Materials only.	Cubic Yards	\$201.87	2.4	\$484.49

Mobilization

Aggregate, Shipping, Cubic Yardmile

2360 from quarry to const haul).

Practice: 338-Prescribed Burning
Scenario: \#57 - Forestry Burn

Scenario Description:

Applying a prescribed burn according to designed burn plan and NRCS Prescribed Burning (338) standard and specifications. A prescribed burn can consume debris (understory and/or residual debris after a timber harvest) or leaf litter under controlled conditions that otherwise could burn uncontrollably and devastatingly. Burn should be cool enough to not cause mortality to residual stand but also must reduce litter and debris. Treating areas to encourage natural seeding, permit reforestation by planting or promote growth of desirable vegetation. Burning is utilized to eliminate existing competition and debris, reduce forest fuel and to prepare the site for planting or seeding. (Constructed firebreak cost is not included in cost of burn. Refer to Firebreak (394) standard and cost scenarios). Resource concerns include: Plant productivity, health and vigor, reduce wildfire hazards, Wildlife - inadequate food, and cover; Air Quality - Airborne Sediment and Smoke. Burning a cutover site helps prepare the site for replanting. Burn should expose a portions of bare soil for planting. Objectives of a site preparation burn may dictate timing and burn intensity. Firebreaks are not included in the cost of the site prep. burn, see Firebreaks (394) for firebreak construction. Resource concerns include: Plants productivity, health and vigor, Air Qualitysmoke, Plant adaptability to the site.

Before Situation:
Area to be burned has had a portion of the over story removed. Slash, brush and grasses dominate the site. This is forestry site preparation.
After Situation:
Area to be planted has been burned to remove grass, reduce competing brush and remove downed slash leftover from forestry activities either scattered or pushed into windrows or piles. Some bare ground is temporarily exposed improving the site for planting.

Feature Measure: Size Of Burn Unit

Scenario Unit: Acres

Scenario Typical Size: 80.00
Scenario Total Cost: \$4,340.07
Scenario Cost/Unit: \$54.25
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Equipment Installation						
Dozer, 80 HP	929	Track mounted Dozer with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$77.14	12	\$925.68
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	10	\$249.90
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	10	\$178.60
Trailer, water tank	1598	Mobile 5,000 gal water tank mounted on a trailer. Equipment only. Does not include towing equipment.	Hours	\$22.05	10	\$220.50
Water tank, portable	1602	Portable water tank transported in a pick up truck. Typically with 200 gallon capacity includes tank with pump, hose and sprayer. Does not include the pickup truck. Equipment only.	Hours	\$12.65	10	\$126.50
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	40	\$1,354.80
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	20	\$543.20
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	10	\$476.10
Materials						
Fuel, ignition fuel mixture	1596	Mixture of gasoline and diesel for ignition of prescribed burns. Materials only.	Gallons	\$3.71	40	\$148.40

Practice: 338-Prescribed Burning
Scenario: \#58-Level Herbaceous
Scenario Description:
Applying a prescribed burn according to designed burn plan and NRCS Prescribed Burning (338) standard and specifications in order to control undesirable species, improve wildlife habitat, improve plant productivity and/or quality, facilitate grazing distribution and maintain ecological processes. This scenario is based on a burn area of less than 640 acres and applies under the following conditions: where the terrain of the majority of the area to be burned <15\% slopes with herbaceous and/or low volatile woody fuel with no high volatile fuels. Burned firebreaks used to achieve total firebreak width are part of these burns. (Constructed firebreak cost is not included in cost of burn. Refer to Firebreak (394) standard and cost scenarios)

Before Situation:
Desirable plant composition is lacking due to reduced plant vigor, invasive species or improper livestock distribution.
After Situation:
Desirable plant composition is restored, plant vigor improved and invasive species reduced. Forage production and quality for livestock and /or wildlife is improved.
Feature Measure: Acres of Burn Unit
Scenario Unit: Acres
Scenario Typical Size: 320.00
Scenario Total Cost: \$4,602.52
Scenario Cost/Unit: \$14.38
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	8	\$199.92
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	24	\$428.64
Trailer, water tank	1598	Mobile 5,000 gal water tank mounted on a trailer. Equipment only. Does not include towing equipment.	Hours	\$22.05	16	\$352.80
Water tank, portable	1602	Portable water tank transported in a pick up truck. Typically with 200 gallon capacity includes tank with pump, hose and sprayer. Does not include the pickup truck. Equipment only.	Hours	\$12.65	8	\$101.20
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	36	\$1,219.32
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	48	\$1,303.68
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	12	\$571.32
Materials						
Fuel, ignition fuel mixture	1596	Mixture of gasoline and diesel for ignition of prescribed burns. Materials only.	Gallons	\$3.71	35	\$129.85
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40

Practice: 338-Prescribed Burning						
Scenario: \#59-Non-Volatile Fuel						
Scenario Description:						
Applying a prescribed burn according to designed burn plan and NRCS Prescribed Burning (338) standard and specifications in order to control undesirable species, improve wildlife habitat, improve plant productivity and/or quality, facilitate grazing distribution and maintain ecological processes. This scenario is based on a burn area with a predominatly herbaceous plant community with little to no volatile fuel. Burned firebreaks used to achieve total firebreak width are part of these burns. (Constructed firebreak cost is not included in cost of burn. Refer to Firebreak (394) standard and cost scenarios)						
Before Situation:						
Desirable plant composition is lacking due to reduced plant vigor, invasive species or improper livestock distribution.						
After Situation:						
Desirable plant composition is restored, plant vigor improved and invasive species reduced. Forage production and quality for livestock and /or wildlife is improved.						
Feature Measure: Acres of Burn Unit						
Scenario Unit: Acres						
Scenario Typical Size: 300.00						
Scenario Total Cost:	\$5,944.11					
Scenario Cost/Unit:	\$19.81					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	20	\$499.80
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	20	\$357.20
Trailer, water tank	1598	Mobile 5,000 gal water tank mounted on a trailer. Equipment only. Does not include towing equipment.	Hours	\$22.05	20	\$441.00
Water tank, portable	1602	Portable water tank transported in a pick up truck. Typically with 200 gallon capacity includes tank with pump, hose and sprayer. Does not include the pickup truck. Equipment only.	Hours	\$12.65	20	\$253.00
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	40	\$1,354.80
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	32	\$869.12
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	40	\$1,904.40
Materials						
Fuel, ignition fuel mixture	1596	Mixture of gasoline and diesel for ignition of prescribed burns. Materials only.	Gallons	\$3.71	40	\$148.40

Practice: 338 - Prescribed Burning
Scenario: \#60-Volatile Fuel

Scenario Description:

Applying a prescribed burn according to designed prescribed burn plan and NRCS Prescribed Burning (338) standard and specifications in order to control undesirable species, improve wildlife habitat, improve plant productivity and/or quality, facilitate grazing distribution and maintain ecological processes. This scenario is based on a burn area with a predominantly herbaceous plant community with a significant density of volatile fuel. Burned firebreaks used to achieve total firebreak width are part of these burns. (Constructed firebreak cost is not included in cost of burn. Refer to Firebreak (394) standard and cost scenarios).

Before Situation:
Desirable plant composition is lacking due to reduced plant vigor, invasive species or improper livestock distribution with significant densities of volatile fuel. Pasture is being deferred from grazing in order to build adequate fuel to ensure that the prescribed fire meets the landowner's objectives.

After Situation:
Desirable plant composition is restored, plant vigor improved and invasive species reduced. Forage production and quality for livestock and /or wildlife is improved. Pasture is deferred from livestock grazing a minimum of 90 days (longer if needed) during the growing season to allow for adequate plant recovery, unless specific objectives warrant targeted livestock grazing to meet a specific post burn objective.

Feature Measure: Acres of Burn Unit
Scenario Unit: Acres
Scenario Typical Size: 350.00
Scenario Total Cost: \$12,758.26
Scenario Cost/Unit: \$36.45

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	50	\$1,249.50
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	100	\$1,786.00
Trailer, water tank	1598	Mobile 5,000 gal water tank mounted on a trailer. Equipment only. Does not include towing equipment.	Hours	\$22.05	50	\$1,102.50
Water tank, portable	1602	Portable water tank transported in a pick up truck. Typically with 200 gallon capacity includes tank with pump, hose and sprayer. Does not include the pickup truck. Equipment only.	Hours	\$12.65	50	\$632.50

Labor

Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	128	\$4,335.36
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	40	\$1,086.40
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	50	\$2,380.50
Materials						
Fuel, ignition fuel mixture	1596	Mixture of gasoline and diesel for ignition of prescribed burns. Materials only.	Gallons	\$3.71	50	\$185.50

Practice: 338-Prescribed Burning
Scenario: \#61 - Steep Terrain, Herbaceous Fuel

Scenario Description:

Application of a prescribed burn by landowners or burn association according to designed burn plan and NRCS Prescribed Burning (338) standard and specifications to control undesirable species, improve wildlife habitat, improve plant productivity and/or quality, facilitate grazing distribution and maintain ecological processes. This scenario is based on a burn area of less than 320 acres and applies under the following conditions: where the terrain of the majority of the area to be burned is $>15 \%$ slopes, conditions typically involve more than one day, and fuels are herbaceous and/or low volatile woody fuel. One day for putting in the firelines and another day to complete the burning to the entire unit. Burned firebreaks used to achieve total firebreak width are part of these burns. (Constructed firebreak cost is not included in cost of burn. Refer to Firebreak (394) standard and cost scenarios)

Before Situation:
Field has reduced plant vigor, invasive species or improper livestock distribution that are caused by the lack of ecological processes that are initiated by burning.
After Situation:
Desirable plant composition is restored, plant vigor improved and invasive species reduced. Forage production and quality for livestock and /or wildlife is improved.
Feature Measure: Acre

Scenario Unit: Acres
Scenario Typical Size: 160.00
Scenario Total Cost: \$4,931.49

Scenario Cost/Unit: \$30.82
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	16	\$399.84
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	16	\$285.76
Trailer, water tank	1598	Mobile 5,000 gal water tank mounted on a trailer. Equipment only. Does not include towing equipment.	Hours	\$22.05	16	\$352.80
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	32	\$1,083.84
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	64	\$1,738.24
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	16	\$761.76
Materials						
Fuel, ignition fuel mixture	1596	Mixture of gasoline and diesel for ignition of prescribed burns. Materials only.	Gallons	\$3.71	35	\$129.85
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40

Practice: 338-Prescribed Burning
Scenario: \#62 - Level Terrain, Volatile or woody fuels

Scenario Description:

Applying a prescribed burn according to designed burn plan and NRCS Prescribed Burning (338) standard and specifications in order to control undesirable species, improve wildlife habitat, improve plant productivity and/or quality, facilitate grazing distribution and maintain ecological processes. This scenario is based on a burn area of less than 320 acres and applies under the following conditions: where the terrain of the majority of the area to be burned $<15 \%$ slopes with herbaceous and low volatile woody fuel with high volatile woody fuels less than 4 ft tall. Burned firebreaks used to achieve total firebreak width are part of these burns. (Constructed firebreak cost is not included in cost of burn. Refer to Firebreak (394) standard and cost scenarios)

Before Situation:
Desirable plant composition is lacking due to reduced plant vigor, invasive species or improper livestock distribution.
After Situation:
Desirable plant composition is restored, plant vigor improved and invasive species reduced. Forage production and quality for livestock and /or wildlife is improved.
Feature Measure: Acres planned
Scenario Unit: Acres
Scenario Typical Size: 320.00
Scenario Total Cost: \$4,371.34
Scenario Cost/Unit: \$13.66
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	16	\$399.84
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	16	\$285.76
Trailer, water tank	1598	Mobile 5,000 gal water tank mounted on a trailer. Equipment only. Does not include towing equipment.	Hours	\$22.05	8	\$176.40
Water tank, portable	1602	Portable water tank transported in a pick up truck. Typically with 200 gallon capacity includes tank with pump, hose and sprayer. Does not include the pickup truck. Equipment only.	Hours	\$12.65	16	\$202.40
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	64	\$2,167.68
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	12	\$571.32
Materials						
Fuel, ignition fuel mixture	1596	Mixture of gasoline and diesel for ignition of prescribed burns. Materials only.	Gallons	\$3.71	25	\$92.75
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	2	\$358.80

Practice: 338 - Prescribed Burning
Scenario: \#63 - Steep Terrain, Volatile or Woody fuels

Scenario Description:

Applying a prescribed burn according to designed burn plan and NRCS Prescribed Burning (338) standard and specifications in order to control undesirable species, improve wildlife habitat, improve plant productivity and/or quality, facilitate grazing distribution and maintain ecological processes. This scenario is based on a burn area of 320 acres and applies under the following conditions: where the terrain of the majority of the area to be burned $>15 \%$ slopes with herbaceous and low volatile woody fuel with high volatile woody fuels greater than 4 ft tall, but fire is still a ground fire carried by fine fuel. Burned firebreaks used to achieve total firebreak width are part of these burns. (Constructed firebreak cost is not included in cost of burn. Refer to Firebreak (394) standard and cost scenarios)

Before Situation:

Desirable plant composition is lacking due to reduced plant vigor, invasive species or improper livestock distribution.
After Situation:
Desirable plant composition is restored, plant vigor improved and invasive species reduced. Forage production and quality for livestock and /or wildlife is improved.
Feature Measure: Acres planned
Scenario Unit: Acres
Scenario Typical Size: 320.00
Scenario Total Cost: \$7,581.39
Scenario Cost/Unit: \$23.69
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	16	\$399.84
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	48	\$857.28
Trailer, water tank	1598	Mobile 5,000 gal water tank mounted on a trailer. Equipment only. Does not include towing equipment.	Hours	\$22.05	8	\$176.40
Water tank, portable	1602	Portable water tank transported in a pick up truck. Typically with 200 gallon capacity includes tank with pump, hose and sprayer. Does not include the pickup truck. Equipment only.	Hours	\$12.65	16	\$202.40
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	80	\$2,709.60
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	24	\$1,142.64
Materials						
Fuel, ignition fuel mixture	1596	Mixture of gasoline and diesel for ignition of prescribed burns. Materials only.	Gallons	\$3.71	30	\$111.30
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	2	\$358.80
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 338 - Prescribed Burning
Scenario: \#80 - Understory Burn

Scenario Description:

Used to consume debris or leaf litter under controlled conditions that otherwise could burn at unsafe levels. Prior to burning the area may need treatment to reduce slash height and quantities. Burn should be of an intensity that does not cause mortality to residual tree stand, but significantly reduce litter and debris. Associated practices include Firebreak (394) Forest Stand Improvement (666) and Woody Residue Treatment (384).

Before Situation:
Slash accumulation in an open forest stand. Leaf litter and debris are consistent across the entire stand. Small seedlings of various quantities may be present.
After Situation:
Litter, debris and slash are safely consumed, small seedlings may be killed during the burn. Residual larger trees have little to no scorching. Post treatment fire damage is significantly reduced.

Feature Measure: Acres Planned

Scenario Unit: Acres

Scenario Typical Size: 40.00
Scenario Total Cost: \$2,377.58

Scenario Cost/Unit: \$59.44

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	10	\$249.90
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	8	\$142.88
Water tank, portable	1602	Portable water tank transported in a pick up truck. Typically with 200 gallon capacity includes tank with pump, hose and sprayer. Does not include the pickup truck. Equipment only.	Hours	\$12.65	8	\$101.20
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	16	\$541.92
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	10	\$1,312.00
Materials						
Fuel, ignition fuel mixture	1596	Mixture of gasoline and diesel for ignition of prescribed burns. Materials only.	Gallons	\$3.71	8	\$29.68

Practice: 340-Cover Crop
Scenario: \#1 - Cover Crop - Basic (Organic and Non-organic)

Scenario Description:

Typically a small grain or legume (may also use forage sorghum, radishes, turnips, buckwheat, etc.) will be planted as a cover crop immediately after harvest of a row crop, and will be followed by a row crop that will utilize the residue as a mulch. This scenario assumes that seed will be planted with a drill. The cover crop should be allowed to generate as much biomass as possible, without delaying planting of the following crop. The cover crop will be terminated using an approved herbicide prior to planting the subsequent crop.

Before Situation:
Row crops such as corn, soybeans, or cotton are grown and harvested in mid-late fall. Fields are disked immediately following harvest, with rows in some fields being hipped for drainage. Residue amounts after harvest average 30% or less, resulting in bare soil being exposed to wind erosion and/or intense rainfall during the fall, winter, and early spring. Over the winter residue degrades and sediment/nutrient runoff from fields increases. Erosion exceeds soil loss tolerances. Runoff from the fields flows into streams, water courses or other water bodies causing degradation to the receiving waters. Soil health (soil organic matter) declines over time as a result of tillage practices, low residue crops, and long periods of bare soil.

After Situation:

Implementation Requirements according to Cover Crop (340) are prepared and implemented. Within 30 days after harvest of the row crop, fields are planted with a small grain or legume cover crop (may also use forage sorghum, radishes, turnips, buckwheat, etc.), typically rye or clover. The average field size is 40 acres. The cover crop is seeded with a drill. No additional fertilizer is applied with the cover crop. The cover crop provides soil cover by late fall, throughout the winter, and into the early spring. Runoff and erosion are reduced. Wind erosion is reduced by standing residues. The cover crop is terminated with an approved herbicide prior to spring planting as late as feasible to maximize plant biomass production. Over time, soil health is improved due to the additional biomass, ground cover, soil infiltration, and plant diversity introduced to the cropping system. Cover crop residues left on the surface may maximize weed control by increasing allelopathic and mulching effect.

Feature Measure: Area planted

Scenario Unit: Acres

Scenario Typical Size: 40.00

Scenario Total Cost: $\$ 3,208.40$

Scenario Cost/Unit: \$80.21
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	40	\$265.20
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	40	\$805.20
Materials						
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	40	\$506.40
Annual Grasses	2730	Annual grasses, one or more species, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$40.79	40	\$1,631.60

Practice: 340-Cover Crop
Scenario: \#6 - Cover Crop - Adaptive Management

Scenario Description:

The practice scenario is for the implementation of cover crops in small replicated plots to allow the producer to learn how to manage cover crops on their operation. Scenario includes implementing replicated strip trials on a field plot to evaluate, identify and implement a particular cover crop management strategy (e.g., cover crop vs no cover crop, multiple species vs, single species, evaluate different termination methods or timings, using a legume vs no legume for nitrogen credits). This will be done following the guidance in the NRCS Technical Note 10 - Adaptive Management.

Before Situation:

Row crops such as corn, soybeans, or cotton are grown and harvested in mid-late fall. Fields are disked immediately following harvest, with rows in some fields being hipped for drainage. Residue amounts after harvest average 30% or less, resulting in bare soil being exposed to wind erosion and/or intense rainfall. Over the winter residue degrades and sediment/nutrient runoff from fields increases. Sheet and rill erosion occurs with visible rills by spring. Runoff from the fields flows into streams, water courses or other water bodies causing degradation to the receiving waters. Soil health (soil organic matter) declines over time as a result of tillage practices, low residue crops, and long periods of bare soil. The producer is considering the use of cover crops but is unsure how to manage on their unique operation or is seeking a way to better manage cover crops in the operation.

After Situation:

Implementation Requirements for Cover Crop (340) will be prepared along with the Adaptive Management plan for the replicated cover crop plots and implemented. Installation of this scenario will result in establishment of a cover crop replicated plots to compare to different management strategies for cover crop management following the guidance in the Agronomy Technical Note 10-Adaptive Management. Implementation involves establishing the replicated plots to evaluate one or more cover crop management strategies. The plot will consist of at least 4 replicated plots designed, laid out, managed and evaluated with the assistance of a consultant knowledgeable in cover crop management. Results are used to make cover crop management decisions to address erosion and water quality issues. Yields will be measured and statistically summarized following the procedures in Agronomy Technical Note 10 - Adaptive Management. The yields for each plot will be adjusted to the appropriate moisture content. This would be repeated for 3 years.

Feature Measure: Based on 10 acres
Scenario Unit: Each
Scenario Typical Size: 1.00

Scenario Total Cost:	\$2,771.60					
Scenario Cost/Unit:	\$2,7	1.60				
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	10	\$66.30
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	10	\$201.30
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	20	\$677.40
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	40	\$1,086.40
Materials						
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	10	\$126.60
Annual Grasses, Legumes or Forbs	2732	A mix of annual grasses, legumes and/or forbs, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$61.36	10	\$613.60

Practice: 340-Cover Crop
Scenario: \#11-Cover Crop - Multiple Species (Organic and Non-organic)
Scenario Description:
Typically the multi-species cover crop (two or more species) mix includes a small grain, a legume, and may include other species such as forage sorghum, radishes, turnips, buckwheat, etc.). This mix will address all the purposes of the Cover Crop (340) standard. Typically the cover crop is seeded immediately after harvest of a row crop, but may be inter-seeded into a row crop using a broadcast seeder, drill, or similar device. The cover crop will be followed by another row crop and will utilize the residue as a mulch. The cover crop should be allowed to generate as much biomass as possible without delaying planting of the following crop. The cover crop will be terminated using an approved herbicide or tillage prior to planting the subsequent crop and terminated per the NRCS Cover Crop Termination Guidelines.

Before Situation:

Row crops such as corn, soybeans, or cotton are grown and harvested in mid-late fall. Fields are disked immediately following harvest with rows in some fields being hipped for drainage. Residue amounts after harvest average 30% or less resulting in bare soil being exposed to wind erosion and/or intense rainfall during the fall, winter, and early spring. Over the winter residue degrades and sediment/nutrient runoff from fields increases. Erosion exceeds soil loss tolerances. Runoff from the fields flows into streams, water courses or other water bodies causing degradation to the receiving waters. Soil health (soil organic matter) declines over time as a result of tillage practices, low residue crops, and long periods of bare soil.

After Situation:
Implementation Requirements according to Cover Crop (340) are prepared and implemented. Within 30 days after the harvest of row crop, fields are planted with a multispecies (2 or more species) cover crop mix that generally includes a small grain, a legume, and may include other species such as forage sorghum, radishes, turnips, buckwheat, etc. The average field size is 40 acres. The cover crop is seeded with a drill, broadcast seeder, aerial broadcast, or other method. No additional fertilizer is applied with the cover crop. The cover crop provides soil cover by late fall, throughout the winter, and into the early spring. Runoff and erosion are reduced. Wind erosion is reduced by standing residues. The cover crop is terminated with an approved herbicide prior to spring planting as late as feasible to maximize plant biomass production. Over time, soil health is improved due to the additional biomass, ground cover, soil infiltration, and plant diversity introduced to the cropping system. Cover crop residues left on the surface may maximize weed control by increasing allelopathic and mulching effect.

Feature Measure: Area planted

Scenario Unit: Acres
Scenario Typical Size: 40.00

Scenario Total Cost: \$4,031.20						
Scenario Cost/Unit:		0.78				
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	40	\$265.20
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	40	\$805.20
Materials						
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	40	\$506.40
Annual Grasses, Legumes or Forbs	2732	A mix of annual grasses, legumes and/or forbs, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$61.36	40	\$2,454.40

Practice: 340-Cover Crop
Scenario: \#12-Pac. Island Area Cover Crop

Scenario Description:

A one or more species cover crop mix is planted soon after harvest for either and organic or inorganic operation. Seed is planted using a a drill or broadcast seeder. The cover crop should be allowed to generate as much biomass as possible without delaying planting of the following crop as permitted by the NRCS Cover Crop Termination Guidelines. The cover crop will be terminated using an approved herbicide and/or by mechanical operations prior to planting the subsequent crop. The cover crop will treat erosion, improve soil quality, reduce water quality degradation by utilizing excessive soil nutrients, suppress excessive weed pressures and break pest cycles, improve soil moisture use efficiency, or minimize soil compaction.

Before Situation:

Row crops such as corn, soybeans, or vegetables are grown and harvested. Fields are disked immediately following harvest, with rows in some fields being hipped for drainage. Residue amounts after harvest average 30% or less, resulting in bare soil being exposed to wind erosion and/or intense rainfall. After harvest residue degrades and sediment/nutrient runoff from fields increases. Sheet and rill erosion occurs with visible rills. Runoff from the fields flows into streams, water courses or other water bodies causing degradation to the receiving waters. Soil health (soil organic matter) declines over time as a result of tillage practices, low residue crops, and long periods of bare soil.

After Situation:
Implementation Requirements are prepared for the site specific conditions and desired purpose(s). After harvest of row crop, fields are planted with a one or more species cover crop to address erosion, improve soil quality, reduce water quality degradation by utilizing excessive soil nutrients, suppress excessive weed pressures and break pest cycles, improve soil moisture use efficiency, or minimize soil compaction. The cover crop provides soil cover until the following crop. Runoff and erosion are reduced and no rills are visible on the soil surface in the spring. Wind erosion is reduced by standing residues. The cover crop is terminated with an approved herbicide or tillage or crimper rolling prior to establishing the next crop. Over time, soil health is improved due to the additional biomass, ground cover, soil infiltration, and plant diversity introduced to the cropping system. Cover crop residues left on the surface may maximize weed control by increasing allelopathic and mulching effect.

Feature Measure: Acres Planted
Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$210.12
Scenario Cost/Unit: \$210.12
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	1	\$13.45
Mechanical weed control, Vegetation termination	957	Mechanical operations, Includes: Roller/crimper, mower, shredder, etc. Includes equipment, power unit and labor costs.	Acres	\$26.67	1	\$26.67
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	4	\$108.64
Materials						
Annual Grasses, Legumes or Forbs	2732	A mix of annual grasses, legumes and/or forbs, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$61.36	1	\$61.36
Mobilization						
Mobilization, Pacific Island	2679	Mobilization cost of materials for sea or air freight services between islands.	Pound	\$0.00	50	\$0.00

Practice: 340-Cover Crop
Scenario: \#13-Caribbean Legume Cover Crop

Scenario Description:

A legume will be planted as a cover crop immediately after harvest of a row crop, and will be followed by a row crop that will utilize fixed nitrogen and cover crop biomass as a mulch, provide erosion reduction, improve water quality, and soil health. This scenario assumes that seed will be planted with a drill. Legume seeds must be inoculated with the proper inoculant prior to planting. The cover crop should be allowed to reach early to mid-bloom before it is terminated, using an approved herbicide, in order to maximize nitrogen fixation.

Before Situation:
Fields are disked immediately following harvest, with some fields being hipped for drainage. Residue amounts after harvest average 30% or less, resulting in high erosion, impaired water quality, and degraded soil health.

After Situation:
The 340 Implementation Requirements is completed per the needed specifications for the field site. Harvest fields are planted immediately with a legume cover crop. The average field size is 5 acres. The cover crop is seeded with a drill. No fertilizer is applied with the cover crop. The cover crop provides soil cover to reduce erosion, improve water quality, and improve soil health.

Feature Measure: acres planted
Scenario Unit: Acres
Scenario Typical Size: 5.00
Scenario Total Cost: \$529.30

Scenario Cost/Unit: \$105.86
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	5	\$100.65
Materials						
Herbicide, 2,4-D	330	Broadleaf herbicide labeled for cropland and pasture. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$10.10	5	\$50.50
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	5	\$63.30
Herbicide, Surfactant	1095	Surfactants reduce the surface tension of water to produce more uniform coverage and penetration of herbicides, and weed killers. Paraffin Based Petroleum Surfactant. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$1.61	5	\$8.05
Annual Grasses, Legumes or Forbs	2732	A mix of annual grasses, legumes and/or forbs, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$61.36	5	\$306.80

Practice: 340-Cover Crop
Scenario: \#39-Cover Crop - Basic Organic

Scenario Description:

'Typically a small grain or small grain-legume mix (may also use forage sorghum, radishes, turnips, buckwheat, etc) will be planted as a cover crop immediately after harvest of an organically grown crop, and will be followed by an organically grown crop that will utilize the residue as a mulch. This scenario assumes that seed will be planted with a no-till drill. The cover crop should be allowed to generate as much biomass as possible, without delaying planting of the following crop. The cover crop will be terminated using a mechnical kill method (mowing, rolling, undercutting, etc.), within weeks prior to planting the subsequent crop. This scenario REQUIRES use of Certified Organic Seed. Associated practices: Conservation Cover (327), Conservation Crop Rotation (328), Residue and Tillage Management, No-Till/Strip Till/Direct Seed (329), Critical Area Planting (342), Residue Management, Seasonal (344), Residue and Tillage Management, Mulch Till (345), Residue and Tillage Management, Ridge Till (346), Nutrient Management (590), Integrated Pest Management (595).'

Before Situation:

Organically grown crops such as various vegetable and fruit crops (along with organically produced row crops) are grown and harvested in mid-late fall. Fields are disked immediately following harvest. Residue amounts after harvest average 30% or less, resulting in bare soil being exposed to wind erosion and/or intense rainfall during the fall, winter, and early spring. Over the winter residue degrades and sediment/nutrient runoff from fields increases. Sheet and rill erosion occurs with visible rills by spring. Runoff from the fields flows into streams, water courses or other water bodies causing degradation to the receiving waters. Soil health (soil organic matter) declines over time as a result of tillage practices, low residue crops, and long periods of bare soil.

After Situation:

Within 30 days after harvest of organic crop, fields are planted with a small grain-legume mix cover crop, typically rye and clover. The average field size is 25 acres. The cover crop is seeded with a no-till drill. No additional fertilizer is applied with the cover crop. The cover crop provides soil cover by late fall, throughout the winter, and into the early spring. Runoff and erosion are reduced and no rills are visible on the soil surface in the spring. The cover crop is terminated with using a mechnical kill method (mowing, rolling, undercutting, etc.), prior to spring planting as late as feasible to maximize plant biomass production. Over time, soil health is improved due to the additional biomass, ground cover, and plant diversity introduced to the cropping system. Wind erosion is reduced by standing resides. Cover crop residues left on the surface may maximize weed control by increasing allelopathic and mulching effect.

Feature Measure: Area Planted
Scenario Unit: Acres
Scenario Typical Size: 30.00
Scenario Total Cost: $\$ 3,685.80$
Scenario Cost/Unit: \$122.86
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Mechanical weed control, Vegetation termination	957	Mechanical operations, Includes: Roller/crimper, mower, shredder, etc. Includes equipment, power unit and labor costs.	Acres	\$26.67	30	\$800.10
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	30	\$603.90
Materials						
Certified Organic, Annual Grasses, Legumes and/or Forbs	2343	Annual grasses, mostly introduced but may be native. Used for temporary cover or cover crops. Certified organic. Includes material and shipping only.	Acres	\$76.06	30	\$2,281.80

Practice: 340-Cover Crop
Scenario: \#43 - Multi Species Cover Crop on Pasture

Scenario Description:

Typically a small grain-legume mix (may also use forage sorghum, radishes, turnips, buckwheat, etc.) will be over-seeded into perennial pasture for purposes of improving soil health. Cover crop species are drilled into native or improved pastures (Bermuda Grass/Bahia Grass). This scenario assumes that seed will be planted with a no-till drill. Legume seeds must be inoculated with the proper inoculant prior to planting. Cover crops are allowed to generate enough biomass to ensure that, during grazing, a large percentage of the cover crop is left on the surface as residues to increase soil health and address resource concerns. Livestock are grazed at high density levels for short durations to achieve desired results. Common resource concerns include Soil Quality Degradation -Subsidence, compaction and Organic Matter depletion, Degraded Plant Condition - undesirable plant productivity and health. Resource concerns will be documented using a Pasture Condition Score worksheet.

Before Situation:
Both improved and native pastures are overgrazed and little cover remains through fall and winter. Pasture management typically includes application of nutrients to a predominant monoculture of improved grasses. Soil organic matter is reduced, soil temperatures exceed the ambient air temperature reducing biological activity in the soil due to high soil temperatures and low soil moisture. Exposed pasture soils are subjected to water erosion and/or intense rainfall during the fall, winter, and early spring. Over the summer residue continues to degrade and sediment/nutrient runoff from fields increases. Sheet and rill erosion occurs with rills visible by early fall. Soil organic matter declines over time as a result of overgrazing, lack of biomass production and long periods of bare soil. Biological fixation of nitrogen is not occurring due to lack of diversity (legumes).

After Situation:

Pastures are over-seeded with a mixed species cover in the late summer or early fall, with either cool-season annuals on warm season pastures or warm season annuals on cool season pastures. The average field size is 40 acres. The cover crop is seeded with a no-till drill. No additional fertilizer is applied. The cover crop provides soil cover during the fall, throughout the winter, and into the early spring until the existing pasture species begin growth. Runoff and erosion are reduced and no rills are visible on the soil surface in the spring. The cover crop will be managed to maximize plant biomass production and mob-grazed (high intensity, short duration) to meet resource concern criteria. Wind erosion is reduced by standing residues. Over time, soil health is improved due to the additional biomass and the plant diversity introduced to the pasture system. Cover crop residues left on the surface may maximize weed control by increasing allelopathic and mulching effect. Soil moisture and infiltration are improved.

Feature Measure: Acre
Scenario Unit: Acres

Scenario Typical Size: 40.00
Scenario Total Cost: $\$ 3,259.60$

Scenario Cost/Unit: \$81.49
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	40	\$805.20
Materials						
Annual Grasses, Legumes or Forbs	2732	A mix of annual grasses, legumes and/or forbs, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$61.36	40	\$2,454.40

Practice: 340-Cover Crop
Scenario: \#60-Cover Crop - 1 acre or less

Scenario Description:

Typically a small grain or legume will be planted as a cover crop immediately after harvest of a crop, and will be followed by a crop. This scenario assumes that seed will be planted by hand. The cover crop should be allowed to generate as much biomass as possible, without delaying planting of the following crop. The cover crop will typically be terminated by mowing or tilling prior to planting the subsequent crop.

Before Situation:

Crops such as sweet corn, vegetables, or root crops are grown and harvested in mid-late fall. Fields are disked immediately following harvest, with rows in some fields being hipped for drainage. Residue amounts after harvest average 30% or less, resulting in bare soil being exposed to wind erosion and/or intense rainfall during the fall, winter, and early spring. Over the winter residue degrades and sediment/nutrient runoff from fields increases. Erosion exceeds soil loss tolerances. Runoff from the fields flows into streams, water courses or other water bodies causing degradation to the receiving waters. Soil health (soil organic matter) declines over time as a result of tillage practices, low residue crops, and long periods of bare soil.

After Situation:

Implementation Requirements according to Cover Crop (340) are prepared and implemented. Within 10 days after harvest of the crop, fields are planted with a smal grain or legume cover crop, typically rye or clover. The average field size is 0.25 acres. The cover crop is seeded by hand. No additional fertilizer is applied with the cover crop. The cover crop provides soil cover by late fall, throughout the winter, and into the early spring. Runoff and erosion are reduced. Wind erosion is reduced by standing residues. The cover crop is terminated with an approved herbicide prior to spring planting as late as feasible to maximize plant biomass production. Over time, soil health is improved due to the additional biomass, ground cover, soil infiltration, and plant diversity introduced to the cropping system. Cover crop residues left on the surface may maximize weed control by increasing allelopathic and mulching effect.

Feature Measure: area planted
Scenario Unit: Acres
Scenario Typical Size: 0.25
Scenario Total Cost: \$134.96
Scenario Cost/Unit: \$539.84
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	1	\$24.99
Walk-behind Rototiller	2723	8 hp walk-behind rototiller, one-day rental	Day	\$161.24	0.25	\$40.31
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	2	\$54.32
Materials						
Annual Grasses, Legumes or Forbs	2732	A mix of annual grasses, legumes and/or forbs, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$61.36	0.25	\$15.34

Practice: 340-Cover Crop
Scenario: \#86-Mechanical Termination of Cover Crop per 1000 square feet

Scenario Description:

Typical cover crop is more than one plant species, planted immediately after harvest of a crop and will be followed by a new crop. Cover crops are planted in the production bed typically 4000 square feet. Implementation is mostly hand labor or labor intensive. Cover crop is mechanically terminated in urban agricultural sites with State and local laws, ordinance and zoning restrictions on use of agrichemicals.

Before Situation:

Crop rotation include specialty crops such sweet corn, vegetables, or root crops are grown and harvested through out growing season and into mid-late fall. Residue amounts after harvest average 30% or less, resulting in bare soil being exposed to wind erosion and/or intense rainfall during the fall, winter, and early spring. Over the winter residue degrades and sediment/nutrient runoff from fields increases. Erosion exceeds soil loss tolerances. Runoff from the fields flows into streams, water courses or other water bodies causing degradation to the receiving waters. Soil health (soil organic matter) declines over time as a result of tillage practices, low residue crops, and long periods of bare soil.

After Situation:
Implementation Requirements according to Cover Crop (340) are prepared and implemented. The cover crop is seeded by hand. No additional fertilizer is applied with the cover crop. The cover crop provides soil cover at the critical period when cover is needed usually late fall, throughout the winter, and into the early spring. Runoff and erosion are reduced. Wind erosion is reduced by standing residues. The cover crop is mechanically terminated as late as feasible to maximize cover crop biomass production and meet the planting date needs of the next crop. Over time, soil health is improved due to additions of biomass, improvement of aggregate stability and infiltration/aeration.

Feature Measure: Area of Cover Crop Installed
Scenario Unit: 1,000 Square Foot
Scenario Typical Size: 4.00
Scenario Total Cost: \$116.54

Scenario Cost/Unit: \$29.13

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	1	\$13.45
Mechanical weed control, Vegetation termination	957	Mechanical operations, Includes: Roller/crimper, mower, shredder, etc. Includes equipment, power unit and labor costs.	Acres	\$26.67	1.5	\$40.01
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13
Materials						
Annual Grasses, Legumes or Forbs	2732	A mix of annual grasses, legumes and/or forbs, mostly introduced but	Acres	\$61.36	0.7	\$42.95

Practice: 340-Cover Crop
Scenario: \#89-Multi-species Cover Crop per 1000 square feet

Scenario Description:

Typical cover crop is more than one plant species, planted immediately after harvest of a crop and will be followed by a new crop. Cover crops are planted in the production bed typically 4000 square feet. Implementation is mostly hand labor or labor intensive. Cover crop is mechanically terminated in urban agricultural sites with State and local laws, ordinance and zoning restrictions on use of agrichemicals.

Before Situation:
Crop rotation include specialty crops such sweet corn, vegetables, or root crops are grown and harvested through out growing season and into mid-late fall. Residue amounts after harvest average 30% or less, resulting in bare soil being exposed to wind erosion and/or intense rainfall during the fall, winter, and early spring. Over the winter residue degrades and sediment/nutrient runoff from fields increases. Erosion exceeds soil loss tolerances. Runoff from the fields flows into streams, water courses or other water bodies causing degradation to the receiving waters. Soil health (soil organic matter) declines over time as a result of tillage practices, low residue crops, and long periods of bare soil.

After Situation:
Implementation Requirements according to Cover Crop (340) are prepared and implemented. The cover crop is seeded by hand. No additional fertilizer is applied with the cover crop. The cover crop provides soil cover at the critical period when cover is needed usually late fall, throughout the winter, and into the early spring. Runoff and erosion are reduced. Wind erosion is reduced by standing residues. The cover crop is mechanically terminated as late as feasible to maximize cover crop biomass production and meet the planting date needs of the next crop. Over time, soil health is improved due to additions of biomass, improvement of aggregate stability and infiltration/aeration.

Feature Measure: Area of Cover Crop Installed
Scenario Unit: 1,000 Square Foot
Scenario Typical Size: 4.00
Scenario Total Cost: \$250.41

Scenario Cost/Unit: \$62.60

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	1	\$13.45
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13
Chemical, spot treatment, single stem application	964	Ground applied chemical to individual plants or group of plants, e.g., backpack sprayer treatment. Equipment and labor cost included.	Hours	\$80.61	2	\$161.22
Materials						
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	1	\$12.66
Annual Grasses, Legumes or Forbs	2732	A mix of annual grasses, legumes and/or forbs, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$61.36	0.7	\$42.95

Practice: 342-Critical Area Planting
Scenario: \#1 - Native or Introduced Vegetation - Normal Tillage (Organic and Non-Organic)

Scenario Description:

Establishment of permanent vegetation (Native and Introduced) on a site (both organic and non-organic) that is void or nearly void of vegetation due to a natural occurrence or a newly constructed conservation practice. Costs include seedbed preparation with typical tillage implements, grass/legume seed, companion crop, and fertilizer and lime with application.

Before Situation:

Areas that are void or nearly void of vegetation, resulting in bare soil being exposed to erosive processes. The exposed areas may be caused from recent natural occurrences (fire, flood, wind, etc.) or due to newly constructed conservation practices such as waterways, terraces, water and sediment basins or dams. The exposed areas will be subject to wind and water erosion that exceed soil loss tolerances. Runoff from the area flows into streams, water courses or other water bodies causing degradation to the receiving waters. The soil typically has a pH imbalance and low fertility.

After Situation:

Implementation Requirements are prepared and implemented according to the Critical Area Planting (342) standard. This typical 1.0 acre critical area is stabilized by applying fertilizer, lime and seed. Soil amendments will be incorporated at a depth of four to six inches to improve fertility and ensure establishment of permanent vegetative cover. The site will be stabilized, erosion reduced, and offsite damages reduced/eliminated.

Feature Measure: area seeded
Scenario Unit: Acres
Scenario Typical Size: 1.00

Scenario Total Cost:	$\$ 449.66$
Scenario Cost/Unit:	$\$ 449.66$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	2	\$26.90
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	1	\$7.50
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13
Cultipacking	1100	Includes equipment, power unit and labor costs.	Acres	\$10.03	1	\$10.03
Materials						
Nitrogen (N), Urea	71	Price per pound of N supplied by Urea. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.65	30	\$19.50
Phosphorus, P2O5	73	Price per pound of P2O5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	60	\$54.60
Potassium, K2O	74	K2O supplied by Muriate Of Potash. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.68	60	\$40.80
Lime, ENM	75	Fertilizer: Limestone Spread on field.	Ton	\$90.75	2	\$181.50
Introduced Perennial Grasses, Legumes and/or Forbs, High Density	2749	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at high density (greater than 60 pure live seeds/sq ft). Includes material and shipping.	Acres	\$88.70	1	\$88.70

Practice: 342-Critical Area Planting
Scenario: \#4 - Native or Introduced Vegetation - Moderate Grading (Organic and Non-Organic)

Scenario Description:

Establishment of permanent vegetation (native and introduced) on a site that is void or nearly void of vegetation due to a natural or human disturbance. Costs include a dozer for grading and shaping of small gullies, seedbed preparation with typical tillage implements, grass/legume seed, companion crop, and fertilizer and lime with application.

Before Situation:

Areas that are void or nearly void of vegetation, resulting in bare soil being exposed to erosive processes. The exposed areas may be caused from natural occurrences (fire, flood, etc.) or human disturbance. The exposed areas have visible rills and small gullies averaging 1 foot in depth and 1 foot in width that requires some moderate grading to prepare a seedbed. Runoff from the area flows into streams, water courses or other water bodies causing degradation to the receiving waters. The soil typically has a pH imbalance and low fertility.

After Situation:

Implementation Requirements are prepared and implemented according to the Critical Area Planting (342) standard.. This typical 1.0 acre critical area is stabilized by grading and shaping the small gullies with a dozer and then applying fertilizer, lime and seed. The site will be stabilized, erosion reduced, and offsite damages reduced/eliminated.

Feature Measure: area seeded

Scenario Unit: Acres

Scenario Typical Size: 1.00

Scenario Total Cost: \$926.49

Scenario Cost/Unit: \$926.49
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 80 HP	929	Track mounted Dozer with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$77.14	4	\$308.56
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	2	\$26.90
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	1	\$7.50
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13
Cultipacking	1100	Includes equipment, power unit and labor costs.	Acres	\$10.03	1	\$10.03
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	4	\$127.48

Materials

Nitrogen (N), Urea	71	Price per pound of N supplied by Urea. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.65	30	\$19.50
Phosphorus, P2O5	73	Price per pound of P 2 O 5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	60	\$54.60
Potassium, K2O	74	K2O supplied by Muriate Of Potash. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.68	60	\$40.80
Lime, ENM	75	Fertilizer: Limestone Spread on field.	Ton	\$90.75	2	\$181.50
Annual Grasses	2730	Annual grasses, one or more species, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$40.79	1	\$40.79
Introduced Perennial Grasses, Legumes and/or Forbs, High Density	2749	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at high density (greater than 60 pure live seeds/sq ft). Includes material and shipping.	Acres	\$88.70	1	\$88.70

Practice: 342-Critical Area Planting
Scenario: \#6 - Native or Introduced Vegetation - Heavy Grading (Organic and Non-Organic)

Scenario Description:

Establishment of permanent vegetation on a site that is void or nearly void of vegetation due to a natural or human disturbance. Costs include a dozer for grading and shaping of moderate to severe gullies, seedbed preparation with typical tillage implements, grass/legume seed, companion crop, and fertilizer and lime with application.

Before Situation:
Areas that are void or nearly void of vegetation, resulting in bare soil being exposed to erosive processes. The exposed areas may be caused from natural occurrences (fire, flood, etc.) or human disturbance. The exposed areas have visible rills and moderate to severe gullies averaging 3 feet in depth and 3 feet in width. Runoff from the area flows into streams, water courses or other water bodies causing degradation to the receiving waters. The soil typically has a pH imbalance and low fertility.

After Situation:

Implementation Requirements are prepared and implemented according to the Critical Area Planting (342) standard. This typical 1.0 acre critical area is stabilized by grading and shaping the moderate to severe gullies with a dozer and then applying fertilizer, lime and seed. The site will be stabilized, erosion reduced, and offsite damages reduced/eliminated.

Feature Measure: area seeded

Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$1,294.40

Scenario Cost/Unit: \$1,294.40
Cost Details:

Component Name	ID	Description	Unit	Cost	QT	Tota

Equipment Installation

Dozer, 80 HP	929	Track mounted Dozer with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$77.14	8	\$617.12
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	2	\$26.90
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	1	\$7.50
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13
Cultipacking	1100	Includes equipment, power unit and labor costs.	Acres	\$10.03	1	\$10.03
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving	Hours	\$31.87	8	\$254.96

Equipment Operators, Heavy
Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.

Materials

Nitrogen (N), Urea	71	Price per pound of N supplied by Urea. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.65	30	\$19.50
Phosphorus, P2O5	73	Price per pound of P2O5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	60	\$54.60
Potassium, K2O	74	K2O supplied by Muriate Of Potash. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.68	60	\$40.80
Lime, ENM	75	Fertilizer: Limestone Spread on field.	Ton	\$90.75	2	\$181.50
Annual Grasses, Legumes or Forbs	2732	A mix of annual grasses, legumes and/or forbs, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$61.36	1	\$61.36

Practice: 342-Critical Area Planting
Scenario: \#13-Caribbean Critical Area Planting Heavy Grading

Scenario Description:

Establishment of permanent vegetation on a site that is void or nearly void of vegetation due to a natural or human disturbance. Costs include a dozer for grading and shaping of moderate to severe gullies, seedbed preparation with typical tillage implements, seeding, and mulching as needed by the unique site.

Before Situation:
Areas that are void or nearly void of vegetation, resulting in bare soil being exposed to erosive processes. The exposed areas may be caused from natural occurrences (fire, flood, etc) or human disturbance. The exposed areas have visible rills and moderate gullies.

After Situation:

Implementation Requirements for 342 Critical Area Planting is prepared for the unique site conditions. This typical 1.0 acre critical area is stabilized by grading and shaping the moderate to severe gullies with a dozer, seedbed preparation, applying fertilizer, lime and seed. The site is stabilized by permanent vegetation which controls soil erosion and mitigates offsite sedimentation.

Feature Measure: Acres treated
Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$1,206.18
Scenario Cost/Unit: \$1,206.18
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 80 HP	929	Track mounted Dozer with horsepower range of 60 to 90. Equipment and power unit costs. Labor not included.	Hours	\$77.14	8	\$617.12
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	1	\$24.99
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	8	\$254.96
Materials						
Nitrogen (N), Ammonium Sulfate	70	Price per pound of N supplied by Ammonium Sulfate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$1.01	50	\$50.50
Phosphorus, P2O5	73	Price per pound of P 2 O 5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	50	\$45.50
Potassium, K2O	74	K2O supplied by Muriate Of Potash. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.68	50	\$34.00
Lime, ENM	75	Fertilizer: Limestone Spread on field.	Ton	\$90.75	1	\$90.75
Introduced Perennial Grasses, Legumes and/or Forbs, Medium Density	2748	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at medium to higher density (41-60 pure live seeds/sq ft). Includes material and shipping.	Acres	\$68.23	1	\$68.23

Practice: 342-Critical Area Planting
Scenario: \#14-Caribbean Critical Area Planting - Normal Tillage

Scenario Description:

Establishment of permanent vegetation on a site that is void or nearly void of vegetation due to a natural occurrence or a newly constructed conservation practice. Costs include seedbed preparation with typical tillage implements, grass/legume seed, fertilizer, and mulch.

Before Situation:
Areas that are void or nearly void of vegetation, resulting in bare soil being exposed to erosive processes. The exposed areas may be caused from recent natural occurrences (fire, flood, wind, etc.) or due to newly constructed conservation practices such dams.

After Situation:

The Implementation Requirements with site specific specifications is prepared for each site. This typical 1.0 acre critical area is stabilized by applying fertilizer, lime, seed, and mulch. Vegetation is established, the soil is stabilized.

Feature Measure: Areas treated

Scenario Unit: Acres

Scenario Typical Size: 1.00

Scenario Total Cost: $\$ 608.10$
Scenario Cost/Unit: $\$ 608.10$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	1	\$24.99
Seeding Operation, No Till/Grass	960	No Till drill or grass drill for seeding. Includes equipment, power unit	Acres	\$20.13	1	\$20.13

Materials

Nitrogen (N), Ammonium Sulfate	70	Price per pound of N supplied by Ammonium Sulfate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$1.01	50	\$50.50
Phosphorus, P2O5	73	Price per pound of P 2 O 5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	50	\$45.50
Potassium, K2O	74	K2O supplied by Muriate Of Potash. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.68	50	\$34.00
Lime, ENM	75	Fertilizer: Limestone Spread on field.	Ton	\$90.75	1	\$90.75
Straw	1237	Small grain straw (non organic and certified organic). Includes materials only.	Ton	\$137.00	2	\$274.00
Introduced Perennial Grasses, Legumes and/or Forbs, Medium Density	2748	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at medium to higher density (41-60 pure live seeds/sq ft). Includes material and shipping.	Acres	\$68.23	1	\$68.23

Practice: 342-Critical Area Planting
Scenario: \#15 - US Virgin Island Critical Area Planting - Normal Tillage

Scenario Description:

Establishment of permanent vegetation on a site that is void or nearly void of vegetation due to a natural or human disturbance. Costs include tillage for seedbed preparation with typical tillage implements, grass/legume seed, companion crop, and fertilizer and lime with application, and mulch.

Before Situation:
Areas that are void or nearly void of vegetation, resulting in bare soil being exposed to erosive processes. The exposed areas may be caused from natural occurrences (fire, flood, etc) or human disturbance. Runoff from the area flows into streams, water courses or other water bodies causing degradation to the receiving waters. The soil typically has a pH imbalance and low fertility.

After Situation:
Implementation Requirements are prepared according to the 342 Critical Area Planting standard and implemented. This typical 1.0 acre critical area is stabilized by applying fertilizer, lime, seed, and mulch. The site will be stabilized, erosion reduced, and offsite damages reduced/eliminated.

Feature Measure: Acres treated
Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$961.00
Scenario Cost/Unit: $\$ 961.00$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	1	\$24.99
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	2	\$26.90
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13
Materials						
Nitrogen (N), Ammonium Sulfate	70	Price per pound of N supplied by Ammonium Sulfate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$1.01	50	\$50.50
Phosphorus, P2O5	73	Price per pound of P 2 O 5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	50	\$45.50
Potassium, K2O	74	K2O supplied by Muriate Of Potash. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.68	50	\$34.00
Lime, ENM	75	Fertilizer: Limestone Spread on field.	Ton	\$90.75	1	\$90.75
Introduced Perennial Grasses, Legumes and/or Forbs, Medium Density	2748	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at medium to higher density (41-60 pure live seeds/sq ft). Includes material and shipping.	Acres	\$68.23	1	\$68.23

Mobilization

Mobilization, Material, distance > 50 miles

1043 Mobilization cost of materials for special cases where the distance from the supplier delivery point to the job site exceeds 50 miles. The costs for shipping by UPS or bulk freight shipping to a location within 50 miles of the job site have already been included in the component price.

Dollars
\$1.00
600
$\$ 600.00$

Practice: 342-Critical Area Planting
Scenario: \#16 - US Virgin Islands Critical Area Planting - Heavy Grading

Scenario Description:

Establishment of permanent vegetation on a site that is void or nearly void of vegetation due to a natural or human disturbance. Costs include a dozer for grading and shaping of moderate to severe gullies, seedbed preparation with typical tillage implements, grass/legume seed, companion crop,fertilizer and lime with application, and mulch.

Before Situation:
Areas that are void or nearly void of vegetation, resulting in bare soil being exposed to erosive processes. The exposed areas may be caused from natural occurrences (fire, flood, etc) or human disturbance. The exposed areas have visible rills and moderate to severe gullies averaging 3 feet in depth and 3 feet in width. Runoff from the area flows into streams, water courses or other water bodies causing degradation to the receiving waters. The soil typically has a pH imbalance and low fertility.

After Situation:

Implementation Requirements are prepared according to the 342 Critical Area Planting standard for the unique site requirements and implemented. This typical 1.0 acre critical area is stabilized by grading and shaping the moderate to severe gullies with a dozer and then applying fertilizer, lime, seed, and mulch. The site will be stabilized, erosion reduced, and offsite damages reduced/eliminated.

Feature Measure: Acres Treated
Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 1,833.08$

Scenario Cost/Unit: \$1,833.08
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Tot

Equipment Installation

Dozer, 80 HP	929	Track mounted Dozer with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$77.14	8	\$617.12
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	1	\$24.99
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	2	\$26.90
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	8	\$254.96

Materials

Nitrogen (N), Ammonium Sulfate	70	Price per pound of N supplied by Ammonium Sulfate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$1.01	50	\$50.50
Phosphorus, P2O5	73	Price per pound of P 2 O 5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	50	\$45.50
Potassium, K2O	74	K2O supplied by Muriate Of Potash. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.68	50	\$34.00
Lime, ENM	75	Fertilizer: Limestone Spread on field.	Ton	\$90.75	1	\$90.75
Introduced Perennial Grasses, Legumes and/or Forbs, Medium Density	2748	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at medium to higher density (41-60 pure live seeds/sq ft). Includes material and shipping.	Acres	\$68.23	1	\$68.23
Mobilization						
Mobilization, Material, distance > 50 miles	1043	Mobilization cost of materials for special cases where the distance from the supplier delivery point to the job site exceeds 50 miles. The costs for shipping by UPS or bulk freight shipping to a location within 50 miles of the job site have already been included in the component price.	Dollars	\$1.00	600	\$600.00

Practice: 342-Critical Area Planting
Scenario: \#17-Pacific Island Critical Area Planting

Scenario Description:

Establishment of permanent vegetation (Native or Introduced) on a site that is void or nearly void of vegetation due to a natural or human disturbance. Costs include a dozer for grading and shaping of moderate to severe gullies, seedbed preparation with typical tillage implements, grass/legume seed, companion crop, and fertilizer and lime with application.

Before Situation:

Areas that are void or nearly void of vegetation, resulting in bare soil being exposed to erosive processes. The exposed areas may be caused from natural occurrences (fire, flood, etc) or human disturbance. The exposed areas have visible rills and moderate to severe gullies averaging 3 feet in depth and 3 feet in width. Runoff from the area flows into streams, water courses or other water bodies causing degradation to the receiving waters. The soil typically has a pH imbalance and low fertility.

After Situation:
Implementation Requirements are prepared according to the 342 Critical Area Planting standard and implemented. This typical 1.0 acre critical area is stabilized by grading and shaping the small gullies with a dozer and then applying fertilizer, lime and seed. The site will be stabilized, erosion reduced, and offsite damages reduced/eliminated.

Feature Measure: Acres Treated
Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$1,610.33
Scenario Cost/Unit: \$1,610.33

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 80 HP	929	Track mounted Dozer with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$77.14	8	\$617.12
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	2	\$26.90
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13
Materials						
Native Perennial Grasses, Medium Density	2751	Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at medium to higher density (41-60 pure live seeds/sq ft). Includes material and shipping.	Acres	\$192.81	1	\$192.81
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and	Each	\$753.37	1	\$753.37

Practice: 342-Critical Area Planting
Scenario: \#18-PIA - Criteria Area Planting

Scenario Description:

Establishment of permanent vegetation on a (Organic and Non-Organic) site that is void or nearly void of vegetation due to a natural occurrence or a newly constructed conservation practice. Costs include seedbed preparation with typical tillage implements, native grass seed, and trees/shrubs.
Before Situation:
Areas that are void or nearly void of vegetation, resulting in bare soil being exposed to erosive processes. The exposed areas may be caused from recent natural occurrences (fire, flood, wind, etc.) or due to newly constructed conservation practices such as waterways, terraces, water and sediment basins or dams. The exposed areas will be subject to wind and water erosion that exceed soil loss tolerances. Runoff from the area flows into streams, water courses or other water bodies causing degradation to the receiving waters. The soil typically has a pH imbalance and low fertility.

After Situation:
Implementation Requirements are prepared according to the 342 Critical Area Planting Standard and implemented. This typical 1.0 acre critical area is stabilized by applying seed and some trees and shrubs. The site will be stabilized, erosion reduced, and offsite damages reduced/eliminated.

Feature Measure: Acres Treated

Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$1,306.95
Scenario Cost/Unit: \$1,306.95

Cost Details:

Component Name	ID	Description	Unit	Cost	QT	Total

Equipment Installation

Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	2	\$26.90
Cultipacking	1100	Includes equipment, power unit and labor costs.	Acres	\$10.03	1	\$10.03
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	24	\$651.84

Materials

Shrub, Potted, Small	1524	Potted shrub seedling, 1 quart to 1 gallon. Includes materials and shipping only.	Each	\$7.79	50	\$389.50
Native and Introduced Perennial Grasses, Legumes and/or Forbs, High Density	2757	A mix of native and introduced perennial grasses, legumes, and/or forbs, grasses typically greater than 50% of the mix, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at high density (greater than 60 pure live seeds/sq ft). Includes material and shipping.	Acres	\$228.68	1	\$228.68
Mobilization						
Mobilization, Pacific Island	2679	Mobilization cost of materials for sea or air freight services between islands.	Pound	\$0.00	55	\$0.00

Practice: 342-Critical Area Planting
Scenario: \#70-Permanent Cover

Scenario Description:

Establishment of permanent vegetation on a site that is void of vegetation or needs to improve the vegetation to adequately cover the existing site soil to reduce particulate matter dust emissions. Costs include seedbed prep with light tillage, seed, fertilizer and lime. Small Scale fields and urban sites have soil conditions limiting vegetation growth or sensitive areas that need protection.

Before Situation:

Fields are bare or sparsely vegetated exposed to wind and water erosion. Soil physical of chemical properties limit vegetative growth. Urban site soils contain heavy metal contaminants at risk of emissions as particulate dust from field activities.

After Situation:
The Implementation Requirement with site specific instruction is prepared for each treatment site. The establishment of permanent vegetation will stabilize the soil. Sensitive areas are protected. Particulate dust is reduced. Wind and water erosion loss is within tolerance levels (T).

Feature Measure: planted area
Scenario Unit: 1,000 Square Foot
Scenario Typical Size: 15.00
Scenario Total Cost: \$308.16

Scenario Cost/Unit: \$20.54
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	0.8	\$10.76
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	0.4	\$8.05
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and	Hours	\$27.16	6	\$162.96

Materials

Nitrogen (N), Ammonium Sulfate	70	Price per pound of N supplied by Ammonium Sulfate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$1.01	5	\$5.05
Phosphorus, P2O5	73	Price per pound of P 2 O 5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	5	\$4.55
Potassium, K2O	74	K2O supplied by Muriate Of Potash. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.68	5	\$3.40
Test, Soil Test, Standard	299	Includes materials, shiping, labor, and equipment costs.	Each	\$14.23	1	\$14.23
Straw	1237	Small grain straw (non organic and certified organic). Includes materials only.	Ton	\$137.00	0.1	\$13.70
Introduced Perennial Grasses, Legumes and/or Forbs, High Density	2749	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at high density (greater than 60 pure live seeds/sq ft). Includes material and shipping.	Acres	\$88.70	0.4	\$35.48

Practice: 345 -Residue and Tillage Management, Reduced Till
Scenario: \#2 - Residue and Tillage Management, Reduced Till

Scenario Description:

Mulch-till is managing the amount, orientation and distribution of crop and other plant residue on the soil surface year round while limiting the soil-disturbing activities used to grow crops in systems where the entire field surface is tilled by the planter/drill or tillage tools prior to planting. This practice includes tillage methods commonly referred to as mulch tillage, vertical tillage, chiseling and disking, or the use of high disturbance drills without additional tillage. It applies to stubble mulching on summerfallowed land, to tillage for annually planted crops, to tillage for planted crops and to tillage for planting perennial crops. All residue shall be uniformly spread or managed over the surface throughout the critical erosion period(s). All residue shall be uniformly distributed over the entire field and not burned or removed. These periods of intensive tillage have led to excessive soil loss, often above the soil loss tolerance (T), due to the loss of crop residue on the soil surface. The NRCS erosion prediction model(s) will be used to review the farming operations and determine the amount of surface residue to manage throughout the rotation to keep soil loss below T . The producer will adopt a reduced till system to meet one or more of the practice purposes.

Before Situation:

Crops such as corn, soybeans, small grains, or cotton are grown and harvested. Fields are tilled immediately following harvest, with rows in some fields being hipped for drainage. Residue amounts after harvest average 30% or less, resulting in bare soil being exposed to wind erosion and/or intense rainfall during the fall, winter, and early spring. Over the winter residue degrades and sediment/nutrient runoff from fields increase. Sheet, rill and wind erosion occurs. Spring tillage and seedbed preparation activities occur as early as possible in the late winter and early spring. Runoff from the fields flows into streams, water courses or other water bodies causing water quality degradation. Soil health (soil organic matter) declines over time as a result of tillage practices, low residue monocultures, and long periods of bare soil.
After Situation:
The Implementation Requirements are prepared following the criteria in the 345 Residue and Tillage Management, Reduced Till conservation practice standard. Reduced till applies to all cropland and other lands where crops are planted. This scenario includes the use of a reduce till systems and high disturbance drills, such as a hoe drill, air seeder, or no-till drill that disturbs a large percentage of soil surface during the planting operation. The residue that remains on the soil surface provides soil cover during late fall, throughout the winter, and into the early spring. Runoff and water/wind erosion are reduced and water quality improves. Over time, soil health is improved due to less tillage, the additional biomass, ground cover, soil infiltration, and plant diversity in the cropping system.

Feature Measure: Area planted
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: $\$ 2,090.00$
Scenario Cost/Unit: \$20.90

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Seeding Operation, No Till/Strip	1230	No Till/Strip Till row planters for seeding. Includes all costs for	Acres	\$20.90	100	\$2,090.00

Practice: 345 - Residue and Tillage Management, Reduced Till
Scenario: \#3 - Mulch till-Adaptive Management

Scenario Description:

The practice scenario is for the implementation of mulch till in small replicated plots to allow the producer to learn how to manage mulch till on their operation. Scenario includes implementing replicated strip trials on a field plot to evaluate, identify and implement a particular mulch till management strategy (e.g., mulch till vs. conventional till, two different mulch till systems, etc.). This will be done following the guidelines outlined in Agronomy Technical Note 10 - Adaptive Management.

Before Situation:

Row crops such as corn, soybeans, or cotton are grown and harvested in mid-late fall. Fields are disked immediately following harvest, with rows in some fields being hipped for drainage. Residue amounts after harvest average 30% or less, resulting in bare soil being exposed to wind erosion and/or intense rainfall. Over the winter residue degrades and sediment/nutrient runoff from fields increases. Erosion exceeds soil loss tolerances. Spring tillage and seedbed preparation activities occur as early as possible in the late winter and early spring prior to planting. Weed control is accomplished primarily through tillage, requiring multiple operations. Runoff from the fields flows into streams, water courses or other water bodies causing degradation to the receiving waters. Soil health (soil organic matter) declines over time as a result of tillage practices, low residue monocultures, and long periods of bare soil. The producer is considering using mulch till technology, but is unsure how to manage on their operation or needs to improve the management of mulch till to be successful.

After Situation:
Implementation Requirements and the Adaptive Management Plan is prepared for the plots and implemented. Installation of this scenario will result in establishment of mulch till replicated plots to compare to different management strategies for mulch till and other residue management strategies following the guidelines outlined in Agronomy Technical Note 10 - Adaptive Management and the Adaptive Management Guidance 345 for Mulch Till. Implementation involves establishing the replicated plots to evaluate one or more reduced till management strategies. The plot will consist of at least four replicated plots designed, laid out, managed and evaluated with the assistance of a consultant knowledgeable in reduced till management. Results are used to make reduced till management decisions to address erosion, soil health, and water quality issues. Yields will be measured and statistically summarized following the procedures in Agronomy Technical Note 10 - Adaptive Management. The yields for each plot will be adjusted to the appropriate moisture content and residue levels measured as needed. This practice will be repeated for three years.

Feature Measure: Based on 20 acres

Scenario Unit: Each

Scenario Typical Size: 1.00

Scenario Total Cost:	$\$ 4,798.50$
Scenario Cost/Unit:	$\$ 4,798.50$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	20	\$269.00
Tillage, Primary	946	Includes heavy disking (offset) or chisel plow. Includes equipment, power unit and labor costs.	Acres	\$20.44	20	\$408.80
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	10	\$201.30
Seeding Operation, No Till/Strip Till Planter	1230	No Till/Strip Till row planters for seeding. Includes all costs for equipment, power unit, and labor.	Acres	\$20.90	10	\$209.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	40	\$1,086.40
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	20	\$2,624.00

Practice: 345 - Residue and Tillage Management, Reduced Till
Scenario: \#45-Reduced Till Sweep for No Burn/Sweep Beds - Sugarcane Production in Louisiana
Scenario Description:
In this scenario, sugarcane producers will be migrating from a system of burning residue immediately after harvest in the fall and winter to a system that discontinues burning and allows residue to be swept into furrows. No burning will take place during the management period. Adopting this system will improve soil quality, reduce erosion, and improve air quality in sensitive areas.

Before Situation:

Sugarcane residue is typically burned immediately after harvest in the fall and early winter. After burning, beds may be reshaped with tillage. Any crop residue that is present degrades and sediment/nutrient runoff from fields increases during rainfall events. Sheet and rill erosion occurs with visible signs of soil erosion by spring. Sensitive receptors near sugarcane fields will be exposed to increased particulate matter and degraded air quality during burning events.

After Situation:
After harvest in the fall or winter, residue will be swept from the sugarcane row tops into the furrows. Residue will not be burned. In the early spring, row reshaping (offbar and lay-by tillage) will occur as necessary. Over time, soil health is improved due to the additional crop residues, ground cover, and soil infiltration.

Feature Measure: Acres

Scenario Unit: Acres
Scenario Typical Size: 200.00
Scenario Total Cost: \$4,088.00

Scenario Cost/Unit: \$20.44
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Primary	946	Includes heavy disking (offset) or chisel plow. Includes equipment, power unit and labor costs.	Acres	\$20.44	200	\$4,088.00

Practice: 345 - Residue and Tillage Management, Reduced Till
Scenario: \#70-Reduced Tillage less than 0.5 acres
Scenario Description:
Scenario applies to Urban sites less than a $1 / 2$ acre with a rotation of organic or non-organic specialty crops (fruits and vegetable) are produced as part of a conservation management system to treat one or more of the following resource concerns: 1) Reduce sheet, rill and wind erosion, 2) Maintain or increase soil health and organic matter content, 3) Improve soil moisture efficiency, 4) Reduce plant pest pressures. This practice payment effectively implements a reduced tillage system on a typical urban specialty crop farm. Cost represents typical situations for organic and non-organic producers.

Before Situation

This rotation consisted of growing specialty crops. Fields range from nearly flat to B and C slopes. Erosion, soil quality, and pest management are the primary concern. Removal of residue from the planted area is common leaving bare soil-residue amounts average 10% or less. Full width tillage is performed prior to planting . Weed control is typically by cultivation.

After Situation:

The implementation requirements are written following CPS 345 Residue and Tillage Management, Reduced Tillage to treat one or more of the following resource concerns on organic and non- organic farms: reduce sheet, rill and wind erosion, maintain or increase soil health and organic matter content, improve soil moisture efficiency or reduce plant pest pressure. Soil disturbance is minimized with no-till drill or planter use. May include single slot opener and seedling or plug planting follows. When pest management requires the removal of crop residue then planting beds are covered with cover crop using the 340 Cover Crop conservation practice. Runoff and erosion are reduced below T. No observed rills. Wind erosion reduced by maintaining surface cover. Over time, soil health is improved due to less tillage, the additional biomass, ground cover, soil infiltration, and plant diversity in the cropping system.

Feature Measure: area planted

Scenario Unit: 1,000 Square Foot
Scenario Typical Size: 15.00
Scenario Total Cost: \$537.08
Scenario Cost/Unit: \$35.81

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	0.17	\$3.42
Seeding Operation, No Till/Strip Till Planter	1230	No Till/Strip Till row planters for seeding. Includes all costs for equipment, power unit, and labor.	Acres	\$20.90	0.17	\$3.55
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	9	\$244.44
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	6	\$285.66

Practice: 348-Dam, Diversion
Scenario: \#51-Rock/Gravel Fill

Scenario Description:

A rock structure with a gravel bedding on geotextile is built to divert all or part of the water from a waterway or a stream to provide water in such a manner that it can be controlled and used beneficially for irrigation, livestock water, fire control, municipal or industrial uses, develop renewable energy systems, or recreation, to divert periodic damaging flows from one watercourse to another watercourse thereby reducing the damage potential of the flows. This structure will address the resource concerns of inefficient water use on Irrigated Land, inadequate water for livestock, and inadequate water supply for other beneficial uses.

Before Situation:
This practice applies where a diversion dam is needed as an integral part of an irrigation system or a water-spreading system designed to facilitate the conservation use of soil and water resources, Diversion of water from an unstable watercourse to a stable watercourse is desirable, The water supply available is adequate for the purpose for which it is to be diverted, Adverse environmental impacts resulting from the installation of the practice can be overcome. This standard applies to structures of a permanent nature, constructed of materials having an expected life span consistent with the purpose for which the structure is designed. It does not apply where conservation practice standard Diversion (362), Floodwater Diversion (400), Dam (402), or Grade Stabilization Structure (410) would be used. This practice will provide beneficial uses for irrigation, livestock water, fire control, municipal or industrial uses, renewable energy systems, recreation, or to divert periodic damaging flows from one watercourse to another watercourse thereby reducing the damage potential of the flows.

After Situation:
A rock structure of approximately 1050 cubic yards with a gravel bedding of approximately 450 cubic yards on approximately 200 square yards of geotextile, built to divert all or part of the water from a waterway or a stream. This standard applies to structures of a permanent nature, constructed of materials having an expected life span consistent with the purpose for which the structure is designed. This structure will be an integral part of an irrigation system or a water-spreading system designed to facilitate the conservation use of soil and water resources, or diversion of water from an unstable watercourse to a stable watercourse as needed. The water supply available is adequate for the purpose for which it is to be diverted. Adverse environmental impacts resulting from the installation of the practice must be overcome. The rock structure provides beneficial uses for irrigation, livestock water, fire control, municipal or industrial uses, renewable energy systems, recreation, or to divert periodic damaging flows from one watercourse to another watercourse thereby reducing the damage potential of the flows. Any needed vegetation of disturbed areas must use Critical Area Planting (342). Other associated practices such as Channel Vegetation (322), Stream Habitat Improvement and Management (395), Channel Stabilization (584) will be as appropriate. Any needed head gates or flap gates to control the quantity of water being diverted must use Structure for Water Control (587).

Feature Measure: Fill in Cubic Yards
Scenario Unit: Cubic Yards
Scenario Typical Size: 1,500.00

Scenario Total Cost: \$165,081.19						
Scenario Cost/Unit:	\$110.05					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Materials						
Rock Riprap, Placed with geotextile	44	Rock Riprap, placed with geotextile. Includes materials, local delivery within 20 miles of quarry, and placement.	Cubic Yards	\$137.64	1050	\$144,522.00
Aggregate, Gravel, Graded	46	Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$44.85	450	\$20,182.50
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	0.5	\$376.69

Practice: 348 - Dam, Diversion
Scenario: \#52 - Earth Fill

Scenario Description:

An earth fill built to divert all or part of the water from a waterway or a stream to provide water in such a manner that it can be controlled and used beneficially for irrigation, livestock water, fire control, municipal or industrial uses, develop renewable energy systems, or recreation, to divert periodic damaging flows from one watercourse to another watercourse thereby reducing the damage potential of the flows. This structure will address the resource concerns of inefficient water use on Irrigated Land, inadequate water for livestock, and inadequate water supply for other beneficial
uses.
Before Situation:
This practice applies where a diversion dam is needed as an integral part of an irrigation system or a water-spreading system designed to facilitate the conservation use of soil and water resources, Diversion of water from an unstable watercourse to a stable watercourse is desirable, The water supply available is adequate for the purpose for which it is to be diverted, Adverse environmental impacts resulting from the installation of the practice can be overcome. This standard applies to structures of a permanent nature, constructed of materials having an expected life span consistent with the purpose for which the structure is designed. It does not apply where conservation practice standard Diversion (362), Floodwater Diversion (400), Dam (402), or Grade Stabilization Structure (410) would be used. This practice will provide beneficial uses for irrigation, livestock water, fire control, municipal or industrial uses, renewable energy systems, recreation, or to divert periodic damaging flows from one watercourse to another watercourse thereby reducing the damage potential of the flows.

After Situation:
An earth fill structure of approximately 1500 cubic yards is built to divert all or part of the water from a waterway or a stream. This standard applies to structures of a permanent nature, constructed of materials having an expected life span consistent with the purpose for which the structure is designed. This structure will be an integral part of an irrigation system or a water-spreading system designed to facilitate the conservation use of soil and water resources, or diversion of water from an unstable watercourse to a stable watercourse as needed. The water supply available is adequate for the purpose for which it is to be diverted. Adverse environmental impacts resulting from the installation of the practice must be overcome. The earth fill structure provides beneficial uses for irrigation, livestock water, fire control, municipal or industrial uses, renewable energy systems, recreation, or to divert periodic damaging flows from one watercourse to another watercourse thereby reducing the damage potential of the flows. Any needed vegetation of disturbed areas must use Critical Area Planting (342). Other associated practices such as Channel Vegetation (322), Stream Habitat Improvement and Management (395), Channel Stabilization (584) will be as appropriate. Any needed head gates or flap gates to control the quantity of water being diverted must use Structure for Water Control (587).

Feature Measure: Volume of Earth Fill

Scenario Unit: Cubic Yards
Scenario Typical Size: 1,500.00

Scenario Total Cost:	\$10,106.02					
Scenario Cost/Unit:	\$6.74					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Scraper, self propelled, 21 CY	1208	Self propelled earthmoving scraper with 21 CY capacity. Does not include labor.	Hours	\$291.91	30	\$8,757.30
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	30.5	\$972.04
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	0.5	\$376.69

Practice: 348-Dam, Diversion

Scenario: \#53-Earth Fill-Grouted Rock

Scenario Description:

An earth fill and grouted rock structure built to divert all or part of the water from a waterway or a stream to provide water in such a manner that it can be controlled and used beneficially for irrigation, livestock water, fire control, municipal or industrial uses, develop renewable energy systems, or recreation, to divert periodic damaging flows from one watercourse to another watercourse thereby reducing the damage potential of the flows. This structure will address the resource concerns of inefficient water use on Irrigated Land, inadequate water for livestock, and inadequate water supply for other beneficial uses.

Before Situation:
This practice applies where a diversion dam is needed as an integral part of an irrigation system or a water-spreading system designed to facilitate the conservation use of soil and water resources, Diversion of water from an unstable watercourse to a stable watercourse is desirable, The water supply available is adequate for the purpose for which it is to be diverted, Adverse environmental impacts resulting from the installation of the practice can be overcome. This standard applies to structures of a permanent nature, constructed of materials having an expected life span consistent with the purpose for which the structure is designed. It does not apply where conservation practice standard Diversion (362), Floodwater Diversion (400), Dam (402), or Grade Stabilization Structure (410) would be used. This practice will provide beneficial uses for irrigation, livestock water, fire control, municipal or industrial uses, renewable energy systems, recreation, or to divert periodic damaging flows from one watercourse to another watercourse thereby reducing the damage potential of the flows.

After Situation:
An earth fill and grouted rock structure of approximately 1050 cubic yards of earth fill with 450 cubic yards of grouted rock is built to divert all or part of the water from a waterway or a stream. This standard applies to structures of a permanent nature, constructed of materials having an expected life span consistent with the purpose for which the structure is designed. This structure will be an integral part of an irrigation system or a water-spreading system designed to facilitate the conservation use of soil and water resources, or diversion of water from an unstable watercourse to a stable watercourse as needed. The water supply available is adequate for the purpose for which it is to be diverted. Adverse environmental impacts resulting from the installation of the practice must be overcome. The earth fill and grouted rock structure provides beneficial uses for irrigation, livestock water, fire control, municipal or industrial uses, renewable energy systems, recreation, or to divert periodic damaging flows from one watercourse to another watercourse thereby reducing the damage potential of the flows. Any needed vegetation of disturbed areas must use Critical Area Planting (342). Other associated practices such as Channel Vegetation (322), Stream Habitat Improvement and Management (395), Channel Stabilization (584) will be as appropriate. Any needed head gates or flap gates to control the quantity of water being diverted must use Structure for Water Control (587).

Feature Measure: Volume of Total Fill
Scenario Unit: Cubic Yards
Scenario Typical Size: 1,500.00

Scenario Total Cost:	$\$ 106,698.07$
Scenario Cost/Unit:	$\$ 71.13$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Scraper, self propelled, 21 CY	1208	Self propelled earthmoving scraper with 21 CY capacity. Does not include labor.	Hours	\$291.91	21	\$6,130.11
Rock Riprap, grouted	1757	Grouted Rock Riprap, includes materials, local delivery within 20 miles of quarry, and placement.	Cubic Yards	\$221.16	450	\$99,522.00
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	21	\$669.27

Mobilization

Practice: 348-Dam, Diversion

Scenario: \#54-Sheet Pile Structure

Scenario Description:

A sheet pile structure with rock, built to divert all or part of the water from a waterway or a stream to provide water in such a manner that it can be controlled and used beneficially for irrigation, livestock water, fire control, municipal or industrial uses, develop renewable energy systems, or recreation, to divert periodic damaging flows from one watercourse to another watercourse thereby reducing the damage potential of the flows. This structure will address the resource concerns of inefficient water use on Irrigated Land, inadequate water for livestock, and inadequate water supply for other beneficial uses.

Before Situation:

This practice applies where a diversion dam is needed as an integral part of an irrigation system or a water-spreading system designed to facilitate the conservation use of soil and water resources, Diversion of water from an unstable watercourse to a stable watercourse is desirable, The water supply available is adequate for the purpose for which it is to be diverted, Adverse environmental impacts resulting from the installation of the practice can be overcome. This standard applies to structures of a permanent nature, constructed of materials having an expected life span consistent with the purpose for which the structure is designed. It does not apply where conservation practice standard Diversion (362), Floodwater Diversion (400), Dam (402), or Grade Stabilization Structure (410) would be used. This practice will provide beneficial uses for irrigation, livestock water, fire control, municipal or industrial uses, renewable energy systems, recreation, or to divert periodic damaging flows from one watercourse to another watercourse thereby reducing the damage potential of the flows.

After Situation:
A sheet pile structure of approximately 3000 square feet with approximately 660 cubic yards of riprap is built to divert all or part of the water from a waterway or a stream. This standard applies to structures of a permanent nature, constructed of materials having an expected life span consistent with the purpose for which the structure is designed. This structure will be an integral part of an irrigation system or a water-spreading system designed to facilitate the conservation use of soil and water resources, or diversion of water from an unstable watercourse to a stable watercourse as needed. The water supply available is adequate for the purpose for which it is to be diverted. Adverse environmental impacts resulting from the installation of the practice must be overcome. The sheet pile structure provides beneficial uses for irrigation, livestock water, fire control, municipal or industrial uses, renewable energy systems, recreation, or to divert periodic damaging flows from one watercourse to another watercourse thereby reducing the damage potential of the flows. Any needed vegetation of disturbed areas must use Critical Area Planting (342). Other associated practices such as Channel Vegetation (322), Stream Habitat Improvement and Management (395), Channel Stabilization (584) will be as appropriate. Any needed head gates or flap gates to control the quantity of water being diverted must use Structure for Water Control (587).

Feature Measure: Area of sheet pile
Scenario Unit: Square Feet
Scenario Typical Size: 3,000.00

Scenario Total Cost:	\$206,437.09					
Scenario Cost/Unit:	\$68.81					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Sheet piling, steel, 15 ft .	1337	Steel sheet pile, panels or barrier driven up to 15 feet and left in place. Includes materials, equipment and labor.	Square Feet	\$37.95	3000	\$113,850.00
Portable Welder	1407	Portable field welder. Equipment only. Labor not included.	Hours	\$19.17	24	\$460.08
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	24.5	\$829.82
Materials						
Rock Riprap, Placed with geotextile	44	Rock Riprap, placed with geotextile. Includes materials, local delivery within 20 miles of quarry, and placement.	Cubic Yards	\$137.64	660	\$90,842.40
Mobilization						
Mobilization, large equipment	1140	Equipment >150HP or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	0.5	\$454.80

Practice: 348-Dam, Diversion

Scenario: \#55-Reinforced Concrete Dam Diversion

Scenario Description:

A reinforced concrete dam diversion structure built to divert all or part of the water from a waterway or a stream to provide water in such a manner that it can be controlled and used beneficially for irrigation, livestock water, fire control, municipal or industrial uses, develop renewable energy systems, or recreation, to divert periodic damaging flows from one watercourse to another watercourse thereby reducing the damage potential of the flows. This structure will address the resource concerns of inefficient water use on Irrigated Land, inadequate water for livestock, and inadequate water supply for other beneficial uses.

Before Situation:
This practice applies where a diversion dam is needed as an integral part of an irrigation system or a water-spreading system designed to facilitate the conservation use of soil and water resources, Diversion of water from an unstable watercourse to a stable watercourse is desirable, The water supply available is adequate for the purpose for which it is to be diverted, Adverse environmental impacts resulting from the installation of the practice can be overcome. This standard applies to structures of a permanent nature, constructed of materials having an expected life span consistent with the purpose for which the structure is designed. It does not apply where conservation practice standard Diversion (362), Floodwater Diversion (400), Dam (402), or Grade Stabilization Structure (410) would be used. This practice will provide beneficial uses for irrigation, livestock water, fire control, municipal or industrial uses, renewable energy systems, recreation, or to divert periodic damaging flows from one watercourse to another watercourse thereby reducing the damage potential of the flows.

After Situation:
A reinforced concrete dam diversion structure of approximately 1500 cubic yards of concrete is built to divert all or part of the water from a waterway or a stream. This standard applies to structures of a permanent nature, constructed of materials having an expected life span consistent with the purpose for which the structure is designed. This structure will be an integral part of an irrigation system or a water-spreading system designed to facilitate the conservation use of soil and water resources, or diversion of water from an unstable watercourse to a stable watercourse as needed. The water supply available is adequate for the purpose for which it is to be diverted. Adverse environmental impacts resulting from the installation of the practice must be overcome. The reinforced concrete structure provides beneficial uses for irrigation, livestock water, fire control, municipal or industrial uses, renewable energy systems, recreation, or to divert periodic damaging flows from one watercourse to another watercourse thereby reducing the damage potential of the flows. Any needed vegetation of disturbed areas must use Critical Area Planting (342). Other associated practices such as Channel Vegetation (322), Stream Habitat Improvement and Management (395), Channel Stabilization (584) will be as appropriate. Any needed head gates or flap gates to control the quantity of water being diverted must use Structure for Water Control (587).

Feature Measure: Volume of Total Fill
Scenario Unit: Cubic Yards
Scenario Typical Size: 1,500.00

Practice: 350-Sediment Basin
Scenario: \#11 - Excavated volume
Scenario Description:
An excavated sediment basin in an existing drainage way on a farm for purpose of trapping sediment and preserving the capacity of reservoirs, ditches, canals, diversions, waterways and streams and to prevent undesirable deposition on bottom lands and other developed lands. The sediment basin is created solely by excavation and impounds less than 3 feet against the embankment or spoil. Excavated material is spoiled, not placed in a designed embankment. Earthen spillway is constructed as needed. Resource concerns addressed include excessive suspended sediment and turbidity in surface water, damage from sediment deposition, and reduced capacity of conveyances by sediment deposition. Surface water causes the sediment (and potentially pesticides and nutrients) to be transported into the riparian areas and water bodies downstream.

Before Situation:
Disturbed areas on all land uses that have excessive erosion lead to deterioration of receiving waters due to excessive sedimentation.

After Situation:

'The typical sediment basin is constructed by excavating 1500 cubic yards and spreading the spoil outside the pool area using a dozer or similar excavation equipment. The sediment storage capacity should be a minimum of 900 cubic feet per acre of disturbed area. The detention storage should be a minimum of 3600 cubic feet per acre of drainage area. Associated practice(s): Other practices that may need to be implemented along with sediment basin to address all of the site specific resource concerns include: Critical Area Planting (342) and Mulching (484) where necessary to prevent erosion following construction activities, Structure for Water Control (587) if using a dewatering device, Pond Sealing or Lining (521A,521B,521C,521D).

Feature Measure: Excavated volume
Scenario Unit: Cubic Yards
Scenario Typical Size: 1,500.00
Scenario Total Cost: \$3,790.19
Scenario Cost/Unit: \$2.53
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160 . Equipment and power unit costs. Labor not included.	Hours	\$98.78	23	\$2,271.94
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	24	\$764.88
Mobilization						
Mobilization, medium equipment	1139	Equipment with $70-150 \mathrm{HP}$ or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 351-Well Decommissioning
Scenario: \#1-Wells less than or equal to 15 feet deep, 3 to 36 inch diameters.
Scenario Description:
For inactive, abandoned, or unusable wells less than or equal to 15 ' in depth, 3 ' to 36 ' diameter openings, the landowner is responsible for plugging the well in order to prevent entry of vermin, debris, contaminated surface waters, or other foreign substances from entering the groundwater, and to eliminate potential physical hazards associated to an open hole.

Before Situation:

The typical scenario assumes a 15 ' deep well with a 15 ' diameter well casing.
After Situation:
Plugging shall conform to the criteria of the standard, and take into consideration other associated practices such as 342 , Critical Area Seeding. It assumes both earth materials and cement grout would be used to backfill.

Feature Measure: Depth of Well
Scenario Unit: Feet
Scenario Typical Size: 15.00
Scenario Total Cost: $\$ 2,218.37$
Scenario Cost/Unit: \$147.89

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	2	\$130.42
Grout pump	1334	Grout pump with tremie pipe. Equipment and power unit costs. Labor not included.	Hours	\$24.52	1	\$24.52
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	1	\$33.87
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	1	\$27.16
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	2	\$63.74

Materials

Grout, cement	1333	Cement grout meeting ASTM specifications for well sealing. Includes both neat-cement grout and bentonite gout mixtures. Includes materials, equipment and labor to place.	Cubic Yards	\$607.10	0.7	\$424.97
Chlorine	1335	Liquid chlorine bleach. Includes materials only.	Gallons	\$6.95	1	\$6.95
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 351-Well Decommissioning
Scenario: \#2 - Wells greater than 15 feet deep to 25 feet deep, 3 to 36 inch diameters.

Scenario Description:

For inactive, abandoned, or unusable wells greater than 15^{\prime} and less than or equal to 25^{\prime} in depth, 3 ' to 36^{\prime} diameter openings, the landowner is responsible for plugging the well in order to prevent entry of vermin, debris, contaminated surface waters, or other foreign substances from entering the groundwater, and to eliminate potential physical hazards associated to an open hole.

Before Situation:
The typical scenario assumes a 25 ' deep well with a 12 ' diameter well casing.
After Situation:
Plugging shall conform to the criteria of the standard, and take into consideration other associated practices such as 342, Critical Area Seeding. It assumes both earth materials and cement grout would be used to backfill.

Feature Measure: Depth of Well
Scenario Unit: Feet
Scenario Typical Size: 25.00
Scenario Total Cost: $\quad \$ 2,437.51$

Scenario Cost/Unit: \$97.50

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	3	\$195.63
Grout pump	1334	Grout pump with tremie pipe. Equipment and power unit costs. Labor not included.	Hours	\$24.52	1	\$24.52
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	3	\$101.61
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	3	\$81.48
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	3	\$95.61

Materials

Grout, cement	1333	Cement grout meeting ASTM specifications for well sealing. Includes both neat-cement grout and bentonite gout mixtures. Includes materials, equipment and labor to place.	Cubic Yards	\$607.10	0.7	\$424.97
Chlorine	1335	Liquid chlorine bleach. Includes materials only.	Gallons	\$6.95	1	\$6.95
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 351-Well Decommissioning
Scenario: \#3 - Wells greater than 25 feet deep to 40 feet deep, 3 to 36 inch diameters.

Scenario Description:

For inactive, abandoned, or unusable wells greater than 25 ft and less than or equal to 40 ft in depth, 3 to 36 inch diameter openings, the landowner is responsible for plugging the well in order to prevent entry of vermin, debris, contaminated surface waters, or other foreign substances from entering the groundwater, and to eliminate potential physical hazards associated to an open hole.

Before Situation:
The typical scenario assumes a 40 ft deep well with a 10 inch diameter well casing.

After Situation:

Plugging shall conform to the criteria of the standard, and take into consideration other associated practices such as 342, Critical Area Seeding. It assumes both earth materials and cement grout would be used to backfill.

Feature Measure: Depth of Well

Scenario Unit: Feet

Scenario Typical Size: 40.00

Scenario Total Cost:	$\$ 2,498.22$
Scenario Cost/Unit.	$\$ 62.46$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	3	\$195.63
Grout pump	1334	Grout pump with tremie pipe. Equipment and power unit costs. Labor not included.	Hours	\$24.52	1	\$24.52
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	3	\$101.61
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	3	\$81.48
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	3	\$95.61

Materials

Grout, cement

Chlorine 1335 Liquid chlorine bleach. Includes materials only. \quad Gallons	\$6.95	1

Mobilization

1139 Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.

Practice: 351-Well Decommissioning
Scenario: \#4 - Wells greater than 40 feet deep to 75 feet deep, 3 to 36 inch diameters.

Scenario Description:

For inactive, abandoned, or unusable wells greater than 40^{\prime} and less than or equal to 75^{\prime} in depth, 3^{\prime} to 36^{\prime} diameter openings, the landowner is responsible for plugging the well in order to prevent entry of vermin, debris, contaminated surface waters, or other foreign substances from entering the groundwater, and to eliminate potential physical hazards associated to an open hole.

Before Situation:

The typical scenario assumes a 75' deep well with a 10' diameter well casing.

After Situation:

Plugging shall conform to the criteria of the standard, and take into consideration other associated practices such as 342, Critical Area Seeding. It assumes both earth materials and cement grout would be used to backfill.

Feature Measure: Depth of Well

Scenario Unit: Feet

Scenario Typical Size: 75.00

Scenario Total Cost: $\$ 2,889.32$
Scenario Cost/Unit: \$38.52

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	3	\$195.63
Grout pump	1334	Grout pump with tremie pipe. Equipment and power unit costs. Labor not included.	Hours	\$24.52	1	\$24.52
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	2	\$67.74
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	3	\$81.48
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	3	\$95.61

Materials

Grout, cement

Chlorine

1333 Cement grout meeting ASTM specifications for well sealing. Includes both neat-cement grout and bentonite gout mixtures. Includes materials, equipment and labor to place.
$\begin{array}{lllll}1335 & \text { Liquid chlorine bleach. Includes materials only. } & \text { Gallons } & \$ 6.95 & 1\end{array}$

Mobilization

1139 Equipment with $70-150$ HP or typical weights between 14,000 and
Each
\$753.37
2

Practice: 351-Well Decommissioning
Scenario: \#5 - Wells greater than 75 feet deep to 300 feet deep, 10 inch diameter or less.

Scenario Description:

For inactive, abandoned, or unusable wells greater than 75^{\prime} and less than or equal to 300 ' in depth, 0 to 10' diameter openings, the landowner is responsible for plugging the well in order to prevent entry of vermin, debris, contaminated surface waters, or other foreign substances from entering the groundwater, and to eliminate potential physical hazards associated to an open hole. A licensed well driller is responsible for wells drilled and abandoned prior to the drilling equipment being removed.

Before Situation:
The typical scenario assumes a 175' deep well with a 6 ' diameter well casing.
After Situation:
Plugging shall conform to the criteria of the standard, and take into consideration other associated practices such as 342, Critical Area Seeding. It assumes cement grouting the entire well column under the typical situation, though other suitable materials as prescribed in the standard criteria may be used.

Feature Measure: Depth of Well
Scenario Unit: Feet
Scenario Typical Size: 175.00
Scenario Total Cost: $\$ 3,189.91$

Scenario Cost/Unit: \$18.23

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	6	\$391.26
Grout pump	1334	Grout pump with tremie pipe. Equipment and power unit costs. Labor not included.	Hours	\$24.52	1	\$24.52
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	6	\$203.22
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	4	\$108.64
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	5	\$159.35

Materials

Grout, cement

Chlorine

Mobilization

1333 Cement grout meeting ASTM specifications for well sealing. Includes both neat-cement grout and bentonite gout mixtures. Includes materials, equipment and labor to place.
$\begin{array}{lllll}1335 & \text { Liquid chlorine bleach. Includes materials only. } & \text { Gallons } & \$ 6.95 & 1\end{array}$

1139 Equipment with $70-150 \mathrm{HP}$ or typical weights between 14,000 and 30,000 pounds.

Practice: 351-Well Decommissioning
Scenario: \#6 - Wells greater than 300 feet deep, 10 inch diameter or less.

Scenario Description:

For inactive, abandoned, or unusable wells greater than 300' in depth, 0 to 10 diameter openings, the landowner is responsible for plugging the well in order to prevent entry of vermin, debris, contaminated surface waters, or other foreign substances from entering the groundwater, and to eliminate potential physical hazards associated to an open hole. A licensed well driller is responsible for wells drilled and abandoned prior to the drilling equipment being removed.

Before Situation:

The typical scenario assumes a 400' deep well with a 6' diameter well casing.

After Situation:

Plugging shall conform to the criteria of the standard, and take into consideration other associated practices such as 342, Critical Area Seeding. It assumes cement grouting the entire well column under the typical situation, though other suitable materials as prescribed in the standard criteria may be used.

Feature Measure: Depth of Well

Scenario Unit: Feet

Scenario Typical Size: 400.00

Scenario Total Cost:	$\$ 4,275.92$
Scenario Cost/Unit:	$\$ 10.69$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	5	\$326.05
Grout pump	1334	Grout pump with tremie pipe. Equipment and power unit costs. Labor not included.	Hours	\$24.52	1	\$24.52
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	8	\$270.96
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	5	\$159.35

Materials

Grout, cement

Chlorine

Mobilization

1333 Cement grout meeting ASTM specifications for well sealing. Includes both neat-cement grout and bentonite gout mixtures. Includes materials, equipment and labor to place.
1335 Liquid chlorine bleach. Includes materials only.
Gallons
Gallons $\quad \$ 6.95 \quad 1.5 \quad \$ 10.43$

1139 Equipment with $70-150$ HP or typical weights between 14,000 and

Practice: 351-Well Decommissioning
Scenario: \#7-Wells greater than 75 feet deep to 300 feet deep, exceeds 10 inch diameter.

Scenario Description:

For inactive, abandoned, or unusable wells greater than 75 ' and less than or equal to 300 ' in depth, 10 ' diameter or greater openings, the landowner is responsible for plugging the well in order to prevent entry of vermin, debris, contaminated surface waters, or other foreign substances from entering the groundwater, and to eliminate potential physical hazards associated to an open hole. A licensed well driller is responsible for wells drilled and abandoned prior to the drilling equipment being removed.

Before Situation:

The typical scenario assumes a 200' deep well with a 16 ' diameter well casing.

After Situation:

Plugging shall conform to the criteria of the standard, and take into consideration other associated practices such as 342, Critical Area Seeding. It assumes cement grouting the entire well column under the typical situation, though other suitable materials as prescribed in the standard criteria may be used.

Feature Measure: Depth of Well

Scenario Unit: Feet

Scenario Typical Size: 200.00
Scenario Total Cost: $\$ 8,488.29$

Scenario Cost/Unit: \$42.44

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	4	\$260.84
Grout pump	1334	Grout pump with tremie pipe. Equipment and power unit costs. Labor not included.	Hours	\$24.52	1	\$24.52
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	5	\$169.35
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	5	\$135.80
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	4	\$127.48

Materials

Grout, cement

Chlorine

Mobilization

1333 Cement grout meeting ASTM specifications for well sealing. Includes both neat-cement grout and bentonite gout mixtures. Includes materials, equipment and labor to place.
$\begin{array}{lllll}1335 & \text { Liquid chlorine bleach. Includes materials only. } & \text { Gallons } & \$ 6.95 & 1.5\end{array}$

1139 Equipment with $70-150$ HP or typical weights between 14,000 and 30,000 pounds.

Practice: 351-Well Decommissioning
Scenario: \#8 - Wells greater than 300 feet deep, exceeds 10 inch diameter.

Scenario Description:

For inactive, abandoned, or unusable wells greater than 300 ' in depth, and for casings exceeding 10 inch diameter, the landowner is responsible for plugging the well in order to prevent entry of vermin, debris, contaminated surface waters, or other foreign substances from entering the groundwater, and to eliminate potential physical hazards associated to an open hole. A licensed well driller is responsible for wells drilled and abandoned prior to the drilling equipment being removed.

Before Situation:
The typical scenario assumes a 500' deep well with a 16 ' diameter well casing.
After Situation:
Plugging shall conform to the criteria of the standard, and take into consideration other associated practices such as 342, Critical Area Seeding. It assumes cement grouting the entire well column based on rate shown, though other suitable materials as prescribed in the standard criteria may actually be used.

Feature Measure: Depth of Well
Scenario Unit: Feet
Scenario Typical Size: 500.00
Scenario Total Cost: $\$ 18,267.21$

Scenario Cost/Unit: \$36.53

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	5	\$326.05
Grout pump	1334	Grout pump with tremie pipe. Equipment and power unit costs. Labor not included.	Hours	\$24.52	2	\$49.04
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	8	\$270.96
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	5	\$159.35

Materials

Grout, cement	1333	Cement grout meeting ASTM specifications for well sealing. Includes both neat-cement grout and bentonite gout mixtures. Includes materials, equipment and labor to place.	Cubic Yards	\$607.10	25.9	\$15,723.89
Chlorine	1335	Liquid chlorine bleach. Includes materials only.	Gallons	\$6.95	2	\$13.90
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 351-Well Decommissioning
Scenario: \#9 - Hand dug, greater than 3 feet to 5 feet diameter, all depths.
Scenario Description:
For inactive, abandoned, or unusable hand dug wells greater than 3 ' and less than or equal to 5 ' in diameter, all depths, the landowner is responsible for plugging the well in order to prevent entry of vermin, debris, contaminated surface waters, or other foreign substances from entering the groundwater, and to eliminate potential physical hazards associated to an open hole. Backfill shall be placed and compacted in a manner that minimizes segredation and bulking to prevent surface subsidence.

Before Situation:

The typical scenario assumes a 4' diameter well, 25^{\prime} deep, with or without mortar casing.
After Situation:
Plugging shall conform to the criteria of the standard, and take into consideration other associated practices such as 342 , Critical Area Seeding. It assumes filling the well with suitable fill materials as prescribed in the standard criteria.

Feature Measure: Depth of well
Scenario Unit: Feet
Scenario Typical Size: 25.00
Scenario Total Cost: \$1,344.98

Scenario Cost/Unit: \$53.80
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	13	\$74.10
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	4	\$260.84
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	6	\$162.96
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	3	\$83.28
Materials						
Chlorine	1335	Liquid chlorine bleach. Includes materials only.	Gallons	\$6.95	1.5	\$10.43
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 355-Groundwater Testing
Scenario: \#1-Basic Water Test

Scenario Description:

Typical scenario includes the professional testing for total alkalinity, hardness, pH , total soluble solids, nitrates, nitrites, total dissolved solids, and coliform to confirm well water meets basic water quality standards for consumption by livestock or use in irrigation. Water samples are sent to an EPA or state certified laboratory for testing. This scenario is recommended when water quality is suspected to be unacceptable.

Before Situation:

There are no known contaminants of the well, however, neighboring wells have known issues with nitrates, or coliform, and confirmation of acceptable water quality is desired. Manure is spread near to the well, following a nutrient management plan; well contamination is unlikely but possible.

After Situation:
Water quality results are known.
Feature Measure: No.
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$141.48
Scenario Cost/Unit: \$141.48

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	2.5	\$84.68
Materials						
Test, Standard Water Test, Irrigation Suitability	310	Irrigation water suitability lab analysis. Includes pH , alkalinity, carbonates/bicarbonates, EC, dissolved solids, $\mathrm{B}, \mathrm{Cl}, \mathrm{Ca}, \mathrm{Mg}, \mathrm{Na}, \mathrm{SAR}$, and hardness.	Each	\$56.80	1	\$56.80

Practice: 355-Groundwater Testing
Scenario: \#9 - Specialty Water Test

Scenario Description:

Typical scenario includes the professional testing for pesticides, heavy metals, VOC's or other less common substances, in addition to the basic water test items. Tests are intended to confirm well water meets water quality standards for consumption by livestock or use in irrigation. Water samples are sent to an EPA or state certified laboratory for testing. This scenario is recommended when water quality is suspected to be degraded due to a specialized substance.

Before Situation:
There are no known contaminants of the well, however, neighboring wells have known issues with water quality, and confirmation of acceptable water quality is desired. Manure, pesticides, or other potential contaminants have been spread near to the well, in an unmanaged manner; well contamination is possible.

After Situation:
Water quality results are known.
Feature Measure: No.
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$280.95
Scenario Cost/Unit: \$280.95

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	0.5	\$13.58
Materials						
Test, Standard Water Test, Irrigation Suitability	310	Irrigation water suitability lab analysis. Includes pH , alkalinity, carbonates/bicarbonates, EC, dissolved solids, $\mathrm{B}, \mathrm{Cl}, \mathrm{Ca}, \mathrm{Mg}, \mathrm{Na}, \mathrm{SAR}$, and hardness.	Each	\$56.80	1	\$56.80
Test, singular specialized water test, well water	2003	Testing for specific pesticide, inorganic chemical or volatile organic not included in a basic well suitability test. Includes materials and shipping only.	Each	\$210.57	1	\$210.57

Practice: 355-Groundwater Testing
Scenario: \#10 - Full Spectrum Test

Scenario Description:

Typical scenario includes the professional comprehensive testing for all less common substances, to include: pesticides, heavy metals, VOC's or other less common substances, in addition to the basic water test items. Tests are intended to confirm well water meets water quality standards for consumption by livestock or use in irrigation. Water samples are sent to an EPA or state certified laboratory for testing. This scenario is recommended when water quality is known to be degraded due to a specialized substance but thorough analysis is warranted.

Before Situation:
There are no known contaminants of the well, however, neighboring wells have known issues with water quality, and confirmation of acceptable water quality is desired. Manure, pesticides, sewage sludge, or other potential contaminants have been spread near to the well, in an unmanaged manner; well contamination is likely.

After Situation:

Water quality results are known.
Feature Measure: No.
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$361.78

Scenario Cost/Unit: \$361.78
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	0.5	\$13.58
Materials						
Test, Standard Water Test, Irrigation Suitability	310	Irrigation water suitability lab analysis. Includes pH , alkalinity, carbonates/bicarbonates, EC, dissolved solids, $\mathrm{B}, \mathrm{Cl}, \mathrm{Ca}, \mathrm{Mg}, \mathrm{Na}, \mathrm{SAR}$, and hardness.	Each	\$56.80	1	\$56.80
Test, comprehensive specialized water test, well water	2002	Comprehensive testing for a broad spectrum of pesticides, inorganic chemicals or volatile organics not included in a basic well suitability test. Includes materials and shipping only.	Each	\$291.40	1	\$291.40

Practice: 356-Dike and Levee
Scenario: \#1-Class III
Scenario Description:
Construction of a barrier, constructed of an earthen embankment, to control water level that is located on a site where damage likely to occur from failure will be minimal (Class III). Embankment structure to provide adequate freeboard, allowance for settlement, and foundation and embankment stability. Associated practices include, but are not limited to: PS327 Conservation Cover, PS656 Constructed Wetland, PS342 Critical Area Planting, PS378 Ponds, PS382 Fence, PS464 Irrigation Land Levelling, PS500 Obstruction Removal, PS528 Prescribed Grazing, PS587 Structure for Water Control, PS620 Underground Outlet, PS645 Upland Wildlife Management, PS658 Wetland Creation, PS659 Wetland Enhancement, PS657 Wetland Restoration, PS644 Wetland Wildlife Habitat Management.

Before Situation:

Site is subject to flooding or inundation which poses a potential hazard to public safety, damage to land or property. Site may also require control of water level for purposes connected with crop production; fish and wildlife managment; or wetland maintenance, improvement, restoration, or construction. An adequate quantity of soil suitable for constructing an earthen dike is available on-site.

After Situation:
Water level controlled by a stable earthen structure. Potential hazard to public safety, land or property mitigated; environmental benefit provided. Typical earthen dike is assumed to be 1500 linear feet, Class III (3 ft . in height, 10 ft . top width, $6 \mathrm{H}: 1 \mathrm{~V}$ side slopes). Total Volume is $4,667 \mathrm{cy}$

Feature Measure: Volume of Earthfill (including volu

Scenario Unit: Cubic Yards

Scenario Typical Size: 4,667.00
Scenario Total Cost: \$14,492.23
Scenario Cost/Unit: \$3.11
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160 . Equipment and power unit costs. Labor not included.	Hours	\$98.78	97	\$9,581.66
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	97	\$3,091.39
Mobilization						
Mobilization, large equipment	1140	Equipment >150HP or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	2	\$1,819.18

Practice: 359-Waste Treatment Lagoon

Scenario: \#1-Waste Treatment Impoundment

Scenario Description:

A waste treatment lagoon is a component of a waste management system that provides biological treatment of manure and other byproducts of animal agricultural operations by reducing the pollution potential. Resource concern addressed is water quality by reducing the pollution potential to surface and groundwater by treating and storing liquid waste. When a liner is required to prevent seepage, plan the appropriate pond sealing and lining conservation practice standard..Potential Associated Practices: Pond Sealing or Lining, Bentonite Sealant (521C), Pond Sealing or Lining, Compacted Clay Treatment (521D), Pond Sealing or Lining, Flexible Membrane (521A), Pond Sealing or Lining, Soil Dispersant (521B), Fence (382), Critical Area Planting (342), Nutrient Management (590), Waste Transfer (634), Heavy Use Area Protection (561), and Solid/Liquid Waste Separation Facility (632).

Before Situation:
Operator presently has a dairy or animal feeding operation where animals are confined in a small area for a period of time each day ranging from a couple of hours to 24 hours per day. The operation does not have a waste management system adequate to handle the waste stream leaving the animal production facilities. Manure and other agricultural waste by-products are not being utilized or controlled in an environmentally safe manner. The wastes are either accumulating at the source, or are being transported but not properly utilized or disposed of. This situation poses an environmental threat of excessive nutrients, organics, and pathogens being transported into surface and groundwater resources.

After Situation:

A waste treatment lagoon that is constructed by excavation and earth-fill that stores wastes such as manure, waste water, and contaminated runoff. The purpose of this facility is to biologically treat waste, such as manure and wastewater, and thereby reduce pollution potential by serving as a treatment component of an agricultural waste management system. This facility provides the landowner a means of storing and treating waste until it can be utilized in a proper manner in accordance with a nutrient management plan.Typical design size : Design Volume 439,440 ft3; 260' X 208' (top); 3:1 inside and outside side slopes; cut/fill ratio =1.25; total depth = 13'; 1' freeboard (not included in total depth). Excavated Volume 8,500 CY, Earthfill Volume 6,800 CY

Feature Measure: Design Storage Volume
Scenario Unit: Cubic Feet
Scenario Typical Size: 439,440.00
Scenario Total Cost: \$32,182.06
Scenario Cost/Unit: \$0.07
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, common earth, large equipment, 150 ft	1223	Bulk excavation of common earth including sand and gravel with dozer $>100 \mathrm{HP}$ with average push distance of 150 feet. Includes equipment and labor.	Cubic Yards	\$3.35	8500	\$28,475.00
Materials						
Structural steel tubing, 2 in. diameter	1120	Structural steel tubing, 2 inch diameter, $1 / 8$ inch wall thickness, materials only	Feet	\$4.58	15	\$68.70
Mobilization						
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	4	\$3,638.36

Practice: 359-Waste Treatment Lagoon
Scenario: \#2 - Waste Treatment Impoundment, Rehabilitation

Scenario Description:

This scenario is for the rehabilitation of an existing waste treatment lagoon. A waste treatment lagoon is a component of a waste management system that provides biological treatment of manure and other byproducts of animal agricultural operations by reducing the pollution potential. Resource concern addressed is water quality by reducing the pollution potential to surface and groundwater by treating and storing liquid waste. When a liner is required to prevent seepage, plan the appropriate pond sealing and lining conservation practice standard. ${ }^{* *}$ REQUIRES THE PRODUCER TO REMOVE ALL LIQUID AND SLURRY AS NORMAL OPERATION AND
MAINTENANCE.Potential Associated Practices: Pond Sealing or Lining, Bentonite Sealant (521C), Pond Sealing or Lining, Compacted Clay Treatment (521D), Pond Sealing or Lining, Flexible Membrane (521A), Pond Sealing or Lining, Soil Dispersant (521B), Fence (382), Critical Area Planting (342), Nutrient Management (590), Waste Transfer (634), Heavy Use Area Protection (561), and Solid/Liquid Waste Separation Facility (632).

Before Situation:

Operator presently has a dairy or animal feeding operation where animals are confined in a small area for a period of time each day ranging from a couple of hours to 24 hours per day. The operation does have an existing waste management system with a waste treatment lagoon that is inadequate to handle the waste stream leaving the animal production facilities. The existing waste treatment lagoon has exceeded its original design life and no longer has the required treatment volume due to accumulation of solids. Manure and other agricultural waste by-products are not being utilized or controlled in an environmentally safe manner. The wastes are either accumulating at the source, or are being transported but not properly utilized or disposed of. This situation poses an environmental threat of excessive nutrients, organics, and pathogens being transported into surface and groundwater resources.

After Situation:

A waste treatment lagoon that has been rehabilitated by removal of all waste to restore the waste treatment volume required to meet the operations current operation. In most cases the waste treatment lagoon has to be increased in size due to operations current; animal numbers and management, design criteria and/or regulations. The purpose of this facility is to biologically treat waste, such as manure and wastewater, and thereby reduce pollution potential by serving as a treatment component of an agricultural waste management system. This facility provides the landowner a means of storing and treating waste until it can be utilized in a proper manner in accordance with a nutrient management plan.Typical design size : **REQUIRES THE PRODUCER TO REMOVE ALL LIQUID AND SLURRY AS NORMAL OPERATION AND MAINTENANCE.Before Design Volume 340,875 ft3; 208' $\times 208^{\prime}$ (top); 3:1 inside and outside side slopes; total depth = 13^{\prime}; 1^{\prime} freeboard (not included in total depth); Two foot of sludge accumulated in the bottom.After Design Volume 439,440 ft3; 260' X 208^{\prime} (top); 3:1 inside and outside side slopes; Excavated Volume 4,000 CY, Earthfill Volume 3,200 CY. Requires installation of new liner or certification of the existing liner by a Professional Engineer.

Feature Measure: Design Storage Volume
Scenario Unit: Cubic Feet
Scenario Typical Size: 439,440.00
Scenario Total Cost: \$54,059.76
Scenario Cost/Unit: \$0.12
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	3200	\$11,712.00
Earthfill, Dumped and Spread	51	Earthfill, dumped and spread without compaction effort, includes equipment and labor	Cubic Yards	\$3.15	500	\$1,575.00
Dozer, 200 HP	928	Track mounted Dozer with horsepower range of 160 to 250 . Equipment and power unit costs. Labor not included.	Hours	\$180.17	20	\$3,603.40
Stripping and stockpiling, topsoil	1199	Stripping and stockpiling of topsoil adjacent to stripping area. Includes equipment and labor.	Cubic Yards	\$0.79	500	\$395.00
Scraper, pull, 15 CY	1207	Pull type earthmoving scraper with 15 CY capacity. Does not include pulling equipment or labor. Add Tractor or Dozer, 260 HP typically required for single scraper.	Hours	\$25.61	20	\$512.20
Excavation, clay, large equipment, 150 ft	1219	Bulk excavation of clay with dozer >100 HP with average push distance of 150 feet. Includes equipment and labor.	Cubic Yards	\$5.62	3479	\$19,551.98
Spreading, manure sludge	1633	Loading, hauling and spreading manure solids/sludge by ground equipment on nearby fields. Includes equipment, power unit and labor costs.	Cubic Feet	\$0.26	33831	\$8,796.06
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	20	\$637.40

Mobilization

Practice: 359-Waste Treatment Lagoon

Scenario: \#3 - Waste Treatment Lagoon requiring 2 ft freeboard in area with more than 2 percent slopes

Scenario Description:

This scenario is for the installation of a waste treament lagoon in a field with more than 2% slope that requires 2 feet of freeboard. A waste treatment lagoon is a component of a waste management system that provides biological treatment of manure and other byproducts of animal agricultural operations by reducing the pollution potential. Resource concern addressed is water quality by reducing the pollution potential to surface and groundwater by treating and storing liquid waste. Earthen lagoon liners are addressed with another standard.Potential Associated Practices: Pond Sealing or Lining, Bentonite Sealant (521C), Pond Sealing or Lining, Compacted Clay Treatment (521D), Pond Sealing or Lining, Flexible Membrane (521A), Pond Sealing or Lining, Soil Dispersant (521B), Fence (382), Critical Area Planting (342), Nutrient Management (590), Waste Transfer (634), Heavy Use Area Protection (561), and Solid/Liquid Waste Separation Facility (632).

Before Situation:

Operator presently has a dairy or animal feeding operation where animals are confined in a small area for a period of time each day ranging from a couple of hours to 24 hours per day. The operation does not have a waste management system adequate to handle the waste stream leaving the animal production facilities. Manure and other agricultural waste by-products are not being utilized or controlled in an environmentally safe manner. The wastes are either accumulating at the source, or are being transported but not properly utilized or disposed of. This situation poses an environmental threat of excessive nutrients, organics, and pathogens being transported into surface and groundwater resources.

After Situation:

An earthen lagoon constructed from on-site material provides an environmentally safe facility for anaerobic treatment manure and other agricultural waste by-products. This facility provides the landowner a means of storing waste until it can be utilized in a proper manner in accordance with a nutrient management plan. Typical design size : Design storage volume 649,740 ft3; $257^{\prime} \times 305^{\prime}$ (top); $3: 1$ inside and outside side slopes;total depth $=14^{\prime}$ (design volume depth $=12^{\prime}$); (not included in design volume - 2' freeboard). Total Excavated Volume 18700 CY, Compacted Earthfill Volume 6300 CY , Using a 1.25 cut/fill ratio, the excavated volume that will be paid on is $18700-(1.25 * 6300)=10825 \mathrm{CY}$

Feature Measure: Design Storage Volume
Scenario Unit: Cubic Feet
Scenario Typical Size: 649,740.00
Scenario Total Cost: \$63,028.81
Scenario Cost/Unit: \$0.10
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	6300	\$23,058.00
Excavation, common earth, large equipment, 150 ft	1223	Bulk excavation of common earth including sand and gravel with dozer $>100 \mathrm{HP}$ with average push distance of 150 feet. Includes equipment and labor.	Cubic Yards	\$3.35	10825	\$36,263.75
Materials						
Structural steel tubing, 2 in. diameter	1120	Structural steel tubing, 2 inch diameter, $1 / 8$ inch wall thickness, materials only	Feet	\$4.58	15	\$68.70
Mobilization						
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	4	\$3,638.36

Practice: 359-Waste Treatment Lagoon

Scenario: \#4 - Waste Treatment Lagoon requiring 2 ft freeboard in area with less than or equal to 2 percent slopes

Scenario Description:

This scenario is for the installation of a waste treament lagoon in a field with less than or equal to 2% slope that requires 2 feet of freeboard. A waste treatment lagoon is a component of a waste management system that provides biological treatment of manure and other byproducts of animal agricultural operations by reducing the pollution potential. Resource concern addressed is water quality by reducing the pollution potential to surface and groundwater by treating and storing liquid waste. Earthen lagoon liners are addressed with another standard.Potential Associated Practices: Pond Sealing or Lining, Bentonite Sealant (521C), Pond Sealing or Lining, Compacted Clay Treatment (521D), Pond Sealing or Lining, Flexible Membrane (521A), Pond Sealing or Lining, Soil Dispersant (521B), Fence (382), Critical Area Planting (342), Nutrient Management (590), Waste Transfer (634), Heavy Use Area Protection (561), and Solid/Liquid Waste Separation Facility (632).

Before Situation

Operator presently has a dairy or animal feeding operation where animals are confined in a small area for a period of time each day ranging from a couple of hours to 24 hours per day. The operation does not have a waste management system adequate to handle the waste stream leaving the animal production facilities. Manure and other agricultural waste by-products are not being utilized or controlled in an environmentally safe manner. The wastes are either accumulating at the source, or are being transported but not properly utilized or disposed of. This situation poses an environmental threat of excessive nutrients, organics, and pathogens being transported into surface and groundwater resources.

After Situation:

An earthen storage structure constructed from on-site material provides an environmentally safe facility for storing manure and other agricultural waste by-products. This facility provides the landowner a means of storing waste until it can be utilized in a proper manner in accordance with a nutrient management plan. Typical design size : Design storage volume 649,740 ft3; 257' $\times 305^{\prime}$ (top); $3: 1$ inside and outside side slopes;total depth $=14^{\prime}$ ((design depth = 12^{\prime}); (not included in design volume - 2^{\prime} freeboard). Total Excavated Volume $22,800 \mathrm{CY}$ with negligible fill.

Feature Measure: Design Storage Volume
Scenario Unit: Cubic Feet

Scenario Typical Size: 649,740.00

Scenario Total Cost: $\$ 78,267.88$
Scenario Cost/Unit: \$0.12

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, common earth, large equipment, 150 ft	1223	Bulk excavation of common earth including sand and gravel with dozer $>100 \mathrm{HP}$ with average push distance of 150 feet. Includes equipment and labor.	Cubic Yards	\$3.35	22800	\$76,380.00
Materials						
Structural steel tubing, 2 in. diameter	1120	Structural steel tubing, 2 inch diameter, $1 / 8$ inch wall thickness, materials only	Feet	\$4.58	15	\$68.70
Mobilization						
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	2	\$1,819.18

Practice: 359-Waste Treatment Lagoon
Scenario: \#16-Waste Treatment Lagoon

Scenario Description:

A waste treatment lagoon is a component of a waste management system that provides biological treatment of manure and other byproducts of animal agricultural operations by reducing the pollution potential. Resource concern addressed is water quality by reducing the pollution potential to surface and groundwater by treating and storing liquid waste. Earthen lagoon liners are addressed with another standard. This scenario intended for embankment or excavated lagoon.Potential Associated Practices: Pond Sealing or Lining, Compacted Soil (520), Pond Sealing or Lining, Concrete (522), Pond Sealing or Lining, Geomembrane or Geosynthetic Clay Liner (521), Fence (382), Critical Area Planting (342), Nutrient Management (590), Waste Transfer (634), Heavy Use Area Protection (561), and Waste Separation Facility (632).

Before Situation:

Operator presently has a confined animal feeding operation without a waste management system adequate to handle the waste stream leaving the animal production facilities. Manure and other agricultural waste by-products are not being utilized or controlled in an environmentally safe manner. The wastes are either accumulating at the source, or are being transported but not properly utilized or disposed. This situation poses an environmental threat of excessive nutrients, organics, and pathogens being transported into surface and groundwater resources.

After Situation:

A waste treatment lagoon constructed from on-site material provides an environmentally safe facility for storing manure and other agricultural waste by-products. This facility provides the landowner a means of storing and treating waste until it can be utilized in a proper manner in accordance with a nutrient management plan. Excavated material used to build an embankment around the lagoon so this is a combination excavated/embankment design.Typical design size : Design Volume 492,129 cf $=18,227$ cy; 260' X 208' (top); 3:1 inside and outside side slopes; cut/fill ratio = 1.25; total depth $=13$ ' which includes 1' freeboard Feature Measure $=$ Design Volume [Operational Volume + emergency volume + freeboard]

Feature Measure: Design Volume (Operational + eme
Scenario Unit: Cubic Feet
Scenario Typical Size: 492,129.00
Scenario Total Cost: \$92,197.13
Scenario Cost/Unit: \$0.19
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	9102	\$33,313.32
Earthfill, Dumped and Spread	51	Earthfill, dumped and spread without compaction effort, includes equipment and labor	Cubic Yards	\$3.15	8101	\$25,518.15
Stripping and stockpiling, topsoil	1199	Stripping and stockpiling of topsoil adjacent to stripping area. Includes equipment and labor.	Cubic Yards	\$0.79	1389	\$1,097.31
Excavation, common earth, large equipment, 150 ft	1223	Bulk excavation of common earth including sand and gravel with dozer $>100 \mathrm{HP}$ with average push distance of 150 feet. Includes equipment and labor.	Cubic Yards	\$3.35	9125	\$30,568.75
Materials						
Structural steel tubing, 2 in. diameter	1120	Structural steel tubing, 2 inch diameter, $1 / 8$ inch wall thickness, materials only	Feet	\$4.58	8	\$36.64
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 360 - Waste Facility Closure
Scenario: \#1 - Not pumpable, not converted to freshwater storage

Scenario Description:

This practice scenario includes the decommissioning of an earthen liquid waste impoundment (embankment or excavated type) where the estimated volume of waste to be removed is approximately 15% liquid/slurry waste and 85% sludge/solid waste of the the total storage capacity of the structure. The waste impoundment will not be converted to freshwater storage. The purpose of the practice is to address resource concerns related to water quality degradation due to excess nutrient and pathogens in ground and/or surface waters and air quality impacts from greenhouse gases, particulate matter and associated precursors, and objectionable odors.Associated practices: Nutrient Management (590), Critical Area Planting (342)

Before Situation:

An existing lagoon or waste storage pond is no longer functioning correctly or is not being used for its intended purpose. The consistancy of the sludge/solid waste is too wet to be spread with conventional spreader and too solid to be agitated and pumped to sprinkler or tanker disposal vehicles. It poses a safety hazard for humans and livestock and is a threat to environmentally sustainability by the potential for impacts to water and air quality.

After Situation:

This scenario assumes an earthen waste impoundment, with top dimensions of $395 \mathrm{ft} \times 220 \mathrm{ft}, 12 \mathrm{ft}$ total depth with $3: 1$ side slopes. The total volume is approximately 20,000 cubic yards (volume below spillway). The volume of solid waste to be removed is approximately 85% of the storage volume ($85 \% \times 20,000=17,000 \mathrm{CY}$). The sludge/solid waste will be removed from the impoundment using heavy earthmoving equipment and will be land applied. Stockpiling of the solid waste for drying may be needed to obtain a suitable moisture content prior to land application. The volume of earthwork (earthfill and excavation) required to breach the embankment and/or fill in the impoundment and perform final grading of the site is approximately 50% of the total volume. The volume of earthwork to be paid on the placement of compacted earthfilll based on 50% of the total volume, which is $10,000 \mathrm{CY}$. Structural removal, as necessary, may include the removal and disposal of the synthetic liner, sealing or removal and disposal of waste transfer components and other appurtenances associated with closure of the facility. Decommissioning of a liquid waste storage impoundment includes agitating, removing, and spreading liquid/slurry waste material, removing solid/sludge waste remaining in the bottom. All waste material shall be land applied in accordance with Nutrient Management (590). If present, the synthetic liner will be removed and properly disposed of. All inflow devices and associated appurtenances will be removed and properly disposed of. The waste impoundment shall be breached and have compacted earthfill placed to the extent required to return the site to pre-existing conditions or provide drainage from the site. The disturbed areas shall be vegetated in accordance with Critical Area Planting (342). Closure of the waste impoundment will address water quality degradation, air quality impacts and safety hazards by removing and properly utilizing the waste from the impoundment. The site will also become available for another use. Monitoring wells may be needed in certain situations to comply with regulatory requirements.

Feature Measure: Storage Volume
Scenario Unit: Cubic Feet
Scenario Typical Size: 540,000.00
Scenario Total Cost: \$172,884.48
Scenario Cost/Unit: \$0.32
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	10000	\$36,600.00
Hydraulic Excavator, 1 CY	931	Track mounted hydraulic excavator with bucket capacity range of 0.8 to 1.5 CY. Equipment and power unit costs. Labor not included.	Hours	\$128.59	8	\$1,028.72
Manure, compost, injection	956	Loading, hauling and injecting manure/compost by ground equipment. Includes equipment, power unit and labor costs.	Gallons	\$0.02	605880	\$12,117.60
Spreading, manure sludge	1633	Loading, hauling and spreading manure solids/sludge by ground equipment on nearby fields. Includes equipment, power unit and labor costs.	Cubic Feet	\$0.26	459000	\$119,340.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	8	\$254.96
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	2	\$1,819.18

Practice: 360 - Waste Facility Closure
Scenario: \#2 - Pumpable, not converted to freshwater storage

Scenario Description:

This practice scenario includes the decommissioning of an earthen liquid waste impoundment (embankment or excavated type) where the estimated volume of waste to be removed is approximately 85% liquid/slurry waste and 15% sludge/solid waste of the the total storage capacity of the structure. The waste impoundment will not be converted to freshwater storage. The purpose of the practice is to address resource concerns related to water quality degradation due to excess nutrient and pathogens in ground and/or surface waters and air quality impacts from greenhouse gases, particulate matter and associated precursors, and objectionable odors.Associated practices: Nutrient Management (590), Critical Area Planting (342)

Before Situation:

An existing lagoon or waste storage pond is no longer functioning correctly or is not being used for its intended purpose. The consistancy of the waste is such that it can be agitated and pumped to a sprinkler or tanker disposal vehicles. It poses a safety hazard for humans and livestock and is a threat to environmentally sustainability by the potential for impacts to water and air quality.

After Situation:

This scenario assumes an earthen waste impoundment, with top dimensions of $395 \mathrm{ft} \times 220 \mathrm{ft}, 12 \mathrm{ft}$ total depth with $3: 1$ side slopes. The total volume is approximately 20,000 cubic yards (volume below spillway). The volume of liquid waste to be removed is approximately 85% of the storage volume $(85 \% \times 20,000=17,000 \mathrm{CY}(3,433,320$ gallons)). The sludge/solid waste remaining after pumping operations will be removed from the impoundment using heavy earthmoving equipment and will be land applied. The volume of earthwork (earthfill and excavation) required to breach the embankment and/or fill in the impoundment and perform final grading of the site is approximately 50% of the total volume. The volume of earthwork to be paid on the placement of compacted earthfilll based on 50% of the total volume, which is 10,000 CY. Structural removal, as necessary, may include the removal and disposal of the synthetic liner, sealing or removal and disposal of waste transfer components and other appurtenances associated with closure of the facility. Decommissioning of a liquid waste storage impoundment includes agitating, removing, and spreading liquid/slurry waste material, removing solid/sludge waste remaining in the bottom. All waste material shall be land applied in accordance with Nutrient Management (590). If present, the synthetic liner will be removed and properly disposed of. All inflow devices and associated appurtenances will be removed and properly disposed of. The waste impoundment shall be breached and have compacted earthfill placed to the extent required to return the site to pre-existing conditions or provide drainage from the site. The disturbed areas shall be vegetated in accordance with Critical Area Planting (342). Closure of the waste impoundment will address water quality degradation, air quality impacts and safety hazards by removing and properly utilizing the waste from the impoundment. The site will also become available for another use.Monitoring wells may be needed in certain situations to comply with regulatory requirements.

Feature Measure: Storage Volume
Scenario Unit: Cubic Feet
Scenario Typical Size: 540,000.00
Scenario Total Cost: \$131,153.28
Scenario Cost/Unit: \$0.24
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	10000	\$36,600.00
Hydraulic Excavator, 1 CY	931	Track mounted hydraulic excavator with bucket capacity range of 0.8 to 1.5 CY. Equipment and power unit costs. Labor not included.	Hours	\$128.59	8	\$1,028.72
Manure, compost, injection	956	Loading, hauling and injecting manure/compost by ground equipment. Includes equipment, power unit and labor costs.	Gallons	\$0.02	3433320	\$68,666.40
Spreading, manure sludge	1633	Loading, hauling and spreading manure solids/sludge by ground equipment on nearby fields. Includes equipment, power unit and labor costs.	Cubic Feet	\$0.26	81000	\$21,060.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	8	\$254.96
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	2	\$1,819.18

Practice: 360-Waste Facility Closure
Scenario: \#3 - Not pumpable, convert to freshwater storage

Scenario Description:

This practice scenario includes the decommissioning of an earthen liquid waste impoundment (embankment or excavated type) where the estimated volume of waste to be removed is approximately 15% liquid/slurry waste and 85% sludge/solid waste of the the total storage capacity of the structure. The waste impoundment will be converted to freshwater storage. The purpose of the practice is to address resource concerns related to water quality degradation due to excess nutrient and pathogens in ground and/or surface waters and air quality impacts from greenhouse gases, particulate matter and associated precursors, and objectionable odors.Associated practices: Nutrient Management (590), Critical Area Planting (342)

Before Situation:

An existing lagoon or waste storage pond is no longer functioning correctly or is not being used for its intended purpose. The consistancy of the sludge/solid waste is too wet to be spread with conventional spreader and too solid to be agitated and pumped to sprinkler or tanker disposal vehicles. It poses a safety hazard for humans and livestock and is a threat to environmentally sustainability by the potential for impacts to water and air quality.

After Situation:

This scenario assumes an earthen waste impoundment, with top dimensions of $395 \mathrm{ft} \times 220 \mathrm{ft}, 12 \mathrm{ft}$ total depth with $3: 1$ side slopes. The total volume is approximately 20,000 cubic yards (volume below spillway). The volume of solid waste to be removed is approximately 85% of the storage volume ($85 \% \times 20,000=17,000 \mathrm{CY}$). The sludge/solid waste will be removed from the impoundment using heavy earthmoving equipment and will be land applied. Stockpiling of the solid waste for drying may be needed to obtain a suitable moisture content prior to land application. Additional excavation below the existing bottom of the pond is necessary to remove potential contaminants, this is assumed to be 10% of the total volume or $2,000 \mathrm{CY}$.Structural removal, as necessary, may include the removal and disposal of the synthetic liner, sealing or removal and disposal of waste transfer components and other appurtenances associated with closure of the facility. Decommissioning of a liquid waste storage impoundment includes agitating, removing, and spreading liquid/slurry waste material, removing solid/sludge waste remaining in the bottom. All waste material shall be land applied in accordance with Nutrient Management (590). If present, the synthetic liner will be removed and properly disposed of. All inflow devices and associated appurtenances will be removed and properly disposed of. The waste impoundment shall be breached and have compacted earthfill placed to the extent required to return the site to pre-existing conditions or provide drainage from the site. The disturbed areas shall be vegetated in accordance with Critical Area Planting (342). Closure of the waste impoundment will address water quality degradation, air quality impacts and safety hazards by removing and properly utilizing the waste from the impoundment. The site will also become available for another use.

Feature Measure: Storage Volume
Scenario Unit: Cubic Feet
Scenario Typical Size: 540,000.00
Scenario Total Cost: $\$ 139,974.89$

Scenario Cost/Unit: \$0.26

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	2000	\$4,600.00
Hydraulic Excavator, 1 CY	931	Track mounted hydraulic excavator with bucket capacity range of 0.8 to 1.5 CY. Equipment and power unit costs. Labor not included.	Hours	\$128.59	8	\$1,028.72
Manure, compost, injection	956	Loading, hauling and injecting manure/compost by ground equipment. Includes equipment, power unit and labor costs.	Gallons	\$0.02	605880	\$12,117.60
Spreading, manure sludge	1633	Loading, hauling and spreading manure solids/sludge by ground equipment on nearby fields. Includes equipment, power unit and labor costs.	Cubic Feet	\$0.26	459000	\$119,340.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	8	\$254.96
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 360-Waste Facility Closure
Scenario: \#4 - Pumpable, convert to freshwater storage

Scenario Description:

This practice scenario includes the decommissioning of an earthen liquid waste impoundment (embankment or excavated type) where the estimated volume of waste to be removed is approximately 85% liquid/slurry waste and 15% sludge/solid waste of the the total storage capacity of the structure. The waste impoundment will be converted to freshwater storage. The purpose of the practice is to address resource concerns related to water quality degradation due to excess nutrient and pathogens in ground and/or surface waters and air quality impacts from greenhouse gases, particulate matter and associated precursors, and objectionable odors.Associated practices: Nutrient Management (590), Critical Area Planting (342)

Before Situation:

An existing lagoon or waste storage pond is no longer functioning correctly or is not being used for its intended purpose. The consistancy of the waste is such that it can be agitated and pumped to a sprinkler or tanker disposal vehicles. It poses a safety hazard for humans and livestock and is a threat to environmentally sustainability by the potential for impacts to water and air quality.

After Situation:

This scenario assumes an earthen waste impoundment, with top dimensions of $395 \mathrm{ft} \times 220 \mathrm{ft}, 12 \mathrm{ft}$ total depth with $3: 1$ side slopes. The total volume is approximately 20,000 cubic yards (volume below spillway). The volume of liquid waste to be removed is approximately 85% of the storage volume $(85 \% \times 20,000=17,000 \mathrm{CY}(3,433,320$ gallons)). The sludge/solid waste remaining after pumping operations will be removed from the impoundment using heavy earthmoving equipment and will be land applied. Additional excavation below the existing bottom of the pond is necessary to remove potential contaminants, this is assumed to be 10% of the total volume or $2,000 \mathrm{CY}$.Structural removal, as necessary, may include the removal and disposal of the synthetic liner, sealing or removal and disposal of waste transfer components and other appurtenances associated with closure of the facility. Decommissioning of a liquid waste storage impoundment includes agitating, removing, and spreading liquid/slurry waste material, removing solid/sludge waste remaining in the bottom. All waste material shall be land applied in accordance with Nutrient Management (590). If present, the synthetic liner will be removed and properly disposed of. All inflow devices and associated appurtenances will be removed and properly disposed of. The waste impoundment shall be excavated to the extent required to convert the structure to a freshwater pond. The disturbed areas shall be vegetated in accordance with Critical Area Planting (342). Closure of the waste impoundment will address water quality degradation, air quality impacts and safety hazards by removing and properly utilizing the waste from the impoundment. The site will also become available for another use.

Feature Measure: Storage Volume
Scenario Unit: Cubic Feet
Scenario Typical Size: 540,000.00
Scenario Total Cost: \$98,243.69
Scenario Cost/Unit: \$0.18
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	2000	\$4,600.00
Hydraulic Excavator, 1 CY	931	Track mounted hydraulic excavator with bucket capacity range of 0.8 to 1.5 CY. Equipment and power unit costs. Labor not included.	Hours	\$128.59	8	\$1,028.72
Manure, compost, injection	956	Loading, hauling and injecting manure/compost by ground equipment. Includes equipment, power unit and labor costs.	Gallons	\$0.02	3433320	\$68,666.40
Spreading, manure sludge	1633	Loading, hauling and spreading manure solids/sludge by ground equipment on nearby fields. Includes equipment, power unit and labor costs.	Cubic Feet	\$0.26	81000	\$21,060.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	8	\$254.96
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 362 - Diversion
Scenario: \#1 - Earth Channel and Ridge
Scenario Description:
An earthen channel constructed across long slopes with supporting ridge on lower side, to divert runoff away from farmsteads, agricultural waste systems, gullies, critical erosion areas, construction areas or other sensitive areas. Outlet may be waterway, underground outlet. or other suitable outlet. Typical diversion is, 1300 feet long installed on a field slope of 5 percent and requires 1.0 CY excavation per LF. Channel my be level or gradient and ridge may be vegetated or farmed. The quantity of excavation and fill is balanced.

Before Situation:
Excessive sedimentation and soil erosion as a result of gully, rill or sheet erosion which exceeds ' T ' from farm fields and other locations. Also, roof runoff or surface runoff that becomes contaminated with agricultural wastes that significantly contributes to the amount of runoff that has to be stored or treated.

After Situation:
Diversion is installed using a dozer. Field system meets 'T' or 'clean' storm water runoff is diverted away from an agricultural waste management system to minimize the volume of runoff that is contaminated by agricultural waste. Associated practices are Critical Area Planting (342), Grassed Waterway (412), Underground Outlet (620), Mulching (484), and Subsurface Drainage (606).

Feature Measure: Diversion Fill Volume
Scenario Unit: Cubic Yards
Scenario Typical Size: 1,300.00
Scenario Total Cost: \$3,899.59
Scenario Cost/Unit: \$3.00
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	1300	\$2,990.00
Mobilization						
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 362 - Diversion
Scenario: \#15-Diversion
Scenario Description:
An earthen channel constructed across long slopes with supporting ridge on lower side, to divert runoff away from farmsteads, agricultural waste systems, gullies, critical erosion areas, construction areas or other sensitive areas. Outlet may be waterway, underground outlet. or other suitable outlet. Typical diversion is, 1000 feet long installed on a field slope of 5 percent and requires 1 CY excavation per LF. Channel my be level or gradient and ridge may be vegetated or farmed. The quantity of excavation and fill is balanced.

Before Situation:
Excessive sedimentation and soil erosion as a result of gully, rill or sheet erosion which exceeds ' T ' from farm fields and other locations. Also, roof runoff or surface runoff that becomes contaminated with agricultral wastes that significantly contributes to the amount of runoff that has to be stored or treated.

After Situation:
Diversion is 1000 feet long installed using a dozer. Field system meets ' T ' or 'clean' storm water runoff is diverted away from an agricultural waste management system to minimize the volume of runoff that is contaminated by agricultral waste. Associated practices are Critical Area Planting (342), Grassed Waterway (412), Underground Outlet (620), Mulching (484), and Subsurface Drainage (606).

Feature Measure: Length of Diversion
Scenario Unit: Feet
Scenario Typical Size: 1,000.00
Scenario Total Cost: \$3,202.91
Scenario Cost/Unit: \$3.20
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	1000	\$2,300.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	2	\$54.32
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 367 - Roofs and Covers
Scenario: \#2 - Rigid Sheet Metal Roof

Scenario Description:

A post frame building with a 29 gage corrugated sheet metal roof and steel/wood trusses and truss supports is required by the engineering design. Agricultural wastes such as manure, animal mortality and poultry litter are stored on concrete and earthen surfaces under the roof. Excess precipitation can cause premature filling of storages, interfere with composting or cause nutrients to leach from solid manure piles leading to uncontrolled runoff as well as odor issues. To be used in conjunction with waste management facilities, and typically installed over an approved Waste Storage Facility (313), Animal Mortality Facility (316), or Composting Facility (317).Associated practices includes Waste Storage Facility (313), Animal Mortality Facility (316), Composting Facility (317), Roof Runoff Structure (558), and Waste Treatment (629).

Before Situation:

Applicable where the exclusion of precipitation from an animal waste storage and/or treatment facility will improve an existing or planned system. Agricultural wastes such as animal mortality and poultry litter are stored on concrete and earthen surfaces under the roof. Excess precipitation can cause premature filling of storages or cause nutrients to leach from solid manure piles leading to uncontrolled runoff as well as odor issues.

After Situation:

A post frame building with a 29 gage corrugated sheet metal roof and steel/wood trusses and truss supports. Engineered and installed in accordance with appropriate building codes and permits. Typical size is 2,600 square feet and is over an approved animal waste management facility as a component of a CNMP. It is designed to prevent precipitation to allow proper management of animal waste streams (manure or compost streams), thus mitigating the negative factors from the 'before practice implementation'.

Feature Measure: Footprint of Building
Scenario Unit: Square Feet
Scenario Typical Size: 2,600.00
Scenario Total Cost: $\$ 37,960.00$
Scenario Cost/Unit: \$14.60
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Materials						
Roof, Post Frame Building, 30 to 60 ft . wide	1676	Post Frame Building, no sides, -30 to 60 ft . width. Building sites with expected snow loads up to 30 lbs . per square foot and wind exposure in semi protected areas (wooded or terrain with numerous closely spaced obstructions). Includes materials, shipping, equipment, and installation. Does not include foundation preparation.	Square Feet	\$14.60	2600	\$37,960.00

Practice: 367 -Roofs and Covers
Scenario: \#25 - Flexible Membrane Cover with Flare

Scenario Description:

A fabricated flexible membrane over a waste storage or treatment facility. The membrane will cover the entire surface of a waste storage or treatment facility (e.g. waste treatment lagoon or anaerobic digester). Cover will exclude precipitation and/or capture biogas for controlled release for flaring or anaerobic digestion. This scenario includes the gas collection and flare system to convert methane to carbon dioxide.Associated practices include Waste Storage Facility (313), Waste Treatment Lagoon (359), Anaerobic Digester (366), Animal Mortality Facility (316), Composting Facility (317), Roof Runoff Structure (558), Pumping Plant (533), and Waste Treatment (629).

Before Situation:
Applicable where the exclusion of precipitation from an animal waste storage or treatment lagoon will improve the management of an existing or planned system, capture and controlled release or flaring of emissions from an existing or planned animal waste storage to improve air quality, and/or biogas production and capture for energy use are part of the existing or planned animal waste management system.

After Situation:

A fabricated flexible membrane over a $200 \mathrm{ft} x 300 \mathrm{ft}$ waste storage pond. The membrane will cover the entire surface of a waste storage or treatment facility (e.g. waste storage pond, waste treatment lagoon or anaerobic digester). A flare is included to burn off the captured emitted methane. Methane collection system under the cover is installed on a per acre rate basis. Precipitation is excluded from the animal waste storage or treatment facility and air quality is improved with the conversion of methane to carbon dioxide.

Feature Measure: Surface of Membrane
Scenario Unit: Square Feet
Scenario Typical Size: 60,000.00
Scenario Total Cost: $\$ 709,445.63$

Scenario Cost/Unit: \$11.82

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	100	\$570.00
Skidsteer, 80 HP	933	Skidsteer loader with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$56.04	56	\$3,138.24
Track Loader, 95HP	935	Equipment and power unit costs. Labor not included.	Hours	\$95.63	40	\$3,825.20
Trencher, 8 in.	936	Equipment and power unit costs. Labor not included.	Hours	\$50.23	24	\$1,205.52

Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	40	\$1,354.80
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	96	\$2,607.36
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	80	\$2,220.80
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	40	\$1,274.80
Materials						
Synthetic Liner, 40 mil	1387	Synthetic 40 mil HDPE, LLDPE, EPDM, etc membrane liner material. Includes materials and shipping only.	Square Yard	\$7.46	8000	\$59,680.00
Covered Lagoon Gas Collection System	1664	Piping and collection system for biogas. Includes labor and equipment.	Each	$\begin{array}{r} \$ 398,000.0 \\ 0 \end{array}$	1.4	\$557,200.00
Covered Lagoon Flare	1666	Flare excess gas to convert from methane to carbon dioxide. Includes labor and equipment.	Each	\$73,750.00	1	\$73,750.00
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	2	\$358.80
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	3	\$2,260.11

Practice: 367 -Roofs and Covers
Scenario: \#26-Flexible Membrane Cover

Scenario Description:

A fabricated rigid, semi-rigid, composite, or flexible membrane over a waste storage or treatment facility. The membrane will cover the entire surface of a waste storage or treatment facility (e.g. waste treatment lagoon or anaerobic digester). Cover will reduce the transmission of emissions or odors. Cover may exclude precipitation and/or capture biogas for controlled release for flaring or anaerobic digestion. Cover may be organic or inorganic. This scenario applies to either a permeable organic or inorganic cover/flexible membrane applied for odor control, rainfall exclusion or capture of biogas.Associated practices include Waste Storage Facility (313), Waste Treatment Lagoon (359), Anaerobic Digester (366), Animal Mortality Facility (316), Composting Facility (317), Roof Runoff Structure (558), Pumping Plant (533), and Waste Treatment (629).

Before Situation:
Applicable where the covering of an animal waste storage or treatment lagoon will improve management of an existing or planned agricultural waste management system by reducing the transmission of odors or by excluding precipitation.

A fabricated rigid, semi-rigid, composite, or flexible membrane over a waste storage or treatment facility. The membrane will cover the entire surface of a waste storage or treatment facility (e.g. waste treatment lagoon or anaerobic digester). Flexible cover will reduce the transmission of odors or will excluded precipitation from the animal waste storage or treatment lagoon.						
Feature Measure: Surface of Membrane						
Scenario Unit: Square Feet						
Scenario Typical Size: 10,000.00						
Scenario Total Cost:	\$18,007.59					
Scenario Cost/Unit:	\$1.80					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	40	\$228.00
Skidsteer, 80 HP	933	Skidsteer loader with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$56.04	20	\$1,120.80
Track Loader, 95HP	935	Equipment and power unit costs. Labor not included.	Hours	\$95.63	16	\$1,530.08
Trencher, 8 in.	936	Equipment and power unit costs. Labor not included.	Hours	\$50.23	8	\$401.84
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	32	\$869.12
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	28	\$777.28
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	16	\$509.92
Materials						
Synthetic Liner, 40 mil	1387	Synthetic 40 mil HDPE, LLDPE, EPDM, etc membrane liner material. Includes materials and shipping only.	Square Yard	\$7.46	1334	\$9,951.64
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	2	\$358.80
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	3	\$2,260.11

Practice: 368 - Emergency Animal Mortality Management
Scenario: \#24-Burial

Scenario Description:

This scenario consists of the on-site burial of animal mortalities resulting from catastrophic events not related to disease. An earthen pit is excavated to contain the mortalities, and earth cover is placed over the mortalities to provide protection from predators to minimize pathogen survival or spreading. The purpose of the practice is to address resource concerns related to water quality degradation due to excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Air quality impacts due to odors will also be addressed. Potential Associated Practices: Pond Sealing or Lining, Bentonite Sealant (521C), Pond Sealing or Lining, Compacted Clay Treatment (521D), Pond Sealing or Lining, Soil Dispersant (521B), Fence (382), Critical Area Planting (342), Nutrient Management (590), Access Road (560), and Diversion (362).

Before Situation:
Animal mortality disposal is done in a manner that results in non-point source pollution of excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Improper operation results in odors and spread of pathogens from incomplete composting, incineration, or interaction with predators. No plan was formulated for catastrophic mortality events.

After Situation:

Catastrophic Animal mortalities resulting from causes not related to disease are being disposed in a manner that prevents non-point source pollution of excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Proper operation results in little to no odors, and protection from predators to minimize pathogen survival or spreading. An overall plan covers the burial of animals as a result of catastrophic mortality events.This typical scenario was developed based on the disposal of 25 head of mature cattle located near the area where the cattle have been found. The scenario includes equipment time and labor to recover and transport carcasses to the burial location. The scenario also includes a burial trench 4' deep plus 3' additional cover over carcasses. Construct a 6' x 60' (surface dimensions) burial site with appropriate cover. Site can handle mortality for 25 mature beef cattle. On site soils can be re-compacted to meet required imperviousness. Include 3' overfill or mounding excavated material to provide for settlement of the burial site and divert or minimize offsite runoff. Site to be located out of drainage areas, off-site water diverted and any runoff to spread out into a grassed area.

Feature Measure: Number of 1000 Ibs Animal Units

Scenario Unit: Animal Unit

Scenario Typical Size: 25.00

\$3,640.76						
Scenario Cost/Unit:	\$145.63					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Dumped and Spread	51	Earthfill, dumped and spread without compaction effort, includes equipment and labor	Cubic Yards	\$3.15	94	\$296.10
Tractor, agricultural, 120 HP	962	Agricultural tractor with horsepower range of 90 to 140 . Equipment and power unit costs. Labor not included.	Hours	\$74.02	12	\$888.24
Excavation, common earth, large equipment, 50 ft	1222	Bulk excavation of common earth including sand and gravel with dozer $>100 \mathrm{HP}$ with average push distance of 50 feet. Includes equipment and labor.	Cubic Yards	\$1.43	94	\$134.42
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	12	\$325.92
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	12	\$333.12
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37
Mobilization, large equipment	1140	Equipment >150HP or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 368 - Emergency Animal Mortality Management
Scenario: \#25-Cattle or Horse Disposal Other Than Burial

Scenario Description:

This scenario consists of the disposal of cattle, horse or other similarly sized animal carcasses by methods other than burial resulting from catastrophic events not related to disease. The purpose of the practice is to address resource concerns related to water quality degradation due to excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Air quality impacts due to odors will also be addressed. Potential Associated Practices: Critical Area Planting (342), Nutrient Management (590), Access Road (560)

Before Situation:
Animal mortality disposal is done in a manner that results in non-point source pollution of excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Improper operation results in odors and spread of pathogens from incomplete composting, incineration, or interaction with predators.

After Situation:
Catastrophic Animal mortalities resulting from causes not related to disease are being disposed in a manner, other than burial, that prevents non-point source pollution of excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Proper operation results in little to no odors, and protection from predators to minimize pathogen survival or spreading. An overall plan covers the burial of animals as a result of catastrophic mortality events. This typical scenario was developed based on the disposal of 5 head averaging 1000 pounds each in a landfill. The scenario includes materials, equipment time and labor to recover and transport carcasses to the landfill which is a distance of 35 miles from the farm.

Feature Measure: Number of Head
Scenario Unit: Each
Scenario Typical Size: 5.00
Scenario Total Cost: $\$ 3,055.88$

Scenario Cost/Unit: \$611.18

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tractor, agricultural, 120 HP	962	Agricultural tractor with horsepower range of 90 to 140 . Equipment and power unit costs. Labor not included.	Hours	\$74.02	5	\$370.10
Truck, dump, 8 CY	1401	Dump truck for moving bulk material. Typically capacity is 12 ton or 8 cubic yards. Includes equipment only.	Hours	\$54.41	8	\$435.28
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	5	\$135.80
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	5	\$138.80
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	8	\$254.96

Materials

Poly film, 6 mil.	245	6 mil, polyethylene, black	Square Feet	\$0.09	360	\$32.40
Landfill Fee, Animal Carcass	2711	Fees charged by a landfill for proper disposal of animal carcass or animal debris	Cubic Yards	\$45.45	4	\$181.80
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 368 - Emergency Animal Mortality Management
Scenario: \#26-Swine Disposal Other Than Burial

Scenario Description:

This scenario consists of the disposal of swine or other similarly sized animal carcasses on a small size operation by methods other than burial resulting from catastrophic events not related to disease. The purpose of the practice is to address resource concerns related to water quality degradation due to excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Air quality impacts due to odors will also be addressed. Potential Associated Practices: Critical Area Planting (342), Nutrient Management (590), Access Road (560)

Before Situation:

Animal mortality disposal is done in a manner that results in non-point source pollution of excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Improper operation results in odors and spread of pathogens from incomplete composting, incineration, or interaction with predators.
After Situation:
Catastrophic Animal mortalities resulting from causes not related to disease are being disposed in a manner, other than burial, that prevents non-point source pollution of excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Proper operation results in little to no odors, and protection from predators to minimize pathogen survival or spreading. An overall plan covers the burial of animals as a result of catastrophic mortality events. This typical scenario was developed based on the disposal of 1 boar at 450 pounds, 9 sows at 350 pounds each and 8 babies/sow at 12 pounds each in a landfill. The number of head counted are the sows and boar (adult swine) at 10 total head. The scenario includes materials, equipment time and labor to recover and transport the boar, sows and baby carcasses to the landfill which is a distance of 35 miles from the farm.

Feature Measure: Number of Adult Head
Scenario Unit: Each

Scenario Typical Size: 10.00
Scenario Total Cost: \$2,575.31

Scenario Cost/Unit: \$257.53

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tractor, agricultural, 120 HP	962	Agricultural tractor with horsepower range of 90 to 140 . Equipment and power unit costs. Labor not included.	Hours	\$74.02	3	\$222.06
Truck, dump, 8 CY	1401	Dump truck for moving bulk material. Typically capacity is 12 ton or 8 cubic yards. Includes equipment only.	Hours	\$54.41	6	\$326.46
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	3	\$81.48
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	3	\$83.28
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	6	\$191.22
Materials						
Poly film, 6 mil.	245	6 mil, polyethylene, black	Square Feet	\$0.09	308	\$27.72
Landfill Fee, Animal Carcass	2711	Fees charged by a landfill for proper disposal of animal carcass or animal debris	Cubic Yards	\$45.45	3	\$136.35
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 368 - Emergency Animal Mortality Management
Scenario: \#27-Disposal of Goats or Sheep Other Than Burial

Scenario Description:

This scenario consists of the disposal of goat, sheep or other similarly sized animal carcasses on a small size operation by methods other than burial resulting from catastrophic events not related to disease. The purpose of the practice is to address resource concerns related to water quality degradation due to excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Air quality impacts due to odors will also be addressed. Potential Associated Practices: Critical Area Planting (342), Nutrient Management (590), Access Road (560)

Before Situation:
Animal mortality disposal is done in a manner that results in non-point source pollution of excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Improper operation results in odors and spread of pathogens from incomplete composting, incineration, or interaction with predators.

After Situation:
Catastrophic Animal mortalities resulting from causes not related to disease are being disposed in a manner, other than burial, that prevents non-point source pollution of excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Proper operation results in little to no odors, and protection from predators to minimize pathogen survival or spreading. An overall plan covers the burial of animals as a result of catastrophic mortality events.This typical scenario was developed based on the disposal of 10 head of goats at an average weight of 100 pounds each in a landfill. All head are counted. The scenario includes materials, equipment time and labor to recover and transport the goat carcasses to the landfill which is a distance of 35 miles from the farm.

Feature Measure: Number of Head
Scenario Unit: Each
Scenario Typical Size: 10.00
Scenario Total Cost: \$2,265.77

Scenario Cost/Unit: \$226.58

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tractor, agricultural, 120 HP	962	Agricultural tractor with horsepower range of 90 to 140. Equipment and power unit costs. Labor not included.	Hours	\$74.02	2	\$148.04
Truck, dump, 8 CY	1401	Dump truck for moving bulk material. Typically capacity is 12 ton or 8 cubic yards. Includes equipment only.	Hours	\$54.41	5	\$272.05
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	2	\$54.32
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	2	\$55.52
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	5	\$159.35

Materials

Poly film, 6 mil.	245	6 mil, polyethylene, black	Square Feet	\$0.09	270	\$24.30
Landfill Fee, Animal Carcass	2711	Fees charged by a landfill for proper disposal of animal carcass or animal debris	Cubic Yards	\$45.45	1	\$45.45
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 368 - Emergency Animal Mortality Management

Scenario: \#175-Mortality Disposal - Burial or Other Approved Methods

Scenario Description:

This scenario consists of the on-site burial of animal mortalities resulting from catastrophic events not related to disease. An earthen pit is excavated to contain the mortalities, and earth cover is placed over the mortalities to provide protection from predators to minimize pathogen survival or spreading. The purpose of the practice is to address resource concerns related to water quality degradation due to excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Air quality impacts due to odors will also be addressed. Potential Associated Practices: Pond Sealing or Lining, Bentonite Sealant (521C), Pond Sealing or Lining, Compacted Clay Treatment (521D), Pond Sealing or Lining, Soil Dispersant (521B), Fence (382), Critical Area Planting (342), Nutrient Management (590), Access Road (560), and Diversion (362).

Before Situation:
Animal mortality disposal is done in a manner that results in non-point source pollution of excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Improper operation results in odors and spread of pathogens from incomplete composting, incineration, or interaction with predators. No plan was formulated for catastrophic mortality events.

After Situation:

Catastrophic Animal mortalities resulting from causes not related to disease are being disposed in a manner that prevents non-point source pollution of excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Proper operation results in little to no odors, and protection from predators to minimize pathogen survival or spreading. An overall plan covers the burial of animals as a result of catastrophic mortality events. This scenario is based on the excavation required based on the total pounds of mortality. For a poultry operation with a loss of approximately 13,250 birds weighing approximately 4 lbs each at time of loss equals $53,000 \mathrm{lbs}$ of mortality with an approximate volume of 850 cubic feet. This would require an estimated 2,550 Cubic Feet of excavation (poultry excavation factor is 3 times the volume of the birds, with density assumed at $62.4 \mathrm{lbs} / \mathrm{cubic} \mathrm{ft}$), resulting in a 3 ' wide $\times 4$ ' deep $\times 213$ ' long trench located in appropriate soils. Excavation factors are: Cattle $=3.5$; Goat $=2.5$; Poultry $=3$; Sheep $=2.5$; Swine=3. Includes mounding excavated material to provide for settlement of the burial site and divert or minimize offsite runoff. Site to be located out of drainage areas, off-site water diverted and any runoff to spread out into a grassed area.This typical scenario was developed based on the disposal of 13,250 birds (meat chickens) following a natural disaster. The scenario includes equipment time and labor to recover and transport carcasses to the burial location. The scenario also includes a burial trench 4' deep plus 3' additional cover over carcasses. Construct a 3' x 123' (surface dimensions) burial site with appropriate cover. Site can handle mortality for for approximately $53,000 \mathrm{lbs}$ of bird. On site soils can be re-compacted to meet required imperviousness. Include overfill or mounding excavated material to provide for settlement of the burial site and divert or minimize offsite runoff. Site to be located out of drainage areas, off-site water diverted and any runoff to spread out into a grassed area.

Feature Measure: Cubic Feet of Excavation
Scenario Unit: Cubic Feet
Scenario Typical Size: 2,550.00
Scenario Total Cost: $\$ 3,640.76$

Scenario Cost/Unit: \$1.43
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Dumped and Spread	51	Earthfill, dumped and spread without compaction effort, includes equipment and labor	Cubic Yards	\$3.15	94	\$296.10
Tractor, agricultural, 120 HP	962	Agricultural tractor with horsepower range of 90 to 140. Equipment and power unit costs. Labor not included.	Hours	\$74.02	12	\$888.24
Excavation, common earth, large equipment, 50 ft	1222	Bulk excavation of common earth including sand and gravel with dozer $>100 \mathrm{HP}$ with average push distance of 50 feet. Includes equipment and labor.	Cubic Yards	\$1.43	94	\$134.42
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	12	\$325.92
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	12	\$333.12
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 368 - Emergency Animal Mortality Management
Scenario: \#189-National Emergency Shallow Burial of Swine or Cattle

Scenario Description:

This scenario consists of the disposal of animal carcasses by burial in a shallow trench resulting from impacts related to the National Emergency. The purpose of the practice is to address resource concerns related to water quality degradation due to excessive nutrients, and organics being transported into surface and groundwater resources. Air quality impacts due to odors will also be addressed. This scenario has been written to exclude feathered animals since early research has indicated that feathered animals do not break down quickly using this method.Potential Associated Practices: Critical Area Planting (342), Nutrient Management (590), Access Road (560), Fence (384)

Before Situation:

Animal mortality disposal is done in a manner that results in non-point source pollution of excessive nutrients, and organics being transported into surface and groundwater resources. Improper operation results in odors and spread of pathogens from incomplete composting, incineration, or interaction with predators. No plan was formulated for catastrophic mortality events.

After Situation:

Emergency animal mortalities resulting from causes not related to disease are being buried in a shallow trench,that prevents non-point source pollution of excessive nutrients, and organics being transported into surface and groundwater resources. The is a new method of mortality disposal recommended by APHIS. 50 animal units (50,000 pound) of animal mortality is the maximum allowed for this method. Proper operation results in little to no odors, and protection from predators to minimize pathogen survival or spreading. An overall plan covers the disposal of animals as a result of catastrophic mortality events. This typical scenario was developed based on the disposal of livestock animal mortality by burial in an 18 inch deep by 8 foot wide trench. A 12 inch thick layer of carbon material is placed in the bottom of the trench. The carcass is placed in the trench and covered with 4 inches of carbon material. Then the excavated soil is placed over the entire trench area. The scenario includes equipment time and labor to excavate the trench, place carbon layer in the trench bottom, recover and transport carcasses to the shallow burial location, place carcasses in the trench and cover with more carbon and the excavated soil. Wood chips (45 pcf) will be used as the carbon source.

Feature Measure: Number of 1000 lbs Animal Units
Scenario Unit: Animal Unit
Scenario Typical Size: 50.00
Scenario Total Cost: \$10,125.02

Scenario Cost/Unit: \$202.50
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Hydraulic Excavator, 1 CY	931	Track mounted hydraulic excavator with bucket capacity range of 0.8 to 1.5 CY. Equipment and power unit costs. Labor not included.	Hours	\$128.59	4	\$514.36
Tractor, agricultural, 120 HP	962	Agricultural tractor with horsepower range of 90 to 140. Equipment and power unit costs. Labor not included.	Hours	\$74.02	13	\$962.26
Aggregate, Wood Chips	1098	Includes materials, equipment and labor to transport and place.	Cubic Yards	\$51.20	120	\$6,144.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	13	\$353.08
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	13	\$360.88
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	4	\$127.48
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37
Mobilization, large equipment	1140	Equipment >150HP or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 368 - Emergency Animal Mortality Management
Scenario: \#205-National Emergency Composting ??? purchase carbon material and mobilize equipment

Scenario Description:

This scenario consists of the disposal of animal carcasses by composting in a static windrow resulting from impacts related to the National Emergency. The purpose of the practice is to address resource concerns related to water quality degradation due to excessive nutrients, and organics being transported into surface and groundwater resources. Air quality impacts due to odors will also be addressed. Potential Associated Practices: Critical Area Planting (342), Nutrient Management (590), Access Road (560)

Before Situation:
Animal mortality disposal is done in a manner that results in non-point source pollution of excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Improper operation results in odors from incomplete composting, incineration, or interaction with predators. No plan was formulated for catastrophic mortality events.

After Situation:

Emergency animal mortalities resulting from causes not related to disease are being disposed by composting in a static windrow that prevents non-point source pollution of excessive nutrients, and organics being transported into surface and groundwater resources. Proper operation results in little to no odors, and protection from predators. An overall plan covers the disposal of animals as a result of catastrophic mortality events.This typical scenario was developed based on the disposal of 30,000 pounds of animal mortality by composting on-site. The scenario includes equipment time and labor to recover and transport carcasses to the composting location and the building and turning of the pile at the appropriate time. Composting requires 5 cubic yards of carbon material per 1000 pounds of animal. Wood chips (45 pcf) will be used as the carbon source.

Feature Measure: Number of 1000 lbs Animal Units
Scenario Unit: Animal Unit

Scenario Typical Size: 30.00

Scenario Total Cost: $\$ 16,637.24$
Scenario Cost/Unit: \$554.57

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tractor, agricultural, 120 HP	962	Agricultural tractor with horsepower range of 90 to 140. Equipment and power unit costs. Labor not included.	Hours	\$74.02	55	\$4,071.10
Aggregate, Wood Chips	1098	Includes materials, equipment and labor to transport and place.	Cubic Yards	\$51.20	150	\$7,680.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	55	\$1,493.80
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	55	\$1,526.80
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	2	\$358.80
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 368 - Emergency Animal Mortality Management
Scenario: \#221-National Emergency Carcass Disposal Other Than Burial, Incineration, Landfill or Render

Scenario Description:

This scenario consists of the disposal of animal carcasses by methods other than burial, incineration, landfill or rendering resulting from impacts related to the National Emergency. The purpose of the practice is to address resource concerns related to water quality degradation due to excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Air quality impacts due to odors will also be addressed. Potential Associated Practices: Critical Area Planting (342), Nutrient Management (590), Access Road (560)

Before Situation:
Animal mortality disposal is done in a manner that results in non-point source pollution of excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Improper operation results in odors and spread of pathogens from incomplete composting, incineration, or interaction with predators. No plan was formulated for catastrophic mortality events.

After Situation:

Emergency animal mortalities resulting from causes not related to disease are being disposed in a manner, other than burial, incineration, landfill or rendering, that prevents non-point source pollution of excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Proper operation results in little to no odors, and protection from predators to minimize pathogen survival or spreading. An overall plan covers the disposal of animals as a result of catastrophic mortality events. This typical scenario was developed based on the disposal of livestock carcasses by composting on-site. The scenario assumes the grower will provide all equipment and labor and that 50% of the carbon for composting is available on-site.

Feature Measure: Number of 1000 lbs Animal Units
Scenario Unit: Animal Unit

Scenario Typical Size: 30.00
Scenario Total Cost: \$10,931.70
Scenario Cost/Unit: \$364.39
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tractor, agricultural, 120 HP	962	Agricultural tractor with horsepower range of 90 to 140 . Equipment and power unit costs. Labor not included.	Hours	\$74.02	55	\$4,071.10
Aggregate, Wood Chips	1098	Includes materials, equipment and labor to transport and place.	Cubic Yards	\$51.20	75	\$3,840.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	55	\$1,493.80
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	55	\$1,526.80

Practice: 368 - Emergency Animal Mortality Management
Scenario: \#237-National Emergency Disposal At Landfill or Render

Scenario Description:

This scenario consists of the disposal of animal mortality carcasses by landfilling or rendering resulting from impacts related to the National Emergency. The purpose of the practice is to address resource concerns related to water quality degradation due to excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Air quality impacts due to odors will also be addressed. Potential Associated Practices: Critical Area Planting (342), Nutrient Management (590), Access Road (560)

Before Situation:

Animal mortality disposal is done in a manner that results in non-point source pollution of excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Improper operation results in odors and spread of pathogens from incomplete composting, incineration, or interaction with predators. No plan was formulated for catastrophic mortality events.

After Situation:

Catastrophic Animal mortalities resulting from causes not related to disease are being disposed in a landfill or by rendering, that prevents non-point source pollution of excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Proper operation results in little to no odors, and protection from predators to minimize pathogen survival or spreading. An overall plan covers disposal of animals as a result of catastrophic mortality events.This typical scenario was developed based on the disposal of 700 finisher swine carcasses at an average weight of 200 pounds each in a landfill. The scenario includes materials, equipment time and labor to recover and transport the carcasses to the landfill which is within a 1.5 hour drive of the farm.

Feature Measure: Pounds of mortality
Scenario Unit: Pound
Scenario Typical Size: 140,000.00
Scenario Total Cost: \$9,867.33
Scenario Cost/Unit: \$0.07
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Skidsteer, 80 HP	933	Skidsteer loader with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$56.04	5	\$280.20
Truck, dump, 8 CY	1401	Dump truck for moving bulk material. Typically capacity is 12 ton or 8 cubic yards. Includes equipment only.	Hours	\$54.41	39	\$2,121.99
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	5	\$135.80
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	5	\$138.80
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	39	\$1,242.93
Materials						
Poly film, 6 mil.	245	6 mil, polyethylene, black	Square Feet	\$0.09	3388	\$304.92
Landfill Fee, Animal Carcass	2711	Fees charged by a landfill for proper disposal of animal carcass or animal debris	Cubic Yards	\$45.45	91	\$4,135.95
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 368 - Emergency Animal Mortality Management
Scenario: \#253 - National Emergency In-House Composting

Scenario Description:

This scenario consists the emergency disposal of poultry mortality by composting in a static windrow resulting from impacts related to the National Emergency. Additional carbon based bulking material is added to facilitate aeration and provide a proper $\mathrm{C}: \mathrm{N}$ ratio. The windrow is turned at least once to go into another heat cycle prior to land application. Access is infrequent. This option may not be desirable for sites with limited area, karst topography, and not isolated from of public view. The purpose of the practice is to address resource concerns related to water quality degradation due to excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Air quality impacts due to odors will also be addressed. Potential Associated Practices: Pond Sealing or Lining, Bentonite Sealant (521C), Pond Sealing or Lining, Compacted Clay Treatment (521D), Pond Sealing or Lining, Soil Dispersant (521B), Fence (382), Critical Area Planting (342), Nutrient Management (590), Access Road (560), Diversion (362).

Before Situation:
Animal mortality is done in a manner that results in non-point source pollution of excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Improper operation results in odors and spread of pathogens from incomplete composting, or interaction with predators. No plan was formulated for catastrophic mortality events.

After Situation:

Animal mortality disposal is being done in a manner that prevents non-point source pollution of excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Proper operation results in little to no odors, complete composting, and protection from predators to minimize pathogen survival or spreading. An overall plan covers normal and catastrophic mortality events. The typical scenario consists of in-house composting of animal mortality. Composting requires 1.5 pounds of carbon per pound of mortatility. There is some manure and bedding already on site. Wood chips (45 pcf) will be used as the additional carbon source. The composting windrow construction operation consists of 2 pieces of equipment and 2 add'I laborers: 1) stockpiling carcasses, bedding, and manure in center of house; 2) construct 2 windrow bases using carbon material; 3) place carcass/bedding/manure mix on bases; 4) cover with carbon material; 5) cap windrows with any remaining bedding/manure; 6) after first heat cycle remove windrow from house and reconstruct outside house for finishing. Site to be located out of drainage areas, off-site water diverted and any runoff to spread out into a grassed area.

Feature Measure: Number of 1000 lbs Animal Units
Scenario Unit: Animal Unit
Scenario Typical Size: 80.00
Scenario Total Cost: $\$ 9,322.72$

Scenario Cost/Unit: \$116.53

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Skidsteer, 80 HP	933	Skidsteer loader with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$56.04	28	\$1,569.12
Aggregate, Wood Chips	1098	Includes materials, equipment and labor to transport and place.	Cubic Yards	\$51.20	91	\$4,659.20
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	28	\$760.48
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	28	\$777.28
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	2	\$358.80
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	4	\$1,197.84

Practice: 368 - Emergency Animal Mortality Management
Scenario: \#269 - National Emergency Forced Air Incineration

Scenario Description:

This scenario consists the emergency disposal of a large number of livestock resulting from impacts related to the National Emergency. The cause of mortatiy is an event not related to disease. Additional carbon based bulking material is added to facilitate aeration and provide a proper C:N ratio. The windrow is turned at least once to go into another heat cycle prior to land application. Access is infrequent. This option may not be desirable for sites with limited area, karst topography, and not isolated from of public view. The purpose of the practice is to address resource concerns related to water quality degradation due to excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Air quality impacts due to odors will also be addressed. Potential Associated Practices: Critical Area Planting (342), Nutrient Management (590), Access Road (560), Diversion (362).

Before Situation:

Animal mortality disposal is done in a manner that results in non-point source pollution of excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Improper operation results in odors and spread of pathogens from incomplete composting, incineration, or interaction with predators. No plan was formulated for catastrophic mortality events.

After Situation:

Animal mortality is being done in a manner that prevents non-point source pollution of excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. An overall plan covers normal and catastrophic mortality events. This typical scenario was developed based on the forced air incineration of 50 animal units of livestock carcasses. The scenario includes equipment time and labor to recover and transport carcasses to a suitable on-site incineration location and the rental and operation of a portable forced air incinerator. Wood fuel is also added to assist with the incineration process. The forced air incineration operation consists of a tractor plus operator to collect and transport carcasses to the incineration site, a portable forced air incinerator plus operator, and 1 add'I laborer. Site to be located out of drainage areas, off-site water diverted and any runoff to spread out into a grassed area. The forced air incineration operation consists of a tractor plus operator to collect and transport carcasses to the incineration site, a portable forced air incinerator plus operator, and 1 add'l laborer. Site to be located out of drainage areas, off-site water diverted and any runoff to spread out into a grassed area.

Feature Measure: Number of 1000 lbs Animal Units

Scenario Unit: Animal Unit
Scenario Typical Size: 50.00

Scenario Total Cost:	\$17,4	5.85				
Scenario Cost/Unit:		8.92				
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tractor, agricultural, 120 HP	962	Agricultural tractor with horsepower range of 90 to 140 . Equipment and power unit costs. Labor not included.	Hours	\$74.02	50	\$3,701.00
Aggregate, Wood Chips	1098	Includes materials, equipment and labor to transport and place.	Cubic Yards	\$51.20	42	\$2,150.40
Incinerator, Portable, Trench Burner	2712	A portable incinerator used with the development of a trench to incinerate animal carcasses or other debris	Week	\$1,443.33	2	\$2,886.66
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	50	\$1,358.00
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	94	\$2,609.44
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	56	\$2,666.16
Materials						
Fuel, propane	1597	20 pound propane bottle, with propane, for ignition of prescribed burns. Materials only.	Each	\$12.61	45	\$567.45
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and	Each	\$753.37	2	\$1,506.74

Practice: 368 - Emergency Animal Mortality Management

Scenario: \#285-National Emergency Burial

Scenario Description:

This scenario consists of the on-site burial of animal mortalities resulting from impacts related to the National Emergency. An earthen pit is excavated to contain the mortalities, and earth cover is placed over the mortalities to provide protection from predators to minimize pathogen survival or spreading. The purpose of the practice is to address resource concerns related to water quality degradation due to excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Air quality impacts due to odors will also be addressed. Potential Associated Practices: Pond Sealing or Lining, Bentonite Sealant (521C), Pond Sealing or Lining, Compacted Clay Treatment (521D), Pond Sealing or Lining, Soil Dispersant (521B), Fence (382), Critical Area Planting (342), Nutrient Management (590), Access Road (560), and Diversion (362).

Before Situation:
Animal mortality disposal is done in a manner that results in non-point source pollution of excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Improper operation results in odors and spread of pathogens from incomplete composting, incineration, or interaction with predators. No plan was formulated for catastrophic mortality events.

After Situation:

Catastrophic Animal mortalities resultuing from causes not related to disease are being disposed in a manner that prevents non-point source pollution of excessive nutrients, organics, and pathogens being transported into surface and groundwater resources. Proper operation results in little to no odors, and protection from predators to minimize pathogen survival or spreading. An overall plan covers the burial of animals as a result of catastrophic mortality events.This typical scenario was developed based on the disposal of 25 head of mature cattle located near the area where the cattle have been found. The scenario includes equipment time and labor to recover and transport carcasses to the burial location. The scenario also includes a burial trench 4' deep plus 3' additional cover over carcasses. Construct a 6' x 60' (surface dimensions) burial site with appropriate cover. Site can handle mortality for 25 mature beef cattle. On site soils can be recompacted to meet required imperviousness. Include 3' overfill or mounding excavated material to provide for settlement of the burial site and divert or minimize offsite runoff. Site to be located out of drainage areas, off-site water diverted and any runoff to spread out into a grassed area.

Feature Measure: Number of 1000 lbs Animal Units
Scenario Unit: Animal Unit

Scenario Typical Size: 25.00

Practice: 372-Combustion System Improvement
Scenario: \#23-IC Engine Repower, < 50 bhp

Scenario Description:

Replace an existing older diesel engine with a new diesel engine (<50 bhp) that is certified to the newest available U.S. EPA engine TIER rating. The existing diesel engine may be stationary or portable, but not mobile (e.g., providing motive power to tractors, trucks, etc.). Examples of stationary or portable engines include diesel-fired pumping plant power units, emergency generators, or engines providing power for other agricultural systems. Resource Concerns: Air Quality ??? Emissions of Particulate Matter (PM) and PM Precursors; Air Quality ??? Emissions of Ozone Precursors; Air Quality - Emissions of Airborne Reactive Nitrogen; Energy ??? Energy Efficiency of Equipment and Facilities. Associated Practices include: 374 ??? Energy Efficient Agricultural Operation; 533 ??? Pumping Plant; 430 ??? Irrigation Pipeline; 441 ??? Irrigation System, Microirrigation; 442 ??? Sprinkler System; 447 ??? Irrigation and Drainage Tailwater Recovery; 449 ??? Irrigation Water Management; 516 ??? Livestock Pipeline; 313 ??? Waste Storage Facility; 634 ??? Waste Transfer; 642 ??? Water Well; and 614 ??? Watering Facility.

Before Situation:

An old or inefficient diesel engine provides power to an agricultural system, such as an irrigation pumping plant or grain dryer fan, or provides backup power generation for a farming operation. Air Quality: The existing internal combustion engine emissions are identified to contribute to an air quality resource concern. Energy: The existing internal combustion engine uses excess fuel to provide power to an agricultural system.

After Situation:
The existing older diesel engine is replaced or repowered with a new diesel engine ($<50 \mathrm{bhp}$) that is certified to the newest available U.S. EPA engine TIER rating. The engine being replaced or repowered will be destroyed or disabled and a certificate of destruction or inoperability submitted prior to certification of practice completion. The existing engine is supported by a concrete pad; no costs have been included for a new pad. Additional costs may be incurred if an existing concrete pad is not present. Air Quality: The replacement or repower diesel engine will be cleaner-burning and will emit less particulate matter and/or oxides of nitrogen than the previous existing engine. The decrease in emissions for the replacement or repower engine must be supported by calculations showing the expected emissions reductions. Energy: Energy efficiency will be improved. The increase in energy efficiency for the replacement or repower engine must be supported by an energy analysis.

Feature Measure: Size of Replacement Engine
Scenario Unit: Brake Horse Power
Scenario Typical Size: 30.00
Scenario Total Cost: \$3,148.86

Scenario Cost/Unit: \$104.96
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	8	\$270.96
Materials						
Motor, IC Engine, 25-49 HP	1428	Most current Tier-level Diesel or Cleaner Engine and required appurtenances. 25 to 49 bhp . Materials only.	Horsepower	\$95.93	30	\$2,877.90

Practice: 372-Combustion System Improvement
Scenario: \#25 - IC Engine Repower, 50-99 bhp

Scenario Description:

Replace an existing older diesel engine with a new diesel engine ($50-99 \mathrm{bhp}$) that is certified to the newest available U.S. EPA engine TIER rating. The existing diesel engine may be stationary or portable, but not mobile (e.g., providing motive power to tractors, trucks, etc.). Examples of stationary or portable engines include diesel-fired pumping plant power units, emergency generators, or engines providing power for other agricultural systems. Resource Concerns: Air Quality ??? Emissions of Particulate Matter (PM) and PM Precursors; Air Quality ??? Emissions of Ozone Precursors; Air Quality - Emissions of Airborne Reactive Nitrogen; Energy ??? Energy Efficiency of Equipment and Facilities. Associated Practices include: 374 ??? Energy Efficient Agricultural Operation; 533 ??? Pumping Plant; 430 ??? Irrigation Pipeline; 441 ??? Irrigation System, Microirrigation; 442 ??? Sprinkler System; 447 ??? Irrigation and Drainage Tailwater Recovery; 449 ??? Irrigation Water Management; 516 ??? Livestock Pipeline; 313 ??? Waste Storage Facility; 634 ??? Waste Transfer; 642 ??? Water Well; and 614 ??? Watering Facility.

Before Situation:

An old or inefficient diesel engine provides power to an agricultural system, such as an irrigation pumping plant or grain dryer fan, or provides backup power generation for a farming operation. Air Quality: The existing internal combustion engine emissions are identified to contribute to an air quality resource concern. Energy: The existing internal combustion engine uses excess fuel to provide power to an agricultural system.

After Situation:
The existing older diesel engine is replaced or repowered with a new diesel engine ($50-99 \mathrm{bhp}$) that is certified to the newest available U.S. EPA engine TIER rating. The engine being replaced or repowered will be destroyed or disabled and a certificate of destruction or inoperability submitted prior to certification of practice completion. The existing engine is supported by a concrete pad; no costs have been included for a new pad. Additional costs may be incurred if an existing concrete pad is not present. Air Quality: The replacement or repower diesel engine will be cleaner-burning and will emit less particulate matter and/or oxides of nitrogen than the previous existing engine. The decrease in emissions for the replacement or repower engine must be supported by calculations showing the expected emissions reductions. Energy: Energy efficiency will be improved. The increase in energy efficiency for the replacement or repower engine must be supported by an energy analysis.

Feature Measure: Size of Replacement Engine
Scenario Unit: Brake Horse Power
Scenario Typical Size: 75.00
Scenario Total Cost: \$14,658.42

Scenario Cost/Unit: \$195.45
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	16	\$541.92
Materials						
Motor, IC Engine, 50-99 HP	1429	Most current Tier-level Diesel or Cleaner Engine and required appurtenances. 50 to 99 bhp . Materials only.	Horsepower	\$188.22	75	\$14,116.50

Practice: 372-Combustion System Improvement
Scenario: \#26-IC Engine Repower, 100-199 bhp

Scenario Description:

Replace an existing older diesel engine with a new diesel engine ($100-199 \mathrm{bhp}$) that is certified to the newest available U.S. EPA engine TIER rating. The existing diesel engine may be stationary or portable, but not mobile (e.g., providing motive power to tractors, trucks, etc.). Examples of stationary or portable engines include dieselfired pumping plant power units, emergency generators, or engines providing power for other agricultural systems. Resource Concerns: Air Quality ??? Emissions of Particulate Matter (PM) and PM Precursors; Air Quality ??? Emissions of Ozone Precursors; Air Quality - Emissions of Airborne Reactive Nitrogen; Energy ??? Energy Efficiency of Equipment and Facilities. Associated Practices include: 374 ??? Energy Efficient Agricultural Operation; 533 ??? Pumping Plant; 430 ??? Irrigation Pipeline; 441 ??? Irrigation System, Microirrigation; 442 ??? Sprinkler System; 447 ??? Irrigation and Drainage Tailwater Recovery; 449 ??? Irrigation Water Management; 516 ??? Livestock Pipeline; 313 ??? Waste Storage Facility; 634 ??? Waste Transfer; 642 ??? Water Well; and 614 ??? Watering Facility.

Before Situation:
An old or inefficient diesel engine provides power to an agricultural system, such as an irrigation pumping plant or grain dryer fan, or provides backup power generation for a farming operation. Air Quality: The existing internal combustion engine emissions are identified to contribute to an air quality resource concern. Energy: The existing internal combustion engine uses excess fuel to provide power to an agricultural system.

After Situation:
The existing older diesel engine is replaced or repowered with a new diesel engine (100-199 bhp) that is certified to the newest available U.S. EPA engine TIER rating. The engine being replaced or repowered will be destroyed or disabled and a certificate of destruction or inoperability submitted prior to certification of practice completion. The existing engine is supported by a concrete pad; no costs have been included for a new pad. Additional costs may be incurred if an existing concrete pad is not present. Air Quality: The replacement or repower diesel engine will be cleaner-burning and will emit less particulate matter and/or oxides of nitrogen than the previous existing engine. The decrease in emissions for the replacement or repower engine must be supported by calculations showing the expected emissions reductions. Energy: Energy efficiency will be improved. The increase in energy efficiency for the replacement or repower engine must be supported by an energy analysis.

Feature Measure: Size of Replacement Engine
Scenario Unit: Brake Horse Power
Scenario Typical Size: 150.00
Scenario Total Cost: \$23,136.42

Scenario Cost/Unit: \$154.24
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	16	\$541.92
Materials						
Motor, IC Engine, 100-199 HP	1430	Most current Tier-level Diesel or Cleaner Engine and required appurtenances. 100 to 199 bhp . Materials only.	Horsepower	\$150.63	150	\$22,594.50

Practice: 372-Combustion System Improvement
Scenario: \#28-Electric Motor in-lieu of IC Engine, < 12 HP
Scenario Description:
Replace an existing older diesel engine with a new electric motor (<12 hp). The existing diesel engine may be stationary or portable, but not mobile (e.g., providing motive power to tractors, trucks, etc.). Examples of stationary or portable engines include diesel-fired pumping plant power units, emergency generators, or engines providing power for other agricultural systems. Resource Concerns: Air Quality ??? Emissions of Particulate Matter (PM) and PM Precursors; Air Quality ??? Emissions of Ozone Precursors; Air Quality - Emissions of Airborne Reactive Nitrogen; Energy ??? Energy Efficiency of Equipment and Facilities. Associated Practices include: 374 ??? Energy Efficient Agricultural Operation; 533 ??? Pumping Plant; 430 ??? Irrigation Pipeline; 441 ??? Irrigation System, Microirrigation; 442 ??? Sprinkler System; 447 ??? Irrigation and Drainage Tailwater Recovery; 449 ??? Irrigation Water Management; 516 ??? Livestock Pipeline; 313 ??? Waste Storage Facility; 634 ??? Waste Transfer; 642 ??? Water Well; and 614 ??? Watering Facility.

Before Situation:

An old or inefficient diesel engine provides power to an agricultural system, such as an irrigation pumping plant or grain dryer fan, or provides backup power generation for a farming operation. Air Quality: The existing internal combustion engine emissions are identified to contribute to an air quality resource concern. Energy: The existing internal combustion engine uses excess fuel to provide power to an agricultural system.

After Situation:
The existing older diesel engine is replaced with a new electric motor ($<12 \mathrm{hp}$). The engine being replaced or repowered will be destroyed or disabled and a certificate of destruction or inoperability submitted prior to certification of practice completion. The existing engine is supported by a concrete pad; no costs have been included for a new pad. Additional costs may be incurred if an existing concrete pad is not present. Air Quality: The new electric motor does not produce any on-farm emissions of particulate matter or oxides of nitrogen, resulting in a substantial emissions reduction on the farm. Energy: Energy efficiency will be improved.

Feature Measure: Number of Combustion Units Repla
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$1,771.62
Scenario Cost/Unit: \$1,771.62
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	8	\$270.96
Materials						
Motor, electric, NEMA Premium, 10 HP	1172	Premium NEMA approved electric motor, 10 Horsepower and all required appurtenances. Includes materials and shipping only.	Each	\$1,500.66	1	\$1,500.66

Practice: 372-Combustion System Improvement
Scenario: \#29 - Electric Motor in-lieu of IC Engine, 12-74 HP

Scenario Description:

Replace an existing older diesel engine with a new electric motor (12-74 hp). The existing diesel engine may be stationary or portable, but not mobile (e.g., providing motive power to tractors, trucks, etc.). Examples of stationary or portable engines include diesel-fired pumping plant power units, emergency generators, or engines providing power for other agricultural systems. Resource Concerns: Air Quality ??? Emissions of Particulate Matter (PM) and PM Precursors; Air Quality ??? Emissions of Ozone Precursors; Air Quality - Emissions of Airborne Reactive Nitrogen; Energy ??? Energy Efficiency of Equipment and Facilities. Associated Practices include: 374 ??? Energy Efficient Agricultural Operation; 533 ??? Pumping Plant; 430 ??? Irrigation Pipeline; 441 ??? Irrigation System, Microirrigation; 442 ??? Sprinkler System; 447 ??? Irrigation and Drainage Tailwater Recovery; 449 ??? Irrigation Water Management; 516 ??? Livestock Pipeline; 313 ??? Waste Storage Facility; 634 ??? Waste Transfer; 642 ??? Water Well; and 614 ??? Watering Facility.

Before Situation:
An old or inefficient diesel engine provides power to an agricultural system, such as an irrigation pumping plant or grain dryer fan, or provides backup power generation for a farming operation. Air Quality: The existing internal combustion engine emissions are identified to contribute to an air quality resource concern. Energy: The existing internal combustion engine uses excess fuel to provide power to an agricultural system.

After Situation:
The existing older diesel engine is replaced with a new electric motor (12-74 hp). The engine being replaced or repowered will be destroyed or disabled and a certificate of destruction or inoperability submitted prior to certification of practice completion. The existing engine is supported by a concrete pad; no costs have been included for a new pad. Additional costs may be incurred if an existing concrete pad is not present. Air Quality: The new electric motor does not produce any on-farm emissions of particulate matter or oxides of nitrogen, resulting in a substantial emissions reduction on the farm. Energy: Energy efficiency will be improved.

Feature Measure: Number of Combustion Units Repla
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$5,953.77
Scenario Cost/Unit: \$5,953.77
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	12	\$406.44
Materials						
Motor, electric, NEMA Premium, 50 HP	1173	Premium NEMA approved electric motor, 50 Horsepower and all required appurtenances. Includes materials and shipping only.	Each	\$5,547.33	1	\$5,547.33

Practice: 372-Combustion System Improvement
Scenario: \#30 - Electric Motor in-lieu of IC Engine, 75-149 HP

Scenario Description:

Replace an existing older diesel engine with a new electric motor ($75-149 \mathrm{hp}$). The existing diesel engine may be stationary or portable, but not mobile (e.g., providing motive power to tractors, trucks, etc.). Examples of stationary or portable engines include diesel-fired pumping plant power units, emergency generators, or engines providing power for other agricultural systems. Resource Concerns: Air Quality ??? Emissions of Particulate Matter (PM) and PM Precursors; Air Quality ??? Emissions of Ozone Precursors; Air Quality - Emissions of Airborne Reactive Nitrogen; Energy ??? Energy Efficiency of Equipment and Facilities. Associated Practices include: 374 ??? Energy Efficient Agricultural Operation; 533 ??? Pumping Plant; 430 ??? Irrigation Pipeline; 441 ??? Irrigation System, Microirrigation; 442 ??? Sprinkler System; 447 ??? Irrigation and Drainage Tailwater Recovery; 449 ??? Irrigation Water Management; 516 ??? Livestock Pipeline; 313 ??? Waste Storage Facility; 634 ??? Waste Transfer; 642 ??? Water Well; and 614 ??? Watering Facility.

Before Situation:
An old or inefficient diesel engine provides power to an agricultural system, such as an irrigation pumping plant or grain dryer fan, or provides backup power generation for a farming operation. Air Quality: The existing internal combustion engine emissions are identified to contribute to an air quality resource concern. Energy: The existing internal combustion engine uses excess fuel to provide power to an agricultural system.

After Situation:
The existing older diesel engine is replaced with a new electric motor ($75-149 \mathrm{hp}$). The engine being replaced or repowered will be destroyed or disabled and a certificate of destruction or inoperability submitted prior to certification of practice completion. The existing engine is supported by a concrete pad; no costs have been included for a new pad. Additional costs may be incurred if an existing concrete pad is not present. Air Quality: The new electric motor does not produce any on-farm emissions of particulate matter or oxides of nitrogen, resulting in a substantial emissions reduction on the farm. Energy: Energy efficiency will be improved.

Feature Measure: Number of Combustion Units Repla
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost:
Scenario Cost/Unit: \$12,036.77
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	16	\$541.92
Materials						
Motor, electric, NEMA Premium, 100 HP	1174	Premium NEMA approved electric motor, 100 Horsepower and all required appurtenances. Includes materials and shipping only.	Each	\$11,494.85	1	\$11,494.85

Practice: 372-Combustion System Improvement
Scenario: \#31 - Electric Motor in-lieu of IC Engine, 150-299 HP

Scenario Description:

Replace an existing older diesel engine with a new electric motor (150-299 hp). The existing diesel engine may be stationary or portable, but not mobile (e.g., providing motive power to tractors, trucks, etc.). Examples of stationary or portable engines include diesel-fired pumping plant power units, emergency generators, or engines providing power for other agricultural systems. Resource Concerns: Air Quality ??? Emissions of Particulate Matter (PM) and PM Precursors; Air Quality ??? Emissions of Ozone Precursors; Air Quality - Emissions of Airborne Reactive Nitrogen; Energy ??? Energy Efficiency of Equipment and Facilities. Associated Practices include: 374 ??? Energy Efficient Agricultural Operation; 533 ??? Pumping Plant; 430 ??? Irrigation Pipeline; 441 ??? Irrigation System, Microirrigation; 442 ??? Sprinkler System; 447 ??? Irrigation and Drainage Tailwater Recovery; 449 ??? Irrigation Water Management; 516 ??? Livestock Pipeline; 313 ??? Waste Storage Facility; 634 ??? Waste Transfer; 642 ??? Water Well; and 614 ??? Watering Facility.

Before Situation:
An old or inefficient diesel engine provides power to an agricultural system, such as an irrigation pumping plant or grain dryer fan, or provides backup power generation for a farming operation. Air Quality: The existing internal combustion engine emissions are identified to contribute to an air quality resource concern. Energy: The existing internal combustion engine uses excess fuel to provide power to an agricultural system.

After Situation:
The existing older diesel engine is replaced with a new electric motor (150-299 hp). The engine being replaced or repowered will be destroyed or disabled and a certificate of destruction or inoperability submitted prior to certification of practice completion. The existing engine is supported by a concrete pad; no costs have been included for a new pad. Additional costs may be incurred if an existing concrete pad is not present. Air Quality: The new electric motor does not produce any on-farm emissions of particulate matter or oxides of nitrogen, resulting in a substantial emissions reduction on the farm. Energy: Energy efficiency will be improved.

Feature Measure: Number of Combustion Units Repla
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$24,733.02
Scenario Cost/Unit: \$24,733.02
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	40	\$1,354.80
Materials						
Motor, electric, NEMA Premium, 200 HP	1175	Premium NEMA approved electric motor, 200 Horsepower and all required appurtenances. Includes materials and shipping only.	Each	\$23,378.22	1	\$23,378.22

Practice: 372-Combustion System Improvement
Scenario: \#32 - Electric Motor in-lieu of IC Engine, >=300 HP

Scenario Description:

Replace an existing older diesel engine with a new electric motor (>=300 hp). The existing diesel engine may be stationary or portable, but not mobile (e.g., providing motive power to tractors, trucks, etc.). Examples of stationary or portable engines include diesel-fired pumping plant power units, emergency generators, or engines providing power for other agricultural systems. Resource Concerns: Air Quality ??? Emissions of Particulate Matter (PM) and PM Precursors; Air Quality ??? Emissions of Ozone Precursors; Air Quality - Emissions of Airborne Reactive Nitrogen; Energy ??? Energy Efficiency of Equipment and Facilities. Associated Practices include: 374 ??? Energy Efficient Agricultural Operation; 533 ??? Pumping Plant; 430 ??? Irrigation Pipeline; 441 ??? Irrigation System, Microirrigation; 442 ??? Sprinkler System; 447 ??? Irrigation and Drainage Tailwater Recovery; 449 ??? Irrigation Water Management; 516 ??? Livestock Pipeline; 313 ??? Waste Storage Facility; 634 ??? Waste Transfer; 642 ??? Water Well; and 614 ??? Watering Facility.

Before Situation:
An old or inefficient diesel engine provides power to an agricultural system, such as an irrigation pumping plant or grain dryer fan, or provides backup power generation for a farming operation. Air Quality: The existing internal combustion engine emissions are identified to contribute to an air quality resource concern. Energy: The existing internal combustion engine uses excess fuel to provide power to an agricultural system.

After Situation:
The existing older diesel engine is replaced with a new electric motor (>=300 hp). The engine being replaced or repowered will be destroyed or disabled and a certificate of destruction or inoperability submitted prior to certification of practice completion. The existing engine is supported by a concrete pad; no costs have been included for a new pad. Additional costs may be incurred if an existing concrete pad is not present. Air Quality: The new electric motor does not produce any on-farm emissions of particulate matter or oxides of nitrogen, resulting in a substantial emissions reduction on the farm. Energy: Energy efficiency will be improved.

Feature Measure: Number of Combustion Units Repla
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$49,418.80
Scenario Cost/Unit: \$49,418.80
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	40	\$1,354.80
Materials						
Motor, electric, NEMA Premium, 400 to 499 hp	1439	Premium NEMA approved Electric Motor and required appurtenances. 400 to 499 hp (296-372 kW). Includes materials and shipping only.	Horsepower	\$120.16	400	\$48,064.00

Practice: 372-Combustion System Improvement
Scenario: \#33-Mobile IC System/Tractor Replacement, 25-160 bhp
Scenario Description:
Replace an existing smaller ($25-160$ bhp engine size) high-emitting mobile off-road self-propelled diesel-powered agricultural tractor with a similarly-sized new lower emission mobile off-road tractor with a diesel engine that is certified to the newest available U.S. EPA engine TIER rating. The payment rate is based on the engine brake horsepower (bhp) rating of the engine in the new tractor and applies if the existing equipment cannot be repowered or retrofitted due to design constraints or operator safety.Resource Concerns: Air Quality - Emissions of Ozone Precursors; Air Quality - Emissions of Particulate Matter (PM) and PM Precursors; Air Quality - Emissions of Airborne Reactive Nitrogen.

Before Situation:

An older, higher-emitting diesel-powered tractor is used on an agricultural/forestry operation. The emissions of oxides of nitrogen and/or particulate matter are identified to contribute to an air quality resource concern.Air Quality: The existing diesel-powered tractor emissions are identified to contribute to an air quality resource concern.

After Situation:

A new lower-emitting mobile off-road diesel tractor replaces the existing higher-emitting system; the tractor being replaced will be disabled and a certificate of inoperability submitted prior to certification of practice completion.Air Quality: The new mobile off-road diesel tractor will be cleaner-burning and will emit less oxides of nitrogen and/or particulate matter than the previous existing tractor.

Feature Measure: Engine Size (bhp) of Engine in Repla
Scenario Unit: Brake Horse Power

Scenario Typical Size: 100.00
Scenario Total Cost: $\$ 69,047.00$

Scenario Cost/Unit: \$690.47
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Materials						
Mobile IC System Replacement (<=160 bhp)	2698	Difference in costs of ownership and operation between existing mobile agricultural IC systems <= 160 bhp with no emissions reduction technology or early-generation emissions reduction technology and new mobile agricultural IC systems <=160 bhp with latest-tier emissions reduction technology.	Brake Horse Power	\$690.47	100	\$69,047.00

Practice: 372-Combustion System Improvement
Scenario: \#34-Mobile IC System/Tractor Replacement, >160 bhp
Scenario Description:
Replace an existing larger (>160 bhp engine size) high-emitting mobile off-road self-propelled diesel-powered agricultural tractor with a similarly-sized new lower emission mobile off-road tractor with a diesel engine that is certified to the newest available U.S. EPA engine TIER rating. The payment rate is based on the engine brake horsepower (bhp) rating of the engine in the new tractor and applies if the existing equipment cannot be repowered or retrofitted due to design constraints or operator safety.Resource Concerns: Air Quality - Emissions of Ozone Precursors; Air Quality - Emissions of Particulate Matter (PM) and PM Precursors; Air Quality - Emissions of Airborne Reactive Nitrogen.

Before Situation:

An older, higher-emitting diesel-powered tractor is used on an agricultural/forestry operation. The emissions of oxides of nitrogen and/or particulate matter are identified to contribute to an air quality resource concern.Air Quality: The existing diesel-powered tractor emissions are identified to contribute to an air quality resource concern.

After Situation:

A new lower-emitting mobile off-road diesel tractor replaces the existing higher-emitting tractor; the tractor being replaced will be disabled and a certificate of inoperability submitted prior to certification of practice completion.Air Quality: The new mobile off-road diesel tractor will be cleaner-burning and will emit less oxides of nitrogen and/or particulate matter than the previous existing tractor.

Feature Measure: Engine Size (bhp) of Engine in Repla
Scenario Unit: Brake Horse Power

Scenario Typical Size: 250.00
Scenario Total Cost: $\$ 268,867.50$
Scenario Cost/Unit: \$1,075.47
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Materials						
Mobile IC System Replacement (>160 bhp)	2699	Difference in costs of ownership and operation between existing mobile agricultural IC systems >160 bhp with no emissions reduction technology or early-generation emissions reduction technology and new mobile agricultural IC systems >160 bhp with latest-tier emissions reduction technology.	Brake Horse Power	\$1,075.47	250	\$268,867.50

Practice: 374 - Energy Efficient Agricultural Operation
Scenario: \#1-Ventilation, Exhaust
Scenario Description:
Replacement of a conventional exhaust fan with high volume, low speed, efficient exhaust fan. Fans being installed should be models previously tested by BESS Lab or the Air Movement and Control Association and be in top 20 percentile of fans tested. Practice certification will be through receipts and pictures from the applicant. Typical scenario includes the replacement of a 48' fan.

Before Situation:
An on-farm energy audit has identified an inefficient ventilation in an agricultural building.
After Situation:
High-efficiency ventilation system which reduces energy use. The new ventilation equipment will provide suitable air quality and reduce overall power requirements (kW) compared to the existing ventilation system as evidenced in an energy audit. Associated practices/activities: may include 122-AgEMP - HQ, and other activities within 374Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.

Feature Measure: Each Fan
Scenario Unit: Each
Scenario Typical Size: 1.00

Scenario Total Cost:	$\$ 2,230.63$
Scenario Cost/Unit:	$\$ 2,230.63$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	3	\$101.61
Materials						
Fan, exhaust, 48 in. High Efficiency	1187	48 inch high efficiency exhaust fan, controls, wiring, and associated appurtenances. Materials only.	Each	\$2,129.02	1	\$2,129.02

Practice: 374 - Energy Efficient Agricultural Operation
Scenario: \#2 - Ventilation, Horizontal Air Flow (HAF)

Scenario Description:

A system of fans are installed to create a horizontal air circulation pattern; the new system promotes efficient heat and moisture distribution. In a typical 10,000 square foot greenhouse, 10 HAF fans are needed. Fan performance meets Energy Audit efficiency criteria as tested by AMCA or BESS Labs.
Before Situation:
An on-farm energy audit has identified an inefficent air circulation system in a greenhouse.

After Situation:

High-efficiency air circulation system which reduces energy use. The new equipment will provide suitable air quality and reduce overall power requirements (kW) compared to the existing system as evidenced in an energy audit. Associated practices/activities: may include 122-AgEMP - HQ, and other activities within 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.

Feature Measure: Each Fan
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$267.39

Scenario Cost/Unit: \$267.39
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	2	\$67.74
Materials						
Fan, HAF, 1/10 to 1/15 HP	1189	High efficiency Horizontal Air Flow (HAF) fan, controls, wiring, and associated appurtenances. Materials only.	Each	\$199.65	1	\$199.65

Practice: 374-Energy Efficient Agricultural Operation

Scenario: \#5 - Controllers, Variable Speed Drive (VSD), Less than 100 HP

Scenario Description:

The typical scenario consists of a variable speed drive (VSD) and appurtenances, such as hook-ups, control panels, wiring, control blocks, filters, switches, pads, etc. attached to an electric motor used to drive a ventilation fan, irrigation pumps, vacuum pump, or similar equipment involved with agricultural production. The motor size, on which the VSD is added, is less than 100 HP .

Before Situation:
An on-farm energy audit has determined the pumping system is inefficient because a motor operating at constant speed handles a load with varying flow rates and/or pressure characteristics.

After Situation:
An on-farm energy audit has determined that energy use can be reduced through use of a VSD to control electric motors. After the VSD is applied, the motor speed can be adjusted to reduce power requirements and better match varied flow or pressure requirements. Associated practices/activities: may include 122-AgEMP - HQ, and other activities within 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on nonrenewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE 6612.

Feature Measure: Horsepower of Motor
Scenario Unit: Horsepower
Scenario Typical Size: 50.00
Scenario Total Cost: $\$ 6,573.46$
Scenario Cost/Unit:

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	8	\$270.96
Materials						
Variable Speed Drive, 50 HP	1288	Variable speed drive for 50 Horsepower electric motor. Does not include motor. Materials only.	Horsepower	\$126.05	50	\$6,302.50

Practice: 374 - Energy Efficient Agricultural Operation

Scenario: \#6 - Motors, Larger Than 100 HP

Scenario Description:

The typical scenario consists of replacing an existing electric motor used to drive a ventilation fan, irrigation pumps, vacuum pump, or similar equipment involved with agricultural production with a new, high efficiency motor. The motor size is larger than 100 horsepower.

Before Situation:
An on-farm energy audit has identified a system as inefficient due to a standard efficiency motor.
After Situation:
An on-farm energy audit has determined that energy use can be reduced through use of a NEMA premium efficiency motor. Associated practices/activities may include: $122-A g E M P-H Q$, and other activities within 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.

Feature Measure: Each Motor
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$23,920.14

Scenario Cost/Unit: \$23,920.14
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	16	\$541.92
Materials						
Motor, electric, NEMA Premium, 200 HP	1175	Premium NEMA approved electric motor, 200 Horsepower and all required appurtenances. Includes materials and shipping only.	Each	\$23,378.22	1	\$23,378.22

Practice: 374 - Energy Efficient Agricultural Operation

Scenario: \#7-Motors, Greater Than or Equal to 10 HP and Less Than or Equal to 100 HP

Scenario Description:

The typical scenario consists of replacing an existing electric motor used to drive a ventilation fan, irrigation pumps, vacuum pump, or similar equipment involved with agricultural production with a new, high efficiency motor. The motor size is equal to or larger than 10 and less than or equal to 100 horsepower.

Before Situation:
An on-farm energy audit has identified a system as inefficient due to a standard efficiency motor.
After Situation:
An on-farm energy audit has determined that energy use can be reduced through use of a NEMA premium efficiency motor. Associated practices/activities may include: $122-A g E M P-H Q$, and other activities within 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.

Feature Measure: Each Motor
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$5,818.29
Scenario Cost/Unit: \$5,818.29
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	8	\$270.96
Materials						
Motor, electric, NEMA Premium, 50 HP	1173	Premium NEMA approved electric motor, 50 Horsepower and all required appurtenances. Includes materials and shipping only.	Each	\$5,547.33	1	\$5,547.33

Practice: 374 - Energy Efficient Agricultural Operation

Scenario: \#8-Motors, Greater Than 1 HP and Less Than 10 HP

Scenario Description:

The typical scenario consists of replacing an existing electric motor used to drive a ventilation fan, irrigation pumps, vacuum pump, or similar equipment involved with agricultural production with a new, high efficiency motor. The motor size is larger than 1 and less than 10 horsepower.

Before Situation:
An on-farm energy audit has identified a system as inefficient due to a standard efficiency motor.
After Situation:
An on-farm energy audit has determined that energy use can be reduced through use of a NEMA premium efficiency motor. Associated practices/activities may include: $122-A g E M P-H Q$, and other activities within 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.

Feature Measure: Each Motor
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$1,171.90
Scenario Cost/Unit: \$1,171.90
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	4	\$135.48
Materials						
Motor, electric, NEMA Premium, 5 HP	1171	Premium NEMA approved electric motor, 5 Horsepower and all required appurtenances. Includes materials and shipping only.	Each	\$1,036.42	1	\$1,036.42

Practice: 374 - Energy Efficient Agricultural Operation

Scenario: \#9-Motors, 1 HP or Less

Scenario Description:

The typical scenario consists of replacing an existing electric motor used to drive a ventilation fan, irrigation pumps, vacuum pump, or similar equipment involved with agricultural production with a new, high efficiency motor. The motor size is less than or equal to 1 horsepower.

Before Situation:
An on-farm energy audit has identified a system as inefficient due to a standard efficiency motor.
After Situation:
An on-farm energy audit has determined that energy use can be reduced through use of a NEMA premium efficiency motor. Associated practices/activities may include: $122-A g E M P-H Q$, and other activities within 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.

Feature Measure: Each Motor
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$788.22

Scenario Cost/Unit: \$788.22
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	4	\$135.48
Materials						
Motor, electric, NEMA Premium, 1 HP	1169	Premium NEMA approved electric motor, 1 Horsepower and all required appurtenances. Includes materials and shipping only.	Each	\$652.74	1	\$652.74

Practice: 374-Energy Efficient Agricultural Operation
Scenario: \#10 - Air Heating, Radiant Systems

Scenario Description:

Replace 'pancake' Brood Heaters in a poultry house with Radiant Tube Heaters, or similar. Replacement will require the materials and labor to remove existing heating system, re-plumb gas lines, cables and wench system to retrofit new radiant tube heaters, and miscellaneous items to complete the installation. Alternate acceptable radiant heating systems can include radiant brooders and quad radiant systems as evidenced by the energy audit. The typical scenario consists of the replacement of 28 brood heaters with 6 radiant tube heaters that have a rated heat output of $125,000 \mathrm{BTU} / \mathrm{Hour}(6 \times 125,000 \mathrm{BTU} / \mathrm{Hour}=750,000 \mathrm{BTU} / \mathrm{Hour})$.

Before Situation:
An on-farm energy audit has identified an inefficient heat distribution equipment, such as conventional 'pancake' brood heaters. The Pancake brooder, mounted at a low installation height, primarily warms the air. They provide a one-to-two foot perimeter at desired temperatures around each brooder. A large number of brooders are required to cover a significant percent of floor space. As the warmed air naturally rises it loses effectiveness for poultry on the ground.

After Situation:

Energy use is reduced through installation of a more efficient heater. Radiant tube heaters primarily warm objects within a direct line of sight (similar to the sun or an open fire). Air temperature is of relatively little importance for a radiant heating systems to be effective. As a result, radiant sytems are typically installed 5 ' or more above the floor level. This height extends the distribution of the radiant heat over a larger area than is possible with pancake style heaters. A roughly 16 diameter radiant heat zone heats over twice that of a convential pancake brooder. Associated practices/activities may include: 122-AgEMP - HQ, and other activities within 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.

Feature Measure: Rated Heat Output
Scenario Unit: 1,000 BTU/Hour
Scenario Typical Size: 750.00
Scenario Total Cost: \$10,901.22
Scenario Cost/Unit: \$14.53

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	16	\$541.92
Materials						
Heater, radiant tube	1163	Radiant tube heater rated at 125,000 BTU/hour. Materials only.	Each	\$1,726.55	6	\$10,359.30

Practice: 374 - Energy Efficient Agricultural Operation
Scenario: \#11 - Air Heating, Building

Scenario Description:

Replace existing low efficiency heaters with new high efficiency heaters. High-efficiency heating systems include any heating unit with efficiency rating of $80 \%+$ for fuel oil and $90 \%+$ for natural gas and propane. Applications may be air heating/building environment and hydronic (boiler) heating for agricultural operations, including under bench, or root zone heating. An alternative to heater replacement might be the addition of climate control system and electronic temperature controls with $+/-1$ degree F differential, to reduce the annual run time.

Before Situation:
An on-farm energy audit has identified buildings heated with low efficiency heaters or heaters without proper electronic climate controls.

After Situation:

Higher efficiency heaters reduce energy consumption, energy costs, and GHG emissions. These replacement systems can be fueled by natural gas, propane, or fuel oil. Associated practices/activities: 122-AgEMP - HQ and other activities within 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.

Feature Measure: Rated Heat Output
Scenario Unit: 1,000 BTU/Hour
Scenario Typical Size: 750.00
Scenario Total Cost: \$17,041.92

Scenario Cost/Unit: \$22.72
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	16	\$541.92
Materials						
Heater, high efficiency	1165	Natural gas, propane, or fuel oil unit heater or boiler and venting materials. Based on input kBTU/hour. Includes materials and shipping only.	$\begin{gathered} \text { 1,000 } \\ \text { BTU/Hour } \end{gathered}$	\$22.00	750	\$16,500.00

Practice: 374 - Energy Efficient Agricultural Operation

Scenario: \#12 - Air Heating, Attic Heat Recovery Vents

Scenario Description:

Install actuated inlets or automatic latching gravity inlets that draw warmer, drier air from the attic to assist with moisture and heat control when ventiliation fans are being operated in poultry houses and swine barns. Other systems to transfer heat, as detailed in ASABE S612-compliant energy audit may also be used. Based on a 40' x 500' poultry house.

Before Situation:
An on-farm energy audit has identified conditions that will allow for reduced energy use in heated buildings with attic spaces because they have no means to transfer heat between the heated space, attic, and ambient (outside) air.

After Situation:

Attic vents or inlets allow dry warm air from the attic to cirulated through out the building. By using pre-warmed air from the attic less energy is needed for heating 122AgEMP - HQ and other activities within 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.

Feature Measure: Each Inlet
Scenario Unit: Each
Scenario Typical Size: 14.00
Scenario Total Cost: \$3,144.86
Scenario Cost/Unit: \$224.63

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	24	\$812.88
Materials						
Inlet, Attic Ceiling	2414	Poultry house attic air inlets. Includes materials only.	Each	\$166.57	14	\$2,331.98

Practice: 374 - Energy Efficient Agricultural Operation
Scenario: \#43 - Controllers, Variable Speed Drive (VSD), 100 HP and Greater
Scenario Description:
The typical scenario consists of a variable speed drive (VSD) and appurtenances, such as hook-ups, control panels, wiring, control blocks, filters, switches, pads, etc. attached to an electric motor used to drive a ventilation fan, irrigation pumps, vacuum pump, or similar equipment involved with agricultural production. The motor size, on which the VSD is added, is 100 HP or larger.

Before Situation:
An on-farm energy audit has determined the pumping system is inefficient because a motor operating at constant speed handles a load with varying flow rates and/or pressure characteristics.

After Situation:
An on-farm energy audit has determined that energy use can be reduced through use of a VSD to control electric motors. After the VSD is applied, the motor speed can be adjusted to reduce power requirements and better match varied flow or pressure requirements. Associated practices/activities: may include 122-AgEMP - HQ, and other activities within 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on nonrenewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE 6612.

Feature Measure: Horsepower of Motor

Scenario Unit: Horsepower

Scenario Typical Size: 200.00
Scenario Total Cost: \$19,819.40

Scenario Cost/Unit: \$99.10
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	20	\$677.40
Materials						
Variable Speed Drive, 200 HP	1290	Variable speed drive for 200 Horsepower electric motor. Does not include motor. Materials only.	Horsepower	\$95.71	200	\$19,142.00

United States Department of Agriculture

Practice: 374-Energy Efficient Agricultural Operation

Scenario: \#120-Plate Cooler

Scenario Description:

The installation of all stainless steel dual pass plate cooler, type 316 stainless steel. Practice certification will be through receipts and pictures from the applicant.

Before Situation:

Inefficient milk cooling (minimal pre-cooling of milk before entering the bulk tank).

After Situation:

High-efficiency milk cooling system which reduces energy use. The new milk cooling equipment will pre-cool the milk and reduce overall power requirements (kW) compared to the existing milk cooling system (where most of the cooling was accomplished in the bulk tank) as evidenced in an energy audit. Associated practices/activities: may include 122-AgEMP - HQ, and other activities within 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.

Feature Measure: Each
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$36,616.22

Scenario Cost/Unit: \$36,616.22
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	8	\$270.96
Materials						
Plate Cooler, 750-999 gal/hr capacity	1178	Stainless Steel, dual pass plate cooler with 750-999 gallon/hour capacity. Includes materials and shipping only.	Each	\$36,345.26	1	\$36,345.26

Practice: 374 - Energy Efficient Agricultural Operation
Scenario: \#121-Scroll Compressor

Scenario Description:

Install a new scroll compressor, associated controls, wiring, and materials to retrofit an existing refrigeration system. A new condenser is not included in this typical scenario. Typical scenario includes a new 5 horsepower scroll compressor.

Before Situation:
Inefficient reciprocating compressor as a key component of the refrigeration system used to cool milk. The compressor is a critical part of a milk cooling system, affecting milk quality, system reliability, and system efficiency.

After Situation:

A more efficient scroll compressor, which will reduce energy use, is evidenced by the energy audit. A comparably sized scroll compressor provides refrigeration capacity at a higher efficiency than a reciprocating compressor. Newer scroll compressor systems typically reduce electricity use by 15 to 25 percent compared to reciprocating compressors. Associated practices/activities: may include 122-AgEMP - HQ, and other activities within 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.

Feature Measure: Horse Power
Scenario Unit: Horsepower
Scenario Typical Size: 5.00
Scenario Total Cost: $\$ 3,486.83$

Scenario Cost/Unit: \$697.37
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	4	\$135.48
Materials						
Scroll Compressor - 5 HP	1183	Scroll compressor, 5 Horsepower, controls, wiring, and appurtenances. Materials only.	Each	\$3,351.35	1	\$3,351.35

Practice: 376 - Field Operations Emissions Reduction

Scenario: \#1 - One Crop Per Year

Scenario Description:

Utilize equipment that allows a reduction the tillage passes through the field and/or utilizing precision GPS guidance to avoid overlap of tillage passes across the field per crop rotation. Utilize this practice only when residue and STIR values cannot be achieved when using the associated Residue and Tillage Management Practices: 329-No Till or 345 -Reduced Tillage to achieve the air quality resource concern. The resource concern addressed is improved air quality by reducing combustion and particulate matter emissions primarily from tillage. The scenario costs are based on tillage equipment or GPS technology to achieve reduce tillage passes.

Before Situation:
Tillage operations are performed individually; each operation requiring a tractor or other power implement to pull the tillage implement resulting in multiple passes across the field. Each pass creates soil particulate emissions contributing to the area's reduced air quality.

After Situation:
A 376 Field Operations Emissions Reduction plan is developed showing a reduced number of field passes across the field (benchmark system compared to the planned system). As a result of applying this practice soil particulates in the air is reduced and the area's air quality is improved.

Feature Measure: Acres Treated

Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: \$817.60

Scenario Cost/Unit: \$20.44
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Primary	946	Includes heavy disking (offset) or chisel plow. Includes equipment, power unit and labor costs.	Acres	\$20.44	40	\$817.60

Practice: 376 - Field Operations Emissions Reduction

Scenario: \#2 - Two Crops Per Year

Scenario Description:

Utilize equipment that allows a reduction of tillage passes through the field and/or precision GPS guidance to avoid overlap of tillage passes across the field per crop rotation. Utilize this practice only when residue and STIR values cannot be achieved when using the associated Residue and Tillage Management Practices: 329-No Till or 345-Reduced Tillage to achieve the air quality resource concern. The resource concern addressed is improved air quality by reducing combustion and particulate matter emissions primarily from tillage. The scenario cost is based on tillage equipment or GPS technology to achieve reduced tillage passes.

Before Situation:

Tillage operations are performed individually; each operation requiring a tractor or other power implement to pull the tillage implement resulting in multiple passes across the field. Each pass creates soil particulate emissions contributing to the area's reduced air quality.

After Situation:

A 376 Field Operations Emissions Reduction plan is developed showing a reduced number of field passes across the field (benchmark system compared to the planned system). As a result of applying this practice soil particulates in the air is reduced and the area's air quality is improved.

Feature Measure: Acres Treated

Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: $\$ 1,635.20$

Scenario Cost/Unit: \$40.88
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Primary	946	Includes heavy disking (offset) or chisel plow. Includes equipment, power unit and labor costs.	Acres	\$20.44	80	\$1,635.20

Practice: 378 -Pond
Scenario: \#1 - Excavated or Embankment Pond, No Pipe

Scenario Description:

A low-hazard water impoundment structure on agricultural lands to provide water for livestock, or fish and wildlife. For an excavated pond, the structure is created solely by excavation and impounds less than 3 feet against the embankment or spoil. Excavated material is spoiled, not placed in a designed embankment, and an earthen spillway is constructed as needed. For an embankment pond, an earthen embankment will be constructed with an earthen auxiliary spillway. The resource concerns addressed include inadequate livestock water, excessive suspended sediment and turbidity in surface water, damage from sediment deposition, and reduced capacity of conveyances by sediment deposition.

Before Situation:

Area exists where water could naturally pool or run off to create a pond. Failure of the embankment will not result in loss of life; damage to homes, commercial or industrial buildings, main highways, or railroads; or in interruption of the use or service of public utilities.

After Situation:

The typical embankment pond is constructed by excavating the pool area, constructing the auxiliary spillway, preparing the foundation as designed, and using 2500 cubic yards to create an embankment for an embankment pond or, in the case of an excavated pit pond, excavating 2500 cubic yards and spreading the spoil outside the pool area using a dozer or similar excavation equipment. In the case of an embankment pond, the product of the storage times the effective height of the dam is less than 3,000 and the effective height of the dam is 35 feet or less. The earthen auxiliary spillway will be constructed as designed. No principal spillway pipe will be used. Vegetation will be completed under critical area planting (342). Other associated practices include 382, 516, 533, 614, 587, 396.

Feature Measure: Embankment or Excavated Volume
Scenario Unit: Cubic Yards
Scenario Typical Size: 2,500.00
Scenario Total Cost: \$10,350.14
Scenario Cost/Unit: \$4.14
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Clearing and Grubbing	40	Clearing and Grubbing, includes materials, equipment and labor	Acres	\$290.55	1	\$290.55
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	2500	\$9,150.00
Mobilization						
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 378 -Pond
Scenario: \#2 - Embankment, Pipe Material 1000 Diameter Inch Foot or Smaller

Scenario Description:

A low-hazard water impoundment structure on agricultural land to provide water for livestock, or fish and wildlife. An earthen embankment will be constructed with less than or equal to 1000 Diameter Inch Foot of principal spillway pipe material and an earthen auxiliary spillway, as designed. The resource concerns addressed include inadequate livestock water, excessive suspended sediment and turbidity in surface water, damage from sediment deposition, and reduced capacity of conveyances by sediment deposition.

Before Situation:
Area exists where water could naturally pool or run off to create a pond. Failure of the embankment will not result in loss of life; damage to homes, commercial or industrial buildings, main highways, or railroads; or in interruption of the use or service of public utilities.

After Situation:

The typical pond is constructed by excavating the pool area, constructing the auxiliary spillway, preparing the foundation as designed, and using 3500 cubic yards to create an embankment. The typical principal spillway pipe is 100' long and 8' in diameter (800 Dia-In-Ft) with 3-5'x5' anti-seep collars. The product of the storage times the effective height of the dam is less than 3,000 . The effective height of the dam is 35 feet or less. The principal spillway is installed using an approved conduit material. The earthen auxiliary spillway will be constructed as designed. Vegetation will be completed under critical area planting (342). Other associated practices include 382,516, 521A-D, 533, 614, 587, 396.

Feature Measure: Volume of Embankment
Scenario Unit: Cubic Yards
Scenario Typical Size: 3,500.00
Scenario Total Cost: $\$ 18,010.77$

Scenario Cost/Unit: \$5.15

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Clearing and Grubbing	40	Clearing and Grubbing, includes materials, equipment and labor	Acres	\$290.55	1	\$290.55
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	3430	\$12,553.80
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	70	\$399.00
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	2	\$130.42
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	2	\$63.74

Materials

Aggregate, Sand, Graded, Washed
Aggregate, Gravel, Graded
Pipe, CMP, 18-16 gauge, weight
priced
Trash Guard, metal

45 Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.
46 Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.
132218 and 16 gauge galvanized helical corrugated metal pipe priced by the weight of the pipe materials. Materials only.
1608 Trash Guard, fabricated-steel, includes materials, equipment, and labor $\quad \begin{array}{lllll} & \text { Pound } & \$ 2.86 & 225.7 & \$ 645.50\end{array}$ to transport and place Conical shaped trash guard for drop inlet spillway. Typically fabricated of CMP and steel. Includes materials, equipment, and labor to fabricate and transport.

Cubic Yards	$\$ 42.64$	7	$\$ 298.48$
Cubic Yards	$\$ 44.85$	0.3	$\$ 13.46$
Pound	$\$ 2.41$	630	$\$ 1,518.30$
Pound	$\$ 2.86$	225.7	$\$ 645.50$

Mobilization

Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37
Mobilization, large equipment	1140	Equipment >150HP or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 378 -Pond
Scenario: \#3-Embankment, Pipe Material 1001-1500 Diameter Inch Foot

Scenario Description:

A low-hazard water impoundment structure on agricultural land to provide water for livestock, or fish and wildlife. An earthen embankment will be constructed with 1001-1500 Diameter Inch Foot of principal spillway pipe material and an earthen auxiliary spillway, as designed. The resource concerns addressed include inadequate ivestock water, excessive suspended sediment and turbidity in surface water, damage from sediment deposition, and reduced capacity of conveyances by sediment deposition.

Before Situation:
Area exists where water could naturally pool or run off to create a pond. Failure of the embankment will not result in loss of life; damage to homes, commercial or industrial buildings, main highways, or railroads; or in interruption of the use or service of public utilities.

After Situation:

The typical pond is constructed by excavating the pool area, constructing the auxiliary spillway, preparing the foundation as designed, and using 4000 cubic yards to create an embankment. The typical principal spillway barrel is 110' long and 12' in diameter (1320 Dia-In-Ft) with 3-5'x5' anti-seep collars. The product of the storage times the effective height of the dam is less than 3,000 . The effective height of the dam is 35 feet or less. The principal spillway is installed using an approved conduit material. The earthen auxiliary spillway will be constructed as designed. Vegetation will be completed under critical area planting (342). Other associated practices include 382,516, 521A-D, 533, 614, 587, 396.

Feature Measure: Volume of Embankment
Scenario Unit: Cubic Yards
Scenario Typical Size: 4,000.00
Scenario Total Cost: \$21,004.07

Scenario Cost/Unit: \$5.25

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Clearing and Grubbing	40	Clearing and Grubbing, includes materials, equipment and labor	Acres	\$290.55	1	\$290.55
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	3915	\$14,328.90
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	85	\$484.50
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	2	\$130.42
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	2	\$63.74

Materials

Aggregate, Sand, Graded, Washed
Aggregate, Gravel, Graded
Pipe, CMP, 18-16 gauge, weight
priced
Trash Guard, metal

45 Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.
46 Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.
132218 and 16 gauge galvanized helical corrugated metal pipe priced by the weight of the pipe materials. Materials only.
1608 Trash Guard, fabricated-steel, includes materials, equipment, and labor $\quad \begin{array}{lllll} & \text { Pound } & \$ 2.86 & 225.7 & \$ 645.50\end{array}$ to transport and place Conical shaped trash guard for drop inlet spillway. Typically fabricated of CMP and steel. Includes materials, equipment, and labor to fabricate and transport.

Mobilization

Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 378 - Pond
Scenario: \#4-Embankment, Pipe Material 1501-2500 Diameter Inch Foot

Scenario Description:

A low-hazard water impoundment structure on agricultural land to provide water for livestock, or fish and wildlife. An earthen embankment will be constructed with 1501-2500 Diameter Inch Foot of principal spillway pipe material and an earthen auxiliary spillway, as designed. The resource concerns addressed include inadequate ivestock water, excessive suspended sediment and turbidity in surface water, damage from sediment deposition, and reduced capacity of conveyances by sediment deposition.

Before Situation:
Area exists where water could naturally pool or run off to create a pond. Failure of the embankment will not result in loss of life; damage to homes, commercial or industrial buildings, main highways, or railroads; or in interruption of the use or service of public utilities.

After Situation:

The typical pond is constructed by excavating the pool area, constructing the auxiliary spillway, preparing the foundation as designed, and using 4000 cubic yards to create an embankment. The typical principal spillway barrel is 120' long and 18' in diameter ($2160 \mathrm{Dia}-\mathrm{In}$ - Ft) with 3-5'x5' anti-seep collars. The product of the storage times the effective height of the dam is less than 3,000 . The effective height of the dam is 35 feet or less. The principal spillway is installed using an approved conduit material. The earthen auxiliary spillway will be constructed as designed. Vegetation will be completed under critical area planting (342). Other associated practices include 382,516, 521A-D, 533, 614, 587, 396.

Feature Measure: Volume of Embankment
Scenario Unit: Cubic Yards
Scenario Typical Size: 4,000.00
Scenario Total Cost: \$23,172.16

Scenario Cost/Unit: \$5.79

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Clearing and Grubbing	40	Clearing and Grubbing, includes materials, equipment and labor	Acres	\$290.55	1.5	\$435.83
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	3890	\$14,237.40
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	110	\$627.00
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	2	\$130.42
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	20	\$543.20
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	2	\$63.74

Materials

Aggregate, Sand, Graded, Washed

Aggregate, Gravel, Graded	46	Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$44.85	0.3	\$13.46
Pipe, CMP, 18-16 gauge, weight priced	1322	18 and 16 gauge galvanized helical corrugated metal pipe priced by the weight of the pipe materials. Materials only.	Pound	\$2.41	1800	\$4,338.00
Trash Guard, metal	1608	Trash Guard, fabricated-steel, includes materials, equipment, and labor to transport and place Conical shaped trash guard for drop inlet spillway. Typically fabricated of CMP and steel. Includes materials, equipment, and labor to fabricate and transport.	Pound	\$2.86	287.3	\$821.68
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37
Mobilization, large equipment	1140	Equipment >150HP or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 378 -Pond
Scenario: \#5 - Embankment, Pipe Material 2501-3500 Diameter Inch Foot

Scenario Description:

A low-hazard water impoundment structure on agricultural land to provide water for livestock, or fish and wildlife. An earthen embankment will be constructed with 2501-3500 Diameter Inch Foot of principal spillway pipe material and an earthen auxiliary spillway, as designed. The resource concerns addressed include inadequate livestock water, excessive suspended sediment and turbidity in surface water, damage from sediment deposition, and reduced capacity of conveyances by sediment deposition.

Before Situation:
Area exists where water could naturally pool or run off to create a pond. Failure of the embankment will not result in loss of life; damage to homes, commercial or industrial buildings, main highways, or railroads; or in interruption of the use or service of public utilities.
After Situation:
The typical small low hazard pond is constructed by excavating the pool area, constructing the auxiliary spillway, preparing the foundation as designed, and using 4000 cubic yards to create an embankment. The typical principal spillway pipe is 130 ' long and 24 ' in diameter (3120 Dia-in-ft) with $3-6$ 'x6' anti-seep collars. The product of the storage times the effective height of the dam is less than 3,000 . The effective height of the dam is 35 feet or less. The principal spillway is installed using an approved conduit material. The earthen auxiliary spillway will be constructed as designed. Vegetation will be completed under critical area planting (342). Other associated practices include 382, 516, 521A-D, 533, 614, 587, 396.

Feature Measure: Volume of Embankment
Scenario Unit: Cubic Yards
Scenario Typical Size: 4,000.00
Scenario Total Cost: \$25,157.66
Scenario Cost/Unit: \$6.29
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Clearing and Grubbing	40	Clearing and Grubbing, includes materials, equipment and labor	Acres	\$290.55	1.5	\$435.83
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	3865	\$14,145.90
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	135	\$769.50
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	2	\$130.42
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	20	\$543.20
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	2	\$63.74

Materials

Aggregate, Sand, Graded, Washed
Aggregate, Gravel, Graded

Pipe, CMP, 18-16 gauge, weight priced
Trash Guard, metal 1608 d, typical ASTM C33 gradation. Includes materials, and loca delivery within 20 miles of quarry or pit. Placement costs are not included.
46 Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.

132218 and 16 gauge galvanized helical corrugated metal pipe priced by the weight of the pipe materials. Materials only.
1608 Trash Guard, fabricated-steel, includes materials, equipment, and labor Pound $\quad \$ 2.86 \quad 287.3 \quad \$ 821.68$ to transport and place Conical shaped trash guard for drop inlet spillway. Typically fabricated of CMP and steel. Includes materials, equipment, and labor to fabricate and transport.

Cubic Yards	$\$ 42.64$	14.5	$\$ 618.28$
Cubic Yards	$\$ 44.85$	0.3	$\$ 13.46$
Pound	$\$ 2.41$	2470	$\$ 5,952.70$
Pound	$\$ 2.86$	287.3	$\$ 821.68$

Mobilization

Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37
Mobilization, large equipment	1140	Equipment >150HP or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 378 -Pond
Scenario: \#6-Embankment, Pipe Material 3501-5000 Diameter Inch Foot

Scenario Description:

A low-hazard water impoundment structure on agricultural land to provide water for livestock, or fish and wildlife. An earthen embankment will be constructed with 3501-5000 Diameter Inch Foot of principal spillway pipe material and an earthen auxiliary spillway, as designed. The resource concerns addressed include inadequate livestock water, excessive suspended sediment and turbidity in surface water, damage from sediment deposition, and reduced capacity of conveyances by sediment deposition.

Before Situation:

Area exists where water could naturally pool or run off to create a pond. Failure of the embankment will not result in loss of life; damage to homes, commercial or industrial buildings, main highways, or railroads; or in interruption of the use or service of public utilities.

After Situation:

The typical small low hazard pond is constructed by excavating the pool area, constructing the auxiliary spillway, preparing the foundation as designed, and using 4000 cubic yards to create an embankment. The typical principal spillway has a barrel with $3-6.5$ 'x6.5' anti-seep collars that is 130' long and 30' in diameter and a riser that is 4.5^{\prime} long and 60 ' in diameter (4170 Dia-In-Ft total). The product of the storage times the effective height of the dam is less than 3,000 . The effective height of the dam is 35 feet or less. The principal spillway is installed using an approved conduit material. The earthen auxiliary spillway will be constructed as designed. Vegetation will be completed under critical area planting (342). Other associated practices include 382, 516, 521A-D, 533, 614, $587,396$.

Feature Measure: Volume of Embankment
Scenario Unit: Cubic Yards
Scenario Typical Size: 4,000.00
Scenario Total Cost: $\$ 28,519.62$

Scenario Cost/Unit: \$7.13

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	3	\$1,214.10
Clearing and Grubbing	40	Clearing and Grubbing, includes materials, equipment and labor	Acres	\$290.55	1.5	\$435.83
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	3840	\$14,054.40
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	160	\$912.00
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	2	\$130.42
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	30	\$814.80
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	2	\$63.74
Materials						
Aggregate, Sand, Graded, Washed	45	Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$42.64	19.6	\$835.74
Aggregate, Gravel, Graded	46	Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$44.85	0.3	\$13.46
Pipe, CMP, 18-16 gauge, weight priced	1322	18 and 16 gauge galvanized helical corrugated metal pipe priced by the weight of the pipe materials. Materials only.	Pound	\$2.41	3120	\$7,519.20
Pipe, CMP, 14-12 gauge, weight priced	1589	14 and 12 gauge galvanized helical corrugated metal pipe priced by the weight of the pipe materials. Materials only.	Pound	\$1.12	364.5	\$408.24
Trash Guard, metal	1608	Trash Guard, fabricated-steel, includes materials, equipment, and labor to transport and place Conical shaped trash guard for drop inlet spillway. Typically fabricated of CMP and steel. Includes materials, equipment, and labor to fabricate and transport.	Pound	\$2.86	159	\$454.74
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 378 -Pond
Scenario: \#7-Embankment, Pipe Material 5001-7000 Diameter Inch Foot

Scenario Description:

A low-hazard water impoundment structure on agricultural land to provide water for livestock, or fish and wildlife. An earthen embankment will be constructed with 5001-7000 Diameter Inch Foot of principal spillway pipe material and an earthen auxiliary spillway, as designed. The resource concerns addressed include inadequate livestock water, excessive suspended sediment and turbidity in surface water, damage from sediment deposition, and reduced capacity of conveyances by sediment deposition.

Before Situation:

Area exists where water could naturally pool or run off to create a pond. Failure of the embankment will not result in loss of life; damage to homes, commercial or industrial buildings, main highways, or railroads; or in interruption of the use or service of public utilities.

After Situation:
The typical small low hazard pond is constructed by excavating the pool area, constructing the auxiliary spillway, preparing the foundation as designed, and using 4000 cubic yards to create an embankment. The typical principal spillway has a barrel with $3-7.5^{\prime} \times 7.5$ ' anti-seep collars that is 130' long and 42' in diameter and a riser that is 5.5^{\prime} long and 84 ' in diameter (5922 Dia-In-Ft total). The product of the storage times the effective height of the dam is less than 3,000 . The effective height of the dam is 35 feet or less. The principal spillway is installed using an approved conduit material. The earthen auxiliary spillway will be constructed as designed. Vegetation will be completed under critical area planting (342). Other associated practices include 382, 516, 521A-D, 533, 614, 587, 396.

Feature Measure: Volume of Embankment
Scenario Unit: Cubic Yards
Scenario Typical Size: 4,000.00
Scenario Total Cost: $\$ 36,280.55$
Scenario Cost/Unit: \$9.07
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	7	\$2,832.90
Clearing and Grubbing	40	Clearing and Grubbing, includes materials, equipment and labor	Acres	\$290.55	2	\$581.10
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	3790	\$13,871.40
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	210	\$1,197.00
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	2	\$130.42
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	36	\$977.76
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	2	\$63.74

Materials

Aggregate, Sand, Graded, Washed

Aggregate, Gravel, Graded

Pipe, CMP, 18-16 gauge, weight priced
Pipe, CMP, 14-12 gauge, weight priced
Trash Guard, metal

1608 Trash Guard, fabricated-steel, includes materials, equipment, and labor to transport and place Conical shaped trash guard for drop inlet spillway. Typically fabricated of CMP and steel. Includes materials, equipment, and labor to fabricate and transport.
45 Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.
46 Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.

132218 and 16 gauge galvanized helical corrugated metal pipe priced by the weight of the pipe materials. Materials only.
158914 and 12 gauge galvanized helical corrugated metal pipe priced by the weight of the pipe materials. Materials only.

Mobilization

Mobilization, medium equipment

Mobilization, large equipment

Cubic Yards	$\$ 42.64$	33.3	$\$ 1,419.91$
Cubic Yards	$\$ 44.85$	0.3	$\$ 13.46$
Pound	$\$ 2.41$	5070	$\$ 12,218.70$
Pound	$\$ 1.12$	517	$\$ 579.04$
Pound	$\$ 2.86$	256	$\$ 732.16$

1140 Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or \quad Each $\quad \$ 909.59 \quad 1 \quad \$ 909.59$ loads requiring over width or over length permits.

Practice: 378 - Pond
Scenario: \#8 - Embankment, Pipe Material 7001 Diameter Inch Foot or Larger

Scenario Description:

A low-hazard water impoundment structure on agricultural land to provide water for livestock, or fish and wildlife. An earthen embankment will be constructed with greater than or equal to 7001 Diameter Inch Foot of principle spillway pipe material and an earthen auxiliary spillway, as designed. The resource concerns addressed include inadequate livestock water, excessive suspended sediment and turbidity in surface water, damage from sediment deposition, and reduced capacity of conveyances by sediment deposition.

Before Situation:

Area exists where water could naturally pool or run off to create a pond. Failure of the embankment will not result in loss of life; damage to homes, commercial or industrial buildings, main highways, or railroads; or in interruption of the use or service of public utilities.

After Situation:

The typical small low hazard pond is constructed by excavating the pool area, constructing the auxiliary spillway, preparing the foundation as designed, and using 4000 cubic yards to create an embankment. The typical principal spillway has a barrel with $3-8.5$ 'x8.5' anti-seep collars that is 130' long and 54 ' in diameter and a riser that is 6.5^{\prime} long and 108 ' in diameter (7722 Dia-In-Ft total). The product of the storage times the effective height of the dam is less than 3,000. The effective height of the dam is 35 feet or less. The principal spillway is installed using an approved conduit material. The earthen auxiliary spillway will be constructed as designed. Vegetation will be completed under critical area planting (342). Other associated practices include 382, 516, 521A-D, 533, 614, 587, 396.

Feature Measure: Volume of Embankment
Scenario Unit: Cubic Yards
Scenario Typical Size: 4,000.00
Scenario Total Cost: $\$ 37,584.73$
Scenario Cost/Unit: $\$ 9.40$
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	13.6	\$5,503.92
Clearing and Grubbing	40	Clearing and Grubbing, includes materials, equipment and labor	Acres	\$290.55	2.5	\$726.38
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	3725	\$13,633.50
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	275	\$1,567.50
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	2	\$130.42
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	40	\$1,086.40
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	2	\$63.74

Materials

Aggregate, Sand, Graded, Washed

Aggregate, Gravel, Graded

Pipe, CMP, 14-12 gauge, weight priced
Trash Guard, metal

45 Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.
46 Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.

158914 and 12 gauge galvanized helical corrugated metal pipe priced by the weight of the pipe materials. Materials only.
1608 Trash Guard, fabricated-steel, includes materials, equipment, and labor to transport and place Conical shaped trash guard for drop inlet spillway. Typically fabricated of CMP and steel. Includes materials, equipment, and labor to fabricate and transport.

Cubic Yards	$\$ 42.64$	53.3	$\$ 2,272.71$
Cubic Yards	$\$ 44.85$	0.43	$\$ 19.29$
Pound	$\$ 1.12$	9002.5	$\$ 10,082.80$
Pound	$\$ 2.86$	292	$\$ 835.12$

Mobilization

Mobilization, medium equipment
1139 Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.

Mobilization, large equipment
1140 Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or Each
\$753.37
1
\$753.37 loads requiring over width or over length permits.

Practice: 378 -Pond
Scenario: \#89-Embankment Pond without Pipe
Scenario Description:
A water impoundment structure on agricultural land to improve water quality or to provide water for livestock, fish and wildlife, recreation, fire control, crop and orchard irrigation, and other related uses. An earthen embankment will be constructed with an earthen auxiliary spillway. The resource concerns addressed include inadequate livestock water, excessive suspended sediment and turbidity in surface water, damage from sediment deposition, and reduced capacity of conveyances by sediment deposition.

Before Situation:
Area exists where water could naturally pool or run off to create a pond for livestock, wildlife, fire control or irrigation. Failure of the embankment will not result in loss of life or damages of any kind.

After Situation:
The typical pond is constructed by excavating the pool area, constructing the auxiliary spillway, preparing the foundation as designed, and using 3100 cubic yards to create an embankment. The product of the storage times the effective height of the dam is less than 3,000. The effective height of the dam is 35 feet or less. The earthen auxiliary spillway will be constructed as designed. No principle spillway pipe will be used. Vegetation will be completed under critical area planting (342). Other associated practices include 382, 516, 521A, 533, 614, 587, 396.

Feature Measure: Embankment Volume

Scenario Unit: Cubic Yards

Scenario Typical Size: 3,100.00
Scenario Total Cost: \$5,979.37

Scenario Cost/Unit: \$1.93
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160. Equipment and power unit costs. Labor not included.	Hours	\$98.78	40	\$3,951.20
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	40	\$1,274.80
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 378 -Pond

Scenario: \#90-Embankment Pond with Pipe

Scenario Description:

A low-hazard water impoundment structure on agricultural land to improve water quality and to provide water for livestock, fish and wildlife, recreation, fire control, crop and orchard irrigation, and other related uses. An earthen embankment will be constructed with a principle spillway conduit and earthen auxiliary spillway, as designed. The resource concerns addressed include inadequate livestock water, excessive suspended sediment and turbidity in surface water, damage from sediment deposition, and reduced capacity of conveyances by sediment deposition.

Before Situation:
Area exists where water could naturally pool or run off to create a pond for livestock, wildlife, fire control or irrigation. Failure of the embankment will not result in loss of life or damages of any kind.

After Situation:
The typical low hazard pond is constructed by excavating the pool area, constructing the auxiliary spillway, preparing the foundation as designed, and using 3100 cubic yards to create an embankment. The product of the storage times the effective height of the dam is less than 3,000. The effective height of the dam is 35 feet or less. The principle spillway is installed using an approved conduit material. The earthen auxiliary spillway will be constructed as designed. Vegetation will be completed under critical area planting (342). Other associated practices include 382, 516, 521A, 533, 614, 587, 396.

Feature Measure: Embankment Volume

Scenario Unit: Cubic Yards
Scenario Typical Size: 3,100.00
Scenario Total Cost: $\$ 13,867.31$
Scenario Cost/Unit: \$4.47

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, formed reinforced	38	Steel reinforced concrete formed and cast-in-placed in formed structures such as walls or suspended slabs by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$457.84	3	\$1,373.52
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	1.6	\$3.68
Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160 . Equipment and power unit costs. Labor not included.	Hours	\$98.78	48	\$4,741.44
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	8	\$270.96
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	48.5	\$1,545.70
Materials						
Aggregate, Sand, Graded, Washed	45	Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$42.64	19.6	\$835.74
Pipe, CMP, 18-16 gauge, weight priced	1322	18 and 16 gauge galvanized helical corrugated metal pipe priced by the weight of the pipe materials. Materials only.	Pound	\$2.41	1662	\$4,005.42
Trash Guard, metal	1608	Trash Guard, fabricated-steel, includes materials, equipment, and labor to transport and place Conical shaped trash guard for drop inlet spillway. Typically fabricated of CMP and steel. Includes materials, equipment, and labor to fabricate and transport.	Pound	\$2.86	118	\$337.48
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 380-Windbreak/Shelterbelt Establishment and Renovation
Scenario: \#1-1 row windbreak, hardwood trees or shrubs, hand planted

Scenario Description:

Single 2,640 foot row of hardwood trees established along a property boundary or field border. Trees planted by hand 10 feet apart. This practice is typically applied to crop, pasture or range lands.

Before Situation:
A farm or ranch will have limited or no existing trees along the property or field border. Resource Concerns to be addressed may include: Soil Erosion (wind); Excess/Insufficient Water (drifted snow, inefficient moisture management); Water Quality Degradation (excess nutrients in surface waters, excessive sediment in surface waters,); Degraded Plant Condition (undesirable plant productivity and health); Inadequate habitat for Fish and Wildlife (food, cover/shelter, continuity); Inefficient Energy Use (facilities, farming/ranching practices and field operations).

After Situation:
One row of trees or shrubs planted by hand along the field border reducing soil erosion and improving water quality. The row of trees or shrubs provides some habitat and food sources for wildlife. Trees planted around ranching or farming facilities may reduce energy requirements as the wind and weather elements are moderated compared to having no trees present. After the practice is established the boundaries should be clearly evident by the row of trees.

Feature Measure: length of windbreak row(s)
Scenario Unit: Feet
Scenario Typical Size: 2,640.00
Scenario Total Cost: \$564.95

Scenario Cost/Unit: \$0.21

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	1	\$24.99
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	8	\$100.08
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Materials						
Tree, Hardwood, Seedling, Small	1509	Bare root hardwood seedlings 6 to 18 inches tall; includes tropical containerized seedlings of 8 cubic inches or smaller. Includes materials and shipping only.	Each	\$0.84	265	\$222.60

Practice: 380-Windbreak/Shelterbelt Establishment and Renovation
Scenario: \#2-1 row windbreak, conifer trees, hand planted

Scenario Description:

Single 2,640 foot rows of conifer tree seedlings for wind protection, wildlife habitat, or snow management. Trees spacing planted by hand 10 feet apart and the distance between rows are designed with WEPS or snow deposition guidelines. This practice is typically applied to crop, pasture or range lands.

Before Situation:
Agricultural cropland field, livestock paddock, feedlot or farmstead needing protection from wind, additional wildlife food and cover, or management of snow deposition. Resource Concerns to be addressed may include: Soil Erosion (wind); Excess/Insufficient Water (drifted snow, inefficient moisture management); Water Quality Degradation (excess nutrients in surface waters, excessive sediment in surface waters,); Degraded Plant Condition (undesirable plant productivity and health); Inadequate habitat for Fish and Wildlife (food, cover/shelter, continuity); Inefficient Energy Use (facilities, farming/ranching practices and field operations).

After Situation:
Single row(s) of conifer trees planted by hand along the border of the area to be protected from wind or snow deposition. The row of conifer trees provides some habitat, food sources and protection from the weather for many species of wildlife. Trees planted around ranching or farming facilities may reduce energy requirements as the wind and weather elements are moderated compared to having no trees present.

Feature Measure: length of windbreak row(s)
Scenario Unit: Feet
Scenario Typical Size: 2,640.00
Scenario Total Cost: \$570.25
Scenario Cost/Unit: \$0.22
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	1	\$24.99
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	8	\$100.08
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Materials						
Tree, Conifer, Seedling, Small	1512	Containerized conifer seedlings, 4 or 6 cubic inches; or bare root conifer seedlings 1+0 (one-year old seedlings grown in their original seedbed). Includes materials and shipping only.	Each	\$0.86	265	\$227.90

Practice: 380-Windbreak/Shelterbelt Establishment and Renovation
Scenario: \#3-2-row windbreak, shrubs, machine planted

Scenario Description:

Two 2,640 foot rows of shrubs for wind protection, energy conservation, wildlife habitat, air quality, snow management or to provide a visual screen. Shrubs planted with a tree planting machine 4 feet apart in the row with rows 16 feet apart. This practice is typically applied to crop, pasture or range lands.

Before Situation:

Agricultural cropland field, livestock paddock, feedlot or farmstead needing protection from wind, additional wildlife food and cover, odor mitigation, visual screen or management of snow deposition. Resource Concerns to be addressed include: Soil Erosion (wind); Excess/Insufficient Water (drifted snow, inefficient moisture management); Water Quality Degradation (excess nutrients in surface waters, pesticides transported to surface waters, excessive sediment in surface waters,); Degraded Plant Condition (undesirable plant productivity and health); Inadequate habitat for Fish and Wildlife (food, cover/shelter, continuity); Livestock Production Limitation (inadequate shelter); Air Quality Impacts (emission of particulate matter, objectionable odors); Inefficient Energy Use (facilities, farming/ranching practices and field operations).

After Situation:
Two rows of shrubs planted by machine planting are clearly evident on the site. The shrub planting will reduce the wind velocity. The reduced wind speeds will lessen soil erosion, energy loss and/or assist in managing snow deposition. Additional benefits are improved wildlife food and cover, reduction of odor plumes and the creation of a visual screen.

Feature Measure: length of windbreak row(s)
Scenario Unit: Feet
Scenario Typical Size: 2,640.00
Scenario Total Cost: \$1,637.58

Scenario Cost/Unit: \$0.62

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Tractor, agricultural, 60 HP	963	Agricultural tractor with horsepower range of 50 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$35.80	4	\$143.20
Mechanical tree planter	1600	Mechanical tree planter. Requires a pulling unit of either tractor or small dozer depending upon site conditions. Does not include labor.	Hours	\$5.88	4	\$23.52
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	4	\$108.64
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	4	\$111.04
Materials						
Shrub, Seedling, Small	1506	Bare root shrub seedling, 6 to 18 inches tall, includes containerized seedlings less than 10 cubic inches. Includes materials and shipping only.	Each	\$0.91	1320	\$1,201.20

Practice: 380-Windbreak/Shelterbelt Establishment and Renovation
Scenario: \#4-2-row windbreak, trees, machine planted

Scenario Description:

Two 2,640 foot rows of hardwood trees for wind protection, energy conservation, wildlife habitat, air quality, snow management or to provide a visual screen. Trees planted with a tree planting machine 10 feet apart in the row with rows 16 feet apart. Herbivores (deer, rabbits, etc.) are NOT expected to browse tree seedlings, tree protection is not needed. This practice is typically applied to crop, pasture or range lands.

Before Situation:

Agricultural cropland field, livestock paddock, feedlot or farmstead needing protection from wind, additional wildlife food and cover, odor mitigation, visual screen or management of snow deposition. This practice is typically applied to crop, pasture or range lands. Resource Concerns to be addressed include: Soil Erosion (wind); Excess/Insufficient Water (drifted snow, inefficient moisture management); Water Quality Degradation (excess nutrients in surface waters, pesticides transported to surface waters, excessive sediment in surface waters,); Degraded Plant Condition (undesirable plant productivity and health); Inadequate habitat for Fish and Wildlife (food, cover/shelter, continuity); Livestock Production Limitation (inadequate shelter); Air Quality Impacts (emission of particulate matter, objectionable odors); Inefficient Energy Use (facilities, farming/ranching practices and field operations).

After Situation:

Two rows of trees planted by machine planting are clearly evident on the site. The tree planting will reduce the wind velocity. The reduced wind speeds will lessen soil erosion, energy loss and/or assist in managing snow deposition. Additional benefits are improved wildlife food and cover, reduction of odor plumes and the creation of a visual screen.

Feature Measure: length of windbreak row(s)
Scenario Unit: Feet

Scenario Typical Size: 2,640.00
Scenario Total Cost: \$1,003.17
Scenario Cost/Unit: \$0.38
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	3	\$74.97
Tractor, agricultural, 60 HP	963	Agricultural tractor with horsepower range of 50 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$35.80	5	\$179.00
Mechanical tree planter	1600	Mechanical tree planter. Requires a pulling unit of either tractor or small dozer depending upon site conditions. Does not include labor.	Hours	\$5.88	5	\$29.40
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	5	\$135.80
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	5	\$138.80
Materials						
Tree, Hardwood, Seedling, Small	1509	Bare root hardwood seedlings 6 to 18 inches tall; includes tropical containerized seedlings of 8 cubic inches or smaller. Includes materials and shipping only.	Each	\$0.84	530	\$445.20

Practice: 380-Windbreak/Shelterbelt Establishment and Renovation
Scenario: \#5-2-row windbreak, trees, machine planted - tubes

Scenario Description:

Two 2,640 foot rows of hardwood tree seedlings for wind protection, energy conservation, wildlife habitat, air quality, snow management or to provide a visual screen. Trees planted with a tree planting machine 10 feet apart in the row with rows 16 feet apart. Herbivore (deer, rabbits, etc.) damage is likely, so each tree must be protected with a rigid tube tree shelter. This practice is typically applied to crop, pasture or range lands.

Before Situation:
Agricultural cropland field, livestock paddock, feedlot or farmstead needing protection from wind, additional wildlife food and cover, odor mitigation, visual screen or management of snow deposition. Resource Concerns to be addressed include: Soil Erosion (wind); Excess/Insufficient Water (drifted snow, inefficient moisture management); Water Quality Degradation (excess nutrients in surface waters, pesticides transported to surface waters, excessive sediment in surface waters,); Degraded Plant Condition (undesirable plant productivity and health); Inadequate habitat for Fish and Wildlife (food, cover/shelter, continuity); Livestock Production Limitation (inadequate shelter); Air Quality Impacts (emission of particulate matter, objectionable odors); Inefficient Energy Use (facilities, farming/ranching practices and field operations).

After Situation:
Two rows of trees planted by machine planting are clearly evident on the site. The trees will have protective tubes placed around each tree to minimize damage caused by animals feeding on them. The established trees will reduce the wind velocity. The reduced wind speeds will lessen soil erosion, energy loss and/or assist in managing snow deposition. In pasture or range settings, the trees can provide shade and protection from the weather. Additional benefits are improved wildlife food and cover, reduction of odor plumes and the creation of a visual screen.

Feature Measure: length of windbreak row(s)
Scenario Unit: Feet
Scenario Typical Size: 2,640.00
Scenario Total Cost: $\$ 5,213.35$

Scenario Cost/Unit: \$1.97

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	3	\$74.97
Tractor, agricultural, 60 HP	963	Agricultural tractor with horsepower range of 50 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$35.80	5	\$179.00
Mechanical tree planter	1600	Mechanical tree planter. Requires a pulling unit of either tractor or small dozer depending upon site conditions. Does not include labor.	Hours	\$5.88	5	\$29.40
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	5	\$138.80

Materials

Tree, Hardwood, Seedling, Small	1509	Bare root hardwood seedlings 6 to 18 inches tall; includes tropical containerized seedlings of 8 cubic inches or smaller. Includes materials and shipping only.	Each	\$0.84	530	\$445.20
Tree shelter, solid tube type, 5 in. $x 48$ in.	1571	5 inch $x 48$ inch tree tube for protection from animal damage. Materials and shipping only.	Each	\$5.29	530	\$2,803.70
Cable ties, plastic	1575	Plastic cable ties (typ. 8-12 in.) to assist in securing items. Materials only.	Each	\$0.07	530	\$37.10
Stakes, wood, $3 / 4$ in. x 3/4 in. x 60 in.	1583	$3 / 4$ in. x $3 / 4 \mathrm{in} . \times 60 \mathrm{in}$. wood stakes to fasten items in place. Includes materials only.	Each	\$2.43	530	\$1,287.90

Practice: 380-Windbreak/Shelterbelt Establishment and Renovation
Scenario: \#6-3 or more row windbreak, shrub, machine planted

Scenario Description:

Three or more 2,640 foot rows of shrubs for wind protection, energy conservation, wildlife habitat, air quality, snow management. Shrubs planted with a tree planting machine, 4 feet apart in the row with rows 16 feet apart. This practice is typically applied to crop, pasture or range lands.

Before Situation:
Agricultural cropland field, livestock paddock, feedlot or farmstead needing protection from wind, additional wildlife food and cover, odor mitigation, visual screening or management of snow deposition. Resource Concerns to be addressed include: Soil Erosion (wind); Excess/Insufficient Water (drifted snow, inefficient moisture management); Water Quality Degradation (excess nutrients in surface waters, pesticides transported to surface waters, excessive sediment in surface waters,); Degraded Plant Condition (undesirable plant productivity and health); Inadequate habitat for Fish and Wildlife (food, cover/shelter, continuity); Livestock Production Limitation (inadequate shelter); Air Quality Impacts (emission of particulate matter, objectionable odors); Inefficient Energy Use (facilities, farming/ranching practices and field operations).

After Situation:
Three rows of shrubs planted by machine planting are clearly evident on the site. The shrub planting will reduce the wind velocity. The reduced wind speeds will lessen soil erosion, energy loss and/or assist in managing snow deposition. Additional benefits are improved wildlife food and cover, reduction of odor plumes and the creation of a visual screen.

Feature Measure: length of windbreak row(s)
Scenario Unit: Feet
Scenario Typical Size: 2,640.00
Scenario Total Cost: $\quad \$ 2,649.57$
Scenario Cost/Unit: \$1.00
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	3	\$74.97
Tractor, agricultural, 60 HP	963	Agricultural tractor with horsepower range of 50 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$35.80	8	\$286.40
Mechanical tree planter	1600	Mechanical tree planter. Requires a pulling unit of either tractor or small dozer depending upon site conditions. Does not include labor.	Hours	\$5.88	8	\$47.04
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	8	\$222.08
Materials						
Shrub, Seedling, Small	1506	Bare root shrub seedling, 6 to 18 inches tall, includes containerized seedlings less than 10 cubic inches. Includes materials and shipping only.	Each	\$0.91	1980	\$1,801.80

Practice: 380-Windbreak/Shelterbelt Establishment and Renovation
Scenario: \#7-3 or more tree rows machine planted windbreak

Scenario Description:

Three or more 2,640 foot rows of trees for wind protection, energy conservation, wildlife habitat, air quality, snow management or to provide a visual screen. The outside rows are conifers the inside row(s) are hardwoods. Trees 12 feet apart with rows 12 feet apart, planted with a tree planting machine. Herbivores are not expected to browse planted seedlings, so tree shelters are not needed. This practice is typically applied to crop, pasture or range lands.

Before Situation:

Agricultural cropland field, livestock paddock, feedlot or farmstead needing protection from wind, additional wildlife food and cover, odor mitigation, visual screening or management of snow deposition. Resource Concerns to be addressed include: Soil Erosion (wind); Excess/Insufficient Water (drifted snow, inefficient moisture management); Water Quality Degradation (excess nutrients in surface waters, pesticides transported to surface waters, excessive sediment in surface waters,); Degraded Plant Condition (undesirable plant productivity and health); Inadequate habitat for Fish and Wildlife (food, cover/shelter, continuity); Livestock Production Limitation (inadequate shelter); Air Quality Impacts (emission of particulate matter, objectionable odors); Inefficient Energy Use (facilities, farming/ranching practices and field operations).

After Situation:

Three rows of trees planted by machine planting are clearly evident on the site. The tree planting will reduce the wind velocity. The reduced wind speeds will lessen soil erosion, energy loss and/or assist in managing snow deposition. Additional benefits are improved wildlife food and cover, reduction of odor plumes and the creation of a visual screen.

Feature Measure: length of windbreak row(s)
Scenario Unit: Feet

Scenario Typical Size: 2,640.00
Scenario Total Cost: \$1,455.45
Scenario Cost/Unit: \$0.55
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	3	\$74.97
Tractor, agricultural, 60 HP	963	Agricultural tractor with horsepower range of 50 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$35.80	12	\$429.60
Mechanical tree planter	1600	Mechanical tree planter. Requires a pulling unit of either tractor or small dozer depending upon site conditions. Does not include labor.	Hours	\$5.88	12	\$70.56
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	12	\$325.92
Materials						
Tree, Hardwood, Seedling, Small	1509	Bare root hardwood seedlings 6 to 18 inches tall; includes tropical containerized seedlings of 8 cubic inches or smaller. Includes materials and shipping only.	Each	\$0.84	660	\$554.40

Practice: 380-Windbreak/Shelterbelt Establishment and Renovation
Scenario: \#8-3 or more row windbreak, trees, machine planted - tubes

Scenario Description:

Three or more 2,640 foot rows of hardwood trees for wind protection, energy conservation, wildlife habitat, air quality, snow management or to provide a visual screen. Trees planted with a tree planting machine 12 feet apart in the row with rows 16 feet apart. Herbivore (deer, rabbits, etc.) damage is likely, so each tree must be protected with a rigid tube tree shelter. This practice is typically applied to crop, pasture or range lands.

Before Situation:
Agricultural cropland field, livestock paddock, feedlot or farmstead needing protection from wind, additional wildlife food and cover, odor mitigation, visual screen or management of snow deposition. Resource Concerns to be addressed include: Soil Erosion (wind); Excess/Insufficient Water (drifted snow, inefficient moisture management); Water Quality Degradation (excess nutrients in surface waters, pesticides transported to surface waters, excessive sediment in surface waters,); Degraded Plant Condition (undesirable plant productivity and health); Inadequate habitat for Fish and Wildlife (food, cover/shelter, continuity); Livestock Production Limitation (inadequate shelter); Air Quality Impacts (emission of particulate matter, objectionable odors); Inefficient Energy Use (facilities, farming/ranching practices and field operations).

After Situation:

Three rows of trees planted by machine planting are clearly evident on the site. The trees will have protective tubes placed around each tree to minimize damage caused by animals feeding on them. The established trees will reduce the wind velocity. The reduced wind speeds will lessen soil erosion, energy loss and/or assist in managing snow deposition. In pasture or range settings, the trees can provide shade and protection from the weather. Additional benefits are improved wildlife food and cover, reduction of odor plumes and the creation of a visual screen.

Feature Measure: length of windbreak row(s)
Scenario Unit: Feet
Scenario Typical Size: 2,640.00
Scenario Total Cost: $\$ 6,514.69$
Scenario Cost/Unit: \$2.47

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	3	\$74.97
Tractor, agricultural, 60 HP	963	Agricultural tractor with horsepower range of 50 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$35.80	10	\$358.00
Mechanical tree planter	1600	Mechanical tree planter. Requires a pulling unit of either tractor or small dozer depending upon site conditions. Does not include labor.	Hours	\$5.88	10	\$58.80
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	10	\$271.60
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	2	\$55.52

Materials

Tree, Hardwood, Seedling, Small	1509	Bare root hardwood seedlings 6 to 18 inches tall; includes tropical containerized seedlings of 8 cubic inches or smaller. Includes materials and shipping only.	Each	\$0.84	660	\$554.40
Tree shelter, solid tube type, 5 in. $x 48$ in.	1571	5 inch $x 48$ inch tree tube for protection from animal damage. Materials and shipping only.	Each	\$5.29	660	\$3,491.40
Cable ties, plastic	1575	Plastic cable ties (typ. 8-12 in.) to assist in securing items. Materials only.	Each	\$0.07	660	\$46.20
Stakes, wood, 3/4 in. x 3/4 in. x 60 in.	1583	$3 / 4$ in. x $3 / 4 \mathrm{in} . \times 60 \mathrm{in}$. wood stakes to fasten items in place. Includes materials only.	Each	\$2.43	660	\$1,603.80

Practice: 380-Windbreak/Shelterbelt Establishment and Renovation
Scenario: \#118-1 row windbreak - small acreage

Scenario Description:

One row of containerized shrubs planted to address resource concerns; Inefficient Energy Use, Air Quality Impacts and/or Fish and Wildlife Habitat. This practice is typically applied on cropland at field edges and around homesteads.

Before Situation:
Agricultural field or farmstead needing protections from wind, additional wildlife food and cover, odor mitigation, visual screening. The area generally includes arid or drought conditions that greatly reduce the success of tree survival.

After Situation:

A windbreak of containerized shrubs is installed by hand planting shrubs 6 ft apart. Wind velocity suitably diminished to reduce soil erosion or energy loss. Additional wildlife food and cover, mixing of odor plumes and visual screening. Greatly improved success rate of the windbreak due to the supplemental water during establishment.

Feature Measure: Length of windbreak row

Scenario Unit: Feet

Scenario Typical Size: 100.00

Scenario Total Cost: \$430.51						
Scenario Cost/Unit:	\$4.31					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	2	\$25.02
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	3	\$81.48
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	1	\$47.61
Materials						
Shrub, Potted, Medium	1527	Potted shrub seedling, 2 gallons or larger. Includes materials and shipping only.	Each	\$14.34	17	\$243.78
Wire flags	1586	Small vinyl flags attached to wire stakes, typically, 36 in. length, for marking tree rows	Each	\$0.13	17	\$2.21
Fertilizer, tree, slow release, premix packet or spike	1594	Slow release fertilizer to gradually apply nutrients over time for tree establishment. 2.0 Oz Packet (Premixed: 16-16-16 or 16-8-8) or Fertilizer Spike	Each	\$0.73	17	\$12.41
Micro Irrigation, drip irrigation system, small scale	2170	An above ground, small scale, micro-irrigation system. Includes miniature emitters, tubes, or applicators placed along a water delivery line. Includes materials and shipping only.	Square Feet	\$0.09	200	\$18.00

Practice: 380-Windbreak/Shelterbelt Establishment and Renovation
Scenario: \#228-1 row windbreak, shrubs, hand planted

Scenario Description:

Single 500 foot row of shrubs for wind protection, wildlife habitat, or snow management. Shrubs planted by hand 4 feet apart. This practice is typically applied to crop, pasture or range lands. Resource Concerns to be addressed may include: Soil Erosion (wind); Excess/Insufficient Water (drifted snow, inefficient moisture management); Water Quality Degradation (excess nutrients in surface waters, excessive sediment in surface waters,); Degraded Plant Condition (undesirable plant productivity and health); Inadequate habitat for Fish and Wildlife (food, cover/shelter, continuity); Inefficient Energy Use (facilities, farming/ranching practices and field operations).

Before Situation:
Agricultural field, livestock paddock, feedlot or farmstead needing protection from wind, additional wildlife food and cover, or management of snow deposition

After Situation:

Wind velocity suitably reduced to reduce soil erosion, or to manage snow deposition. Additional wildlife food and cover.

Feature Measure: length of windbreak row(s)
Scenario Unit: Feet
Scenario Typical Size: 500.00
Scenario Total Cost: $\$ 340.89$

Scenario Cost/Unit: \$0.68
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	2	\$25.02
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	2	\$54.32
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22
Materials						
Shrub, Seedling, Small	1506	Bare root shrub seedling, 6 to 18 inches tall, includes containerized seedlings less than 10 cubic inches. Includes materials and shipping only.	Each	\$0.91	125	\$113.75
Wire flags	1586	Small vinyl flags attached to wire stakes, typically, 36 in. length, for marking tree rows	Each	\$0.13	20	\$2.60

Practice: 380-Windbreak/Shelterbelt Establishment and Renovation
Scenario: \#229-1 row windbreak, trees, hand planted

Scenario Description:

Single 500 foot row of conifer tree seedlings for wind protection, wildlife habitat, or snow management. Trees planted by hand 10 feet apart. This practice is typically applied to crop, pasture or range lands. Resource Concerns to be addressed may include: Soil Erosion (wind); Excess/Insufficient Water (drifted snow, inefficient moisture management); Water Quality Degradation (excess nutrients in surface waters, excessive sediment in surface waters,); Degraded Plant Condition (undesirable plant productivity and health); Inadequate habitat for Fish and Wildlife (food, cover/shelter, continuity); Inefficient Energy Use (facilities, farming/ranching practices and field operations).

Before Situation:
Agricultural field, livestock paddock, feedlot or farmstead needing protection from wind, additional wildlife food and cover, or management of snow deposition
After Situation:
Wind velocity suitably reduced to reduce soil erosion, or to manage snow deposition. Additional wildlife food and cover.
Feature Measure: length of windbreak row(s)
Scenario Unit: Feet
Scenario Typical Size: 500.00
Scenario Total Cost: \$183.37
Scenario Cost/Unit: \$0.37
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	1	\$24.99
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	1	\$12.51
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	1	\$27.16
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	1	\$47.61
Materials						
Tree, Conifer, Seedling, Medium	1514	Containerized conifer seedlings, 8 or 10 cubic inches; or bare root conifer seedlings $1+1$ (two-year old seedlings that grew one year in the original seedbed and another year in a transplant bed), or bare root seedlings $2+0$ (two-year old seedlings grown in their original seedbed). Includes materials and shipping only.	Each	\$1.37	50	\$68.50
Wire flags	1586	Small vinyl flags attached to wire stakes, typically, 36 in. length, for marking tree rows	Each	\$0.13	20	\$2.60

Practice: 380-Windbreak/Shelterbelt Establishment and Renovation
Scenario: \#230-2-row windbreak, trees, shelters, machine planted

Scenario Description:

Two 500 foot rows of hardwood tree seedlings for wind protection, energy conservation, wildlife habitat, air quality, snow management or to provide a visual screen. Trees planted with a tree planting machine 10 feet apart in the row with rows 16 feet apart. Environmental impacts are likely, so each tree must be protected with a rigid tube tree shelter. This practice is typically applied to crop, pasture or range lands. Resource Concerns to be addressed include: Soil Erosion (wind); Excess/Insufficient Water (drifted snow, inefficient moisture management); Water Quality Degradation (excess nutrients in surface waters, pesticides transported to surface waters, excessive sediment in surface waters,); Degraded Plant Condition (undesirable plant productivity and health); Inadequate habitat for Fish and Wildlife (food, cover/shelter, continuity); Livestock Production Limitation (inadequate shelter); Air Quality Impacts (emission of particulate matter, objectionable odors); Inefficient Energy Use (facilities, farming/ranching practices and field operations).

Before Situation:

Agricultural field, livestock paddock, feedlot or farmstead needing protection from wind, additional wildlife food and cover, odor mitigation, visual screen or management of snow deposition

After Situation:

Wind velocity suitably reduced to reduce soil erosion, energy loss or to manage snow deposition. Additional wildlife food and cover, mixing of odor plumes and visual screening.

Feature Measure: length of windbreak row(s)
Scenario Unit: Feet
Scenario Typical Size: 500.00
Scenario Total Cost: \$1,331.60
Scenario Cost/Unit: \$2.66
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Tractor, agricultural, 60 HP	963	Agricultural tractor with horsepower range of 50 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$35.80	2	\$71.60
Mechanical tree planter	1600	Mechanical tree planter. Requires a pulling unit of either tractor or small dozer depending upon site conditions. Does not include labor.	Hours	\$5.88	2	\$11.76
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	2	\$54.32
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	2	\$55.52
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22

Materials

Tree, Hardwood, Seedling, Small	1509	Bare root hardwood seedlings 6 to 18 inches tall; includes tropical containerized seedlings of 8 cubic inches or smaller. Includes materials and shipping only.	Each	\$0.84	100	\$84.00
Tree shelter, solid tube type, 5 in. x 48 in.	1571	5 inch $x 48$ inch tree tube for protection from animal damage. Materials and shipping only.	Each	\$5.29	100	\$529.00
Cable ties, plastic	1575	Plastic cable ties (typ. 8-12 in.) to assist in securing items. Materials only.	Each	\$0.07	150	\$10.50
Stakes, wood, $3 / 4$ in. $\times 3 / 4$ in. x 60 in.	1583	$3 / 4$ in. x $3 / 4$ in. x 60 in. wood stakes to fasten items in place. Includes materials only.	Each	\$2.43	150	\$364.50
Wire flags	1586	Small vinyl flags attached to wire stakes, typically, 36 in. length, for marking tree rows	Each	\$0.13	40	\$5.20

Practice: 380-Windbreak/Shelterbelt Establishment and Renovation
Scenario: \#231-3 or more row windbreak, trees, shelters, machine planted

Scenario Description:

Three or more 500 foot rows of hardwood trees for wind protection, energy conservation, wildlife habitat, air quality, snow management or to provide a visual screen. Trees planted with a tree planting machine 10 feet apart in the row with rows 16 feet apart. Environmental impacts are likely, so each tree must be protected with a rigid tube tree shelter. This practice is typically applied to crop, pasture or range lands. Resource Concerns to be addressed include: Soil Erosion (wind); Excess/Insufficient Water (drifted snow, inefficient moisture management); Water Quality Degradation (excess nutrients in surface waters, pesticides transported to surface waters, excessive sediment in surface waters,); Degraded Plant Condition (undesirable plant productivity and health); Inadequate habitat for Fish and Wildlife (food, cover/shelter, continuity); Livestock Production Limitation (inadequate shelter); Air Quality Impacts (emission of particulate matter, objectionable odors); Inefficient Energy Use (facilities, farming/ranching practices and field operations).

Before Situation:

Agricultural field, livestock paddock, feedlot or farmstead needing protection from wind, additional wildlife food and cover, odor mitigation, visual screen or management of snow deposition

After Situation:

Wind velocity suitably reduced to reduce soil erosion, energy loss or to manage snow deposition. Additional wildlife food and cover, mixing of odor plumes and visual screening.

Feature Measure: length of windbreak row(s)
Scenario Unit: Feet
Scenario Typical Size: 500.00
Scenario Total Cost: $\quad \$ 1,640.70$

Scenario Cost/Unit: \$3.28

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Tractor, agricultural, 60 HP	963	Agricultural tractor with horsepower range of 50 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$35.80	2	\$71.60
Mechanical tree planter	1600	Mechanical tree planter. Requires a pulling unit of either tractor or small dozer depending upon site conditions. Does not include labor.	Hours	\$5.88	2	\$11.76
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	2	\$54.32
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	2	\$55.52
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22

Materials

Tree, Hardwood, Seedling, Small	1509	Bare root hardwood seedlings 6 to 18 inches tall; includes tropical containerized seedlings of 8 cubic inches or smaller. Includes materials and shipping only.	Each	\$0.84	150	\$126.00
Tree shelter, solid tube type, 5 in. x 48 in.	1571	5 inch $x 48$ inch tree tube for protection from animal damage. Materials and shipping only.	Each	\$5.29	150	\$793.50
Cable ties, plastic	1575	Plastic cable ties (typ. 8-12 in.) to assist in securing items. Materials only.	Each	\$0.07	150	\$10.50
Stakes, wood, 3/4 in. x 3/4 in. x 60 in.	1583	$3 / 4$ in. x $3 / 4$ in. x 60 in. wood stakes to fasten items in place. Includes materials only.	Each	\$2.43	150	\$364.50
Wire flags	1586	Small vinyl flags attached to wire stakes, typically, 36 in. length, for marking tree rows	Each	\$0.13	60	\$7.80

Practice: 380-Windbreak/Shelterbelt Establishment and Renovation
Scenario: \#232-Renovation - Tree/shrub removal with chainsaw followed by hand planting

Scenario Description:

Windbreak/shelterbelt renovation to remove and replace deteriorated, damaged, diseased, or unsuitable trees or shrubs. The treatment may include removal of entire rows, or removal of selected trees/shrubs in order to prepare for the necessary planting of replacement trees and shrubs within the footprint of an existing windbreak, to improve the health and function of the windbreak. Supplemental plantings of bare root and/or containerized trees/shrubs, of conifer and/or deciduous species, or mixtures, are applied to improve the effectiveness and longevity of the windbreak. Windbreak width of 60' and length of 726' are used in calculations; this is equivalent to an area of 1 acre. For planting that expands the footprint of an existing windbreak, use scenarios for Windbreak/Shelterbelt Establishment. Resource concerns include:

Plant pest pressure,Plant productivity and health,Inadequate livestock shelter,Wind erosion.
Before Situation:
The health of trees and/or shrubs in a windbreak/shelterbelt has degraded as plants age, or plants may have been damaged by weather events or pests, decreasing the effectiveness of the original windbreak design. Plants lack leaf cover, have dead branches, gaps with no live green material, or may be completely dead. Wind moves freely through areas that lack foliage.

After Situation:
The integrity of 726 linear feet (one acre) of windbreak/shelterbelt has been restored and is functioning properly to reduce wind impacts to plants, animals, humans, and structures.

Feature Measure: Length of Renovation
Scenario Unit: Feet

Scenario Typical Size: 726.00
Scenario Total Cost: \$3,280.40
Scenario Cost/Unit: \$4.52
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	10	\$62.10
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	4	\$99.96
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	18	\$225.18
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	10	\$338.70
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	28	\$760.48
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	4	\$524.80
Materials						
Shrub, Seedling, Large	1508	Bare root shrub seedling, 36 to 60 inches tall; includes containerized seedlings larger than 20 cubic inches. Includes materials and shipping only.	Each	\$4.01	36	\$144.36
Tree, Hardwood, Seedling, Medium	1510	Bare root hardwood seedlings 18 to 36 inches tall; includes tropical containerized seedlings of 10 to 20 cubic inches. Includes materials and shipping only.	Each	\$1.72	36	\$61.92
Tree, Conifer, Seedling, Large	1515	Containerized conifer seedlings, 15 or 20 cubic inches; or bare root conifer seedlings $2+1$ (three-year old seedlings that grew two years in the original seedbed and another year in a transplant bed) or bare root seedlings 3+0 and older (three-year or older seedlings grown in their original seedbed, or transplanted seedlings). Includes materials and shipping only.	Each	\$1.73	36	\$62.28
Tree, Hardwood, Potted, Small	1529	Potted hardwood seedling, 1 quart to 1 gallon. Includes materials and shipping only.	Each	\$7.66	36	\$275.76
Tree, Conifer, Potted, Small	1534	Potted conifer seedling, 1 quart to 1 gallon. Includes materials and shipping only.	Each	\$7.16	36	\$257.76

Tree shelter, mesh tree tube, 24 in.	1555	24 inch tall vexar or other open weave tubular tree shelter to protect from animal damage. Materials only.	Each	\$0.53	90	\$47.70
Tree shelter, solid tube type, 3$1 / 4 \mathrm{in}$. x 30 in.	1560	3-1/4 inch $\times 30$ inch tree tube for protection from animal damage. Materials and shipping only.	Each	\$3.25	90	\$292.50
Stakes, wood, 3/4 in. x 3/4 in. x 36 in.	1581	$3 / 4 \mathrm{in} . \times 3 / 4 \mathrm{in} . \times 36 \mathrm{in}$. wood stakes to fasten items in place. Includes materials only.	Each	\$1.17	90	\$105.30
Stake, bamboo, $3 / 8 \mathrm{in}$. $\times 36 \mathrm{in}$.	1584	3/8 in. x 36 in. bamboo stakes to anchor items in place. Inlcudes materials and shipping only.	Each	\$0.24	90	\$21.60

Practice: 380-Windbreak/Shelterbelt Establishment and Renovation
Scenario: \#233-Renovation-Thinning or tree removal with Dozer (trees >8 inches DBH) followed by hand planting

Scenario Description:

Windbreak/shelterbelt renovation to remove and replace deteriorated, damaged, diseased, or unsuitable trees or shrubs. The treatment may include removal of entire rows, or removal of selected trees/shrubs in order to prepare for the necessary planting of replacement trees and shrubs within the footprint of an existing windbreak, to improve the health and function of the windbreak. The treatment uses mechanized equipment to remove trees and/or shrubs with average DBH >8 inches. Trees and shrubs are cleared with a Dozer. All woody debris from cutting and pruning is either scattered and crushed, piled and crushed, chipped, or removed from the treatment area. Hand planting is used to replace the trees/shrubs that were removed, improving the effectiveness and longevity of the windbreak. Various types and combinations of plant materials may be used, including bare root and/or containerized trees/shrubs, and conifer and/or deciduous species or mixtures. Windbreak width of 60 ' and length of 726 ' are used in calculations; this is equivalent to an area of 1 acre. For planting that expands the footprint of an existing windbreak, use scenarios for Windbreak/Shelterbelt Establishment.Resource concerns include: Plant pest pressure,Plant productivity and health,Inadequate livestock shelter,Wind erosion.

Before Situation:

The health of trees and/or shrubs in a windbreak/shelterbelt has degraded as plants age, or plants may have been damaged by weather events or pests, decreasing the effectiveness of the original windbreak design. Plants lack leaf cover, have dead branches, gaps with no live green material, or may be completely dead. Wind moves freely through areas that lack foliage.

After Situation:
The integrity of 726 linear feet (one acre) of windbreak/ shelterbelt has been restored and is functioning properly to reduce wind impacts to plants, animals, humans, and structures.

Feature Measure: Length of Renovation
Scenario Unit: Feet
Scenario Typical Size: 726.00
Scenario Total Cost: $\$ 4,623.85$
Scenario Cost/Unit: \$6.37
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160. Equipment and power unit costs. Labor not included.	Hours	\$98.78	8	\$790.24
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	4	\$99.96
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	18	\$225.18

Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	26	\$706.16
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	8	\$254.96
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	4	\$524.80
Materials						
Shrub, Seedling, Large	1508	Bare root shrub seedling, 36 to 60 inches tall; includes containerized seedlings larger than 20 cubic inches. Includes materials and shipping only.	Each	\$4.01	36	\$144.36
Tree, Hardwood, Seedling, Medium	1510	Bare root hardwood seedlings 18 to 36 inches tall; includes tropical containerized seedlings of 10 to 20 cubic inches. Includes materials and shipping only.	Each	\$1.72	36	\$61.92
Tree, Conifer, Seedling, Large	1515	Containerized conifer seedlings, 15 or 20 cubic inches; or bare root conifer seedlings $2+1$ (three-year old seedlings that grew two years in the original seedbed and another year in a transplant bed) or bare root seedlings 3+0 and older (three-year or older seedlings grown in their original seedbed, or transplanted seedlings). Includes materials and shipping only.	Each	\$1.73	36	\$62.28
Tree, Hardwood, Potted, Small	1529	Potted hardwood seedling, 1 quart to 1 gallon. Includes materials and shipping only.	Each	\$7.66	36	\$275.76
Tree, Conifer, Potted, Small	1534	Potted conifer seedling, 1 quart to 1 gallon. Includes materials and shipping only.	Each	\$7.16	36	\$257.76

Tree shelter, mesh tree tube, 24 in.	1555	24 inch tall vexar or other open weave tubular tree shelter to protect from animal damage. Materials only.	Each	\$0.53	90	\$47.70
Tree shelter, solid tube type, 3$1 / 4 \mathrm{in}$. x 30 in.	1560	3-1/4 inch $\times 30$ inch tree tube for protection from animal damage. Materials and shipping only.	Each	\$3.25	90	\$292.50
Stakes, wood, $3 / 4$ in. x 3/4 in. x 36 in.	1581	$3 / 4 \mathrm{in}$. x 3/4 in. x 36 in . wood stakes to fasten items in place. Includes materials only.	Each	\$1.17	90	\$105.30
Stake, bamboo, $3 / 8 \mathrm{in} . \times 36 \mathrm{in}$.	1584	$3 / 8$ in. x 36 in. bamboo stakes to anchor items in place. Inlcudes materials and shipping only.	Each	\$0.24	90	\$21.60
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 380-Windbreak/Shelterbelt Establishment and Renovation
Scenario: \#251-3 or more row windbreak, trees, machine planted

Scenario Description:

Three or more 500 foot rows of trees for wind protection, energy conservation, wildlife habitat, air quality, snow management or to provide a visual screen. The outside rows are conifers the inside row(s) are hardwoods. Trees 10 feet apart with rows 16 feet apart, planted with a tree planting machine. Planted seedlings are not likely to be impacted by environmental stressors, so tree shelters are not needed. This practice is typically applied to crop, pasture or range lands. Resource Concerns to be addressed include: Soil Erosion (wind); Excess/Insufficient Water (drifted snow, inefficient moisture management); Water Quality Degradation (excess nutrients in surface waters, pesticides transported to surface waters, excessive sediment in surface waters,); Degraded Plant Condition (undesirable plant productivity and health); Inadequate habitat for Fish and Wildlife (food, cover/shelter, continuity); Livestock Production Limitation (inadequate shelter); Air Quality Impacts (emission of particulate matter, objectionable odors); Inefficient Energy Use (facilities, farming/ranching practices and field operations).

Before Situation:

Agricultural field, livestock paddock, feedlot or farmstead needing protection from wind, additional wildlife food and cover, odor mitigation, visual screening or management of snow deposition

After Situation:

Wind velocity suitably reduced to reduce soil erosion, energy loss or to manage snow deposition. Additional wildlife food and cover, mixing of odor plumes and visual screening.

Feature Measure: length of windbreak row(s)
Scenario Unit: Feet
Scenario Typical Size: 500.00
Scenario Total Cost: \$467.08

Scenario Cost/Unit: \$0.93

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Tractor, agricultural, 60 HP	963	Agricultural tractor with horsepower range of 50 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$35.80	2	\$71.60
Mechanical tree planter	1600	Mechanical tree planter. Requires a pulling unit of either tractor or small dozer depending upon site conditions. Does not include labor.	Hours	\$5.88	2	\$11.76
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	2	\$54.32
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22

Materials

Tree, Hardwood, Seedling, Small
Bare root hardwood seedlings 6 to 18 inches tall; includes tropical and shipping only.

| Tree, Conifer, Seedling, Medium | 1514 | Containerized conifer seedlings, 8 or 10 cubic inches; or bare root
 conifer seedlings 1+1 (two-year old seedlings that grew one year in the
 original seedbed and another year in a transplant bed), or bare root
 seedlings $2+0$ (two-year old seedlings grown in their original seedbed). | Each |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Practice: 381-Silvopasture
Scenario: \#1 - Non-Commercial Thinning and Establish Native Grass

Scenario Description:

Non-commercial thinning of an existing stand of trees followed by establishment of native grasses. Planned removal of a portion of the trees will be conducted to allow more light to reach the forest floor. The removed trees cannot be sold for profit.

Before Situation:
A 10 acre pine plantation that is overstocked, with a basal area of 100 sq . ft. per acre or more. The forest stand is of low health and productivity with a high wildfire hazard and there is very little available forage for livestock, due to the dense shade of the tree canopy. Resource Concerns include Degraded Plant Pondition - Undesirable Plant Productivity and Health, Inadequate Structure and Composition, Wildfire Hazard, Excessive Biomass Accumulation and Livestock Production Limitation - Inadequate Feed and Forage.

After Situation:
The pine stand is thinned, non-commercially, to a basal area of 50 sq . ft . per acre, which will allow adequate sunlight to the forest floor for grass production, yet still provide shade and some protection from the elements for livestock and wildlife. Debris is removed, all tree cutting will leave the shortest possible stump height. The soil is prepared for planting using chemical and mechanical means, then a mix of native warm-season grasses will be established, providing forage to livestock and wildlife. All Resource Concerns listed above are adressed.

Feature Measure: Acres of silvopasture established
Scenario Unit: Acres
Scenario Typical Size: 10.00
Scenario Total Cost: $\$ 3,808.44$

Scenario Cost/Unit: \$380.84
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Mechanical cutter, chopper	943	Forestry mulcher, flail shredder, hydro axe, brush cutter, etc. Equipment and power unit costs. Labor not included.	Hours	\$115.16	10	\$1,151.60
Tillage, Primary	946	Includes heavy disking (offset) or chisel plow. Includes equipment, power unit and labor costs.	Acres	\$20.44	10	\$204.40
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	10	\$66.30
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	10	\$75.00
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	2	\$40.26
Cultipacking	1100	Includes equipment, power unit and labor costs.	Acres	\$10.03	10	\$100.30
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and	Hours	\$27.16	8	\$217.28

231 Labor performed using basic tools such as power tool, shovels, and
\$217.28 other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.

Materials

Phosphorus, P2O5	73	Price per pound of P2O5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	300	\$273.00
Potassium, K2O	74	K2O supplied by Muriate Of Potash. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.68	300	\$204.00
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	10	\$126.60
Native Perennial Grasses, Low Density	2750	Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$134.97	10	\$1,349.70

Practice: 381-Silvopasture
Scenario: \#2 - Non-Commercial Thinning and Establish Introduced Grass

Scenario Description:

Non-commercial thinning of an existing stand of trees followed by establishment of introduced grasses. Planned removal of a portion of the trees will be conducted to allow more light to reach the forest floor. The removed trees cannot be sold for profit.

Before Situation:
A 10 acre pine plantation that is overstocked, with a basal area of 100 sq . ft. per acre or more. The forest stand is of low health and productivity with a high wildfire hazard and there is very little available forage for livestock, due to the dense shade of the tree canopy. Resource Concerns include Degraded Plant Condition - Undesirable Plant Productivity and Health, Inadequate Structure and Composition, Wildfire Hazard, Excessive Biomass Accumulation and Livestock Production Limitation - Inadequate Feed and Forage.

After Situation:
The stand is thinned, non-commercially, to a basal area of 50 sq . ft . per acre, which will allow adequate sunlight to the forest floor for grass production, yet still provide shade and some protection from the elements for livestock and wildlife. Debris is removed, all tree cutting will leave the shortest possible stump height. The soil is prepared for planting using chemical and mechanical means, then a mix of cool-season introduced grasses and legumes will be established, providing forage to livestock and wildlife. All Resource Concerns listed above are adressed.

Feature Measure: Acres of silvopasture established
Scenario Unit: Acres
Scenario Typical Size: 10.00
Scenario Total Cost: $\$ 3,257.34$
Scenario Cost/Unit: \$325.73
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Mechanical cutter, chopper	943	Forestry mulcher, flail shredder, hydro axe, brush cutter, etc. Equipment and power unit costs. Labor not included.	Hours	\$115.16	10	\$1,151.60
Tillage, Primary	946	Includes heavy disking (offset) or chisel plow. Includes equipment, power unit and labor costs.	Acres	\$20.44	10	\$204.40
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	10	\$66.30
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	10	\$75.00
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	2	\$40.26
Cultipacking	1100	Includes equipment, power unit and labor costs.	Acres	\$10.03	10	\$100.30
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer,	Hours	\$27.16	8	\$217.28

Materials

Nitrogen (N), Ammonium Nitrate	69	Price per pound of N supplied by Ammonium Nitrate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.69	350	\$241.50
Phosphorus, P2O5	73	Price per pound of P2O5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	350	\$318.50
Potassium, K2O	74	K2O supplied by Muriate Of Potash. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.68	350	\$238.00
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	10	\$126.60
Introduced Perennial Grasses, Legumes and/or Forbs, Low Density	2747	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$47.76	10	\$477.60

Practice: 381-Silvopasture
Scenario: \#3 - Establish Native Grass

Scenario Description:

Establishment of native grasses into an existing stand of trees that is already stocked at an adequate density.
Before Situation:
A 10 acre pine plantation woodlot that has a basal area of 50 sq . ft . per acre. The plant productivity and health is low and there is very little available forage for livestock, due to undesirable species in the understory. Resource Concerns include Degraded Plant Condition - Undesirable Plant Productivity and Health, Inadequate Structure and Composition; Livestock Production Limitation - Inadequate Feed and Forage.

After Situation:

The soil is prepared for planting using chemical and mechanical means, then a mix of native warm-season grasses will be established, providing forage to livestock and wildlife. All Resource Concerns listed above are adressed.

Feature Measure: Acres of silvopasture established

Scenario Unit: Acres

Scenario Typical Size: 10.00

Scenario Total Cost: $\$ 2,500.30$

Scenario Cost/Unit: \$250.03

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Primary	946	Includes heavy disking (offset) or chisel plow. Includes equipment, power unit and labor costs.	Acres	\$20.44	10	\$204.40
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	10	\$66.30
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	10	\$75.00
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	10	\$201.30

Materials

Phosphorus, P2O5	73	Price per pound of P 2 O 5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	300	\$273.00
Potassium, K2O	74	K2O supplied by Muriate Of Potash. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.68	300	\$204.00
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	10	\$126.60
Native Perennial Grasses, Low Density	2750	Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$134.97	10	\$1,349.70

Practice: 381 - Silvopasture
Scenario: \#4 - Establish Introduced Grass

Scenario Description:

Establishment of introduced grasses into an existing stand of trees that is already at an adequate density.
Before Situation:
A 10 acre pine plantation woodlot that has a basal area of 50 sq . ft. per acre. The plant productivity and health is low and there is very little available forage for livestock, due to undesirable species in the understory. Resource Concerns include Degraded Plant Condition - Undesirable Plant Productivity and Health, Inadequate Structure and Composition; Livestock Production Limitation - Inadequate Feed and Forage.

After Situation:

The soil is prepared for planting using chemical and mechanical means, then a mix of cool-season introduced species of grasses and legumes will be established, providing forage to livestock. All Resource Concerns listed above are adressed.

Feature Measure: Acres of silvopasture established

Scenario Unit: Acres

Scenario Typical Size: 10.00

Scenario Total Cost: $\$ 1,983.70$

Scenario Cost/Unit: \$198.37

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total

Equipment Installation

Tillage, Primary	946	Includes heavy disking (offset) or chisel plow. Includes equipment, power unit and labor costs.	Acres	\$20.44	10	\$204.40
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	10	\$66.30
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	10	\$75.00
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	10	\$201.30
Materials						
Nitrogen (N), Ammonium Nitrate	69	Price per pound of N supplied by Ammonium Nitrate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.69	400	\$276.00
Phosphorus, P2O5	73	Price per pound of P2O5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	350	\$318.50
Potassium, K2O	74	K2O supplied by Muriate Of Potash. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.68	350	\$238.00
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	10	\$126.60
Introduced Perennial Grasses, Legumes and/or Forbs, Low Density	2747	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$47.76	10	\$477.60

Practice: 381 - Silvopasture
Scenario: \#5 - Establish Trees and Native Grass

Scenario Description:

Establishment of trees and native grasses into a field that contains neither suitable forage nor suitable tree cover for a silvopasture system.
Before Situation:
A 10 acre old field without suitable forage for livestock nor tree cover. There is very little available forage for livestock, due to undesirable species in the understory. Resource Concerns include Degraded Plant Condition - Undesirable Plant Productivity and Health, Inadequate Structure and Composition; Livestock Production Limitation Inadequate Feed and Forage, and Inadequate Livestock Shelter.

After Situation:

The site will be prepared using chemical and mechanical means, a mix of native warm-season grasses will be established, and then 200 pine trees per acre will be planted, providing forage to livestock and wildlife, and, in time, producing a viable wood products crop. Per the conservation practice standard, livestock grazing will be deferred until the trees reach adequate height to resist damage, or use exclusion measures are established. All Resource Concerns listed above are adressed.

Feature Measure: Acres of silvopasture established
Scenario Unit: Acres
Scenario Typical Size: 10.00
Scenario Total Cost: $\$ 4,493.30$
Scenario Cost/Unit: \$449.33
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total

Equipment Installation

Tillage, Primary	946	Includes heavy disking (offset) or chisel plow. Includes equipment, power unit and labor costs.	Acres	\$20.44	10	\$204.40
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	10	\$66.30
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	10	\$75.00
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	2	\$40.26
Tractor, agricultural, 60 HP	963	Agricultural tractor with horsepower range of 50 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$35.80	4	\$143.20
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	4	\$50.04
Mechanical tree planter	1600	Mechanical tree planter. Requires a pulling unit of either tractor or small dozer depending upon site conditions. Does not include labor.	Hours	\$5.88	4	\$23.52
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Materials						
Phosphorus, P2O5	73	Price per pound of P2O5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	300	\$273.00
Potassium, K2O	74	K2O supplied by Muriate Of Potash. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.68	300	\$204.00
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	10	\$126.60
Tree, Conifer, Seedling, Small	1512	Containerized conifer seedlings, 4 or 6 cubic inches; or bare root conifer seedlings 1+0 (one-year old seedlings grown in their original seedbed). Includes materials and shipping only.	Each	\$0.86	2000	\$1,720.00
Native Perennial Grasses, Low Density	2750	Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$134.97	10	\$1,349.70

Practice: 381 - Silvopasture
Scenario: \#6 - Establish Trees and Introduced Grass

Scenario Description:

Establishment of trees and introduced grasses and legumes into a field that contains neither suitable forage nor suitable tree cover for a silvopasture system.
Before Situation:
A 10 acre old field without suitable forage for livestock nor tree cover. There is very little available forage for livestock, due to undesirable species in the understory. Resource Concerns include Degraded Plant Condition - Undesirable Plant Productivity and Health, Inadequate Structure and Composition; Livestock Production Limitation Inadequate Feed and Forage, and Inadequate Livestock Shelter.

After Situation:

The site will be prepared using chemical and mechanical means, a mix of cool-season grasses and legumes will be established, and then 200 pine trees per acre will be planted, providing forage to livestock and wildlife, and, in time, producing a viable wood products crop. Per the conservation practice standard, livestock grazing will be deferred until the trees reach adequate height to resist damage, or use exclusion measures are established. All Resource Concerns listed above are adressed.

Feature Measure: Acres of silvopasture established
Scenario Unit: Acres
Scenario Typical Size: 10.00
Scenario Total Cost:
\$4,058.24
Scenario Cost/Unit: \$405.82
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total

Equipment Installation

Tillage, Primary	946	Includes heavy disking (offset) or chisel plow. Includes equipment, power unit and labor costs.	Acres	\$20.44	10	\$204.40
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	10	\$66.30
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	10	\$75.00
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	10	\$201.30
Tractor, agricultural, 60 HP	963	Agricultural tractor with horsepower range of 50 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$35.80	4	\$143.20
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	4	\$50.04
Mechanical tree planter	1600	Mechanical tree planter. Requires a pulling unit of either tractor or small dozer depending upon site conditions. Does not include labor.	Hours	\$5.88	4	\$23.52
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Materials						
Nitrogen (N), Ammonium Nitrate	69	Price per pound of N supplied by Ammonium Nitrate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.69	400	\$276.00
Phosphorus, P2O5	73	Price per pound of P2O5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	300	\$273.00
Potassium, K2O	74	K2O supplied by Muriate Of Potash. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.68	300	\$204.00
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	10	\$126.60
Tree, Conifer, Seedling, Small	1512	Containerized conifer seedlings, 4 or 6 cubic inches; or bare root conifer seedlings 1+0 (one-year old seedlings grown in their original seedbed). Includes materials and shipping only.	Each	\$0.86	2000	\$1,720.00
Introduced Perennial Grasses, Legumes and/or Forbs, Low Density	2747	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$47.76	10	\$477.60

Practice: 381-Silvopasture
Scenario: \#7-Establish Pine Trees

Scenario Description:

Establishment of pine trees into an existing pasture that contains adequate native or introduced forage.
Before Situation:
10 acre pasture with suitable forage for livestock. There is very little protection from the elements (sun, wind, etc.) available to the livestock. Additionally, there are no long-term wood products being produced. Resource Concerns include Degraded Plant Condition - Undesirable Plant Productivity and Health, Inadequate Structure and Composition, Livestock Production Limitation - Inadequate Livestock Shelter.

After Situation:

The site will be prepared using Tree/Shrub Site Preparation (490), if needed, and then 200 pine trees per acre will be planted, providing shade and wind protection to livestock and wildlife, and, in time, producing a viable wood products crop. Per the conservation practice standard, livestock grazing will be deferred until the trees reach adequate height to resist damage, or use exclusion measures are established. All Resource Concerns listed above are adressed.

Feature Measure: Per pine tree planted
Scenario Unit: Each
Scenario Typical Size: 2,000.00
Scenario Total Cost: \$2,735.60

Scenario Cost/Unit: \$1.37
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	16	\$200.16
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	8	\$380.88
Materials						
Tree, Conifer, Seedling, Small	1512	Containerized conifer seedlings, 4 or 6 cubic inches; or bare root conifer seedlings 1+0 (one-year old seedlings grown in their original seedbed). Includes materials and shipping only.	Each	\$0.86	2000	\$1,720.00

Practice: 381 -Silvopasture
Scenario: \#8 - Establish Hardwood trees

Scenario Description:

Establishment of hardwood trees into an existing pasture that contains adequate native or introduced forage.
Before Situation:
10 acre pasture with suitable forage for livestock. The current situation is no tree cover as the pastures do not have a significant tree component. There is very little protection from the elements (sun, wind, etc.) available to the livestock. Additionally, there are no long-term wood products being produced. Resource concerns include Degraded Plant Condition - Undesirable Plant Productivity and Health, Inadequate Structure and Composition, Livestock Production Limitation - Inadequate Livestock Shelter.

After Situation:

The site will be prepared using tree/shrub site preparation (490), if needed. Once completed, the pasture will have 200 hardwood trees per acre established. The shade provided by the trees helps conserve water, improve forages, reduces soil erosion and provides shade and wind protection to livestock and wildlife, and, in time, produce a viable wood products crop. Per the conservation practice standard, livestock grazing will be deferred until the trees reach adequate height to resist damage, or use exclusion measures are established.

Feature Measure: Per hardwood tree planted
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$2.03
Scenario Cost/Unit: \$2.03
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	0.03	\$0.38
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	0.03	\$0.81
Materials						
Tree, Hardwood, Seedling, Small	1509	Bare root hardwood seedlings 6 to 18 inches tall; includes tropical containerized seedlings of 8 cubic inches or smaller. Includes materials and shipping only.	Each	\$0.84	1	\$0.84

Practice: 382 - Fence
Scenario: \#1-Level Non-Rocky

Scenario Description:

Multi-strand, Barbed or Smooth Wire - Installation of fence on ground that is not excessively steep, rocky or difficult to work in; fence will allow for implementation of grazing management that allows for an adequate rest and recovery period, protection of sensitive area, improved water quality, reduction of noxious and invasive weeds. Materials and construction will be planned and applied in accordance with (382) Fence standard and specifications.

Before Situation:
On grazing lands lacking extreme soil conditions (steep slope, rocky soils, etc.) the health and vigor of the plant community are negatively impacted by poor grazing distribution, timing of grazing and inadequate rest and recovery periods. Water quality is impacted by increased erosion and runoff, cattle access to water bodies is uncontrolled. Reduced vegetative cover increases the opportunity for encroachment of noxious and invasive weeds.
After Situation:
Installation of fence on relatively flat, non-rocky ground allows for implementation of grazing management that allows for an adequate rest and recovery period, protection of sensitive area, improved water quality, reduction of noxious and invasive weeds. Fence includes posts, wire, fasteners, gates, etc... Four strand wire is minimally required. Fence will be installed with wildlife friendly considerations.

Feature Measure: Length of Fence
Scenario Unit: Feet
Scenario Typical Size: 2,640.00
Scenario Total Cost: \$8,452.67
Scenario Cost/Unit: \$3.20
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, formless, non reinforced	36	Non reinforced concrete cast-in-placed without forms by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$177.66	0.7	\$124.36
Auger, Post driver attachment	934	Auger or post driver attachment to a tractor or skidsteer. Does not include power unit. Labor not included.	Hours	\$9.74	7.5	\$73.05
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	32	\$799.68
Tractor, agricultural, 60 HP	963	Agricultural tractor with horsepower range of 50 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$35.80	7.5	\$268.50
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and	Hours	\$27.16	128	\$3,476.48

Materials

Wire, Barbed, Galvanized, 12.5 Gauge, 1,320' roll	1	Galvanized 12.5 gauge, 1,320' roll. Includes materials and shipping only.	Each	\$122.84	10	\$1,228.40
Post, Wood, CCA treated, 3-4 in. x 7 ft .	9	Wood Post, Line 3-4 inch dia. X 7 ft., CCA Treated. Includes materials and shipping only.	Each	\$11.12	12	\$133.44
Post, Wood, CCA treated, 6 in. x 8 ft.	12	Wood Post, End 6 inch dia. X 8 ft., CCA Treated. Includes materials and shipping only.	Each	\$24.69	10	\$246.90
Post, Steel T, $1.33 \mathrm{lbs}, 6 \mathrm{ft}$.	15	Steel Post, Studded 6 ft . -1.33 lb. Includes materials and shipping only.	Each	\$7.08	180	\$1,274.40
Fence, Wire Assembly, Barbed Wire	30	Brace pins, battens, clips, staples. Includes materials and shipping only.	Feet	\$0.20	2640	\$528.00
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: 382 - Fence
Scenario: \#2 - Steep-Rocky

Scenario Description:

Barbed, Smooth ,or Woven Wire Difficult Installation - Installation of fence in difficult site conditions (i.e. rocky, steep or shallow soils) will allow for implementation of grazing management that allows for an adequate rest and recovery period, protection of sensitive area, improved water quality, reduction of noxious and invasive weeds. Materials and construction will be planned and applied in accordance with (382) Fence standard and specifications.

Before Situation:
On grazing lands where the soil is rocky and shallow and the slope of the ground extreme where additional material must be used because of the terrain and the health and vigor of the plant communities are negatively impacted by poor grazing distribution, timing of grazing and inadequate rest and recovery periods. Water quality is impacted by increased erosion and runoff, cattle access to water bodies is uncontrolled. Reduced vegetative cover increases the opportunity for encroachment of noxious and invasive weeds. Fence installation conditions are for difficult sites such as poor access, steep slopes, rocky sites, dense brush, wet conditions etc.

After Situation:

Installation of fence allows for implementation of grazing management that allows for an adequate rest and recovery period, protection of sensitive area, improved water quality, reduction of noxious and invasive weeds. Fence includes posts, wire, fasteners, gates, brace posts, etc... Fence will be installed with wildlife friendly considerations.

Feature Measure: Length of Fence

Scenario Unit: Feet

Scenario Typical Size: 2,640.00

Scenario Total Cost: \$10,849.24

Scenario Cost/Unit: \$4.11
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, formless, non reinforced	36	Non reinforced concrete cast-in-placed without forms by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$177.66	1.1	\$195.43
Auger, Post driver attachment	934	Auger or post driver attachment to a tractor or skidsteer. Does not include power unit. Labor not included.	Hours	\$9.74	11.25	\$109.58
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	15	\$93.15
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	11.25	\$281.14
Tractor, agricultural, 60 HP	963	Agricultural tractor with horsepower range of 50 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$35.80	11.25	\$402.75
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	207	\$5,622.12

Materials

Wire, Barbed, Galvanized, 12.5
Gauge, 1,320' roll
Post, Wood, CCA treated, 3-4 in. x
7 ft .
Post, Wood, CCA treated, 6 in. x 8
ft .
Post, Steel T, $1.33 \mathrm{lbs}, 6 \mathrm{ft}$. 15
Fence, Wire Assembly, Barbed
Wire

1 Galvanized 12.5 gauge, 1,320' roll. Includes materials and shipping only.

9 Wood Post, Line 3-4 inch dia. X 7 ft., CCA Treated. Includes materials and shipping only.
12 Wood Post, End 6 inch dia. X 8 ft., CCA Treated. Includes materials and shipping only.
15 Steel Post, Studded 6 ft. - 1.33 lb . Includes materials and shipping only.
30 Brace pins, battens, clips, staples. Includes materials and shipping only.

Each
E

Each	$\$ 11.12$	25	$\$ 278.00$
Each	$\$ 24.69$	14	$\$ 345.66$
Each	$\$ 7.08$	207	$\$ 1,465.56$
Feet	$\$ 0.20$	2640	$\$ 528.00$

Mobilization
Mobilization, small equipment

Practice: 382 - Fence
Scenario: \#3-Electric

Scenario Description:

Electric - Installation of fence will allow for implementation of a grazing management that allows for an adequate rest and recovery period, protection of sensitive area, improved water quality, reduction of noxious and invasive weeds. Materials and construction will be planned and applied in accordance with (382) Fence standard and specifications.

Before Situation:

The grazingland health and vigor are negatively impacted by poor grazing distribution, timing of grazing and inadequate rest and recovery periods. Water quality is impacted by increased erosion and runoff, cattle access to water bodies is uncontrolled. Reduced vegetative cover increases the opportunity for encroachment of noxious and invasive weeds.

After Situation:

Installation of fence allows for implementation of grazing management that allows for an adequate rest and recovery period, protection of sensitive area, improved water quality, reduction of noxious and invasive weeds. Fence includes posts, wire, fasteners, gates, fence charger, etc... Two to three strand wire is commonly installed. Fence will be installed with wildlife friendly considerations.

Feature Measure: Length of Fence

Scenario Unit: Feet
Scenario Typical Size: 1,320.00
Scenario Total Cost: \$2,396.24

Scenario Cost/Unit: \$1.82

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Auger, Post driver attachment	934	Auger or post driver attachment to a tractor or skidsteer. Does not include power unit. Labor not included.	Hours	\$9.74	4	\$38.96
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	16	\$399.84
Tractor, agricultural, 60 HP	963	Agricultural tractor with horsepower range of 50 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$35.80	4	\$143.20
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and	Hours	\$27.16	24	\$651.84

Materials

Wire, High Tensile, 12.5 Gauge, 4,000' roll	2	High Tensile 12.5 gauge, 4,000' roll. Includes materials and shipping only.	Each	\$154.95	1	\$154.95
Post, Wood, CCA treated, 3-4 in. x 7 ft .	9	Wood Post, Line 3-4 inch dia. X 7 ft., CCA Treated. Includes materials and shipping only.	Each	\$11.12	6	\$66.72
Post, Steel T, $1.33 \mathrm{lbs}, 6 \mathrm{ft}$.	15	Steel Post, Studded 6 ft. -1.33 lb. Includes materials and shipping only.	Each	\$7.08	35	\$247.80
Post, Fiberglass, 7/8 in X 6 ft	18	Fiberglass line post, 7/8 inch diameter X 6 foot length. Includes materials and shipping only.	Each	\$13.26	5	\$66.30
Electric, Lightening Diverter	22	Electric, Lightening diverter for electric fence. Includes materials and shipping only.	Each	\$10.05	1	\$10.05
Electric, Energizer, 6 joule	29	Electric, Energizer, 6 joule for electric fence. Includes materials and shipping only.	Each	\$418.58	1	\$418.58
Fence, Wire Assembly, High	34	Brace pins, springs, strainers, battens, clips, crimp sleeves, staples,	Feet	\$0.15	1320	\$198.00

Tensile, Electric, 3 Strand insulators, wrap around sleeves. Includes materials and shipping only.

Practice: 382 - Fence
Scenario: \#123-Multi Strand Barbed/Smooth Wire

Scenario Description:

Multi-strand, Barbed or Smooth Wire - Installation of fence will allow for implementation of grazing management that allows for an adequate rest and recovery period, protection of sensitive area, improved water quality, reduction of noxious and invasive weeds. Constructed using fencing materials rather than a pre-manufactured gate.

Before Situation:
On grazing lands health and vigor are negatively impacted by poor grazing distribution, timing of grazing and inadequate rest and recovery periods. Water quality is impacted by increased erosion and runoff, cattle access to water bodies is uncontrolled. Reduced vegetative cover increases the opportunity for encroachment of noxious and invasive weeds.

After Situation:
Installation of fence will allow for implementation of grazing management that allows for an adequate rest and recovery period, protection of sensitive area, improved water quality, reduction of noxious and invasive weeds. Fence includes posts, wire, fasteners, gates, etc... Four strand wire is commonly installed. Fence will be installed with wildlife friendly considerations.

Feature Measure: Length of Fence
Scenario Unit: Feet
Scenario Typical Size: 1,320.00

Scenario Total Cost:	$\$ 3,734.13$
Scenario Cost/Unit:	$\$ 2.83$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Auger, Post driver attachment	934	Auger or post driver attachment to a tractor or skidsteer. Does not include power unit. Labor not included.	Hours	\$9.74	5	\$48.70
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	5	\$124.95
Tractor, agricultural, 60 HP	963	Agricultural tractor with horsepower range of 50 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$35.80	5	\$179.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	33	\$896.28
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	5	\$138.80

Materials

Wire, Barbed, Galvanized, 12.5 Gauge, 1,320' roll	1	Galvanized 12.5 gauge, 1,320' roll. Includes materials and shipping only.	Each	\$122.84	4	\$491.36
Post, Wood, CCA treated, 3-4 in. x 7 ft .	9	Wood Post, Line 3-4 inch dia. X 7 ft., CCA Treated. Includes materials and shipping only.	Each	\$11.12	20	\$222.40
Post, Wood, CCA treated, 6 in. x 8 ft .	12	Wood Post, End 6 inch dia. X 8 ft., CCA Treated. Includes materials and shipping only.	Each	\$24.69	8	\$197.52
Post, Steel T, $1.33 \mathrm{lbs}, 6 \mathrm{ft}$.	15	Steel Post, Studded 6 ft . -1.33 lb. Includes materials and shipping only.	Each	\$7.08	90	\$637.20
Fence, Wire Assembly, Barbed Wire	30	Brace pins, battens, clips, staples. Includes materials and shipping only.	Feet	\$0.20	1320	\$264.00
Gate, Pipe, 12 ft .	1057	6 rail tube gate, 16 gauge. Includes materials and shipping only.	Each	\$234.46	1	\$234.46
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: 382 - Fence
Scenario: \#125 - Multi Strand Barbed or smooth Wire Difficult terrain

Scenario Description:

Barbed, Smooth ,or Woven Wire Difficult Installation - Installation of fence in difficult situations will allow for implementation of grazing management that allows for an adequate rest and recovery period, protection of sensitive area, improved water quality, reduction of noxious and invasive weeds. Constructed using fencing materials rather than a pre-manufactured gate.

Before Situation:
On grazing lands health and vigor are negatively impacted by poor grazing distribution, timing of grazing and inadequate rest and recovery periods. Water quality is impacted by increased erosion and runoff, cattle access to water bodies is uncontrolled. Reduced vegetative cover increases the opportunity for encroachment of noxious and invasive weeds. Fence installation conditions are for difficult sites such as poor access, steep slopes, rocky sites, dense brush, wet conditions etc.

After Situation:

Installation of fence will allow for implementation of grazing management that allows for an adequate rest and recovery period, protection of sensitive area, improved water quality, reduction of noxious and invasive weeds. Fence includes posts, wire, fasteners, gates, brace posts, etc... Fence will be installed with wildlife friendly considerations.

Feature Measure: Length of Fence
Scenario Unit: Feet
Scenario Typical Size: 1,320.00

Scenario Total Cost: $\$ 4,840.16$

Scenario Cost/Unit: \$3.67
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Auger, Post driver attachment	934	Auger or post driver attachment to a tractor or skidsteer. Does not include power unit. Labor not included.	Hours	\$9.74	10	\$97.40
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	1	\$6.21
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	5	\$124.95
Tractor, agricultural, 60 HP	963	Agricultural tractor with horsepower range of 50 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$35.80	10	\$358.00

Labor

General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	60	\$1,629.60
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	10	\$277.60

Materials

Wire, Barbed, Galvanized, 12.5 Gauge, 1,320' roll	1	Galvanized 12.5 gauge, 1,320' roll. Includes materials and shipping only.	Each	\$122.84	4	\$491.36
Post, Wood, CCA treated, 3-4 in. x 7 ft .	9	Wood Post, Line 3-4 inch dia. X 7 ft ., CCA Treated. Includes materials and shipping only.	Each	\$11.12	20	\$222.40
Post, Wood, CCA treated, 6 in. x 8 ft.	12	Wood Post, End 6 inch dia. X 8 ft., CCA Treated. Includes materials and shipping only.	Each	\$24.69	8	\$197.52
Post, Steel T, $1.33 \mathrm{lbs}, 6 \mathrm{ft}$.	15	Steel Post, Studded 6 ft - 1.33 lb . Includes materials and shipping only.	Each	\$7.08	90	\$637.20
Fence, Wire Assembly, Barbed Wire	30	Brace pins, battens, clips, staples. Includes materials and shipping only.	Feet	\$0.20	1320	\$264.00
Gate, Pipe, 12 ft .	1057	6 rail tube gate, 16 gauge. Includes materials and shipping only.	Each	\$234.46	1	\$234.46
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with	Each	\$299.46	1	\$299.46

Practice: 382 - Fence

Scenario: \#143-Woven Wire

Scenario Description:
Woven - Installation of fence will allow for implementation of a grazing management that allows for an adequate rest and recovery period, protection of sensitive area, improved water quality, reduction of noxious and invasive weeds. Woven wire is typically used in applications with sheep, goats, hogs, wildlife exclusion, shelterbelt/tree protection, etc. Constructed using fencing materials rather than a pre-manufactured gate.

Before Situation:

On grazing lands health and vigor are negatively impacted by poor grazing distribution, timing of grazing and inadequate rest and recovery periods. Water quality is impacted by increased erosion and runoff, livestock access to water bodies is uncontrolled. Reduced vegetative cover increases opportunity for encroachment of noxious and invasive weeds.

After Situation:

Installation of fence will allow for implementation of a rotational grazing plan that allows for an adequate rest and recovery period, protection of sensitive area, improved water quality, reduction of noxious and invasive weeds. Woven wire fence includes posts, wire, fasteners, gates, etc... Woven wire is typically used in applications with sheep, goats, hogs, wildlife exclusion, shelterbelt/tree protection, etc.

Feature Measure: Length of Fence
Scenario Unit: Feet
Scenario Typical Size: 1,320.00
Scenario Total Cost: \$4,791.77
Scenario Cost/Unit: \$3.63
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Auger, Post driver attachment	934	Auger or post driver attachment to a tractor or skidsteer. Does not include power unit. Labor not included.	Hours	\$9.74	5	\$48.70
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	5	\$124.95
Tractor, agricultural, 60 HP	963	Agricultural tractor with horsepower range of 50 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$35.80	5	\$179.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	45	\$1,222.20
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	5	\$138.80

Materials

Wire, Barbed, Galvanized, 12.5 Gauge, 1,320' roll	1	Galvanized 12.5 gauge, 1,320' roll. Includes materials and shipping only.	Each	\$122.84	2	\$245.68
Wire, Woven, Galvanized, 12.5 Gauge, 32 in	3	Galvanized 12.5 gauge, 32 inch - 330 foot roll. Includes materials and shipping only.	Each	\$194.85	4	\$779.40
Post, Wood, CCA treated, 3-4 in. x 7 ft .	9	Wood Post, Line 3-4 inch dia. X 7 ft., CCA Treated. Includes materials and shipping only.	Each	\$11.12	20	\$222.40
Post, Wood, CCA treated, 6 in. x 8 ft .	12	Wood Post, End 6 inch dia. X 8 ft., CCA Treated. Includes materials and shipping only.	Each	\$24.69	8	\$197.52
Post, Steel T, $1.33 \mathrm{lbs}, 6 \mathrm{ft}$.	15	Steel Post, Studded 6 ft . -1.33 lb. Includes materials and shipping only.	Each	\$7.08	90	\$637.20
Fence, Wire Assembly, Barbed Wire	30	Brace pins, battens, clips, staples. Includes materials and shipping only.	Feet	\$0.20	1320	\$264.00
Fence, Wire Assembly, Woven Wire	35	Brace pins, twist sticks, staples. Includes materials and shipping only.	Feet	\$0.15	1320	\$198.00
Gate, Pipe, 12 ft .	1057	6 rail tube gate, 16 gauge. Includes materials and shipping only.	Each	\$234.46	1	\$234.46
Mobilization						
Mobilization, small equipment	1138	Equipment <70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: 382 - Fence
Scenario: \#163 - Large Animal Perimeter 96 Inch Woven Wire

Scenario Description:

Woven Wire fencing installed for large livestock such as Bison, large ungulate herbivores, captive cervidae that are not domesticated. Because of the size and behavior differences relative to domesticated livestock, fences, handling facilities and loading facilities must be more robust to accommodate bison. Fence allows for the implementation of a grazing management under a CPS 528 Prescribed Grazing plan. Fence facilities the movement of livestock for forage management and protection of sensitive areas. All fence components are included. Fence encloses $<=20$ acres or 2640 foot linear run connection with 5-8 wire fencing. Install fence with considerations for wildlife corridors.

Before Situation:

Livestock have access to forage and sensitive areas without management of intensity, duration and frequency of grazing events. Plant productivity and health is degraded. Water quality may be impaired by sediment and livestock access to water.

After Situation:
Installation of the tall woven wire high tensile electric fence allows for grazing management to be implemented. Fence is installed to specifications meeting the producer's objective and livestock type. Fence is installed with wildlife friendly considerations and known wildlife corridors.

Feature Measure: length
Scenario Unit: Feet
Scenario Typical Size: 2,640.00
Scenario Total Cost: \$21,211.08

Scenario Cost/Unit: \$8.03
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Auger, Post driver attachment	934	Auger or post driver attachment to a tractor or skidsteer. Does not include power unit. Labor not included.	Hours	\$9.74	40	\$389.60
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	40	\$999.60
Tractor, agricultural, 60 HP	963	Agricultural tractor with horsepower range of 50 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$35.80	40	\$1,432.00
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	40	\$714.40
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	120	\$3,259.20
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	40	\$1,110.40

Materials

Wire, Woven, Wildlife, 96 in .	6	High Tensile 12.5 gauge, 96 inch - 330 foot roll. Includes materials and shipping only.	Each	\$696.75	8	\$5,574.00
Post, Wood, CCA treated, 6 in. x 8 ft .	12	Wood Post, End 6 inch dia. X 8 ft., CCA Treated. Includes materials and shipping only.	Each	\$24.69	4	\$98.76
Post, Wood, CCA treated, 6 in. x 12-14 ft.	13	Wood Post, Line/End 6 inch dia. X 12-14 ft., CCA Treated. Includes materials and shipping only.	Each	\$38.12	160	\$6,099.20
Fence, Wire Assembly, Woven Wire	35	Brace pins, twist sticks, staples. Includes materials and shipping only.	Feet	\$0.15	2640	\$396.00
Gate, Pipe, 14 ft .	1058	6 rail tube gate, 16 gauge. Includes materials and shipping only.	Each	\$269.50	2	\$539.00
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	2	\$598.92

Practice: 382 - Fence
Scenario: \#179-Large Animal 8 Wire High Tensile, Electric
Scenario Description:
A high tensile wire fence which is electrified for large livestock such as Bison, large ungulate herbivores, captive cervidae that are not domesticated. Eight strands of wire are used for visual barrier with a minimum of 3 wires electrified. Fence allows for the implementation of a grazing management plan. Because of the size and behavior differences relative to domesticated livestock, fences, handling facilities and loading facilities must be more robust to accommodate bison. Fence allows for the implementation of grazing management under CPS Prescribed Grazing plan. Fence facilities the movement of livestock for forage management and protection of sensitive areas. All fence components are included. Fence encloses 40 acres. Install fence considering wildlife and known wildlife corridors.

Before Situation:
Livestock have access to forage and sensitive areas without management of intensity, duration and frequency of grazing events. Plant productivity and health is degraded. Water quality may be impaired by sediment and livestock access to water.

After Situation:

Installation of the 8 wire high tensile electric fence allows for grazing management to be implemented. Fence is installed to specifications meeting the producer's objective and livestock type. Fence is installed with wildlife friendly considerations and known wildlife corridors.

Feature Measure: lenght
Scenario Unit: Feet
Scenario Typical Size: 5,280.00
Scenario Total Cost:
\$16,817.72

Scenario Cost/Unit:
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Auger, Post driver attachment	934	Auger or post driver attachment to a tractor or skidsteer. Does not include power unit. Labor not included.	Hours	\$9.74	53	\$516.22
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	40	\$999.60
Tractor, agricultural, 60 HP	963	Agricultural tractor with horsepower range of 50 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$35.80	53	\$1,897.40
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	42	\$750.12
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	88	\$2,390.08
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	53	\$1,471.28

Materials

Wire, High Tensile, 12.5 Gauge, 4,000' roll	2	High Tensile 12.5 gauge, 4,000' roll. Includes materials and shipping only.	Each	\$154.95	11	\$1,704.45
Post, Wood, CCA treated, 4 in x 8 ft	10	Wood Post, Line 4 inch X 8 foot, CCA Treated. Includes materials and shipping only.	Each	\$13.61	188	\$2,558.68
Post, Wood, CCA treated, 6 in. x 8 ft.	12	Wood Post, End 6 inch dia. X 8 ft., CCA Treated. Includes materials and shipping only.	Each	\$24.69	26	\$641.94
Electric, Ground Rods	20	Electric, Ground Rod for electric fence. Includes materials and shipping only.	Each	\$17.37	7	\$121.59
Electric, Ground Rod Clamps	21	Electric, Ground Rod Clamps for electric fence. Includes materials and shipping only.	Each	\$2.48	7	\$17.36
Electric, Lightening Diverter	22	Electric, Lightening diverter for electric fence. Includes materials and shipping only.	Each	\$10.05	1	\$10.05
Electric, Insulated cable	23	Electric, Insulated cable for electric fence. Typically in spools of 100 to 200 feet. Includes materials and shipping only.	Each	\$41.07	1	\$41.07
Electric, Power Surge Protector	24	Electric, Power Surge Protector for electric fence. Includes materials and shipping only.	Each	\$15.15	1	\$15.15
Electric, Cutoff Switch	25	Electric, Cutoff Switch for electric fence. Includes materials and shipping only.	Each	\$10.93	2	\$21.86
Electric, Tester	26	Electric, Tester for electric fence. Includes materials and shipping only.	Each	\$45.17	1	\$45.17
Electric, Energizer, 6 joule	29	Electric, Energizer, 6 joule for electric fence. Includes materials and	Each	\$418.58	1	\$418.58

Fence, Wire Assembly, High Tensile, Electric, 3 Strand	34	Brace pins, springs, strainers, battens, clips, crimp sleeves, staples, insulators, wrap around sleeves. Includes materials and shipping only.	Feet	\$0.15	13728	\$2,059.20
Gate, Pipe, 14 ft .	1058	6 rail tube gate, 16 gauge. Includes materials and shipping only.	Each	\$269.50	2	\$539.00
Mobilization						
Mobilization, small equipment	1138	Equipment <70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	2	\$598.92

Practice: 382 - Fence
Scenario: \#195-Large Animal 5 Wire High Tensile, Electric
Scenario Description:
A five strand high tensile wire fence which is electrified for large livestock such as Bison, large ungulate herbivores, captive cervidae that are not domesticated. Because of the size and behavior differences relative to domesticated livestock, fences, handling facilities and loading facilities must be more robust to accommodate bison. Fence allows for the implementation of a grazing management under CPS 528 Prescribed Grazing plan. Fence facilities the movement of livestock for forage management and protection of sensitive areas. All fence components are included. Fence encloses 40 acres. Install fence considering wildlife friendly design and adjustment for wildlife corridors.

Before Situation:
Livestock have access to forage and sensitive areas without management of intensity, duration and frequency of grazing events. Plant productivity and health is degraded. Water quality may be impaired by sediment and livestock access to water.

After Situation:
Installation of the 5 wire high tensile electric fence allows for grazing management to be implemented. Fence is installed to specifications meeting the producer's objective and livestock type. Fence is installed with wildlife friendly considerations and known wildlife corridors.

Feature Measure: length
Scenario Unit: Feet
Scenario Typical Size: 5,280.00
Scenario Total Cost: \$15,112.52
Scenario Cost/Unit: \$2.86
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Auger, Post driver attachment	934	Auger or post driver attachment to a tractor or skidsteer. Does not include power unit. Labor not included.	Hours	\$9.74	53	\$516.22
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	40	\$999.60
Tractor, agricultural, 60 HP	963	Agricultural tractor with horsepower range of 50 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$35.80	53	\$1,897.40
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	20	\$357.20
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	80	\$2,172.80
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	53	\$1,471.28

Materials

Wire, High Tensile, 12.5 Gauge, 4,000' roll	2	High Tensile 12.5 gauge, 4,000' roll. Includes materials and shipping only.	Each	\$154.95	7	\$1,084.65
Post, Wood, CCA treated, 4 in x 8 ft	10	Wood Post, Line 4 inch X 8 foot, CCA Treated. Includes materials and shipping only.	Each	\$13.61	188	\$2,558.68
Post, Wood, CCA treated, 6 in. x 8 ft .	12	Wood Post, End 6 inch dia. X 8 ft., CCA Treated. Includes materials and shipping only.	Each	\$24.69	26	\$641.94
Electric, Ground Rods	20	Electric, Ground Rod for electric fence. Includes materials and shipping only.	Each	\$17.37	7	\$121.59
Electric, Ground Rod Clamps	21	Electric, Ground Rod Clamps for electric fence. Includes materials and shipping only.	Each	\$2.48	7	\$17.36
Electric, Lightening Diverter	22	Electric, Lightening diverter for electric fence. Includes materials and shipping only.	Each	\$10.05	1	\$10.05
Electric, Insulated cable	23	Electric, Insulated cable for electric fence. Typically in spools of 100 to 200 feet. Includes materials and shipping only.	Each	\$41.07	1	\$41.07
Electric, Power Surge Protector	24	Electric, Power Surge Protector for electric fence. Includes materials and shipping only.	Each	\$15.15	1	\$15.15
Electric, Cutoff Switch	25	Electric, Cutoff Switch for electric fence. Includes materials and shipping only.	Each	\$10.93	2	\$21.86
Electric, Tester	26	Electric, Tester for electric fence. Includes materials and shipping only.	Each	\$45.17	1	\$45.17
Electric, Energizer, 6 joule	29	Electric, Energizer, 6 joule for electric fence. Includes materials and	Each	\$418.58	1	\$418.58

Fence, Wire Assembly, High Tensile, Electric, 3 Strand	34	Brace pins, springs, strainers, battens, clips, crimp sleeves, staples, insulators, wrap around sleeves. Includes materials and shipping only.	Feet	\$0.15	10560	\$1,584.00
Gate, Pipe, 14 ft .	1058	6 rail tube gate, 16 gauge. Includes materials and shipping only.	Each	\$269.50	2	\$539.00
Mobilization						
Mobilization, small equipment	1138	Equipment <70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	2	\$598.92

Practice: 383 - Fuel Break
Scenario: \#1-Dozer, flat terrain

Scenario Description:

A dozer is used to thin trees and brush for the purpose of opening the forest canopy and creating gaps in the crown of the overstory on 0-30\% slopes, along a predetermined strip at the edge of forestland to be protected from wildfire. Branches on the remaining trees are pruned to $8-10$ feet in height and all woody debris is piled/burned or lopped/scattered so that little woody fuel remains.

Before Situation:
A pine forest stand is overstocked with desirable and undesirable trees on relatively flat to moderately sloped terrain (0-30\% slopes). Overstocking creates conditions conducive to wildfire movement across the landscape, and severe loss/damage of the forest stand. Shrub levels are high and significantly increase wildfire risk. Tree crowns are touching, trees retain limbs down to understory vegetation creating a 'ladder' for fire movement into the overstory, and understory vegetation (brush and grasses) create a significant fuel load to rate a high to severe fire hazard. Resource concerns are degraded plant condition - wildfire hazard, excess biomass accumulation \& undesirable productivity and health.

After Situation:
A fuel break is installed at the property line or at key locations to reduce the threat of crown fire spread. Size of fuel break is 4 acres, but can increase or decrease depending up the size of the tract; the width varies due to site conditions but should be no less than 66 feet. The trees are thinned with heavy equipment, such as a dozer, so open gaps are created in crown overstory. Branches on remaining trees are pruned to 8 to 10 feet in height, all woody residue (thinned trees and pruned branches) are treated (piled/burned or lopped/scattered) so little remains in the fuel break.

Feature Measure: Area of Treatment

Scenario Unit: Acres
Scenario Typical Size: 4.00
Scenario Total Cost: \$2,523.64
Scenario Cost/Unit: \$630.91
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160 . Equipment and power unit costs. Labor not included.	Hours	\$98.78	8	\$790.24
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	16	\$99.36
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	8	\$199.92
Pruning tools, hand tools	1318	Pruning tools, hand tools, shears, loppers, pole saw, handsaw. Material costs only. Labor not included.	Hours	\$2.31	8	\$18.48
Pruning tool, pole saw	1319	Gasoline powered pole chainsaw. Labor not included.	Hours	\$9.80	8	\$78.40
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	24	\$651.84
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	8	\$254.96
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	8	\$380.88
Materials						
Tree Marking Paint	313	Trees to be cut through tree marking are physically identified through the application of paint on the tree. Typically one quart of paint is used to mark one acre of trees. Includes materials and shipping only.	Acres	\$12.39	4	\$49.56

Practice: 383-Fuel Break
Scenario: \#2 - Dozer, steep slopes

Scenario Description:

A dozer is used to thin trees and brush for the purpose of opening the forest canopy and creating gaps in the crown of the overstory on $>30 \%$ slopes, along a predetermined strip at the edge of forestland to be protected from wildfire. Branches on the remaining trees are pruned to 8-10 feet in height and all woody debris is piled/burned or lopped/scattered so that little woody fuel remains. More cutting of trees \& brush and treatment of woody residue is accomplished using labor due to very steep slopes.

Before Situation:
A pine forest stand is overstocked with desirable and undesirable trees on steep sloped terrain ($30+\%$ slopes). Overstocking creates conditions conducive to wildfire movement across the landscape, and severe loss/damage of the forest stand. Shrub levels are high and significantly increase wildfire risk. Tree crowns are touching, trees retain limbs down to understory vegetation creating a 'ladder' for fire movement into the overstory, and understory vegetation (brush and grasses) create a significant fuel load to rate a high to severe fire hazard. Resource concerns are degraded plant condition - wildfire hazard, excess biomass accumulation \& undesirable productivity and health.

After Situation:

A fuel break is installed at the property line or at key locations to reduce the threat of crown fire spread. Size of fuel break is 4 acres, but can increase or decrease depending up the size of the tract; the width varies due to site conditions but should be no less than 66 feet. The trees are thinned with heavy equipment, such as a dozer, so open gaps are created in crown overstory. Branches on remaining trees are pruned to 8 to 10 feet in height, all woody residue (thinned trees and pruned branches) are treated (piled/burned or lopped/scattered) so little remains in the fuel break.

Feature Measure: Area of Treatment

Scenario Unit: Acres

Scenario Typical Size: 4.00
Scenario Total Cost: $\$ 3,158.30$
Scenario Cost/Unit: \$789.58

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total

Equipment Installation

Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160 . Equipment and power unit costs. Labor not included.	Hours	\$98.78	14	\$1,382.92
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	16	\$99.36
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	8	\$199.92
Pruning tools, hand tools	1318	Pruning tools, hand tools, shears, loppers, pole saw, handsaw. Material costs only. Labor not included.	Hours	\$2.31	16	\$36.96
Pruning tool, pole saw	1319	Gasoline powered pole chainsaw. Labor not included.	Hours	\$9.80	8	\$78.40
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	14	\$446.18
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	8	\$380.88
Materials						
Tree Marking Paint	313	Trees to be cut through tree marking are physically identified through the application of paint on the tree. Typically one quart of paint is used to mark one acre of trees. Includes materials and shipping only.	Acres	\$12.39	8	\$99.12

Practice: 383-Fuel Break
Scenario: \#3 - Masticator or brush cutter, flat terrain

Scenario Description:

A mechanical brush cutter, shreader, hydro-ax or similar piece of equipment is used to thin trees and brush for the purpose of opening the forest canopy and creating gaps in the crown of the overstory on $0-30 \%$ slopes, along a predetermined strip at the edge of forestland to be protected from wildfire. Branches on the remaining trees are pruned to 8-10 feet in height and all woody debris is piled/burned or lopped/scattered so that little woody fuel remains.

Before Situation:

A pine forest stand is overstocked with desirable and undesirable trees on relatively flat to moderately sloped terrain (0-30\% slopes). Overstocking creates conditions conducive to wildfire movement across the landscape, and severe loss/damage of the forest stand. Shrub levels are high and significantly increase wildfire risk. Tree crowns are touching, trees retain limbs down to understory vegetation creating a 'ladder' for fire movement into the overstory, and understory vegetation (brush and grasses) create a significant fuel load to rate a high to severe fire hazard. Resource concerns are degraded plant condition - wildfire hazard, excess biomass accumulation \& undesirable productivity and health.

After Situation:

A fuel break is installed at the property line or at key locations to reduce the threat of crown fire spread. Size of fuel break is 4 acres, but can increase or decrease depending up the size of the tract; the width varies due to site conditions but should be no less than 66 feet. The trees are thinned with a mechanical brush cutter, shreader, hydro-ax or similar piece of equipment so open gaps are created in crown overstory. Branches on remaining trees are pruned to 8 to 10 feet in height, all woody residue (thinned trees and pruned branches) are treated (piled/burned or lopped/scattered) so little remains in the fuel break.

Feature Measure: Area of Treatment

Scenario Unit: Acres
Scenario Typical Size: 4.00
Scenario Total Cost: \$3,009.68
Scenario Cost/Unit: \$752.42
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	8	\$199.92
Mechanical cutter, chopper	943	Forestry mulcher, flail shredder, hydro axe, brush cutter, etc. Equipment and power unit costs. Labor not included.	Hours	\$115.16	16	\$1,842.56
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	16	\$509.92
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44
Materials						
Tree Marking Paint	313	Trees to be cut through tree marking are physically identified through the application of paint on the tree. Typically one quart of paint is used to mark one acre of trees. Includes materials and shipping only.	Acres	\$12.39	4	\$49.56

Practice: 383-Fuel Break
Scenario: \#4 - Masticator or brush cutter, steep slopes

Scenario Description:

A mechanical brush cutter, shreader, hydro-ax or similar piece of equipment is used to thin trees and brush for the purpose of opening the forest canopy and creating gaps in the crown of the overstory on $>30 \%$ slopes, along a predetermined strip at the edge of forestland to be protected from wildfire. Branches on the remaining trees are pruned to 8-10 feet in height and all woody debris is piled/burned or lopped/scattered so that little woody fuel remains.

Before Situation:

A pine forest stand is overstocked with desirable and undesirable trees on steeply sloped terrain ($30+\%$ slopes). Overstocking creates conditions conducive to wildfire movement across the landscape, and severe loss/damage of the forest stand. Shrub levels are high and significantly increase wildfire risk. Tree crowns are touching, trees retain limbs down to understory vegetation creating a 'ladder' for fire movement into the overstory, and understory vegetation (brush and grasses) create a significant fuel load to rate a high to severe fire hazard. Resource concerns are degraded plant condition - wildfire hazard, excess biomass accumulation \& undesirable productivity and health.

After Situation:
A fuel break is installed at the property line or at key locations to reduce the threat of crown fire spread. Size of fuel break is 4 acres, but can increase or decrease depending up the size of the tract; the width varies due to site conditions but should be no less than 66 feet. The trees are thinned with a mechanical brush cutter, shreader, hydro-ax or similar piece of equipment so open gaps are created in crown overstory. Branches on remaining trees are pruned to 8 to 10 feet in height, all woody residue (thinned trees and pruned branches) are treated (piled/burned or lopped/scattered) so little remains in the fuel break.

Feature Measure: Area of Treatment

Scenario Unit: Acres
Scenario Typical Size: 4.00
Scenario Total Cost: \$3,837.80

Scenario Cost/Unit: \$959.45

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	8	\$199.92
Mechanical cutter, chopper	943	Forestry mulcher, flail shredder, hydro axe, brush cutter, etc. Equipment and power unit costs. Labor not included.	Hours	\$115.16	20	\$2,303.20
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	20	\$637.40
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	8	\$380.88
Materials						
Tree Marking Paint	313	Trees to be cut through tree marking are physically identified through the application of paint on the tree. Typically one quart of paint is used to mark one acre of trees. Includes materials and shipping only.	Acres	\$12.39	8	\$99.12

Practice: 383-Fuel Break
Scenario: \#5 - Hand Cutting

Scenario Description:

Hand tools will be used to thin trees and brush for the purpose of opening the forest canopy and creating gaps in the crown of the overstory, along a predetermined strip at the edge of forestland to be protected from wildfire. Branches on the remaining trees are pruned to 8-10 feet in height and all woody debris is piled/burned or lopped/scattered so that little woody fuel remains.

Before Situation:

A pine forest stand is overstocked with desirable and undesirable trees. Overstocking creates conditions conducive to wildfire movement across the landscape, and severe loss/damage of the forest stand. Tree crowns are touching, trees retain limbs down to understory vegetation creating a 'ladder' for fire movement into the overstory, and understory vegetation (brush and grasses) create a significant fuel load to rate a high to severe fire hazard. Resource concerns are degraded plant condition - wildfire hazard, excess biomass accumulation \& undesirable productivity and health.

After Situation:
A fuel break is installed at the property line or at key locations to reduce the threat of crown fire spread. Size of fuel break is 4 acres, but can increase or decrease depending up the size of the tract; the width varies due to site conditions but should be no less than 66 feet. The trees are thinned with hand cutting tools, so open gaps are created in crown overstory. Branches on remaining trees are pruned to 8 to 10 feet in height, all woody residue (thinned trees and pruned branches) are treated (piled/burned) so little remains in the fuel break.

Feature Measure: Area of Treatment
Scenario Unit: Acres
Scenario Typical Size: 4.00
Scenario Total Cost: \$1,486.68

Scenario Cost/Unit: \$371.67
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	24	\$149.04
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	8	\$199.92
Pruning tools, hand tools	1318	Pruning tools, hand tools, shears, loppers, pole saw, handsaw. Material costs only. Labor not included.	Hours	\$2.31	24	\$55.44

Labor

General Labor

Supervisor or Manager
Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.
involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.

Materials

the application of paint on the tree. Typically one quart of paint is used to mark one acre of trees. Includes materials and shipping only.

Practice: 383-Fuel Break
Scenario: \#6 - Non-forest areas

Scenario Description:

A mower/bushhog is used to reduce standing vegetation to a low height leaving the few trees or selected shrubs in place. A non forest fuel break occurs outside of forestlands where brush, grass and forbs dominate with an occassional tree or groups of trees.

Before Situation:
Herbaceous and semi-woody vegetation is tall, dense and continuous creating conditions conducive for fire movement across the landscape. There are no breaks in the vegetation to slow down a wildfire. Resource concerns are degraded plant condition - wildfire hazard, excess biomass accumulation \& undesirable productivity and health.

After Situation:

A fuel break is installed by shredding/mowing/bushhogging a defined width at property lines, around structures, at roadways, or other key locations to reduce continuity and height of vegetation cover. Width of fuel break varies based on site conditions but should be at least 66 feet wide and typically around 4 acres is treated on 40 acres of land.

Feature Measure: Area of Treatment

Scenario Unit: Acres
Scenario Typical Size: 4.00

Scenario Total Cost:	$\$ 566.28$
Scenario Cost/Unit:	$\$ 141.57$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Mower, Bush Hog	940	Equipment and power unit costs. Labor not included.	Hours	\$31.13	6	\$186.78
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	6	\$162.96
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	6	\$166.56

Practice: 384 - Woody Residue Treatment
Scenario: \#2 - Restoration/conservation treatment following catastrophic events

Scenario Description:

The use of a combination of hand (chainsaw) and heavy equipment similar to those used in logging to treat slash resulting from catastrophic events such as fire, wind, severe pest outbreak, ice storm, etc. This scenario will remove/treat the larger material the size of which is consistent with the large equipment used. Treatment material is either chipped or logged and cannot be sold for profit.

Before Situation

A large amount of slash and woody residue is created as a result of a non-silvicultural event such as a wind storm, wildfire, ice storm, pest outbreak, etc. Because the slash and residue is created by a catastrophic event that can cause tree-lodging, snags, broken tops, etc.; treatment is both difficult and dangerous. The presence of this material causes adverse effects on the forest include limiting access for management purposes, increasing the wildfire hazard, increasing the risk of potential harm to humans and livestock, and providing harboring sites for pests. Resource concerns include: excessive plant pest pressure, potential emissions of particulate matter, wildfire hazard from excessive biomass accumulation, and habitat degradation.

After Situation:

The material resulting from the catastrophic event is reduced to a level that will minimize the resource concerns.
Feature Measure: Acres of affected forest
Scenario Unit: Acres
Scenario Typical Size: 20.00
Scenario Total Cost: $\$ 10,313.38$

Scenario Cost/Unit: \$515.67

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	10	\$62.10
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	10	\$249.90
Log skidder	942	Equipment and power unit costs. Labor not included.	Hours	\$60.73	20	\$1,214.60
Mechanical cutter, chopper	943	Forestry mulcher, flail shredder, hydro axe, brush cutter, etc. Equipment and power unit costs. Labor not included.	Hours	\$115.16	40	\$4,606.40
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	40	\$1,086.40
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	40	\$1,274.80

Mobilization

Mobilization, large equipment
1140 Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or
Each
$\$ 909.59$
2
\$1,819.18

Practice: 384 - Woody Residue Treatment
Scenario: \#3-Woody residue/silvicultural slash treatment- light

Scenario Description:

Treating an area of forest slash to reduce hazardous fuels and the risk of insect and disease, improve organic matter and reduce erosion while improving water quality. Slash is treated with both hand (cutting, lopping, etc.) and mechanically (masticating, chipping, etc.). Typically done by hand and light equipment.

Before Situation:
Woody material resulting from a silvicultural practice such as pruning or a light thinning operation is causing both fire hazard and pest issues. Resource concerns include: wildfire hazard from excessive biomass accumulation and potential excessive plant pest pressure.

After Situation:

Fire and pest issues are reduced with woody material (slash) spread out and in contact with the ground.
Feature Measure: Acres treated
Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: \$9,386.00

Scenario Cost/Unit: \$234.65

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	80	\$496.80
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	40	\$999.60
Mechanical cutter, chopper	943	Forestry mulcher, flail shredder, hydro axe, brush cutter, etc. Equipment and power unit costs. Labor not included.	Hours	\$115.16	40	\$4,606.40
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	80	\$2,172.80
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	40	\$1,110.40

Practice: 384 - Woody Residue Treatment
Scenario: \#4-Chipping woody debris

Scenario Description:

Reducing woody waste created during forestry, agroforestry and horticultural activities by gathering and chipping to achieve management objectives. The chipped material cannot be transported from the property to a commercial facility or sold for wood products.

Before Situation:
Woody material resulting from a silvicultural practice such as pruning or a light thinning operation causes management issues including resource access, fire hazard and sites for harboring pests. Resource concerns include potential emissions of particulate matter, potential excessive plant pest pressure, and wildfire hazard from excessive biomass accumulation.

After Situation:
Fire and pest issues are reduced with woody material (slash) chipped and spread.

Feature Measure: Acres treated

Scenario Unit: Acres

Scenario Typical Size: 20.00

Scenario Total Cost: \$5,325.20
Scenario Cost/Unit: \$266.26

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	20	\$124.20
Brush Chipper, 6 in. capacity	938	Brush Chipper, 6 inch capacity, typically 35 HP. Includes chipper and power unit. Labor not included.	Hours	\$34.47	20	\$689.40
Log skidder	942	Equipment and power unit costs. Labor not included.	Hours	\$60.73	20	\$1,214.60
Truck, dump, 8 CY	1401	Dump truck for moving bulk material. Typically capacity is 12 ton or 8 cubic yards. Includes equipment only.	Hours	\$54.41	20	\$1,088.20
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	20	\$543.20
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	60	\$1,665.60

Practice: 384 - Woody Residue Treatment
Scenario: \#5 - Forest Slash Treatment - Med/Heavy

Scenario Description:

Treating an area of significant woody plant residues to reduce hazardous fuels and the risk of insect and disease, improve organic matter, decrease unwanted habitat, and reduce erosion while improving water quality. Slash is to be lopped/treated/crushed within a foot of the ground or moved off site to meet state fire hazard reduction standards. Typically heavy equipment are used such as masticators, mulchers, drum choppers, etc. Hand work with chainsaws are used on steep slopes.

Before Situation:

Heavy woody material (difficult to walk through) resulting from silvicultural/management operations caused both fire hazard, access, potential harm to humans and animals, and pest issues. Resource concerns include potential emission of particulate matter, wildfire hazard from excessive biomass accumulation, excessive plant pest pressure, and habitat degradation.

After Situation:
Fire, access, and pest issues are reduced with woody material (slash) spread out and in contact with the ground.
Feature Measure: Acres treated
Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: \$17,064.39

Scenario Cost/Unit: \$426.61
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	40	\$248.40
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	40	\$999.60
Mechanical cutter, chopper	943	Forestry mulcher, flail shredder, hydro axe, brush cutter, etc. Equipment and power unit costs. Labor not included.	Hours	\$115.16	40	\$4,606.40
Heavy mechanical site prep, drum chopping	1316	Mechanical operations that pushing trees and vegetation and crushing them with a water filled roller chopper. Requires heavy equipment such as dozers. Includes equipment, power unit and labor costs.	Acres	\$147.67	40	\$5,906.80
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	80	\$2,172.80
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	80	\$2,220.80
Mobilization						
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 384 - Woody Residue Treatment
Scenario: \#47-Consolidated Slash Pile
Scenario Description:
Treating the slash generated from a management activity to: Reduce hazardous fuels; Reduce the risk of insect and disease; Improve wildlife habitat. Slash is to be piled by mechanical methods. Piles will be in openings and away from nearby trees and/or shrubs so not to impact them if the piles are burned (burning to be contracted under practice 338-Prescribed Burning). If piles will be burned, slash will be burned when the conditions are safe for burning. Mechanical methods include a brush rake on a both heavy and light equipment. Resource concerns include: Potential emission of particulate matter; Wildfire hazard from excessive biomass accumulation; Excessive plant pest pressure; and Habitat degradation.

Before Situation:

Woody slash resulting from management activities such as (but not limited too) brush management, tree/shrub pruning or creating a fuel break are present on site. Lop and scatter, chipping or mastication of slash is not available or preferred for all residues created. Not treating slash would cause a fire hazard, access issue, potential harm to humans/animals, and pest issues.

After Situation:
Excessive biomass accumulation, limited access, and pest issues are reduced with slash piled and subsequently addressed through burning, chipping, or other methods. Additional benefits are improved wildlife habitat and reduced harm to humans/animals.

Feature Measure: Acres treated

Scenario Unit: Acres

Scenario Typical Size: 30.00
Scenario Total Cost: $\quad \$ 3,533.50$
Scenario Cost/Unit:

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Skidsteer, 80 HP	933	Skidsteer loader with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$56.04	30	\$1,681.20
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	30	\$956.10
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	3	\$142.83
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 386 - Field Border
Scenario: \#5 - Field Border, Native Species
Scenario Description:
A strip of permanent vegetation established at the edge or around the perimeter of an agricultural field. Practice includes seedbed prep and planting of organic seed for herbaceous species.

Before Situation:

Before practice conditions may vary widely. Fields may have erosion issues from wind or water, a field border may be needed to manage pest populations, protect soil and water quality, provide wildlife food and cover, provide pollinator habitat, or a field border may be used to increase carbon storage and improve air quality. Water quality, soil erosion and/or wildlife food and cover may all be primary resource concerns.

After Situation:

The 386 Implementation Requirements have been developed and applied for the site. This practice when applied around a field may support and connect other buffer practices while creating a buffer between organic systems and conventional cropping systems. Native grasses and legumes will be established in the field border to the extent needed to meet the resource needs and producer objectives. Minimum field border widths shall be based on NRCS local design criteria specific to the purpose for installing the practice. Species selected shall be adapted to the site, not function as a host for diseases of a field crop, and have physical characteristics necessary to control wind and water erosion to tolerable levels on the field border area.

Feature Measure: number of acres
Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$195.45

Scenario Cost/Unit: \$195.45
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	3	\$40.35
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13

Materials

Native Perennial Grasses, Low Density

2750 Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.

Practice: 386 - Field Border
Scenario: \#6 - Field Border, Introduced Species

Scenario Description:

A strip of permanent vegetation established at the edge or around the perimeter of an agricultural field. Practice includes seedbed prep and planting of introduced species.

Before Situation:

Before practice conditions may vary widely. Fields may have erosion issues from wind or water, a field border may be needed to manage pest populations, protect soil and water quality, provide wildlife food and cover, provide pollinator habitat, or a field border may be used to increase carbon storage and improve air quality. Water quality, soil erosion and/or wildlife food and cover may all be primary resource concerns.

After Situation:

The 386 Implementation Requirements have been developed and applied for the site. This practice when applied around a field may support and connect other buffer practices within and between fields. Introduced grasses and legumes will be established in the field border to the extent needed to meet the resource needs and producer objectives. Minimum field border widths shall be based on NRCS local design criteria specific to the purpose for installing the practice. Species selected shall be adapted to site, will not function as a host for diseases of a field crop, and have physical characteristics necessary to control wind and water erosion to tolerable levels on the field border area.

Feature Measure: Number of acres
Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$119.04
Scenario Cost/Unit: \$119.04
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	1	\$13.45
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13
Materials						
Nitrogen (N), Urea	71	Price per pound of N supplied by Urea. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.65	30	\$19.50
Phosphorus, P2O5	73	Price per pound of P 2 O 5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	20	\$18.20
Introduced Perennial Grasses, Legumes and/or Forbs, Low Density	2747	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$47.76	1	\$47.76

Practice: 386 - Field Border
Scenario: \#7 - Field Border, Pollinator

Scenario Description:

A strip of permanent vegetation established at the edge or around the perimeter of a field. This practice may also apply to recreation land or other land uses where agronomic crops including forages are grown. Practice includes seedbed prep and planting of pollinator friendly species.

Before Situation:

Before practice conditions may vary widely. Fields may have erosion issues from wind or water, a field border may be needed to manage pest populations, protect soil and water quality, provide wildlife food and cover, provide pollinator habitat, or a field border may be used to increase carbon storage and improve air quality. Water quality soil erosion and/or wildlife food and cover may all be primary resource concerns.

After Situation:

The 386 Implementation Requirements have been developed and applied for the site. This practice when applied around a field may support and connect other buffer practices within and between fields. Pollinator herbaceous plantings will provide species which flower throughout the growing season. This provides a source of nectar for adult pollinators and a diversity of herbaceous material for immature pollinator life stages and for nesting. Minimum field border widths shall be based on NRCS local design criteria specific to the purpose for installing the practice. Species selected shall be adapted to site, will not function as a host for diseases of a field crop, and have physical characteristics necessary to control wind and water erosion to tolerable levels on the field border area.

Feature Measure: Number of acres

Scenario Unit: Acres

Scenario Typical Size: 1.00
Scenario Total Cost: \$530.29
Scenario Cost/Unit: \$530.29

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	3	\$40.35
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13

Materials

Native Perennial Grasses, Legumes and/or Forb Mix for Targeted Wildlife/Pollinator Habitat or Ecological Restoration, moderate commercial availability

2619 Diverse mix of native perennial grasses, legumes and forbs, less than 50% grasses, may include biennials and a small percentage of annual species for establishment purposes and/or if allowed by the CPS. This is a mix composed of species required to meet specific wildlife/pollinator habitat or ecological requirements. Seed is moderately easy to purchase commercially. Includes materials and shipping.

Practice: 386 - Field Border
Scenario: \#12-PIA - Field Border

Scenario Description:

A strip of permanent vegetation established at the edge or around the perimeter of an agricultural field. Practice includes seedbed prep and planting of native species. The area of the field border is taken out of production.

Before Situation:
Before practice conditions may vary widely. Fields may have erosion issues from wind or water, a field border may be needed to manage pest populations, protect soil and water quality, provide wildlife food and cover, provide pollinator habitat, or a field border may be used to increase carbon storage and improve air quality. Water quality, soil erosion and/or wildlife food and cover may all be primary resource concerns.

After Situation:
The 386 Implementation Requirements have been developed and applied for the site. This practice when applied around a field may support and connect other buffer practices within and between fields. Native grasses, legumes and forbs will be established in the field border to the extent needed to meet the resource needs and producer objectives. Minimum field border widths shall be based on NRCS local design criteria specific to the purpose for installing the practice. Native species shall be selected that do not function as a host for diseases of a field crop and have physical characteristics necessary to control wind and water erosion to tolerable levels on the field border area.

Feature Measure: acres planted
Scenario Unit: Acres
Scenario Typical Size: 0.10
Scenario Total Cost: \$100.13

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	0.1	\$1.35
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	0.1	\$0.66
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	3	\$81.48
Materials						
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	0.1	\$1.27
Native and Introduced Perennial Grasses, Legumes and/or Forbs, Medium Density	2756	A mix of native and introduced perennial grasses, legumes, and/or forbs, grasses typically greater than 50% of the mix, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at medium to high density (41-60 pure live seeds/sq ft). Includes material and shipping.	Acres	\$153.79	0.1	\$15.38
Mobilization						
Mobilization, Pacific Island	2679	Mobilization cost of materials for sea or air freight services between	Pound	\$0.00	5	\$0.00

Practice: 386 - Field Border
Scenario: \#25-Field Border, Native Species, Forgone Income
Scenario Description:
A strip of permanent vegetation established at the edge or around the perimeter of an agricultural field. Practice includes seedbed prep and planting of native species. The area of the field border is taken out of production.

Before Situation:
Before practice conditions may vary widely. Fields may have erosion issues from wind or water, a field border may be needed to manage pest populations, protect soil and water quality, provide wildlife food and cover, provide pollinator habitat, or a field border may be used to increase carbon storage and improve air quality. Water quality, soil erosion and/or wildlife food and cover may all be primary resource concerns.

After Situation:
The 386 Implementation Requirements have been developed and applied for the site. This practice when applied around a field may support and connect other buffer practices within and between fields. Native grasses, legumes and forbs will be established in the field borders to the extent needed to meet the resource needs and producer objectives. Minimum field border widths shall be based on NRCS local design criteria specific to the purpose for installing the practice. Native species shall be selected that do not function as a host for diseases of a field crop and have physical characteristics necessary to control wind and water erosion to tolerable levels on the field border area.

Feature Measure: number of acres

Scenario Unit: Acres

Scenario Typical Size: 1.00

Scenario Total Cost: \$435.26

Scenario Cost/Unit: \$435.26
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	3	\$40.35
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13

Foregone Income

FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67
FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	Acres	$\$ 251.94$

Materials

Native Perennial Grasses, Low Density

2750 Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.

Practice: 386 - Field Border
Scenario: \#26 - Field Border, Introduced Species, Forgone Income

Scenario Description:

A strip of permanent vegetation established at the edge or around the perimeter of an agricultural field. Practice includes seedbed prep and planting of introduced species. The area of the field border is taken out of production.

Before Situation:

Before practice conditions may vary widely. Fields may have erosion issues from wind or water, a field border may be needed to manage pest populations, protect soil and water quality, provide wildlife food and cover, provide pollinator habitat, or a field border may be used to increase carbon storage and improve air quality. Water quality, soil erosion and/or wildlife food and cover may all be primary resource concerns.

After Situation:

The 386 Implementation Requirements have been developed and applied for the site. This practice when applied around a field may support and connect other buffer practices within and between fields. Introduced grasses and legumes will be established for the field border to the extent needed to meet the resource needs and producer objectives. Minimum field border widths shall be based on NRCS local design criteria specific to the purpose for installing the practice. Introduced species of grasses, legumes, forbs or shrubs shall be selected that are adapted to site, will not function as a host for diseases of a field crop and have physical characteristics necessary to control wind and water erosion to tolerable levels on the field border area.

Feature Measure: Number of acres

Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$358.85
Scenario Cost/Unit: \$358.85

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	1	\$13.45
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	0.5	\$113.84
FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	Acres	\$251.94	0.5	\$125.97

Materials

Nitrogen (N), Urea	71	Price per pound of N supplied by Urea. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.65	30	\$19.50
Phosphorus, P2O5	73	Price per pound of P2O5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	20	\$18.20
Introduced Perennial Grasses, Legumes and/or Forbs, Low Density	2747	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$47.76	1	\$47.76

Practice: 386 - Field Border
Scenario: \#27-Field Border, Pollinator, Forgone Income

Scenario Description:

A strip of permanent vegetation established at the edge or around the perimeter of an agricultural field. Practice includes seedbed prep and planting of pollinator friendly herbaceous species. The area of the field border is taken out of production.

Before Situation

Before practice conditions may vary widely. Fields may have erosion issues from wind or water, a field border may be needed to manage pest populations, protect soil and water quality, provide wildlife food and cover, provide pollinator habitat, or a field border may be used to increase carbon storage and improve air quality. Water quality, soil erosion and/or wildlife food and cover may all be primary resource concerns.

After Situation:

The 386 Implementation Requirements have been developed and applied for the site. This practice when applied around a field may support and connect other buffer practices within and between fields. Pollinator herbaceous plantings will provide species which flower throughout the growing season. This provides a source of nectar for adult pollinators and a diversity of herbaceous material for immature pollinator life stages and for nesting. Minimum field border widths shall be based on NRCS local design criteria specific to the purpose for installing the practice. Species selected shall meet the pollinator habitat requirements of the state and be adapted to site; not function as a host for diseases of a field crop and; have physical characteristics necessary to control wind and water erosion to tolerable levels on the field border area.

Feature Measure: Number of acres

Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$770.10
Scenario Cost/Unit: \$770.10

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	3	\$40.35
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13

Foregone Income

FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67
FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	\$113.84	
			Acres	$\$ 251.94$

Materials

Native Perennial Grasses, Legumes and/or Forb Mix for Targeted Wildlife/Pollinator Habitat or Ecological Restoration, moderate commercial availability

2619 Diverse mix of native perennial grasses, legumes and forbs, less than 50% grasses, may include biennials and a small percentage of annual species for establishment purposes and/or if allowed by the CPS. This is a mix composed of species required to meet specific wildlife/pollinator habitat or ecological requirements. Seed is moderately easy to purchase commercially. Includes materials and shipping.

Practice: 386 - Field Border
Scenario: \#61-CB/VI - Field Border

Scenario Description:

A strip of permanent vegetation established at the edge or around the perimeter of an agricultural field. Practice includes seedbed prep and planting of native species. The area of the field border is taken out of production.

Before Situation:

Before practice conditions may vary widely. Fields may have erosion issues from wind or water, a field border may be needed to manage pest populations, protect soil and water quality, provide wildlife food and cover, provide pollinator habitat, or a field border may be used to increase carbon storage and improve air quality. Water quality, soil erosion and/or wildlife food and cover may all be primary resource concerns.

After Situation:
The 386 Implementation Requirements have been developed and applied for the site. This practice when applied around a field may support and connect other buffer practices within and between fields. Native grasses, legumes and forbs will be established in the field border to the extent needed to meet the resource needs and producer objectives. Minimum field border widths shall be based on NRCS local design criteria specific to the purpose for installing the practice. Native species shall be selected that do not function as a host for diseases of a field crop and have physical characteristics necessary to control wind and water erosion to tolerable levels on the field border area.

Feature Measure: Acres planted
Scenario Unit: Acres
Scenario Typical Size: 0.10
Scenario Total Cost: \$100.13

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	0.1	\$1.35
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	0.1	\$0.66
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	3	\$81.48
Materials						
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	0.1	\$1.27
Native and Introduced Perennial Grasses, Legumes and/or Forbs, Medium Density	2756	A mix of native and introduced perennial grasses, legumes, and/or forbs, grasses typically greater than 50% of the mix, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at medium to high density (41-60 pure live seeds/sq ft). Includes material and shipping.	Acres	\$153.79	0.1	\$15.38
Mobilization						
Mobilization, Pacific Island	2679	Mobilization cost of materials for sea or air freight services between	Pound	\$0.00	5	\$0.00

Practice: 386 - Field Border
Scenario: \#82-Small Scale Field Border

Scenario Description:

A strip of permanent vegetation established at the edge or around the perimeter of an agricultural field. Practice includes seedbed prep and planting of introduced plant species.

Before Situation:

Before practice conditions may vary based on farm size and location. Fields may have erosion by wind or water. Site provides little wildlife food or cover or pollinator habitat. Site soil organic matter is depleting. Particulate matter as dust is generated by field activity.

After Situation:

The 386 Implementation Requirements have been developed and applied for the site. Field border widths are based on NRCS local design criteria specific to the purpose for installing the practices. Species selected shall be adapted to site and not host disease or pests of the adjacent field crop. Species have physical characteristics necessary to control wind and water erosion to tolerable levels on the field border area.

Feature Measure: planted area
Scenario Unit: 1,000 Square Foot
Scenario Typical Size: 2.00
Scenario Total Cost: \$157.86
Scenario Cost/Unit: \$78.93
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	0.05	\$0.67
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	0.05	\$1.01
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	5	\$135.80
Materials						
Nitrogen (N), Urea	71	Price per pound of N supplied by Urea. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.65	10	\$6.50
Phosphorus, P2O5	73	Price per pound of P2O5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	10	\$9.10
Introduced Perennial Grasses, Legumes and/or Forbs, Low Density	2747	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$47.76	0.1	\$4.78

Practice: 388 - Irrigation Field Ditch

Scenario: \#13-Irrigation Field Ditch

Scenario Description:

This scenario is the construction of an Irrigation Field Ditch. Typical construction dimensions are 2^{\prime} wide bottom x 2' deep x 1320' length with a side slope of 2:1.

Resource concerns: Excess/Insufficient Water - Inefficient Use of Irrigation Water Associated Conservation Practices: 320-Irrigation Canal or Lateral; 443-Irrigation System, Surface or Subsurface Water; 533-Pumping Plant; 430-Irrigation Pipeline.

Before Situation:
Water supply for an area is inadequate for crop production and irrigation water application is inefficient.
After Situation:
An earthen canal that has adequate capacity to convey sufficient irrigation water to meet the demands of the system and make irrigation practical for the crops being grown.

Feature Measure: Volume of earth excavated
Scenario Unit: Cubic Yards
Scenario Typical Size: 587.00
Scenario Total Cost: \$1,949.02
Scenario Cost/Unit: \$3.32
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	587	\$1,350.10
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	2	\$598.92

Practice: 390-Riparian Herbaceous Cover

Scenario: \#1-Aquatic Wildlife

Scenario Description:

Addresses inadequate herbaceous plant community function or diversity within riparian habitats in rangeland, pasture, cropland, and forest where natural seeding methods and/or management is unlikely to improve the plant community. The typical setting for this scenario is usually a narrow strip between the aquatic and terrestrial habitats subject to intermittant flooding and saturated soils where the exising plant community has been disturbed, destroyed, or the species diversity is unable to provide adequate habitat. Plant an adapted mix of grasses, sedges, rushes, ferns, legumes, and/or forbs tolerant to the site conditions. The typical scenario involves the hand planting of plugs. Where chemical control of undesirable vegetation, including invasives, is required to reduce competition for the desired plant community the Herbaceous Weed Control (315) practice should be used. Seedbed preparation may require disking.

Before Situation:
Riparian zone vegetation is currently an undesirable or inadequate stand of perennial or annual vegetation. Natural re-seeding or vegetation management is unlikely to improve the plant community within a reasonable amount of time. Existing vegetation does not provide adequate food, cover, and/or connectivity for riparian wildlife. Riparian vegetation has been compromised to the extent that the riparian area and floodplain are not functioning to provide the necessary stream and riparian habitat components. Existing conditions require suppression or eradication of current vegetation by conventional mechanical or chemical (Herbaceous Weed Control (315)) methods to ensure establishment success of the new planting. Soil quality may have been impaired to the point that light tillage is necessary to prepare a proper seedbed.

After Situation:

Area is planted to state standards, specifications, and job sheet. The riparian zone is established to an adapted, diverse vegetative plant community and is manageed to insure long-term survival and practice success. The quality and quantity of the riparian zone components are managed to support the species that depend on it for habitat as well as the functions it performs for stabilizing the streambank and/or shoreline, dissipating stream energy and trapping sediment, and improving and/or maintaining water quality. These functions include: stream temperature moderation through shading, recruitment of non-woody organic matter, habitat for terrestrial insects and other riparian dependent species, streambank integrity, and filtration of contaminants from surface run-off into the stream.

Feature Measure: Acres of Riparian Zone
Scenario Unit: Acres
Scenario Typical Size: 0.50
Scenario Total Cost: \$492.00
Scenario Cost/Unit: \$984.00
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	12.5	\$339.50
Materials						
Native Aquatic Plants, Emergent or Submerged	2336	Native aquatic emergent or submerged. All required materials for establishing vegetation. Includes material and shipping.	Each	\$1.22	125	\$152.50

Practice: 390 - Riparian Herbaceous Cover
Scenario: \#2-Grass, cool or warm season

Scenario Description:

Addresses inadequate herbaceous plant community function or diversity within the specific transitional zone between terrestrial and aquatic habitats in rangeland, pasture, cropland, and forest where natural seeding methods and/or management is unlikely to improve the plant community within a reasonable time period. The typical setting for this scenario is usually a narrow strip between the aquatic and terrestrial habitats subject to intermittant flooding and saturated soils where the exising plant community has been disturbed, destroyed, or the species diversity is unable to provide proper function and/or adequate habitat. An adapted mix of native warm or cool season grasses tolerant to the site conditions will be planted by broadcast and/or drill seeding methods. Where chemical or mechanical control of undesirable vegetation, including invasives, is required to reduce competition for the desired plant community the Herbaceous Weed Control (315) practice should be used. Seedbed preparation may require disking.

Before Situation:

The riparian zone is currently an undesirable or inadequate stand of perennial or annual vegetation. Natural reseeding or vegetation management is unlikely to improve the plant community within a reasonable amount of time to adequately address streambank stability, dissipate energy and trap sediment, improve and/or maintain water quality, and/or provide adequate habitat corridors, food and cover for fish, wildlife, and/or livestock resource conerns. Existing conditions often require suppression or eradication of current vegetation by conventional mechanical or chemical (Herbaceous Weed Control (315)) methods to ensure establishment success of the new planting.

After Situation:
The riparian zone is established to an adapted, native warm or cool season grass community and is managed to insure long-term survival and practice success. The quality and quantity of the riparian zone components are managed to support the species that depend on it for habitat as well as the functions it performs for stabilizing the streambank and/or shoreline, dissipating stream energy and trapping sediment, and improving and/or maintaining water quality. These functions include: stream temperature moderation through shading, recruitment of non-woody organic matter, habitat for terrestrial insects and other riparian dependent species, streambank integrity, and filtration of contaminants from surface run-off into the stream.

Feature Measure: Area of riparian zone
Scenario Unit: Acres
Scenario Typical Size: 0.50
Scenario Total Cost: \$44.05
Scenario Cost/Unit: \$88.10

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	0.5	\$6.73
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	0.5	\$10.07
Materials						
Native Perennial Grasses, Legumes and/or Forbs, Medium Density	2754	A mix of native perennial grasses, legumes, and/or forbs, Grasses typically greater than 50% of the mix, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at medium to higher density (41-60 pure live seeds/sq ft). Species typically easy to purchase. Includes material and shipping.	Acres	\$272.59	0.1	\$27.26

Practice: 390-Riparian Herbaceous Cover
Scenario: \#3-Pollinator habitat

Scenario Description:

Addresses inadequate pollinator habitat function or diversity within riparian habitat in rangeland, pasture, cropland, and forest where natural seeding methods and/or management is unlikely to improve the plant community within a reasonable time period. These are areas adjacent to perennial and intermittent watercourses or water bodies where the natural plant community is dominated by herbaceous vegetation tolerant of periodic flooding or saturated soils. The typical setting for this scenario is where the exising plant community has been disturbed, destroyed, or the species diversity is unable to provide proper function and/or adequate habitat. Establish by broadcast and/or no-till or range drill seeding methods. Where chemical control of undesirable vegetation, including invasives, is required to reduce competition for the desired plant community the Herbaceous Weed Control (315) practice should be used. Seedbed preparation may require LIGHT TILLAGE (disking).

Before Situation:
Currently, the riparian zone is an undesirable or inadequate stand of perennial or annual vegetation and natural reseeding or vegetation management is unlikely to improve the plant community within a reasonable amount of time to provide adequate habitat for pollinators. Existing conditions often require suppression or eradication of current vegetation by conventional mechanical or chemical (Herbaceous Weed Control (315)) methods to ensure establishment success of the new planting. Soil quality may be reduced due to compaction and may require light tillage to prepare a proper seedbed.

After Situation:
The riparian zone is established to an adapted, herbaceous community and is managed to insure long-term survival and practice success. The riparian zone components are managed to support pollinator habitat as well as the functions it performs. These functions include: stream temperature moderation through shading, recruitment of non-woody organic matter, habitat for terrestrial insects and other riparian dependent species, streambank integrity, and filtration of contaminants from surface run-off into the stream.

Feature Measure: Area of riparian zone
Scenario Unit: Acres
Scenario Typical Size: 0.50
Scenario Total Cost: \$57.68
Scenario Cost/Unit: \$115.36
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	0.5	\$6.73
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	0.5	\$10.07
Materials						
Native Perennial Grasses, Legumes and/or Forbs, Medium Density	2754	A mix of native perennial grasses, legumes, and/or forbs, Grasses typically greater than 50% of the mix, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at medium to higher density (41-60 pure live seeds/sq ft). Species typically easy to purchase. Includes material and shipping.	Acres	\$272.59	0.15	\$40.89

Practice: 390-Riparian Herbaceous Cover
Scenario: \#64 - Wildlife habitat, foregone income

Scenario Description:

Within riparian areas, addresses inadequate plant community function or diversity where natural regeneration and/or management is unlikely to result in a plant community providing or improving food and cover for the targeted wildlife species or habitat corridor. Typically, the setting is a strip, between aquatic and upland ecosystems, subject to flooding and/or saturated soils where the plant community has been disturbed, destroyed, or species diversity is unable to provide adequate habitat. Riparian areas are found along natural or man-made watercourses or -bodies and include perennial/intermittent/ephemeral streams and rivers, fresh- or salt-water natural lakes/depression/playas, canals, ponds, and reservoirs.Plant a mix of grasses, sedges, rushes, ferns, legumes, and/or forbs adapted to site conditions. Planting may involve hand planting and disking. Avoid the riparian area???s use for equipment movement or access. Herbaceous Weed Control (315) should be used where chemical control of vegetation is necessary. Pesticides should be labeled for aquatic applications.

Before Situation:

Riparian area vegetation is currently an undesirable or inadequate community of perennial or annual vegetation. Within a reasonable amount of time, natural regeneration or management is unlikely to improve the plant community. For wildlife, existing vegetation does not provide adequate food, cover, and/or connectivity. Riparian vegetation has been compromised such that the riparian area is not functioning to provide the necessary stream and riparian habitat components. To ensure establishment of the new planting, suppression or eradication of the current vegetation is required. Light tillage may be necessary to prepare a proper seedbed.

After Situation

The riparian area has been planted according to a conservation plan developed using state conservation practices standards. The riparian area is established to an adapted, diverse plant community and is managed to insure its long-term sustainability and success. The quality and quantity of the riparian area components are managed to support the targeted wildlife species. Native herbaceous vegetation established in the riparian area are adapted to the site based on its pertinent Ecological Site Description (ESD). Selected species are perennials adapted to site-hydrologic conditions and provide structural-functional diversity preferred by targeted species. Selected native species do not function as a host for field crop diseases.Riparian vegetation is protected by reducing or excluding haying and grazing until the desired plant community is established. Grazing is deferred for a minimum of two years or until the desired plant community is established.Density of the established vegetative stand is managed for the targeted wildlife-habitat requirements. Mowing necessary to maintain the herbaceous cover occurs outside nesting and fawning seasons. Following mowing, adequate re-growth for winter cover is allowed. Habitat diversity and linkages, daily and seasonal habitat ranges, limiting factors and native plant communities are considered in the management plan.

Feature Measure: acres of riparian area
Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 1,719.07$
Scenario Cost/Unit: \$1,719.07

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tractor, agricultural, 60 HP	963	Agricultural tractor with horsepower range of 50 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$35.80	8	\$286.40
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	0.5	\$113.84
FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	Acres	\$251.94	0.5	\$125.97
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	8	\$380.88
Materials						
Native Aquatic Plants, Emergent or Submerged	2336	Native aquatic emergent or submerged. All required materials for establishing vegetation. Includes material and shipping.	Each	\$1.22	242	\$295.24
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: 390-Riparian Herbaceous Cover
Scenario: \#65-Pollinator habitat; foregone income.

Scenario Description:

Within riparian areas, addresses inadequate plant community function or diversity where natural regeneration and/or management is unlikely to result in a plant community enhancing pollen, nectar, or nesting habitat for pollinators. Typically, the setting is a strip, between aquatic and upland eco-systems, subject to flooding and/or saturated soils where the plant community has been disturbed, destroyed, or species diversity is unable to provide adequate functions. Riparian areas are found along natural or man-made water-courses or -bodies and include perennial/intermittent/ephemeral streams and rivers, fresh- or salt-water natural lakes/depression/playas, canals, ponds, and reservoirs.Plant a mix of grasses, grass-like, e.g., sedge, rush, etc., fern, legume, and/or forb species. The species mix should contain $=50 \%$, but $<100 \%$, legume and/or forb species. All species should be adapted to site conditions. Selected species should have a wetland indicator status of facultative (F), facultative wetland (FW), or obligate (OBL). Planting shall be by broadcast and/or drill seeding. Herbaceous Weed Control (315) should be used where chemical control of vegetation is necessary. Pesticides should be labeled for aquatic applications. Following planting, avoid the riparian area???s use for equipment movement or access.

Before Situation:

Riparian area vegetation is currently an undesirable or inadequate community of perennial or annual vegetation. Within a reasonable amount of time, natural regeneration or management is unlikely to improve the plant community. Riparian vegetation has been compromised such that the riparian area is not functioning to provide the necessary pollinator habitat. To ensure establishment of the new planting, suppression or eradication of the current vegetation is required. Light tillage may be necessary to prepare a proper seedbed.

After Situation:
The riparian area has been planted according to a conservation plan developed using state conservation practices standards. The riparian area is established to an adapted, diverse plant community and is managed to insure its long-term sustainability and success. The quality and quantity of the riparian area components are managed to resolve the identified pollinator habitat deficiencies. Treatments are suitable or appropriate to ecological site dynamics.

Feature Measure: acres of riparian area
Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$828.65

Scenario Cost/Unit: \$828.65
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	0.5	\$6.73
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	0.5	\$10.07
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	0.5	\$113.84
FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	Acres	\$251.94	0.5	\$125.97

Materials

Native Perennial Grasses, Legumes and/or Forbs, Medium Density

2754 A mix of native perennial grasses, legumes, and/or forbs, Grasses typically greater than 50% of the mix, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at medium to higher density (41-60 pure live seeds/sq ft). Species typically easy to purchase. Includes material and shipping.

Mobilization

Mobilization, small equipment
1138 Equipment < 70 HP but can't be transported by a pick-up truck or with
Each
\$299.46
1
$\$ 299.46$

Practice: 390-Riparian Herbaceous Cover
Scenario: \#66-Grass, cool or warm season; foregone income.

Scenario Description:

Within riparian areas, addresses inadequate plant community function or diversity where natural regeneration and/or management is unlikely to result in a plant community improving and maintaining water quality or floodplain water storage and/or trapping sediment by dissipating stream energy. Typically, the setting is a strip, between aquatic and upland eco-systems, subject to flooding and/or saturated soils where the plant community has been disturbed, destroyed, or species diversity is unable to provide adequate functions. Riparian areas are found along natural or man-made water-courses or -bodies and include perennial/intermittent/ephemeral streams and rivers, fresh- or salt-water natural lakes/depression/playas, canals, ponds, and reservoirs.Plant a mix of at least 50 percent grass species plus sedge, rush, fern, legume, and/or forb species. All species should be adapted to site conditions. Selected species should have a wetland indicator status of facultative (F), facultative wetland (FW), or obligate (OBL). Planting shall be by broadcast and/or drill seeding. Herbaceous Weed Control (315) should be used where chemical control of vegetation is necessary. Pesticides should be labeled for aquatic applications. Following planting, avoid the riparian area???s use for equipment movement or access.

Before Situation:

Riparian area vegetation is currently an undesirable or inadequate community of perennial or annual vegetation. Within a reasonable amount of time, natural regeneration or management is unlikely to improve the plant community. Riparian vegetation has been compromised such that the riparian area is not functioning to provide the necessary water quality improvement. To ensure establishment of the new planting, suppression or eradication of the current vegetation is required. Light tillage may be necessary to prepare a proper seedbed.

After Situation:

The riparian area has been planted according to a conservation plan developed using state conservation practices standards. The riparian area is established to an adapted, diverse plant community and is managed to insure its long-term sustainability and success. The quality and quantity of the riparian area components are managed to resolve the identified water-quality resource concerns. Native herbaceous vegetation established in the riparian area are adapted to the site based on its pertinent Ecological Site Description (ESD). Selected species:???Perennials adapted to site-hydrologic conditions.???Do not function as a host for field crop diseases.???Stiff stems and high stem density to reduce water velocities and facilitate infiltration.Riparian vegetation is protected by reducing or excluding haying and grazing until the desired plant community is established. Grazing is deferred for a minimum of two years or until the desired plant community is established. Mowing or haying necessary to maintain the herbaceous cover occurs outside nesting and fawning seasons. The riparian area???s width is at least 2.5 times stream width (horizontal distance between bank-full elevations) or 35 feet for water bodies. Prior to establishing the riparian herbaceous cover, concentrated-flow erosion or mass soil movement is controlled in the up-gradient area.

Feature Measure: acres of riparian area

Scenario Unit: Acres

Scenario Typical Size: 1.00
Scenario Total Cost: \$828.65

Scenario Cost/Unit: \$828.65

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	0.5	\$6.73
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	0.5	\$10.07
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	0.5	\$113.84
FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	Acres	\$251.94	0.5	\$125.97
Materials						
Native Perennial Grasses, Legumes and/or Forbs, Medium Density	2754	A mix of native perennial grasses, legumes, and/or forbs, Grasses typically greater than 50% of the mix, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at medium to higher density (41-60 pure live seeds/sq ft). Species typically easy to purchase. Includes material and shipping.	Acres	\$272.59	1	\$272.59
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: 391-Riparian Forest Buffer
Scenario: \#1 - Plant using Direct Seeding, Per Acre

Scenario Description:

In order to establish a buffer of trees that restores a riparian plant community along with associated benefits, using a mechanical nut planter to direct seed acorns and nuts. The buffer will be located adjacent to and up-gradient from a watercourse or water body and extend a minimum of 50 feet wide. The planting rate will not exceed 1,500 seed (acorns or nuts) per acre. Species seeded shall be adapted to the site's conditions.

Before Situation:

A former riparian forest habitat has been used for ag commodity production. Active bank erosion is depositing sediment, nutrients, and organics in the riparian area. Water temperature is high due to lack of shade. Habitat is not desirable for wildlife. The need for a riparian forest buffer is indicated in a conservation, water quality, or forest management plan. Resource concerns to be addressed are soil erosion - excessive bank erosion; water quality - excess sediment and organics in surface waters and elevated temperature; degraded plant condition - inadequate structure and composition; and inadequate habitat for fish and wildlife - habitat degradation.

After Situation:

As per the plan, a buffer of trees providing filtration, shade, and desirable habitat will be established by direct seeding at a rate that does not exceed 1,500 seed per acre.
Feature Measure: Area of planting

Scenario Unit: Acres
Scenario Typical Size: 10.00

Scenario Total Cost:	$\$ 3,246.65$
Scenario Cost/Unit:	$\$ 324.67$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	8	\$199.92
Tractor, agricultural, 60 HP	963	Agricultural tractor with horsepower range of 50 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$35.80	8	\$286.40
Labor						
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	8	\$222.08
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	8	\$380.88
Materials						
Trees and shrubs, seed	1871	Tree or shrub seed, e.g., acorns, to establish trees. Includes materials and shipping only.	Pound	\$9.36	150	\$1,404.00
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 391-Riparian Forest Buffer
Scenario: \#2 - Plant using cuttings, Per Acre

Scenario Description:

Establish a buffer of trees using cuttings into a suitably prepared site to restore riparian plant communities and associated benefits. The planting will consist of tree and/or shrub poles and live stakes (whips) planted by hand. Cuttings should be planted at a minimum of 250 per acre. The buffer will be located adjacent to and upgradient from a watercourse or water body extending a minimum of 50 feet wide. The cuttings will be planted to most effectively enhance the riparian area and protect the streambank while the cuttings are still dormant. Species planted shall be adapted to the site's conditions.

Before Situation:
A former riparian forest habitat has been used forag commodity production. Active bank erosion is depositing sediment, nutrients and organics in the riparian area. Water temperature is high due to lack of shade. Habitat is not desirable for wildlife. The need for a riparian forest buffer are indicated in a conservation plan, water quality management plan, forest management plan or other document. Resource concerns to be addressed are soil erosion - excessive bank erosion; water quality excess sediment and organics in surface waters and elevated temperature; degraded plant condition - inadequate structure and composition; and inadequate habitat for fish and wildlife - habitat degradation.

After Situation:

A buffer of trees and shrubs will be established by planting poles or stakes using the species, spacing and location shown in the plan or technical note along a riparian corridor to provide filtration, shade, and desirable habitat to address the above mentioned resource concerns.

Feature Measure: Area of planting
Scenario Unit: Acres
Scenario Typical Size: 3.00
Scenario Total Cost: \$1,691.17

Scenario Cost/Unit: \$563.72
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	1	\$24.99
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	4	\$50.04
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	4	\$108.64

Materials

Tree \& Shrub, Woody, Cuttings, Medium

1308 Woody cuttings, live stakes or whips typically $1 / 4$ to 1 inch diameter and 24 to 48 inches long. Includes materials and shipping only.

Practice: 391-Riparian Forest Buffer
Scenario: \#3 - Planting Bareroot Hardwood Seedlings, Per Plant
Scenario Description:
Establishing a buffer of trees by hand planting bare-root shrub and tree seedlings. Trees and shrubs will be selected based on soils and site conditions and target 400 trees per acre on approximately a $10^{\prime} \times 10^{\prime}$ spacing. The buffer will be located adjacent to and up-gradient from a watercourse or water body extending a minimum of 50 feet wide.

Before Situation:
A former riparian forest habitat has been used for ag commodity production. Active bank erosion is depositing sediment, nutrients and organics in the riparian area. Water temperature is high due to lack of shade. Habitat is not desirable for wildlife. The need for a riparian forest buffer are indicated in a conservation plan, water quality management plan, forest management plan or other document. Resource concerns to be addressed are soil erosion - excessive bank erosion; water quality excess sediment and organics in surface waters and elevated temperature; degraded plant condition - inadequate structure and composition; and inadequate habitat for fish and wildlife - habitat degradation.

After Situation:
A buffer of trees and shrubs will be established by hand planting bare root seedlings using the species, spacing and location shown in the plan or technical note along a riparian corridor to provide stability, filtration, shade, and desirable habitat to address the above mentioned resource concerns.

Feature Measure: Area of Treatment

Scenario Unit: Each

Scenario Typical Size: 800.00
Scenario Total Cost: \$1,095.34

Scenario Cost/Unit: \$1.37
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	8	\$100.08
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28

Materials

seedlings less than 10 cubic inches. Includes materials and shipping only.

Practice: 391-Riparian Forest Buffer
Scenario: \#4-Small container, hand planted, per acre

Scenario Description:

Establishing a buffer of trees by hand planting small containerized (approximately 1 quart) shrub and tree seedlings. Trees and shrubs will be selected based on soils and site conditions and target 300 trees per acre on approximately a $12^{\prime} \times 12$ ' spacing. Larger trees can be planted a little further apart and smaller ones closer together. The buffer will be located adjacent to and up-gradient from a watercourse or water body extending a minimum of 50 feet wide.

Before Situation:

A former riparian forest habitat has been used for ag commodity production. Active bank erosion is depositing sediment, nutrients and organics in the riparian area. Water temperature is high due to lack of shade. Habitat is not desirable for wildlife. The need for a riparian forest buffer are indicated in a conservation plan, water quality management plan, forest management plan or other document. Resource concerns to be addressed are soil erosion - excessive bank erosion; water quality excess sediment and organics in surface waters and elevated temperature; degraded plant condition - inadequate structure and composition; and inadequate habitat for fish and wildlife - habitat degradation.

After Situation:
A buffer of containerized trees and shrubs will be established along the riparian corridor as indicated in the site-specific plan or job sheet. The shrubs, evergreen trees and/or hardwood trees will be small containerized plants that are hand-planted according to the plan. Planting for shrubs will be done at approximately 300 trees per acre. Site stability, water filtration, shade, and desirable habitat will be enhanced by this riparian buffer planting.

Feature Measure: Area of planting
Scenario Unit: Acres
Scenario Typical Size: 3.00
Scenario Total Cost: $\$ 2,590.86$

Scenario Cost/Unit: \$863.62
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	8	\$100.08
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Materials						
Shrub, Potted, Small	1524	Potted shrub seedling, 1 quart to 1 gallon. Includes materials and shipping only.	Each	\$7.79	100	\$779.00
Tree, Hardwood, Potted, Small	1529	Potted hardwood seedling, 1 quart to 1 gallon. Includes materials and shipping only.	Each	\$7.66	125	\$957.50
Tree, Conifer, Potted, Small	1534	Potted conifer seedling, 1 quart to 1 gallon. Includes materials and shipping only.	Each	\$7.16	75	\$537.00

Practice: 391-Riparian Forest Buffer
Scenario: \#47-Small area hand planting with container or bare root stock

Scenario Description:

Establish a small (<1 ac) buffer of trees and/or shrubs into a suitably prepared site to restore riparian plant communities and provide conservation benefits. The buffer will be located adjacent to a watercourse or waterbody and designed with dimensions and plant spacings that fully implement the practice. The planting will consist of handplanted containerized or bare-root trees or shrubs in combinations that emulate the native species composition of the area. The planted area will be no more than one acre in size, such that quantities of trees and shrubs are small and bulk pricing does not apply. This scenario includes tree/shrub components representative of small-area pricing; other trees and/or shrubs sizes/ages may be substituted. Resource concerns include: Plant productivity and health,Plant structure and composition,Sediment transported to surface water,Nutrients transported to surface water,Elevated water temperature,Pesticides transported to surface water,Pathogens and chemicals from manure, biosolids, or compost applications transported to surface water,Bank erosion from streams, shorelines, or water conveyance channels, Terrestrial habitat for wildlife and invertebrates,Aquatic habitat for fish and other organisms.

Before Situation:

Typical settings include degraded or converted riparian forests, and nonforest conditions with undesirable amounts or types of vegetation. Active bank erosion is contributing sediment, nutrients, pesticides, pathogens, chemicals, or organics into surface waters. Water temperature is elevated due to lack of shade. Habitat is not desirable for fish, wildlife or invertebrates.

After Situation:

A riparian buffer of trees and shrubs has been restored and is functioning properly to provide stability, filtration, shade, and desirable habitat to address identified resource concerns.

Feature Measure: Area of planting

Scenario Unit: Acres

Scenario Typical Size: 1.00

Scenario Total Cost: \$3,017.67
Scenario Cost/Unit: \$3,017.67

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	4	\$99.96
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	3	\$53.58
Trailer, enclosed, small	1503	Small enclosed trailer (typically less than 30^{\prime} in length) pulled by a pickup to transport materials and equipment. Truck not included.	Hours	\$14.56	8	\$116.48
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	16	\$200.16

Labor

General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.

Materials

Shrub, Potted, Small	1524	Potted shrub seedling, 1 quart to 1 gallon. Includes materials and shipping only.	Each	\$7.79	65	\$506.35
Tree, Hardwood, Potted, Small	1529	Potted hardwood seedling, 1 quart to 1 gallon. Includes materials and shipping only.	Each	\$7.66	65	\$497.90
Tree, Conifer, Potted, Small	1534	Potted conifer seedling, 1 quart to 1 gallon. Includes materials and shipping only.	Each	\$7.16	65	\$465.40

Practice: 391-Riparian Forest Buffer
Scenario: \#54-Seeding

Scenario Description:

Establish a buffer of trees and/or shrubs to restore riparian plant communities and provide associated benefits. The buffer will be located adjacent to and up-gradient from a watercourse or water body and will be at least 35 feet wide. The planting will consist of trees and/or shrubs planted through direct broadcast seeding, incorporated with light tillage. The planting rate will be approximately 30 pounds of seeds per acre. Resource concerns to be addressed are: Nutrients Transported to Surface Water; Sediment Transported to Surface Water; Bank Erosion from Streams, Shorelines or Water Conveyance Channels; Elevated Water Temperature; Plant Structure and Composition; Plant Productivity and Health; Terrestrial Habitat for Wildlife and Invertebrates; Aquatic Habitat for Fish and other Organisms.

Before Situation:

Typical sites include former riparian forests, and habitat used for forage, cropland, associated ag land, or other nonforest condition which contains undesirable amounts or types of vegetation. Active bank erosion is depositing sediment, nutrients and organics in the riparian area and/or in the water. Water temperature is high due to lack of shade. Habitat is not desirable for wildlife.

After Situation:
A buffer of trees and shrubs has been established along the riparian corridor to provide stability, filtration, shade, and desirable habitat to address the resource concerns.
Feature Measure: Area of planting
Scenario Unit: Acres
Scenario Typical Size: 10.00
Scenario Total Cost: \$3,942.61
Scenario Cost/Unit: \$394.26

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	10	\$134.50
Seeding Operation, Broadcast, Ground	959	Broadcast seed via ground operation. May require post tillage operation to incorporate seed. Includes equipment, power unit and labor costs.	Acres	\$13.81	10	\$138.10
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	4	\$108.64

Materials

Trees and shrubs, seed
1871 Tree or shrub seed, e.g., acorns, to establish trees. Includes materials
Pound
$\$ 9.36$
300
\$2,808.00

Mobilization

Practice: 391-Riparian Forest Buffer
Scenario: \#55-Planting cuttings; foregone income.

Scenario Description:

By hand-planting tree and/or shrub cuttings, establish a riparian forest buffer to enhance the riparian area and protect the streambank. Cuttings are tree or shrub poles and live stakes (whips) planted while still dormant. Located adjacent to and up-gradient from a watercourse or -body, the buffer will extend a minimum of 35 -feet wide. Based on soils and site conditions, tree and/or shrub species will be selected and planted at a minimum density of 250 cuttings per acre. Typically, the setting is a strip, between aquatic and upland eco-systems, subject to flooding and/or saturated soils where the plant community has been disturbed, destroyed, or species diversity is unable to provide adequate functions. Riparian areas are found along natural or man-made watercourses or -bodies and include perennial/intermittent/ephemeral streams and rivers, fresh- or salt-water natural lakes/depression/playas, canals, ponds, and reservoirs. Resource concerns to be addressed are those associated with soil erosion streambank, elevated water temperature plant condition, and/or wildlife habitat, plant productivity and health, plant structure and composition, terrestrial habitat for wildlife and invertebrates and aquatic habitat for fish and other organisms

Before Situation:

A former riparian forest habitat has been used for ag commodity production, i.e., any crop produced by annual tillage. Erosion has deposited or is depositing sediments, nutrients, and/or organics in the riparian area. Due to a lack of shade, water temperatures are high. For wildlife, the habitat is not desirable. A conservation, water quality, or forest management plan indicates a need for a riparian forest buffer.

After Situation:

By hand-planting poles, stakes, and/or whips, a buffer of trees and/or shrubs is established, providing filtration, shade, and desirable wildlife habitat. Positioned appropriately, the buffer is sufficiently wide and long with vertical structure/density and connectivity to resolve the soil erosion, water quality, plant condition, and/or wildlife habitat resource concerns identified. In areas immediately adjacent to and up-gradient of the buffer site, excessive sheet-rill and concentrated-flow erosion is controlled.Selected species had a wetland indicator status of facultative (F), facultative wetland (FW), or obligate (OBL) for the region in which the project is located. To the extent practicable, species selected were those with multiple values, e.g., timber, nuts, fruit, browse, nesting, etc.The riparian area is established to an adapted, diverse plant community and is managed to insure its long-term sustainability and success. The quality and quantity of the riparian area components are managed to resolve the identified resource concerns. The riparian area is protected by controlling or excluding haying and grazing until the desired plant community achieves the intended purpose(s). Any management to establish the buffer and achieve its intended purpose(s) occurs outside nesting and fawning seasons.

Feature Measure: area of planting
Scenario Unit: Acres

Scenario Typical Size: 3.00
Scenario Total Cost: $\$ 5,920.06$
Scenario Cost/Unit: \$1,973.35
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	32	\$799.68
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	32	\$400.32
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	1.5	\$341.51
FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	Acres	\$251.94	1.5	\$377.91
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	32	\$869.12
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	32	\$1,523.52
Materials						
Tree \& Shrub, Woody, Cuttings, Medium	1308	Woody cuttings, live stakes or whips typically $1 / 4$ to 1 inch diameter and 24 to 48 inches long. Includes materials and shipping only.	Each	\$2.01	800	\$1,608.00

Practice: 393 - Filter Strip
Scenario: \#5 - Filter Strip, Native species

Scenario Description:

A strip or area of herbaceous vegetation that removes contaminants from overland flow. Practice includes seedbed prep and planting of native species.

Before Situation:

Annual cropland, grazing land, or disturbed land (including forestland) allows for runoff of suspended solids, dissolved and/or associated contaminants into environmentally-sensitive areas such as wetlands, riparian zones, critical habitat and neighboring nonagricultural properties. Water Quality resource concerns are associated with this practice.

After Situation:

The 393 Implementation Requirements are developed for the site and applied. The planned filter strip will be established and maintained per the practice plan that will meet the criteria for the planned purpose(s). The vegetation will consist of native species. The filter strip will have adequate width to filter the planned pollutants. The practice includes seedbed preparation, seeding, and seed. Species selected shall be able to withstand partial burial by sediment and tolerant of herbicides used on contribution area while protecting environmentally-sensitive areas.

Feature Measure: number of acres
Scenario Unit: Acres

Scenario Typical Size: 1.00

Scenario Total Cost: \$280.08
Scenario Cost/Unit: \$280.08

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	3	\$40.35
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	1.5	\$26.79

Materials

Native Perennial Grasses, Medium Density

2751 Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at medium to higher density (41-60 pure live seeds/sq ft). Includes material and shipping.

Practice: 393 - Filter Strip
Scenario: \#6 - Filter Strip, Introduced species

Scenario Description:

A strip or area of herbaceous vegetation that removes contaminants from overland flow. Practice includes seedbed prep and planting of introduced species.

Before Situation:

Annual cropland, grazing land, or disturbed land (including forestland) allows for runoff of suspended solids, dissolved and/or associated contaminants into environmentally-sensitive areas such as wetlands, riparian zones, critical habitat and neighboring nonagricultural properties. Water Quality resource concerns are associated with this practice.

After Situation:

The 393 Implementation Requirements are developed for the site and applied. The planned filter strip will be established and maintained per the practice plan that will meet the criteria for the planned purpose(s). The vegetation will consist of introduced species. The filter strip will have adequate width to filter the planned pollutants. The practice includes seedbed preparation, seeding, and seed. Species selected shall be able to withstand partial burial by sediment and tolerant of herbicides used on contribution area while protecting environmentally-sensitive areas.

Feature Measure: Number of acres
Scenario Unit: Acres

Scenario Typical Size: 1.00

Scenario Total Cost: \$221.17
Scenario Cost/Unit: \$221.17

Cost Details:

Component Name	ID	Description	Unit	Cost		Total

Equipment Installation

Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	3	\$40.35
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	1	\$7.50
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	1.5	\$26.79
Materials						
Nitrogen (N), Urea	71	Price per pound of N supplied by Urea. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.65	30	\$19.50
Phosphorus, P2O5	73	Price per pound of P2O5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	20	\$18.20
Introduced Perennial Grasses, Legumes and/or Forbs, High Density	2749	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at high density (greater than 60 pure live seeds/sq ft). Includes material and shipping.	Acres	\$88.70	1	\$88.70

Practice: 393 - Filter Strip
Scenario: \#13 - Caribbean and Virgin Island Filter Strip - All Species

Scenario Description:

A strip or area of herbaceous vegetation that removes contaminants from overland flow. Practice includes seedbed prep and planting of introduced species.

Before Situation:

Annual cropland, grazing land, or disturbed land (including forestland) allows for runoff of suspended solids, dissolved and/or associated contaminants into environmentally-sensitive areas such as wetlands, riparian zones, critical habitat and neighboring nonagricultural properties. Water Quality resource concerns are associated with this practice.

After Situation:

The 393 Implementation Requirements are developed for the site and applied. The planned filter strip will be established and maintained per the practice plan that will meet the criteria for the planned purpose(s). The vegetation will consist of introduced species. The filter strip will have adequate width to filter the planned pollutants. The practice includes seedbed preparation, seeding, and operation and maintenance to maintain the vegetation and the function of the filter strip. Species selected shall be able to withstand partial burial by sediment and tolerant of herbicides used on contribution area while protecting environmentally-sensitive areas.

Feature Measure: acre planted
Scenario Unit: Acres

Scenario Typical Size: 1.00

Scenario Total Cost:	$\$ 119.78$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	1	\$24.99
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	2	\$26.90
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13
Materials						
Introduced Perennial Grasses, Legumes and/or Forbs, Low Density	2747	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$47.76	1	\$47.76

Practice: 393 - Filter Strip
Scenario: \#20 - Filter Strip, Native species, Forgone Income
Scenario Description:
A strip or area of herbaceous vegetation that removes contaminants from overland flow. Practice includes seedbed prep and planting of native species. The area of the filter strip is taken out of production.

Before Situation:
Annual cropland, grazing land, or disturbed land (including forestland) allows for runoff of suspended solids, dissolved and/or associated contaminants into environmentally-sensitive areas such as wetlands, riparian zones, critical habitat and neighboring non-ag properties. Water Quality resource concerns are associated with this practice.

After Situation:
The 393 Implementation Requirements are developed for the site and applied. The planned filter strip will be established and maintained per the practice plan that will meet the criteria for the planned purpose(s). The vegetation will consist of native species. The filter strip will have adequate width to filter the planned pollutants. The practice includes seedbed preparation, seeding, and seed. Species selected shall be able to withstand partial burial by sediment and tolerant of herbicides used on the contribution area while protecting environmentally-sensitive areas. The area of the filter strip is taken out of production.

Feature Measure: number of acres
Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$519.89
Scenario Cost/Unit: \$519.89
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	3	\$40.35
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	1.5	\$26.79
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	0.5	\$113.84
FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	Acres	\$251.94	0.5	\$125.97

Materials

Native Perennial Grasses, Medium Density

2751 Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at medium to higher density (41-60 pure live seeds/sq ft). Includes material and shipping.

Practice: 393 - Filter Strip
Scenario: \#21 - Filter Strip, Introduced species, Forgone Income

Scenario Description:

A strip or area of herbaceous vegetation that removes contaminants from overland flow. Practice includes seedbed prep and planting of introduced species. The area of the filter strip is taken out of production.

Before Situation:
Annual cropland, grazing land, or disturbed land (including forestland) allows for runoff of suspended solids, dissolved and/or associated contaminants into environmentally-sensitive areas such as wetlands, riparian zones, critical habitat and neighboring non-ag properties. Water Quality resource concerns are associated with this practice.

After Situation:

The 393 Implementation Requirements are developed for the site and applied. The planned filter strip will be established and maintained per the practice plan that will meet the criteria for the planned purpose(s). The vegetation will consist of introduced species. The filter strip will have adequate width to filter the planned pollutants. The practice includes seedbed preparation, seeding, and seed. Species selected shall be able to withstand partial burial by sediment and tolerant of herbicides used on contribution area while protecting environmentally-sensitive areas. The area of the filter strip is taken out of production.

Feature Measure: Number of acres
Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$460.98
Scenario Cost/Unit: \$460.98
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	3	\$40.35
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	1	\$7.50
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	1.5	\$26.79
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	0.5	\$113.84
FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	Acres	\$251.94	0.5	\$125.97

Materials

Nitrogen (N), Urea	71	Price per pound of N supplied by Urea. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.65	30	\$19.50
Phosphorus, P2O5	73	Price per pound of P2O5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	20	\$18.20
Introduced Perennial Grasses, Legumes and/or Forbs, High Density	2749	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at high density (greater than 60 pure live seeds/sq ft). Includes material and shipping.	Acres	\$88.70	1	\$88.70

Practice: 393 - Filter Strip
Scenario: \#49-PIA - Filter Strip - All Species
Scenario Description:
A strip or area of herbaceous vegetation that removes contaminants from overland flow. Practice includes seedbed prep and planting of introduced species.

Before Situation:

Annual cropland, grazing land, or disturbed land (including forestland) allows for runoff of suspended solids, dissolved and/or associated contaminants into environmentally-sensitive areas such as wetlands, riparian zones, critical habitat and neighboring nonagricultural properties. Water Quality resource concerns are associated with this practice.

After Situation:

The 393 Implementation Requirements are developed for the site and applied. The planned filter strip will be established and maintained per the practice plan that will meet the criteria for the planned purpose(s). The vegetation will consist of introduced species. The filter strip will have adequate width to filter the planned pollutants. The practice includes seedbed preparation, seeding, and operation and maintenance to maintain the vegetation and the function of the filter strip. Species selected shall be able to withstand partial burial by sediment and tolerant of herbicides used on contribution area while protecting environmentally-sensitive areas.

Feature Measure: Acre planted
Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: $\quad \$ 119.78$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	1	\$24.99
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	2	\$26.90
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13
Materials						
Introduced Perennial Grasses, Legumes and/or Forbs, Low Density	2747	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$47.76	1	\$47.76

Practice: 394-Firebreak
Scenario: \#1-Constructed - Slight Slopes with Light Equipment
Scenario Description:
A tractor and disk (2-3 passes) are used to install a bare-ground firebreak with a width of 15 ' around the perimeter of a 40 acre native grass field. The firebreak will be used to safely implement a planned prescribed burn. Generally water control devices such as water bars are not needed due either to the lack of steep terrain or the temporary nature of the firebreak.

Before Situation:
The health and vigor of a rangeland field has declined and brush is beginning to encroach due to lack of fire over a long period of time. A prescribed burn plan has been developed, which requires the installation of a firebreak to safely conduct the burn. Resource concerns include wildfire hazard from excessive biomass accumulation, undesirable plant productivity and health, inadequate plant structure and composition, and habitat degradation.

After Situation:
A 15 ' wide firebreak, disked to bare mineral soil, has been constructed around the perimeter of the field to be burned.
Feature Measure: Length of firebreak
Scenario Unit: Feet
Scenario Typical Size: 5,280.00
Scenario Total Cost: \$855.57

Scenario Cost/Unit: \$0.16
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Primary	946	Includes heavy disking (offset) or chisel plow. Includes equipment, power unit and labor costs.	Acres	\$20.44	5	\$102.20
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 394-Firebreak
Scenario: \#2-Constructed - Moderate Slopes with Medium Equipment

Scenario Description:

Medium sized equipment such as a small dozer or tractor w/blade is used to install a bare-ground firebreak of a minimum width of 10 ' around the perimeter of a 40 acre woodland field on slopes less than 15%. Generally, water control devices such as water bars are limited to 10 or less per 1,000 feet when properly planned and installed using the same equipment.

Before Situation:

The health and vigor of a rangeland/savannah field has declined due to the encroachment or increase of brush/trees, caused by the lack of fire over a long period of time. The field is reverting to a closed canopy forest and a prescribed burn plan has been developed, which requires the installation of a firebreak to safely conduct the burn. Conditions such as topography, rockiness, the presence of brush and trees, etc. make the use of typical farm equipment impractical. As slopes increase, the potential for excessive erosion increases from soil disturbances. Therefore, the installation of water control devices such as water bars will be important in protecting the resource base. Resource concerns include wildfire hazards from excessive biomass accumulation, undesirable plant productivity and health, inadequate plant structure and composition, and habitat degradation.

After Situation:

A firebreak that exposes at least 10' of mineral soil has been constructed around the perimeter of the field to be burned using dozers or scrapers, according to the prescribed burn plan requirments. Even though the slopes are gentle, water bars or wing ditches have been installed to reduce the threat of water erosion.

Feature Measure: Length of firebreak
Scenario Unit: Feet
Scenario Typical Size: 5,280.00
Scenario Total Cost: $\$ 1,766.42$

Scenario Cost/Unit: \$0.33
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 80 HP	929	Track mounted Dozer with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$77.14	5	\$385.70
Water Bars	1500	Installation of graded trail water controlling structures such as water bars, broad based dips for erosion control. Typical cross section is 1.5 feet high with $4: 1$ side slopes yielding about $0.33 \mathrm{CY} / \mathrm{ft}$ of length.	Feet	\$3.12	150	\$468.00
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	5	\$159.35

Mobilization

Mobilization, medium equipment 1139 Equipment with 70-150 HP or typical weights between 14,000 and Each \$753.37 1

Practice: 394-Firebreak
Scenario: \#3 - Constructed - Steep Slopes with Medium Equipment

Scenario Description:

Medium sized equipment such as a small dozer or tractor w/blade is used to install a bare-ground firebreak of a minimum width of 10 ' around the perimeter of a 40 acre woodland field on slopes greater than 15%. Water control devices such as water bars are placed at approximately 15 to 25 per $1,000 \mathrm{ft}$. section of the firebreak are necessary to control erosion. These will be installed with the same equipment.

Before Situation:

The health and vigor of a rangeland/savannah field has declined due to the encroachment or increase of brush/trees, caused by the lack of fire over a long period of time. The field is reverting to a closed canopy forest and a prescribed burn plan has been developed, which requires the installation of a firebreak to safely conduct the burn. Conditions such as topography, rockiness, the presence of brush and trees, etc. make the use of typical farm equipment impractical. As slopes increase, the potential for excessive erosion increases from soil disturbances. Therefore, the installation of water control devices such as water bars will be important in protecting the resource base. Resource concerns include wildfire hazard from excessive biomass accumulation, undesirable plant productivity and health, inadequate plant structure and composition, habitat degradation, soil erosion, and excessive sediment in surface waters.

After Situation:

A firebreak that exposes at least 10' of mineral soil has been constructed around the perimeter of the field to be burned using dozers or scrapers, according to the prescribed burn plan requirments. Due to steep slopes, water bars or wing ditches have been installed to reduce the threat of water erosion.

Feature Measure: Length of firebreak
Scenario Unit: Feet
Scenario Typical Size: 5,280.00
Scenario Total Cost: \$5,151.43
Scenario Cost/Unit: \$0.98
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 80 HP	929	Track mounted Dozer with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$77.14	6	\$462.84
Water Bars	1500	Installation of graded trail water controlling structures such as water bars, broad based dips for erosion control. Typical cross section is 1.5 feet high with $4: 1$ side slopes yielding about $0.33 \mathrm{CY} / \mathrm{ft}$ of length.	Feet	\$3.12	1200	\$3,744.00
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	6	\$191.22

Mobilization

Mobilization, medium equipment 1139 Equipment with 70-150 HP or typical weights between 14,000 and Each \$753.37 1

Practice: 394 - Firebreak
Scenario: \#4 - Vegetated, permanent firebreak
Scenario Description:
A 20 foot wide strip of perennial vegetation (typically cool season grasses and/or legumes) will be established around the perimeter of a 40 acre native grass field to serve as a green firebreak. The firebreak will be used to safely implement a planned prescribed burn or reduce the spread of wildfire. Generally water control devices such as water bars are not needed due either to the lack of steep terrain.

Before Situation:
Three farmsteads are located along the outside perimeter of a 40 acre native grass CRP field. A lack of grazing/haying has resulted in an overgrown condition with high fuel loads, thus creating a wildfire hazard. Resource concerns include wildfire hazard from excessive biomass accumulation or undesirable plant productivity/health due to decadence.

After Situation:

A 20 foot wide firebreak has been established to coll season, perennial vegations (i.e. fescue, wheatgrass) around the perimeter of the field. The vegetation within the firebreak will be green and growing during the season of highest wildfire threat. Due to the construction and establishment of the vegetated firebreak, the property is protected from wildfire or can be safely prescribe burned.

Feature Measure: Length of firebreak

Scenario Unit: Feet
Scenario Typical Size: 5,280.00
Scenario Total Cost: \$1,336.11

Scenario Cost/Unit: \$0.25

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	5	\$67.25
Tillage, Primary	946	Includes heavy disking (offset) or chisel plow. Includes equipment, power unit and labor costs.	Acres	\$20.44	5	\$102.20
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	2.4	\$18.00
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	2.4	\$48.31
Materials						
Nitrogen (N), Urea	71	Price per pound of N supplied by Urea. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.65	85	\$55.25
Phosphorus, P2O5	73	Price per pound of P2O5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	85	\$77.35
Potassium, K2O	74	K2O supplied by Muriate Of Potash. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.68	110	\$74.80
Introduced Perennial Grasses, Legumes and/or Forbs, Low Density	2747	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$47.76	2.4	\$114.62
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	2	\$598.92

Practice: 394-Firebreak
Scenario: \#5 - Re-Construct Firebreaks where prior firebreaks existed and they are not useable
Scenario Description:
Medium sized equipment such as a small dozer or tractor w/blade is used to create a bare-ground firebreak of a minimum width of 10 ' around the perimeter of a 40 acre woodland field.

Before Situation:
Firebreaks were constructed by dozing timber 3-4 years ago so that a prescribed burn could be safely conducted. The existing firebreaks currently do not have bare mineral soil due to the natural succession of the plant community, and is in need of refurbishing so that another prescribed fire can occur to control the encroachment of woody species or reduce the timber canopy. Conditions such as topography, rockiness, the presence of small brush, etc. make the use of typical farm equipment impractical. Resource concerns include wildfire hazards from excessive biomass accumulation, undesirable plant productivity and health, inadequate plant structure and composition, and habitat degradation.

After Situation:
A firebreak that exposes at least 10' of mineral soil has been reconstructed around the perimeter of the field to be burned using dozers or scrapers, according to the prescribed burn plan requirments.

Feature Measure: Length of firebreak
Scenario Unit: Feet
Scenario Typical Size: 5,280.00
Scenario Total Cost: \$1,080.40
Scenario Cost/Unit: \$0.20

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 80 HP	929	Track mounted Dozer with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$77.14	3	\$231.42
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	3	\$95.61

Mobilization

Mobilization, medium equipment 1139 Equipment with 70-150 HP or typical weights between 14,000 and \quad Each $\$ 753.37 \quad 1 \quad 153.37$

Practice: 395-Stream Habitat Improvement and Management
Scenario: \#1 - Riparian Zone Improvement-Forested

Scenario Description:

This scenario describes fish and wildlife habitat improvement and/or management actions focused on the community structure and function of forested riparian zone plant communities. The planned activity meets the 395 standard, and facilitating practice standards, especially Codes 390 and 391 , utilized in combination to satisfy all requirements specific to habitats needed for the stream and riparian species for which the practice is being implemented. Implementation will improve instream and riparian habitat complexity, water quality, hiding and resting cover, and/or increased food availability for desired riparian and stream species. Because species and habitats differ dramatically within and across regions and/or MLRAs, up to 12 riparian plant community-specific scenarios may be required across the US.

Before Situation:

Riparian quality and quantity are at risk as determined by the NRCS Stream Visual Assessment Protocol score of less than 5 for those elements. The site does not have adequate food, cover, and/or connectivity for riparian wildlife, and contributes insufficient amounts of organic matter andor large woody material for stream species food and cover. The site's riparian vegetation is compromised by human activities and/or access of vehicles, people, and/or livestock is not controlled adequately to protect riparian functions and stream habitat quality. Nutrients are transported to surface waters through runoff or soil erosion or to ground water from leaching in quantities that degrade water quality and limit use of intended purposes. Soil quality may be reduced due to compaction. Riparian vegetation quality and/or quantity is compromised to the extent that the riparian area and floodplain are not functioning to provide necessary stream and riparian habitat components.

After Situation:

Revegetation/reforestation of the riparian zone is completed and the vegetation community is under close management to insure long-term survival and ecological succession of the plant community. The quality and quantity of the riparian zone components of the site are managed to support a diverse vegetation community suitable for the site, the species that depend on it for habitat, and the functions it performs or will eventually perform as the vegetation matures. These functions include: stream temperature moderation thru shading, recruitment of instream large wood and/or non-woody organic matter, riparian habitat for terrestrial insects and other ripariandependent species, streambank integrity, and filtration of contaminants from surface run-off into the stream.

Feature Measure: acres

Scenario Unit: Acres
Scenario Typical Size: 2.00
Scenario Total Cost:
\$20,680.30
Scenario Cost/Unit: \$10,340.15
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	16	\$1,043.36
Dozer, 80 HP	929	Track mounted Dozer with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$77.14	8	\$617.12
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	160	\$5,419.20
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	40	\$1,086.40
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	24	\$764.88
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	40	\$1,904.40
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	40	\$5,248.00

Materials

Compost

Tree \& Shrub, Woody, Cuttings, Large
Tree, Hardwood, Seedling, Medium

Tree shelter, wire mesh

265 A mixture of decaying organic matter, as from leaves and manure, used to improve soil structure and provide nutrients.
1309 Woody pole cuttings or posts 2 to 6 inches in diameter and 6 ft . long. \quad Each $\$ 11.13 \quad 200$ 226.00 Includes materials and shipping only.
1510 Bare root hardwood seedlings 18 to 36 inches tall; includes tropical containerized seedlings of 10 to 20 cubic inches. Includes materials and shipping only.
15575 feet tall, Woven Wire mesh, 6×6 inch opening or smaller, 10 gauge wire (minimum) cage placed around seedling for animal protection. Materials only.

Practice: 395-Stream Habitat Improvement and Management
Scenario: \#2 - Instream wood placement

Scenario Description:

This scenario involves placement of large wood (logs, root wads, log structures) into a stream channel in order to improve aquatic habitat that currently does not meet quality criteria for stream species habitat. A stream assessment (i.e. Stream Visual Assessment Protocol) should be conducted in order to document habitat components lacking for aquatic species (i.e. large wood, pools). A project design for wood placement will be based on assessment of the target stream reach characteristics and those of a suitable reference reach. These characteristics include channel geometry, channel slope, stream bottom substrate size and composition, and the geomorphic setting influencing the channel form, pattern and profile. Large wood and root wads placed into the stream will mimic genus, age, and size of mature trees found in intact, reference riparian areas in the MLRA where the project is located. Large wood/trees with rootwads intact should be placed in streams to create pool habitat according to NRCS engineering specifications and with close review \& approval of a fish habitat biologist. Boulders placed to provide ballast shall only be used if the geomorphic setting and project design demand this component. The planned activity will meet the current 395 standard, and facilitating practice standards utilized, including timing of work windows required for protected aquatic and riparian species, and protecting/restoring vegetation and substrates of/to areas impacted by heavy equipment. Implementation will result in the improvement of instream habitat complexity, hiding and resting cover, and/or increased food availability for fish and other stream species. Payment for implementation is to defray the costs of project implementation. Monitoring records demonstrating implementation of this scenario will address resource concerns for stream species of concern are required.

Before Situation:

In this stream reach, habitat for fish, aquatic insects and/or other stream species is sub-optimal as determined by the NRCS Stream Visual Assessment Protocol score of less than 5 overall. The site does not have adequate food, cover, and perhaps habitat connectivity for desired species. Riparian vegetation quality and/or quantity may also be compromised to the extent that the riparian area and floodplain are not functioning to provide necessary stream and riparian habitat components, such as large wood.

After Situation:

Stream habitat within the project reach is improving as a result of placing logs, root wads, and/or wood structures in the channel and/or along the stream bank. Pool habitat in the reach is improved, and hiding cover, food availability and refuge habitat for all stream species is improving.

Feature Measure: Bankfull width x reach length
Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$21,039.70
Scenario Cost/Unit: \$21,039.70
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Hydraulic Excavator, 2 CY	932	Track mounted hydraulic excavator with bucket capacity range of 1.5 to 2.5 CY. Equipment and power unit costs. Labor not included.	Hours	\$142.87	16	\$2,285.92
Truck, dump, 12 CY	1215	Dump truck for moving bulk material. Typically capacity is 16 ton or 12 cubic yards. Includes equipment only.	Hours	\$103.14	8	\$825.12
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	24	\$764.88
Materials						
Aggregate, Sand, Graded, Washed	45	Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$42.64	20	\$852.80
Aggregate, Gravel, Graded	46	Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$44.85	30	\$1,345.50
Compost	265	A mixture of decaying organic matter, as from leaves and manure, used to improve soil structure and provide nutrients.	Ton	\$52.20	1	\$52.20
Tree \& Shrub, Woody, Cuttings, Large	1309	Woody pole cuttings or posts 2 to 6 inches in diameter and 6 ft . long. Includes materials and shipping only.	Each	\$11.13	300	\$3,339.00
Boulder	1761	Rock boulders (approximately 5 ft dia. 6.67 Tons). Includes materials and delivery (up to 100 miles) only. Placement costs are not included.	Ton	\$92.54	40	\$3,701.60
Steel, rebar	1832	Steel rebar, grade 60. Materials only.	Pound	\$0.76	50	\$38.00
Aggregate, river rock	1834	Well graded, rounded mineral substrates derived from local riverine settings. Includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Ton	\$37.70	15	\$565.50
Log, un-anchored	2035	Price of log picked up at the Mill. Includes material only.	Ton	\$176.38	30	\$5,291.40
Root Wad	2045	Tree stump buried into the streambank with the roots left exposed. Includes material only.	Ton	\$7.93	20	\$158.60

Practice: 395-Stream Habitat Improvement and Management

Scenario: \#3-Instream rock placement

Scenario Description:

This scenario describes the implementation of a stream habitat improvement and management project that places individual boulders or boulder clusters, or rock structures in or adjacent to the stream channel as habitat components. A project design for boulder placement will be based on assessment of the target stream reach characteristics and those of a suitable reference reach. These characteristics include channel geometry, channel slope, stream bottom substrate size and composition, and the geomorphic setting influencing the channel form, pattern and profile. Large rocks/boulders placed in the stream channel will mimic geologic material sizes typically present in the watershed or observed in intact, reference stream reaches in the MLRA where the project is located. Boulders should be placed in streams to create pool habitat and hydraulic complexity according to NRCS engineering specifications and with close review \& approval of a fish habitat biologis onsite during implementation of the project design. Spawning gravel placement should be placed to restore spawning area substrates potentially disturbed by rock placement. The planned activity will meet the current 395 standard, and facilitating practice standards utilized. Implementation will result in the improvement of instream habitat complexity, hiding and resting cover, spawning habitat, and/or increased food availability for fish and other stream species. Payment for implementation is to defray the costs of stream habitat assessment, and project implementation. Records demonstrating implementation of this scenario will address resource concerns for stream species of concern will be required.

Before Situation:
In this stream reach, habitat for fish, aquatic insects and other stream species is sub-optimal as determined by the NRCS Stream Visual Assessment Protocol score of less than 5 overall. The site does not have adequate food, cover, and perhaps habitat connectivity for desired species. Riparian vegetation quality and/or quantity may be also compromised to the extent that the riparian area and floodplain are not functioning to provide necessary stream and riparian habitat components, such as large wood, leaf matter, and shade.

After Situation:

Stream habitat within the project reach is improving as a result of placing boulders or constructing rock structures in the channel and/or along the stream bank. Hydraulic complexity of the habitat in the reach is increased, and hiding cover, food availability and refuge habitat for stream species is improving. Streambank vegetation is increasing and contributing to stability of the streambanks.

Feature Measure: Bankfull width x reach length
Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$20,210.26
Scenario Cost/Unit: \$20,210.26
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Hydraulic Excavator, 2 CY	932	Track mounted hydraulic excavator with bucket capacity range of 1.5 to 2.5 CY. Equipment and power unit costs. Labor not included.	Hours	\$142.87	16	\$2,285.92
Truck, dump, 12 CY	1215	Dump truck for moving bulk material. Typically capacity is 16 ton or 12 cubic yards. Includes equipment only.	Hours	\$103.14	8	\$825.12
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	24	\$764.88
Materials						
Aggregate, Sand, Graded, Washed	45	Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$42.64	30	\$1,279.20
Aggregate, Gravel, Graded	46	Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$44.85	120	\$5,382.00
Tree \& Shrub, Woody, Cuttings, Large	1309	Woody pole cuttings or posts 2 to 6 inches in diameter and 6 ft . long. Includes materials and shipping only.	Each	\$11.13	100	\$1,113.00
Boulder	1761	Rock boulders (approximately 5 ft dia . 6.67 Tons). Includes materials and delivery (up to 100 miles) only. Placement costs are not included.	Ton	\$92.54	60	\$5,552.40
Aggregate, river rock	1834	Well graded, rounded mineral substrates derived from local riverine settings. Includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Ton	\$37.70	20	\$754.00
Mobilization						
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	2	\$1,819.18

Practice: 395-Stream Habitat Improvement and Management

Scenario: \#4 - Rock and wood structures

Scenario Description:

This scenario describes the implementation of a stream habitat improvement and management project where practices are focused on instream habitat improvement with a combination of rock AND wood structures. This senario involves placement of large wood and rock structures into a stream channel in order to improve aquatic habitat that currently does not meet quality criteria for stream species habitat. A stream assessment (i.e. Stream Visual Assessment Protocol) should be conducted in order to document habitat components (such as large wood, pools) are not currently present in the stream or are limited for aquatic species. A project design for placement of habitat structures (boulders, boulder clusters, wood, wood structures) will be based on assessment of (a) the target stream reach characteristics and (b) those of a suitable reference reach. These characteristics include channel geometry, channel slope, stream bottom substrate size and composition, and the geomorphic setting influencing the channel form, pattern and profile. Large rocks/boulders placed in the stream channel will mimic geologic material sizes typically present in the watershed or observed in intact, reference stream reaches in the MLRA where the project is located. Rock boulder sizes should also reflect the geomorphic setting of the stream reach. Large wood placed into the stream under this scenario should be similar in species, age, and size (diameter) as trees found in the surrounding riparian area, to the extent possible. Wood, boulders and/or boulder clusters will be placed in the stream to create pool habitat and hydraulic complexity according to NRCS engineering specifications and with close review \& approval of a fish habitat biologist onsite during the planning and implementation of the project. This scenario involves restoring one acre of stream. The planned activity will meet the current 395 standard, and facilitating practice standards utilized. Implementation will result in the improvement of instream habitat complexity, hiding and resting cover, and/or increased food availability for fish and other stream species. Payment for implementation is to defray the costs of project implementation. Records demonstrating implementation of this scenario will address resource concerns for stream species of concern will be required.

Before Situation:

In this stream reach, habitat for fish, aquatic insects and/or other stream species is sub-optimal as determined by the NRCS Stream Visual Assessment Protocol score of less than 5 . The site does not have adequate food, cover, and perhaps habitat connectivity for desired species. Riparian vegetation quality and/or quantity may also be compromised to the extent that the riparian area and floodplain are not functioning to provide necessary stream habitat components, such as large wood and off-channel refuge habitat.

After Situation:

Stream habitat within the project reach is improving as a result of placing logs, rocks, or constructing wood and rock structures in the channel and/or along the stream bank. Pool habitat in the reach is improved, and hiding cover, food availability and refuge habitat for all stream species is improving.

Feature Measure: stream length X bankfull width
Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$37,296.70
Scenario Cost/Unit: \$37,296.70
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Hydraulic Excavator, 2 CY	932	Track mounted hydraulic excavator with bucket capacity range of 1.5 to 2.5 CY. Equipment and power unit costs. Labor not included.	Hours	\$142.87	16	\$2,285.92
Truck, dump, 12 CY	1215	Dump truck for moving bulk material. Typically capacity is 16 ton or 12 cubic yards. Includes equipment only.	Hours	\$103.14	8	\$825.12
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	60	\$2,032.20
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	24	\$651.84
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	24	\$764.88
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	180	\$8,569.80
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	32	\$4,198.40

Materials

Aggregate, Sand, Graded, Washed

Aggregate, Gravel, Graded

45 Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.
$46 \begin{array}{lllll}\text { Gravel. includes materials and local delivery within } 20 \text { miles of quarry } & \text { Cubic Yards } & \$ 44.85 & 60 & \$ 2,691.00\end{array}$ or pit. Placement costs are not included.

Compost	265	A mixture of decaying organic matter, as from leaves and manure, used to improve soil structure and provide nutrients.	Ton	\$52.20	1	\$52.20
Tree \& Shrub, Woody, Cuttings, Large	1309	Woody pole cuttings or posts 2 to 6 inches in diameter and 6 ft . long. Includes materials and shipping only.	Each	\$11.13	300	\$3,339.00
Boulder	1761	Rock boulders (approximately 5 ft dia. 6.67 Tons). Includes materials and delivery (up to 100 miles) only. Placement costs are not included.	Ton	\$92.54	40	\$3,701.60
Steel, rebar	1832	Steel rebar, grade 60. Materials only.	Pound	\$0.76	8	\$6.08
Aggregate, river rock	1834	Well graded, rounded mineral substrates derived from local riverine settings. Includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Ton	\$37.70	7	\$263.90
Log, un-anchored	2035	Price of log picked up at the Mill. Includes material only.	Ton	\$176.38	30	\$5,291.40
Root Wad	2045	Tree stump buried into the streambank with the roots left exposed. Includes material only.	Ton	\$7.93	10	\$79.30
Mobilization						
Mobilization, large equipment	1140	Equipment >150HP or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	2	\$1,819.18

Practice: 395-Stream Habitat Improvement and Management
Scenario: \#5 - Fish Barrier

Scenario Description:

This scenario describes the implementation of a stream habitat improvement and management project where practices are focused on the stream channel. The planned activity will meet the current 395 standard, and facilitating practice standards utilized. Implementation will result in protecting native aquatic fauna in the reach from competition or harrassament from non-native fish. This action may also increase food availability for fish and other stream species located above the constructed barrier Payment for implementation is to defray the costs of stream habitat assessment above the barrier, and project implementation. Records demonstrating implementation of this scenario will address resource concerns for aquatic and riparian species of concern will be required.

Before Situation:
In this stream corridor, native aquatic species are at risk as determined by the state fish and wildlife agency. NRCS Stream Visual Assessment Protocol for the reach being protected by a barrier meets quality criteria and provides habitat for native species of concern, as determined by a Stream Visual Assessment Protocol score of greater than 5.

After Situation:
Native fish inhabiting areas upstream of the newly constructed concrete barrier will not be adversely affected by interactions with non-native species/competitors.
Feature Measure: Each
Scenario Unit: Cubic Yards
Scenario Typical Size: 5.00
Scenario Total Cost: \$38,936.65
Scenario Cost/Unit: \$7,787.33
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, formed reinforced	38	Steel reinforced concrete formed and cast-in-placed in formed structures such as walls or suspended slabs by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$457.84	60	\$27,470.40
Hydraulic Excavator, 2 CY	932	Track mounted hydraulic excavator with bucket capacity range of 1.5 to 2.5 CY . Equipment and power unit costs. Labor not included.	Hours	\$142.87	10	\$1,428.70
Truck, Concrete Pump	1211	Concrete pump, normally truck mounted. Use this item in association with other concrete components when job requires placement by other than normal chutes. Include drive and setup time in quantity; therefore, do not include mobilization. Includes equipment and operator.	Hours	\$156.17	36	\$5,622.12
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	10	\$338.70
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	10	\$271.60
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	10	\$318.70
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	8	\$1,049.60
Materials						
Steel, rebar	1832	Steel rebar, grade 60. Materials only.	Pound	\$0.76	40	\$30.40
Plywood, 3/4 inch, untreated	1833	Untreated $4 \times 8 \mathrm{ft}$. sheets of $3 / 4$ inch exterior grade plywood. Includes materials only.	Each	\$39.15	15	\$587.25
Mobilization						
Mobilization, large equipment	1140	Equipment >150HP or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	2	\$1,819.18

Practice: 399-Fishpond Management
Scenario: \#9 - Invasive Weed Species - Chemical
Scenario Description:
Chemical application to existing fishpond to remove invasive or undesired vegetation. Typically use Diquat dibromide or other appropriate herbicide. Chemical control will be applied by a certified pesticide applicator per state code. Resource concerns addressed include: Degraded Plant Condition - Excessive plant pest pressure; Degraded Plant Condition - Inadequate structure and composition; Inadequate Habitat for Fish and Wildlife - Habitat degradation.

Before Situation:

Existing fishpond is negatively impacted by invasive vegetation. Invasive vegetation is reducing availability of resources for desired fish species.
After Situation:
Chemical application has been completed to manage the invasive vegetation. Resource concerns have been addressed. Participant will follow Operation and Maintenance guidance to ensure control has been achieved through regular monitoring and will address any negative impacts to ensure an invasion does not occur again within the Ifiespan of the practice.

Feature Measure: Acre of pond managed
Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$260.14
Scenario Cost/Unit: \$260.14
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	3	\$101.61
Materials						
Herbicide, Diquat dibromide	1820	Aquatic herbicide and plant growth regulator. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Gallons	\$108.55	1	\$108.55

Practice: 399-Fishpond Management
Scenario: \#10-Habitat Structures
Scenario Description:
Fishpond lacks a diversity of habitat to provide adequate habitat for desired fish species. Creation of habitat structures as recommended by conservation planner or other individual with appropriate credentials. Suggested improvements will determine type of structure needed, number of structures, density and location of structures. Habitat structures are typically submerged or emergent. Structures may include log cribs, rock piles, log and rock cribs, pipe and limber cribs, conifer cribs, PVC-tree structures, gravel spawning beds, catfish cages, concrete blocks stacked and filled with sticks or cuttings or plastic barrels filled with sand and sticks. Resource Concerns addressed include: Inadequate Habitat for Fish and Wildlife - Habitat degradation. Practice installation may also address: Water Quality Degradation - Elevated water temperatures.

Before Situation:
Existing fish pond lacks sufficent habitat diversity to provide optimum conditions for desired fish species.

After Situation:

Habitat structures within fishpond are appropriate for desired fish species. Typical installation in 1 ac pond: 12 structures of 24 concrete blocks stacked and wired together, with sticks placed within blocks. Resource concerns have been addressed. Participant will follow Operation and Maintenance guidance to ensure created habitat is maintained and continues to provide the benefits to the resources.

Feature Measure: Acre of pond managed
Scenario Unit: Acres
Scenario Typical Size: 1.00

Scenario Total Cost:	\$5,993.46					
Scenario Cost/Unit:	\$5,9	3.46				
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	12	\$299.88
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	144	\$3,911.04
Materials						
Block, concrete	253	Concrete block, hollow, normal weight, 3500 psi. Includes both full and partial sizes. Material only	Each	\$3.07	288	\$884.16
Mobilization						
Mobilization, small equipment	1138	Equipment <70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	3	\$898.38

Practice: 399-Fishpond Management
Scenario: \#11-Aerator, surface
Scenario Description:
Aerator added to existing fishpond to obtain desired oxygen levels. Typically 1 aerator needed per pond. Certain oxygen levels in the fishpond are needed for optimum vegetation, habitat and water quality. Oxygen levels and size of aerator needed are determined by a conservation planner, engineer or per existing supported data. Aerator planning and placement specifications can be found in 'AEN-3: Aeration of ponds used in aquaculture'. Resource concerns addressed include: Inadequate Habitat for Fish and Wildlife - Habitat degradation; Water Quality Degradation - Elevated water temperature.

Before Situation:
Existing fishpond has insufficent levels of oxygen available for desired fish species in pond. Habitat and water quality degraded, as well as health of the fish population.
After Situation:
Aerator sized appropriately for fishpond has been established and oxygen is at an optimum level. Participant will follow Operation and Maintenance guidance to ensure aerator maintained to continually provide appropriate oxygen levels for fishpond.

Feature Measure: Acre of pond managed
Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$2,022.00

Scenario Cost/Unit: \$2,022.00
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	2	\$54.32
Materials						
Post, Steel T, 1.33 lbs, 10 ft .	17	Steel Post, Studded 10 ft . - 1.33 lb . Includes materials and shipping only.	Each	\$12.62	2	\$25.24
Aerator, pond, 1 hp	1708	1 hp Aerator for pond or tank with less than 10 acres of surface area. Materials only.	Each	\$1,593.00	1	\$1,593.00
Mobilization						
Mobilization, small equipment	1138	Equipment <70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: 399-Fishpond Management
Scenario: \#12-Aerator, subsurface

Scenario Description:

Aerator added to existing fishpond to obtain desired oxygen levels. Typically 1 aerator needed per pond. Certain oxygen levels in the fishpond are needed for optimum vegetation, habitat and water quality. Oxygen levels and size of aerator needed are determined by a conservation planner, engineer or per existing supported data. Aerator planning and placement specifications can be found in 'AEN-3: Aeration of ponds used in aquaculture'. Resource concerns addressed include: Inadequate Habitat for Fish and Wildlife - Habitat degradation; Water Quality Degradation - Elevated water temperature. Associated Practice: Critical Area Planting - 342

Before Situation:
Existing fishpond has insufficent levels of oxygen available for desired fish species in pond. Habitat and water quality degraded, as well as health of the fish population.

After Situation:

Aerator sized appropriately for fishpond has been established and oxygen is at an optimum level. Participant will follow Operation and Maintenance guidance to ensure aerator maintained to continually provide appropriate oxygen levels for fishpond.

Feature Measure: Acre of pond managed
Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$4,145.37

Scenario Cost/Unit: \$4,145.37
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	8	\$18.40
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	2	\$54.32
Materials						
Post, Steel T, 1.33 lbs, 10 ft .	17	Steel Post, Studded 10 ft . - 1.33 lb . Includes materials and shipping only.	Each	\$12.62	2	\$25.24
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	71.5	\$197.34
Aerator - subsurface	1821	Aeration system, ponds, subsurface air. Includes materials and shipping.	Each	\$3,201.17	1	\$3,201.17
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	2	\$598.92

Practice: 399 - Fishpond Management
Scenario: \#13 - Planting Native Vegetation
Scenario Description:
Native, aquatic vegetation will be established by plugs and or tubers. Both emergent and submerged vegetation will be established using hand tools or other small equipment as needed. Vegetation will be established to ensure approprite cover for desired fish species. Plants will be established at a rate, location and density as prescribed by the conservation planner or other resource. A typical setting will plant between 2-5 aquatic plants per 10 SF . This scenario may include replacing of non desired plants with appropriate native plants. Resource Concerns addressed include: Degraded Plant Condition - Excessive plant pest pressure; Inadequate Habitat for Fish and Wildlife - Habitat degradation. Practice installation may also address: Water Quality Degradation - Elevated water temperatures.

Before Situation:
Established fish pond which has had insufficient vegetation for desired fish species. Vegetation consists either primarily of non-desired plants or is not of a density to provide adequate cover for fish species. Fishpond is typically 1 acre in size, $1 / 4$ acre of fishpond will receive native vegetation restoration.

After Situation:

Vegetation in fishpond is of a density and composition that is suitable for desired fish species. Vegetation is native plants. Resource concerns have been addressed. Participant will follow Operation and Maintenance guidelines to ensure established plants will thrive. If plant die-off occurs prior to lifespan of practice, participant is required to re-establish vegetation to NRCS Standards and Specifications.

Feature Measure: Acre of vegetation planted
Scenario Unit: Acres

Scenario Typical Size: 1.00
Scenario Total Cost: $\quad \$ 1,218.56$
Senario Cost/Unit:

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	32	\$869.12
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: 399-Fishpond Management
Scenario: \#14-Depth Management

Scenario Description:

Management of existing fishpond by excavation or placement of material to create deep open water or littoral shelves. Fishpond currently does not provide optimum habitat for desired species. Excavated material will either be relocated within fish pond, or sited appropriately so as to not cause any negative environmental effects. Changes to depth will be based upon recommendations by conservation planner or other indidvidual with appropriate credentials. Resource Concerns addressed include: Inadequate Habitat for Fish and Wildlife - Habitat degradation. Practice installation may also address: Water Quality Degradation - Elevated water temperatures. Associated Practice (if required): Critical Area Planting - 342

Before Situation:
Existing fish pond lacks sufficent depth, diversity of depth or desired bottom structure to provide optimum habitat for desired fish species.
After Situation:
Depth and bottom structure of fishpond are appropriate for desired fish species. Resource concerns have been addressed. Participant will follow Operation and Maintenance guidance to ensure created habitat is maintained and continues to provide the benefits to the resources.

Feature Measure: Acre of pond managed

Scenario Unit: Acres
Scenario Typical Size: 1.00

Scenario Total Cost:	$\$ 4,645.48$
Scenario Cost/Unit:	$\$ 4,645.48$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Hydraulic Excavator, 1 CY	931	Track mounted hydraulic excavator with bucket capacity range of 0.8 to 1.5 CY. Equipment and power unit costs. Labor not included.	Hours	\$128.59	8	\$1,028.72
Excavation, common earth, large equipment, 150 ft	1223	Bulk excavation of common earth including sand and gravel with dozer $>100 \mathrm{HP}$ with average push distance of 150 feet. Includes equipment and labor.	Cubic Yards	\$3.35	200	\$670.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	24	\$651.84
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	8	\$254.96
Materials						
Aggregate, river rock	1834	Well graded, rounded mineral substrates derived from local riverine settings. Includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Ton	\$37.70	10	\$377.00
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 399-Fishpond Management
Scenario: \#28-Invasive Weed Species - Chemical
Scenario Description:
Chemical application to existing fishpond to remove invasive or undesired vegetation. Typically use Diquat dibromide or other appropriate herbicide. Chemical control will be applied by a certified pesticide applicator per state code. Resource concerns addressed include: Degraded Plant Condition - Excessive plant pest pressure; Degraded Plant Condition - Inadequate structure and composition; Inadequate Habitat for Fish and Wildlife - Habitat degradation.

Before Situation:

Existing fishpond is negatively impacted by invasive vegetation. Invasive vegetation is reducing availability of resources for desired fish species.
After Situation:
Chemical application has been completed to manage the invasive vegetation. Resource concerns have been addressed. Participant will follow Operation and Maintenance guidance to ensure control has been achieved through regular monitoring and will address any negative impacts to ensure an invasion does not occur again within the Ifiespan of the practice.

Feature Measure: Acre of pond managed
Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$260.14
Scenario Cost/Unit: \$260.14
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	3	\$101.61
Materials						
Herbicide, Diquat dibromide	1820	Aquatic herbicide and plant growth regulator. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Gallons	\$108.55	1	\$108.55

Practice: 400-Bivalve Aquaculture Gear and Biofouling Control
Scenario: \#44-Infaunal Culture Yrs 2-3

Scenario Description:

This scenario describes the implementation of aquaculture gear and biofouling control on 1 acre of bivalves, usually clams, that are seeded IN the substrate of the ocean floor and tended and grown for two to three years until they reach marketable size. The planned practice will meet the current 400 standard. Implementation will result in the proper rate, method and timing of gear and biofouling controls, including increased level of monitoring, frequency of cleaning, cycling/rotating and hauling gear, disposing of waste gear, and keeping records demonstrating implementation of the 400 criteria. Payment for implementation is to defray the costs of increased labor above normal operating procedures and recordkeeping for the second and third years of the growth cycle.

Before Situation:
Aquaculture gear (preditor exclusion apparatus) is overgrown with biofouling organisms; water flow and food supply is significantly reduced endagering shellfish health and growth. Increased drag increases risk of gear escaping into the marine environment; escaped gear presents entanglement hazards to marine wildlife. Organic loading and aquatic nuisance species release are potential negative impacts of in-water gear cleaning activities.

After Situation:

Producer uses environmentally sound methods to maintain adequate water flow to bivalves by monitoring, minimizing and removing biofouling organisms. Damaged or excessively fouled gear is removed from the water and transported on-shore for cleaning or disposal.

Feature Measure: 20 beds/acre; 900sf/bed

Scenario Unit: Acres

Scenario Typical Size: 1.00
Scenario Total Cost: \$4,128.32
Scenario Cost/Unit: \$4,128.32
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and	Hours	\$27.16	152	\$4,128.32

Practice: 400-Bivalve Aquaculture Gear and Biofouling Control
Scenario: \#45-50,000 Epifaunal Culture Yrs 2-3

Scenario Description:

This scenario describes the implementation of aquaculture gear and biofouling control for raising 50,000 bivalves, usually oysters, ON or NEAR the substrate of the ocean floor, for three or more years until they reach marketable size. The planned practice will meet the current 400 standard. Implementation will result in the proper rate, method and timing of gear and biofouling controls, including increased level of monitoring, frequency of cleaning, cycling/rotating and hauling gear, disposing of waste gear, and keeping records demonstrating implementation of the 400 criteria. Payment for implementation is to defray the costs of increased labor above normal operating procedures and recordkeeping for the second and third years of the growth cycle.

Before Situation:

Aquaculture gear (preditor exclusion apparatus) is overgrown with biofouling organisms; water flow and food supply is significantly reduced endagering shellfish health and growth. Increased drag increases risk of gear escaping into the marine environment; escaped gear presents entanglement hazards to marine wildlife. Organic loading and aquatic nuisance species release are potential negative impacts of in-water gear cleaning activities.

After Situation:

Producer uses environmentally sound methods to maintain adequate water flow to bivalves by monitoring, minimizing and removing biofouling organisms. Damaged or excessively fouled gear is removed from the water and transported on-shore for cleaning or disposal.

Feature Measure: 50,000 bivalves

Scenario Unit: Each

Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 6,518.40$

Scenario Cost/Unit: $\$ 6,518.40$
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and	Hours	\$27.16	240	\$6,518.40

Practice: 400-Bivalve Aquaculture Gear and Biofouling Control
Scenario: \#57-Infaunal Culture Yr-1

Scenario Description:

This scenario describes the implementation of aquaculture gear and biofouling control on 1 acre of bivalves, usually clams, that are seeded IN the substrate of the ocean floor and tended and grown for two to three years until they reach marketable size. The planned practice will meet the current 400 standard. Implementation will result in the proper rate, method and timing of gear and biofouling controls, including increased level of monitoring, frequency of cleaning, cycling/rotating and hauling gear, disposing of waste gear, and keeping records demonstrating implementation of the 400 criteria. Payment for implementation is to defray the costs of redundant gear, increased labor above normal operating procedures and recordkeeping for the first year of the growth cycle.

Before Situation:
Aquaculture gear (preditor exclusion apparatus) is overgrown with biofouling organisms; water flow and food supply is significantly reduced endagering shellfish health and growth. Increased drag increases risk of gear escaping into the marine environment; escaped gear presents entanglement hazards to marine wildlife. Organic loading and aquatic nuisance species release are potential negative impacts of in-water gear cleaning activities.

After Situation:

Producer uses environmentally sound methods to maintain adequate water flow to bivalves by monitoring, minimizing and removing biofouling organisms. Damaged or excessively fouled gear is removed from the water and transported on-shore for cleaning or disposal.

Feature Measure: 20 beds/acre; 900sf/bed

Scenario Unit: Acres

Scenario Typical Size: 1.00
Scenario Total Cost: \$4,345.60
Scenario Cost/Unit: \$4,345.60
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and	Hours	\$27.16	160	\$4,345.60

Practice: 400-Bivalve Aquaculture Gear and Biofouling Control
Scenario: \#58-50,000 Epifaunal Culture Yr-1

Scenario Description:

This scenario describes the implementation of aquaculture gear and biofouling control for raising 50,000 bivalves, usually oysters, ON or NEAR the substrate of the ocean floor, for three or more years until they reach marketable size. The planned practice will meet the current 400 standard. Implementation will result in the proper rate, method and timing of gear and biofouling controls, including increased level of monitoring, frequency of cleaning, cycling/rotating and hauling gear, disposing of waste gear, and keeping records demonstrating implementation of the 400 criteria. Payment for implementation is to defray the costs of redundant gear, increased labor above normal operating procedures and recordkeeping for the first year of the growth cycle.

Before Situation:

Aquaculture gear (preditor exclusion apparatus) is overgrown with biofouling organisms; water flow and food supply is significantly reduced endagering shellfish health and growth. Increased drag increases risk of gear escaping into the marine environment; escaped gear presents entanglement hazards to marine wildlife. Organic loading and aquatic nuisance species release are potential negative impacts of in-water gear cleaning activities.

After Situation:

Producer uses environmentally sound methods to maintain adequate water flow to bivalves by monitoring, minimizing and removing biofouling organisms. Damaged or excessively fouled gear is removed from the water and transported on-shore for cleaning or disposal.

Feature Measure: 50,000 bivalves

Scenario Unit: Each

Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 6,518.40$

Scenario Cost/Unit: \$6,518.40
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and	Hours	\$27.16	240	\$6,518.40

Practice: 400-Bivalve Aquaculture Gear and Biofouling Control
Scenario: \#60-100,000 Epifaunal Culture Yr-1
Scenario Description:
This scenario describes the implementation of aquaculture gear and biofouling control for raising 100,000 bivalves, usually oysters, ON or NEAR the substrate of the ocean floor, for three or more years until they reach marketable size. The planned practice will meet the current 400 standard. Implementation will result in the proper rate, method and timing of gear and biofouling controls, including increased level of monitoring, frequency of cleaning, cycling/rotating and hauling gear, disposing of waste gear, and keeping records demonstrating implementation of the 400 criteria. Payment for implementation is to defray the costs of redundant gear, increased labor above normal operating procedures and recordkeeping for the first year of the growth cycle.

Before Situation:

Aquaculture gear (preditor exclusion apparatus) is overgrown with biofouling organisms; water flow and food supply is significantly reduced endagering shellfish health and growth. Increased drag increases risk of gear escaping into the marine environment; escaped gear presents entanglement hazards to marine wildlife. Organic loading and aquatic nuisance species release are potential negative impacts of in-water gear cleaning activities.

After Situation:

Producer uses environmentally sound methods to maintain adequate water flow to bivalves by monitoring, minimizing and removing biofouling organisms. Damaged or excessively fouled gear is removed from the water and transported on-shore for cleaning or disposal.

Feature Measure: 100,000 bivalves

Scenario Unit: Each

Scenario Typical Size: 1.00
Scenario Total Cost: \$13,036.80
Scenario Cost/Unit: \$13,036.80
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and	Hours	\$27.16	480	\$13,036.80

Practice: 400-Bivalve Aquaculture Gear and Biofouling Control
Scenario: \#61-100,000 Epifaunal Culture Yrs 2-3

Scenario Description:

This scenario describes the implementation of aquaculture gear and biofouling control for raising 100,000 bivalves, usually oysters, ON or NEAR the substrate of the ocean floor, for three or more years until they reach marketable size. The planned practice will meet the current 400 standard. Implementation will result in the proper rate, method and timing of gear and biofouling controls, including increased level of monitoring, frequency of cleaning, cycling/rotating and hauling gear, disposing of waste gear, and keeping records demonstrating implementation of the 400 criteria. Payment for implementation is to defray the costs of increased labor above normal operating procedures and recordkeeping for the second and third years of the growth cycle.

Before Situation:

Aquaculture gear (preditor exclusion apparatus) is overgrown with biofouling organisms; water flow and food supply is significantly reduced endagering shellfish health and growth. Increased drag increases risk of gear escaping into the marine environment; escaped gear presents entanglement hazards to marine wildlife. Organic loading and aquatic nuisance species release are potential negative impacts of in-water gear cleaning activities.

After Situation:

Producer uses environmentally sound methods to maintain adequate water flow to bivalves by monitoring, minimizing and removing biofouling organisms. Damaged or excessively fouled gear is removed from the water and transported on-shore for cleaning or disposal.

Feature Measure: 100,000 bivalves

Scenario Unit: Each

Scenario Typical Size: 1.00
Scenario Total Cost: \$13,036.80
Scenario Cost/Unit: \$13,036.80
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and	Hours	\$27.16	480	\$13,036.80

Practice: 400-Bivalve Aquaculture Gear and Biofouling Control
Scenario: \#62-500,000 Epifaunal Culture Yr-1

Scenario Description:

This scenario describes the implementation of aquaculture gear and biofouling control for raising 500,000 bivalves, usually oysters, ON or NEAR the substrate of the ocean floor, for three or more years until they reach marketable size. The planned practice will meet the current 400 standard. Implementation will result in the proper rate, method and timing of gear and biofouling controls, including increased level of monitoring, frequency of cleaning, cycling/rotating and hauling gear, disposing of waste gear, and keeping records demonstrating implementation of the 400 criteria. Payment for implementation is to defray the costs of redundant gear, increased labor above normal operating procedures and recordkeeping for the first year of the growth cycle.

Before Situation:

Aquaculture gear (preditor exclusion apparatus) is overgrown with biofouling organisms; water flow and food supply is significantly reduced endagering shellfish health and growth. Increased drag increases risk of gear escaping into the marine environment; escaped gear presents entanglement hazards to marine wildlife. Organic loading and aquatic nuisance species release are potential negative impacts of in-water gear cleaning activities.

After Situation:

Producer uses environmentally sound methods to maintain adequate water flow to bivalves by monitoring, minimizing and removing biofouling organisms. Damaged or excessively fouled gear is removed from the water and transported on-shore for cleaning or disposal.

Feature Measure: 500,000 bivalves

Scenario Unit: Each

Scenario Typical Size: 1.00
Scenario Total Cost: \$65,184.00
Scenario Cost/Unit: $\$ 65,184.00$
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and	Hours	\$27.16	2400	\$65,184.00

Practice: 400-Bivalve Aquaculture Gear and Biofouling Control
Scenario: \#63-500,000 Epifaunal Culture Yrs 2-3

Scenario Description:

This scenario describes the implementation of aquaculture gear and biofouling control for raising 500,000 bivalves, usually oysters, ON or NEAR the substrate of the ocean floor, for three or more years until they reach marketable size. The planned practice will meet the current 400 standard. Implementation will result in the proper rate, method and timing of gear and biofouling controls, including increased level of monitoring, frequency of cleaning, cycling/rotating and hauling gear, disposing of waste gear, and keeping records demonstrating implementation of the 400 criteria. Payment for implementation is to defray the costs of increased labor above normal operating procedures and recordkeeping for the second and third years of the growth cycle.

Before Situation:

Aquaculture gear (preditor exclusion apparatus) is overgrown with biofouling organisms; water flow and food supply is significantly reduced endagering shellfish health and growth. Increased drag increases risk of gear escaping into the marine environment; escaped gear presents entanglement hazards to marine wildlife. Organic loading and aquatic nuisance species release are potential negative impacts of in-water gear cleaning activities.

After Situation:

Producer uses environmentally sound methods to maintain adequate water flow to bivalves by monitoring, minimizing and removing biofouling organisms. Damaged or excessively fouled gear is removed from the water and transported on-shore for cleaning or disposal.

Feature Measure: 500,000 bivalves

Scenario Unit: Each

Scenario Typical Size: 1.00
Scenario Total Cost: \$65,184.00
Scenario Cost/Unit: $\$ 65,184.00$
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and	Hours	\$27.16	2400	\$65,184.00

Practice: 400-Bivalve Aquaculture Gear and Biofouling Control
Scenario: \#64-1 mil Epifaunal Culture Yr-1

Scenario Description:

This scenario describes the implementation of aquaculture gear and biofouling control for raising >= 1 million bivalves, usually oysters, ON or NEAR the substrate of the ocean floor, for three or more years until they reach marketable size. The planned practice will meet the current 400 standard. Implementation will result in the proper rate, method and timing of gear and biofouling controls, including increased level of monitoring, frequency of cleaning, cycling/rotating and hauling gear, disposing of waste gear, and keeping records demonstrating implementation of the 400 criteria. Payment for implementation is to defray the costs of redundant gear, increased labor above normal operating procedures and recordkeeping for the first year of the growth cycle.

Before Situation:
Aquaculture gear (preditor exclusion apparatus) is overgrown with biofouling organisms; water flow and food supply is significantly reduced endagering shellfish health and growth. Increased drag increases risk of gear escaping into the marine environment; escaped gear presents entanglement hazards to marine wildlife. Organic loading and aquatic nuisance species release are potential negative impacts of in-water gear cleaning activities.

After Situation:

Producer uses environmentally sound methods to maintain adequate water flow to bivalves by monitoring, minimizing and removing biofouling organisms. Damaged or excessively fouled gear is removed from the water and transported on-shore for cleaning or disposal.

Feature Measure: 1 million bivalves

Scenario Unit: Each

Scenario Typical Size: 1.00
Scenario Total Cost: \$130,368.00

Scenario Cost/Unit: \$130,368.00
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and	Hours	\$27.16	4800	\$130,368.00

Practice: 400-Bivalve Aquaculture Gear and Biofouling Control
Scenario: \#65-Epifaunal Culture

Scenario Description:

This scenario describes the implementation of aquaculture gear and biofouling control for raising >=1 million bivalves, usually oysters, ON or NEAR the substrate of the ocean floor, for three or more years until they reach marketable size. The planned practice will meet the current 400 standard. Implementation will result in the proper rate, method and timing of gear and biofouling controls, including increased level of monitoring, frequency of cleaning, cycling/rotating and hauling gear, disposing of waste gear, and keeping records demonstrating implementation of the 400 criteria. Payment for implementation is to defray the costs of increased labor above normal operating procedures and recordkeeping for the second and third years of the growth cycle.

Before Situation:

Aquaculture gear (preditor exclusion apparatus) is overgrown with biofouling organisms; water flow and food supply is significantly reduced endagering shellfish health and growth. Increased drag increases risk of gear escaping into the marine environment; escaped gear presents entanglement hazards to marine wildlife. Organic loading and aquatic nuisance species release are potential negative impacts of in-water gear cleaning activities.

After Situation:

Producer uses environmentally sound methods to maintain adequate water flow to bivalves by monitoring, minimizing and removing biofouling organisms. Damaged or excessively fouled gear is removed from the water and transported on-shore for cleaning or disposal.

Feature Measure: 1 million bivalves

Scenario Unit: Each

Scenario Typical Size: 1.00
Scenario Total Cost: \$130,368.00

Scenario Cost/Unit: \$130,368.00
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and	Hours	\$27.16	4800	\$130,368.00

Practice: 410-Grade Stabilization Structure
Scenario: \#1 - Embankment, CMP, Plastic Pipe or No Pipe, Earthwork (CY) to Pipe (DIFT) ratio greater than 4.0

Scenario Description:

An earthen embankment dam with a corrugated steel or plastic principal spillway with a ratio of earthwork (CY) to pipe (DIFT) that is greater than 4.0. This scenario also applies to an earthen embankment dam where a pipe is not needed due to evaporation and seepage. Installed to stabilize the grade and control erosion in natural or artificial channels, to prevent the formation or advancing of gullies, and to enhance environmental quality and reduce pollution hazards. Applied in areas where the concentration and flow velocity of water requires structures to stabilize the grade in channels or to control gully erosion. Cost estimate is based upon a typical amount of earthfill of 3,500 cubic yards and a 8 ' diameter 100 ft long principal spillway barrel (800 Diameter-inch-feet). Addresses resource concerns such as soil erosionconcentrated flow erosion and water quality degradation.

Before Situation:
The operator presently has gullies forming and/or worsening on the farmland and impacting the useable area and the downstream water quality. Erosion from the gullies is allowing soil and possibly nutrients to be transported to downstream receiving waters degrading water quality and causing soil loss.

After Situation:

Area is stabilized. The advancement and/or formation of gullies is stopped, soil from gullies no longer leaves the farm, useable farm area is increased, sedimentation and other pollution hazards are decreased, and water quality downstream is protected. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Pond (378), Dam (402), Fence (382), Pumping Plant (533), Watering Facility (614), and Livestock Pipeline (516) will use the corresponding Standard(s) as appropriate.

Feature Measure: Embankment Volume

Scenario Unit: Cubic Yards

Scenario Typical Size: 3,500.00
Scenario Total Cost: \$16,531.81
Scenario Cost/Unit: \$4.72
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Clearing and Grubbing	40	Clearing and Grubbing, includes materials, equipment and labor	Acres	\$290.55	1	\$290.55
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	3430	\$12,553.80
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	70	\$399.00
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	2	\$130.42
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	10	\$338.70
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	2	\$63.74
Materials						
Aggregate, Sand, Graded, Washed	45	Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$42.64	7	\$298.48
Aggregate, Gravel, Graded	46	Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$44.85	0.3	\$13.46
Structural steel tubing, 2 in. diameter	1120	Structural steel tubing, 2 inch diameter, $1 / 8$ inch wall thickness, materials only	Feet	\$4.58	54	\$247.32
Cattle Panel	1409	Welded wire cattle panel typically $1 / 4$ inch galvanized steel rods, 50 in. high x 16 ft . long. Materials only.	Each	\$32.94	3	\$98.82
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 410-Grade Stabilization Structure
Scenario: \#2 - Embankment, CMP or Plastic Pipe, Ratio of Earthwork (CY) to Pipe (DIFT) is 4.0 to 2.1

Scenario Description:

An earthen embankment dam with a corrugated steel or plastic principal spillway with a ratio of earthwork (CY) to pipe (DIFT) that is 4.0 to 2.1 . Installed to stabilize the grade and control erosion in natural or artificial channels, to prevent the formation or advancing of gullies, and to enhance environmental quality and reduce pollution hazards. Applied in areas where the concentration and flow velocity of water requires structures to stabilize the grade in channels or to control gully erosion. Cost estimate is based upon a typical amount of earthfill of 4,000 cubic yards and a 12 ' diameter 110 ft long principal spillway barrel (1320 Diameter-inch-feet). Addresses resource concerns such as soil erosion-concentrated flow erosion and water quality degradation.

Before Situation:
The operator presently has gullies forming and/or worsening on the farmland and impacting the useable area and the downstream water quality. Erosion from the gullies is allowing soil and possibly nutrients to be transported to downstream receiving waters degrading water quality and causing soil loss.

After Situation:

Area is stabilized. The advancement and/or formation of gullies is stopped, soil from gullies no longer leaves the farm, useable farm area is increased, sedimentation and other pollution hazards are decreased, and water quality downstream is protected. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Pond (378), Dam (402), Fence (382), Pumping Plant (533), Watering Facility (614), and Livestock Pipeline (516) will use the corresponding Standard(s) as appropriate.

Feature Measure: Embankment Volume
Scenario Unit: Cubic Yards
Scenario Typical Size: 4,000.00
Scenario Total Cost:
\$21,043.41
Scenario Cost/Unit: \$5.26
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Clearing and Grubbing	40	Clearing and Grubbing, includes materials, equipment and labor	Acres	\$290.55	1	\$290.55
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	3915	\$14,328.90
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	85	\$484.50
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	2	\$130.42
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	10	\$338.70
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag	Hours	\$31.87	2	\$63.74

Materials

Aggregate, Sand, Graded, Washed

Aggregate, Gravel, Graded	46	Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$44.85	0.3	\$13.46
Structural steel tubing, 2 in. diameter	1120	Structural steel tubing, 2 inch diameter, $1 / 8$ inch wall thickness, materials only	Feet	\$4.58	54	\$247.32
Pipe, CMP, 18-16 gauge, weight priced	1322	18 and 16 gauge galvanized helical corrugated metal pipe priced by the weight of the pipe materials. Materials only.	Pound	\$2.41	1100	\$2,651.00
Cattle Panel	1409	Welded wire cattle panel typically $1 / 4$ inch galvanized steel rods, 50 in . high x 16 ft . long. Materials only.	Each	\$32.94	3	\$98.82
Mobilization						
Mobilization, medium equipment	1139	Equipment with $70-150 \mathrm{HP}$ or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37
Mobilization, large equipment	1140	Equipment >150HP or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 410-Grade Stabilization Structure
Scenario: \#3 - Embankment, CMP or Plastic Pipe, Ratio of Earthwork (CY) to Pipe (DIFT) is 2.0 to 1.4

Scenario Description:

An earthen embankment dam with a corrugated steel or plastic principal spillway with a ratio of earthwork (CY) to pipe (DIFT) that is 2.0 to 1.4 . Installed to stabilize the grade and control erosion in natural or artificial channels, to prevent the formation or advancing of gullies, and to enhance environmental quality and reduce pollution hazards. Applied in areas where the concentration and flow velocity of water requires structures to stabilize the grade in channels or to control gully erosion. Cost estimate is based upon a typical amount of earthfill of 3,500 cubic yards and a 18 ' diameter 120 ft long principal spillway barrel (2160 Diameter-inch-feet). Addresses resource concerns such as soil erosion-concentrated flow erosion and water quality degradation.

Before Situation:
The operator presently has gullies forming and/or worsening on the farmland and impacting the useable area and the downstream water quality. Erosion from the gullies is allowing soil and possibly nutrients to be transported to downstream receiving waters degrading water quality and causing soil loss.

After Situation:

Area is stabilized. The advancement and/or formation of gullies is stopped, soil from gullies no longer leaves the farm, useable farm area is increased, sedimentation and other pollution hazards are decreased, and water quality downstream is protected. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Pond (378), Dam (402), Fence (382), Pumping Plant (533), Watering Facility (614), and Livestock Pipeline (516) will use the corresponding Standard(s) as appropriate.

Feature Measure: Embankment Volume
Scenario Unit: Cubic Yards
Scenario Typical Size: 3,500.00

Scenario Total Cost:

\$21,274.90
Scenario Cost/Unit: \$6.08
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Clearing and Grubbing	40	Clearing and Grubbing, includes materials, equipment and labor	Acres	\$290.55	1.5	\$435.83
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	3390	\$12,407.40
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	110	\$627.00
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	2	\$130.42
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	10	\$338.70
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	20	\$543.20
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag	Hours	\$31.87	2	\$63.74

Materials

Aggregate, Sand, Graded, Washed

Aggregate, Gravel, Graded	46	Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$44.85	0.3	\$13.46
Structural steel tubing, 2 in. diameter	1120	Structural steel tubing, 2 inch diameter, $1 / 8$ inch wall thickness, materials only	Feet	\$4.58	62	\$283.96
Pipe, CMP, 18-16 gauge, weight priced	1322	18 and 16 gauge galvanized helical corrugated metal pipe priced by the weight of the pipe materials. Materials only.	Pound	\$2.41	1800	\$4,338.00
Cattle Panel	1409	Welded wire cattle panel typically $1 / 4$ inch galvanized steel rods, 50 in. high $x 16 \mathrm{ft}$. long. Materials only.	Each	\$32.94	4	\$131.76
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 410-Grade Stabilization Structure
Scenario: \#4 - Embankment, CMP or Plastic Pipe, Ratio of Earthwork (CY) to Pipe (DIFT) is 1.3 to 1.1

Scenario Description:

An earthen embankment dam with a corrugated steel or plastic principal spillway with a ratio of earthwork (CY) to pipe (DIFT) that is 1.3 to 1.1 . Installed to stabilize the grade and control erosion in natural or artificial channels, to prevent the formation or advancing of gullies, and to enhance environmental quality and reduce pollution hazards. Applied in areas where the concentration and flow velocity of water requires structures to stabilize the grade in channels or to control gully erosion. Cost estimate is based upon a typical amount of earthfill of 3,750 cubic yards and a 24 ' diameter 130 ft long principal spillway barrel (3120 Diameter-inch-feet). Addresses resource concerns such as soil erosion-concentrated flow erosion and water quality degradation.

Before Situation:
The operator presently has gullies forming and/or worsening on the farmland and impacting the useable area and the downstream water quality. Erosion from the gullies is allowing soil and possibly nutrients to be transported to downstream receiving waters degrading water quality and causing soil loss.

After Situation:

Area is stabilized. The advancement and/or formation of gullies is stopped, soil from gullies no longer leaves the farm, useable farm area is increased, sedimentation and other pollution hazards are decreased, and water quality downstream is protected. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Pond (378), Dam (402), Fence (382), Pumping Plant (533), Watering Facility (614), and Livestock Pipeline (516) will use the corresponding Standard(s) as appropriate.

Feature Measure: Embankment Volume
Scenario Unit: Cubic Yards
Scenario Typical Size: 3,750.00
Scenario Total Cost:
\$24,175.40
Scenario Cost/Unit: \$6.45
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Clearing and Grubbing	40	Clearing and Grubbing, includes materials, equipment and labor	Acres	\$290.55	1.5	\$435.83
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	3615	\$13,230.90
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	135	\$769.50
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	2	\$130.42
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	10	\$338.70
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	20	\$543.20
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag	Hours	\$31.87	2	\$63.74

Materials

Aggregate, Sand, Graded, Washed

Aggregate, Gravel, Graded	46	Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$44.85	0.3	\$13.46
Structural steel tubing, 2 in. diameter	1120	Structural steel tubing, 2 inch diameter, $1 / 8$ inch wall thickness, materials only	Feet	\$4.58	62	\$283.96
Pipe, CMP, 18-16 gauge, weight priced	1322	18 and 16 gauge galvanized helical corrugated metal pipe priced by the weight of the pipe materials. Materials only.	Pound	\$2.41	2470	\$5,952.70
Cattle Panel	1409	Welded wire cattle panel typically $1 / 4$ inch galvanized steel rods, 50 in. high $x 16 \mathrm{ft}$. long. Materials only.	Each	\$32.94	4	\$131.76
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 410-Grade Stabilization Structure
Scenario: \#5 - Embankment, CMP or Plastic Pipe, Ratio of Earthwork (CY) to Pipe (DIFT) is 1.0 to 0.71

Scenario Description:

An earthen embankment dam with a corrugated steel or plastic principal spillway with a ratio of earthwork (CY) to pipe (DIFT) that is 1.0 to 0.71 . Installed to stabilize the grade and control erosion in natural or artificial channels, to prevent the formation or advancing of gullies, and to enhance environmental quality and reduce pollution hazards. Applied in areas where the concentration and flow velocity of water requires structures to stabilize the grade in channels or to control gully erosion. Cost estimate is based upon a typical amount of earthfill of 3,750 cubic yards and a principal spillway with a 30 ' diameter 130 ft long barrel and 60 diameter 4.5 ft tall riser (4170 Diameter-inch-feet). Addresses resource concerns such as soil erosion-concentrated flow erosion and water quality degradation.

Before Situation:

The operator presently has gullies forming and/or worsening on the farmland and impacting the useable area and the downstream water quality. Erosion from the gullies is allowing soil and possibly nutrients to be transported to downstream receiving waters degrading water quality and causing soil loss.

After Situation:

Area is stabilized. The advancement and/or formation of gullies is stopped, soil from gullies no longer leaves the farm, useable farm area is increased, sedimentation and other pollution hazards are decreased, and water quality downstream is protected. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Pond (378), Dam (402), Fence (382), Pumping Plant (533), Watering Facility (614), and Livestock Pipeline (516) will use the corresponding Standard(s) as appropriate.

Feature Measure: Principal Spillway Pipe Material
Scenario Unit: Diameter Inch Foot
Scenario Typical Size: 4,170.00
Scenario Total Cost: \$28,563.08
Scenario Cost/Unit: \$6.85
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	3	\$1,214.10
Clearing and Grubbing	40	Clearing and Grubbing, includes materials, equipment and labor	Acres	\$290.55	1.5	\$435.83
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	3590	\$13,139.40
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	160	\$912.00
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	2	\$130.42
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	10	\$338.70
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	30	\$814.80
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag	Hours	\$31.87	2	\$63.74

Materials

Rock Riprap, Placed with geotextile
Aggregate, Sand, Graded, Washed

Aggregate, Gravel, Graded

Structural steel tubing, 2 in. diameter
Pipe, CMP, 18-16 gauge, weight priced
Cattle Panel

Pipe, CMP, 14-12 gauge, weight priced

44 Rock Riprap, placed with geotextile. Includes materials, local delivery within 20 miles of quarry, and placement.

45 Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.

46 Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.
1120 Structural steel tubing, 2 inch diameter, $1 / 8$ inch wall thickness, materials only
132218 and 16 gauge galvanized helical corrugated metal pipe priced by the weight of the pipe materials. Materials only.
1409 Welded wire cattle panel typically $1 / 4$ inch galvanized steel rods, 50 in . high $x 16 \mathrm{ft}$. long. Materials only.
158914 and 12 gauge galvanized helical corrugated metal pipe priced by the weight of the pipe materials. Materials only.

Cubic Yards	$\$ 137.64$	6.1	$\$ 839.60$
Cubic Yards	$\$ 42.64$	14.5	$\$ 618.28$
Cubic Yards	$\$ 44.85$	0.3	$\$ 13.46$
Feet	$\$ 4.58$	70	$\$ 320.60$
Pound	$\$ 2.41$	3120	$\$ 7,519.20$
Each	$\$ 32.94$	4	$\$ 131.76$
Pound	$\$ 1.12$	364.5	$\$ 408.24$

Mobilization

Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 410-Grade Stabilization Structure
Scenario: \#6 - Embankment, CMP or Plastic Pipe, Ratio of Earthwork (CY) to Pipe (DIFT) is 0.70 to 0.41

Scenario Description:

An earthen embankment dam with a corrugated steel or plastic principal spillway with a ratio of earthwork (CY) to pipe (DIFT) that is 0.70 to 0.41 . Installed to stabilize the grade and control erosion in natural or artificial channels, to prevent the formation or advancing of gullies, and to enhance environmental quality and reduce pollution hazards. Applied in areas where the concentration and flow velocity of water requires structures to stabilize the grade in channels or to control gully erosion. Cost estimate is based upon a typical amount of earthfill of 3,500 cubic yards and a principal spillway with a 42 ' diameter 130 ft long barrel and 84 diameter 5.5 ft tall riser (5922 Diameter-inch-feet). Addresses resource concerns such as soil erosion-concentrated flow erosion and water quality degradation.

Before Situation:

The operator presently has gullies forming and/or worsening on the farmland and impacting the useable area and the downstream water quality. Erosion from the gullies is allowing soil and possibly nutrients to be transported to downstream receiving waters degrading water quality and causing soil loss.

After Situation:

Area is stabilized. The advancement and/or formation of gullies is stopped, soil from gullies no longer leaves the farm, useable farm area is increased, sedimentation and other pollution hazards are decreased, and water quality downstream is protected. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Pond (378), Dam (402), Fence (382), Pumping Plant (533), Watering Facility (614), and Livestock Pipeline (516) will use the corresponding Standard(s) as appropriate.

Feature Measure: Principal Spillway Pipe Material
Scenario Unit: Diameter Inch Foot
Scenario Typical Size: 5,922.00
Scenario Total Cost: $\$ 35,683.66$

Scenario Cost/Unit: \$6.03

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	7	\$2,832.90
Clearing and Grubbing	40	Clearing and Grubbing, includes materials, equipment and labor	Acres	\$290.55	2	\$581.10
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	3290	\$12,041.40
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	210	\$1,197.00
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	2	\$130.42
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	10	\$338.70
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	36	\$977.76
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag	Hours	\$31.87	2	\$63.74

Materials
Rock Riprap, Placed with
44 Rock Riprap, placed with geotextile. Includes materials, local delivery within 20 miles of quarry, and placement.
Aggregate, Sand, Graded, Washed

Aggregate, Gravel, Graded

Structural steel tubing, 2 in. diameter
Pipe, CMP, 18-16 gauge, weight
priced
Cattle Panel

Pipe, CMP, 14-12 gauge, weight
priced

46 Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included. materials only
Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.

132218 and 16 gauge galvanized helical corrugated metal pipe priced by the weight of the pipe materials. Materials only.
1409 Welded wire cattle panel typically $1 / 4$ inch galvanized steel rods, 50 in . high $\times 16 \mathrm{ft}$. long. Materials only.
158914 and 12 gauge galvanized helical corrugated metal pipe priced by the weight of the pipe materials. Materials only.

Cubic Yards	$\$ 137.64$	7.2	$\$ 991.01$
Cubic Yards	$\$ 42.64$	33.3	$\$ 1,419.91$
Cubic Yards	$\$ 44.85$	0.3	$\$ 13.46$
Feet	$\$ 4.58$	110	$\$ 503.80$
Pound	$\$ 2.41$	5070	$\$ 12,218.70$
Each	$\$ 32.94$	4	$\$ 131.76$
Pound	$\$ 1.12$	517	$\$ 579.04$

Mobilization

Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 410-Grade Stabilization Structure
Scenario: \#7 - Embankment, CMP or Plastic Pipe, Ratio of Earthwork (CY) to Pipe (DIFT) is 0.40 to 0.20

Scenario Description:

An earthen embankment dam with a corrugated steel or plastic principal spillway with a ratio of earthwork (CY) to pipe (DIFT) that is 0.40 to 0.20 . Installed to stabilize the grade and control erosion in natural or artificial channels, to prevent the formation or advancing of gullies, and to enhance environmental quality and reduce pollution hazards. Applied in areas where the concentration and flow velocity of water requires structures to stabilize the grade in channels or to control gully erosion. Cost estimate is based upon a typical amount of earthfill of 2,500 cubic yards and a principal spillway with a 54 ' diameter 130 ft long barrel and a 108 diameter 6.5 ft tall riser (7722 Diameter-inch-feet). Addresses resource concerns such as soil erosion-concentrated flow erosion and water quality degradation.

Before Situation:

The operator presently has gullies forming and/or worsening on the farmland and impacting the useable area and the downstream water quality. Erosion from the gullies is allowing soil and possibly nutrients to be transported to downstream receiving waters degrading water quality and causing soil loss.

After Situation:

Area is stabilized. The advancement and/or formation of gullies is stopped, soil from gullies no longer leaves the farm, useable farm area is increased, sedimentation and other pollution hazards are decreased, and water quality downstream is protected. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Pond (378), Dam (402), Fence (382), Pumping Plant (533), Watering Facility (614), and Livestock Pipeline (516) will use the corresponding Standard(s) as appropriate.

Feature Measure: Principal Spillway Pipe Material
Scenario Unit: Diameter Inch Foot
Scenario Typical Size: 7,722.00
Scenario Total Cost: $\$ 33,323.47$
Scenario Cost/Unit: \$4.32
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	13.6	\$5,503.92
Clearing and Grubbing	40	Clearing and Grubbing, includes materials, equipment and labor	Acres	\$290.55	2	\$581.10
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	2225	\$8,143.50
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	275	\$1,567.50
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	2	\$130.42
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	10	\$338.70
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	40	\$1,086.40
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag	Hours	\$31.87	2	\$63.74

Materials

Rock Riprap, Placed with
44 Rock Riprap, placed with geotextile. Includes materials, local delivery within 20 miles of quarry, and placement.
Aggregate, Sand, Graded, Washed

Aggregate, Gravel, Graded
46 Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.
Structural steel tubing, 2 in. diameter

Cattle Panel
1120 Structural steel tubing, 2 inch diameter, $1 / 8$ inch wall thickness, materials only
1409 Welded wire cattle panel typically $1 / 4$ inch galvanized steel rods, 50 in . high $x 16 \mathrm{ft}$. long. Materials only.
Pipe, CMP, 14-12 gauge, weight
158914 and 12 gauge galvanized helical corrugated metal pipe priced by the weight of the pipe materials. Materials only.

Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.

Mobilization

Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 410-Grade Stabilization Structure
Scenario: \#8 - Embankment, CMP or Plastic Pipe, Ratio of Earthwork (CY) to Pipe (DIFT) is less than 0.20

Scenario Description:

An earthen embankment dam with a corrugated steel or plastic principal spillway with a ratio of earthwork (CY) to pipe (DIFT) that is less than 0.20 . Installed to stabilize the grade and control erosion in natural or artificial channels, to prevent the formation or advancing of gullies, and to enhance environmental quality and reduce pollution hazards. Applied in areas where the concentration and flow velocity of water requires structures to stabilize the grade in channels or to control gully erosion. Cost estimate is based upon a typical amount of earthfill of 1,500 cubic yards and a principal spillway with a 54 ' diameter 130 ft long barrel and a 108 diameter 6.5 ft tall riser (7722 Diameter-inch-feet). Addresses resource concerns such as soil erosion-concentrated flow erosion and water quality degradation.

Before Situation:

The operator presently has gullies forming and/or worsening on the farmland and impacting the useable area and the downstream water quality. Erosion from the gullies is allowing soil and possibly nutrients to be transported to downstream receiving waters degrading water quality and causing soil loss.

After Situation:

Area is stabilized. The advancement and/or formation of gullies is stopped, soil from gullies no longer leaves the farm, useable farm area is increased, sedimentation and other pollution hazards are decreased, and water quality downstream is protected. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Pond (378), Dam (402), Fence (382), Pumping Plant (533), Watering Facility (614), and Livestock Pipeline (516) will use the corresponding Standard(s) as appropriate.

Feature Measure: Principal Spillway Pipe Material
Scenario Unit: Diameter Inch Foot
Scenario Typical Size: 7,722.00
Scenario Total Cost: \$29,663.47

Scenario Cost/Unit: \$3.84

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	13.6	\$5,503.92
Clearing and Grubbing	40	Clearing and Grubbing, includes materials, equipment and labor	Acres	\$290.55	2	\$581.10
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	1225	\$4,483.50
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	275	\$1,567.50
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	2	\$130.42
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	10	\$338.70
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	40	\$1,086.40
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag	Hours	\$31.87	2	\$63.74

Materials

Rock Riprap, Placed with
44 Rock Riprap, placed with geotextile. Includes materials, local delivery within 20 miles of quarry, and placement.

Aggregate, Sand, Graded, Washed

Aggregate, Gravel, Graded
46 Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.
Structural steel tubing, 2 in. diameter

Cattle Panel
1120 Structural steel tubing, 2 inch diameter, $1 / 8$ inch wall thickness, materials only
1409 Welded wire cattle panel typically $1 / 4$ inch galvanized steel rods, 50 in . high $x 16 \mathrm{ft}$. long. Materials only.
Pipe, CMP, 14-12 gauge, weight
158914 and 12 gauge galvanized helical corrugated metal pipe priced by the weight of the pipe materials. Materials only.
Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.
priced
Mobilization

Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 410-Grade Stabilization Structure
Scenario: \#9 - Embankment, Welded Steel or Aluminum Pipe, Earthwork (CY) to Pipe (DIFT) ratio greater than 4.0

Scenario Description:

An earthen embankment dam with a smooth steel or corrugated aluminum principal spillway with a ratio of earthwork (CY) to pipe (DIFT) that is greater than 4.0. Installed to stabilize the grade and control erosion in natural or artificial channels, to prevent the formation or advancing of gullies, and to enhance environmental quality and reduce pollution hazards. Applied in areas where the concentration and flow velocity of water requires structures to stabilize the grade in channels or to control gully erosion. Cost estimate is based upon a typical amount of earthfill of 3,500 cubic yards and a 8 diameter 100 ft long principal spillway barrel (800 Diameter-inch-feet). Addresses resource concerns such as soil erosion-concentrated flow erosion and water quality degradation.

Before Situation:

The operator presently has gullies forming and/or worsening on the farmland and impacting the useable area and the downstream water quality. Erosion from the gullies is allowing soil and possibly nutrients to be transported to downstream receiving waters degrading water quality and causing soil loss.

After Situation:

Area is stabilized. The advancement and/or formation of gullies is stopped, soil from gullies no longer leaves the farm, useable farm area is increased, sedimentation and other pollution hazards are decreased, and water quality downstream is protected. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Pond (378), Dam (402), Fence (382), Pumping Plant (533), Watering Facility (614), and Livestock Pipeline (516) will use the corresponding Standard(s) as appropriate.

Feature Measure: Embankment Volume
Scenario Unit: Cubic Yards
Scenario Typical Size: 3,500.00

Scenario Total Cost:

\$19,618.58
Scenario Cost/Unit: \$5.61

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Clearing and Grubbing	40	Clearing and Grubbing, includes materials, equipment and labor	Acres	\$290.55	1	\$290.55
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	3430	\$12,553.80
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	70	\$399.00
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	2	\$130.42
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	16	\$541.92
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag	Hours	\$31.87	2	\$63.74

Materials

Aggregate, Sand, Graded, Washed

Aggregate, Gravel, Graded	46	Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$44.85	0.3	\$13.46
Structural steel tubing, 2 in. diameter	1120	Structural steel tubing, 2 inch diameter, $1 / 8$ inch wall thickness, materials only	Feet	\$4.58	54	\$247.32
Cattle Panel	1409	Welded wire cattle panel typically $1 / 4$ inch galvanized steel rods, 50 in. high x 16 ft . long. Materials only.	Each	\$32.94	3	\$98.82
Pipe, Steel, Std Wt., Used, weight priced	2870	Schedule 40 steel pipe, used. Materials only.	Pound	\$1.01	2855	\$2,883.55
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37
Mobilization, large equipment	1140	Equipment >150HP or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 410-Grade Stabilization Structure
Scenario: \#10-Embankment, Welded Steel or Aluminum Pipe, Ratio of Earthwork (CY) to Pipe (DIFT) is 4.0 to 2.1

Scenario Description:

An earthen embankment dam with a smooth steel or corugated aluminum principal spillway with a ratio of earthwork (CY) to pipe (DIFT) that is 4.0 to 2.1 . Installed to stabilize the grade and control erosion in natural or artificial channels, to prevent the formation or advancing of gullies, and to enhance environmental quality and reduce pollution hazards. Applied in areas where the concentration and flow velocity of water requires structures to stabilize the grade in channels or to control gully erosion. Cost estimate is based upon a typical amount of earthfill of 4,000 cubic yards and a 12 ' diameter 110 ft long principal spillway barrel (1320 Diameter-inch-feet). Addresses resource concerns such as soil erosion-concentrated flow erosion and water quality degradation.

Before Situation:
The operator presently has gullies forming and/or worsening on the farmland and impacting the useable area and the downstream water quality. Erosion from the gullies is allowing soil and possibly nutrients to be transported to downstream receiving waters degrading water quality and causing soil loss.

After Situation:

Area is stabilized. The advancement and/or formation of gullies is stopped, soil from gullies no longer leaves the farm, useable farm area is increased, sedimentation and other pollution hazards are decreased, and water quality downstream is protected. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Pond (378), Dam (402), Fence (382), Pumping Plant (533), Watering Facility (614), and Livestock Pipeline (516) will use the corresponding Standard(s) as appropriate.

Feature Measure: Embankment Volume
Scenario Unit: Cubic Yards
Scenario Typical Size: 4,000.00
Scenario Total Cost:
\$24,101.74
Scenario Cost/Unit: \$6.03

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Clearing and Grubbing	40	Clearing and Grubbing, includes materials, equipment and labor	Acres	\$290.55	1	\$290.55
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	3915	\$14,328.90
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	85	\$484.50
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	2	\$130.42
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	16	\$541.92
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag	Hours	\$31.87	2	\$63.74

Materials

Aggregate, Sand, Graded, Washed

Aggregate, Gravel, Graded	46	Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$44.85	0.3	\$13.46
Structural steel tubing, 2 in. diameter	1120	Structural steel tubing, 2 inch diameter, $1 / 8$ inch wall thickness, materials only	Feet	\$4.58	54	\$247.32
Cattle Panel	1409	Welded wire cattle panel typically $1 / 4$ inch galvanized steel rods, 50 in . high x 16 ft . long. Materials only.	Each	\$32.94	3	\$98.82
Pipe, Steel, Std Wt., Used, weight priced	2870	Schedule 40 steel pipe, used. Materials only.	Pound	\$1.01	5451.6	\$5,506.12
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37
Mobilization, large equipment	1140	Equipment >150HP or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 410-Grade Stabilization Structure
Scenario: \#11 - Embankment, Welded Steel or Aluminum Pipe, Ratio of Earthwork (CY) to Pipe (DIFT) is 2.0 to 1.4

Scenario Description:

An earthen embankment dam with a smooth steel or corrugated aluminum principal spillway with a ratio of earthwork (CY) to pipe (DIFT) that is 2.0 to 1.4 . Installed to stabilize the grade and control erosion in natural or artificial channels, to prevent the formation or advancing of gullies, and to enhance environmental quality and reduce pollution hazards. Applied in areas where the concentration and flow velocity of water requires structures to stabilize the grade in channels or to control gully erosion. Cost estimate is based upon a typical amount of earthfill of 3,500 cubic yards and a 18 ' diameter 120 ft long principal spillway barrel (2160 Diameter-inch-feet). Addresses resource concerns such as soil erosion-concentrated flow erosion and water quality degradation.

Before Situation:
The operator presently has gullies forming and/or worsening on the farmland and impacting the useable area and the downstream water quality. Erosion from the gullies is allowing soil and possibly nutrients to be transported to downstream receiving waters degrading water quality and causing soil loss.

After Situation:

Area is stabilized. The advancement and/or formation of gullies is stopped, soil from gullies no longer leaves the farm, useable farm area is increased, sedimentation and other pollution hazards are decreased, and water quality downstream is protected. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Pond (378), Dam (402), Fence (382), Pumping Plant (533), Watering Facility (614), and Livestock Pipeline (516) will use the corresponding Standard(s) as appropriate.

Feature Measure: Embankment Volume
Scenario Unit: Cubic Yards
Scenario Typical Size: 3,500.00
Scenario Total Cost:
\$25,478.35
Scenario Cost/Unit:
\$7.28
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Clearing and Grubbing	40	Clearing and Grubbing, includes materials, equipment and labor	Acres	\$290.55	1.5	\$435.83
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	3390	\$12,407.40
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	110	\$627.00
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	2	\$130.42
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	16	\$541.92
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	12	\$325.92
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag	Hours	\$31.87	2	\$63.74

Materials

Aggregate, Sand, Graded, Washed

Aggregate, Gravel, Graded	46	Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$44.85	0.3	\$13.46
Structural steel tubing, 2 in. diameter	1120	Structural steel tubing, 2 inch diameter, $1 / 8$ inch wall thickness, materials only	Feet	\$4.58	62	\$283.96
Cattle Panel	1409	Welded wire cattle panel typically $1 / 4$ inch galvanized steel rods, 50 in . high $x 16 \mathrm{ft}$. long. Materials only.	Each	\$32.94	4	\$131.76
Pipe, Steel, Std Wt., Used, weight priced	2870	Schedule 40 steel pipe, used. Materials only.	Pound	\$1.01	8470.8	\$8,555.51
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 410-Grade Stabilization Structure
Scenario: \#12 - Embankment, Welded Steel or Aluminum Pipe, Ratio of Earthwork (CY) to Pipe (DIFT) is 1.3 to 1.1

Scenario Description:

An earthen embankment dam with a smooth steel or corrugated aluminum principal spillway with a ratio of earthwork (CY) to pipe (DIFT) that is 1.3 to 1.1 . Installed to stabilize the grade and control erosion in natural or artificial channels, to prevent the formation or advancing of gullies, and to enhance environmental quality and reduce pollution hazards. Applied in areas where the concentration and flow velocity of water requires structures to stabilize the grade in channels or to control gully erosion. Cost estimate is based upon a typical amount of earthfill of 3,750 cubic yards and a 24 ' diameter 130 ft long principal spillway barrel (3120 Diameter-inch-feet). Addresses resource concerns such as soil erosion-concentrated flow erosion and water quality degradation.

Before Situation:
The operator presently has gullies forming and/or worsening on the farmland and impacting the useable area and the downstream water quality. Erosion from the gullies is allowing soil and possibly nutrients to be transported to downstream receiving waters degrading water quality and causing soil loss.

After Situation:

Area is stabilized. The advancement and/or formation of gullies is stopped, soil from gullies no longer leaves the farm, useable farm area is increased, sedimentation and other pollution hazards are decreased, and water quality downstream is protected. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Pond (378), Dam (402), Fence (382), Pumping Plant (533), Watering Facility (614), and Livestock Pipeline (516) will use the corresponding Standard(s) as appropriate.

Feature Measure: Embankment Volume
Scenario Unit: Cubic Yards
Scenario Typical Size: 3,750.00
Scenario Total Cost: \$30,632.25
Scenario Cost/Unit: \$8.17
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Clearing and Grubbing	40	Clearing and Grubbing, includes materials, equipment and labor	Acres	\$290.55	1.5	\$435.83
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	3615	\$13,230.90
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	135	\$769.50
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	2	\$130.42
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	16	\$541.92
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	12	\$325.92
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag	Hours	\$31.87	2	\$63.74

Materials

Aggregate, Sand, Graded, Washed

Aggregate, Gravel, Graded	46	Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$44.85	0.3	\$13.46
Structural steel tubing, 2 in. diameter	1120	Structural steel tubing, 2 inch diameter, $1 / 8$ inch wall thickness, materials only	Feet	\$4.58	62	\$283.96
Cattle Panel	1409	Welded wire cattle panel typically $1 / 4$ inch galvanized steel rods, 50 in. high $x 16 \mathrm{ft}$. long. Materials only.	Each	\$32.94	4	\$131.76
Pipe, Steel, Std Wt., Used, weight priced	2870	Schedule 40 steel pipe, used. Materials only.	Pound	\$1.01	12300.6	\$12,423.61
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 410-Grade Stabilization Structure
Scenario: \#13-Embankment, Welded Steel or Aluminum Pipe, Ratio of Earthwork (CY) to Pipe (DIFT) is 1.0 to 0.71

Scenario Description:

An earthen embankment dam with a smooth steel or corrugated aluminum principal spillway with a ratio of earthwork (CY) to pipe (DIFT) that is 1.0 to 0.71 . Installed to stabilize the grade and control erosion in natural or artificial channels, to prevent the formation or advancing of gullies, and to enhance environmental quality and reduce pollution hazards. Applied in areas where the concentration and flow velocity of water requires structures to stabilize the grade in channels or to control gully erosion. Cost estimate is based upon a typical amount of earthfill of 2,000 cubic yards and a principal spillway with a 24 ' diameter 90 ft long barrel and 42 diameter 6 ft tall riser (2412 diameter-inch-feet). Addresses resource concerns such as soil erosion-concentrated flow erosion and water quality degradation.

Before Situation:

The operator presently has gullies forming and/or worsening on the farmland and impacting the useable area and the downstream water quality. Erosion from the gullies is allowing soil and possibly nutrients to be transported to downstream receiving waters degrading water quality and causing soil loss.

After Situation:

Area is stabilized. The advancement and/or formation of gullies is stopped, soil from gullies no longer leaves the farm, useable farm area is increased, sedimentation and other pollution hazards are decreased, and water quality downstream is protected. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Pond (378), Dam (402), Fence (382), Pumping Plant (533), Watering Facility (614), and Livestock Pipeline (516) will use the corresponding Standard(s) as appropriate.

Feature Measure: Principal Spillway Pipe Material
Scenario Unit: Diameter Inch Foot
Scenario Typical Size: 2,412.00
Scenario Total Cost: \$22,564.04
Scenario Cost/Unit: \$9.35
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	3	\$1,214.10
Clearing and Grubbing	40	Clearing and Grubbing, includes materials, equipment and labor	Acres	\$290.55	1.5	\$435.83
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	1890	\$6,917.40
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	110	\$627.00
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	2	\$130.42
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	20	\$677.40
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	10	\$271.60
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag	Hours	\$31.87	2	\$63.74

Materials

Aggregate, Sand, Graded, Washed

Aggregate, Gravel, Graded

Structural steel tubing, 2 in. diameter
Pipe, Steel, Std Wt., Used, weight priced

Mobilization

1139 Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.
1140 Equipment >150HP or typical weights greater than 30,000 pounds or \quad Each $\$ 909.59 \quad 1 \quad \$ 909.59$ loads requiring over width or over length permits.

Practice: 410-Grade Stabilization Structure
Scenario: \#14 - Embankment, Welded Steel or Aluminum Pipe, Ratio of Earthwork (CY) to Pipe (DIFT) is 0.70 to 0.41

Scenario Description:

An earthen embankment dam with a smooth steel or corrugated aluminum principal spillway with a ratio of earthwork (CY) to pipe (DIFT) that is 0.70 to 0.41 . Installed to stabilize the grade and control erosion in natural or artificial channels, to prevent the formation or advancing of gullies, and to enhance environmental quality and reduce pollution hazards. Applied in areas where the concentration and flow velocity of water requires structures to stabilize the grade in channels or to control gully erosion. Cost estimate is based upon a typical amount of earthfill of 1,500 cubic yards and a principal spillway with a 30 diameter 90 ft long barrel and 42 diameter 4.5 ft tall riser (2889 Diameter-inch-feet). Addresses resource concerns such as soil erosion-concentrated flow erosion and water quality degradation.

Before Situation:

The operator presently has gullies forming and/or worsening on the farmland and impacting the useable area and the downstream water quality. Erosion from the gullies is allowing soil and possibly nutrients to be transported to downstream receiving waters degrading water quality and causing soil loss.

After Situation:

Area is stabilized. The advancement and/or formation of gullies is stopped, soil from gullies no longer leaves the farm, useable farm area is increased, sedimentation and other pollution hazards are decreased, and water quality downstream is protected. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Pond (378), Dam (402), Fence (382), Pumping Plant (533), Watering Facility (614), and Livestock Pipeline (516) will use the corresponding Standard(s) as appropriate.

Feature Measure: Principal Spillway Pipe Material
Scenario Unit: Diameter Inch Foot
Scenario Typical Size: 2,889.00
Scenario Total Cost:
\$23,014.80
Scenario Cost/Unit:
\$7.97
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	3	\$1,214.10
Clearing and Grubbing	40	Clearing and Grubbing, includes materials, equipment and labor	Acres	\$290.55	2	\$581.10
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	1370	\$5,014.20
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	130	\$741.00
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	2	\$130.42
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	20	\$677.40
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag	Hours	\$31.87	2	\$63.74

Materials

Aggregate, Sand, Graded, Washed

Aggregate, Gravel, Graded

Structural steel tubing, 2 in. diameter
Pipe, Steel, Std Wt., Used, weight priced

Mobilization
Mobilization, medium equipment

Mobilization, large equipment

45 Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.
46 Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.
1120 Structural steel tubing, 2 inch diameter, $1 / 8$ inch wall thickness, materials only
2870 Schedule 40 steel pipe, used. Materials only.

1139 Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.
1140 Equipment >150HP or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.

Practice: 410-Grade Stabilization Structure
Scenario: \#15-Embankment, Welded Steel or Aluminum Pipe, Ratio of Earthwork (CY) to Pipe (DIFT) is 0.40 or less

Scenario Description:

An earthen embankment dam with a smooth steel or corrugated aluminum principal spillway with a ratio of earthwork (CY) to pipe (DIFT) that is 0.40 or less. Installed to stabilize the grade and control erosion in natural or artificial channels, to prevent the formation or advancing of gullies, and to enhance environmental quality and reduce pollution hazards. Applied in areas where the concentration and flow velocity of water requires structures to stabilize the grade in channels or to control gully erosion. Cost estimate is based upon a typical amount of earthfill of 950 cubic yards and a principal spillway with a 24 ' diameter 90 ft long barrel and 42 diameter 6 ft tall riser (2412 diameter-inch-feet). Addresses resource concerns such as soil erosion-concentrated flow erosion and water quality degradation.

Before Situation:

The operator presently has gullies forming and/or worsening on the farmland and impacting the useable area and the downstream water quality. Erosion from the gullies is allowing soil and possibly nutrients to be transported to downstream receiving waters degrading water quality and causing soil loss.

After Situation:

Area is stabilized. The advancement and/or formation of gullies is stopped, soil from gullies no longer leaves the farm, useable farm area is increased, sedimentation and other pollution hazards are decreased, and water quality downstream is protected. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Pond (378), Dam (402), Fence (382), Pumping Plant (533), Watering Facility (614), and Livestock Pipeline (516) will use the corresponding Standard(s) as appropriate.

Feature Measure: Principal Spillway Pipe Material
Scenario Unit: Diameter Inch Foot
Scenario Typical Size: 2,412.00
Scenario Total Cost: \$18,575.77

Scenario Cost/Unit: \$7.70

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	3	\$1,214.10
Clearing and Grubbing	40	Clearing and Grubbing, includes materials, equipment and labor	Acres	\$290.55	1	\$290.55
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	840	\$3,074.40
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	110	\$627.00
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	2	\$130.42
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	20	\$677.40
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	10	\$271.60
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag	Hours	\$31.87	2	\$63.74

Materials

Aggregate, Sand, Graded, Washed

Aggregate, Gravel, Graded

Structural steel tubing, 2 in. diameter
Pipe, Steel, Std Wt., Used, weight priced

Mobilization

1139 Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.
1140 Equipment >150HP or typical weights greater than 30,000 pounds or \quad Each $\quad \$ 909.59 \quad 1 \quad \$ 909.59$ loads requiring over width or over length permits.

Practice: 410-Grade Stabilization Structure
Scenario: \#16-Drop Structure, Rock

Scenario Description:

A Straight Drop structure constructed of rock riprap held in place by galvanized wire, such as, gabion baskets, fence panels, or 'sausage' baskets. These structures are used to stabilized the grade and control erosion in natural or artificial channels, to prevent the formation or advancing of gullies, and to enhance environmental quality and reduce pollution hazards. Applied in areas where the concentration and flow velocity of water require structures to stabilize the grade in channels or to control gully erosion. Cost estimate is based upon a gabion wall structure with a drop of 3 ft and weir length of 8 ft (24 square feet). The drop (feet) is defined as the structure inlet crest elevation minus the control outlet elevation (ie: outlet apron elevation). The unit of payment measurement is defined as the volume of rock riprap installed in the gabions in 'cubic yards'. Disturbed areas are protected with permanent vegetative cover. Addresses resource concerns such as soil erosion-concentrated flow erosion and water quality degradation.

Before Situation:

The operator presently has gullies forming and/or worsening on the farmland and impacting the useable area and the downstream water quality. Erosion from the gullies is allowing soil and possibly nutrients to be transported to downstream receiving waters degrading water quality and causing soil loss.

After Situation:

Area is stabilized. The advancement and/or formation of gullies is stopped, soil from gullies no longer leaves the farm, useable farm area is increased, sedimentation and other pollution hazards are decreased, and water quality downstream is protected. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Pond (378), Dam (402), Fence (382), Channel Bed Stabilization (584), Dike (356), Grassed Waterway (412), Structure for Water Control (587), Subsurface Drain (606), and Underground Outlet (620) will use the corresponding Standard(s) as appropriate.

Feature Measure: Volume of Rock
Scenario Unit: Cubic Yards
Scenario Typical Size: 16.00
Scenario Total Cost: $\$ 6,563.68$

Scenario Cost/Unit: \$410.23

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	7	\$16.10
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	40	\$146.40
Hydraulic Excavator, 1 CY	931	Track mounted hydraulic excavator with bucket capacity range of 0.8 to 1.5 CY. Equipment and power unit costs. Labor not included.	Hours	\$128.59	5	\$642.95
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	5	\$159.35
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	16	\$761.76

Materials

Rock Riprap, graded, angular, material and shipping
Geotextile, non-woven, heavy weight

Gabion basket or mat

Mobilization

Mobilization, medium equipment

1200 Graded Rock Riprap for all gradation ranges. Includes materials and Ton $\quad \$ 59.63$ local delivery within 20 miles of quarry. Placement costs are not included.
1210 Non-woven greater than 8 ounce/square yard geotextile with staple anchoring. Materials and shipping only.
Gabion baskets or mats installed and filled on grade, includes materials, Cubic Yards $\quad \$ 206.22 \quad 16 \quad \$ 3,299.52$ transport, equipment, and labor, does not include geotextile fabric.

1139 Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.

Each
\$753.37
1
\$753.37

Practice: 410-Grade Stabilization Structure
Scenario: \#17-Chute, Rock

Scenario Description:

A sloping drop structure constructed of loose rock riprap. This kind of structure is generally used to stabilize the grade and control erosion in natural or artificial channels, to prevent the formation or advancing of gullies, and to enhance environmental quality and reduce pollution hazards. Applied in areas where the concentration and flow velocity of water require structures to stabilize the grade in channels or to control gully erosion. Cost estimate is based upon a chute having a 20 foot bottom width with $4: 1$ side slopes, a chute depth of 1.75 feet, a drop height of 10 feet on a $4: 1$ slope and a rock thickness of 24 inches. The unit of payment measurement is defined as the volume of rock riprap installed in 'cubic yards'. The drop is defined as the inlet crest elevation minus the control outlet elevation. Addresses resource concerns such as soil erosion-concentrated flow erosion and water quality degradation.

Before Situation:
The operator presently has gullies forming and/or worsening on the farmland and impacting the useable area and the downstream water quality. Erosion from the gullies is allowing soil and possibly nutrients to be transported to downstream receiving waters degrading water quality and causing soil loss.

After Situation:
Area is stabilized. The advancement and/or formation of gullies is stopped, soil from gullies no longer leaves the farm, useable farm area is increased, sedimentation and other pollution hazards are decreased, and water quality downstream is protected. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Pond (378), Dam (402), Fence (382), Channel Bed Stabilization (584), Dike (356), Grassed Waterway (412), Structure for Water Control (587), Subsurface Drain (606), and Underground Outlet (620) will use the corresponding Standard(s) as appropriate.

Feature Measure: Cubic Yards of Rock Riprap Installed

Scenario Unit: Cubic Yards
Scenario Typical Size: 237.00
Scenario Total Cost: \$37,568.24
Scenario Cost/Unit: \$158.52
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160. Equipment and power unit costs. Labor not included.	Hours	\$98.78	10	\$987.80
Hydraulic Excavator, 1 CY	931	Track mounted hydraulic excavator with bucket capacity range of 0.8 to 1.5 CY. Equipment and power unit costs. Labor not included.	Hours	\$128.59	10	\$1,285.90
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	20	\$637.40
Materials						
Rock Riprap, Placed with geotextile	44	Rock Riprap, placed with geotextile. Includes materials, local delivery within 20 miles of quarry, and placement.	Cubic Yards	\$137.64	237	\$32,620.68
Mobilization						
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	2	\$1,819.18

Practice: 410-Grade Stabilization Structure
Scenario: \#18-Chute, Rock with Concrete Cutoff

Scenario Description:

A sloping drop structure constructed of loose rock riprap with a concrete upstream cutoff wall. This kind of structure is generally used to stabilize the grade and control erosion in natural or artificial channels, to prevent the formation or advancing of gullies, and to enhance environmental quality and reduce pollution hazards. Applied in areas where the concentration and flow velocity of water require structures to stabilize the grade in channels or to control gully erosion. Cost estimate is based upon a chute having a 20 foot bottom width with $4: 1$ side slopes, a chute depth of 1.75 feet, a drop height of 10 feet on a $4: 1$ slope and a rock thickness of 24 inches. The unit of payment measurement is defined as the volume of rock riprap installed in 'cubic yards'. The drop is defined as the inlet crest elevation minus the control outlet elevation. Addresses resource concerns such as soil erosion-concentrated flow erosion and water quality degradation.

Before Situation:
The operator presently has gullies forming and/or worsening on the farmland and impacting the useable area and the downstream water quality. Erosion from the gullies is allowing soil and possibly nutrients to be transported to downstream receiving waters degrading water quality and causing soil loss.

After Situation:

Area is stabilized. The advancement and/or formation of gullies is stopped, soil from gullies no longer leaves the farm, useable farm area is increased, sedimentation and other pollution hazards are decreased, and water quality downstream is protected. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Pond (378), Dam (402), Fence (382), Channel Bed Stabilization (584), Dike (356), Grassed Waterway (412), Structure for Water Control (587), Subsurface Drain (606), and Underground Outlet (620) will use the corresponding Standard(s) as appropriate.

Feature Measure: Cubic Yards of Rock Riprap Installed

Scenario Unit: Cubic Yards

Scenario Typical Size: 237.00
Scenario Total Cost: \$33,410.14
Scenario Cost/Unit: \$140.97
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, formed reinforced	38	Steel reinforced concrete formed and cast-in-placed in formed structures such as walls or suspended slabs by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$457.84	10.7	\$4,898.89
Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160. Equipment and power unit costs. Labor not included.	Hours	\$98.78	10	\$987.80
Hydraulic Excavator, 1 CY	931	Track mounted hydraulic excavator with bucket capacity range of 0.8 to 1.5 CY. Equipment and power unit costs. Labor not included.	Hours	\$128.59	10	\$1,285.90
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	20	\$637.40
Materials						
Rock Riprap, graded, angular, material and shipping	1200	Graded Rock Riprap for all gradation ranges. Includes materials and local delivery within 20 miles of quarry. Placement costs are not included.	Ton	\$59.63	379.2	\$22,611.70
Geotextile, non-woven, heavy weight	1210	Non-woven greater than 8 ounce/square yard geotextile with staple anchoring. Materials and shipping only.	Square Yard	\$2.24	425	\$952.00
Mobilization						
Mobilization, large equipment	1140	Equipment >150HP or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	2	\$1,819.18

Practice: 410-Grade Stabilization Structure

Scenario: \#19-Chute, Concrete

Scenario Description:

A sloping drop structure constructed of cast-in-place concrete. This kind of structure is generally used to stabilize the grade and control erosion in natural or artificial channels, to prevent the formation or advancing of gullies, and to enhance environmental quality and reduce pollution hazards. Applied in areas where the concentration and flow velocity of water require structures to stabilize the grade in channels or to control gully erosion. Cost estimate is based upon a chute having a 20 foot bottom width with $2: 1$ side slopes, a chute depth of 3.0 feet, and a drop height of 10 feet on a $2.5: 1$ slope. The unit of payment measurement is defined as the volume of concrete installed in 'cubic yards'. The drop is defined as the inlet crest elevation minus the control outlet elevation. Addresses resource concerns such as soil erosion-concentrated flow erosion and water quality degradation.

Before Situation:
The operator presently has gullies forming and/or worsening on the farmland and impacting the useable area and the downstream water quality. Erosion from the gullies is allowing soil and possibly nutrients to be transported to downstream receiving waters degrading water quality and causing soil loss.

After Situation:

Area is stabilized. The advancement and/or formation of gullies is stopped, soil from gullies no longer leaves the farm, useable farm area is increased, sedimentation and other pollution hazards are decreased, and water quality downstream is protected. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Pond (378), Dam (402), Fence (382), Channel Bed Stabilization (584), Dike (356), Grassed Waterway (412), Structure for Water Control (587), Subsurface Drain (606), and Underground Outlet (620) will use the corresponding Standard(s) as appropriate.

Feature Measure: Cubic Yards of Concrete Installed

Scenario Unit: Cubic Yards

Scenario Typical Size: 40.00
Scenario Total Cost: \$29,982.79
Scenario Cost/Unit: \$749.57
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, formed reinforced	38	Steel reinforced concrete formed and cast-in-placed in formed structures such as walls or suspended slabs by chute placement. Typical strength is 3000 to 4000 psi . Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$457.84	40	\$18,313.60
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	8	\$521.68
Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160. Equipment and power unit costs. Labor not included.	Hours	\$98.78	32	\$3,160.96
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	32	\$869.12
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	40	\$1,274.80
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	64	\$3,047.04
Materials						
Aggregate, Sand, Graded, Washed	45	Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$42.64	8.4	\$358.18
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	280.6	\$774.46
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 410-Grade Stabilization Structure
Scenario: \#20-Chute, Gabion Mattress

Scenario Description:

A sloping drop structure constructed of gabion mattresses. This kind of structure is generally used to stabilize the grade and control erosion in natural or artificial channels, to prevent the formation or advancing of gullies, and to enhance environmental quality and reduce pollution hazards. Applied in areas where the concentration and flow velocity of water require structures to stabilize the grade in channels or to control gully erosion. Cost estimate is based upon a chute having 8 - 6'x9'x9'gabion mattresses, 8 - 6'x12'x9' gabion mattresses, 28 cubic yards of rock, 12.4 cubic yards of filter material, and 112 square yards of geotextile. The unit of payment measurement is defined as the volume of rock installed in the mattresses in 'cubic yards'. The drop is defined as the inlet crest elevation minus the control outlet elevation. Addresses resource concerns such as soil erosion-concentrated flow erosion and water quality degradation.

Before Situation:
The operator presently has gullies forming and/or worsening on the farmland and impacting the useable area and the downstream water quality. Erosion from the gullies is allowing soil and possibly nutrients to be transported to downstream receiving waters degrading water quality and causing soil loss.

After Situation:

Area is stabilized. The advancement and/or formation of gullies is stopped, soil from gullies no longer leaves the farm, useable farm area is increased, sedimentation and other pollution hazards are decreased, and water quality downstream is protected. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Pond (378), Dam (402), Fence (382), Channel Bed Stabilization (584), Dike (356), Grassed Waterway (412), Structure for Water Control (587), Subsurface Drain (606), and Underground Outlet (620) will use the corresponding Standard(s) as appropriate.

Feature Measure: Volume of Rock

Scenario Unit: Cubic Yards

Scenario Typical Size: 28.00
Scenario Total Cost: \$16,489.86

Scenario Cost/Unit: \$588.92

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	16	\$1,043.36
Dozer, 200 HP	928	Track mounted Dozer with horsepower range of 160 to 250 . Equipment and power unit costs. Labor not included.	Hours	\$180.17	24	\$4,324.08
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	32	\$869.12
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	40	\$1,274.80
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	16	\$761.76
Materials						
Aggregate, Sand, Graded, Washed	45	Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$42.64	12.4	\$528.74
Geotextile, non-woven, heavy weight	1210	Non-woven greater than 8 ounce/square yard geotextile with staple anchoring. Materials and shipping only.	Square Yard	\$2.24	112	\$250.88
Gabion basket or mat	1378	Gabion baskets or mats installed and filled on grade, includes materials, transport, equipment, and labor, does not include geotextile fabric.	Cubic Yards	\$206.22	28	\$5,774.16
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 410-Grade Stabilization Structure
Scenario: \#21-Drop Structure, Metal or Treated Lumber

Scenario Description:

A Straight, semicircular, or Box Drop structure composed of metal or treated lumber and used to stabilize the grade and control erosion in natural or artificial channels, to prevent the formation or advancing of gullies, and to enhance environmental quality and reduce pollution hazards. Applied in areas where the concentration and flow velocity of water require structures to stabilize the grade in channels or to control gully erosion. Cost estimate is based upon a semicircular steel toe wall structure with a drop of 3 ft and total weir length of 30 ft (13.4 feet in diameter with 4.5 foot sidewall extensions) and 11.3 foot long by 5.4 foot high headwalls. The unit of payment measurement is defined as the area of metal used to construct the headwalls and semicircular weir. Example: 30*3 (weir length * drop) $+2 *(11.3 * 5.4)$ (two headwalls) $=$ 212.04 (round to nearest foot). Disturbed areas are protected with permanent vegetative cover. Addresses resource concerns such as soil erosion-concentrated flow erosion and water quality degradation.

Before Situation:
The operator presently has gullies forming and/or worsening on the farmland and impacting the useable area and the downstream water quality. Erosion from the gullies is allowing soil and possibly nutrients to be transported to downstream receiving waters degrading water quality and causing soil loss.

After Situation:

Area is stabilized. The advancement and/or formation of gullies is stopped, soil from gullies no longer leaves the farm, useable farm area is increased, sedimentation and other pollution hazards are decreased, and water quality downstream is protected. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Pond (378), Dam (402), Fence (382), Channel Bed Stabilization (584), Dike (356), Grassed Waterway (412), Structure for Water Control (587), Subsurface Drain (606), and Underground Outlet (620) will use the corresponding Standard(s) as appropriate.

Feature Measure: Total Area of Walls and Weir

Scenario Unit: Square Feet
Scenario Typical Size: 212.00
Scenario Total Cost: $\$ 13,281.86$

Scenario Cost/Unit: \$62.65
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, formed reinforced	38	Steel reinforced concrete formed and cast-in-placed in formed structures such as walls or suspended slabs by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$457.84	9	\$4,120.56
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	75	\$274.50
Hydraulic Excavator, 1 CY	931	Track mounted hydraulic excavator with bucket capacity range of 0.8 to 1.5 CY. Equipment and power unit costs. Labor not included.	Hours	\$128.59	8	\$1,028.72
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	10	\$338.70
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	30	\$814.80
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, As	Hours	\$31.87	8	\$254.96

Materials

Aggregate, Gravel, Graded

Rock Riprap, graded, angular, material and shipping

Corrugated Steel, 12 Gauge, galvanized
Pipe, CMP, 14-12 gauge, weight priced

Mobilization

46 Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.

1200 Graded Rock Riprap for all gradation ranges. Includes materials and Ton \$59.63 11 \$655.93 local delivery within 20 miles of quarry. Placement costs are not included.

1376 Corrugated Steel, 12 gauge, 3 inch by 1 inch corrugations, galvanized, Square Feet \$19.46 212 \$4,125.52 meets ASTM A 929. Materials only.
158914 and 12 gauge galvanized helical corrugated metal pipe priced by the Pound $\quad \$ 1.12 \quad 24 \quad \$ 26.88$ weight of the pipe materials. Materials only.

1139 Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.

Practice: 410-Grade Stabilization Structure
Scenario: \#23-Drop Structure, Concrete

Scenario Description:

A Straight, semicircular, or Box Drop structure composed of reinforced concrete used to stabilized the grade and control erosion in natural or artificial channels, to prevent the formation or advancing of gullies, and to enhance environmental quality and reduce pollution hazards. Applied in areas where the concentration and flow velocity of water require structures to stabilize the grade in channels or to control gully erosion. Cost estimate is based upon a wall structure with a drop of 4 ft and weir length of 6 ft wide and is 6 ft deep with 3 ft above the crest. The unit of payment measurement is defined as cubic yards of concrete. Disturbed areas are protected with permanent vegetative cover. Addresses resource concerns such as soil erosion-concentrated flow erosion and water quality degradation.

Before Situation:

The operator presently has gullies forming and/or worsening on the farmland and impacting the useable area and the downstream water quality. Erosion from the gullies is allowing soil and possibly nutrients to be transported to downstream receiving waters degrading water quality and causing soil loss.

After Situation:

Area is stabilized. The advancement and/or formation of gullies is stopped, soil from gullies no longer leaves the farm, useable farm area is increased, sedimentation and other pollution hazards are decreased, and water quality downstream is protected. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Pond (378), Dam (402), Fence (382), Channel Bed Stabilization (584), Dike (356), Grassed Waterway (412), Structure for Water Control (587), Subsurface Drain (606), and Underground Outlet (620) will use the corresponding Standard(s) as appropriate.

Feature Measure: Cubic Yards of Concrete
Scenario Unit: Cubic Yards
Scenario Typical Size: 11.60
Scenario Total Cost: \$15,439.21
Scenario Cost/Unit: \$1,330.97

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, formed reinforced	38	Steel reinforced concrete formed and cast-in-placed in formed structures such as walls or suspended slabs by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$457.84	11.6	\$5,310.94
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	500	\$1,830.00
Hydraulic Excavator, 1 CY	931	Track mounted hydraulic excavator with bucket capacity range of 0.8 to 1.5 CY . Equipment and power unit costs. Labor not included.	Hours	\$128.59	20	\$2,571.80
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	24	\$812.88
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	48	\$1,303.68
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	20	\$637.40
Materials						
Aggregate, Sand, Graded, Washed	45	Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$42.64	4.2	\$179.09
Rock Riprap, graded, angular, material and shipping	1200	Graded Rock Riprap for all gradation ranges. Includes materials and local delivery within 20 miles of quarry. Placement costs are not included.	Ton	\$59.63	29	\$1,729.27
Geotextile, non-woven, heavy weight	1210	Non-woven greater than 8 ounce/square yard geotextile with staple anchoring. Materials and shipping only.	Square Yard	\$2.24	69	\$154.56
Mobilization						
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or	Each	\$909.59	1	\$909.59

Practice: 410-Grade Stabilization Structure
Scenario: \#51 - Embankment Dam - Drainage Area 0 to 5 Acres

Scenario Description:

An earthen embankment dam with a drainage area of less than 5 acres. Assessment shows anti-seep collars are needed forseepage control. To stabilize the grade and control erosion in natural or artificial channels, to prevent the formation or advancing of gullies, and to enhance environmentalquality and reduce pollution hazards. Applied in areas where the concentration and flow velocity of water require structures to stabilize the grade in channels or to controlgully erosion. Construction quantities are based upon a typical design for this size with earth fill of 1000 cubic yards, and 80 feet of pipe 10 -inch PVC pipe with a hood inlet. A small, earthen auxiliary spillway protects the embankment. Disturbed areas are protected with permanent vegetative cover. Addresses resource concerns such as soil erosion-concentrated flow erosion and water quality degradation.

Before Situation:
The operator presently has gullies forming and/or worsening on the farmland and impacting the useable area and the downstream water quality. Erosion from the gullies is allowing soil and possibly nutrients to be transported to downstream receiving waters degrading water quality and causing soil loss.

After Situation:
Area is stabilized. The advancement and/or formation of gullies is stopped, soil from gullies no longer leaves the farm, useable farm area is increased, sedimentation and other pollution hazards are decreased, and water quality downstream is protected. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Pond (378), Dam (402), Fence (382), Pumping Plant (533), Watering Facility (614), and Livestock Pipeline (516) will use the corresponding Standard(s) as appropriate.

Feature Measure: Number of Dams
Scenario Unit: Each

Scenario Typical Size: 1.00
Scenario Total Cost: \$9,324.59
Scenario Cost/Unit: \$9,324.59
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	300	\$690.00
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	1000	\$3,660.00
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	20	\$114.00
Stripping and stockpiling, topsoil	1199	Stripping and stockpiling of topsoil adjacent to stripping area. Includes equipment and labor.	Cubic Yards	\$0.79	250	\$197.50
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	2	\$54.32
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	4	\$127.48
Materials						
Steel, Plate, 3/16 in.	1048	Flat Steel Plate, 3/16 inch thick, materials only.	Square Feet	\$11.85	25	\$296.25
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	970.4	\$2,678.30
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 410-Grade Stabilization Structure
Scenario: \#52 - Embankment Dam - Drainage Area >100.1 Acres

Scenario Description:

An earthen embankment dam with a drainage area of 100.1 to 200 acres, anti-seep collars, trash rack with anti-vortex plate, and excavated auxiliary spillway. Installed to stabilized the grade and control erosion in natural or artificial channels, to prevent the formation or advancing of gullies, and to enhance environmental quality and reduce pollution hazards. Applied in areas where the concentration and flow velocity of water require structures to stabilize the grade in channels or to control gully erosion. Cost estimate is based upon a typical amount of earthfill of 5000 cubic yards, 110 ft of 48 -inch CMP barrel, 15 ft of 72 -inch CMP riser and 2 anti-seep collars. A excavated, earthen auxiliary spillway protects the embankment. Disturbed areas are protected with permanent vegetative cover. Addresses resource concerns such as soil erosion concentrated flow erosion and water quality degradation.

Before Situation:
The operator presently has gullies forming and/or worsening on the farmland and impacting the useable area and the downstream water quality. Erosion from the gullies is allowing soil and possibly nutrients to be transported to downstream receiving waters degrading water quality and causing soil loss.

After Situation:

Area is stabilized. The advancement and/or formation of gullies is stopped, soil from gullies no longer leaves the farm, useable farm area is increased, sedimentation and other pollution hazards are decreased, and water quality downstream is protected. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Pond (378), Dam (402), Fence (382), Pumping Plant (533), Watering Facility (614), and Livestock Pipeline (516) will use the corresponding Standard(s) as appropriate.

Feature Measure: Number of Dams

Scenario Unit: Each

Scenario Typical Size: 1.00
Scenario Total Cost: \$44,657.97
Scenario Cost/Unit: \$44,657.97
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, formless, non reinforced	36	Non reinforced concrete cast-in-placed without forms by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$177.66	1.5	\$266.49
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	1.5	\$607.05
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	5000	\$18,300.00
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	90	\$513.00
Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160 . Equipment and power unit costs. Labor not included.	Hours	\$98.78	14	\$1,382.92
Hydraulic Excavator, 1 CY	931	Track mounted hydraulic excavator with bucket capacity range of 0.8 to 1.5 CY. Equipment and power unit costs. Labor not included.	Hours	\$128.59	20	\$2,571.80
Water management, Flooding \& dewatering	969	Includes equipment and power unit. Labor not included.	Acre Feet	\$188.59	3.25	\$612.92
Stripping and stockpiling, topsoil	1199	Stripping and stockpiling of topsoil adjacent to stripping area. Includes equipment and labor.	Cubic Yards	\$0.79	3500	\$2,765.00
Excavation, common earth, side cast, large equipment	1227	Bulk excavation and side casting of common earth with hydraulic excavator with less greater than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$1.47	700	\$1,029.00
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	30	\$1,016.10
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	24	\$651.84
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	34	\$1,083.58
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	8	\$380.88

Materials

Rock Riprap, Placed with geotextile	44	Rock Riprap, placed with geotextile. Includes materials, local delivery within 20 miles of quarry, and placement.	Cubic Yards	\$137.64	20	\$2,752.80
Aggregate, Sand, Graded, Washed	45	Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$42.64	22	\$938.08
Pipe, CMP, 14-12 gauge, weight priced	1589	14 and 12 gauge galvanized helical corrugated metal pipe priced by the weight of the pipe materials. Materials only.	Pound	\$1.12	6720	\$7,526.40
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	3	\$2,260.11

Practice: 410-Grade Stabilization Structure
Scenario: \#53-Embankment Dam - Drainage Area 70.1 to 100 Acres

Scenario Description:

An earthen embankment dam with a drainage area of 70.1 to 100 acres, anti-seep collars, trash rack with anti-vortex plate, and excavated auxiliary spillway. Installed to stabilized the grade and control erosion in natural or artificial channels, to prevent the formation or advancing of gullies, and to enhance environmental quality and reduce pollution hazards. Applied in areas where the concentration and flow velocity of water require structures to stabilize the grade in channels or to control gully erosion. Cost estimate is based upon a typical amount of earth fill of 5000 cubic yards, 110 feet of 36 -inch CMP barrel, 12 feet of 60 -inch CMP riser and 2 anti-seep collars. A excavated, earthen auxiliary spillway protects the embankment. Disturbed areas are protected with permanent vegetative cover. Addresses resource concerns such as soil erosion concentrated flow erosion and water quality degradation.

Before Situation:
The operator presently has gullies forming and/or worsening on the farmland and impacting the useable area and the downstream water quality. Erosion from the gullies is allowing soil and possibly nutrients to be transported to downstream receiving waters degrading water quality and causing soil loss.

After Situation:

Area is stabilized. The advancement and/or formation of gullies is stopped, soil from gullies no longer leaves the farm, useable farm area is increased, sedimentation and other pollution hazards are decreased, and water quality downstream is protected. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Pond (378), Dam (402), Fence (382), Pumping Plant (533), Watering Facility (614), and Livestock Pipeline (516) will use the corresponding Standard(s) as appropriate.

Feature Measure: Number of Dams

Scenario Unit: Each

Scenario Typical Size: 1.00
Scenario Total Cost: \$43,040.63
Scenario Cost/Unit: \$43,040.63
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, formless, non reinforced	36	Non reinforced concrete cast-in-placed without forms by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$177.66	1.5	\$266.49
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	1.5	\$607.05
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	5000	\$18,300.00
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	90	\$513.00
Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160 . Equipment and power unit costs. Labor not included.	Hours	\$98.78	12	\$1,185.36
Hydraulic Excavator, 1 CY	931	Track mounted hydraulic excavator with bucket capacity range of 0.8 to 1.5 CY. Equipment and power unit costs. Labor not included.	Hours	\$128.59	20	\$2,571.80
Water management, Flooding \& dewatering	969	Includes equipment and power unit. Labor not included.	Acre Feet	\$188.59	3.25	\$612.92
Stripping and stockpiling, topsoil	1199	Stripping and stockpiling of topsoil adjacent to stripping area. Includes equipment and labor.	Cubic Yards	\$0.79	1600	\$1,264.00
Excavation, common earth, side cast, large equipment	1227	Bulk excavation and side casting of common earth with hydraulic excavator with less greater than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$1.47	700	\$1,029.00
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	30	\$1,016.10
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	24	\$651.84
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	32	\$1,019.84
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	8	\$380.88

Materials

Rock Riprap, Placed with geotextile	44	Rock Riprap, placed with geotextile. Includes materials, local delivery within 20 miles of quarry, and placement.	Cubic Yards	\$137.64	20	\$2,752.80
Aggregate, Sand, Graded, Washed	45	Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$42.64	14	\$596.96
Pipe, CMP, 14-12 gauge, weight priced	1589	14 and 12 gauge galvanized helical corrugated metal pipe priced by the weight of the pipe materials. Materials only.	Pound	\$1.12	7154	\$8,012.48
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	3	\$2,260.11

Practice: 410-Grade Stabilization Structure
Scenario: \#54 - Embankment Dam - Drainage Area 40.1 to 70 Acres

Scenario Description:

An earthen embankment dam with a drainage area of 40.1 to 70 acres, anti-seep collars, trash rack with anti-vortex plate, and excavated auxiliary spillway. Installed to stabilized the grade and control erosion in natural or artificial channels, to prevent the formation or advancing of gullies, and to enhance environmental quality and reduce pollution hazards. Applied in areas where the concentration and flow velocity of water require structures to stabilize the grade in channels or to control gully erosion. Cost estimate is based upon a typical amount of earth fill of 5000 cubic yards, 110 feet of 30 -inch CMP barrel, 12 feet of 48 -inch CMP riser and 2 anti-seep collars. A excavated, earthen auxiliary spillway protects the embankment. Disturbed areas are protected with permanent vegetative cover. Addresses resource concerns such as soil erosion concentrated flow erosion and water quality degradation.

Before Situation:
The operator presently has gullies forming and/or worsening on the farmland and impacting the useable area and the downstream water quality. Erosion from the gullies is allowing soil and possibly nutrients to be transported to downstream receiving waters degrading water quality and causing soil loss.

After Situation:

Area is stabilized. The advancement and/or formation of gullies is stopped, soil from gullies no longer leaves the farm, useable farm area is increased, sedimentation and other pollution hazards are decreased, and water quality downstream is protected. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Pond (378), Dam (402), Fence (382), Pumping Plant (533), Watering Facility (614), and Livestock Pipeline (516) will use the corresponding Standard(s) as appropriate.

Feature Measure: Number of Dams

Scenario Unit: Each

Scenario Typical Size: 1.00
Scenario Total Cost: \$35,709.42
Scenario Cost/Unit: \$35,709.42
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	1.5	\$607.05
Clearing and Grubbing	40	Clearing and Grubbing, includes materials, equipment and labor	Acres	\$290.55	1.5	\$435.83
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	500	\$1,150.00
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	5000	\$18,300.00
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	60	\$342.00
Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160. Equipment and power unit costs. Labor not included.	Hours	\$98.78	12	\$1,185.36
Hydraulic Excavator, 1 CY	931	Track mounted hydraulic excavator with bucket capacity range of 0.8 to 1.5 CY. Equipment and power unit costs. Labor not included.	Hours	\$128.59	20	\$2,571.80
Stripping and stockpiling, topsoil	1199	Stripping and stockpiling of topsoil adjacent to stripping area. Includes equipment and labor.	Cubic Yards	\$0.79	750	\$592.50
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	26	\$880.62
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	20	\$543.20
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	32	\$1,019.84
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	6	\$285.66
Materials						
Steel, Plate, 3/16 in.	1048	Flat Steel Plate, 3/16 inch thick, materials only.	Square Feet	\$11.85	50	\$592.50
Pipe, CMP, 14-12 gauge, weight priced	1589	14 and 12 gauge galvanized helical corrugated metal pipe priced by the weight of the pipe materials. Materials only.	Pound	\$1.12	5086	\$5,696.32
Mobilization						

Practice: 410-Grade Stabilization Structure
Scenario: \#55 - Embankment Dam - Drainage Area 5.1 to 10 Acres

Scenario Description:

An earthen embankment dam with a drainage area of 5.1 to 10 acres. Assessment shows anti-seep collars or sand diaphragm are needed for seepage control. To stabilize the grade and control erosion in natural or artificial channels, to prevent the formation or advancing of gullies, and to enhance environmental quality and reduce pollution hazards. Applied in areas where the concentration and flow velocity of water require structures to stabilize the grade in channels or to control gully erosion. Construction quantities are based upon a typical design for this size with earth fill of 2000 cubic yards, and 100 feet of pipe 10 -inch PVC pipe with a hooded inlet. A small, earthen auxiliary spillway protects the embankment. Disturbed areas are protected with permanent vegetative cover. Addresses resource concerns such as soil erosionconcentrated flow erosionand water quality degradation.

Before Situation:
The operator presently has gullies forming and/or worsening on the farmland and impacting the useable area and the downstream water quality. Erosion from the gullies is allowing soil and possibly nutrients to be transported to downstream receiving waters degrading water quality and causing soil loss.

After Situation:
Area is stabilized. The advancement and/or formation of gullies is stopped, soil from gullies no longer leaves the farm, useable farm area is increased, sedimentation and other pollution hazards are decreased, and water quality downstream is protected. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Pond (378), Dam (402), Fence (382), Pumping Plant (533), Watering Facility (614), and Livestock Pipeline (516) will use the corresponding Standard(s) as appropriate.

Feature Measure: Number of Dams

Scenario Unit: Each

Scenario Typical Size: 1.00
Scenario Total Cost: \$14,331.49
Scenario Cost/Unit: \$14,331.49
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	300	\$690.00
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	2000	\$7,320.00
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	20	\$114.00
Hydraulic Excavator, 1 CY	931	Track mounted hydraulic excavator with bucket capacity range of 0.8 to 1.5 CY. Equipment and power unit costs. Labor not included.	Hours	\$128.59	4	\$514.36
Stripping and stockpiling, topsoil	1199	Stripping and stockpiling of topsoil adjacent to stripping area. Includes equipment and labor.	Cubic Yards	\$0.79	250	\$197.50
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	4	\$127.48
Materials						
Steel, Plate, 3/16 in.	1048	Flat Steel Plate, 3/16 inch thick, materials only.	Square Feet	\$11.85	25	\$296.25
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	1213	\$3,347.88
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 410-Grade Stabilization Structure
Scenario: \#56 - Embankment Dam - Drainage Area 10.1 to 20 Acres

Scenario Description:

An earthen embankment dam with a drainage area of 10.1 to 20 acres, anti-seep collars, and excavated auxiliary spillway.Installed to stabilized the grade and control erosion in natural or artificial channels, to prevent the formation or advancing of gullies, and to enhance environmental quality and reduce pollution hazards. Applied in areas where the concentration and flow velocity of water require structures to stabilize the grade in channels or to control gully erosion. Construction quantities are based upon a typical design for this size with earth fill of 4000 cubic yards, 110 feet of 12 -inch PVC pipe with a hood inlet. An excavated, earthen auxiliary spillway protects the embankment. Disturbed areas are protected with permanent vegetative cover. Addresses resource concerns such as soil erosion concentrated flow erosion and water quality degradation.

Before Situation:
The operator presently has gullies forming and/or worsening on the farmland and impacting the useable area and the downstream water quality. Erosion from the gullies is allowing soil and possibly nutrients to be transported to downstream receiving waters degrading water quality and causing soil loss.

After Situation:
Area is stabilized. The advancement and/or formation of gullies is stopped, soil from gullies no longer leaves the farm, useable farm area is increased, sedimentation and other pollution hazards are decreased, and water quality downstream is protected. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Pond (378), Dam (402), Fence (382), Pumping Plant (533), Watering Facility (614), and Livestock Pipeline (516) will use the corresponding Standard(s) as appropriate.

Feature Measure: Number of Dams
Scenario Unit: Each

Scenario Typical Size: 1.00
Scenario Total Cost: \$23,157.16
Scenario Cost/Unit: \$23,157.16
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	500	\$1,150.00
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	4000	\$14,640.00
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	25	\$142.50
Stripping and stockpiling, topsoil	1199	Stripping and stockpiling of topsoil adjacent to stripping area. Includes equipment and labor.	Cubic Yards	\$0.79	500	\$395.00
Materials						
Aggregate, Sand, Graded, Washed	45	Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$42.64	6	\$255.84
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	1835.9	\$5,067.08
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 410-Grade Stabilization Structure
Scenario: \#57-Embankment Dam - Drainage Area 20 to 40 Acres

Scenario Description:

An earthen embankment dam with a drainage area of 20.1 to 40 acres, anti-seep collars, trash rack with anti-vortex plate, and excavated auxiliary spillway. Installed to stabilized the grade and control erosion in natural or artificial channels, to prevent the formation or advancing of gullies, and to enhance environmental quality and reduce pollution hazards. Applied in areas where the concentration and flow velocity of water require structures to stabilize the grade in channels or to control gully erosion. Construction quantities are based upon a typical design for this size with earth fill of 4,000 cubic yards, 118 feet of 36 inch corrugated metal pipe (CMP) barrel (typically 14 gauge), 4.5 feet of 72 inch CMP riser (typically 12 gauge) and 2 anti-seep collars. An excavated, earthen auxiliary spillway protects the embankment. Disturbed areas are protected with permanent vegetative cover. Addresses resource concerns such as soil erosion concentrated flow erosion and water quality degradation.

Before Situation:
The operator presently has gullies forming and/or worsening on the farmland and impacting the useable area and the downstream water quality. Erosion from the gullies is allowing soil and possibly nutrients to be transported to downstream receiving waters degrading water quality and causing soil loss.

After Situation:

Area is stabilized. The advancement and/or formation of gullies is stopped, soil from gullies no longer leaves the farm, useable farm area is increased, sedimentation and other pollution hazards are decreased, and water quality downstream is protected. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Pond (378), Dam (402), Fence (382), Pumping Plant (533), Watering Facility (614), and Livestock Pipeline (516) will use the corresponding Standard(s) as appropriate.

Feature Measure: Number of Dams

Scenario Unit: Each

Scenario Typical Size: 1.00
Scenario Total Cost: \$26,221.35
Scenario Cost/Unit: \$26,221.35
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	1	\$404.70
Clearing and Grubbing	40	Clearing and Grubbing, includes materials, equipment and labor	Acres	\$290.55	1.5	\$435.83
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	500	\$1,150.00
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	4000	\$14,640.00
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	50	\$285.00
Hydraulic Excavator, 1 CY	931	Track mounted hydraulic excavator with bucket capacity range of 0.8 to 1.5 CY . Equipment and power unit costs. Labor not included.	Hours	\$128.59	8	\$1,028.72
Stripping and stockpiling, topsoil	1199	Stripping and stockpiling of topsoil adjacent to stripping area. Includes equipment and labor.	Cubic Yards	\$0.79	500	\$395.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	8	\$222.08
Materials						
Pipe, CMP, 14-12 gauge, weight priced	1589	14 and 12 gauge galvanized helical corrugated metal pipe priced by the weight of the pipe materials. Materials only.	Pound	\$1.12	5300	\$5,936.00
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and	Each	\$753.37	2	\$1,506.74

Practice: 410-Grade Stabilization Structure
Scenario: \#92-Embankment, Pipe <= 6 inch

Scenario Description:

An earthen embankment dam with a principal spillway pipe of 6 inches or less. Assessment shows anti-seep collars or sand diaphragms are not required. To stabilized the grade and control erosion in natural or artificial channels, to prevent the formation or advancing of gullies, and to enhance environmental quality and reduce pollution hazards. Applied in areas where the concentration and flow velocity of water require structures to stabilize the grade in channels or to control gully erosion. Cost estimate is based upon a typical amount of earthfill of 2,000 cubic yards, and 80 feet of pipe 6 ' PVC pipe with a canopy inlet. A small, non-lined plunge pool protects the outlet channel. Disturbed areas are protected with permanent vegetative cover. Addresses resource concerns such as soil erosion-concentrated flow erosion and water quality degradation.

Before Situation:
The operator presently has gullies forming and/or worsening on the farmland and impacting the useable area and the downstream water quality. Erosion from the gullies is allowing soil and possibly nutrients to be transported to downstream receiving waters degrading water quality and causing soil loss.

After Situation:
Area is stabilized. The advancement and/or formation of gullies is stopped, soil from gullies no longer leaves the farm, useable farm area is increased, sedimentation and other pollution hazards are decreased, and water quality downstream is protected. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Pond (378), Dam (402), Fence (382), Pumping Plant (533), Watering Facility (614), and Livestock Pipeline (516) will use the corresponding Standard(s) as appropriate.

Feature Measure: Cubic Yards of Earthfill

Scenario Unit: Cubic Yards

Scenario Typical Size: 2,000.00
Scenario Total Cost: \$11,482.50
Scenario Cost/Unit: \$5.74
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	2000	\$7,320.00
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	20	\$114.00
Hydraulic Excavator, 1 CY	931	Track mounted hydraulic excavator with bucket capacity range of 0.8 to 1.5 CY . Equipment and power unit costs. Labor not included.	Hours	\$128.59	5	\$642.95
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	20	\$677.40
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	10	\$271.60
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	5	\$159.35
Materials						
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	286.4	\$790.46
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 410-Grade Stabilization Structure
Scenario: \#93-Embankment, Pipe 8-12 inch

Scenario Description:

An earthen embankment dam with a principle spillway pipe between 8 and 12 inches, anti-seep collars or sand diaphragm, and excavated plunge pool basin. Installed to stabilized the grade and control erosion in natural or artificial channels, to prevent the formation or advancing of gullies, and to enhance environmental quality and reduce pollution hazards. Applied in areas where the concentration and flow velocity of water require structures to stabilize the grade in channels or to control gully erosion. Cost estimate is based upon a typical amount of earthfill of 2,500 cubic yards, 90 feet of 10 ' pace, pipe with a canopy inlet, and 3 cubic yard sand diaphragm. A non-lined plunge pool protects the outlet channel. Disturbed areas are protected with permanent vegetative cover. Addresses resource concerns such as soil erosion-concentrated flow erosion and water quality degradation.

Before Situation:
The operator presently has gullies forming and/or worsening on the farmland and impacting the useable area and the downstream water quality. Erosion from the gullies is allowing soil and possibly nutrients to be transported to downstream receiving waters degrading water quality and causing soil loss.

After Situation:

Area is stabilized. The advancement and/or formation of gullies is stopped, soil from gullies no longer leaves the farm, useable farm area is increased, sedimentation and other pollution hazards are decreased, and water quality downstream is protected. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Pond (378), Dam (402), Fence (382), Pumping Plant (533), Watering Facility (614), and Livestock Pipeline (516) will use the corresponding Standard(s) as appropriate.

Feature Measure: Cubic Yards of Earthfill

Scenario Unit: Cubic Yards

Scenario Typical Size: 2,500.00
Scenario Total Cost: \$17,691.94
Scenario Cost/Unit: \$7.08
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	2500	\$9,150.00
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	29	\$165.30
Hydraulic Excavator, 1 CY	931	Track mounted hydraulic excavator with bucket capacity range of 0.8 to 1.5 CY. Equipment and power unit costs. Labor not included.	Hours	\$128.59	10	\$1,285.90
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	30	\$1,016.10
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	30	\$814.80
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	10	\$318.70
Materials						
Aggregate, Sand, Graded, Washed	45	Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$42.64	3	\$127.92
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	1133	\$3,127.08
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 410-Grade Stabilization Structure
Scenario: \#94-Embankment, Pipe >12 inch

Scenario Description:

An earthen embankment dam with a principle spillway pipe greater than 12 inches. Installed to stabilized the grade and control erosion in natural or artificial channels, to prevent the formation or advancing of gullies, and to enhance environmental quality and reduce pollution hazards. Applied in areas where the concentration and flow velocity of water require structures to stabilize the grade in channels or to control gully erosion. Cost estimate is based upon a typical amount of earthfill of 2,500 cubic yards, smooth steel drop inlet principle spillway with a 7 ft riser and 90 ft barrel, and 82 Square feet of anti-seep collars. A rock lined plunge pool protects the outlet channel. Disturbed areas are protected with permanent vegetative cover. Addresses resource concerns such as soil erosion-concentrated flow erosion and water quality degradation.

Before Situation:

The operator presently has gullies forming and/or worsening on the farmland and impacting the useable area and the downstream water quality. Erosion from the gullies is allowing soil and possibly nutrients to be transported to downstream receiving waters degrading water quality and causing soil loss.

After Situation:

Area is stabilized. The advancement and/or formation of gullies is stopped, soil from gullies no longer leaves the farm, useable farm area is increased, sedimentation and other pollution hazards are decreased, and water quality downstream is protected. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Pond (378), Dam (402), Fence (382), Pumping Plant (533), Watering Facility (614), and Livestock Pipeline (516) will use the corresponding Standard(s) as appropriate.

Feature Measure: Cubic Yards of Earthfill
Scenario Unit: Cubic Yards

Scenario Typical Size: 2,500.00
Scenario Total Cost: \$24,756.21
Scenario Cost/Unit: \$9.90
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, formless, non reinforced	36	Non reinforced concrete cast-in-placed without forms by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$177.66	1	\$177.66
Concrete, CIP, formed reinforced	38	Steel reinforced concrete formed and cast-in-placed in formed structures such as walls or suspended slabs by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$457.84	2	\$915.68
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	2500	\$9,150.00
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	129	\$735.30
Hydraulic Excavator, 1 CY	931	Track mounted hydraulic excavator with bucket capacity range of 0.8 to 1.5 CY. Equipment and power unit costs. Labor not included.	Hours	\$128.59	13	\$1,671.67
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	38	\$1,287.06
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	42	\$1,140.72
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	13	\$414.31
Materials						
Rock Riprap, Placed with geotextile	44	Rock Riprap, placed with geotextile. Includes materials, local delivery within 20 miles of quarry, and placement.	Cubic Yards	\$137.64	14	\$1,926.96
Dimension Lumber, Treated	1044	Treated dimension lumber with nominal thickness equal or less than 2 inches. Includes lumber and fasteners	Board Feet	\$1.82	30	\$54.60
Steel, Plate, 1/8 in.	1047	Flat Steel Plate, 1/8 inch thick, materials only.	Square Feet	\$7.91	82	\$648.62
Pipe, Steel, Std Wt., Used, weight priced	2870	Schedule 40 steel pipe, used. Materials only.	Pound	\$1.01	4898.5	\$4,947.49
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40

Practice: 410-Grade Stabilization Structure

Scenario: \#95-Embankment, Soil Treatment

Scenario Description:

An earthen embankment dam with a principal spillway pipe where on site soils are not acceptable and require extra processing or hauling from off farm, distances greater than one mile. Installed to stabilized the grade and control erosion in natural or artificial channels, to prevent the formation or advancing of gullies, and to enhance environmental quality and reduce pollution hazards. Applied in areas where the concentration and flow velocity of water require structures to stabilize the grade in channels or to control gully erosion. Cost estimate is based upon a typical amount of earthfill of 2,500 cubic yards, 90 feet of 10' pace, pipe with a canopy inlet, and 3 cubic yard sand diaphragm. A non-lined plunge pool protects the outlet channel. Disturbed areas are protected with permanent vegetative cover. Addresses resource concerns such as soil erosion-concentrated flow erosion and water quality degradation.

Before Situation:
The operator presently has gullies forming and/or worsening on the farmland and impacting the useable area and the downstream water quality. Erosion from the gullies is allowing soil and possibly nutrients to be transported to downstream receiving waters degrading water quality and causing soil loss.

After Situation:

Area is stabilized. The advancement and/or formation of gullies is stopped, soil from gullies no longer leaves the farm, useable farm area is increased, sedimentation and other pollution hazards are decreased, and water quality downstream is protected. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Pond (378), Dam (402), Fence (382), Pumping Plant (533), Watering Facility (614), and Livestock Pipeline (516) will use the corresponding Standard(s) as appropriate.

Feature Measure: Cubic Yards of Earthfill

Scenario Unit: Cubic Yards

Scenario Typical Size: 2,500.00
Scenario Total Cost: \$25,941.94

Scenario Cost/Unit: \$10.38

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	2500	\$9,150.00
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	29	\$165.30
Hydraulic Excavator, 1 CY	931	Track mounted hydraulic excavator with bucket capacity range of 0.8 to 1.5 CY. Equipment and power unit costs. Labor not included.	Hours	\$128.59	10	\$1,285.90
Hauling, bulk, highway truck	1615	Hauling of bulk earthfill, rockfill, waste or debris. One-way travel distance using fully loaded highway dump trucks (typically 16 CY or 20 TN capacity). Includes equipment and labor for truck only. Does not include cost for loading truck.	Cubic Yard Mile	\$0.33	25000	\$8,250.00
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	30	\$1,016.10
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	30	\$814.80
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	10	\$318.70
Materials						
Aggregate, Sand, Graded, Washed	45	Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$42.64	3	\$127.92
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	1133	\$3,127.08
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 410-Grade Stabilization Structure

Scenario: \#96 - Pipe Drop, Plastic

Scenario Description:

A full flow pipe drop (ie: riser and barrel) grade stabilization structure designed and constructed using plastic pipe without anti-seep collars. This is typically a earthen dry dam structure with no permanent storage (water or sediment), however some structures may have some permanent pool / storage but do not have 35 years of sediment life. Payment rate is based upon the riser weir length (Diameter x 3.14) in feet times the length of the pipe barrel in (feet). Installed to stabilized the grade and control erosion in natural or artificial channels, to prevent the formation or advancing of gullies, and to enhance environmental quality and reduce pollution hazards. Applied in areas where the concentration and flow velocity of water require structures to stabilize the grade in channels or to control gully erosion. Cost estimate is based upon 6 ft high $18^{\prime}\left(1.5^{\prime}\right)$ PVC riser with a 40 ft long barrel ($1.5^{\prime} \times 3.14 \times 40^{\prime}=188 \mathrm{SF}$). Disturbed areas are protected with permanent vegetative cover. Addresses resource concerns such as soil erosion-concentrated flow erosion and water quality degradation.

Before Situation:

The operator presently has gullies forming and/or worsening on the farmland and impacting the useable area and the downstream water quality. Erosion from the gullies is allowing soil and possibly nutrients to be transported to downstream receiving waters degrading water quality and causing soil loss.

After Situation:

Area is stabilized. The advancement and/or formation of gullies is stopped, soil from gullies no longer leaves the farm, useable farm area is increased, sedimentation and other pollution hazards are decreased, and water quality downstream is protected. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Pond (378), Dam (402), Fence (382), Channel Bed Stabilization (584), Dike (356), Grassed Waterway (412), Structure for Water Control (587), and Irrigation Canal or Lateral (320) will use the corresponding Standard(s) as appropriate.

Feature Measure: Riser Weir Length x Barrel Length
Scenario Unit: Square Feet
Scenario Typical Size: 188.00
Scenario Total Cost: $\$ 10,177.39$

Scenario Cost/Unit: \$54.14

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, formed reinforced	38	Steel reinforced concrete formed and cast-in-placed in formed structures such as walls or suspended slabs by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$457.84	1	\$457.84
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	100	\$366.00
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	20	\$114.00
Hydraulic Excavator, 1 CY	931	Track mounted hydraulic excavator with bucket capacity range of 0.8 to 1.5 CY. Equipment and power unit costs. Labor not included.	Hours	\$128.59	2	\$257.18
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	2	\$63.74
Materials						
Coupling, PVC, Tee, 24×18, SCH 40	1374	Materials: - Tee, 24×18 inch - PVC - SCH 40 - ASTM D1785	Each	\$4,729.09	1	\$4,729.09
Pipe, PVC, dia. => 18 in., weight priced	1958	Polyvinyl Chloride (PVC) Pipe priced by the weight of the pipe materials for pipes with diameters equal to or greater than 18 inch. Materials only.	Pound	\$2.90	1048.1	\$3,039.49
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 410-Grade Stabilization Structure
Scenario: \#97-Pipe Drop, Steel or Aluminum

Scenario Description:

A full flow pipe drop (ie: riser and barrel) grade stabilization structure designed and constructed with a metal anti-seep collar. This is typically a earthen dry dam structure with no permanent storage (water or sediment), however some structures may have some permanent pool / storage but do not have 35 years of sediment life. Payment rate is based upon the riser weir length (Diameter $x 3.14$) or perimeter of trapezoidal weir in feet times the length of the pipe barrel in feet. Installed to stabilize the grade and control erosion in natural or artificial channels, to prevent the formation or advancement of gullies, improve water quality and reduce pollution. Applied in areas where the concentration and flow velocity of water require structures to stabilize the grade in channels or to control gully erosion. Cost estimate is based upon a smooth steel pipe drop structure with a 36^{\prime} pipe with 12 ft tall riser and a 100' long 30 ' barrel (Riser Weir length \times Barrel Length $=3 \mathrm{ft} \times 3.14 \times 100 \mathrm{ft}=940$). Disturbed areas are protected with permanent vegetative cover. Addresses resource concerns such as soil erosion-concentrated flow erosion and water quality degradation.

Before Situation:

The operator presently has gullies forming and/or worsening on the farmland and impacting the useable area and the downstream water quality. Erosion from the gullies is allowing soil and possibly nutrients to be transported to downstream receiving waters degrading water quality and causing soil loss.

After Situation:

Area is stabilized. The advancement and/or formation of gullies is stopped, soil from gullies no longer leaves the farm, useable farm area is increased, sedimentation and other pollution hazards are decreased, and water quality downstream is protected. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Pond (378), Dam (402), Fence (382), Channel Bed Stabilization (584), Dike (356), Grassed Waterway (412), Structure for Water Control (587), and Irrigation Canal or Lateral (320) will use the corresponding Standard(s) as appropriate.

Feature Measure: Riser Weir Length x Barrel Length
Scenario Unit: Square Feet

Scenario Typical Size: 940.00

Scenario Total Cost: $\$ 19,901.81$

Scenario Cost/Unit: \$21.17

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	600	\$2,196.00
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	100	\$570.00
Hydraulic Excavator, 1 CY	931	Track mounted hydraulic excavator with bucket capacity range of 0.8 to 1.5 CY. Equipment and power unit costs. Labor not included.	Hours	\$128.59	4	\$514.36
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	11	\$372.57
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	10	\$271.60
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	4	\$127.48

Materials

Steel, Plate, 1/8 in.	1047	Flat Steel Plate, 1/8 inch thick, materials only.	Square Feet	\$7.91	30	\$237.30
Steel, Plate, 3/8 in.	1375	Flat steel plate, $3 / 8$ inch thickness. Materials only.	Square Feet	\$23.71	9	\$213.39
Pipe, Steel, Std Wt., Used, weight priced	2870	Schedule 40 steel pipe, used. Materials only.	Pound	\$1.01	13577.2	\$13,712.97
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40
Mobilization, medium equipment	1139	Equipment with $70-150 \mathrm{HP}$ or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 410-Grade Stabilization Structure

Scenario: \#106 - Weir Drop Structures

Scenario Description:

A Straight, semicircular, or Box Drop structure composed of metal or reinforced concrete used to stabilized the grade and control erosion in natural or artificial channels, to prevent the formation or advancing of gullies, and to enhance environmental quality and reduce pollution hazards. Applied in areas where the concentration and flow velocity of water require structures to stabilize the grade in channels or to control gully erosion. Cost estimate is based upon a semicircular steel toe wall structure with a drop of 3 ft and weir length of 30 ft (90 square feet). The unit of payment measurement is defined as weir length times drop in 'feet'. The drop (feet) is defined as the structure inlet crest elevation minus the control outlet elevation (ie: outlet apron elevation).Disturbed areas are protected with permanent vegetative cover. Addresses resource concerns such as soil erosion-concentrated flow erosion and water quality degradation.

Before Situation:
The operator presently has gullies forming and/or worsening on the farmland and impacting the useable area and the downstream water quality. Erosion from the gullies is allowing soil and possibly nutrients to be transported to downstream receiving waters degrading water quality and causing soil loss.

After Situation:

Area is stabilized. The advancement and/or formation of gullies is stopped, soil from gullies no longer leaves the farm, useable farm area is increased, sedimentation and other pollution hazards are decreased, and water quality downstream is protected. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Pond (378), Dam (402), Fence (382), Channel Bed Stabilization (584), Dike (356), Grassed Waterway (412), Structure for Water Control (587), Subsurface Drain (606), and Underground Outlet (620) will use the corresponding Standard(s) as appropriate.

Feature Measure: Feet of Weir length times Drop Hei
Scenario Unit: Square Feet

Scenario Typical Size: 90.00
Scenario Total Cost: \$12,902.47
Scenario Cost/Unit: \$143.36
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, formed reinforced	38	Steel reinforced concrete formed and cast-in-placed in formed structures such as walls or suspended slabs by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$457.84	9	\$4,120.56
Geotextile, woven	42	Woven Geotextile Fabric. Includes materials, equipment and labor	Square Yard	\$1.11	9	\$9.99
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	40	\$92.00
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	75	\$274.50
Hydraulic Excavator, 1 CY	931	Track mounted hydraulic excavator with bucket capacity range of 0.8 to 1.5 CY . Equipment and power unit costs. Labor not included.	Hours	\$128.59	5	\$642.95
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	10	\$338.70
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	30	\$814.80
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	5	\$159.35
Materials						
Aggregate, Gravel, Graded	46	Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$44.85	3	\$134.55
Rock Riprap, graded, angular, material and shipping	1200	Graded Rock Riprap for all gradation ranges. Includes materials and local delivery within 20 miles of quarry. Placement costs are not included.	Ton	\$59.63	11	\$655.93
Corrugated Steel, 12 Gauge, galvanized	1376	Corrugated Steel, 12 gauge, 3 inch by 1 inch corrugations, galvanized, meets ASTM A 929. Materials only.	Square Feet	\$19.46	212	\$4,125.52
Pipe, CMP, 14-12 gauge, weight priced	1589	14 and 12 gauge galvanized helical corrugated metal pipe priced by the weight of the pipe materials. Materials only.	Pound	\$1.12	24	\$26.88
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 410-Grade Stabilization Structure

Scenario: \#107-Rock Drop Structures

Scenario Description:

A Straight Drop structure constructed of rock riprap held in place by galvanized wire, such as, gabion baskets, fence panels, or 'sausage' baskets. These structures are used to stabilized the grade and control erosion in natural or artificial channels, to prevent the formation or advancing of gullies, and to enhance environmental quality and reduce pollution hazards. Applied in areas where the concentration and flow velocity of water require structures to stabilize the grade in channels or to control gully erosion. Cost estimate is based upon a gabion wall structure with a drop of 3 ft and weir length of 8 ft (48 square feet). The unit of payment measurement is defined as weir length times drop in 'feet'. The drop (feet) is defined as the structure inlet crest elevation minus the control outlet elevation (ie: outlet apron elevation).Disturbed areas are protected with permanent vegetative cover. Addresses resource concerns such as soil erosion-concentrated flow erosion and water quality degradation.

Before Situation:
The operator presently has gullies forming and/or worsening on the farmland and impacting the useable area and the downstream water quality. Erosion from the gullies is allowing soil and possibly nutrients to be transported to downstream receiving waters degrading water quality and causing soil loss.

After Situation:

Area is stabilized. The advancement and/or formation of gullies is stopped, soil from gullies no longer leaves the farm, useable farm area is increased, sedimentation and other pollution hazards are decreased, and water quality downstream is protected. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Pond (378), Dam (402), Fence (382), Channel Bed Stabilization (584), Dike (356), Grassed Waterway (412), Structure for Water Control (587), Subsurface Drain (606), and Underground Outlet (620) will use the corresponding Standard(s) as appropriate.

Feature Measure: Feet of Weir length times Drop Hei
Scenario Unit: Square Feet

Scenario Typical Size: 48.00
Scenario Total Cost: \$5,082.33
Scenario Cost/Unit: \$105.88
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Geotextile, woven	42	Woven Geotextile Fabric. Includes materials, equipment and labor	Square Yard	\$1.11	23	\$25.53
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	7	\$16.10
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	40	\$146.40
Hydraulic Excavator, 1 CY	931	Track mounted hydraulic excavator with bucket capacity range of 0.8 to 1.5 CY. Equipment and power unit costs. Labor not included.	Hours	\$128.59	5	\$642.95
Tractor, agricultural, 210 HP	1201	Agricultural tractor with horsepower range of 190 to 240. Equipment and power unit costs. Labor not included.	Hours	\$131.34	3	\$394.02
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	10	\$271.60
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	5	\$159.35
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	10	\$476.10
Materials						
Gabion basket or mat	1378	Gabion baskets or mats installed and filled on grade, includes materials, transport, equipment, and labor, does not include geotextile fabric.	Cubic Yards	\$206.22	7	\$1,443.54
Mobilization						
Mobilization, medium equipment	1139	Equipment with $70-150 \mathrm{HP}$ or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 412-Grassed Waterway
Scenario: \#1 - Base Waterway
Scenario Description:
A grassed waterway is a shaped or graded channel and is established with suitable vegetation to carry surface water at a non-erosive velocity to a stable outlet. A typical practice is 1200 ' long, 12 ' bottom, $8: 1$ side slopes, 1.5^{\prime} depth, half excavation. This practice addresses Concentrated Flow Erosion (Classic Gully \& Ephemeral Erosion) and Excessive Sediment in surface waters. The waterway construction area includes the excavated width plus the theoretical width for two berms (one on each side) that are calculated based on the excavated area and are 1 foot tall with 5:1 side slopes. The seeding area varies, but is typically less than waterway construction area. Costs include excavation and associated work to construct the overall shape and grade of the waterway. Costs also include vegetation materials, associated vegetation planting work, and foregone income.

Before Situation:
The field has a small gulley which is cutting deeper into the field as time goes on, so it needs to be stopped or controlled. Excessive sedimentation and soil erosion is occuring as a result of ephemeral or classic gully erosion. The gully has formed in field as a result of excessive runoff and poor cropping techniques. A grassed waterway is also commonly installed to covey runoff from concentrated flows, terraces, diversions, or water control structures or similar practices to a suitable, stable outlet.

After Situation:

The installed grassed waterway is 1200 ' long, 12 ' bottom, $8: 1$ side slopes, 1.5 ' depth. The practice is installed using a dozer. Grassed waterway vegetation is planted according to Critical Area Planting (342) for establishment. If erosion control blankets or mulching for seedbed establishment/protection are needed, use conservation practice Mulching (484). Subsurface Drains (606) or Underground Outlets (620) may be needed to avoid saturated conditions.

Feature Measure: Acres of Waterway Construction Ar
Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$2,536.91
Scenario Cost/Unit: \$2,536.91
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	1	\$13.45
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	1	\$7.50
Cultipacking	1100	Includes equipment, power unit and labor costs.	Acres	\$10.03	1	\$10.03
Ground sprigging	1101	Includes costs for equipment, power unit and labor.	Acres	\$65.65	1	\$65.65
Excavation, common earth, large equipment, 50 ft	1222	Bulk excavation of common earth including sand and gravel with dozer $>100 \mathrm{HP}$ with average push distance of 50 feet. Includes equipment and labor.	Cubic Yards	\$1.43	800	\$1,144.00
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	0.66	\$150.26
FI, Wheat Dryland	1963	Dryland Wheat is Primary Crop	Acres	\$98.94	0.33	\$32.65

Materials

Nitrogen (N), Urea	71	Price per pound of N supplied by Urea. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.65	20	\$13.00
Phosphorus, P2O5	73	Price per pound of P2O5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	20	\$18.20
Potassium, K2O	74	K2O supplied by Muriate Of Potash. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.68	20	\$13.60
Lime, ENM	75	Fertilizer: Limestone Spread on field.	Ton	\$90.75	1	\$90.75
Introduced Perennial Grasses, Legumes and/or Forbs, Medium Density	2748	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at medium to higher density (41-60 pure live seeds/sq ft). Includes material and shipping.	Acres	\$68.23	1	\$68.23
Mobilization						
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or	Each	\$909.59	1	\$909.59

Practice: 412-Grassed Waterway
Scenario: \#2-Base Waterway with Gypsum
Scenario Description:
A grassed waterway with gypsum is a shaped or graded channel treated with gypsum to control internal erosion and established with suitable vegetation to carry surface water at a non-erosive velocity to a stable outlet. A typical practice is 1200 ' long, 12' bottom, $8: 1$ side slopes, 1.5 ' depth, with a 3 inch thick soil and gypsum liner. This practice addresses Concentrated Flow Erosion (Classic Gully \& Ephemeral Erosion) and Excessive Sediment in surface waters. The waterway construction area includes the excavated width plus the theoretical width for two berms (one on each side) that are calculated based on the excavated area and are 1 foot tall with $5: 1$ side slopes. The seeding area varies, but is typically less than waterway construction area. Costs include excavation, gypsum, and associated work to construct the overall shape and grade of the waterway. Costs also include vegetation materials, associated vegetation planting work, and foregone income.

Before Situation:

The field has dispersive clay soils and a small gulley which is cutting deeper into the field as time goes on, so it needs to be stopped or controlled. Excessive sedimentation and soil erosion is occuring as a result of ephemeral or classic gully erosion. The gully has formed in field as a result of excessive runoff, dispersive clay soils, and poor cropping techniques. A grassed waterway with gypsum is also commonly installed to covey runoff from concentrated flows, terraces, diversions, or water control structures or similar practices to a suitable, stable outlet.

After Situation:
The installed grassed waterway is 1200 ' long, 12 ' bottom, $8: 1$ side slopes, 1.5^{\prime} depth with a 3 inch thick soil and gypsum liner. The practice is installed using a dozer. Grassed waterway vegetation is planted according to Critical Area Planting (342) for establishment. If erosion control blankets or mulching for seedbed establishment/protection are needed, use conservation practice Mulching (484). Subsurface Drains (606) or Underground Outlets (620) may be needed to avoid saturated conditions.

Feature Measure: Acres of Waterway Construction Ar
Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost:
\$10,077.58
Scenario Cost/Unit: \$10,077.58
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	1	\$13.45
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	1	\$7.50
Tractor, agricultural, 120 HP	962	Agricultural tractor with horsepower range of 90 to 140 . Equipment and power unit costs. Labor not included.	Hours	\$74.02	8	\$592.16
Cultipacking	1100	Includes equipment, power unit and labor costs.	Acres	\$10.03	1	\$10.03
Ground sprigging	1101	Includes costs for equipment, power unit and labor.	Acres	\$65.65	1	\$65.65
Excavation, common earth, large equipment, 50 ft	1222	Bulk excavation of common earth including sand and gravel with dozer $>100 \mathrm{HP}$ with average push distance of 50 feet. Includes equipment and labor.	Cubic Yards	\$1.43	800	\$1,144.00

Foregone Income

FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67
FI, Wheat Dryland	1963	Dryland Wheat is Primary Crop	\$150.26	

Labor

Equipment Operators, Light
232 Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers
Hours $\quad \$ 27.76$ \$222.08 <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers
Materials

Nitrogen (N), Urea	71	Price per pound of N supplied by Urea. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.65	20	\$13.00
Phosphorus, P2O5	73	Price per pound of P2O5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	20	\$18.20
Potassium, K2O	74	K2O supplied by Muriate Of Potash. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.68	20	\$13.60
Lime, ENM	75	Fertilizer: Limestone Spread on field.	Ton	\$90.75	1	\$90.75
Gypsum, Ground Ag Grade, Bulk	1224	Agricultural grade quarry ground gypsum (CaCO4) for dispersive soil	Ton	\$182.83	32.67	\$5,973.06

Introduced Perennial Grasses, Legumes and/or Forbs, Medium Density	2748	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at medium to higher density (41-60 pure live seeds/sq ft). Includes material and shipping.	Acres	\$68.23	1	\$68.23
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 412-Grassed Waterway

Scenario: \#16-Waterway -- Vegetation Not Included

Scenario Description:

A grassed waterway is a shaped or graded channel that will be armored with vegetation to carry surface water at a non-erosive velocity to a stable outlet. The waterway is designed as a parabolic channel with a top width measured at the top of the design freeboard elevation of 80???, with a total depth of 1.5 ??? (total depth $=$ design flow +ft freeboard). The calculated cross-sectional area is 78.75 square feet. The entire channel is primarily excavated. The excavation required is 1590 Cubic Yards per Acre. Excavated material will be spread in a manner that supports the design as freeboard or as berm material.The waterway area is calculated using the top width of the waterway at the freeboard elevation times the total length of the waterway. Vegetation or cover will be established utilizing appropriate CPS as required by the standard. Costs include excavation and associated work to construct the overall shape and grade of the waterway.

Before Situation:
The field has a small gulley which is cutting deeper into the field as time goes on, so it needs to be stopped or controlled. Excessive sedimentation and soil erosion is occurring as a result of ephemeral or classic gully erosion. The gully has formed in field as a result of excessive runoff and poor cropping techniques. A grassed waterway is also commonly installed to covey runoff from concentrated flows, terraces, diversions, or water control structures or similar practices to a suitable, stable outlet.

After Situation:

The installed grassed waterway is 1089 ' long, with a top width at the top of the freeboard elevation of 80 ???, with a total depth of 1.5 ???. The practice is installed using a dozer. Vegetation or cover will be installed according to the requirements in the standard. For vegetative establishment use Critical Area Planting (342) for establishment. For other covers such as erosion control blankets or mulching for seedbed establishment/protection are needed, use the appropriate conservation practice standard, which includes Mulching (484). Subsurface Drains (606) or Underground Outlets (620) may be needed to avoid saturated conditions.

Feature Measure: Acres of Waterway
Scenario Unit: Acres
Scenario Typical Size: 2.00
Scenario Total Cost: \$5,456.99
Scenario Cost/Unit: $\quad \$ 2,728.50$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, common earth, large equipment, 50 ft	1222	Bulk excavation of common earth including sand and gravel with dozer $>100 \mathrm{HP}$ with average push distance of 50 feet. Includes equipment and labor.	Cubic Yards	\$1.43	3180	\$4,547.40
Mobilization						
Mobilization, large equipment	1140	Equipment >150HP or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 412-Grassed Waterway
Scenario: \#32-With Checks

Scenario Description:

Typical practice is 1200 ' long, 12 ' bottom, $8: 1$ side slopes, 1.5 ' depth, half excavation. A grass waterway that is a shaped or graded channel and is established with suitable vegetation to carry surface water at a non-erosive velocity to a stable outlet. Fabric or stone checks are installed every 100 feet along the length of the waterway perpendicular to waterflow and are $2 / 3$ the waterway top width to reduce maintenance and provide temporary protection until vegetation is established. Fabric Checks are installed 18 ' deep with 12^{\prime} laid over on the surface. (Alternatively, rock checks could be installed). This practice addresses Concentrated Flow Erosion (Classic Gully \& Ephemeral Erosion) and Excessive Sediment in surface waters. Waterway area measured from top of bank to top of bank. Seeding area is 20% greater than waterway area to account for disturbed areas. Costs include excavation and associated work to construct the overall shape and grade of the waterway.

Before Situation:
The field has a small gulley which is cutting deeper into the field as time goes on, so it needs to be stopped or controlled. Excessive sedimentation and soil erosion as a result from ephemeral or classic gully erosion. Gully has formed in field as a result of excessive runoff and poor cropping techniques. Grassed waterway is also commonly installed to covey runoff from concentrated flows, terrarces, diversions, or water control structures or similar practices to a suitable, stable outlet.

After Situation:

Installed grassed waterway is 1200 ' long, 12' bottom, $8: 1$ side slopes, 1.5 ' depth. Fabric checks are installed every 100 feet along the length of the waterway. The practice is installed using a dozer. Fabric or stone checks are installed with small backhoe and labor. If erosion control blankets or mulching for seedbed establishment/protection are needed, use conservation practice Mulching (484). Drainage tile, if needed, will be installed accoring to Subsurface Drain (606). Outlets, if needed will be installed using Structure for Water Control (587). If inlet Structures are needed with the drainage tile, then those will be installed using Underground Outlet (620).

Feature Measure: Acre of Waterway
Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 3,812.49$
Scenario Cost/Unit: \$3,812.49
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	33	\$75.90
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	33	\$188.10
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	2	\$26.90
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	2	\$26.90
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	1	\$7.50
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13
Cultipacking	1100	Includes equipment, power unit and labor costs.	Acres	\$10.03	1	\$10.03
Excavation, common earth, large equipment, 50 ft	1222	Bulk excavation of common earth including sand and gravel with dozer $>100 \mathrm{HP}$ with average push distance of 50 feet. Includes equipment and labor.	Cubic Yards	\$1.43	800	\$1,144.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	12	\$325.92
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22

Materials

Nitrogen (N), Urea
71 Price per pound of N supplied by Urea. Price is not per pound of total

Pound	$\$ 0.65$	30	$\$ 19.50$
Pound	$\$ 0.91$	60	$\$ 54.60$
Pound	$\$ 0.68$	60	$\$ 40.80$
Ton	$\$ 90.75$	2	$\$ 181.50$
Square Yard	$\$ 2.08$	132	$\$ 274.56$

Geotextile, non-woven, light weight

73 Price per pound of P2O5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.
74 K2O supplied by Muriate Of Potash. Price is not per pound of total product applied, no conversion is needed.

75 Fertilizer: Limestone Spread on field.
1209 Non-woven less than 8 ounce/square yard geotextile with staple anchoring. Materials and shipping only.

Introduced Perennial Grasses, Legumes and/or Forbs, High Density	2749	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at high density (greater than 60 pure live seeds/sq ft). Includes material and shipping.	Acres	\$88.70	1	\$88.70
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 420-Wildlife Habitat Planting
Scenario: \#185 - High Species Diversity on Fallow or Non-Cropland, no Foregone Income

Scenario Description:

A wildlife habitat evaluation or plant community inventory indicates a potential to improve wildlife habitat by altering the current vegetation conditions (species diversity, richness, structure and pattern) by establishing herbaceous plants. This practice scenario applies to areas not in production (e.g. ??? fallow areas, forest understory, and non-cropped areas in and around crop fields). Control or suppression of a well-established existing stand of undesirable vegetation should have been completed prior to implementation of this practice scenario through successful implementation of other practice standards, including CPS 314 or CPS 315. This scenario, when appropriately installed, will address the inadequate wildlife habitat resource concern by planting a moderately diverse mix of seeds that is readily available for purchase from multiple vendors in combination with minor seed bed preparation. Seed is typically not available from traditional agricultural vendors and requires making a special order or ordering online. Other practices are planned and installed after planting to manage the habitat as needed.

Before Situation:

Vegetative habitat conditions (species diversity, richness, structure and pattern) do not meet planning criteria and do not have the potential to meet or exceed the minimum criteria through vegetative management activities alone. Current conditions and management are insufficient to address identified limiting habitat factor(s) or to increase planning criteria above a current planning criterion of at least 50% of the potential. Undesirable vegetation has been controlled or suppressed with the use of other conservation practice standards prior to implementation of this practice scenario.

After Situation:

Desired species have been planted and the Wildlife Habitat Planting criteria have been successfully implemented. The area will provide the identified habitat requirements for target species and will meet or exceed planning criteria for inadequate wildlife habitat.

Feature Measure: acres planted (per acre)

Scenario Unit: Acres

Scenario Typical Size: 5.00

Scenario Total Cost: \$2,911.63
Scenario Cost/Unit: \$582.33

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	5	\$67.25
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	5	\$100.65
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22

Materials

Native Perennial Grasses, Legumes and/or Forb Mix for Targeted Wildlife/Pollinator Habitat or Ecological Restoration, moderate commercial availability

Diverse mix of native perennial grasses, legumes and forbs, less than 50% grasses, may include biennials and a small percentage of annual species for establishment purposes and/or if allowed by the CPS. This is a mix composed of species required to meet specific wildlife/pollinator habitat or ecological requirements. Seed is moderately easy to purchase commercially. Includes materials and shipping.

Mobilization

Mobilization, small equipment

Practice: 420 - Wildlife Habitat Planting
Scenario: \#186-Specialized Habitat Requirements on Non-Cropland, no Foregone Income

Scenario Description:

A wildlife habitat evaluation or plant community inventory indicates a potential to improve wildlife habitat by altering the current vegetation conditions (species diversity, richness, structure and pattern) by establishing herbaceous plants. This practice scenario applies to areas not in production (e.g. ??? fallow areas, forest understory, and non-cropped areas in and around crop fields). Control or suppression of a well-established existing stand of undesirable vegetation should have been completed prior to implementation of this practice scenario through successful implementation of other practice standards, including CPS 314 or CPS 315 . This scenario, when appropriately installed, will address the inadequate wildlife habitat resource concern by planting a specialized and often diverse mix of seeds that is NOT readily available for purchase, in combination with minor seed bed preparation. Seed is not available from traditional agricultural vendors and requires making a special order. Cost of seed is high due to limited availability and plant materials selected are needed to meet specific habitat requirements or ecosystem functions. Other practices are planned and installed after planting to manage the habitat as needed.

Before Situation:

Vegetative habitat conditions (species diversity, richness, structure and pattern) do not meet planning criteria and do not have the potential to meet or exceed the minimum criteria through vegetative management activities alone. Current conditions and management are insufficient to address identified limiting habitat factor(s) or to increase planning criteria above a current planning criterion of at least 50% of the potential. Undesirable vegetation has been controlled or suppressed with the use of other conservation practice standards prior to implementation of this practice scenario.

After Situation:

Desired species have been planted and the Wildlife Habitat Planting criteria have been successfully implemented. The area will provide the identified habitat requirements for target species and will meet or exceed planning criteria for inadequate wildlife habitat.

Feature Measure: acres planted (per acre)
Scenario Unit: Acres
Scenario Typical Size: 5.00
Scenario Total Cost:

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	5	\$67.25
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	5	\$100.65
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22

Materials

Native Perennial Grasses, Legumes and/or Forbs Mix for Targeted Wildlife/Pollinator Habitat or Ecological Restoration, limited species availability.

2618 Diverse mix of native perennial grasses, legumes and forbs, less than 50% grasses, may include biennials and a small percentage of annual species for establishment purposes and/or if allowed by the CPS. This is a highly specialized mix composed of species required to meet specific wildlife/pollinator habitat or ecological requirements. Seed may have limited availability and be difficult to obtain, e.g. milkweed species. Restricted for use with Wildlife Habitat Planting (420) and Restoration of Rare or Declining Natural Communities (643). Includes materials and shipping.

Mobilization

Practice: 420 - Wildlife Habitat Planting
Scenario: \#187-High Species Diversity on Cropland with Foregone Income

Scenario Description:

A wildlife habitat evaluation or plant community inventory indicates a potential to improve wildlife habitat by altering the current vegetation conditions (species diversity, richness, structure and pattern) and changing use (annual crop to permanent vegetation) by establishing herbaceous plants. This practice scenario applies to cropland currently in production. The inadequate wildlife habitat resource concern is met by planting a moderately diverse mix of seeds that is readily available for purchase from multiple vendors in combination with minor seed bed preparation. Seed is typically not available from traditional agricultural vendors and requires making a special order or ordering online. Weed pressure is minimal due to current and past management. Control or suppression of existing undesirable vegetation is accomplished through a single herbicide treatment. Post-planting weed treatment, beyond normal practice maintenance if necessary, will be accomplished by applying additional practice standards as appropriate.

Before Situation:
Vegetative habitat conditions (species diversity, richness, structure and pattern) do not meet planning criteria and do not have the potential to meet or exceed the minimum criteria through vegetative management activities alone. Current conditions and management are insufficient to address identified limiting habitat factor(s) or to increase planning criteria above a current planning criterion of at least 50% of the potential.

After Situation:
The land is no longer in crop production. Desired species have been planted and the Wildlife Habitat Planting criteria have been successfully implemented. As a result, the site will meet or exceed planning criteria for inadequate wildlife habitat.

Feature Measure: acres planted (per acre)
Scenario Unit: Acres

Scenario Typical Size: 5.00
Scenario Total Cost: \$4,874.96
Scenario Cost/Unit: \$974.99
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	5	\$67.25
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	5	\$33.15
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	5	\$100.65
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	5	\$1,138.35
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44
Materials						
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	5	\$63.30
Native Perennial Grasses, Legumes and/or Forb Mix for Targeted Wildlife/Pollinator Habitat or Ecological Restoration, moderate commercial availability	2619	Diverse mix of native perennial grasses, legumes and forbs, less than 50\% grasses, may include biennials and a small percentage of annual species for establishment purposes and/or if allowed by the CPS. This is a mix composed of species required to meet specific wildlife/pollinator habitat or ecological requirements. Seed is moderately easy to purchase commercially. Includes materials and shipping.	Acres	\$469.81	5	\$2,349.05
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40
Mobilization, medium equipment	1139	Equipment with $70-150 \mathrm{HP}$ or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 420 - Wildlife Habitat Planting
Scenario: \#188-Specialized Habitat Requirements on Cropland with Foregone Income

Scenario Description:

A wildlife habitat evaluation or plant community inventory indicates a potential to improve wildlife habitat by altering the current vegetation conditions (species diversity, richness, structure and pattern) and changing use (annual crop to permanent vegetation) by establishing herbaceous plants. This practice scenario applies to cropland currently in production. The inadequate wildlife habitat resource concern is met by planting a specialized and often diverse mix of seeds that is NOT readily available for purchase, in combination with minor seed bed preparation. Seed is not available from traditional agricultural vendors and requires making a special order. Cost of seed is high due to limited availability and plant materials selected are needed to meet specific habitat requirements or ecosystem functions. Weed pressure is minimal due to current and past management. Control or suppression of existing undesirable vegetation is accomplished through a single herbicide treatment. Post-planting weed treatment, beyond normal practice maintenance if necessary, will be accomplished by applying additional practice standards as appropriate.

Before Situation:

Vegetative habitat conditions (species diversity, richness, structure and pattern) do not meet planning criteria and do not have the potential to meet or exceed the minimum criteria through vegetative management activities alone. Current conditions and management are insufficient to address identified limiting habitat factor(s) or to increase planning criteria above a current planning criterion of at least 50% of the potential.

After Situation:
The land is no longer in crop production. Desired species have been planted and the Wildlife Habitat Planting criteria have been successfully implemented. As a result, the site will meet or exceed planning criteria for inadequate wildlife habitat.

Feature Measure: acres planted (per acre)
Scenario Unit: Acres

Scenario Typical Size: 5.00
Scenario Total Cost: \$7,102.20
Scenario Cost/Unit: \$1,420.44
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	5	\$67.25
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	5	\$33.15
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	5	\$100.65
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	5	\$1,138.35
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44
Materials						
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	5	\$63.30
Native Perennial Grasses, Legumes and/or Forbs Mix for Targeted Wildlife/Pollinator Habitat or Ecological Restoration, limited species availability.	2618	Diverse mix of native perennial grasses, legumes and forbs, less than 50% grasses, may include biennials and a small percentage of annual species for establishment purposes and/or if allowed by the CPS. This is a highly specialized mix composed of species required to meet specific wildlife/pollinator habitat or ecological requirements. Seed may have limited availability and be difficult to obtain, e.g. milkweed species. Restricted for use with Wildlife Habitat Planting (420) and Restoration of Rare or Declining Natural Communities (643). Includes materials and shipping.	Acres	\$1,006.04	5	\$5,030.20
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: 420 - Wildlife Habitat Planting
Scenario: \#189 - Very Small Acreage (<.5 ac) Planting with Seedlings

Scenario Description:

This scenario is applicable to very small areas (typical size is ?? acre) in need of wildlife habitat establishment by planting of potted plants, plugs, or similar non-seed plant materials. A wildlife habitat evaluation found the need to improve habitat by altering the current vegetative conditions (diversity, richness, structure or pattern). Potted herbaceous plants and/or shrubs are planted in 6??? rows and a 4??? spacing (1815 plants/acre) to facilitate access of the site with mechanical equipment (e.g., ATV, hand or riding mower) for weed control or other management after establishment. The site preparation requires treatment with broad spectrum herbicide to kill the existing vegetation. Then tillage, smoothing and firming of the soil is conducted prior to planting the plant materials.

Before Situation:

Vegetative habitat conditions (species diversity, richness, structure and pattern) do not meet planning criteria and have the potential to meet or exceed the minimum criteria. Current conditions and management are insufficient to address identified limiting habitat factor(s) or to increase planning criteria above a current planning criterion of at least 50% of the potential.

After Situation:
The Wildlife Habitat Planting criteria have been successfully implemented. The site has been mechanically and chemically treated and planting has occurred. The area is adequately stocked with desired species and full coverage of permanent vegetation is expected. The vegetative cover will provide the desired habitat requirements for target wildlife. The site meets or exceeds planning criteria for inadequate wildlife habitat.

Feature Measure: sg ft planted (1/4 acre)
Scenario Unit: Square Feet
Scenario Typical Size: 10,890.00
Scenario Total Cost: $\quad \$ 7,125.18$
Scenario Cost/Unit: \$0.65
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	0.25	\$3.36
Cultipacking	1100	Includes equipment, power unit and labor costs.	Acres	\$10.03	0.25	\$2.51
Chemical, ground application, forested land	1313	Chemical application performed by ground equipment where trees and terrain impede passage of wide boom sprayers. Utilizes forestry application methods that include heavy equipment such as skidders. Includes material, equipment, power unit and labor costs.	Acres	\$110.89	0.25	\$27.72
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	4	\$108.64
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	6	\$285.66

Materials

Herbicide, Glyphosate

Tree \& Shrub, Specialty
334 A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.
1523 Locally-sourced, culturally significant, native, or other highly specialized trees and shrubs (e.g., American chestnut, American elm, Canada yew, Sagebrush). Potted or balled and burlapped tree or shrub, 5 gallon. Includes materials and shipping only.
Mobilization
Mobilization, very small equipment

Mobilization, small equipment

1137 Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.
1138 Equipment <70 HP but can't be transported by a pick-up truck or with Each \$299.46 1 typical weights between 3,500 to 14,000 pounds.

Practice: 420 - Wildlife Habitat Planting
Scenario: \#190 - Low Species Diversity on Non-Cropland, no Foregone Income

Scenario Description:

A wildlife habitat evaluation or plant community inventory indicates a potential to improve wildlife habitat by altering the current vegetation conditions (species diversity, richness, structure and pattern) by establishing herbaceous plants. This practice scenario applies to areas not in production (e.g. ??? fallow areas, forest understory, and non-cropped areas in and around crop fields). Control or suppression of a well-established existing stand of undesirable vegetation should have been completed prior to implementation of this practice scenario through successful implementation of other practice standards, including CPS 314 or CPS 315. This scenario, when appropriately installed, will address the inadequate wildlife habitat resource concern by planting a low diversity, low cost mix of readily available seeds in combination with minor seed bed preparation. Other practices are planned and installed after planting to manage the habitat as needed.

Before Situation:

Vegetative habitat conditions (species diversity, richness, structure and pattern) do not meet planning criteria and do not have the potential to meet or exceed the minimum criteria through vegetative management activities alone. Current conditions and management are insufficient to address identified limiting habitat factor(s) or to increase planning criteria above a current planning criterion of at least 50% of the potential. Undesirable vegetation has been controlled or suppressed with the use of other conservation practice standards prior to implementation of this practice scenario.

After Situation:
Desired species have been planted and the Wildlife Habitat Planting criteria have been successfully implemented. The area will provide the identified habitat requirements for target species and will meet or exceed planning criteria for inadequate wildlife habitat.

Feature Measure: acres planted (per acre)
Scenario Unit: Acres
Scenario Typical Size: 5.00
Scenario Total Cost: \$1,516.63
Scenario Cost/Unit: \$303.33
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	5	\$67.25
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	5	\$100.65
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22
Materials						
Native Perennial Grasses, Legumes and/or Forbs, Low Density	2753	A mix of native perennial grasses, legumes, and/or forbs, grasses typically greater than 50% of the mix, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Species typically easy to purchase. Includes material and shipping.	Acres	\$190.81	5	\$954.05
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: 420 - Wildlife Habitat Planting
Scenario: \#191 - Low Species Diversity on Cropland with Foregone Income

Scenario Description:

A wildlife habitat evaluation or plant community inventory indicates a potential to improve wildlife habitat by altering the current vegetation conditions (species diversity, richness, structure and pattern) and changing use (annual crop to permanent vegetation) by establishing herbaceous plants. This practice scenario applies to cropland currently in production. The inadequate wildlife habitat resource concern is met by planting a low diversity, low cost mix of readily available seeds in combination with minor seed bed preparation. Weed pressure is minimal due to current and past management. Control or suppression of existing undesirable vegetation is accomplished through a single herbicide treatment. Post-planting weed treatment, beyond normal practice maintenance if necessary, will be accomplished by applying additional practice standards as appropriate.

Before Situation:
Vegetative habitat conditions (species diversity, richness, structure and pattern) do not meet planning criteria and do not have the potential to meet or exceed the minimum criteria through vegetative management activities alone. Current conditions and management are insufficient to address identified limiting habitat factor(s) or to increase planning criteria above a current planning criterion of at least 50% of the potential.

After Situation:

The land is no longer in crop production. Desired species have been planted and the Wildlife Habitat Planting criteria have been successfully implemented. As a result, the site will meet or exceed planning criteria for inadequate wildlife habitat.

Feature Measure: acres planted (per acre)
Scenario Unit: Acres
Scenario Typical Size: 5.00

Scenario Total Cost: \$3,026.05

Scenario Cost/Unit: \$605.21
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	5	\$67.25
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	5	\$33.15
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	5	\$100.65
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	5	\$1,138.35

Labor

Supervisor or Manager

Materials

334 A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.
Native Perennial Grasses, Legumes and/or Forbs, Low Density

A mix of native perennial grasses, legumes, and/or forbs, grasses typically greater than 50% of the mix, may include a small percentage of annual species for establishment purposes and/or if allowed by the

234 Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.

Hours
$\$ 47.61$
4
\$190.44 CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Species typically easy to purchase. Includes material and shipping.

Mobilization

Mobilization, very small equipment

Mobilization, small equipment

1137 Equipment that is small enough to be transported by a pick-up truck
Each with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.
1138 Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.

Practice: 420 - Wildlife Habitat Planting
Scenario: \#273-High Species Diversity on Cropland with Foregone Income

Scenario Description:

A wildlife habitat evaluation or plant community inventory indicates a potential to improve wildlife habitat by altering the current vegetation conditions (species diversity, richness, structure and pattern) and changing use (annual crop to permanent vegetation) by establishing herbaceous plants. This practice scenario applies to cropland currently in production. The inadequate wildlife habitat resource concern is met by planting a moderately diverse mix of seeds that is readily available for purchase from multiple vendors in combination with minor seed bed preparation. Seed is typically not available from traditional agricultural vendors and requires making a special order or ordering online. Weed pressure is minimal due to current and past management. Control or suppression of existing undesirable vegetation is accomplished through a single herbicide treatment. Post-planting weed treatment, beyond normal practice maintenance if necessary, will be accomplished by applying additional practice standards as appropriate.

Before Situation:
Vegetative habitat conditions (species diversity, richness, structure and pattern) do not meet planning criteria and do not have the potential to meet or exceed the minimum criteria through vegetative management activities alone. Current conditions and management are insufficient to address identified limiting habitat factor(s) or to increase planning criteria above a current planning criterion of at least 50% of the potential.

After Situation:
The land is no longer in crop production. Desired species have been planted and the Wildlife Habitat Planting criteria have been successfully implemented. As a result, the site will meet or exceed planning criteria for inadequate wildlife habitat.

Feature Measure: acres planted (per acre)
Scenario Unit: Acres

Scenario Typical Size: 5.00
Scenario Total Cost: \$4,874.96
Scenario Cost/Unit: \$974.99
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	5	\$67.25
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	5	\$33.15
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	5	\$100.65
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	5	\$1,138.35
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44
Materials						
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	5	\$63.30
Native Perennial Grasses, Legumes and/or Forb Mix for Targeted Wildlife/Pollinator Habitat or Ecological Restoration, moderate commercial availability	2619	Diverse mix of native perennial grasses, legumes and forbs, less than 50% grasses, may include biennials and a small percentage of annual species for establishment purposes and/or if allowed by the CPS. This is a mix composed of species required to meet specific wildlife/pollinator habitat or ecological requirements. Seed is moderately easy to purchase commercially. Includes materials and shipping.	Acres	\$469.81	5	\$2,349.05
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 420-Wildlife Habitat Planting
Scenario: \#274 - High Species Diversity on Fallow or Non-Cropland, no Foregone Income

Scenario Description:

A wildlife habitat evaluation or plant community inventory indicates a potential to improve wildlife habitat by altering the current vegetation conditions (species diversity, richness, structure and pattern) by establishing herbaceous plants. This practice scenario applies to areas not in production (e.g. ??? fallow areas, forest understory, and non-cropped areas in and around crop fields). Control or suppression of a well-established existing stand of undesirable vegetation should have been completed prior to implementation of this practice scenario through successful implementation of other practice standards, including CPS 314 or CPS 315. This scenario, when appropriately installed, will address the inadequate wildlife habitat resource concern by planting a moderately diverse mix of seeds that is readily available for purchase from multiple vendors in combination with minor seed bed preparation. Seed is typically not available from traditional agricultural vendors and requires making a special order or ordering online. Other practices are planned and installed after planting to manage the habitat as needed.

Before Situation:

Vegetative habitat conditions (species diversity, richness, structure and pattern) do not meet planning criteria and do not have the potential to meet or exceed the minimum criteria through vegetative management activities alone. Current conditions and management are insufficient to address identified limiting habitat factor(s) or to increase planning criteria above a current planning criterion of at least 50% of the potential. Undesirable vegetation has been controlled or suppressed with the use of other conservation practice standards prior to implementation of this practice scenario.

After Situation:

Desired species have been planted and the Wildlife Habitat Planting criteria have been successfully implemented. The area will provide the identified habitat requirements for target species and will meet or exceed planning criteria for inadequate wildlife habitat.

Feature Measure: acres planted (per acre)

Scenario Unit: Acres

Scenario Typical Size: 5.00

Scenario Total Cost: \$2,911.63
Scenario Cost/Unit: \$582.33

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	5	\$67.25
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	5	\$100.65
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22

Materials

Native Perennial Grasses, Legumes and/or Forb Mix for Targeted Wildlife/Pollinator Habitat or Ecological Restoration, moderate commercial availability

Diverse mix of native perennial grasses, legumes and forbs, less than 50% grasses, may include biennials and a small percentage of annual species for establishment purposes and/or if allowed by the CPS. This is a mix composed of species required to meet specific wildlife/pollinator habitat or ecological requirements. Seed is moderately easy to purchase commercially. Includes materials and shipping.

Mobilization

Mobilization, small equipment

Practice: 420 - Wildlife Habitat Planting
Scenario: \#275-Low Species Diversity on Cropland with Foregone Income

Scenario Description:

A wildlife habitat evaluation or plant community inventory indicates a potential to improve wildlife habitat by altering the current vegetation conditions (species diversity, richness, structure and pattern) and changing use (annual crop to permanent vegetation) by establishing herbaceous plants. This practice scenario applies to cropland currently in production. The inadequate wildlife habitat resource concern is met by planting a low diversity, low cost mix of readily available seeds in combination with minor seed bed preparation. Weed pressure is minimal due to current and past management. Control or suppression of existing undesirable vegetation is accomplished through a single herbicide treatment. Post-planting weed treatment, beyond normal practice maintenance if necessary, will be accomplished by applying additional practice standards as appropriate.

Before Situation:
Vegetative habitat conditions (species diversity, richness, structure and pattern) do not meet planning criteria and do not have the potential to meet or exceed the minimum criteria through vegetative management activities alone. Current conditions and management are insufficient to address identified limiting habitat factor(s) or to increase planning criteria above a current planning criterion of at least 50% of the potential.

After Situation:

The land is no longer in crop production. Desired species have been planted and the Wildlife Habitat Planting criteria have been successfully implemented. As a result, the site will meet or exceed planning criteria for inadequate wildlife habitat.

Feature Measure: acres planted (per acre)
Scenario Unit: Acres
Scenario Typical Size: 5.00

Scenario Total Cost: \$3,026.05

Scenario Cost/Unit: \$605.21
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	5	\$67.25
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	5	\$33.15
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	5	\$100.65
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	5	\$1,138.35

Labor

Supervisor or Manager

Materials

334 A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.
Native Perennial Grasses, Legumes and/or Forbs, Low Density

A mix of native perennial grasses, legumes, and/or forbs, grasses typically greater than 50% of the mix, may include a small percentage of annual species for establishment purposes and/or if allowed by the

234 Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.

Hours
$\$ 47.61$
4
\$190.44 CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Species typically easy to purchase. Includes material and shipping.

Mobilization

Mobilization, very small equipment

Mobilization, small equipment

1137 Equipment that is small enough to be transported by a pick-up truck
Each with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.
1138 Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.

United States Department of Agriculture

Practice: 420 - Wildlife Habitat Planting
Scenario: \#276-Low Species Diversity on Non-Cropland, no Foregone Income

Scenario Description:

A wildlife habitat evaluation or plant community inventory indicates a potential to improve wildlife habitat by altering the current vegetation conditions (species diversity, richness, structure and pattern) by establishing herbaceous plants. This practice scenario applies to areas not in production (e.g. ??? fallow areas, forest understory, and non-cropped areas in and around crop fields). Control or suppression of a well-established existing stand of undesirable vegetation should have been completed prior to implementation of this practice scenario through successful implementation of other practice standards, including CPS 314 or CPS 315. This scenario, when appropriately installed, will address the inadequate wildlife habitat resource concern by planting a low diversity, low cost mix of readily available seeds in combination with minor seed bed preparation. Other practices are planned and installed after planting to manage the habitat as needed.

Before Situation:

Vegetative habitat conditions (species diversity, richness, structure and pattern) do not meet planning criteria and do not have the potential to meet or exceed the minimum criteria through vegetative management activities alone. Current conditions and management are insufficient to address identified limiting habitat factor(s) or to increase planning criteria above a current planning criterion of at least 50% of the potential. Undesirable vegetation has been controlled or suppressed with the use of other conservation practice standards prior to implementation of this practice scenario.

After Situation:
Desired species have been planted and the Wildlife Habitat Planting criteria have been successfully implemented. The area will provide the identified habitat requirements for target species and will meet or exceed planning criteria for inadequate wildlife habitat.

Feature Measure: acres planted (per acre)
Scenario Unit: Acres
Scenario Typical Size: 5.00
Scenario Total Cost: \$1,516.63
Scenario Cost/Unit: \$303.33
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	5	\$67.25
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	5	\$100.65
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22
Materials						
Native Perennial Grasses, Legumes and/or Forbs, Low Density	2753	A mix of native perennial grasses, legumes, and/or forbs, grasses typically greater than 50% of the mix, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Species typically easy to purchase. Includes material and shipping.	Acres	\$190.81	5	\$954.05
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: 420 - Wildlife Habitat Planting
Scenario: \#277 - Very Small Acreage (<.5 ac) Planting with Seedlings

Scenario Description:

This scenario is applicable to very small areas (typical size is ?? acre) in need of wildlife habitat establishment by planting of potted plants, plugs, or similar non-seed plant materials. A wildlife habitat evaluation found the need to improve habitat by altering the current vegetative conditions (diversity, richness, structure or pattern). Potted herbaceous plants and/or shrubs are planted in 6??? rows and a 4??? spacing (1815 plants/acre) to facilitate access of the site with mechanical equipment (e.g., ATV, hand or riding mower) for weed control or other management after establishment. The site preparation requires treatment with broad spectrum herbicide to kill the existing vegetation. Then tillage, smoothing and firming of the soil is conducted prior to planting the plant materials.

Before Situation:

Vegetative habitat conditions (species diversity, richness, structure and pattern) do not meet planning criteria and have the potential to meet or exceed the minimum criteria. Current conditions and management are insufficient to address identified limiting habitat factor(s) or to increase planning criteria above a current planning criterion of at least 50% of the potential.

After Situation:
The Wildlife Habitat Planting criteria have been successfully implemented. The site has been mechanically and chemically treated and planting has occurred. The area is adequately stocked with desired species and full coverage of permanent vegetation is expected. The vegetative cover will provide the desired habitat requirements for target wildlife. The site meets or exceeds planning criteria for inadequate wildlife habitat.

Feature Measure: sg ft planted (1/4 acre)
Scenario Unit: Square Feet
Scenario Typical Size: 10,890.00
Scenario Total Cost: $\quad \$ 7,125.18$
Scenario Cost/Unit: \$0.65
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	0.25	\$3.36
Cultipacking	1100	Includes equipment, power unit and labor costs.	Acres	\$10.03	0.25	\$2.51
Chemical, ground application, forested land	1313	Chemical application performed by ground equipment where trees and terrain impede passage of wide boom sprayers. Utilizes forestry application methods that include heavy equipment such as skidders. Includes material, equipment, power unit and labor costs.	Acres	\$110.89	0.25	\$27.72
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	4	\$108.64
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	6	\$285.66

Materials

Herbicide, Glyphosate

Tree \& Shrub, Specialty
334 A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.
1523 Locally-sourced, culturally significant, native, or other highly specialized trees and shrubs (e.g., American chestnut, American elm, Canada yew, Sagebrush). Potted or balled and burlapped tree or shrub, 5 gallon. Includes materials and shipping only.

Mobilization
Mobilization, very small equipment

Mobilization, small equipment

1137 Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.
1138 Equipment <70 HP but can't be transported by a pick-up truck or with \quad Each $\quad \$ 299.46 \quad 1 \quad \$ 299.46$ typical weights between 3,500 to 14,000 pounds.

Practice: 422 - Hedgerow Planting
Scenario: \#26-Pollinator Habitat

Scenario Description:

In addition to the traditional hedgerow purposes where pollinator habitat is an additional wildlife habitat concern this scenario addresses the resource concern of inadequate fish and wildlife habitat. It provides both physical habitat by providing areas that are not disturbed by annual tillage and supplementle pollen and nector by establishing flowering Trees or shrubs. Typical installation is in or at the edge of cropland or pasture. Typical installation involves tillage to prepare the site for planting. Flowering trees and shrubs adapted for local climatic and edaphic conditions are typically planted at eight foot intervals (this will vary with species selection and density goals). A native grass adapted to the local climatic and edaphic conditions will be drilled into the site at a rate that will achieve a minimum of 20 seeds per square foot. Species adapted to local climatic and edaphic conditions will be listed in the specification for the site. There is tremendous overlap between this practice and conservation practice 380 Windbreak/Shelterbelt establishment. The main difference is that conservation practice 380 is exclusively woody plants where practice 422 provides for the use of herbaceous materials. If a fence is needed to facilitate establishment use practice 382, Fence.

Before Situation:

Pollen and nector sources are lacking or are only availble for part of the growing season. Large cropland tracks lack undisturbed areas for ground nesting bees

After Situation:

Flowering plants supply pollen and nector throughout the growing season. Undisturbed areas provide nesting sites for bees and other native pollinators.
Feature Measure: Length of Hedgerow

Scenario Unit: Feet

Scenario Typical Size: 800.00
Scenario Total Cost: \$3,190.43
Scenario Cost/Unit: \$3.99

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Primary	946	Includes heavy disking (offset) or chisel plow. Includes equipment, power unit and labor costs.	Acres	\$20.44	0.25	\$5.11
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	0.25	\$5.03
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	100	\$2,716.00

Materials

Shrub, Seedling, Medium	1507	Bare root shrub seedling, 18 to 36 inches tall; includes tropical containerized seedlings 10 to 20 cubic inches. Includes materials and shipping only.	Each	\$1.86	100	\$186.00
Tree shelter, mesh tree tube, 24 in.	1555	24 inch tall vexar or other open weave tubular tree shelter to protect from animal damage. Materials only.	Each	\$0.53	100	\$53.00
Animal repellent, chemical	1907	Chemical animal repellent to protect trees from animal damage. Includes materials and shipping only.	Gallons	\$31.52	0.25	\$7.88
Animal repellent, organic	1908	Organic compound animal repellent to protect trees from animal damage. Includes materials and shipping only.	Gallons	\$39.81	1	\$39.81
Native and Introduced Perennial Grasses, Legumes and/or Forbs, Low Density	2502	A mix of native and introduced perennial grasses, legumes, and/or forbs, grasses typically greater than 50% of the mix, may include biennials and a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and	Acres	\$88.80	2	\$177.60

Practice: 428-Irrigation Ditch Lining
Scenario: \#1-Concrete Lining

Scenario Description:

Construct quarter mile of concrete (1.5 inch in thickness) lining in an existing ditch alignment to convey water from the source of supply to a field or fields in a farm distribution system. Typical scenario includes filling the old ditch with on-site fill material, compacting, and constructing an 10 ft pad with on site fill material. This scenario does not include any check or outlets gates. A trapezoidal trencher forms the ditch (typical cross-section: 1 ft bottom, 20 inch depth including freeboard, and $1: 1$ side slope) and lining with concrete slip forms (total width $=6.372 \mathrm{ft}$). Resource Concerns: Insufficient water - Inefficient use of irrigation water; Soil erosion - Excessive bank erosion from streams shorelines or channels.Associated Practices: 320-Irrigation Canal or Lateral; 388-Irrigation Field Ditch; 443-Irrigation System, Surface or Subsurface Water; 533-Pumping Plant; 430-Irrigation Pipeline; 587-Structure for Water Control.

Before Situation:
Leaky and erosive earthen irrigation ditch.
After Situation:
Impervious lining prevents seepage, reduces energy use and improves water quality and irrigation efficiency.
Feature Measure: Volume of Concrete

Scenario Unit: Cubic Yards
Scenario Typical Size: 39.00

Scenario Total Cost:	$\$ 27,661.32$
Scenario Cost/Unit:	$\$ 709.26$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, formless, non reinforced	36	Non reinforced concrete cast-in-placed without forms by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$177.66	39	\$6,928.74
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	257	\$591.10
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	978	\$3,579.48
Tractor, agricultural, 120 HP	962	Agricultural tractor with horsepower range of 90 to 140 . Equipment and power unit costs. Labor not included.	Hours	\$74.02	80	\$5,921.60
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	32	\$869.12
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	80	\$2,220.80
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	32	\$1,523.52
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	8	\$6,026.96

Practice: 430-Irrigation Pipeline
Scenario: \#1 - PVC, 6 Inch or Smaller, Less Than 50 PSI

Scenario Description:

Description: Below ground installation of PVC (Plastic Irrigation Pipe) 6-inch or smaller diameter pipeline with less than 50 PSI operating pressure. PVC (PIP) is manufactured in sizes (nominal diameter) from 4-inch to 27-inch; typical practice sizes range from 4-inch to 24 -inch; and typical scenario size is 6 -inch. Construct $1 / 4$ mile (1,320 feet) of 6 -inch, Class 50 (SDR-81.0), PVC PIP with appurtenances, installed below ground with a minimum of 2 feet of ground cover. The unit is weight of pipe in pounds. 1,320 feet of 6 -inch, Class 50 (SDR-81.0) PVC PIP weighs $0.936 \mathrm{lb} / \mathrm{ft}$, or a total of 1,236 pounds. Appurtenances include: couplings, fittings, air vents, pressure relief valves, thrust blocks, risers, and inline valves, and are included in the cost of pipe material (additional 10\% of pipe material quantity). Cost of appurtenances does not include flow meters or backflow preventers. Typical installation applies to soils with no special bedding requirements.Resource Concerns: Inefficient Use of Irrigation Water; Inefficient Energy Use. Associated Practices: 436 - Irrigation Reservoir; 441 - Irrigation System, Microirrigation; 442 - Irrigation System, Sprinkler; 443 - Irrigation System, Surface \& Subsurface; 447 - Irrigation System, Tailwater Recovery; 533 - Pumping Plant; 634 - Waste Transfer.

Before Situation:

Pipeline needed to replace or supplement inefficient irrigation conveyance systems.
After Situation:
Pipeline installed to convey and/or distribute water to irrigation systems or reservoirs, minimizing non-beneficial water use, reducing soil erosion, and/or reducing energy use.
Feature Measure: Length of Pipe

Scenario Unit: Feet
Scenario Typical Size: 1,320.00
Scenario Total Cost: \$6,872.05
Scenario Cost/Unit: \$5.21

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Trenching, Earth, $12 \mathrm{in} . \times 48 \mathrm{in}$.	53	Trenching, earth, 12 inch wide $\times 48$ inch depth, includes equipment and labor for trenching and backfilling	Feet	\$1.30	1320	\$1,716.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	24	\$651.84

Materials

Pipe, PVC, dia. < 18 in., weight priced

1323 Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the
Pound \$2.76 1359 \$3,750.84 pipe materials for pipes with diameters less than 18 inch. Materials only.

Mobilization

Practice: 430-Irrigation Pipeline
Scenario: \#2 - PVC, 8 Inch, Less Than 50 PSI
Scenario Description:
Description: Below ground installation of PVC (Plastic Irrigation Pipe) 8-inch diameter pipeline with less than 50 PSI operating pressure. PVC (PIP) is manufactured in sizes (nominal diameter) from 4 -inch to 27 -inch; typical practice sizes range from 4 -inch to 24 -inch; and typical scenario size is 8 -inch. Construct $1 / 4$ mile (1,320 feet) of 8 -inch, Class 50 (SDR-81.0), PVC PIP with appurtenances, installed below ground with a minimum of 2 feet of ground cover. The unit is weight of pipe in pounds. 1,320 feet of $8-$ inch, Class 50 (SDR-81.0) PVC PIP weighs $1.628 \mathrm{lb} / \mathrm{ft}$, or a total of 2,149 pounds. Appurtenances include: couplings, fittings, air vents, pressure relief valves, thrust blocks, risers, and inline valves, and are included in the cost of pipe material (additional 10\% of pipe material quantity). Cost of appurtenances does not include flow meters or backflow preventers. Typical installation applies to soils with no special bedding requirements.Resource Concerns: Inefficient Use of Irrigation Water; Inefficient Energy Use. Associated Practices: 436 - Irrigation Reservoir; 441 - Irrigation System, Microirrigation; 442 - Irrigation System, Sprinkler; 443 - Irrigation System, Surface \& Subsurface; 447 - Irrigation System, Tailwater Recovery; 533 - Pumping Plant; 634 - Waste Transfer.

Before Situation:
Pipeline needed to replace or supplement inefficient irrigation conveyance systems.
After Situation:
Pipeline installed to convey and/or distribute water to irrigation systems or reservoirs, minimizing non-beneficial water use, reducing soil erosion, and/or reducing energy use.

Feature Measure: Length of Pipe
Scenario Unit: Feet
Scenario Typical Size: 1,320.00
Scenario Total Cost: $\quad \$ 9,645.85$
Scenario Cost/Unit: \$7.31

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Trenching, Earth, $12 \mathrm{in} . \times 48 \mathrm{in}$.	53	Trenching, earth, 12 inch wide $\times 48$ inch depth, includes equipment and labor for trenching and backfilling	Feet	\$1.30	1320	\$1,716.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	24	\$651.84

Materials

Pipe, PVC, dia. < 18 in., weight priced

1323 Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the
Pound \$2.76

2364
\$6,524.64 pipe materials for pipes with diameters less than 18 inch. Materials only.

Mobilization

Practice: 430-Irrigation Pipeline
Scenario: \#3 - PVC, 10 Inch, Less Than 50 PSI
Scenario Description:
Description: Below ground installation of PVC (Plastic Irrigation Pipe) 10-inch diameter pipeline with less than 50 PSI operating pressure. PVC (PIP) is manufactured in sizes (nominal diameter) from 4 -inch to 27 -inch; typical practice sizes range from 4 -inch to 24 -inch; and typical scenario size is 10 -inch. Construct $1 / 4$ mile (1,320 feet) of 10 -inch, Class 50 (SDR-81.0), PVC PIP with appurtenances, installed below ground with a minimum of 2 feet of ground cover. The unit is weight of pipe in pounds. 1,320 feet of 10 -inch, Class 50 (SDR-81.0) PVC PIP weighs $2.515 \mathrm{lb} / \mathrm{ft}$, or a total of 3,320 pounds. Appurtenances include: couplings, fittings, air vents, pressure relief valves, thrust blocks, risers, and inline valves, and are included in the cost of pipe material (additional 10\% of pipe material quantity). Cost of appurtenances does not include flow meters or backflow preventers. Typical installation applies to soils with no special bedding requirements.Resource Concerns: Inefficient Use of Irrigation Water; Inefficient Energy Use. Associated Practices: 436 - Irrigation Reservoir; 441 - Irrigation System, Microirrigation; 442 - Irrigation System, Sprinkler; 443 - Irrigation System, Surface \& Subsurface; 447 - Irrigation System, Tailwater Recovery; 533 - Pumping Plant; 634 - Waste Transfer.

Before Situation:
Pipeline needed to replace or supplement inefficient irrigation conveyance systems.
After Situation:
Pipeline installed to convey and/or distribute water to irrigation systems or reservoirs, minimizing non-beneficial water use, reducing soil erosion, and/or reducing energy use.

Feature Measure: Length of Pipe
Scenario Unit: Feet
Scenario Typical Size: 1,320.00
Scenario Total Cost: $\$ 13,200.73$

Scenario Cost/Unit: \$10.00
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Trenching, Earth, $12 \mathrm{in} . \times 48 \mathrm{in}$.	53	Trenching, earth, 12 inch wide $\times 48$ inch depth, includes equipment and labor for trenching and backfilling	Feet	\$1.30	1320	\$1,716.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	24	\$651.84

Materials

Pipe, PVC, dia. < 18 in., weight priced

1323 Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the
Pound \$2.76 3652
\$10,079.52 pipe materials for pipes with diameters less than 18 inch. Materials only.

Mobilization

Practice: 430-Irrigation Pipeline
Scenario: \#4 - PVC, 12 Inch, Less Than 50 PSI
Scenario Description:
Description: Below ground installation of PVC (Plastic Irrigation Pipe) 12-inch diameter pipeline with less than 50 PSI operating pressure. PVC (PIP) is manufactured in sizes (nominal diameter) from 4 -inch to 27 -inch; typical practice sizes range from 4 -inch to 24 -inch; and typical scenario size is 12 -inch. Construct $1 / 4$ mile (1,320 feet) of 12 -inch, Class 50 (SDR-81.0), PVC PIP with appurtenances, installed below ground with a minimum of 2 feet of ground cover. The unit is weight of pipe in pounds. 1,320 feet of 12 -inch, Class 50 (SDR-81.0) PVC PIP weighs $3.594 \mathrm{lb} / \mathrm{ft}$, or a total of 4,744 pounds. Appurtenances include: couplings, fittings, air vents, pressure relief valves, thrust blocks, risers, and inline valves, and are included in the cost of pipe material (additional 10\% of pipe material quantity). Cost of appurtenances does not include flow meters or backflow preventers. Typical installation applies to soils with no special bedding requirements.Resource Concerns: Inefficient Use of Irrigation Water; Inefficient Energy Use. Associated Practices: 436 - Irrigation Reservoir; 441 - Irrigation System, Microirrigation; 442 - Irrigation System, Sprinkler; 443 - Irrigation System, Surface \& Subsurface; 447 - Irrigation System, Tailwater Recovery; 533 - Pumping Plant; 634 - Waste Transfer.

Before Situation:
Pipeline needed to replace or supplement inefficient irrigation conveyance systems.
After Situation:
Pipeline installed to convey and/or distribute water to irrigation systems or reservoirs, minimizing non-beneficial water use, reducing soil erosion, and/or reducing energy use.

Feature Measure: Length of Pipe
Scenario Unit: Feet
Scenario Typical Size: 1,320.00
Scenario Total Cost: $\quad \$ 19,489.69$

Scenario Cost/Unit: \$14.76
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Trenching, Earth, loam, 24 in. x 48 in.	54	Trenching, earth, loam, 24 inch wide $\times 48$ inch depth, includes equipment and labor for trenching and backfilling	Feet	\$2.79	1320	\$3,682.80
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	24	\$651.84

Materials

Pipe, PVC, dia. < 18 in., weight priced
pressure rated pipe priced by weight of the
Pound \$2.76 5218
\$14,401.68 pipe materials for pipes with diameters less than 18 inch. Materials only.

Mobilization

Practice: 430-Irrigation Pipeline
Scenario: \#5 - PVC, 15 Inch or Larger, Less Than 50 PSI
Scenario Description:
Description: Below ground installation of PVC (Plastic Irrigation Pipe) 15-inch or larger diameter pipeline with less than 50 PSI operating pressure. PVC (PIP) is manufactured in sizes (nominal diameter) from 4-inch to 27-inch; typical practice sizes range from 4 -inch to 24 -inch; and typical scenario size is 15 -inch. Construct $1 / 4$ mile (1,320 feet) of 15 -inch, Class 50 (SDR-81.0), PVC PIP with appurtenances, installed below ground with a minimum of 2 feet of ground cover. The unit is weight of pipe in pounds. 1,320 feet of $15-\mathrm{inch}$, Class 50 (SDR-81.0) PVC PIP weighs $5.609 \mathrm{lb} / \mathrm{ft}$, or a total of 7,404 pounds. Appurtenances include: couplings, fittings, air vents, pressure relief valves, thrust blocks, risers, and inline valves, and are included in the cost of pipe material (additional 10% of pipe material quantity). Cost of appurtenances does not include flow meters or backflow preventers. Typical installation applies to soils with no special bedding requirements.Resource Concerns: Inefficient Use of Irrigation Water; Inefficient Energy Use. Associated Practices: 436 - Irrigation Reservoir; 441 - Irrigation System, Microirrigation; 442 - Irrigation System, Sprinkler; 443 - Irrigation System, Surface \& Subsurface; 447 - Irrigation System, Tailwater Recovery; 533 - Pumping Plant; 634 - Waste Transfer.

Before Situation:

Pipeline needed to replace or supplement inefficient irrigation conveyance systems.

After Situation:

Pipeline installed to convey and/or distribute water to irrigation systems or reservoirs, minimizing non-beneficial water use, reducing soil erosion, and/or reducing energy use.
Feature Measure: Length of Pipe

Scenario Unit: Feet
Scenario Typical Size: 1,320.00
Scenario Total Cost: $\$ 27,565.45$

Scenario Cost/Unit: \$20.88
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Trenching, Earth, loam, 24 in. x 48 in.	54	Trenching, earth, loam, 24 inch wide $\times 48$ inch depth, includes equipment and labor for trenching and backfilling	Feet	\$2.79	1320	\$3,682.80
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	24	\$651.84

Materials

Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	8144	\$22,477.44
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and	Each	\$753.37	1	\$753.37

Practice: 430-Irrigation Pipeline
Scenario: \#6-PVC, 6 Inch or Smaller, 50 PSI or Greater

Scenario Description:

Description: Below ground installation of PVC (Plastic Irrigation Pipe) 6-inch or smaller diameter pipeline with a 50 PSI or greater operating pressure. PVC (PIP) is manufactured in sizes (nominal diameter) from 4-inch to 27-inch; typical practice sizes range from 4 -inch to 24 -inch; and typical scenario size is 6 -inch. Construct $1 / 4$ mile (1,320 feet) of 6 -inch, SDR-51.0 PVC pipeline with appurtenances, installed below ground with a minimum of 2 feet of ground cover. The unit is weight of pipe material in pounds. 1,320 feet of 6 -inch, SDR-51.0 PVC pipe weighs $1.434 \mathrm{lb} / \mathrm{ft}$, or a total of 1,893 pounds. Appurtenances include: couplings, fittings, air vents, pressure relief valves, thrust blocks, risers, and inline valves, and are included in the cost of pipe material (additional 10\% of pipe material quantity). Cost of appurtenances does not include flow meters or backflow preventers. Typical installation applies to soils with no special bedding requirements.Resource Concerns: Inefficient Use of Irrigation Water; Inefficient Energy Use. Associated Practices: 436 - Irrigation Reservoir; 441 - Irrigation System, Microirrigation; 442 - Irrigation System, Sprinkler; 443 - Irrigation System, Surface \& Subsurface; 447 - Irrigation System, Tailwater Recovery; 533 - Pumping Plant; 634 - Waste Transfer.

Before Situation:
Pipeline needed to replace or supplement inefficient irrigation conveyance systems.

After Situation:

Pipeline installed to convey and/or distribute water to irrigation systems or reservoirs, minimizing non-beneficial water use, reducing soil erosion, and/or reducing energy use.

Feature Measure: Length of Pipe
Scenario Unit: Feet
Scenario Typical Size: 1,320.00
Scenario Total Cost: $\$ 8,867.53$
Scenario Cost/Unit: \$6.72

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Trenching, Earth, $12 \mathrm{in} . \times 48 \mathrm{in}$.	53	Trenching, earth, 12 inch wide $\times 48$ inch depth, includes equipment and labor for trenching and backfilling	Feet	\$1.30	1320	\$1,716.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	24	\$651.84

Materials

Pipe, PVC, dia. < 18 in., weight priced

1323 Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the
Pound \$2.76

2082
\$5,746.32 pipe materials for pipes with diameters less than 18 inch. Materials only.

Mobilization

Practice: 430-Irrigation Pipeline
Scenario: \#7 - PVC, 8 Inch, 50 PSI or Greater
Scenario Description:
Description: Below ground installation of PVC (Plastic Irrigation Pipe) 8-inch diameter pipeline with a 50 PSI or greater operating pressure. PVC (PIP) is manufactured in sizes (nominal diameter) from 4 -inch to 27 -inch; typical practice sizes range from 4 -inch to 24 -inch; and typical scenario size is 8 -inch. Construct $1 / 4$ mile (1,320 feet) of 8 inch, SDR-51.0 PVC pipeline with appurtenances, installed below ground with a minimum of 2 feet of ground cover. The unit is weight of pipe material in pounds. 1,320 feet of 8 -inch, SDR-51.0 PVC pipe weighs $2.515 \mathrm{lb} / \mathrm{ft}$, or a total of 3,320 pounds. Appurtenances include: couplings, fittings, air vents, pressure relief valves, thrust blocks, risers, and inline valves, and are included in the cost of pipe material (additional 10% of pipe material quantity). Cost of appurtenances does not include flow meters or backflow preventers. Typical installation applies to soils with no special bedding requirements.Resource Concerns: Inefficient Use of Irrigation Water; Inefficient Energy Use. Associated Practices: 436 - Irrigation Reservoir; 441 - Irrigation System, Microirrigation; 442 - Irrigation System, Sprinkler; 443 - Irrigation System, Surface \& Subsurface; 447 - Irrigation System, Tailwater Recovery; 533 - Pumping Plant; 634 - Waste Transfer.

Before Situation:
Pipeline needed to replace or supplement inefficient irrigation conveyance systems.
After Situation:
Pipeline installed to convey and/or distribute water to irrigation systems or reservoirs, minimizing non-beneficial water use, reducing soil erosion, and/or reducing energy use.

Feature Measure: Length of Pipe
Scenario Unit: Feet
Scenario Typical Size: 1,320.00
Scenario Total Cost: $\$ 13,200.73$

Scenario Cost/Unit: \$10.00
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Trenching, Earth, $12 \mathrm{in} . \times 48 \mathrm{in}$.	53	Trenching, earth, 12 inch wide $\times 48$ inch depth, includes equipment and labor for trenching and backfilling	Feet	\$1.30	1320	\$1,716.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	24	\$651.84

Materials

Pipe, PVC, dia. < 18 in., weight priced

1323 Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the
Pound \$2.76 3652
\$10,079.52 pipe materials for pipes with diameters less than 18 inch. Materials only.

Mobilization

Practice: 430-Irrigation Pipeline
Scenario: \#8 - PVC, 10 Inch, 50 PSI or Greater
Scenario Description:
Description: Below ground installation of PVC (Plastic Irrigation Pipe) 10-inch diameter pipeline with a 50 PSI or greater operating pressure. PVC (PIP) is manufactured in sizes (nominal diameter) from 4 -inch to 27 -inch; typical practice sizes range from 4 -inch to 24 -inch; and typical scenario size is 10 -inch. Construct $1 / 4$ mile (1,320 feet) of 10 -inch, SDR-51.0 PVC pipeline with appurtenances, installed below ground with a minimum of 2 feet of ground cover. The unit is weight of pipe material in pounds. 1,320 feet of 10 -inch, SDR- 51.0 PVC pipe weighs $3.925 \mathrm{lb} / \mathrm{ft}$, or a total of 5,181 pounds. Appurtenances include: couplings, fittings, air vents, pressure relief valves, thrust blocks, risers, and inline valves, and are included in the cost of pipe material (additional 10% of pipe material quantity). Cost of appurtenances does not include flow meters or backflow preventers. Typical installation applies to soils with no special bedding requirements.Resource Concerns: Inefficient Use of Irrigation Water; Inefficient Energy Use. Associated Practices: 436 - Irrigation Reservoir; 441 - Irrigation System, Microirrigation; 442 - Irrigation System, Sprinkler; 443 - Irrigation System, Surface \& Subsurface; 447 - Irrigation System, Tailwater Recovery; 533 - Pumping Plant; 634 - Waste Transfer.

Before Situation:
Pipeline needed to replace or supplement inefficient irrigation conveyance systems.
After Situation:
Pipeline installed to convey and/or distribute water to irrigation systems or reservoirs, minimizing non-beneficial water use, reducing soil erosion, and/or reducing energy use.

Feature Measure: Length of Pipe
Scenario Unit: Feet
Scenario Typical Size: 1,320.00
Scenario Total Cost: $\$ 18,850.45$

Scenario Cost/Unit: \$14.28
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Trenching, Earth, $12 \mathrm{in}$.x 48 in .	53	Trenching, earth, 12 inch wide $\times 48$ inch depth, includes equipment and labor for trenching and backfilling	Feet	\$1.30	1320	\$1,716.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	24	\$651.84

Materials

Pipe, PVC, dia. < 18 in., weight priced

1323 Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the
Pound \$2.76 5699 \$15,729.24 pipe materials for pipes with diameters less than 18 inch. Materials only.

Mobilization

Practice: 430-Irrigation Pipeline
Scenario: \#9 - PVC, 12 Inch, 50 PSI or Greater
Scenario Description:
Description: Below ground installation of PVC (Plastic Irrigation Pipe) 12-inch diameter pipeline with a 50 PSI or greater operating pressure. PVC (PIP) is manufactured in sizes (nominal diameter) from 4 -inch to 27 -inch; typical practice sizes range from 4 -inch to 24 -inch; and typical scenario size is 12 -inch. Construct $1 / 4$ mile (1,320 feet) of 12 -inch, SDR-51.0 PVC pipeline with appurtenances, installed below ground with a minimum of 2 feet of ground cover. The unit is weight of pipe material in pounds. 1,320 feet of 12 -inch, SDR- 51.0 PVC pipe weighs $5.654 \mathrm{lb} / \mathrm{ft}$, or a total of 7,463 pounds. Appurtenances include: couplings, fittings, air vents, pressure relief valves, thrust blocks, risers, and inline valves, and are included in the cost of pipe material (additional 10% of pipe material quantity). Cost of appurtenances does not include flow meters or backflow preventers. Typical installation applies to soils with no special bedding requirements.Resource Concerns: Inefficient Use of Irrigation Water; Inefficient Energy Use. Associated Practices: 436 - Irrigation Reservoir; 441 - Irrigation System, Microirrigation; 442 - Irrigation System, Sprinkler; 443 - Irrigation System, Surface \& Subsurface; 447 - Irrigation System, Tailwater Recovery; 533 - Pumping Plant; 634 - Waste Transfer.

Before Situation:
Pipeline needed to replace or supplement inefficient irrigation conveyance systems.
After Situation:
Pipeline installed to convey and/or distribute water to irrigation systems or reservoirs, minimizing non-beneficial water use, reducing soil erosion, and/or reducing energy use.

Feature Measure: Length of Pipe
Scenario Unit: Feet
Scenario Typical Size: 1,320.00
Scenario Total Cost: $\$ 27,747.61$

Scenario Cost/Unit: \$21.02
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Trenching, Earth, loam, 24 in. x 48 in.	54	Trenching, earth, loam, 24 inch wide $\times 48$ inch depth, includes equipment and labor for trenching and backfilling	Feet	\$2.79	1320	\$3,682.80
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	24	\$651.84

Materials

Pipe, PVC, dia. < 18 in., weight priced

Chide (PVC) pressure rated pipe priced by the weight of the
Pound \$2.76 8210 \$22,659.60 pipe materials for pipes with diameters less than 18 inch. Materials only.

Mobilization

Practice: 430-Irrigation Pipeline
Scenario: \#10-PVC, 15 Inch or Larger, 50 PSI or Greater

Scenario Description:

Description: Below ground installation of PVC (Plastic Irrigation Pipe) 15-inch or larger diameter pipeline with a 50 PSI or greater operating pressure. PVC (PIP) is manufactured in sizes (nominal diameter) from 4-inch to 27 -inch; typical practice sizes range from 4 -inch to 24 -inch; and typical scenario size is 15 -inch. Construct $1 / 4$ mile (1,320 feet) of 15 -inch, SDR-51.0 PVC pipeline with appurtenances, installed below ground with a minimum of 2 feet of ground cover. The unit is weight of pipe material in pounds. 1,320 feet of 12 -inch, SDR-51.0 PVC pipe weighs $8.874 \mathrm{lb} / \mathrm{ft}$, or a total of 11,714 pounds. Appurtenances include: couplings, fittings, air vents, pressure relief valves, thrust blocks, risers, and inline valves, and are included in the cost of pipe material (additional 10\% of pipe material quantity). Cost of appurtenances does not include flow meters or backflow preventers. Typical installation applies to soils with no special bedding requirements.Resource Concerns: Inefficient Use of Irrigation Water; Inefficient Energy Use. Associated Practices: 436 - Irrigation Reservoir; 441 - Irrigation System, Microirrigation; 442 - Irrigation System, Sprinkler; 443 - Irrigation System, Surface \& Subsurface; 447 - Irrigation System, Tailwater Recovery; 533 - Pumping Plant; 634 - Waste Transfer.

Before Situation:

Pipeline needed to replace or supplement inefficient irrigation conveyance systems.
After Situation:
Pipeline installed to convey and/or distribute water to irrigation systems or reservoirs, minimizing non-beneficial water use, reducing soil erosion, and/or reducing energy use.
Feature Measure: Length of Pipe

Scenario Unit: Feet
Scenario Typical Size: 1,320.00
Scenario Total Cost: $\$ 40,650.61$
Scenario Cost/Unit: $\$ 30.80$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Trenching, Earth, loam, 24 in. x 48 in.	54	Trenching, earth, loam, 24 inch wide $\times 48$ inch depth, includes equipment and labor for trenching and backfilling	Feet	\$2.79	1320	\$3,682.80
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	24	\$651.84
Materials						
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	12885	\$35,562.60
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 430-Irrigation Pipeline
Scenario: \#101 - PVC (Iron Pipe Size), less than or equal to 4 inch, Small Scale System
Scenario Description:
Below ground installation of PVC (Iron Pipe Size) pipeline. PVC (IPS) is manufactured in sizes (nominal diameter) from ??-inch to 36 - inch; typical practice sizes range from 2-inch to 24 -inch; and typical scenario size is 3 -inch. Construct 260 feet of 3 -inch, Class 125 (SDR-32.5), PVC pipeline with appurtenances, installed below ground with a minimum of 2 feet of ground cover. The unit is weight of pipe material in pounds. 260 feet of 3 -inch, Class 125 (SDR-32.5) PVC pipe weighs $0.730 \mathrm{lb} / \mathrm{ft}$, or a total of 189.8 pounds. Appurtenances include: couplings, fittings, air vents, pressure relief valves, thrust blocks, risers, and inline valves, and are included in the cost of pipe material (additional 10\% of pipe material quantity). Cost of appurtenances does not include flow meters or backflow preventers. Typical installation applies to soils with no special bedding requirements. Resource Concerns: Inefficient Use of Irrigation Water; Inefficient Energy Use. Associated Practices: 436 - Irrigation Reservoir; 441 - Irrigation System, Microirrigation; 442 - Irrigation System, Sprinkler; 443 - Irrigation System, Surface \&Subsurface; 447 - Irrigation and Drainage Tailwater Recovery; 533 - Pumping Plant; 634 - Waste Transfer.

Before Situation:
Pipeline needed to replace or supplement inefficient irrigation conveyance systems.

After Situation:

Pipeline installed to convey and/or distribute water to irrigation systems or reservoirs, minimizing non-beneficial water use, reducing soil erosion, and/or reducing energy use.

Feature Measure: Length of Pipe
Scenario Unit: Linear Feet
Scenario Typical Size: 260.00
Scenario Total Cost: \$2,583.93
Scenario Cost/Unit: \$9.94

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Trenching, Earth, $12 \mathrm{in} . \times 48 \mathrm{in}$.	53	Trenching, earth, 12 inch wide $\times 48$ inch depth, includes equipment and labor for trenching and backfilling	Feet	\$1.30	260	\$338.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	6	\$162.96

Materials

Pipe, PVC, dia. < 18 in., weight priced

1323 Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the
Pound \$2.76 208.78 \$576.23 pipe materials for pipes with diameters less than 18 inch. Materials only.

Mobilization

Practice: 436-Irrigation Reservoir
Scenario: \#1-Earthen Pit

Scenario Description:

This consists of an excavated pit and/or embankment designed to accumulate, store, deliver or regulate water for a surface irrigation system. If a mechanical inlet structure is required for the earthen pit, it is to be implemented as a 587 - Structure for Water Control.Resource concern: Insufficient Water - Inefficient use of irrigation water.Associated Practices: 587 - Structure for Water Control; 521 - Pond Sealing or Lining (various); 320 - Irrigation Canal or Lateral; 430 - Irrigation Pipeline; 428 Irrigation Ditch Lining; 533 - Pumping Plant; 440 series - Irrigation Systems; 447 - Irrigation System, Tailwater Recovery; 378 - Pond; 484 - Mulching; and 342 - Critical Area Planting.

Before Situation:
Current system relies on an intermittent or low-flow rate water source. This results in untimely and/or inefficient water application.
After Situation:
An excavated and/or an embankment irrigation regulating reservoir will be built on a relatively flat site and be used to accumulate and store water for timely application through an irrigation system. The water source could be a stream or an irrigation canal. It will typically have a bottom width of 50 ft and length of 250 feet . The side slopes will be no steeper than 2.0 H to 1 V inside and out. It will typically have a maximum water depth of 10 feet with 1 feet of freeboard. It will typically be built with approximately 8,050 cubic yards of on-site material. Therefore, the total typical volume is approximately 5 ac-ft (1,625,891 gallons).

Feature Measure: Volume of Earthwork

Scenario Unit: Cubic Yards
Scenario Typical Size: 8,050.00
Scenario Total Cost: \$20,334.18

Scenario Cost/Unit: \$2.53
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	8050	\$18,515.00
Mobilization						
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	2	\$1,819.18

Practice: 436-Irrigation Reservoir
Scenario: \#3 - Plastic Tank

Scenario Description:

An above ground, enclosed plastic tank with fittings, is installed to store water for irrigation. This scenario is based on a 3,000 Gallon, above-ground, High Density Polyethylene plastic enclosed tank that is installed on 6' of well-compacted drain rock or a 4' thick reinforced concrete support pad, to store water from a reliable source for irrigation of an area less than one acre. The scenario assumes the typical dimensions of the tank are 102' in diameter and 93' tall. The scenario also assumes a 126 ' diameter gravel base or concrete pad to extend a minimum of 12 ' past the base of tank for adequate foundation support. This cost estimate scenario is for cost of the tank and pad only and does not include estimate for pumps, pipe, or connecting fittings. Resource Concern: Insufficient Water - Inefficient use of irrigation water.Associated Practices: 430-Irrigation Pipeline; 441-Irrigation System, Microirrigation; 442-Sprinkler System; 533 - Pumping Plant; 447 - Irrigation System, Tailwater Recovery.

Before Situation:

Insufficient volume of water to complete an irrigation cycle at the required flow rate.
After Situation:
An above-ground plastic tank, constructed to withstand the elements, is used to accumulate and store water between irrigation cycles for a very small irrigation system. This allows for an improved flow rate and timing of water application. Sources of water could be a well, a domestic water system, a large roof area, a water ram , or a pump drawing water from a stream.

Feature Measure: Volume of Tank Storage
Scenario Unit: Gallons

Scenario Typical Size: 3,000.00
Scenario Total Cost: $\quad \$ 7,494.97$

Scenario Cost/Unit: \$2.50
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Skidsteer, 80 HP	933	Skidsteer loader with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$56.04	6	\$336.24
Plate compactor	1915	Manually guided vibratroy plate compactor. Equipment only.	Hours	\$18.74	4	\$74.96
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	32	\$869.12
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	6	\$191.22
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	16	\$761.76
Materials						
Tank, Poly Enclosed Storage, $>1,000$	1075	Water storage tanks. Includes materials and shipping only.	Gallons	\$1.42	3000	\$4,260.00
Aggregate, Gravel, Ungraded, Quarry Run	1099	Includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$34.45	2	\$68.90
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 436-Irrigation Reservoir
Scenario: \#48-Plastic tank, less than or equal to 1,000 gallons
Scenario Description:
A 1,000 Gallon, above-ground, High Density Polyethylene plastic enclosed tank, is installed on 6' of well-compacted drain rock or a 4' thick reinforced concrete support pad, to store water from a reliable source for irrigation of an area less than one acre. The scenario assumes the typical dimensions of the tank are 72 ' in diameter and 66 tall. The scenario also assumes a 96^{\prime} diameter gravel base or concrete pad to extend a minimum of 12' past the base of tank for adequate foundation support. This cost estimate scenario is for cost of the tank and pad only and does not include estimate for pumps, pipe, or connecting fittings. Resource Concern: Insufficient Water Inefficient use of irrigation water. Associated Practices: 430-Irrigation Pipeline; 441 - Irrigation System, Microirrigation; 442 - Irrigation System, Sprinkler; 533 - Pumping Plant; 447 - Irrigation System, Tailwater Recovery.

Before Situation:
Insufficient volume of water to complete an irrigation cycle at the required flow rate.
After Situation:
An above-ground plastic tank, constructed to withstand the elements, is used to accumulate and store water between irrigation cycles for a very small irrigation system. This allows for an improved flow rate and timing of water application. Sources of water could be a well, a domestic water system, a large roof area, a water ram , or a pump drawing water from a stream.

Feature Measure: Volume of Tank Storage
Scenario Unit: Gallons

Scenario Typical Size: 1,000.00

Scenario Total Cost: $\$ 5,662.50$

Scenario Cost/Unit: \$5.66
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Hydraulic Excavator, . 5 CY	930	Track mounted hydraulic excavator with bucket capacity range of 0.3 to 0.8 CY . Equipment and power unit costs. Labor not included.	Hours	\$99.69	1	\$99.69
Skidsteer, 80 HP	933	Skidsteer loader with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$56.04	6	\$336.24
Plate compactor	1915	Manually guided vibratroy plate compactor. Equipment only.	Hours	\$18.74	1	\$18.74
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	2	\$54.32
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	2	\$55.52
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	6	\$191.22
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	16	\$761.76

Materials

Tank, Poly enclosed Storage, 3001000 gal	1074	Water storage tanks. Includes materials and shipping only.	Gallons	\$1.68	1000	\$1,680.00
Aggregate, Gravel, Ungraded, Quarry Run	1099	Includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$34.45	1	\$34.45
Cable, Galvanized steel	2182	Galvanized steel aircraft cable in 7×19 strand core. Materials and shipping only.	Feet	\$0.68	40	\$27.20
Anchor, earthen, low disturbance, large	2184	Low disturbance, galvanized or aluminum alloy earthen anchors with holding power greather than 3,000 pounds in normal soil. Materials and shipping only.	Each	\$59.59	4	\$238.36
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	2	\$358.80
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and	Each	\$753.37	2	\$1,506.74

Practice: 441-Irrigation System, Microirrigation
Scenario: \#1-SDI, 25 Inch - 35 Inch Spacing

Scenario Description:

A subsurface drip irrigation system (SDI) with a lateral spacing between 25-35 inches. This buried drip irrigation system utilizes a thinwall dripperline or tape with inline emitters at a uniform spacing for the system laterals. The dripperline or tape is normally installed by being plowed in approx 10-14 inches deep with a chisel shank type plow equipped with tape reels. This type of drip irrigation system utilizes a buried supply manifold with automated zone control valves and a buried flush manifold with manual flush valves. This permanent micro-irrigation system includes an automated filter station, flow meter, backflow prevention device, automated control box or timer, the thinwall dipperline or tape for laterals, both a supply and a flushing manifold and numerous types of water control valves. This is an all-inclusive system starting with the filter station including all required system components out to the flush valves. The water supply line from the water source to the filter station is an irrigation pipeline (430) and is not included as part of this systemResource Concerns: Insufficient Water - Inefficient use of irrigation water, Degraded Plant Condition - Undesirable plantproductivity and health, Water Quality Degradation - Excessive sediment in surface waters, and Inefficient Energy Use - Equipment and facilities.Associated Practices: 533-Pumping Plant, 449- Irrigation Water Management, 430 - Irrigation Pipeline, 433 - Irrigation Flow Measrement, 610 - Salinity \& Sodic Soil Management, 434 - Soil Moisture Measurement, 328-Conservation Crop Rotation, and 590 Nutrient Management.

Before Situation:

Typical before irrigation situation would normally be an existing inefficient surface or sprinkler irrigation system on a cropland or hayland field. The existing irrigation system would experience poor, non-uniform irrigation applications and significant water losses affecting both water quantity and water quality

After Situation:

A typical practice would be the installation of a subsurface drip irrigation system (SDI) on a 60 acre cropland or hayland field. The system lateral (thinwall dripperline or tape) spacing would 30 inches. This highly efficient SDI (buried) irrigation system provides irrigation water directly to the plant root zone eliminating application losses resulting in a very high water application efficiency and properly designed these SDI systems are capable of very uniform water applications.Typical field size is 60 acres.

Feature Measure: Acres in System
Scenario Unit: Acres
Scenario Typical Size: 60.00
Scenario Total Cost: $\quad \$ 197,621.09$

Scenario Cost/Unit: \$3,293.68
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Micro Irrigation, chemical injection equipment	1987	Chemical Injector Pump, plus chemigation check valve, injector ports, and appurtenances, Installation included.	Each	\$2,151.39	1	\$2,151.39
Materials						
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	4800	\$13,248.00
Flow Meter, with Electronic Index	1452	10 inch Turbine Irrigation flow meter, with Electronic Index, Rate and Volume, permanently installed. Materials only.	Each	\$3,628.64	1	\$3,628.64
Micro Irrigation, Media Filter, 30 to 48 in. Dia. tank, Equipped for Automatic Flush	1482	Sand or media filter for Micro irrigation system. Includes plumbing, connections and automatic controller. Unit is complete and installed. Unit price per filter, not per filter station.	Each	\$6,901.92	4	\$27,607.68
Micro Irrigation, screen filter, => 100 gpm	1484	Screen filter for Micro irrigation system with 100 gpm or greater capacity. Includes plumbing, connections and automatic controller. Unit price per filter, not per filter station.	Each	\$1,070.30	1	\$1,070.30
Micro Irrigation, control valves and timers	1485	Automatic controller and timer, to turn on and off the sets for micro irrigation, and valves. Based on control unit, not number of valves controlled.	Each	\$417.16	1	\$417.16
Micro Irrigation, buried drip tape	2521	Tape that is installed underground for sub-surface drip irrigation, includes installation, and connections to the supply and flushing laterals.?? Tape is a minimum of 10 mil thick thick and has emitters built in. Includes labor and installtion.	Feet	\$0.13	1149984	\$149,497.92

Practice: 441-Irrigation System, Microirrigation
Scenario: \#2-SDI, 36 Inch - 50 Inch Spacing

Scenario Description:

A subsurface drip irrigation system (SDI) with a lateral spacing between 36-50 inches. This buried drip irrigation system utilizes a thinwall dripperline or tape with inline emitters at a uniform spacing for the system laterals. The dripperline or tape is normally installed by being plowed in approx 10-14 inches deep with a chisel shank type plow equipped with tape reels. This type of drip irrigation system utilizes a buried supply manifold with automated zone control valves and a buried flush manifold with manual flush valves. This permanent micro-irrigation system includes an automated filter station, flow meter, backflow prevention device, automated control box or timer, the thinwall dipperline or tape for laterals, both a supply and a flushing manifold and numerous types of water control valves. This is an all-inclusive system starting with the filter station including all required system components out to the flush valves. The water supply line from the water source to the filter station is an irrigation pipeline (430) and is not included as part of this systemResource Concerns: Insufficient Water - Inefficient use of irrigation water, Degraded Plant Condition - Undesirable plantproductivity and health, Water Quality Degradation - Excessive sediment in surface waters, and Inefficient Energy Use - Equipment and facilities.Associated Practices: 533-Pumping Plant, 449- Irrigation Water Management, 430 - Irrigation Pipeline, 433 - Irrigation Flow Measrement, 610 - Salinity \& Sodic Soil Management, 434 - Soil Moisture Measurement, 328-Conservation Crop Rotation, and 590 Nutrient Management.

Before Situation:

Typical before irrigation situation would normally be an existing inefficient surface or sprinkler irrigation system on a cropland or hayland field. The existing irrigation system would experience poor, non-uniform irrigation applications and significant water losses affecting both water quantity and water quality

After Situation:

A typical practice would be the installation of a subsurface drip irrigation system (SDI) on a 60 acre cropland or hayland field. The system lateral (thinwall dripperline or tape) spacing would 40 inches. This highly efficient SDI (buried) irrigation system provides irrigation water directly to the plant root zone eliminating application losses resulting in a very high water application efficiency and properly designed these SDI systems are capable of very uniform water applications.Typical field size is 60 acres.

Feature Measure: Acres in System
Scenario Unit: Acres
Scenario Typical Size: 60.00
Scenario Total Cost: \$160,246.61
Scenario Cost/Unit: $\quad \$ 2,670.78$
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Micro Irrigation, chemical injection equipment	1987	Chemical Injector Pump, plus chemigation check valve, injector ports, and appurtenances, Installation included.	Each	\$2,151.39	1	\$2,151.39
Materials						
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	4800	\$13,248.00
Flow Meter, with Electronic Index	1452	10 inch Turbine Irrigation flow meter, with Electronic Index, Rate and Volume, permanently installed. Materials only.	Each	\$3,628.64	1	\$3,628.64
Micro Irrigation, Media Filter, 30 to 48 in. Dia. tank, Equipped for Automatic Flush	1482	Sand or media filter for Micro irrigation system. Includes plumbing, connections and automatic controller. Unit is complete and installed. Unit price per filter, not per filter station.	Each	\$6,901.92	4	\$27,607.68
Micro Irrigation, screen filter, => 100 gpm	1484	Screen filter for Micro irrigation system with 100 gpm or greater capacity. Includes plumbing, connections and automatic controller. Unit price per filter, not per filter station.	Each	\$1,070.30	1	\$1,070.30
Micro Irrigation, control valves and timers	1485	Automatic controller and timer, to turn on and off the sets for micro irrigation, and valves. Based on control unit, not number of valves controlled.	Each	\$417.16	1	\$417.16
Micro Irrigation, buried drip tape	2521	Tape that is installed underground for sub-surface drip irrigation, includes installation, and connections to the supply and flushing laterals.?? Tape is a minimum of 10 mil thick thick and has emitters built in. Includes labor and installtion.	Feet	\$0.13	862488	\$112,123.44

Practice: 441-Irrigation System, Microirrigation
Scenario: \#3-SDI, 51 Inch - 70 Inch Spacing

Scenario Description:

A subsurface drip irrigation system (SDI) with a lateral spacing between 51-70 inches. This buried drip irrigation system utilizes a thinwall dripperline or tape with inline emitters at a uniform spacing for the system laterals. The dripperline or tape is normally installed by being plowed in approx 10-14 inches deep with a chisel shank type plow equipped with tape reels. This type of drip irrigation system utilizes a buried supply manifold with automated zone control valves and a buried flush manifold with manual flush valves. This permanent micro-irrigation system includes an automated filter station, flow meter, backflow prevention device, automated control box or timer, the thinwall dipperline or tape for laterals, both a supply and a flushing manifold and numerous types of water control valves. This is an all-inclusive system starting with the filter station including all required system components out to the flush valves. The water supply line from the water source to the filter station is an irrigation pipeline (430) and is not included as part of this systemResource Concerns: Insufficient Water - Inefficient use of irrigation water, Degraded Plant Condition - Undesirable plantproductivity and health, Water Quality Degradation - Excessive sediment in surface waters, and Inefficient Energy Use - Equipment and facilities.Associated Practices: 533-Pumping Plant, 449- Irrigation Water Management, 430 - Irrigation Pipeline, 433 - Irrigation Flow Measrement, 610 - Salinity \& Sodic Soil Management, 434 - Soil Moisture Measurement, 328-Conservation Crop Rotation, and 590 Nutrient Management.

Before Situation:

Typical before irrigation situation would normally be an existing inefficient surface or sprinkler irrigation system on a cropland or hayland field. The existing irrigation system would experience poor, non-uniform irrigation applications and significant water losses affecting both water quantity and water quality

After Situation:

A typical practice would be the installation of a subsurface drip irrigation system (SDI) on a 60 acre cropland or hayland field. The system lateral (thinwall dripperline or tape) spacing would 60 inches. This highly efficient SDI (buried) irrigation system provides irrigation water directly to the plant root zone eliminating application losses resulting in a very high water application efficiency and properly designed these SDI systems are capable of very uniform water applications.Typical field size is 60 acres.

Feature Measure: Acres in System
Scenario Unit: Acres
Scenario Typical Size: 60.00
Scenario Total Cost: $\quad \$ 122,872.13$
Scenario Cost/Unit: \$2,047.87
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Micro Irrigation, chemical injection equipment	1987	Chemical Injector Pump, plus chemigation check valve, injector ports, and appurtenances, Installation included.	Each	\$2,151.39	1	\$2,151.39
Materials						
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	4800	\$13,248.00
Flow Meter, with Electronic Index	1452	10 inch Turbine Irrigation flow meter, with Electronic Index, Rate and Volume, permanently installed. Materials only.	Each	\$3,628.64	1	\$3,628.64
Micro Irrigation, Media Filter, 30 to 48 in. Dia. tank, Equipped for Automatic Flush	1482	Sand or media filter for Micro irrigation system. Includes plumbing, connections and automatic controller. Unit is complete and installed. Unit price per filter, not per filter station.	Each	\$6,901.92	4	\$27,607.68
Micro Irrigation, screen filter, => 100 gpm	1484	Screen filter for Micro irrigation system with 100 gpm or greater capacity. Includes plumbing, connections and automatic controller. Unit price per filter, not per filter station.	Each	\$1,070.30	1	\$1,070.30
Micro Irrigation, control valves and timers	1485	Automatic controller and timer, to turn on and off the sets for micro irrigation, and valves. Based on control unit, not number of valves controlled.	Each	\$417.16	1	\$417.16
Micro Irrigation, buried drip tape	2521	Tape that is installed underground for sub-surface drip irrigation, includes installation, and connections to the supply and flushing laterals.?? Tape is a minimum of 10 mil thick thick and has emitters built in. Includes labor and installtion.	Feet	\$0.13	574992	\$74,748.96

Practice: 441-Irrigation System, Microirrigation
Scenario: \#4-SDI, 71 Inch - 90 Inch Spacing

Scenario Description:

A subsurface drip irrigation system (SDI) with a lateral spacing between 71-90 inches. This buried drip irrigation system utilizes a thinwall dripperline or tape with inline emitters at a uniform spacing for the system laterals. The dripperline or tape is normally installed by being plowed in approx 10-14 inches deep with a chisel shank type plow equipped with tape reels. This type of drip irrigation system utilizes a buried supply manifold with automated zone control valves and a buried flush manifold with manual flush valves. This permanent micro-irrigation system includes an automated filter station, flow meter, backflow prevention device, automated control box or timer, the thinwall dipperline or tape for laterals, both a supply and a flushing manifold and numerous types of water control valves. This is an all-inclusive system starting with the filter station including all required system components out to the flush valves. The water supply line from the water source to the filter station is an irrigation pipeline (430) and is not included as part of this systemResource Concerns: Insufficient Water - Inefficient use of irrigation water, Degraded Plant Condition - Undesirable plantproductivity and health, Water Quality Degradation - Excessive sediment in surface waters, and Inefficient Energy Use - Equipment and facilities.Associated Practices: 533-Pumping Plant, 449- Irrigation Water Management, 430 - Irrigation Pipeline, 433 - Irrigation Flow Measrement, 610 - Salinity \& Sodic Soil Management, 434 - Soil Moisture Measurement, 328-Conservation Crop Rotation, and 590 Nutrient Management.

Before Situation:

Typical before irrigation situation would normally be an existing inefficient surface or sprinkler irrigation system on a cropland or hayland field. The existing irrigation system would experience poor, non-uniform irrigation applications and significant water losses affecting both water quantity and water quality

After Situation:

A typical practice would be the installation of a subsurface drip irrigation system (SDI) on a 60 acre cropland or hayland field. The system lateral (thinwall dripperline or tape) spacing would 80 inches. This highly efficient SDI (buried) irrigation system provides irrigation water directly to the plant root zone eliminating application losses resulting in a very high water application efficiency and properly designed these SDI systems are capable of very uniform water applications.Typical field size is 60 acres.

Feature Measure: Acres in System
Scenario Unit: Acres
Scenario Typical Size: 60.00
Scenario Total Cost: \$104,184.89

Scenario Cost/Unit: \$1,736.41
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Micro Irrigation, chemical injection equipment	1987	Chemical Injector Pump, plus chemigation check valve, injector ports, and appurtenances, Installation included.	Each	\$2,151.39	1	\$2,151.39
Materials						
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	4800	\$13,248.00
Flow Meter, with Electronic Index	1452	10 inch Turbine Irrigation flow meter, with Electronic Index, Rate and Volume, permanently installed. Materials only.	Each	\$3,628.64	1	\$3,628.64
Micro Irrigation, Media Filter, 30 to 48 in. Dia. tank, Equipped for Automatic Flush	1482	Sand or media filter for Micro irrigation system. Includes plumbing, connections and automatic controller. Unit is complete and installed. Unit price per filter, not per filter station.	Each	\$6,901.92	4	\$27,607.68
Micro Irrigation, screen filter, => 100 gpm	1484	Screen filter for Micro irrigation system with 100 gpm or greater capacity. Includes plumbing, connections and automatic controller. Unit price per filter, not per filter station.	Each	\$1,070.30	1	\$1,070.30
Micro Irrigation, control valves and timers	1485	Automatic controller and timer, to turn on and off the sets for micro irrigation, and valves. Based on control unit, not number of valves controlled.	Each	\$417.16	1	\$417.16
Micro Irrigation, buried drip tape	2521	Tape that is installed underground for sub-surface drip irrigation, includes installation, and connections to the supply and flushing laterals.?? Tape is a minimum of 10 mil thick thick and has emitters built in. Includes labor and installtion.	Feet	\$0.13	431244	\$56,061.72

Practice: 441-Irrigation System, Microirrigation
Scenario: \#5 - Surface PE with emitters

Scenario Description:

A micro-irrigation system, utilizing surface PE tubing (can be placed on trelis or above ground) with emitters to provide irrigation for an orchard, vinyard, or other specialty crop grown in a grid pattern. The typical system is a permanent system, installed on a 60 acre vineyard on the ground surface or trellis. The vineyard has a plant spacing of 8 feet x 9 feet. Laterals are spaced 9 feet apart. This system utilizes emitters at each tree or plant as the water application device. This system typically includes a filter system, PE tubing laterals, PVC manifolds, and submains, valves, fittings, emitters, etc. This practice applies to systems designed to discharge < 60 gal/hr at each individual lateral discharge point. Does not include Pump, Power source, Water source (well or reservoir). Resource Concerns: Insufficient Water - Inefficient use of irrigation water, Degraded Plant Condition - Undesirable plantproductivity and health, Water Quality Degradation - Excessive sediment in surface waters, and Inefficient Energy Use - Equipment and facilities.Associated Practices: 533-Pumping Plant, 449- Irrigation Water Management, 430 - Irrigation Pipeline, 433 - Irrigation Flow Measrement, 610 - Salinity \& Sodic Soil Management, 434 - Soil Moisture Measurement, 328-Conservation Crop Rotation, and 590 Nutrient Management.

Before Situation:
A vineyard has an inefficient surface flood irrigation system causing irrigation water loss that impacts water quality and water quantity.

After Situation:

A surface placed microirrigation system is utilized to provide highly efficient irrigation to an vineyard. Water applications are reduced and runoff eliminated. Offsite water quality is improved, and on site water use is reduced.

Feature Measure: Acres in System
Scenario Unit: Acres
Scenario Typical Size: 60.00
Scenario Total Cost: \$153,025.25
Scenario Cost/Unit: \$2,550.42
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Micro Irrigation, chemical injection equipment	1987	Chemical Injector Pump, plus chemigation check valve, injector ports, and appurtenances, Installation included.	Each	\$2,151.39	1	\$2,151.39
Materials						
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	4800	\$13,248.00
Flow Meter, with Electronic Index	1452	10 inch Turbine Irrigation flow meter, with Electronic Index, Rate and Volume, permanently installed. Materials only.	Each	\$3,628.64	1	\$3,628.64
Micro Irrigation, Media Filter, 30 to 48 in. Dia. tank, Equipped for Automatic Flush	1482	Sand or media filter for Micro irrigation system. Includes plumbing, connections and automatic controller. Unit is complete and installed. Unit price per filter, not per filter station.	Each	\$6,901.92	3	\$20,705.76
Micro Irrigation, screen filter, => 100 gpm	1484	Screen filter for Micro irrigation system with 100 gpm or greater capacity. Includes plumbing, connections and automatic controller. Unit price per filter, not per filter station.	Each	\$1,070.30	1	\$1,070.30
Micro Irrigation, control valves and timers	1485	Automatic controller and timer, to turn on and off the sets for micro irrigation, and valves. Based on control unit, not number of valves controlled.	Each	\$417.16	1	\$417.16
Micro Irrigation, surface drip tubing	1488	Tubing is installed above ground for surface drip irrigation, and connections to the supply and flushing laterals. Tubing has emitters built in.	Feet	\$0.35	319440	\$111,804.00

Practice: 441-Irrigation System, Microirrigation
Scenario: \#8 - Surface Drip Tape, Less Than or Equal to 5 Acres

Scenario Description:

A micro-irrigation system using drip tape or similar type micro-irrigation material placed on the soil surface of a field that is less than or equal to 5 Acres for vegetables or field crops. Spacing of drip tape or similar type micro irrigation material is based on soil type or row alignment but will typically vary from 18 ' to 36 '. This system typically includes a filter system, PE manifolds fittings, drip tape, etc. This practice applies to systems designed to discharge < 60 gal/hr at each individual discharge point. Does not include Pump, power source, water source. Surface placed drip tape will not meet the 441 practice life and will normally need replacement every year. After first installation drip tape will be replaced as operation and maintenance issue as required for proper operation of the system. Resource Concerns: Insufficient Water Inefficient use of irrigation water, Degraded Plant Condition - Undesirable plantproductivity and health, Water Quality Degradation - Excessive sediment in surface waters, and Inefficient Energy Use - Equipment and Facilities.Associated Practices: 533-Pumping Plant, 449-Irrigation Water Management, 430 - Irrigation Pipeline, 610 - Salinity \& Sodic Soil Management, 328-Conservation Crop Rotation, 590 Nutrient Management, and 595-Itegrated Pest Management.

Before Situation:

A typical before irrigation situation would normally be an existing inefficient sprinkler or surface irrigation system for vegetable or other crop production system. The existing irrigation system would experience poor, nonuniform irrigation applicatons and significant water losses affecting both water quantity and water quality.

After Situation:
A surface placed microirrigation system is utilized to provide highly efficient irrigation to a field. Water applications are reduced and runoff eliminated. Offsite water quality is improved, and on site water use is reduced. Drip tape will be replaced as operation and maintenance issue as required for proper operation of the system. A typical scenario consists of a $1 / 2$ acre irrigated field with lateral spacing of 2 feet.

Feature Measure: Acres in System

Scenario Unit: Acres

Scenario Typical Size: 0.50

Scenario Total Cost:	$\$ 2,456.09$
Scenario Cost/Unit:	$\$ 4,912.18$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	4	\$108.64
Materials						
Pipe, HDPE, smooth wall, weight priced	1379	High Density Polyethylene (HDPE) compound manufactured into smooth wall pipe. Materials only.	Pound	\$4.32	49	\$211.68
Micro Irrigation, surface drip tape	2522	Tape is installed above ground for surface drip irrigation on annual crops, includes installation, and connections to the supply and flushing laterals.?? Tape is a minimum of 10 mil thick and has emitters built in.	Feet	\$0.11	11979	\$1,317.69
Micro Irrigation, screen or disc filter, < 3 inch	2524	Micro Irrigation, small manual flush screen or disc filter, <3 inch nominal size. Includes materials only.	Each	\$219.16	1	\$219.16
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	2	\$598.92

Practice: 441-Irrigation System, Microirrigation
Scenario: \#9 - Surface Drip Tape, Greater Than 5 Acres
Scenario Description:
A micro-irrigation system using drip tape or similar type micro-irrigation material placed on the soil surface of a field that is greater than 5 Acres for vegetables or other field crops. Spacing of drip tape similar type micro irrigation material is based on soil type or row alignment but will typically vary from 18 ' to 36 '. This system typically includes a filter system, PE manifolds fittings, drip tape, etc. Does not include Pump, power source, water source. Surface placed drip tape will not meet the 441 practice life and will normally need replacement every year. After first installation drip tape will be replaced as a part of regular operation and maintenance as required for proper operation of the system.Resource Concerns: Insufficient Water - Inefficient use of irrigation water, Degraded Plant Condition - Undesirable plantproductivity and health, Water Quality Degradation - Excessive sediment in surface waters, and Inefficient Energy Use - Equipment and Facilities.Associated Practices: 533-Pumping Plant, 449-Irrigation Water Management, 430 - Irrigation Pipeline, 610 - Salinity \& Sodic Soil Management, 328-Conservation Crop Rotation, 590 Nutrient Management, and 595-Itegrated Pest Management.

Before Situation:
A typical before irrigation situation would include an existing inefficient sprinkler or surface irrigation system used to irrigate vegetables or other crops. The existing irrigation system would supply excessive or inadequate non-uniform irrigation applicatons with significant water losses affecting both water quantity and water quality.

After Situation:
A surface placed microirrigation system is utilized to provide highly efficient irrigation to a field. Crop water requirements are met. Water applications are normally reduced and runoff eliminated. Offsite water quality is improved, and on site water use reduced. Drip tape will be replaced as operation and maintenance issue as required for proper operation of the system. A typical scenario consists of a 40 acre irrigated field with lateral spacing of 2.5 feet.

Feature Measure: Acres in System

Scenario Unit: Acres

Scenario Typical Size: 40.00

Scenario Total Cost: $\$ 116,001.89$
Scenario Cost/Unit: \$2,900.05

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Micro Irrigation, chemical injection equipment	1987	Chemical Injector Pump, plus chemigation check valve, injector ports, and appurtenances, Installation included.	Each	\$2,151.39	1	\$2,151.39
Materials						
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	3840	\$10,598.40
Flow Meter, with Electronic Index	1452	10 inch Turbine Irrigation flow meter, with Electronic Index, Rate and Volume, permanently installed. Materials only.	Each	\$3,628.64	1	\$3,628.64
Micro Irrigation, Media Filter, 30 to 48 in. Dia. tank, Equipped for Automatic Flush	1482	Sand or media filter for Micro irrigation system. Includes plumbing, connections and automatic controller. Unit is complete and installed. Unit price per filter, not per filter station.	Each	\$6,901.92	2	\$13,803.84
Micro Irrigation, screen filter, => 100 gpm	1484	Screen filter for Micro irrigation system with 100 gpm or greater capacity. Includes plumbing, connections and automatic controller. Unit price per filter, not per filter station.	Each	\$1,070.30	1	\$1,070.30
Micro Irrigation, control valves and timers	1485	Automatic controller and timer, to turn on and off the sets for micro irrigation, and valves. Based on control unit, not number of valves controlled.	Each	\$417.16	1	\$417.16
Micro Irrigation, surface drip tape	2522	Tape is installed above ground for surface drip irrigation on annual crops, includes installation, and connections to the supply and flushing laterals.?? Tape is a minimum of 10 mil thick and has emitters built in.	Feet	\$0.11	766656	\$84,332.16

Practice: 441-Irrigation System, Microirrigation

Scenario: \#20-SDI, 25 Inch - 35 Inch Spacing, Extension of Existing System

Scenario Description:

Extension of an existing subsurface drip irrigation system (SDI) with a lateral spacing between 25-35 inches. This is an extension to an existing system including all required system components downstream of the existing filter station out to the flush valves. This buried drip irrigation system utilizes a thinwall dripperline or tape with inline emitters at a uniform spacing for the system laterals. The dripperline or tape is normally installed by being plowed in approx 10-14 inches deep with a chisel shank type plow equipped with tape reels. This type of drip irrigation system utilizes a buried supply manifold with automated zone control valves and a buried flush manifold with manual flush valves. This permanent micro-irrigation system includes an automated filter station, flow meter, backflow prevention device, automated control box or timer, the thinwall dipperline or tape for laterals, both a supply and a flushing manifold and numerous types of water control valves. The water supply line from the water source to the filter station is an irrigation pipeline (430) and is not included as part of this systemResource Concerns: Insufficient Water - Inefficient use of irrigation water, Degraded Plant Condition - Undesirable plantproductivity and health, Water Quality Degradation - Excessive sediment in surface waters, and Inefficient Energy Use Equipment and facilities.Associated Practices: 533-Pumping Plant, 449- Irrigation Water Management, 430 - Irrigation Pipeline, 433 - Irrigation Flow Measrement, 610 Salinity \& Sodic Soil Management, 434 - Soil Moisture Measurement, 328-Conservation Crop Rotation, and 590 Nutrient Management.

Before Situation:

Typical before irrigation situation would normally be an existing inefficient surface or sprinkler irrigation system on a cropland or hayland field. The existing irrigation system would experience poor, non-uniform irrigation applications and significant water losses affecting both water quantity and water quality

After Situation:

A typical practice would be the installation of a subsurface drip irrigation system (SDI) on a 60 acre cropland or hayland field. The system lateral (thinwall dripperline or tape) spacing would 30 inches. This highly efficient SDI (buried) irrigation system provides irrigation water directly to the plant root zone eliminating application losses resulting in a very high water application efficiency and properly designed these SDI systems are capable of very uniform water applications.Typical field size is 60 acres.

Feature Measure: Acres in System
Scenario Unit: Acres
Scenario Typical Size: 60.00
Scenario Total Cost: \$163,163.08

Scenario Cost/Unit: \$2,719.38
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Materials						
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	4800	\$13,248.00
Micro Irrigation, control valves and timers	1485	Automatic controller and timer, to turn on and off the sets for micro irrigation, and valves. Based on control unit, not number of valves controlled.	Each	\$417.16	1	\$417.16
Micro Irrigation, buried drip tape	2521	Tape that is installed underground for sub-surface drip irrigation, includes installation, and connections to the supply and flushing laterals.?? Tape is a minimum of 10 mil thick thick and has emitters built in. Includes labor and installtion.	Feet	\$0.13	1149984	\$149,497.92

Practice: 441-Irrigation System, Microirrigation
Scenario: \#21-SDI, 36 Inch - 50 Inch Spacing, Extension of Existing System

Scenario Description:

Extension of an existing subsurface drip irrigation system (SDI) with a lateral spacing between 36-50 inches. This is an extension to an existing system including all required system components downstream of the existing filter station out to the flush valves. This buried drip irrigation system utilizes a thinwall dripperline or tape with inline emitters at a uniform spacing for the system laterals. The dripperline or tape is normally installed by being plowed in approx 10-14 inches deep with a chisel shank type plow equipped with tape reels. This type of drip irrigation system utilizes a buried supply manifold with automated zone control valves and a buried flush manifold with manual flush valves. This permanent micro-irrigation system includes an automated filter station, flow meter, backflow prevention device, automated control box or timer, the thinwall dipperline or tape for laterals, both a supply and a flushing manifold and numerous types of water control valves. The water supply line from the water source to the filter station is an irrigation pipeline (430) and is not included as part of this systemResource Concerns: Insufficient Water - Inefficient use of irrigation water, Degraded Plant Condition - Undesirable plantproductivity and health, Water Quality Degradation - Excessive sediment in surface waters, and Inefficient Energy Use Equipment and facilities.Associated Practices: 533-Pumping Plant, 449- Irrigation Water Management, 430 - Irrigation Pipeline, 433 - Irrigation Flow Measrement, 610 Salinity \& Sodic Soil Management, 434 - Soil Moisture Measurement, 328-Conservation Crop Rotation, and 590 Nutrient Management.

Before Situation:

Typical before irrigation situation would normally be an existing inefficient surface or sprinkler irrigation system on a cropland or hayland field. The existing irrigation system would experience poor, non-uniform irrigation applications and significant water losses affecting both water quantity and water quality

After Situation:

A typical practice would be the installation of a subsurface drip irrigation system (SDI) on a 60 acre cropland or hayland field. The system lateral (thinwall dripperline or tape) spacing would 40 inches. This highly efficient SDI (buried) irrigation system provides irrigation water directly to the plant root zone eliminating application losses resulting in a very high water application efficiency and properly designed these SDI systems are capable of very uniform water applications.Typical field size is 60 acres.

Feature Measure: Acres in System
Scenario Unit: Acres
Scenario Typical Size: 60.00
Scenario Total Cost:
\$125,788.60
Scenario Cost/Unit: \$2,096.48
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Materials						
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	4800	\$13,248.00
Micro Irrigation, control valves and timers	1485	Automatic controller and timer, to turn on and off the sets for micro irrigation, and valves. Based on control unit, not number of valves controlled.	Each	\$417.16	1	\$417.16
Micro Irrigation, buried drip tape	2521	Tape that is installed underground for sub-surface drip irrigation, includes installation, and connections to the supply and flushing laterals.?? Tape is a minimum of 10 mil thick thick and has emitters built in. Includes labor and installtion.	Feet	\$0.13	862488	\$112,123.44

Practice: 441-Irrigation System, Microirrigation

Scenario: \#22-SDI, 51 Inch - 70 Inch Spacing, Extension of Existing System

Scenario Description:

Extension of an existing subsurface drip irrigation system (SDI) with a lateral spacing between 51-70 inches. This is an extension to an existing system including all required system components downstream of the existing filter station out to the flush valves. This buried drip irrigation system utilizes a thinwall dripperline or tape with inline emitters at a uniform spacing for the system laterals. The dripperline or tape is normally installed by being plowed in approx 10-14 inches deep with a chisel shank type plow equipped with tape reels. This type of drip irrigation system utilizes a buried supply manifold with automated zone control valves and a buried flush manifold with manual flush valves. This permanent micro-irrigation system includes an automated filter station, flow meter, backflow prevention device, automated control box or timer, the thinwall dipperline or tape for laterals, both a supply and a flushing manifold and numerous types of water control valves. The water supply line from the water source to the filter station is an irrigation pipeline (430) and is not included as part of this systemResource Concerns: Insufficient Water - Inefficient use of irrigation water, Degraded Plant Condition - Undesirable plantproductivity and health, Water Quality Degradation - Excessive sediment in surface waters, and Inefficient Energy Use Equipment and facilities.Associated Practices: 533-Pumping Plant, 449- Irrigation Water Management, 430 - Irrigation Pipeline, 433 - Irrigation Flow Measrement, 610 Salinity \& Sodic Soil Management, 434 - Soil Moisture Measurement, 328-Conservation Crop Rotation, and 590 Nutrient Management.

Before Situation:

Typical before irrigation situation would normally be an existing inefficient surface or sprinkler irrigation system on a cropland or hayland field. The existing irrigation system would experience poor, non-uniform irrigation applications and significant water losses affecting both water quantity and water quality

After Situation:

A typical practice would be the installation of a subsurface drip irrigation system (SDI) on a 60 acre cropland or hayland field. The system lateral (thinwall dripperline or tape) spacing would 60 inches. This highly efficient SDI (buried) irrigation system provides irrigation water directly to the plant root zone eliminating application losses resulting in a very high water application efficiency and properly designed these SDI systems are capable of very uniform water applications.Typical field size is 60 acres.

Feature Measure: Acres in System
Scenario Unit: Acres
Scenario Typical Size: 60.00
Scenario Total Cost: $\$ 88,414.12$
Scenario Cost/Unit: \$1,473.57

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Materials						
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	4800	\$13,248.00
Micro Irrigation, control valves and timers	1485	Automatic controller and timer, to turn on and off the sets for micro irrigation, and valves. Based on control unit, not number of valves controlled.	Each	\$417.16	1	\$417.16
Micro Irrigation, buried drip tape	2521	Tape that is installed underground for sub-surface drip irrigation, includes installation, and connections to the supply and flushing laterals.?? Tape is a minimum of 10 mil thick thick and has emitters built in. Includes labor and installtion.	Feet	\$0.13	574992	\$74,748.96

Practice: 441-Irrigation System, Microirrigation

Scenario: \#23-SDI, 71 Inch - 90 Inch Spacing, Extension of Existing System

Scenario Description:

Extension of an existing subsurface drip irrigation system (SDI) with a lateral spacing between 71-90 inches. This is an extension to an existing system including all required system components downstream of the existing filter station out to the flush valves. This buried drip irrigation system utilizes a thinwall dripperline or tape with inline emitters at a uniform spacing for the system laterals. The dripperline or tape is normally installed by being plowed in approx 10-14 inches deep with a chisel shank type plow equipped with tape reels. This type of drip irrigation system utilizes a buried supply manifold with automated zone control valves and a buried flush manifold with manual flush valves. This permanent micro-irrigation system includes an automated filter station, flow meter, backflow prevention device, automated control box or timer, the thinwall dipperline or tape for laterals, both a supply and a flushing manifold and numerous types of water control valves. The water supply line from the water source to the filter station is an irrigation pipeline (430) and is not included as part of this systemResource Concerns: Insufficient Water - Inefficient use of irrigation water, Degraded Plant Condition - Undesirable plantproductivity and health, Water Quality Degradation - Excessive sediment in surface waters, and Inefficient Energy Use Equipment and facilities.Associated Practices: 533-Pumping Plant, 449- Irrigation Water Management, 430 - Irrigation Pipeline, 433 - Irrigation Flow Measrement, 610 Salinity \& Sodic Soil Management, 434 - Soil Moisture Measurement, 328-Conservation Crop Rotation, and 590 Nutrient Management.

Before Situation:

Typical before irrigation situation would normally be an existing inefficient surface or sprinkler irrigation system on a cropland or hayland field. The existing irrigation system would experience poor, non-uniform irrigation applications and significant water losses affecting both water quantity and water quality

After Situation:

A typical practice would be the installation of a subsurface drip irrigation system (SDI) on a 60 acre cropland or hayland field. The system lateral (thinwall dripperline or tape) spacing would 80 inches. This highly efficient SDI (buried) irrigation system provides irrigation water directly to the plant root zone eliminating application losses resulting in a very high water application efficiency and properly designed these SDI systems are capable of very uniform water applications.Typical field size is 60 acres.

Feature Measure: Acres in System
Scenario Unit: Acres
Scenario Typical Size: 60.00
Scenario Total Cost: $\$ 69,726.88$
Scenario Cost/Unit: \$1,162.11

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Materials						
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	4800	\$13,248.00
Micro Irrigation, control valves and timers	1485	Automatic controller and timer, to turn on and off the sets for micro irrigation, and valves. Based on control unit, not number of valves controlled.	Each	\$417.16	1	\$417.16
Micro Irrigation, buried drip tape	2521	Tape that is installed underground for sub-surface drip irrigation, includes installation, and connections to the supply and flushing laterals.?? Tape is a minimum of 10 mil thick thick and has emitters built in. Includes labor and installtion.	Feet	\$0.13	431244	\$56,061.72

Practice: 441 - Irrigation System, Microirrigation						
Scenario Description:						
Surface Microirrigation system for $30^{\prime} \times 96^{\prime}$ seasonal high tunnel, 24 ' rows with emmitters on a 12^{\prime} spacing.						
Practices: 533-Pumping Plant, 449- Irrigation Water Management, 430 - Irrigation Pipeline, 433 - Irrigation Flow Measrement, 328-Conservation Crop Rotation, and 590 Nutrient Management.						
Before Situation:						
A field has an inefficient garden-hose based sprinkler irrigation system causing irrigation water loss that impacts water quality and water quantity.						
After Situation:						
A surface placed microirrigation system is utilized to provide highly efficient irrigation to an area. Water applications are reduced and runoff eliminated. Offsite water quality is improved, and on site water use is reduced.						
Feature Measure: Microirrigation area						
Scenario Unit: Square Feet						
Scenario Typical Size: $2,880.00$						
Scenario Total Cost:	\$1,185.92					
Scenario Cost/Unit:	\$0.41					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	4	\$108.64
Materials						
Micro Irrigation, drip irrigation system, small scale	2170	An above ground, small scale, micro-irrigation system. Includes miniature emitters, tubes, or applicators placed along a water delivery line. Includes materials and shipping only.	Square Feet	\$0.09	2880	\$259.20
Micro Irrigation, screen or disc filter, < 3 inch	2524	Micro Irrigation, small manual flush screen or disc filter, <3 inch nominal size. Includes materials only.	Each	\$219.16	1	\$219.16
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	2	\$598.92

Practice: 441-Irrigation System, Microirrigation
Scenario: \#77-Small Microirrigation System

Scenario Description:

A small scale surface microirrigation system using drip tape or similar type micro-irrigation material placed on the soil surface to irrigate vegetables or field crops. Typically applied on a 40^{\prime} by 40^{\prime} plot, with 24 ' spaced rows, and emitters on a 12 ' spacing. Submains break plot into several smaller zones. System includes disk filter and chemical injection for chemigation. Water meter is not included. Natural Resource Concern(s): Insufficient Water - Inefficient use of irrigation water, Degraded Plant Condition Undesirable plant productivity and health, Water Quality Degradation - Excessive sediment in surface waters, and Inefficient Energy Use - Equipment and facilities.
Associated Practices: 533 - Pumping Plant, 449 - Irrigation Water Management, 430 - Irrigation Pipeline, 436 - Irrigation Reservoir, 328 - Conservation Crop Rotation, and 590 - Nutrient Management.

Before Situation:
A field has an inefficient garden-hose based sprinkler irrigation system causing irrigation water loss that impacts water quality and water quantity.
After Situation:
A surface placed microirrigation system is utilized to provide highly efficient irrigation to a small plot. Water applications are reduced and runoff eliminated. Offsite water quality is improved, and on-site water use is reduced.

Feature Measure: Microirrigation area
Scenario Unit: Square Feet
Scenario Typical Size: 1,600.00
Scenario Total Cost: \$1,988.34

Scenario Cost/Unit:

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Trenching, Earth, 12 in. x 48 in.	53	Trenching, earth, 12 inch wide $\times 48$ inch depth, includes equipment and labor for trenching and backfilling	Feet	\$1.30	160	\$208.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	6	\$162.96

Materials

Pipe, PVC, dia. < 18 in., weight priced

1323 Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.

Micro Irrigation, drip irrigation system, small scale	2170	An above ground, small scale, micro-irrigation system. Includes miniature emitters, tubes, or applicators placed along a water delivery line. Includes materials and shipping only.	Square Feet	\$0.09	1600	\$144.00
Micro Irrigation, disk filter, manual flush	2465	Disk filter for Micro irrigation system. Includes filter, plumbing, and connections. Unit is each filter in a filter station that often includes 2 or more filters.	Each	\$161.83	1	\$161.83
Valve, Double Check Backflow Preventer	2559	Designed for installation on potable water lines to protect against both backsiphonage and backpressure of polluted water into the water supply. Includes materials and shipping only.	Each	\$449.87	1	\$449.87
Micro-irrigation, chemical injection equipment, small scale	2788	Chemical injection system includes complete $3 / 4$ inch bypass and suction line kit, injector, appurtenances, backflow prevention, 2 gallon chemigation/fertigation tank. No pump needed. Materials and shipping only.	Each	\$122.00	1	\$122.00
Mobilization						
Mobilization, small equipment	1138	Equipment <70 HP but can't be transported by a pick-up truck or with	Each	\$299.46	2	\$598.92

Practice: 441-Irrigation System, Microirrigation
Scenario: \#78-Small Surface Tape System

Scenario Description:

A small scale micro-irrigation system using drip tape or similar type micro-irrigation material placed on the soil surface for vegetables or field crops. Spacing of drip tape or similar type micro irrigation material is based on soil type or row alignment but will typically vary from 18 ' to 36 '. This system typically includes a filter system, PE manifolds fittings, drip tape, etc. This practice applies to systems designed to discharge < $60 \mathrm{gal} / \mathrm{hr}$ at each individual discharge point. Does not include Pump, power source, water source. Surface placed drip tape will not meet the 441 practice life and will normally need replacement every year. After first installation drip tape will be replaced as operation and maintenance issue as required for proper operation of the system. Resource Concerns: Insufficient Water - Inefficient use of irrigation water, Degraded Plant Condition - Undesirable plant productivity and health, Water Quality Degradation - Excessive sediment in surface waters, and Inefficient Energy Use -

Equipment and Facilities. Associated Practices: 533-Pumping Plant, 449-Irrigation Water Management, 430 - Irrigation Pipeline, 610 - Salinity \& Sodic Soil Management, 328-Conservation Crop Rotation, 590 Nutrient Management, and 595-Itegrated Pest Management.

Before Situation:

A field has an inefficient garden-hose based sprinkler irrigation system causing irrigation water loss that impacts water quality and water quantity.
After Situation:
A surface placed microirrigation system is utilized to provide highly efficient irrigation to a field. Water applications are reduced and runoff eliminated. Offsite water quality is improved, and on site water use is reduced. Drip tape will be replaced as operation and maintenance issue as required for proper operation of the system. A typical scenario consists of a 1,600 square feet irrigated field with lateral spacing of 2 feet.

Feature Measure: Microirrigation area
Scenario Unit: Square Feet
Scenario Typical Size: 1,600.00
Scenario Total Cost: $\$ 1,637.42$
Scenario Cost/Unit: \$1.02

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	4	\$108.64
Materials						
Pipe, HDPE, smooth wall, weight priced	1379	High Density Polyethylene (HDPE) compound manufactured into smooth wall pipe. Materials only.	Pound	\$4.32	23	\$99.36
Micro Irrigation, disk filter, manual flush	2465	Disk filter for Micro irrigation system. Includes filter, plumbing, and connections. Unit is each filter in a filter station that often includes 2 or more filters.	Each	\$161.83	1	\$161.83
Micro Irrigation, surface drip tape	2522	Tape is installed above ground for surface drip irrigation on annual crops, includes installation, and connections to the supply and flushing laterals.?? Tape is a minimum of 10 mil thick and has emitters built in.	Feet	\$0.11	880	\$96.80
Valve, Double Check Backflow Preventer	2559	Designed for installation on potable water lines to protect against both backsiphonage and backpressure of polluted water into the water supply. Includes materials and shipping only.	Each	\$449.87	1	\$449.87
Micro-irrigation, chemical injection equipment, small scale	2788	Chemical injection system includes complete $3 / 4$ inch bypass and suction line kit, injector, appurtenances, backflow prevention, 2 gallon chemigation/fertigation tank. No pump needed. Materials and shipping only.	Each	\$122.00	1	\$122.00

Mobilization

Mobilization, small equipment
1138 Equipment < 70 HP but can't be transported by a pick-up truck or with Each

Practice: 442-Sprinkler System
Scenario: \#1-Center Pivot System

Scenario Description:

Installation of a low pressure center pivot system. Resource concerns include: Soil Erosion (Concentrated flow erosion e.g. irrigation induced), Insufficient Water (Inefficient use of irrigation water), Water Quality Degradation (Excess nutrients in surface and ground waters, Excessive salts in surface and ground waters, Excess pathogens and chemicals from manure, bio-solids or compost applications).Associated Practices: Irrigation Pipeline (430), Pumping Plant (533), Irrigation Water Management (449)

Before Situation:
A 160 acre field is flood irrigated. Application of irrigation water is inefficient and non-uniform. Irrigation water is typically over applied in some parts of the field, and under applied in others. Deep percolation from the excess irrigation delivers excess nutrients salts, and chemicals to the ground water. Runoff from the field contains excess nutrients and degrades the receiving waters. Irrigated induced erosion is excessive.

After Situation:

The existing surface irrigation system is converted to a low pressure center pivot. Corners are converted to non-irrigated cropland. The pivot is 1300 feet in length with pressure regulators and low pressure sprinklers on drops. The new irrigation system has a coefficient of uniformity above 85%. Irrigation water is efficiently and uniformly applied to maintain adequate soil water for the desired level of plant growth. Deep percolation and field runoff is eliminated and there are no excess nutrients, salts or pathogens delivered to the receiving waters. Irrigation induced runoff is eliminated. This center pivot scenario includes all hardware from the pivot point, including the concrete pad the pivot is placed on.

Feature Measure: Length of Center Pivot Lateral
Scenario Unit: Feet
Scenario Typical Size: 1,300.00
Scenario Total Cost: \$98,348.01
Scenario Cost/Unit: \$75.65
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Materials						
Irrigation, Center pivot system with appurtenances, fixed cost portion	317	Fixed cost portion of the center pivot system with appurtenances. This portion includes the following items: pivot point, pipe, towers, pad, controls, sprinklers.	Each	\$5,281.01	1	\$5,281.01
Irrigation, Center pivot system with appurtenances, variable cost portion	318	Variable cost portion of the center pivot system with appurtenances. This portion includes the following items: pivot point, pipe, towers, pad, controls, sprinklers.	Feet	\$71.59	1300	\$93,067.00

Practice: 442-Sprinkler System

Scenario: \#6 - Traveling Gun System, 2 Inch to 3 Inch Hose, Ag Waste

Scenario Description:

A portable big gun system used to apply waste water from animal feeding operations. This traveling big gun unit includes a sprinkler, towable cart, 1000 ft or more of PE hard hose, a self-propelled reel that moves the sprinkler toward the reel during operation. The reel attaches to a mainline with an appropriately-designed towpath width. The scenario describes an irrigation system that is typical to confined animal feeding operations. Resource concerns: Soil Erosion (Concentrated flow erosion, e.g., overflowing waste storage) and Water Quality Degradation (Excess nutrients in surface and groundwater, Excessive salts in surface and groundwater, Excess pathogens and chemicals from liquid manure)Associated Practices: Irrigation Pipeline (430), Pumping Plant (533), Irrigation Water Management (449), Conservation Crop Rotation (328), Cover Crop (340), Nutrient Management (590), Waste Utilization (633), Manure Transfer (634)

Before Situation:
A confined, animal operation has a waste management system that exceeds its capacity, or a operation that does not have a waste management system in place. The inefficiency of the existing system or the lack of a waste management system has a negative impact on the soil and water quality. Animal waste runs off and degrades the receiving waters.

After Situation:

The big gun applies animal manure in an appropriate quantity and location that eliminates both runoff of the manure and deep percolation of excess nutrients, salts, and pathogens. The big gun system is typically located on 50 acres or less of hay/pasture land, or 100 acres or less of cropland. The system includes a large irrigation gun with 1 to 1.5 inch orifice mounted onto a movable cart. 1000 ft or more flexible 3 inch PE pipe is attached to the cart on one end and a large reel on the other end. The reel serves as storage are for the pipe as the cart moves back to the reel. The reel is turned by a small engine which gradually pulls the flexible pipe and cart back to the reel/base.

Feature Measure: Number of Traveling Gun Systems
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$25,774.65
Scenario Cost/Unit: \$25,774.65
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Materials						
Irrigation, Traveling Gun System, > 2 to 3 inch Nominal size hose	1479	Irrigation, Traveling Gun System with 2.3-to-3-inch Nominal size hose with appurtenances. This includes the sprinkler gun, traveler cart, hard hose, reel, connections, and controls. Normal hose length 1000'.	Inch Diameter	\$8,591.55	3	\$25,774.65

Practice: 442-Sprinkler System

Scenario: \#7-Traveling Gun System, Greater Than 3 Inch Hose, Ag Waste

Scenario Description:

A portable big gun system used to apply waste water from animal feeding operations. This traveling big gun unit includes a sprinkler, towable cart, 1200??? or more of PE hard hose, a self-propelled reel that moves the sprinkler toward the reel during operation. The reel attaches to a mainline with appropriately designed towpath width. The scenario describes an irrigation system that is typical to confined animal feeding operations. Resource concerns: Soil Erosion (Concentrated flow erosion, e.g., overflowing waste storage) and Water Quality Degradation (Excess nutrients in surface and ground waters, Excessive salts in surface and groundwater, Excess pathogens and chemicals from liquid manure)Associated Practices: Irrigation Pipeline (430), Pumping Plant (533), Irrigation Water Management (449), Conservation Crop Rotation (328), Cover Crop (340), Nutrient Management (590), Waste Utilization (633), Manure Transfer (634)

Before Situation:
A confined, animal operation has a waste management system that exceeds its capacity, or a operation that does not have a waste management system in place. The inefficiency of the existing system or the lack of a waste management system has a negative impact on the soil and water quality. Animal waste runs off and degrades the receiving waters.

After Situation:

The big gun applies animal manure in an appropriate quantity and location that eliminates both runoff of the manure and deep percolation of excess nutrients, salts, and pathogens. The big gun system is typically located on 50 acres or less of hay/pasture land, or 100 acres or less of cropland. The system includes a large irrigation gun with 1??? to 1 ????? orifice mounted onto a movable cart. 1200 ??? or more flexible 4??? PE pipe is attached to the cart on one end and a large reel on the other end. The reel serves as storage are for the pipe as the cart moves back to the reel. The reel is turned by a small engine which gradually pulls the flexible pipe and cart back to the reel/base.

Feature Measure: Number of Traveling Gun Systems
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$48,999.69
Scenario Cost/Unit: \$48,999.69
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Materials						
Irrigation, Traveling Gun System, > 3 inch Nominal size hose	1762	Irrigation, Traveling Gun System with > 3 inch Nominal size hose with appurtenances. This includes the sprinkler gun, traveler cart, hard hose, reel, connections, and controls. Normal hose length 1300'	Each	\$48,999.69	1	\$48,999.69

Practice: 442-Sprinkler System
Scenario: \#8-Conventional Conversion of Existing Sprinkler System

Scenario Description:

The scenario involves converting a conventional center pivot or linear move irrigation system having high pressure spray bodies located high above the ground, to a conventional low-pressure system center pivot or linear move system. These systems will improve uniformity, application efficiency, and reduce energy use. This scenario is intended for cropland areas where the objective is water conservation. A typical installation assumes a 1300 LF span. Resource concerns include: Soil Erosion (Concentrated flow erosion e.g. irrigation induced), Insufficient Water (Inefficient use of irrigation water), Water Quality Degradation (Excess nutrients in surface and groundwater, Excessive salts in surface and ground waters, Excess pathogens and chemicals from manure, bio-solids or compost applications).Associated Practices: Irrigation Pipeline (430), Pumping Plant (533), Irrigation Water Management (449)

Before Situation:
A center pivot or lateral move system has wide spaced, high pressure sprinklers. The spray pads and nozzles are worn and water is applied non-uniformly. Wind drift and evaporation is excessive. Deep percolation in some parts of the field degrades groundwater quality. Water runs off the field and degrades the receiving waters. The runoff from the field causes soil erosion. The high pressure requirement for the system requires excess energy use.

After Situation:

A Center Pivot or Linear Move sprinkler system with a span of 1300 linear feet is converted to close spaced drops and fitted with low-pressure nozzles. The irrigation water is applied efficiently and uniformly to maintain adequate soil moisture for optimum plant growth. Runoff and deep percolation are eliminated, and surface and groundwater are no longer degraded. Irrigation-induced soil erosion caused by runoff is also eliminated. Lower pressure requirements of the sprinklers reduce the energy used by the pump.

Feature Measure: Linear Feet

Scenario Unit: Feet

Scenario Typical Size: $1,300.00$
Scenario Total Cost: $\$ 12,631.17$
Scenario Cost/Unit: \$9.72

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Aerial lift, telescoping bucket	1893	Aerial lift, bucket truck or cherry picker, typical 40' boom. Equipment only.	Hours	\$45.04	30	\$1,351.20
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	30	\$814.80
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	30	\$832.80
Materials						
Irrigation, Sprinkler Package, Renozzle or Retrofit, with drops and pressure regulators	1480	Sprinkler Package - Rennovation including sprinkler nozzle addition, and/or replacement, including new pressure regulators and drops.	Feet	\$6.83	1300	\$8,879.00

Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 442-Sprinkler System
Scenario: \#9 - Hybrid Conversion of Existing Sprinkler System, Without Pressure Regulators

Scenario Description:

Center Pivot or Linear Move Sprinkler systems are used with large crop fields with fairly regular field borders and flat topography. The scenario involves converting a conventional center pivot irrigation system having wide spaced drops with high pressure spray bodies located high above the ground, to a Hybrid Low-Pressure system. This Hybrid system utilizes varied drop spacing along the mainline to reduce the instantaneous application rates of the low pressure sprays and/or bubblers that significantly reduce high sprinkler evaporation losses common in the region. The variable spaced low pressure sprays and/or bubblers are placed close to the ground to improve uniformity, application efficiency, and reduce energy use. This scenario is intended for cropland (primarily in corn growing areas) where the objective is water conservation but existing Pivot systems utilize higher flowrates that create runoff when using low pressure sprays and bubblers in conventional spacing on the fields that are flat planted. A typical scenario assumes retrofitting an existing sprinkler system to a Hybrid System that is not clearly defined by conventional NRCS systems like LEPA, LESA, LPIC, or MESA. The system scenario assumes a 1320 LF span, including end booms, converted to increase the number of drops and lower the height of the spray bodies to decrease wind drift, evaporation, runoff, and system pressure using low-pressure sprays or bubblers. Pressure Regulators are NOT required.Resource concerns include: Soil Erosion (Concentrated flow erosion e.g. irrigation induced), Insufficient Water (Inefficient use of irrigation water), Water Quality Degradation (Excess nutrients in surface and ground waters, Excessive salts in surface and ground waters, Excess pathogens and chemicals from manure, bio-solids or compost applications), Inefficient Energy Use (Equipment and facilities e.g. pumping)Associated Practices: Irrigation Pipeline (430), Pumping Plant (533), Irrigation Water Management (449).

Before Situation:

A center pivot or linear move system has drops spaced 10 ft wide spaced and 5 ft off the ground, utilizing high pressure sprinklers. The spray pattern diameter is large to reduce the instantaneous application rate to prevent runoff but the evaporation rates are very high. The spray pads and nozzles are worn and water is applied nonuniformly. Wind drift and evaporation are excessive. Deep percolation in some parts of the field degrades groundwater quality. Water runs off the field and degrades the receiving waters. The runoff from the field causes soil erosion. The high pressure requirement for the system requires excess energy use.

After Situation:

An existing conventional Center Pivot or Linear Move sprinkler system with a span of 1320 linear feet and with 8 towers (165 ft spans) is Retrofit to a Hybrid Sprinkler System with varied low pressure drop spacing and spray and/or bubbler bodies placed close to the ground. Pressure Regulators are NOT required. The Hybrid Linear move system would have drops spaced on every row spacing. The Hybrid Center Pivot System utilizes 10 ft spaced drops on the first two towers which reduces the overapplication of water, 60 inch (alternate row) spacing on the next 4 towers and 30 inch (every row) spacing on the outer 2 towers to reduce the high instantaneous application rate. The irrigation water is applied efficiently and uniformly to maintain adequate soil moisture for optimum plant growth. Wind drift and evaporation are minimized. Runoff and deep percolation are control and eliminated through crop reside management and minimum tillage techniques on the flat panted field. Surface and groundwater are no longer degraded. Irrigation-induced soil erosion caused by runoff is also eliminated. Lower pressure requirements of the sprinklers reduce the energy used by the pump.

Feature Measure: Number of Drops, Without Pressur
Scenario Unit: Each
Scenario Typical Size: 297.00
Scenario Total Cost: \$24,328.27

Scenario Cost/Unit: \$81.91
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Aerial lift, telescoping bucket	1893	Aerial lift, bucket truck or cherry picker, typical 40' boom. Equipment only.	Hours	\$45.04	65	\$2,927.60
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	65	\$1,765.40
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	65	\$1,804.40
Materials						
Irrigation, Sprinkler Package, Renozzle or Retrofit, with drops without pressure regulators	2558	Sprinkler package rennovation including sprinkler nozzle addition, and/or replacement, drops without pressure regulators.	Each	\$57.50	297	\$17,077.50
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 442-Sprinkler System
Scenario: \#10-Hybrid Conversion of Existing Sprinkler System, Includes Pressure Regulators

Scenario Description:

Center Pivot or Linear Move Sprinkler systems are used with large crop fields with fairly regular field borders and flat topography. The scenario involves converting a conventional center pivot irrigation system having wide spaced drops with high pressure spray bodies located high above the ground, to a Hybrid Low-Pressure system. This Hybrid system utilizes varied drop spacing along the mainline to reduce the instantaneous application rates of the low pressure sprays and/or bubblers that significantly reduce high sprinkler evaporation losses common in the region. The variable spaced low pressure sprays and/or bubblers are placed close to the ground to improve uniformity, application efficiency, and reduce energy use. This scenario is intended for cropland (primarily in corn growing areas) where the objective is water conservation but existing Pivot systems utilize higher flowrates that create runoff when using low pressure sprays and bubblers in conventional spacing on the fields that are flat planted. A typical scenario assumes retrofitting an existing sprinkler system to a Hybrid System that is not clearly defined by conventional NRCS systems like LEPA, LESA, LPIC, or MESA. The system scenario assumes a 1320 LF span, including end booms, converted to increase the number of drops and lower the height of the spray bodies to decrease wind drift, evaporation, runoff, and system pressure using low-pressure sprays or bubblers. Pressure Regulators are required.Resource concerns include: Soil Erosion (Concentrated flow erosion e.g. irrigation induced), Insufficient Water (Inefficient use of irrigation water), Water Quality Degradation (Excess nutrients in surface and ground waters, Excessive salts in surface and ground waters, Excess pathogens and chemicals from manure, bio-solids or compost applications), Inefficient Energy Use (Equipment and facilities e.g. pumping)Associated Practices: Irrigation Pipeline (430), Pumping Plant (533), Irrigation Water Management (449)

Before Situation:

A center pivot or linear move system has drops spaced 10 ft wide spaced and 5 ft off the ground, utilizing high pressure sprinklers. The spray pattern diameter is large to reduce the instantaneous application rate to prevent runoff but the evaporation rates are very high. The spray pads and nozzles are worn and water is applied nonuniformly. Wind drift and evaporation are excessive. Deep percolation in some parts of the field degrades groundwater quality. Water runs off the field and degrades the receiving waters. The runoff from the field causes soil erosion. The high pressure requirement for the system requires excess energy use.

After Situation:

An existing conventional Center Pivot or Linear Move sprinkler system with a span of 1320 linear feet and with 8 towers (165 ft spans) is Retrofit to a Hybrid Sprinkler System with varied low pressure drop spacing and spray and/or bubbler bodies placed close to the ground. Pressure Regulators are required. The Hybrid Linear move system would have drops spaced on every row spacing. The Hybrid Center Pivot System utilizes 10 ft spaced drops on the first two towers which reduces the overapplication of water, 60 in (alternate row) spacing on the next 4 towers and 30 inch (every row) spacing on the outer 2 towers to reduce the high instantaneous application rate. The irrigation water is applied efficiently and uniformly to maintain adequate soil moisture for optimum plant growth. Wind drift and evaporation are minimized. Runoff and deep percolation are control and eliminated through crop reside management and minimum tillage techniques on the flat panted field. Surface and groundwater are no longer degraded. Irrigation-induced soil erosion caused by runoff is also eliminated. Lower pressure requirements of the sprinklers reduce the energy used by the pump.

Feature Measure: Number of Drops, With Pressure Re
Scenario Unit: Each
Scenario Typical Size: 297.00

Scenario Total Cost:	$\$ 37,259.65$
Scenario Cost/Unit:	$\$ 125.45$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Aerial lift, telescoping bucket	1893	Aerial lift, bucket truck or cherry picker, typical 40' boom. Equipment only.	Hours	\$45.04	65	\$2,927.60
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	65	\$1,765.40
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	65	\$1,804.40
Materials						
Pressure Regulator	2468	Materials for pressure regulator less than or equal to 2 inch diameter.	Each	\$43.54	297	\$12,931.38
Irrigation, Sprinkler Package, Renozzle or Retrofit, with drops without pressure regulators	2558	Sprinkler package rennovation including sprinkler nozzle addition, and/or replacement, drops without pressure regulators.	Each	\$57.50	297	\$17,077.50
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 442-Sprinkler System
Scenario: \#11-Center Pivot System, With Poly Lining

Scenario Description:

Installation of a low pressure center pivot system with polyethylene lining. Resource concerns include: Soil Erosion (Concentrated flow erosion e.g. irrigation induced), Insufficient Water (Inefficient use of irrigation water), Water Quality Degradation (Excess nutrients in surface and groundwater, Excessive salts in surface and ground waters, Excess pathogens and chemicals from manure, bio-solids or compost applications).Associated Practices: Irrigation Pipeline (430), Pumping Plant (533), Irrigation Water Management (449)

Before Situation:
A 160 acre field is flood irrigated. Irrigation water has Moderate to High Corrosion potential. Application of irrigation water is inefficient and non-uniform. Irrigation water is typically over-applied in some parts of the field, and under-applied in others. Deep percolation from the excess irrigation delivers excess nutrients salts, and chemicals to groundwater. Runoff from the field contains excess nutrients and degrades the receiving waters. Irrigation-induced erosion is excessive.

After Situation:

The existing surface irrigation system is converted to a low pressure center pivot. Polyethylene Lined Pivot Mainline protects system from Excessive Corrosion. Corners are converted to non-irrigated cropland. The pivot is 1300 feet in length with pressure regulators and low pressure sprinklers on drops. The new irrigation system has a coefficient of uniformity of 85% or more. Irrigation water is efficiently and uniformly applied to maintain adequate soil water for the desired level of plant growth. Deep percolation and field runoff is eliminated and there are no excess nutrients, salts or pathogens delivered to the receiving waters. Irrigation-induced runoff is eliminated. This center pivot scenario includes all hardware from the pivot point, including the concrete pad the pivot is placed on.

Feature Measure: Center Pivot with Poly Lining
Scenario Unit: Feet
Scenario Typical Size: 1,300.00
Scenario Total Cost: \$109,482.55
Scenario Cost/Unit: \$84.22
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Materials						
Irrigation, Center pivot system with appurtenances, fixed cost portion	317	Fixed cost portion of the center pivot system with appurtenances. This portion includes the following items: pivot point, pipe, towers, pad, controls, sprinklers.	Each	\$5,281.01	1	\$5,281.01
Irrigation, Center pivot system with appurtenances, variable cost portion	318	Variable cost portion of the center pivot system with appurtenances. This portion includes the following items: pivot point, pipe, towers, pad, controls, sprinklers.	Feet	\$71.59	1300	\$93,067.00
Poly Lining	2451	Poly lining protects the sprinkler system and increases the efficiency and lifespan.	Feet	\$7.13	1300	\$9,269.00
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	2	\$358.80
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 442-Sprinkler System
Scenario: \#34-Linear Move System

Scenario Description:

Installation of a linear or lateral move sprinkler system with sprinklers on drops with or without drag hoses to improve irrigation efficiency and reduce soil erosion.Resource concerns include: Soil Erosion (Concentrated flow erosion e.g. irrigation induced), Insufficient Water (Inefficient use of irrigation water), Water Quality Degradation (Excess nutrients in surface and ground waters, Excessive salts in surface and ground waters, Excess pathogens and chemicals from manure, bio-solids or compost applications), Inefficient Energy Use (Equipment and facilities e.g. pumping)Associated Practices: Irrigation Pipeline (430), Pumping Plant (533), Irrigation Water Management (449)Payment rate is figured per foot of installed hardware length.

Before Situation:

A 76 acre field is flood irrigated. Application of irrigation water is inefficient and non-uniform. Irrigation water is typically over applied in some parts of the field, and under applied in others. Deep percolation from the excess irrigation delivers excess nutrients salts, and chemicals to the ground water. Runoff from the field contains excess nutrients and degrades the receiving waters. Irrigated induced erosion is excessive.

After Situation:

A typical unit is approximately 76 acres in size with the sprinkler system up to 1280 feet in length with drop tubes that have a minimum of 30 spacing. The new irrigation system has a coefficient of uniformity above 85%. Irrigation water is efficiently and uniformly applied to maintain adequate soil water for the desired level of plant growth. Deep percolation and field runoff is eliminated and there are no excess nutrients, salts or pathogens delivered to the receiving waters. Irrigation induced runoff is eliminated.

Feature Measure: Length of Linear Move Lateral
Scenario Unit: Feet

Scenario Typical Size: 1,280.00
Scenario Total Cost: \$170,859.90
Scenario Cost/Unit: \$133.48
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Materials						
Linear Move System with appurtenances	322	Linear/lateral move system including central tower, lateral towers, pipes, sprinklers, and controllers.	Acres	\$2,223.61	76	\$168,994.36
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	2	\$358.80
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 442-Sprinkler System

Scenario: \#35-Solid Set System
Scenario Description:
A solid set irrigation system.Resource concerns include: Soil Erosion (Concentrated flow erosion e.g. irrigation induced), Insufficient Water (Inefficient use of irrigation water), Water Quality Degradation (Excess nutrients in surface and ground waters, Excessive salts in surface and ground waters, Excess pathogens and chemicals from manure, bio-solids or compost applications)Associated Practices: Irrigation Pipeline (430), Pumping Plant (533), Irrigation Water Management (449)

Before Situation:

The typical installation will be on cropland with some existing inefficient irrigation. The farm is typically producing specialty crops, such as fresh vegetables.

After Situation:

The system is installed on 10 acres or less. The installed solid set system has 3-4 inch pipe sizes and sprinklers set 30-50 ft apart. Improved distribution uniformity and irrigation efficiency will result.

Feature Measure: Area of Irrigation System

Scenario Unit: Acres

Scenario Typical Size: 10.00
Scenario Total Cost: \$57,129.70
Scenario Cost/Unit: \$5,712.97

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Materials						
Irrigation, Solid Set, w/Appurtenances	324	Solid Set irrigation system that includes pipe, sprinklers, connections, and appurtenances.	Acres	\$5,677.09	10	\$56,770.90
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	2	\$358.80

Practice: 442-Sprinkler System
Scenario: \#68-Small Solid Set, Above Ground Laterals

Scenario Description:

A permanent solid set irrigation system with buried submains and above ground laterals such as polyethylene flexible tubing. The typical system is installed on a 2 acre orchard or nursery, with plant spacing of 15 feet x 22 feet. Laterals are spaced 22 feet apart, however other spacing for this scenario apply. This system utilizes sprayers or minisprinklers at each tree or plant. This system typically includes a filter system, PE tubing laterals, PVC manifolds, and submains, valves, fittings, and emitters. System installation does not include a flowmeter, Pump, Power source, Irrigation Water Conveyance to the irrigated field, or Water source (well or reservoir). Resource concerns include: Soil Erosion (Concentrated flow erosion e.g. irrigation induced), Insufficient Water (Inefficient use of irrigation water), Water Quality Degradation (Excess nutrients in surface and ground waters, Excessive salts in surface and ground waters, Excess pathogens and chemicals from manure, bio-solids or compost applications) Associated Practices: Irrigation Pipeline (430), Pumping Plant (533), Irrigation Water Management (449).

Before Situation:
The typical installation will be on an orchard, nursery, or vineyard with an existing inefficient irrigation system.
After Situation:
An irrigation system is utilized to provide improved distribution uniformity and irrigation efficiency to an orchard, nursery, or vineyard. Runoff and water applications are reduced, resulting in offsite water quality improvement and on site water use reduction.

Feature Measure: Area in Irrigation System
Scenario Unit: Acres
Scenario Typical Size: 2.00

Scenario Total Cost:	\$6,753.72					
Scenario Cost/Unit:	\$3,3	6.86				
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Trenching, Earth, 12 in. x 48 in.	53	Trenching, earth, 12 inch wide $\times 48$ inch depth, includes equipment and labor for trenching and backfilling	Feet	\$1.30	295	\$383.50
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	4	\$108.64
Materials						
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	215	\$593.40
Micro Irrigation, emitters or sprays and tubing	1489	Emitters or sprays that are installed above ground for micro or drip irrigation. Includes installation and connections to the supply and flushing laterals. Tubing for the emitters is included in this item.	Feet	\$1.21	3835	\$4,640.35
Micro Irrigation, screen or disc filter, < 3 inch	2524	Micro Irrigation, small manual flush screen or disc filter, <3 inch nominal size. Includes materials only.	Each	\$219.16	1	\$219.16
Valve, Double Check Backflow Preventer	2559	Designed for installation on potable water lines to protect against both backsiphonage and backpressure of polluted water into the water supply. Includes materials and shipping only.	Each	\$449.87	1	\$449.87
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	2	\$358.80

Practice: 443-Irrigation System, Surface and Subsurface
Scenario: \#5 - Alfalfa Valve, 12 Inch or Larger

Scenario Description:

This scenario would typically include installation and utilization of a 12-inch alfalfa valve with PVC riser (including all appurtenances) and installation labor needed to convert from a conventional surface irrigated system to an alfalfa valve irrigation system. Typical field is on mildly sloping land that is divided into several smaller, level fields that are approximately 120 ' by 800 each. The alfalfa valve will be used to distribute irrigation water from an irrigation pipeline onto each of these smaller, level fields. There is no gated pipe required for this type of irrigation. The proper operation of alfalfa valves increases the rate of advance along set length, reduces deep percolation at upper end of field, increases uniformity of application along row length, and on lower intake soils can significantly reduce runoff losses. The result is improved irrigation efficiency, reduced leaching and erosion losses, and conserved energy. This scenario does not include payments for any other parts of an irrigation system. Resource Concerns: Insufficient Water - Inefficient use of irrigation water, and Degraded Plant Condition - Undesirable plantproductivity and health, Water Quality Degradation- Excess nutrients in surface and ground waters, Water Quality Degradation - Excessive sediment in surface waters, and Inefficient Energy Use Equipment and facilitiesAssociated Practices: 464-Irrigation Land leveling, 533-Pumping Plant, 449- Irrigation Water Management, 430 - Irrigation Pipeline, 328 Conservation Crop Rotation, and 590 Nutrient Management.

Before Situation:

Unacceptable irrigation application uniformity along existing surface irrigation system furrow or border length caused by excessive run length or soil infiltration rate when operated with continuous inflow on existing system. System is over irrigated in attempt to adequately irrigate low end of field.

After Situation:
An alfalfa valve surface irrigation system is in place. After implementation, distribution uniformity and irrigation efficiency is improved, by reducing irrigation application volume and deep percolation losses. Runoff reductions, reduced energy use, and air quality improvements can also result.

Feature Measure: Number of Alfalfa Valves
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$1,025.62
Scenario Cost/Unit: \$1,025.62
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	2	\$54.32
Materials						
Valve, Alfalfa valve with riser, PVC, 12 in.	2129	Alfalfa valve assembly including, 12 inch diameter metal alfalfa valve, PVC tee, 36 inch PVC riser for connection to a pipeline. Materials only.	Each	\$971.30	1	\$971.30

Practice: 443-Irrigation System, Surface and Subsurface
Scenario: \#7-Narrow Border Flood Irrigation

Scenario Description:

Narrow Border Flood (NBF) Irrigation is a more efficient method for irrigation in orchards compared to large pan irrigation. The main component is earthwork to create the borders between the rows of trees. Typical scenario is a 20 ac field with $1,000 \mathrm{cy}$ of earthfill (5,000 linear feet of border with a cross-sectional area of 5.4 square feet).

Resource Concerns: Insufficient Water - Inefficient use of irrigation water, and Degraded Plant Condition - Undesirable Plantproductivity and health.Associated Practices: 464-Irrigation Land leveling, 533-Pumping Plant, 449- Irrigation Water Management, 430 - Irrigation Pipeline, 328-Conservation Crop Rotation, and 590 Nutrient Management.,

Before Situation:
Irrigation of orchard is achieved with large pan irrigation that is a less efficient irrigation method.
After Situation:
The installation will improve distribution uniformity and irrigation efficiency.
Feature Measure: Size of field

Scenario Unit: Acres
Scenario Typical Size: 20.00
Scenario Total Cost: $\$ 5,700.00$
Scenario Cost/Unit: \$285.00

Cost Details:

Practice: 443 - Irrigation System, Surface and Subsurface
Scenario: \#41-Ebb and Flow Benches

Scenario Description:

Water tight benches, that are housed within the interior of a greenhouse, are installed that re-circulates (ebb and flow) water for irrigation purposes. Typical system consist of bay with three benches 4 feet wide and 100 feet long (1200 sq ft). The bench is flooded then slowly drained to allow water to upflux of water into potted plants located on the bench. This type of drip irrigation system utilizes a buried supply manifold with automated zone control valves and a buried drainage manifold. This permanent subsurface irrigation system will include a filter station, flow meter, backflow prevention device, automated control box or timer, both a supply and drainage manifold, sump and numerous types of water control valves. This scenario includes all material and labor to install the benches filter and automation system. Resource Concerns: Insufficient Water - Inefficient use of irrigation water, Degraded Plant Condition - Undesirable plant productivity and health, Water Quality Degradation Excessive leaching of nutrients into ground and surface waters, and Inefficient Energy Use - Equipment and facilities. Associated Practices: 430 - Irrigation Pipeline, 436 Irrigation Reservoir, 533-Pumping Plant, 620-Underground Outlet

Before Situation:

An existing inefficient microirrigation or sprinkler irrigation system in a greenhouse. The existing irrigation system experiences poor, non-uniform irrigation applications and significant water losses affecting both water quantity and water quality.

After Situation:
This highly efficient subsurface irrigation system provides irrigation water directly to the plant root zone by capillary action and recirculates excess water for reuse, eliminating application losses resulting from water leaching through the pot during irrigation or being applied to areas without pots.

Feature Measure: Square Feet
Scenario Unit: Square Feet

Scenario Typical Size: 1,200.00
Scenario Total Cost: \$18,365.40

Scenario Cost/Unit: \$15.30

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Irrigation Flood Bench system	2231	Sliding benches or troughs used for potted plant irrigation. Distribution system is included in benches. Includes materials and equipment costs.	Square Feet	\$14.55	1200	\$17,460.00
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	8	\$270.96
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Materials						
Micro Irrigation, control valves and timers	1485	Automatic controller and timer, to turn on and off the sets for micro irrigation, and valves. Based on control unit, not number of valves controlled.	Each	\$417.16	1	\$417.16

Practice: 443-Irrigation System, Surface and Subsurface
Scenario: \#42 - Flood Floor Irrigation

Scenario Description:

The scenario consists of a concrete floor and under floor water distribution system. The plants receive water from the flooded floor through the root zone. Only needed water is taken up by the soil medium. After irrigation is complete, all water is cycled to the holding tank and is reused for the next irrigation cycle. For pumps - use CPS 533 - Pumping Plant , for piping use CPS 430 - Irrigation Pipeline. Based on flood floor design

Before Situation:

The greenhouse plants are watered by hand or by sprinkler system. Water drips onto the floor and sinks into the earthen floor, runs off or evaporates. Water is lost to the plants and can become contaminated with fertilizers or pesticides.

After Situation:

Greenhouse irrigation water is supplied by a Flood-Floor irrigation system. Water is taken up by the soil medium. All remaining water is recycled for reuse. No water is wasted or contaminated.

Feature Measure: Square foot of flooded area
Scenario Unit: Square Feet
Scenario Typical Size: 21,600.00
Scenario Total Cost: \$185,145.86
Scenario Cost/Unit: \$8.57
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	300	\$121,410.00
Micro Irrigation, chemical injection equipment	1987	Chemical Injector Pump, plus chemigation check valve, injector ports, and appurtenances, Installation included.	Each	\$2,151.39	1	\$2,151.39
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	48	\$1,625.76
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	128	\$3,476.48
Materials						
Tank, Poly Enclosed Storage, $>1,000$	1075	Water storage tanks. Includes materials and shipping only.	Gallons	\$1.42	14000	\$19,880.00
Tank, Float Valve Assembly	1077	Float Valve, Stem, Swivel, Float Ball	Each	\$102.79	1	\$102.79
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	12885.8	\$35,564.81
Micro Irrigation, control valves and timers	1485	Automatic controller and timer, to turn on and off the sets for micro irrigation, and valves. Based on control unit, not number of valves controlled.	Each	\$417.16	2	\$834.32
Micro Irrigation, screen filter, < 100 gpm	1617	Screen filter for Micro Irrigation used in small systems. Includes filter. No controls are included or needed.	Each	\$100.31	1	\$100.31

Practice: 447 - Irrigation and Drainage Tailwater Recovery
Scenario: \#34-Delta Tail Water Pit
Scenario Description:
A recovery pit is constructed to temporality store the excess irrigation water and create a pumping pool so that the excess water can be recovered and reused. Typical pit size is trapezoidal ditch with 14 ft bottom $\times 10 \mathrm{ft}$ depth $\times 1750 \mathrm{ft}$ length with $2: 1$ side slopes. The total yardage of earthwork is $22,037 \mathrm{cy}$. Construction is typically done with either tractors and pans or with dozer and excavator.

Before Situation:
Excess irrigation water collects at lower ends of field and backs up into crops and causes plant stress or causes erosion and travels off farm in a drainage ditch causing water quality issues in lower watersheds. Excess irrigation water and runoff during the off season is not capture and unavailable for use.

After Situation:

Excess irrigation water is collected and directed into a recovery system where the water can be recycled and reused for irrigation. Sedimentation has a chance to settle out of the water allowing for less sediment to travel down stream. All runoff has an opportunity to be collected.

Feature Measure: Excavated Material
Scenario Unit: Cubic Yards
Scenario Typical Size: 22,307.00
Scenario Total Cost: \$34,213.57
Scenario Cost/Unit: \$1.53
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, common earth, side cast, large equipment	1227	Bulk excavation and side casting of common earth with hydraulic excavator with less greater than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$1.47	22037	\$32,394.39
Mobilization						
Mobilization, large equipment	1140	Equipment >150HP or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	2	\$1,819.18

Practice: 447-Irrigation and Drainage Tailwater Recovery
Scenario: \#35-Tailwater Collection Structure

Scenario Description:

A collection structure designed and constructed to efficiently direct excess tailwater from a field and deliver into a tailwater recovery ditch or tailwater recovery pit. Typical installation will be a flashboard riser or drop inlet structure placed at edge of field through an earthen berm to direct tailwater into tailwater recovery system. Resource concern(s): Water quality, inefficient use of water. Cost estimate based on 18' weir and 55' long, 15' diameter barrel.

Before Situation:

During irrigation, tailwater exits the field in an uncontrolled manner and is being lost downstream and cannot be recovered for future use.
After Situation:
Tailwater is collected through structure at a prescribed location and directed into tailwater recovery system for re-use. Other associated practices may include Irrigation reservoir (436), Irrigation and Drainage Tailwater Recovery Pit (447), Surface Drain, Main or Lateral (608), Surface Drain, Field Ditch (607)

Feature Measure: weir dia (in) x barrel length (ft)
Scenario Unit: Inch-Foot
Scenario Typical Size: 990.00
Scenario Total Cost: $\$ 4,818.86$

Scenario Cost/Unit: \$4.87

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	100	\$366.00
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	20	\$114.00
Hydraulic Excavator, 1 CY	931	Track mounted hydraulic excavator with bucket capacity range of 0.8 to 1.5 CY. Equipment and power unit costs. Labor not included.	Hours	\$128.59	2	\$257.18
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	3	\$101.61
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	6	\$162.96
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	2	\$63.74

Materials

Pipe, PVC, dia. < 18 in., weight
1323 Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the
Pound $\quad \$ 2.76 \quad 623.7$
\$1,721.41 pipe materials for pipes with diameters less than 18 inch. Materials only.

Steel, Angle, 2 1/2 in. x 2 1/2 in. x 1/4 in.	1372	Materials: Angle, 2 1/2 inch x 2 1/2 inch x 1/4 inch. Meets ASTM A36	Feet	\$4.41	10	\$44.10
Lumber, planks, posts and timbers, treated	1609	Treated dimension lumber with nominal thickness greater than 2 inches. Includes lumber and fasteners. Does not include labor.	Board Feet	\$3.58	32	\$114.56
Pipe, PVC, dia. => 18 in., weight priced	1958	Polyvinyl Chloride (PVC) Pipe priced by the weight of the pipe materials for pipes with diameters equal to or greater than 18 inch. Materials only.	Pound	\$2.90	79	\$229.10
Coupling, PVC, Tee, 18x15, SDR 51	2365	Materials: - Tee, 18 inch x 15 inch - PVC - SDR 51 - ASTM F2658	Each	\$711.43	1	\$711.43
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 449 - Irrigation Water Management
Scenario: \#1 - Basic IWM

Scenario Description:

A low Intensity irrigation water management system for producers using a checkbook method (crop grown, soil moisture conditions prior to irrigation, dates of irrigation start and stop, depths of irrigation applied, duration of irrigations, and amount of rainfall). For a typical scenario, soil moisture is determined by the Feel and Appearance method, volumes of irrigation water are based on energy or water district bills, records are kept on paper copies, and calculations are made by hand. Resource Concerns: Insufficient Water Supply-Inefficient use of irrigation water; Degraded Plant Condition-Undesirable plant productivity and health, and Inefficient Energy UseEquipment and facilities.Associated Practices: 441-Irrigation System Microirrigation, 442-Irrigation System Sprinkler, 443-Irrigation System Surface and Subsurface.

Before Situation:

The irrigator decides when to irrigate based on general crop or soil appearance or limited soil moisture monitoring. System run times are based on past apparent success. The typical irrigated field is a 125 acre corn field with a sprinkler irrigation system.

After Situation:

Irrigations are scheduled based on measured crop water requirements. Records are used to evaluate results of past irrigation events and influence future irrigations. The irrigator keeps records of soil moisture, crop water use, rainfall amounts and irrigation timing and amounts. At the end of the irrigation season all the data has been reviewed and evaluated. Improvements planned for the next season have been determined.

Feature Measure: Irrigated Area Managed
Scenario Unit: Acres
Scenario Typical Size: 125.00
Scenario Total Cost: $\$ 1,740.80$

Scenario Cost/Unit: \$13.93
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	32	\$1,523.52

Practice: 449-Irrigation Water Management
Scenario: \#2-Soil Moisture Sensors, Medium Intensity, First Year

Scenario Description:

This practice includes the installation of electrical soil moisture sensors such as capacitance or resistance sensors that are monitored to determine soil moisture. The installation includes the purchase of soil moisture sensors, installation equipment (probe or auger), and a data logger to log continuous soil moisture data that can be downloaded to a personal computer and associated graphing software. Scenario also includes the labor associated with using the equipment for the first year. Typical Scenario involves installation of resistance sensor blocks in a 125 acre field of sprinkler irrigated cropland. Producer periodically monitors soil moisture sensors during the growing season. This scenario only applies to year one IWM. The appropriate labor only IWM scenario applies in subsequent contract years. Resource Concerns: Insufficient Water - Inefficient use of irrigation water, and Degraded Plant Condition - Undesirable plantproductivity and health, and Inefficient Energy Use - Equipment and facilities. Associated Practices: 587-Structure for water Control, 328-Conservation Crop Rotation, and 590-Nutrient Management.

Before Situation:

Producer uses feel method to estimate soil moisture for scheduling irrigation in the field.
After Situation:
Producer has installed four sensors at each monitoring site to a depth of four feet with one sensor representing each foot of depth. Producer periodically downloads continuously recorded soil moisture measurements that are used to schedule irrigation more effectively resulting in improved irrigation water managment and reduced energy use.

Feature Measure: Number of Measuring Sites
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$2,301.04
Scenario Cost/Unit: \$2,301.04

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	10	\$338.70
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	16	\$761.76
Materials						
Data Logger	1453	Data Logger W/Graphic Output for water management. Materials only.	Each	\$720.50	1	\$720.50
Soil Moisture Sensor	1456	Soil moisture resistance sensor with 10 foot cables. Equipment only.	Each	\$75.17	4	\$300.68
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40

Practice: 449 - Irrigation Water Management
Scenario: \#3-Soil Moisture Sensors, High Intensity, First Year

Scenario Description:

This practice includes the installation of electrical soil moisture sensors such as capacitance or resistance sensors that are monitored to determine soil moisture. Data is transmited by telemetry. The installation includes the purchase of soil moisture sensors, installation equipment (probe or auger), and a data logger with telemetry to log continuous soil moisture data that can be downloaded to a personal computer and associated graphing software. Scenario also includes the labor associated with using the equipment for the first year. Typical Scenario involves installation of resistance sensor blocks in a 125 acre field of sprinkler irrigated cropland. Producer periodically monitors soil moisture sensors during the growing season. This scenario only applies to year one IWM. The appropriate labor only IWM scenario applies in subsequent contract years. Resource Concerns: Insufficient Water - Inefficient use of irrigation water, and Degraded Plant Condition - Undesirable plantproductivity and health, and Inefficient Energy Use - Equipment and facilities. Associated Practices: 587-Structure for water Control, 328-Conservation Crop Rotation, and 590-Nutrient Management.

Before Situation:
Producer uses feel method to estimate soil moisture for scheduling irrigation in the field.

After Situation:

Producer has installed four sensors at each monitoring site to a depth of four feet with one sensor representing each foot of depth. Soil moisture data is transmitted by telemetry to producer's home computer to schedule irrigation more effectively resulting in improved irrigation water managment and reduced energy use.

Feature Measure: Number of Monitoring Sites
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$3,244.01

Scenario Cost/Unit: $\$ 3,244.01$
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	10	\$338.70
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	16	\$761.76
Materials						
Data Logger with Telemetry System	1454	Data Logger W/Graphic Output for water management and telemetry data communication device with power supply in a weather proof enclosure. Equipment only.	Each	\$1,663.47	1	\$1,663.47
Soil Moisture Sensor	1456	Soil moisture resistance sensor with 10 foot cables. Equipment only.	Each	\$75.17	4	\$300.68
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40

Practice: 449 - Irrigation Water Management

Scenario: \#4 - Labor Only, Medium or High Intensity, Subsequent Years

Scenario Description:

The labor only component of an irrigation water management system for producers using medium or high intensity IWM with soil moisture sensors or other monitoring equipment with telemetry.Resource Concerns: Insufficient Water Supply-Inefficient use of irrigation water; Degraded Plant Condition-Undesirable plant productivity and health, and Inefficient Energy Use-Equipment and facilities.Associated Practices: 441-Irrigation System Microirrigation, 442-Irrigation System Sprinkler, 443-Irrigation System Surface and Subsurface.

Before Situation:
The irrigator decides when to irrigate based on general crop or soil appearance or limited soil moisture monitoring. System run times are based on past apparent success. The typical irrigated field is a 125 acre corn field with a sprinkler irrigation system.

After Situation:
Irrigations are scheduled based on measured crop water requirements. Records are used to evaluate results of past irrigation events and influence future irrigations. The irrigator keeps records of soil moisture, crop water use, rainfall amounts and irrigation timing and amounts. At the end of the irrigation season all the data has been reviewed and evaluated. Improvements planned for the next season have been determined.

Feature Measure: Irrigated Area Managed
Scenario Unit: Acres
Scenario Typical Size: 125.00
Scenario Total Cost: \$761.76
Scenario Cost/Unit: \$6.09
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	16	\$761.76

Practice: 449-Irrigation Water Management
Scenario: \#24-Irrigation System Monitoring, High Intensity, First Year

Scenario Description:

This practice is for the installation of an irrigation system monitoring system, typically for a center pivot sprinkler system or a SDI microirrgation system. The monitoring system will provide the system operator with remote data on the current status of the irrigation system such as system operation, on/off, not moving, direction of sprinkler, current position of sprinkler, operating pressure, drip zone valves open/closed and rainfall data. If the irrigation system has an electronic flow meter, the monitoring system can also transmit system flowrates. All monitoring data is transmitted by telemetry. Typical scenario would be the installation of a monitoring system on a 125 center pivot sprinkler. The data supplied by monitoring system will assist the irrigator in applying irrigation water management by assuring that the irrigation system is operating properly at design standards. This scenario only applies to year one of irrigation system monitoring for IWM. The appropriate labor only IWM scenario applies in subsequent contract years.

Resource Concerns: Insufficient Water Supply-Inefficient use of irrigation water; Degraded Plant Condition-Undesirable plant productivity and health, and Inefficient Energy Use-Equipment and facilities.Associated Practices: 441-Irrigation System Microirrigation, 442-Irrigation System Sprinkler.

Before Situation:

The irrigation system operator manually-onsite checks on the proper operation of the microirrigation SDI system or center pivot sprinkler numerous times daily, checking its system pressure, flowrate, SDI zone valve operation, and filter system. Due to mechanical failures, fluctuating water supplies, power supply issues, weather, variable operating conditions, etc., the irrigation system is not always operating at peak efficiency, wasting water and energy.

After Situation:

The monitoring system remotely provides the irrigation system operator the current status of the microirrigation SDI system or center pivot sprinkler assuring that the irrigation system is operating properly at design efficiency. By having the irrigation system operating at peak efficiency, the irrigator is able to effectively apply irrigation water management resulting in water and energy savings.

Feature Measure: Number of Monitoring Systems
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$2,078.28

Scenario Cost/Unit: \$2,078.28
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	6	\$203.22
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	6	\$285.66
Materials						
Switches and Controls, programmable controller	1193	Programmable logic controller (with or without wireless telecommunications) commonly used to control pumps and irrigation systems	Each	\$623.08	1	\$623.08
Switches and Controls, Wi-Fi system and software	1194	Software with built-in cellular or Wi-Fi communication commonly used to control pumps and irrigation systems	Each	\$786.92	1	\$786.92
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40

United States Department of Agriculture

Practice: 450-Anionic Polyacrylamide (PAM) Application
Scenario: \#6 - PAM Application

Scenario Description:

Control of irrigation induced erosion (typically in furrow irrigated fields) through the direct application of water-soluble Polyacrylamide (PAM) into the irrigation water supply (1 to 3 ounce sprinkled at 3-5 ft furrow inlet or metered at 10 ppm directly into the head ditch). PAM comes in granular, liquid oil emulsion, tablet, and block forms. This typical application is for an 80 -acre furrow irrigated row crop field, with one PAM application (1-1.5 lb/ac, creating a 10 ppm concentration of the granular PAM in the head ditch metered via large fish feeder) at first irrigation followed by two additional applications (reduced rates of 0.5-1 lb/ac, or about 1-5 ppm in the inflow water) after cultivations.Resource Concern: Soil erosion.Associated Practices: 443-Irrigation System, Surface and Subsurface, 449-Irrigation Water Management.

Before Situation:
Irrigated lands susceptible to irrigation-induced erosion, excluding peat soils, and where the sodium adsorption ratio (SAR) of irrigation water is less than 15.
After Situation:
Erosion is minimized in furrow irrigated field.
Feature Measure: Weight of PAM Applied
Scenario Unit: Pound
Scenario Typical Size: 240.00
Scenario Total Cost: \$1,103.52
Scenario Cost/Unit: \$4.60
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	12	\$325.92
Materials						
Anionic Polyacrylamide (PAM)	1279	Water Soluble PAM, granular bulk, for mixing with irrigation water. Includes materials and shipping only.	Pound	\$3.24	240	\$777.60

Practice: 462 - Precision Land Forming and Smoothing
Scenario: \#1 - Non-irrigated Leveling and Shaping

Scenario Description:

This scenario will level a typical 5 acres of non-irrigated land to enhance uniform flow of surface water to improve infiltration and reduce erosion. The typical volume of earth to be moved is 100 to 500 cubic yards per acre. The site contains site specific topographic problems and site conditions require attention to elevation and grade. Resource concerns are EXCESS / INSUFFICIENT WATER -(Ponding, Flooding) and SOIL EROSION -(Sheet, Rill). Associated practices are: 410-Grade Stabilization Structure, 342-Critical Area Planting, 362-Diversion.

Before Situation:

The site, commonly a non-irrigated crop field or CAFO, has localized topographic issues causing drainage or erosion problems. Site conditions require attention to elevation and grade due to areas of excess / insufficient water and soil erosion.

After Situation:
The typical situation is a 5 acre non-irrigated crop field or CAFO requiring reshaping of the land surface to the required elevations and planned grades. An average 1000 CY of earthwork ($5 \mathrm{AC} * 200 \mathrm{CY} / \mathrm{AC}$) is required to more effectively utilize precipitation. Resource concerns have been treated.

Feature Measure: Cubic yards of earthwork
Scenario Unit: Cubic Yards
Scenario Typical Size: $1,000.00$

Practice: 462 - Precision Land Forming and Smoothing
Scenario: \#5-Gully Shaping

Scenario Description:

The site contains a gully problem. Site conditions require attention to elevation and grade. Resource concerns are EXCESS / INSUFFICIENT WATER -(Ponding, Flooding) and SOIL EROSION -(Sheet, Rill)

Before Situation:
The site, commonly a pasture or rangeland, has localized gully issues causing drainage or erosion problems. Typical situation is a 680 feet long gully with a 200 square feet cross sectional area and a 5 acre drainage area. Site conditions require attention to elevation and grade due to areas of excess / insufficient water and soil erosion.

After Situation:

The land surface is reshaped to the required elevations and planned grades. The 200 square feet cross sectional area gully is reshaped to have $5: 1$ side slopes, 10 feet bottom width, and a 64 feet top width. For the 680 feet long gully, the reshaped area is approximately 1.0 Acre. Resource concerns have been treated. Associated practices: 410-Grade Stabilization Structure, 342-Critical Area Planting, 362-Diversion.

Feature Measure: Acres of Land Shaped
Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$1,406.62
Scenario Cost/Unit: \$1,406.62
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160. Equipment and power unit costs. Labor not included.	Hours	\$98.78	5	\$493.90
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	5	\$159.35
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 462 - Precision Land Forming and Smoothing
Scenario: \#21-Minor Shaping
Scenario Description:
The land surface is shaped or leveled to a specific elevation and grade for various land uses. Cuts and fills are small. The resource concerns are EXCESS / INSUFFICIENT WATER -(Ponding, Flooding) and SOIL EROSION -(Sheet, Rill)

Before Situation:
The field has minor topographic issues or problems with surface drainage or erosion which can be corrected without land leveling or land smoothing. Site conditions require attention to elevation and grade. Typical situation is a 5 acre field. Material to be moved and or placed typically around 100 cubic yards per acre.

After Situation:
Land has been shaped to the required elevations and grades. Resource concerns have been treated. Associated practices, like plantings or drainage water management practices, would be contracted seperately as needed.

Feature Measure: Acres of land treated

Scenario Unit: Acres

Scenario Typical Size: 5.00
Scenario Total Cost: $\$ 3,657.75$

Scenario Cost/Unit: \$731.55

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160 . Equipment and power unit costs. Labor not included.	Hours	\$98.78	6	\$592.68
Skidsteer, 80 HP	933	Skidsteer loader with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$56.04	6	\$336.24
Scraper, pull, 7 CY	1206	Pull type earthmoving scraper with 7 CY capacity. Does not include pulling equipment or labor. Add Tractor or Dozer, 160 HP typically required for single scraper.	Hours	\$18.49	6	\$110.94

Labor

Equipment Operators, Light

232 Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers

Hours	$\$ 27.76$	6	$\$ 166.56$
Hours	$\$ 31.87$	6	$\$ 191.22$

Mobilization

Mobilization, medium equipment 1139 Equipment with 70-150 HP or typical weights between 14,000 and 3 Each \$753.37 3

Practice: 462 - Precision Land Forming and Smoothing
Scenario: \#22-Site Stabilization

Scenario Description:

The site contains a gully or other site specific topographic problem. Site conditions require attention to elevation and grade. Resource concerns are EXCESS / INSUFFICIENT WATER -(Ponding, Flooding) and SOIL EROSION -(Sheet, Rill)

Before Situation:
The site, commonly a crop field or CAFO, has localized gully or topographic issues causing drainage or erosion problems. Typical situation is a gully 10 feet wide and 5 feet deep.

After Situation:
Land has been shaped to the required elevations and grades. Resource concerns have been treated. Associated practices, like plantings or drainage water management practices, would be contracted seperately as needed.

Feature Measure: Cubic yards of material placed
Scenario Unit: Cubic Yards
Scenario Typical Size: 6,000.00
Scenario Total Cost: \$14,553.37
Scenario Cost/Unit: \$2.43

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	6000	\$13,800.00
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 462 - Precision Land Forming and Smoothing
Scenario: \#50-Minor Shaping - Field Scale
Scenario Description:
Removing irregularities on the land surface of cropland by use of heavy equipment.
Before Situation:
Field damaged by flooding, past agricultural practices, or other topographic issues causing drainage or field workability issues. Typically less than 100 cy/acre material moved.

After Situation:
Land level, backhoe, bulldozer or other heavy equipment used to correct irregularities and address drainage or workability issues.

Feature Measure: Acres of land treated
Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: $\$ 3,728.50$

Scenario Cost/Unit: \$93.21
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160 . Equipment and power unit costs. Labor not included.	Hours	\$98.78	25	\$2,469.50
Scraper, pull, 7 CY	1206	Pull type earthmoving scraper with 7 CY capacity. Does not include pulling equipment or labor. Add Tractor or Dozer, 160 HP typically required for single scraper.	Hours	\$18.49	25	\$462.25
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	25	\$796.75

Practice: 462 - Precision Land Forming and Smoothing
Scenario: \#61 - Terrace Removal

Scenario Description:

Remove and dispose of an existing terrace system by placing earthfill, excavation, grading, leveling or other means required for removal. Dispose of terrace ridge earthfill material by placing it into the adjacent terrace channel, so that the disturbed area slope matches the adjacent field slope, and it does not impede subsequent work or cause onsite or offsite damage. Removing an existing terrace system will address the resource concerns of localized topographic issues causing drainage or erosion problems.

Before Situation:
On any land where an existing terrace system interfere with planned land use development or infrastructure. The site, commonly a crop field that is being developed into a pasture/range field, has localized topographic issues causing drainage or erosion problems.

After Situation:
The typical length will be a 12,460 linear feet of terraces. The removal of an existing terrace system will be performed by placing earthfill, excavation, grading, leveling or other means required for removal with the use of heavy equipment. Dispose of terrace ridge earthfill material by placing it into the adjacent terrace channel, so that the disturbed area slope matches the adjacent field slope, and it does not impede subsequent work or cause onsite or offsite damage. Revegetate or otherwise protect the disturbed areas from erosion as soon as possible. Refer to NRCS Conservation Practice Standard 342, Critical Area Planting for seedbed preparation, seeding, fertilizing, and mulching requirements. The practice will improve localized topographic issues causing drainage or erosion problems. It will also improve site conditions in order to apply conservation practices or facilitate better use of the landscape.

Feature Measure: Length of removed terraces
Scenario Unit: Feet

Scenario Typical Size: 12,460.00
Scenario Total Cost: \$9,391.19
Scenario Cost/Unit: \$0.75
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 200 HP	928	Track mounted Dozer with horsepower range of 160 to 250 . Equipment and power unit costs. Labor not included.	Hours	\$180.17	40	\$7,206.80
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	40	\$1,274.80
Mobilization						
Mobilization, large equipment	1140	Equipment >150HP or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 464-Irrigation Land Leveling
Scenario: \#5 - Irrigation Land Leveling
Scenario Description:
This is scenario will level a typical 80 acres of irrigated crop land surface to enhance uniform flow of surface water to improve irrigation efficiency using dirtpans/carry-all/pan-scraper equipment. The typical volume of earth moved is 100 to 500 cubic yards per acre. Resource Concern: Excess/Insufficient - Inefficient Use of Irrigation Water Associated Conservation Practices: 433 - Irrigation System, Surface and Subsurface; 607 - Surface Drain, Field Ditch; 388 - Irrigation Field Ditch; 449 - Irrigation Water Management; or 587 - Structure for Water Control.

Before Situation:
Irregular field surface reduces uniformity of surface application and thus irrigation efficiency by localized ponding and/or excess runoff/runon.
After Situation:
Cropland will be reshaped to provide uniform distribution of irrigation water in order to promote irrigation efficiencies.

Feature Measure: Volume of Earth Moved
Scenario Unit: Cubic Yards
Scenario Typical Size: 28,000.00
Scenario Total Cost: \$64,998.92
Scenario Cost/Unit: \$2.32
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	28000	\$64,400.00
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	2	\$598.92

Practice: 464-Irrigation Land Leveling
Scenario: \#17-Small Scale Irrigation Land Leveling
Scenario Description:
This is scenario will level a typical 10 acres of irrigated crop land surface to enhance uniform flow of surface water to improve irrigation efficiency using dirtpans/carry-all/pan-scraper equipment. The typical volume of earth moved is 100 to 500 cubic yards per acre. Resource Concern: Excess/Insufficient - Inefficient Use of Irrigation Water Associated Conservation Practices: 433 - Irrigation System, Surface and Subsurface; 607 - Surface Drain, Field Ditch; 388 - Irrigation Field Ditch; 449 - Irrigation Water Management; or 587 - Structure for Water Control.

Before Situation:
Irregular field surface reduces uniformity of surface application and thus irrigation efficiency by localized ponding and/or excess runoff/run-on.
After Situation:
Cropland will be reshaped to provide uniform distribution of irrigation water in order to promote irrigation efficiencies.

Feature Measure: Acres of Area

Scenario Unit: Acres

Scenario Typical Size: 10.00
Scenario Total Cost: \$11,019.18
Scenario Cost/Unit: \$1,101.92

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	4000	\$9,200.00
Mobilization						
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	2	\$1,819.18

Practice: 468 - Lined Waterway or Outlet

Scenario: \#1 - Waterway, Turf Reinforced Matting Lined

Scenario Description:

Install 300 ' long by 15 ' wide by 1.5^{\prime} deep trapezoidal or parabolic shaped waterway lined with Turf Reinforced Matting (TRM). $1 / 2$ the channel is excavated. Excess excavation is spoiled in the immediate area. TRM is installed over 100% of the width of the waterway to prevent scour and aid in waterway establishment. Cost include excavation, spoiling of excess material, and furnishing and installing TRM. Lined waterway width is measured from top of bank to top of bank.

Before Situation:

Excessive sedimentation and soil erosion as a result of ephemeral or classic gully erosion. Velocities are generally too high or saturated soil conditions make it difficult to establish a grassed waterway.

After Situation:
TRM lined waterway is 300 ' long by 15 ' wide by 1.5 ' deep. The practice is installed using a hydraulic excavator. TRM is installed by laborers. Associated practices are Subsurface Drain (606), Underground Outlet (620), Structure for Water Control (587), and Critical Area Seeding (342).

Feature Measure: Square Foot of Waterway
Scenario Unit: Square Feet
Scenario Typical Size: 4,500.00
Scenario Total Cost: \$6,512.49

Scenario Cost/Unit: \$1.45
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	90	\$207.00
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44
Materials						
Turf reinforcement mat	1212	Synthetic turf reinforcement mat with staple anchoring. Includes materials, equipment and labor.	Square Yard	\$11.43	535	\$6,115.05

Practice: 468 - Lined Waterway or Outlet

Scenario: \#2 - Waterway, Lined with Riprap 12 Inches Thick

Scenario Description:

Install 300 ' long by 15 ' wide by 1.5^{\prime} deep trapezoidal or parabolic shaped waterway lined with riprap ($\mathrm{D} 100=9$ ', Velocity $\sim 8 \mathrm{ft} / \mathrm{sec}$). $1 / 2$ the channel is excavated, before excavation for riprap. Excess excavation is spoiled in the immediate area. Riprap is installed over 100% of the width of the waterway to prevent scour. Cost include excavation, spoiling of excess material, geotextile underlayment and installing 9' Rock Riprap. Lined waterway width is measured from top of bank to top of bank.

Before Situation:
Excessive sedimentation and soil erosion as a result of ephemeral or classic gully erosion. Velocities are generally too high or saturated soil conditions make it difficult to establish a grassed waterway.

After Situation:

Rock lined waterway is 300 ' long by 15 ' wide by 1.5 ' deep. Waterway is excavated and rock is placed using a hydraulic excavator. Geotextile underlayment is installed by laborers. Associated practices are Subsurface Drain (606), Underground Outlet (620), Structure for Water Control (587), and Critical Area Seeding (342).

Feature Measure: Square Foot of Waterway
Scenario Unit: Square Feet
Scenario Typical Size: 4,500.00
Scenario Total Cost: \$29,139.46

Scenario Cost/Unit: \$6.48
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	295	\$678.50
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	2	\$54.32
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44
Materials						
Rock Riprap, Placed with geotextile	44	Rock Riprap, placed with geotextile. Includes materials, local delivery within 20 miles of quarry, and placement.	Cubic Yards	\$137.64	205	\$28,216.20

Practice: 468 - Lined Waterway or Outlet
Scenario: \#3 - Waterway, Lined with Riprap 24 Inches Thick
Scenario Description:
Install 300 ' long by 15 ' wide by 1.5 ' deep trapezoidal or parabolic shaped waterway lined with riprap (D100 = 18', Velocity ~ $11 \mathrm{ft} / \mathrm{sec}$). $1 / 2$ the channel is excavated, before excavation for riprap. Excess excavation is spoiled in the immediate area. Riprap is installed over 100% of the width of the waterway to prevent scour. Cost include excavation, spoiling of excess material, geotextile underlayment and installing 18' Rock Riprap. Lined waterway width is measured from top of bank to top of bank.

Before Situation:
Excessive sedimentation and soil erosion as a result of ephemeral or classic gully erosion. Velocities are generally too high or saturated soil conditions make it difficult to establish a grassed waterway.

After Situation:
Rock lined waterway is 300 ' long by 15 ' wide by 1.5^{\prime} deep. Waterway is excavated and rock is placed using a hydraulic excavator. Geotextile underlayment is installed by laborers. Associated practices are Subsurface Drain (606), Underground Outlet (620), Structure for Water Control (587), and Critical Area Seeding (342).

Feature Measure: Square Foot of Waterway

Scenario Unit: Square Feet
Scenario Typical Size: 4,500.00
Scenario Total Cost: $\$ 65,523.86$
Scenario Cost/Unit:

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	555	\$1,276.50
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	2	\$54.32
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44
Materials						
Rock Riprap, Placed with geotextile	44	Rock Riprap, placed with geotextile. Includes materials, local delivery within 20 miles of quarry, and placement.	Cubic Yards	\$137.64	465	\$64,002.60

Practice: 468 - Lined Waterway or Outlet
Scenario: \#4 - Waterway, Concrete Lined
Scenario Description:
Install 300 ' long by 15 ' wide by 1.5 ' deep trapezoidal or parabolic shaped waterway lined with concrete. $1 / 2$ the channel is excavated, before excavation for concrete and subgrade material. Excess excavation is spoiled in the immediate area. Concrete is installed over 100% of the width of the waterway to prevent scour. Cost include excavation, spoiling of excess material, 6 ' of clean sand or gravel subgrade, and 5 ' reinforced concrete slab. Lined waterway width is measured from top of bank to top of bank.

Before Situation:
Excessive sedimentation and soil erosion as a result of ephemeral or classic gully erosion. Velocities are generally too high or saturated soil conditions make it difficult to establish a grassed waterway. Usually installed in locations where rock or other lining materials are not readily available.

After Situation:
Concrete lined waterway is 300 ' long by 15 ' wide by 1.5^{\prime} deep. Waterway is excavated using a hydraulic excavator. Concrete slab is placed on 6 ' of clean sand or \#57 stone. Concrete is placed, graded and screeded by laborers. Associated practices are Subsurface Drain (606), Underground Outlet (620), Structure for Water Control (587), and Critical Area Seeding (342)

Feature Measure: Square Foot of Waterway
Scenario Unit: Square Feet
Scenario Typical Size: 4,500.00
Scenario Total Cost: $\$ 38,198.26$

Scenario Cost/Unit:

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	80	\$32,376.00
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	280	\$644.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	2	\$54.32
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44
Materials						
Aggregate, Gravel, Graded	46	Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$44.85	110	\$4,933.50

Practice: 468 - Lined Waterway or Outlet
Scenario: \#5-Gabion Mattress Outlet

Scenario Description:

Install an open weir gabion mattress lined outlet to control soil erosion and/or provide a stable outlet for other conservation practices. Minor excavation and/or earhfill is required to install the structure. The typical structure consists of $8-6^{\prime} \times 9^{\prime} \times 9$ gabion mattresses, $8-6^{\prime} \times 12^{\prime} \times 9^{\prime}$ gabion mattresses, 28 cubic yards of rock, 10.7 cubic yards of filter material, and 112 square yards of geotextile.

Before Situation:
Excessive sedimentation and soil erosion is occuring as a result of ephemeral or classic gully erosion. Velocities are generally too high or saturated soil conditions make it difficult to establish a stable vegetated outlet.

After Situation:
An open weir gabion mattress lined outlet is installed. Minor excavation and/or earhfill is required to install the structure. The typical structure consists of 8 $6^{\prime} \times 9^{\prime} \times 9$ 'gabion mattresses, $8-6^{\prime} \times 12^{\prime} \times 9^{\prime}$ gabion mattresses, 28 cubic yards of rock, 10.7 cubic yards of bedding material, and 112 square yards of geotextile. Earthwork, bedding material, and rock is installed using a backhoe and laborers. Gabion mattresses are assembled by laborers. Geotextile is installed by laborers. Associated practices are Grassed Waterway (412), Diversion (362), and Critical Area Seeding (342).

Feature Measure: Volume of Rock
Scenario Unit: Cubic Yards
Scenario Typical Size: 28.00
Scenario Total Cost: $\$ 16,417.37$

Scenario Cost/Unit: \$586.33

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	16	\$1,043.36
Dozer, 200 HP	928	Track mounted Dozer with horsepower range of 160 to 250. Equipment and power unit costs. Labor not included.	Hours	\$180.17	24	\$4,324.08
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	32	\$869.12
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	40	\$1,274.80
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	16	\$761.76
Materials						
Aggregate, Sand, Graded, Washed	45	Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$42.64	10.7	\$456.25
Geotextile, non-woven, heavy weight	1210	Non-woven greater than 8 ounce/square yard geotextile with staple anchoring. Materials and shipping only.	Square Yard	\$2.24	112	\$250.88
Gabion basket or mat	1378	Gabion baskets or mats installed and filled on grade, includes materials, transport, equipment, and labor, does not include geotextile fabric.	Cubic Yards	\$206.22	28	\$5,774.16
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 468-Lined Waterway or Outlet
Scenario: \#6-Outlet, Concrete Lined

Scenario Description:

Install an open weir concrete lined outlet to control soil erosion and/or provide a stable outlet for other conservation practices. Minor excavation and/or earhfill is required to install the structure for foundation and support embankments. The typical structure is 30 ft long and requires 12.8 cy of concrete. The concrete is reinforced with welded wire fabric. Cost include earthwork, 6 ' of clean sand or gravel subgrade, and 5' reinforced concrete slab.

Before Situation:
Excessive sedimentation and soil erosion is occuring as a result of ephemeral or classic gully erosion. Velocities are generally too high or saturated soil conditions make it difficult to establish a stable vegetated outlet.

After Situation:
An open weir concrete lined outlet is installed. Minor excavation and/or earhfill is required to install the structure for foundation and support embankments. The typical structure is 30 ft long and requires 12.8 cy of concrete. 21 cubic yards of subgrade bedding material. Earthwork and bedding material are installed using a dozer and laborers. Concrete is placed, graded and screeded by laborers. Associated practices are Grassed Waterway (412), Diversion (362), Waste Storage Facility (313), Waste Treatment Lagoon (359), and Critical Area Seeding (342).

Feature Measure: Volume of Concrete
Scenario Unit: Cubic Yards
Scenario Typical Size: 12.80
Scenario Total Cost: \$8,960.87
Scenario Cost/Unit: \$700.07
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, formed reinforced	38	Steel reinforced concrete formed and cast-in-placed in formed structures such as walls or suspended slabs by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$457.84	12.8	\$5,860.35
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	397	\$1,453.02
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	89	\$507.30
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	2	\$54.32
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44
Materials						
Aggregate, Sand, Graded, Washed	45	Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$42.64	21	\$895.44

Practice: 468 - Lined Waterway or Outlet
Scenario: \#13 - Waterway or outlet, Rock Riprap Lined
Scenario Description:
Install 300 ' long by 15 ' wide by 1.5 ' deep trapezoidal or parabolic shaped waterway lined with riprap (D100 = 18', Velocity $\sim 11 \mathrm{ft} / \mathrm{sec}$). $1 / 2$ the channel is excavated, before excavation for riprap. Excess excavation is spoiled in the immediate area. Riprap is installed over 100% of the width of the waterway to prevent scour. Cost include excavation, spoiling of excess material, geotextile underlayment and installing 18' Rock Riprap.

Before Situation:
Excessive sedimentation and soil erosion as a result of ephemeral or classic gully erosion. Velocities are generally too high or saturated soil conditions make it difficult to establish a grassed waterway.

After Situation:
Rock lined waterway is 300 ' long by 15 ' wide by 1.5 ' deep. Waterway is excavated and rock is placed using a hydraulic excavator. Geotextile underlayment is installed by laborers. Associated practices are Subsurface Drain (606), Underground Outlet (620), Structure for Water Control (587), and Critical Area Seeding (342).

Feature Measure: Cubic Yards of Rock Riprap
Scenario Unit: Cubic Yards
Scenario Typical Size: 465.00
Scenario Total Cost: \$65,523.86
Scenario Cost/Unit: \$140.91
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	555	\$1,276.50
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	2	\$54.32
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44
Materials						
Rock Riprap, Placed with geotextile	44	Rock Riprap, placed with geotextile. Includes materials, local delivery within 20 miles of quarry, and placement.	Cubic Yards	\$137.64	465	\$64,002.60

Practice: 468 - Lined Waterway or Outlet

Scenario: \#34-Turf Reinforced Matting

Scenario Description:

Install 300 ' long by 15 ' wide by 1.5 ' deep trapezoidal or parabolic shaped waterway lined with Turf Reinforced Matting (TRM). $1 / 2$ the channel is excavated. Excess excavation is spoiled in the immediate area. TRM is installed over 100% of the width of the waterway to prevent scour and aid in waterway establishment. Cost include excavation, spoiling of excess material, and furnishing and installing TRM. Lined waterway width is measured from top of bank to top of bank.

Before Situation:
Excessive sedimentation and soil erosion as a result of ephemeral or classic gully erosion. Velocities are generally too high or saturated soil conditions make it difficult to establish a grassed waterway.

After Situation:
TRM lined waterway is 300 ' long by 15 ' wide by 1.5 ' deep. The practice is installed using a hydraulic excavator. TRM is installed by laborers. Associated practices are Subsurface Drain (606), Underground Outlet (620), Structure for Water Control (587), and Critical Area Seeding (342).

Feature Measure: Square Foot of Waterway
Scenario Unit: Square Feet
Scenario Typical Size: 4,500.00
Scenario Total Cost: \$7,170.64
Scenario Cost/Unit: \$1.59
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	90	\$207.00
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22
Materials						
Turf reinforcement mat	1212	Synthetic turf reinforcement mat with staple anchoring. Includes materials, equipment and labor.	Square Yard	\$11.43	535	\$6,115.05
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 468-Lined Waterway or Outlet						
Scenario: \#35-Rock Lined, 12 inch						
Scenario Description:						
Install 300 ' long by 15 ' wide by 1.5 ' deep trapezoidal or parabolic shaped waterway lined with riprap ($\mathrm{D} 100=9$ ', Velocity $\sim 8 \mathrm{ft} / \mathrm{sec}$). $1 / 2$ the channel is excavated, before excavation for riprap. Excess excavation is spoiled in the immediate area. Riprap is installed over 100% of the width of the waterway to prevent scour. Cost include excavation, spoiling of excess material, geotextile underlayment and installing 9' Rock Riprap. Lined waterway width is measured from top of bank to top of bank.						
Before Situation:						
Excessive sedimentation and soil erosion as a result of ephemeral or classic gully erosion. Velocities are generally too high or saturated soil conditions make it difficult to establish a grassed waterway.						
After Situation:						
Rock lined waterway is 300 ' long by 15 ' wide by 1.5^{\prime} deep. Waterway is excavated and rock is placed using a hydraulic excavator. Geotextile underlayment is installed by laborers. Associated practices are Subsurface Drain (606), Underground Outlet (620), Structure for Water Control (587), and Critical Area Seeding (342).						
Feature Measure: Square Foot of Waterway						
Scenario Unit: Square Feet						
Scenario Typical Size: 4,500.00						
Scenario Total Cost:	\$29,797.61					
Scenario Cost/Unit:	\$6.62					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	295	\$678.50
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	2	\$54.32
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22
Materials						
Rock Riprap, Placed with geotextile	44	Rock Riprap, placed with geotextile. Includes materials, local delivery within 20 miles of quarry, and placement.	Cubic Yards	\$137.64	205	\$28,216.20
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 468 - Lined Waterway or Outlet

Scenario: \#36-Concrete

Scenario Description:

Install 300 ' long by 15 ' wide by 1.5' deep trapezoidal or parabolic shaped waterway lined with concrete. $1 / 2$ the channel is excavated, before excavation for concrete and subgrade material. Excess excavation is spoiled in the immediate area. Concrete is installed over 100% of the width of the waterway to prevent scour. Cost include excavation, spoiling of excess material, 6 ' of clean sand or gravel subgrade, and 5' reinforced concrete slab. Lined waterway width is measured from top of bank to top of bank.

Before Situation:
Excessive sedimentation and soil erosion as a result of ephemeral or classic gully erosion. Velocities are generally too high or saturated soil conditions make it difficult to establish a grassed waterway. Usually installed in locations where rock or other lining materials are not readily available.

After Situation:
Concrete lined waterway is 300 ' long by 15 ' wide by 1.5 ' deep. Waterway is excavated using a hydraulic excavator. Concrete slab is placed on 6 ' of clean sand or \#57 stone. Concrete is placed, graded and screeded by laborers. Associated practices are Subsurface Drain (606), Underground Outlet (620), Structure for Water Control (587), and Critical Area Seeding (342).

Feature Measure: Square Foot of Waterway
Scenario Unit: Square Feet
Scenario Typical Size: 4,500.00
Scenario Total Cost: \$38,856.41
Scenario Cost/Unit: \$8.63
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	80	\$32,376.00
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	280	\$644.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	2	\$54.32
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22
Materials						
Aggregate, Gravel, Graded	46	Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$44.85	110	\$4,933.50
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 468 - Lined Waterway or Outlet
Scenario: \#44-Concrete Block

Scenario Description:

Install 36 ' long (including inlet and outlet aprons) by 15 ' wide by 1.5 ' deep trapezoidal shaped waterway or chute lined with concrete blocks. $1 / 2$ the channel is excavated. Excess excavation is spoiled in the immediate area. $8^{\prime} \times 8^{\prime} \times 16^{\prime}$ standard concrete blocks are installed over 100% of the width of the waterway/chute to prevent scour. Cost include excavation, spoiling of excess material, 3 ' stone subgrade, geotextile and furnishing and installing standard concrete blocks. Lined waterway width is measured from top of bank to top of bank.

Before Situation:
Excessive sedimentation and soil erosion as a result of ephemeral or classic gully erosion. Velocities are generally too high or saturated soil conditions make it difficult to establish a grassed waterway. Usually installed in locations where rock or other lining materials are not readily available.

After Situation:
Conccrete block lined waterway or chute is 36 ' long by 15^{\prime} wide by 1.5^{\prime} deep. Chute is installed on a 3 to 1 slope. The practice is installed using a hydraulic excavator. Geotextile and concrete blocks are installed by laborers. Associated practices are Subsurface Drain (606), Underground Outlet (620), Structure for Water Control (587), and Critical Area Seeding (342).

Feature Measure: Square Foot of Waterway
Scenario Unit: Square Feet
Scenario Typical Size: 540.00
Scenario Total Cost: $\$ 3,880.08$
Scenario Cost/Unit: \$7.19

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Geotextile, woven	42	Woven Geotextile Fabric. Includes materials, equipment and labor	Square Yard	\$1.11	65	\$72.15
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	32	\$73.60
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	24	\$651.84
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22
Materials						
Aggregate, Gravel, Graded	46	Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$44.85	6	\$269.10
Block, concrete	253	Concrete block, hollow, normal weight, 3500 psi. Includes both full and partial sizes. Material only	Each	\$3.07	640	\$1,964.80
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 472-Access Control
Scenario: \#1 - Trails/Roads Access Control

Scenario Description:

Restricting access to the use of forest/farm roads and trails by the use of a gate and signs. Extensive amount of fencing (other than that needed to restrict access at the site of ingress) is not included in this scenario, but instead will be planned and installed with the Fence practice (382).

Before Situation:
Roads are damaged or misused, illegal activities occur and/or forest resources are at risk. Resource concerns include undesirable plant productivity and health, concentrated flow erosion, soil compaction, excessive sediment in surface waters, and wildlife habitat degradation.

After Situation:
Roads are protected, illegal activities are stopped and/or forest resources are secure.
Feature Measure: Number
Scenario Unit: Each

Scenario Typical Size: 1.00
Scenario Total Cost: \$1,060.28
Scenario Cost/Unit: \$1,060.28
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Auger, Post driver attachment	934	Auger or post driver attachment to a tractor or skidsteer. Does not include power unit. Labor not included.	Hours	\$9.74	4	\$38.96
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Tractor, agricultural, 60 HP	963	Agricultural tractor with horsepower range of 50 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$35.80	4	\$143.20
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	4	\$108.64
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	4	\$111.04
Materials						
Post, Wood, CCA treated, 6 in. x 8 ft .	12	Wood Post, End 6 inch dia. X 8 ft., CCA Treated. Includes materials and shipping only.	Each	\$24.69	4	\$98.76
Property/Safety Signs	293	Plastic fence safety or property sign, printed on both sides with 6 predrilled holes for hanging or nailing. 7.5×4.75 inch. Includes materials and shipping only.	Each	\$2.09	100	\$209.00
Gate, Pipe, 14 ft .	1058	6 rail tube gate, 16 gauge. Includes materials and shipping only.	Each	\$269.50	1	\$269.50
Concrete mix, bag	1226	Pre-mixed dry concrete mix in 60 pound bag. Materials only.	Each	\$5.20	6	\$31.20

Practice: 472-Access Control
Scenario: \#2 - Forest/Farm Access Control

Scenario Description:

Restricting human access to a field/farm/property through use of gates, signage and other markings. The perimeter is marked with paint (at 100 foot intervals), signs at points of ingress and a gate installed to limit access to the property. Surveying is not necessary.

Before Situation:
A 20 acre tract (field, farm. forests, etc.) is being damaged or misused by illegal activities that put the resources/property at risk or needs controlled access due to an active management operation such as pest management or timber harvesting. Resource concerns include undesirable plant productivity and health, excessive sediment in surface waters, concentrated flow erosion, and wildlife habitat degradation.

After Situation:

The property is adequately marked, gated and protected, illegal activities are stopped and/or forest resources are secure.

Feature Measure: length in feet
Scenario Unit: Feet
Scenario Typical Size: 3,900.00
Scenario Total Cost: $\$ 1,878.32$

Scenario Cost/Unit: \$0.48
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Auger, Post driver attachment	934	Auger or post driver attachment to a tractor or skidsteer. Does not include power unit. Labor not included.	Hours	\$9.74	4	\$38.96
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	4	\$99.96
Tractor, agricultural, 60 HP	963	Agricultural tractor with horsepower range of 50 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$35.80	4	\$143.20
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	4	\$111.04
Materials						
Post, Wood, CCA treated, 6 in. $\times 8$ ft .	12	Wood Post, End 6 inch dia. X 8 ft., CCA Treated. Includes materials and shipping only.	Each	\$24.69	8	\$197.52
Property/Safety Signs	293	Plastic fence safety or property sign, printed on both sides with 6 predrilled holes for hanging or nailing. 7.5×4.75 inch. Includes materials and shipping only.	Each	\$2.09	390	\$815.10
Gate, Pipe, 12 ft .	1057	6 rail tube gate, 16 gauge. Includes materials and shipping only.	Each	\$234.46	1	\$234.46
Concrete mix, bag	1226	Pre-mixed dry concrete mix in 60 pound bag. Materials only.	Each	\$5.20	4	\$20.80

Practice: 472-Access Control
Scenario: \#3-Road, Trail closure

Scenario Description:

Restricting human access to a field/farm/property through use of signage and other markings. Gravel burms are placed to hault vehicle traffic along with a metal barrier. The perimeter is marked with paint and signs at points of ingress. Surveying is not necessary.

Before Situation:
A 20 acre tract (field, farm. forests, etc.) is being damaged or misused by illegal activities that put the resources/property at risk or needs controlled access due to an active management operation such as pest management or timber harvesting. Resource concerns include undesirable plant productivity and health, excessive sediment in surface waters, concentrated flow erosion, and wildlife habitat degradation.

After Situation:

The property is adequately marked and protected, illegal activities are stopped and/or forest resources are secure.
Feature Measure: Number
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$1,528.92
Scenario Cost/Unit: \$1,528.92

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	8	\$521.68
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	8	\$222.08
Materials						
Property/Safety Signs	293	Plastic fence safety or property sign, printed on both sides with 6 predrilled holes for hanging or nailing. 7.5×4.75 inch. Includes materials and shipping only.	Each	\$2.09	50	\$104.50
Aggregate, Gravel, Ungraded, Quarry Run	1099	Includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$34.45	12	\$413.40

Practice: 472-Access Control
Scenario: \#13-Animal exclusion from sensitive areas

Scenario Description:

Excluding animals from an area in order to address identified resource concerns. This is for facilitating exclusion of animals to protect or enhance natural resource values. Control will be by temporary electric fencing. Any need for permanent fencing will be planned and installed using the Fence practice (382). Clearing of brush and trees is not necessary. Resource concerns include Wildlife Habitat degradation, Undesirable plant productivity and health, and/or Excessive sediment in surface waters.

Before Situation:
Sensitive areas are threatened by the adverse actions of domestic and/or wild animals. The importance of the sensitive areas can include (but are not limited to): wildlife habitat, plant species composition, newly established trees and/or plants, stream bank stability, and/or water quality.

After Situation:
Sensitive areas are protected from the adverse actions of domestic and/or wild animals by excluding them from the area.
Feature Measure: Length of fence

Scenario Unit: Feet

Scenario Typical Size: 3,600.00
Scenario Total Cost: \$635.65

Scenario Cost/Unit: \$0.18

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	4	\$99.96
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	4	\$108.64
Materials						
Post, Wood, CCA treated, 4 in x 8 ft	10	Wood Post, Line 4 inch X 8 foot, CCA Treated. Includes materials and shipping only.	Each	\$13.61	4	\$54.44
Property/Safety Signs	293	Plastic fence safety or property sign, printed on both sides with 6 predrilled holes for hanging or nailing. 7.5×4.75 inch. Includes materials and shipping only.	Each	\$2.09	35	\$73.15
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: 472-Access Control

Scenario: \#27-navigational delineation

Scenario Description:

Marine bivalve aquaculture operations or restored native oyster reefs located in tidal and subtidal working waters that are controlled by the operator and leased from state local authorities. Growing areas average 2 acres in size and are typically sited in close proximity to other aquaculture operations/facilities, and interface with other resource uses including public boating and swimming. Restored reef areas range in size from $1 / 4$ acres to 1 acre. Reef are being delineated to prevent harvesting since they are located in established sanctuaries. Natural resource concerns addressed by this option include water quality degradation - Excessive Sediment in Surface Waters and Petroleum, Heavy Metals and Other Pollutants Transported to Surface Water, and resulting from uncontrolled access by boats and other human activities. Resource concerns addressed by delineatin restored reefs include: Water Quality Degradation, Excessive Nutrient in Surface Water and Fish and Wildlife ??? Inadequate Habitat ??? Inadequate Habitat Cover/Shelter.

Before Situation

Shellfish aquaculture operations and restored oyster reefs that are located in tidal and subtidal working waters that are controlled by the participant and leased from local authorities are not delineated. The shellfish beds average 2 acres in size and are typically sited in close proximity to other aquaculture operations/facilities, and interface with other resource uses including public boating and swimming. The danger of boats or swimmers accidentally coming in contact with shellfish beds is much greater if beds are not delineated with navigational boundaries. Restored reefs are located in sanctuaries where harvesting is prohibited. It is difficult for recreational users of the tidal areas to know where the sanctuaries are located

After Situation:

: Shellfish producer shall install standard navigational delineation devices to mark the boundaries of shellfish growing areas to avoid boat strikes, petrochemical spills, and accidental intrusions by small craft (kayaks) or swimmers. Restored reefs are protected from harvesting since both recreational and commercial harvesters know these areas are protected.

Feature Measure: buoy / rope system for delineation
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$924.14

Scenario Cost/Unit: \$924.14
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	4	\$108.64
Materials						
Buoy	2037	20 inch inflatable polyform ball. Includes materials and shipping only.	Each	\$114.59	4	\$458.36
Buoy tether	2038	3/8 inch polypropylene line (marine quality). Includes materials and shipping only.	Feet	\$0.16	200	\$32.00
Screw Pin Anchor Shackles, Galvanize-Steel, 1/4 in.	2040	Tether connectors for buoy and anchor. Includes materials and shipping only.	Each	\$3.21	8	\$25.68
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: 484 - Mulching
Scenario: \#3 - Erosion Control Blanket Herbaceous Planting

Scenario Description:

Installation of erosion control blanket on critical areas with steep slopes, grassed waterways or diversions.. Blanket is typically made of coconut coir, wood fiber, straw and is typically covered on both sides with polypropylene netting. Used to help control erosion and establish vegetative cover.

Before Situation:
A newly constructed practice is installed that will experience concerntred flows of water and has potential for erosion before permanent vegetation can be established.
After Situation:
The erosion control blanket is placed on concentrated flow areas and secured with ground staples. Soil erosion is minimized and vegetative cover is established.
Feature Measure: Area Covered by Mulch
Scenario Unit: Square Feet
Scenario Typical Size: 5,000.00
Scenario Total Cost: $\$ 1,169.12$
Scenario Cost/Unit: \$0.23
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	1	\$24.99
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28

Materials

Erosion Control Blanket, biodegradable

Practice: 484 - Mulching

Scenario: \#5 - Weed Barrier, Tree and Shrub Planting
Scenario Description:
Weed barrier fabric or other suitable natural or synthetic mulch is installed with a new tree and shrub planting. Typically used to prevent weed competition during the installation of conservation practices. Rate is per tree/shrub and assumes 1 square yard of weed barrier fabric and 5 staples/tree.

Before Situation:
Site conditions vary. Typical scenario is an installation of 100 native trees and shrubs to enhance wildlife habitat. Sites are often remote and trees may not be planted in rows, requiring each tree to be mulched individually

After Situation:
Weed barrier fabric squares are installed with 5 sod staples each, around individual trees and shrubs to control weed competition. Weeds are controlled and tree/shrub growth is minimally influenced by weed competition.

Feature Measure: Number of Trees Mulched

Scenario Unit: Each

Scenario Typical Size: 100.00
Scenario Total Cost: \$111.00

Scenario Cost/Unit: \$1.11
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Geotextile, woven	42	Woven Geotextile Fabric. Includes materials, equipment and labor	Square Yard	\$1.11	100	\$111.00

Practice: 484-Mulching
Scenario: \#71-Small Farm Wood Mulch Compost

Scenario Description:

Application of straw mulch or other state approved natural material (such as wood chips, compost, or hay) to reduce erosion, moderate soil temperature and suppress weeds. Typically used to provide partial coverage (either in-row or between rows) to suppress weeds. Payment based on total square feet applied to site.

Before Situation:
Site conditions vary. Typically scenarios include new tree and shrub plantings, irrigated orchards or vineyards, or annual and perennial specialty crops. Water quantity and soil moisture, soil erosion is a concern.

After Situation:
Straw or other natural mulch is applied in rows by hand or by mechanized means. Soil moisture is conserved, energy use associated with irrigation is decreased, and weed growth is suppressed.

Feature Measure: Total Acres Mulched
Scenario Unit: Square Feet
Scenario Typical Size: 1,000.00
Scenario Total Cost: \$601.52
Scenario Cost/Unit: \$0.60
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	1	\$24.99
Aggregate, Wood Chips	1098	Includes materials, equipment and labor to transport and place.	Cubic Yards	\$51.20	10	\$512.00
Trailer, flatbed, small	1505	Small flatbed trailer (typically less than 30^{\prime} in length) pulled by a pickup to transport materials and equipment. Truck not included.	Hours	\$10.21	1	\$10.21
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	2	\$54.32

Practice: 490 - Tree/Shrub Site Preparation
Scenario: \#1 - Site Prep, Heavy Mechanical, Two or More Mechanical Treatments

Scenario Description:

This multiple mechanical treatment will be used on sites with small trees and scattered brush left after a timber harvest or a site that lost all of the merchantable trees due to a fire, insects, disease or other catastrophic event. This area has a high volume of woody debris, brush and small trees left on the site requiring a multiple pass mechanical treatment. Any combination of single mechanical treatments but not limited to: Shear/Rip/Bed, Shear/Rake/Pile, Rip/Bed, Shear/Rip, 3-n-1 Plow, etc.

Before Situation:
A 40 acre site is dominated by undesirable vegetation including herbaceous plants and significant amounts of woody vegetation (trees and brush) occupying the site. There is also a significant component of woody debris onsite. Noxious and invasive species may also be present on the site. Sheet and rill erosion is ocurring in areas where the soil was severely disturbed exposing bare soil. If left untreated, erosion issues will result in poor survival or reduced growth of trees/shrubs to be established on the site. The resource concerns include: soil - erosion concentrated flow; soil erosion - sheet and rill; water quality - sediments and turbidity; plant condition - inadequate health and vigor;plant suitability - adaptability to the site and the Intended Use; wildlife- ilnadequate food, cover, water.

After Situation:

Undesirable vegetation has been removed using mechanical methods reducing competition for target trees and/or shrubs establishment. Woody debris has been removed to facilitate tree/shrub planting operations. Site conditions are favorable for successful establishment of trees and/or shrubs.

Feature Measure: Area of Treatment

Scenario Unit: Acres

Scenario Typical Size: 40.00
Scenario Total Cost: $\$ 16,285.48$
Scenario Cost/Unit: \$407.14

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Heavy mechanical site prep, shearing, V-blade, K-G blading	1314	Mechanical operations that shear trees and vegetation. Requires heavy equipment such as dozers, Includes equipment, power unit and labor costs.	Acres	\$168.41	28	\$4,715.48
Heavy mechanical site prep, drum chopping	1316	Mechanical operations that pushing trees and vegetation and crushing them with a water filled roller chopper. Requires heavy equipment such as dozers. Includes equipment, power unit and labor costs.	Acres	\$147.67	28	\$4,134.76
Heavy mechanical site prep, raking	1317	Mechanical operations that pushing and raking trees and vegetation. Requires heavy equipment such as dozers. Includes equipment, power unit and labor costs.	Acres	\$160.29	28	\$4,488.12
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	24	\$651.84
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	10	\$476.10
Mobilization						
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	2	\$1,819.18

Practice: 490 - Tree/Shrub Site Preparation
Scenario: \#2 - Site Prep, Mechanical Light

Scenario Description:

This practice involves the use of light/moderate machinery such as a disk or bush-hog to clear above ground vegetation in order to improve site conditions for establishing trees and/or shrubs.

Before Situation:
A 40 acre site may include abandoned land, pasture, rangeland, cropland or forestland that has been harvested. Undesirable vegetation is present on the site including herbaceous plants and sparse brushy competition. Noxious and invasive species may also be present on the site. If left uncontrolled, undesirable vegetation will inhibit successful establishment of target species of trees and/or shrubs. This following resource concerns: soil quality degredation - soil erosion - sheet and rill, and degraded plant condition - undesirable plant productivity and health and inadequate structure and composition.

After Situation:
Undesirable vegetation has been removed using a bush-hog to knock down standing vegetation, thus enhancing the conditions for planting and survival of trees and/or shrubs. Site conditions are favorable for successful establishment of trees and/or shrubs.

Feature Measure: Area of Treatment

Scenario Unit: Acres
Scenario Typical Size: 40.00

Scenario Total Cost:	\$1,668.24					
Scenario Cost/Unit:	\$41.71					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	10	\$249.90
Mower, Bush Hog	940	Equipment and power unit costs. Labor not included.	Hours	\$31.13	16	\$498.08
Labor						
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	16	\$444.16
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	10	\$476.10

Practice: 490-Tree/Shrub Site Preparation
Scenario: \#3 - Site Prep, Chemical

Scenario Description:

Chemical site preparation treatment will be used on sites with small trees and scattered brush left after a timber harvest or a site that lost all of the merchantable trees due to a fire, insects, disease or other catastrophic event. The recommendation will need to be site specific. Chemicals are selected based on the soils and current vegetation that needs to be controlled. The method of application will depend upon availability of ground or aerial contractors.

Before Situation:

A 40 acre site is dominated by undesirable vegetation including herbaceous plants and woody vegetation. Noxious and invasive species may also be present on the site. If left uncontrolled, undesirable vegetation will inhibit successful establishment of target species of trees and/or shrubs. The resource concerns include: air quality chemical drift; air condition - air temp and movement; soil condition - contaminants excessive chemicals; soil - erosion ephemeral gully; water quality - sediments and turbidity; plant condition - inadequate health and vigor; plant cuitability - adaptability to the site and the intended use; wildlife- inadequate food, cover, water.

After Situation:
Undesirable vegetation has been treated using appropriate herbicides, reducing competition for target trees and/or shrub planting. Site conditions are favorable for successful establishment of trees and/or shrubs.

Feature Measure: Area of Treatment
Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: \$6,238.97
Scenario Cost/Unit: \$155.97
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	24	\$599.76
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	40	\$265.20
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	24	\$1,142.64
Materials						
Herbicide, Imazapyr	336	Pre and post-emergent, non-selective herbicide for control of undesirable vegetation in non-crop areas. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$42.89	40	\$1,715.60
Herbicide, Surfactant	1095	Surfactants reduce the surface tension of water to produce more uniform coverage and penetration of herbicides, and weed killers. Paraffin Based Petroleum Surfactant. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$1.61	40	\$64.40
Herbicide, Sulfometuron methyl \& Hexazinone	1282	Broad spectrum herbicide for residual weed control for christmas trees and other trees. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$42.45	40	\$1,698.00
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 490-Tree/Shrub Site Preparation
Scenario: \#4 - Site Prep, Windbreak Preparation

Scenario Description:

This practice involves the use of various chemical/tillage methods to allow for the planting of a windbreak. Site preparation includes chemically killing vegetation prior to mechanical site preparation which will include appropriate methods to allow for planting of the site, which may include one or all of the following, ripping, disking, and harrowing. This practice may be applied on all lands needing treatment to facilitate establishment of trees and/or shrubs to facilitate establishment of a windbreak.

Before Situation:

Typical site includes a 40 acre wheat field experiencing wind erosion above 'T' due to excessive unsheltered distances. Undesirable vegetation, including herbaceous plants, is present on the site. Noxious and invasive species may also be present on the site. If left uncontrolled, undesirable vegetation will inhibit successful establishment of target species of trees and/or shrubs. Resource concerns: soil erosion--wind erosion.

After Situation:
Undesirable vegetation has been treated using appropriate herbicides and tillage, reducing competition for target trees and/or shrubs. Site conditions are favorable for successful establishment of trees and/or shrubs. The typical size is 1.5 acres.

Feature Measure: area of treatment

Scenario Unit: Acres
Scenario Typical Size: 1.50

Scenario Total Cost:	$\$ 175.32$
Scenario Cost/Unit:	$\$ 116.88$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	1.5	\$20.18
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	1.5	\$9.95
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	4	\$108.64
Materials						
Herbicide, 2,4-D	330	Broadleaf herbicide labeled for cropland and pasture. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$10.10	1.5	\$15.15
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	1.5	\$18.99
Herbicide, Surfactant	1095	Surfactants reduce the surface tension of water to produce more uniform coverage and penetration of herbicides, and weed killers. Paraffin Based Petroleum Surfactant. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$1.61	1.5	\$2.42

Practice: 490-Tree/Shrub Site Preparation
Scenario: \#5 - Site Prep, Ripping

Scenario Description:

This scenario is comprised of a ripping operation to prepare an area to plant tree seedlings. Ripping occurs along the contour to slow down water runnoff and traps sediment. The tree seedlings have a better rooting zone allowing them to develop deeper and better roots improving growth and survival.

Before Situation:
This practice is conducted typically on small tracts approximately 40 acres in size although it can be done on larger or smaller acreages. The area has been harvested and the trees have been removed and it is desirable to re-plant the site with tree seedlings. An alternative is an old field, pasture or agriculture field that is targeted for tree planting. These sites often have hard pans or shallow rooting zones. The resource concerns include: soil: sheet and rill erosion; soil - compaction; water quality sediments and turbidity; plant condition - inadequate health and vigor.

After Situation:
After the practice is completed the rips will be clearly evident by the rips in the ground. The site is ready for tree and/or shrub establishment.
Feature Measure: acres
Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: \$4,698.44

Scenario Cost/Unit: \$117.46
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160 . Equipment and power unit costs. Labor not included.	Hours	\$98.78	29	\$2,864.62
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	29	\$924.23
Mobilization						
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 490 - Tree/Shrub Site Preparation
Scenario: \#6 - Site Prep, Single mechanical treatment

Scenario Description:

A single mechanical treatment will be used on sites with small trees or scattered brush left after a timber harvest or a site that requires ripping to prepare the rooting zone for tree establishment. Includes one of the following, but not limited to: One Pass Shear, Shear, Rake, Pile, Bedding, Ripping, Drum Chopping, etc.

Before Situation:

This practice is conducted typically on small tracts approximately 40 acres in size although it can be done on larger or smaller acreages. The site consists of small trees and scattered brush left after a timber harvest or a site that lost all of the merchantable trees due to a fire, insects, disease or other catastrophic event. The area will look very brushy and be difficult to walk through. The resource concerns include: soil - sheet and rill erosion; water quality - sediments and turbidity; plant condition - inadequate health and vigor; plant suitability - adaptability to the site and the intended use; wildlife- inadequate food, cover, water.

After Situation:
After the practice is completed the brush and small trees will be severed, pushed down or crushed to the ground making it easier to walk through which will be critical during tree establishment.

Feature Measure: acres

Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: $\quad \$ 9,988.15$
Scenario Cost/Unit: \$249.70

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	48	\$1,199.52
Heavy mechanical site prep, shearing, V-blade, K-G blading	1314	Mechanical operations that shear trees and vegetation. Requires heavy equipment such as dozers, Includes equipment, power unit and labor costs.	Acres	\$168.41	40	\$6,736.40
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	24	\$1,142.64
Mobilization						
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 490-Tree/Shrub Site Preparation
Scenario: \#7-Site Prep, Ripping and Chemical Application

Scenario Description:

This scenario is comprised of a ripping operation to prepare an area to plant tree seedlings. Ripping is completed with a tractor or dozer followed by a herbicide treatment over the ripped area. Ripping occurs along the contour to slow down water runnoff and traps sediment. The tree seedlings have a better rooting zone so they develop deeper and better roots improving growth and survival. The specific herbicide and rate depends upon the type of vegetation present on the site. The herbicide can be applied as a band over the ripped area or broadcast over the entire area.

Before Situation:
The typical area is about 40 acres, however, larger and smaller acreages can be treated using this practice. The area has been harvested and the trees have been removed and it is desirable to re-plant the site with tree seedlings. An alternative is an old field, pasture or agriculture field that is targeted for tree planting. These sites often have hard pans or shallow rooting zones. The resource concerns include: soil: sheet and rill erosion, soil - ephemeral gully; soil - compaction; water quality - sediments and turbidity; plant condition - inadequate health and vigor.

After Situation:
Once the practice is completed the rip will be evident and the vegetation along either side of the rip should be controlled with the herbicide application. The area is ready for tree and/or shrub establishment.

Feature Measure: acres

Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: $\$ 7,810.80$

Scenario Cost/Unit:
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	16	\$399.84
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	40	\$265.20
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	40	\$714.40
Ripper or subsoiler, 16 to 36 inch depth	1235	Deep ripper or subsoiler, (16-36 inches depth) includes tillage implement, power unit and labor.	Acres	\$23.26	40	\$930.40
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	40	\$1,086.40
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	16	\$761.76
Materials						
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	40	\$506.40
Herbicide, Imazapyr	336	Pre and post-emergent, non-selective herbicide for control of undesirable vegetation in non-crop areas. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$42.89	40	\$1,715.60
Herbicide, Triclopyor	338	Refer to WIN-PST for product names and active ingredients. Materials and shipping	Acres	\$34.16	40	\$1,366.40
Herbicide, Surfactant	1095	Surfactants reduce the surface tension of water to produce more uniform coverage and penetration of herbicides, and weed killers. Paraffin Based Petroleum Surfactant. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$1.61	40	\$64.40

Practice: 490-Tree/Shrub Site Preparation
Scenario: \#8 - Site Prep, Mechanical and Chemical

Scenario Description:

Any combination of single mechanical treatments and herbicide but not limited to: Shear/Rip/Bed, Shear/Rake/Pile, Rip/Bed, Shear/Rip, 3-n-1 Plow, etc. plus herbicide application. The practice is to mechanically reduce the woody vegetation getting it to the ground followed by a herbicide treatment. The herbicide(s) and method of application should be determined by the site and type of vegetation targeted for control along with the application rate.

Before Situation:

This practice is conducted on typically 40 acres parcels of land, however, larger and smaller acreages can be treated. The area has the merchantable trees removed and the site has a lot of less desirable woody vegetation and poor quality trees growing on the site. The resource concerns include: water quality - sediments and turbidity; water quality - pesticides; air quality - chemical drift; plant suitability - adaptability to the site and intended use; plant condition - productivity and vigor.

After Situation:

Once the practice is completed the woody vegetation will be down and the herbicide application will take out many of the undesirable woody plants. The site will look fairly clean and it is ready for tree and/or shrub establishment.

Feature Measure: acres
Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: $\$ 15,730.77$
Scenario Cost/Unit: \$393.27
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	10	\$249.90
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	40	\$714.40
Chemical, ground application, forested land	1313	Chemical application performed by ground equipment where trees and terrain impede passage of wide boom sprayers. Utilizes forestry application methods that include heavy equipment such as skidders. Includes material, equipment, power unit and labor costs.	Acres	\$110.89	20	\$2,217.80
Heavy mechanical site prep, shearing, V-blade, K-G blading	1314	Mechanical operations that shear trees and vegetation. Requires heavy equipment such as dozers, Includes equipment, power unit and labor costs.	Acres	\$168.41	20	\$3,368.20
Heavy mechanical site prep, drum chopping	1316	Mechanical operations that pushing trees and vegetation and crushing them with a water filled roller chopper. Requires heavy equipment such as dozers. Includes equipment, power unit and labor costs.	Acres	\$147.67	20	\$2,953.40
Chemical, aerial application, helicopter	1991	Chemical application performed by helicopter on forest only. Includes equipment, mobilization, and labor.	Acres	\$44.03	20	\$880.60
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	40	\$1,086.40
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	8	\$380.88
Materials						
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	40	\$506.40
Herbicide, Imazapyr	336	Pre and post-emergent, non-selective herbicide for control of undesirable vegetation in non-crop areas. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$42.89	40	\$1,715.60
Herbicide, Triclopyor	338	Refer to WIN-PST for product names and active ingredients. Materials and shipping	Acres	\$34.16	20	\$683.20
Herbicide, Surfactant	1095	Surfactants reduce the surface tension of water to produce more uniform coverage and penetration of herbicides, and weed killers. Paraffin Based Petroleum Surfactant. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$1.61	40	\$64.40
Mobilization						
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 490 - Tree/Shrub Site Preparation
Scenario: \#56-Tree-Shrub Site Prep - small acreage

Scenario Description:

This practice involves the use of various chemical and tillage methods to allow for the planting of agroforestry practices and hedgerows. Site preparation includes chemically killing vegetation prior to mechanical site preparation that includes appropriate methods to allow for planting of the site which may include one or all of the following: ripping, disking, and harrowing. This practice may be applied on all lands needing treatment to facilitate establishment of trees and shrubs to facilitate establishment of agroforestry practices (alley cropping, forest farming, riparian forest buffer, silvopasture, and windbreak) and hedgerows. Resource concern: Soil erosion - wind erosion.

Before Situation:

Undesirable vegetation, including woody and herbaceous plants, is present on the site. Noxious and invasive species may also be present on the site. If left uncontrolled, undesirable vegetation will inhibit successful establishment of target species of trees or shrubs. Soil is compacted as a result of prior land management activities.

After Situation:
Undesirable vegetation has been treated using appropriate herbicides, reducing competition for target trees and shrubs. Site conditions are favorable for successful establishment of trees and shrubs. The typical size is 0.5 acre.

Feature Measure: Area of treatment
Scenario Unit: 1,000 Square Foot
Scenario Typical Size: 22.00
Scenario Total Cost: \$396.46
Scenario Cost/Unit: \$18.02
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	0.5	\$6.73
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	0.5	\$3.32
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	1	\$27.16
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	1	\$47.61

Materials

Herbicide, 2,4-D	330	Broadleaf herbicide labeled for cropland and pasture. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$10.10	0.5	\$5.05
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	0.5	\$6.33
Herbicide, Surfactant	1095	Surfactants reduce the surface tension of water to produce more uniform coverage and penetration of herbicides, and weed killers. Paraffin Based Petroleum Surfactant. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$1.61	0.5	\$0.81
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with	Each	\$299.46	1	\$299.46

Practice: 500-Obstruction Removal
Scenario: \#1-Removal and Disposal, Brush and Trees, Less Than 6 Inch Diameter

Scenario Description:

Removal and disposal of brush and trees < 6 inches in diameter by demolition, excavation or other means required for removal. Dispose of all brush and trees so that it does not impede subsequent work or cause onsite or offsite damage. Dispose of all brush and trees by removal to an approved landfill or recycling center, wood chipping and/or land distribution, burial at an approved location, or burning. If burning is used, implement appropriate smoke management to protect public health and safety. Remove and dispose of brush and trees in order to apply conservation practices or facilitate the planned land use.

Before Situation:
On any land where existing obstructions interfere with planned land use development, public safety or infrastructure. The site may be abandoned mine lands, construction sites, recreation areas, farms, ranches, and areas affected by natural disasters. This is not intended for the removal of obstructions from aquatic environments.

After Situation:

The typical area will be a 2.0 acre impaired area. The removal of brush and trees < 6 inch diameter will be performed with the use of equipment and hand labor. Dispose of all brush and trees from the obstruction removal so that it does not impede subsequent work or cause onsite or offsite damage. Revegetate or otherwise protect from erosion disturbed areas as soon as possible. Refer to NRCS Conservation Practice Standard 342, Critical Area Planting for seedbed preparation, seeding, fertilizing, and mulching requirements. The practice is to improve site conditions in order to apply conservation practices or facilitate better use of the landscape.

Feature Measure: Land Area
Scenario Unit: Acres
Scenario Typical Size: 2.00
Scenario Total Cost: \$2,729.61
Scenario Cost/Unit: \$1,364.81
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160 . Equipment and power unit costs. Labor not included.	Hours	\$98.78	8	\$790.24
Brush Chipper, 6 in. capacity	938	Brush Chipper, 6 inch capacity, typically 35 HP. Includes chipper and power unit. Labor not included.	Hours	\$34.47	8	\$275.76
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	8	\$199.92

Labor

Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	8	\$270.96
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	8	\$222.08
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and	Each	\$753.37	1	\$753.37

Practice: 500-Obstruction Removal
Scenario: \#2 - Removal and Disposal, Brush and Trees, 6 Inch Diameter or Greater

Scenario Description:

Removal and disposal of brush and trees > 6 inches in diameter by demolition, excavation or other means required for removal. Dispose of all brush and trees so that it does not impede subsequent work or cause onsite or offsite damage. Dispose of all brush and trees by removal to an approved landfill or recycling center, wood chipping and/or land distribution, burial at an approved location, or burning. If burning is used, implement appropriate smoke management to protect public health and safety. Remove and dispose of brush and trees in order to apply conservation practices or facilitate the planned land use.

Before Situation:
On any land where existing obstructions interfere with planned land use development, public safety or infrastructure. The site may be abandoned mine lands, construction sites, recreation areas, farms, ranches, and areas affected by natural disasters. This is not intended for the removal of obstructions from aquatic environments.

After Situation:

The typical area will be a 2.0 acre impaired area. The removal of brush and trees >6 inch diameter will be performed with the use of equipment and hand labor. Dispose of all brush and trees from the obstruction removal so that it does not impede subsequent work or cause onsite or offsite damage. Revegetate or otherwise protect from erosion disturbed areas as soon as possible. Refer to NRCS Conservation Practice Standard 342, Critical Area Planting for seedbed preparation, seeding, fertilizing, and mulching requirements. The practice is to improve site conditions in order to apply conservation practices or facilitate better use of the landscape.

Feature Measure: Land Area
Scenario Unit: Acres
Scenario Typical Size: 2.00
Scenario Total Cost: $\$ 4,475.16$
Scenario Cost/Unit: \$2,237.58
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 200 HP	928	Track mounted Dozer with horsepower range of 160 to 250. Equipment and power unit costs. Labor not included.	Hours	\$180.17	12	\$2,162.04
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	12	\$299.88
Brush Chipper, 15 in. capacity	1868	Brush Chipper, 15 inch capacity, typically 165 HP. Includes chipper and power unit. Does not include labor.	Hours	\$74.87	12	\$898.44
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	12	\$406.44
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	12	\$325.92
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	12	\$382.44

Practice: 500-Obstruction Removal
Scenario: \#3-Removal and Disposal, Fence
Scenario Description:
Removal and disposal of all existing fences by demolition, excavation or other means required for removal. This practice shall not be used to remove an existing fence in order to facilitate the installation of a new fence. Dispose of all fence materials from the site so that it does not impede subsequent work or cause onsite or offsite damage. Dispose of all materials by removal to an approved landfill, wood chipping and land distribution, or recycling center, burial at an approved location or burning. If burning is used, implement appropriate smoke management to protect public health and safety. Remove and dispose of the unwanted fence obstruction in order to apply conservation practices such as Upland Wildlife Habitat Management (645) or facilitate the planned land use. Fence removal will address the resource concerns of the prevention or hindrance to the installation of conservation practices or present a hazard to their use and enjoyment and reduce hazards to wildlife.

Before Situation:
On any land where existing fence interferes with planned land use development, public safety, wildlife movement and habitat, or infrastructure. The site may be abandoned mine lands, construction sites, recreation areas, farms, ranches, and areas affected by natural disasters. This is not intended for the removal of obstructions from aquatic environments.

After Situation:

The typical fence will be 2640 in linear feet. The removal of the fence will be performed with the use of equipment and hand labor. Dispose of all debris from the fence removal so that it does not impede subsequent work or cause onsite or offsite damage. Revegetate or otherwise protect from erosion disturbed areas as soon as possible. Refer to NRCS Conservation Practice Standard 342, Critical Area Planting for seedbed preparation, seeding, fertilizing, and mulching requirements. The practice is to improve site conditions in order to apply conservation practices or facilitate better use of the landscape such as Upland Wildlife Habitat Management (645).

Feature Measure: Length of Fence
Scenario Unit: Feet
Scenario Typical Size: 2,640.00
Scenario Total Cost: $\$ 3,472.37$
Scenario Cost/Unit: \$1.32

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Skidsteer, 80 HP	933	Skidsteer loader with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$56.04	20	\$1,120.80
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	20	\$499.80
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	20	\$543.20
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	20	\$555.20

Mobilization

Mobilization, medium equipment
1139 Equipment with 70-150 HP or typical weights between 14,000 and
Each
\$753.37
1
\$753.37

Practice: 500-Obstruction Removal
Scenario: \#4 - Removal and Disposal, Rock and or Boulders
Scenario Description:
Removal and disposal of rock and or boulders by demolition, excavation or other means required for removal. Dispose of all rocks and or boulders so that it does not impede subsequent work or cause onsite or offsite damage. Dispose of all rock and or boulders by removal to an approved location, or reuse location. Remove and dispose all rock and or boulders in order to apply conservation practices or facilitate the planned land use. Rocks and or boulders will address the resource concerns of the prevention or hindrance to the installation of conservation practices or present a hazard to their use and enjoyment.

Before Situation:
On any land where existing obstructions interfere with planned land use development, public safety or infrastructure. The site may be abandoned mine lands, construction sites, recreation areas, farms, ranches, and areas affected by natural disasters. This is not intended for the removal of obstructions from aquatic environments.

After Situation:

The typical area will be a 5.0 acre impaired area. The removal of rock and or boulders will be performed by demolition, excavation or other means required for removal with the use of heavy equipment and hand labor. Dispose of all rocks and boulders from the obstruction removal so that it does not impede subsequent work or cause onsite or offsite damage. Revegetate or otherwise protect from erosion disturbed areas as soon as possible. Refer to NRCS Conservation Practice Standard 342, Critical Area Planting for seedbed preparation, seeding, fertilizing, and mulching requirements. The practice is to improve site conditions in order to apply conservation practices or facilitate better use of the landscape.

Feature Measure: Volume

Scenario Unit: Cubic Yards
Scenario Typical Size: 500.00
Scenario Total Cost: \$70,884.00
Scenario Cost/Unit: \$141.77
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Hydraulic Excavator, . 5 CY	930	Track mounted hydraulic excavator with bucket capacity range of 0.3 to 0.8 CY . Equipment and power unit costs. Labor not included.	Hours	\$99.69	240	\$23,925.60
Truck, dump, 18 CY	1400	Dump truck for moving bulk material. Typically capacity is 25 ton or 18 cubic yards. Includes equipment only.	Hours	\$102.76	240	\$24,662.40
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	240	\$8,128.80
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	240	\$6,518.40
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	240	\$7,648.80

Practice: 500-Obstruction Removal
Scenario: \#5-Removal and Disposal, Steel and or Concrete Structures

Scenario Description:

Removal and disposal of steel and or concrete structures by demolition, excavation or other means required for removal. Dispose of all steel and or concrete structures so that it does not impede subsequent work or cause onsite or offsite damage. Dispose of all steel and or concrete structures by removal to an approved location, or reuse location. Remove and dispose all steel and or concrete structures in order to apply conservation practices or facilitate the planned land use. Steel and or concrete structure removal will address the resource concerns of the prevention or hindrance to the installation of conservation practices or present a hazard to their use and enjoyment.

Before Situation:
On any land where existing obstructions interfere with planned land use development, public safety or infrastructure. The site may be abandoned mine lands, construction sites, recreation areas, farms, ranches, and areas affected by natural disasters. This is not intended for the removal of obstructions from aquatic environments.

After Situation:

The typical area will be a 2000 square feet of impaired land. The removal of steel and or concrete structures will be performed by demolition, excavation or other means required for removal with the use of heavy equipment and hand labor. Dispose of all steel and or concrete structures from the obstruction removal so that it does not impede subsequent work or cause onsite or offsite damage. Revegetate or otherwise protect from erosion disturbed areas as soon as possible. Refer to NRCS Conservation Practice Standard 342, Critical Area Planting for seedbed preparation, seeding, fertilizing, and mulching requirements. The practice is to improve site conditions in order to apply conservation practices or facilitate better use of the landscape.

Feature Measure: Land Area

Scenario Unit: Square Feet

Scenario Typical Size: 2,000.00
Scenario Total Cost: \$30,433.28

Scenario Cost/Unit: \$15.22

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 200 HP	928	Track mounted Dozer with horsepower range of 160 to 250 . Equipment and power unit costs. Labor not included.	Hours	\$180.17	64	\$11,530.88
Hydraulic Excavator, . 5 CY	930	Track mounted hydraulic excavator with bucket capacity range of 0.3 to 0.8 CY . Equipment and power unit costs. Labor not included.	Hours	\$99.69	64	\$6,380.16
Truck, dump, 18 CY	1400	Dump truck for moving bulk material. Typically capacity is 25 ton or 18 cubic yards. Includes equipment only.	Hours	\$102.76	64	\$6,576.64
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	64	\$2,167.68
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	64	\$1,738.24
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	64	\$2,039.68

Practice: 500-Obstruction Removal
Scenario: \#6-Removal and Disposal, Wood Structures
Scenario Description:
Removal and disposal of wood structures by demolition, excavation or other means required for removal. Dispose of all wood structures so that it does not impede subsequent work or cause onsite or offsite damage. Dispose of all wood structures by removal to an approved location, landfill, or reuse location. Remove and dispose all wood structures in order to apply conservation practices or facilitate the planned land use. Wood structure removal will address the resource concerns of the prevention or hindrance to the installation of conservation practices or present a hazard to their use and enjoyment.

Before Situation:
On any land where existing obstructions interfere with planned land use development, public safety or infrastructure. The site may be abandoned mine lands, construction sites, recreation areas, farms, ranches, and areas affected by natural disasters. This is not intended for the removal of obstructions from aquatic environments.

After Situation:

The typical area will be a 2000 square feet of impaired land. The removal of wood structures will be performed by demolition, excavation or other means required for removal with the use of heavy equipment and hand labor. Dispose of all wood structures from the obstruction removal so that it does not impede subsequent work or cause onsite or offsite damage. Revegetate or otherwise protect from erosion disturbed areas as soon as possible. Refer to NRCS Conservation Practice Standard 342 , Critical Area Planting for seedbed preparation, seeding, fertilizing, and mulching requirements. The practice is to improve site conditions in order to apply conservation practices or facilitate better use of the landscape.

Feature Measure: Land Area

Scenario Unit: Square Feet

Scenario Typical Size: 2,000.00
Scenario Total Cost: \$15,216.64
Scenario Cost/Unit: \$7.61
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 200 HP	928	Track mounted Dozer with horsepower range of 160 to 250 . Equipment and power unit costs. Labor not included.	Hours	\$180.17	32	\$5,765.44
Hydraulic Excavator, . 5 CY	930	Track mounted hydraulic excavator with bucket capacity range of 0.3 to 0.8 CY . Equipment and power unit costs. Labor not included.	Hours	\$99.69	32	\$3,190.08
Truck, dump, 18 CY	1400	Dump truck for moving bulk material. Typically capacity is 25 ton or 18 cubic yards. Includes equipment only.	Hours	\$102.76	32	\$3,288.32
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	32	\$1,083.84
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	32	\$869.12
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	32	\$1,019.84

Practice: 500-Obstruction Removal
Scenario: \#94 - Removal and disposal of light sand and flood sediment > 30 inches

Scenario Description:

Remove and disposal of $>30^{\prime}$ of sand and flood deposited sediments by excavation or other means required for removal. Dispose of all sand and flood deposited sediments so that it does not impede subsequent work or cause onsite or offsite damage. Dispose of all sand and flood deposited sediments by removal to an approved location, or re-use location. Sand and/or silt removal will only address sand and/or silt obstructing farmland and cropland

Before Situation:
On any land where existing obstructions interfere with the return of land to its function prior to the occurrence of a natural disaster. The site may be recreation areas, farms, ranches, or other areas affected by natural disasters. This is not intended for the removal of obstructions from aquatic environments, aquatic environment does not include land covered by flood waters that have rescinded

After Situation:
The typical area will be a 30 acre impaired area. The removal of sand and flood deposited sediments will be performed by excavation or other means required for removal with the use of heavy equipment and hand labor. Dispose of all sand and flood deposited sediments from the obstruction removal so that it does not impede subsequent work or cause onsite or offsite damage. Revegetate or otherwise protect from erosion disturbed areas as soon as possible. Refer to NRCS Conservation Practice Standard 342, Critical Area Planting for seedbed preparation, seeding, fertilizing, and mulching requirements. The practice is to improve site conditions in order to apply conservation practices or facilitate better use of the landscape.

Feature Measure: area covers by sediment greater th
Scenario Unit: Acres
Scenario Typical Size: 30.00
Scenario Total Cost: $\$ 132,254.48$
Scenario Cost/Unit: $\$ 4,408.48$
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Skidsteer, 80 HP	933	Skidsteer loader with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$56.04	173	\$9,694.92
Truck, dump, 18 CY	1400	Dump truck for moving bulk material. Typically capacity is 25 ton or 18 cubic yards. Includes equipment only.	Hours	\$102.76	693	\$71,212.68
Front End Loader, 130 HP	1618	Wheeled front end loader with horsepower range of 110 to 140 . Equipment and power unit costs. Labor not included.	Hours	\$62.02	173	\$10,729.46
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	1109	\$35,343.83

Mobilization

Mobilization, medium equipment 1139 Equipment with 70-150 HP or typical weights between 14,000 and \quad Each $7753.37 \quad$ \$5,273.59

Practice: 500-Obstruction Removal
Scenario: \#95-Removal and disposal of heavy scattered debris
Scenario Description:
Removal of a heavy concentration of debris from farmland deposited by natural disaster. Includes the cost of all labor, equipment and disposal from area of debris. Debris is defined as woody material, rock, concrete, trash, and personal property deposited by natural disaster. This disposal shall be in accordance with all applicable Federal, State, and local laws, rules, and regulations. Dispose of all scattered debris so it does not impede farm operations or cause onsite or offsite damage. Dispose of all scattered debris by removal to an approved location, landfill, or reuse location. Scattered debris removal will only address debris obstructing farmland not in the footprint of a structure

Before Situation:

On any crop, farm or ranch land where debris from storm damage interfere with planned land use development, public safety or infrastructure. The site is covered with light debris, (wood, trees, metal, and other damage materials). Debris is scattered over a percentage of the field. This is not intended for the removal of obstructions from aquatic environments

After Situation:

Scattered debris is removed from a affected area of the field.
Feature Measure: Area of debris
Scenario Unit: Square Feet
Scenario Typical Size: 12,000.00
Scenario Total Cost: \$16,663.41
Scenario Cost/Unit: \$1.39
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 200 HP	928	Track mounted Dozer with horsepower range of 160 to 250 . Equipment and power unit costs. Labor not included.	Hours	\$180.17	30	\$5,405.10
Hydraulic Excavator, . 5 CY	930	Track mounted hydraulic excavator with bucket capacity range of 0.3 to 0.8 CY . Equipment and power unit costs. Labor not included.	Hours	\$99.69	30	\$2,990.70
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	30	\$186.30
Truck, dump, 12 CY	1215	Dump truck for moving bulk material. Typically capacity is 16 ton or 12 cubic yards. Includes equipment only.	Hours	\$103.14	30	\$3,094.20
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	30	\$814.80
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	60	\$1,912.20

Mobilization

Practice: 500-Obstruction Removal
Scenario: \#96-Removal and disposal of light sand and flood sediment 12-30 inches

Scenario Description:

Remove and disposal of 12^{\prime} to 30^{\prime} of sand and flood deposited sediments by excavation or other means required for removal. Dispose of all sand and flood deposited sediments so that it does not impede subsequent work or cause onsite or offsite damage. Dispose of all sand and flood deposited sediments by removal to an approved location, or re-use location. Sand and/or silt removal will only address sand and/or silt obstructing farmland and cropland

Before Situation:
On any land where existing obstructions interfere with the return of land to its function prior to the occurrence of a natural disaster. The site may be cropland, farms, or ranches affected by natural disasters. This is not intended for the removal of obstructions from aquatic environments, aquatic environment does not include land covered by flood waters that have rescinded

After Situation:
The typical area will be a 30 acre impaired area. The removal of sand and flood deposited sediments will be performed by excavation or other means required for removal with the use of heavy equipment and hand labor. Dispose of all sand and flood deposited sediments from the obstruction removal so that it does not impede subsequent work or cause onsite or offsite damage. Revegetate or otherwise protect from erosion disturbed areas as soon as possible. Refer to NRCS Conservation Practice Standard 342, Critical Area Planting for seedbed preparation, seeding, fertilizing, and mulching requirements. The practice is to improve site conditions in order to apply conservation practices or facilitate better use of the landscape.

Feature Measure: area covered by sediment
Scenario Unit: Acres
Scenario Typical Size: 30.00
Scenario Total Cost: $\$ 92,409.59$
Scenario Cost/Unit: \$3,080.32

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160 . Equipment and power unit costs. Labor not included.	Hours	\$98.78	140	\$13,829.20
Skidsteer, 80 HP	933	Skidsteer loader with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$56.04	100	\$5,604.00
Truck, dump, 18 CY	1400	Dump truck for moving bulk material. Typically capacity is 25 ton or 18 cubic yards. Includes equipment only.	Hours	\$102.76	400	\$41,104.00
Front End Loader, 130 HP	1618	Wheeled front end loader with horsepower range of 110 to 140. Equipment and power unit costs. Labor not included.	Hours	\$62.02	100	\$6,202.00
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	640	\$20,396.80

Mobilization

Mobilization, medium equipment
1139 Equipment with 70-150 HP or typical weights between 14,000 and
Each \$753.37

7
\$5,273.59

Practice: 500-Obstruction Removal
Scenario: \#97-Removal and disposal of light scattered debris
Scenario Description:
Removal of debris from farmland deposited by natural disaster. Includes the cost of all labor, equipment and disposal. Debris is defined as woody material, rock, trash, and personal property deposited by natural disaster. This disposal shall be in accordance with all applicable Federal, State, and local laws, rules, and regulations. Dispose of all scattered debris so it does not impede farm operations or cause onsite or offsite damage. Dispose of all scattered debris by removal to an approved location, landfill, or reuse location. Scattered debris removal will only address debris obstructing farmland not in the footprint of a structure

Before Situation:
On any crop, farm, or ranch land where debris from storm damage interfere with planned land use development, public safety or infrastructure. The site is covered with light debris, (wood, trees, metal, and other damage materials) on a percentage of the field. This is not intended for the removal of obstructions from aquatic environments

After Situation:
Debris is removed from the field and land returned to prior use
Feature Measure: Area of debris scatter
Scenario Unit: Acres
Scenario Typical Size: 10.00
Scenario Total Cost:

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Skidsteer, 80 HP	933	Skidsteer loader with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$56.04	10	\$560.40
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	10	\$249.90
Tractor, agricultural, 160 HP	1203	Agricultural tractor with horsepower range of 140 to 190. Equipment and power unit costs. Labor not included.	Hours	\$99.50	10	\$995.00
Trailer, flatbed, small	1505	Small flatbed trailer (typically less than 30^{\prime} in length) pulled by a pickup to transport materials and equipment. Truck not included.	Hours	\$10.21	10	\$102.10
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	20	\$543.20
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	30	\$832.80
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 500-Obstruction Removal
Scenario: \#164-Removal and Disposal of Brush and Trees < 6 inch Diameter

Scenario Description:

Remove and disposal of brush and trees < 6 inches in diameter by demolition, excavation or other means required for removal. Dispose of all brush and trees so that it does not impede subsequent work or cause onsite or offsite damage. Dispose of all brush and trees by removal to an approved landfill, wood chipping and or land distribution, or recycling center, burial at an approved location or burning. If burning is used, implement appropriate smoke management to protect public health and safety. Remove and dispose of brush and trees in order to apply conservation practices or facilitate the planned land use. Brush and tree removal will address the resource concerns of the prevention or hindrance to the installation of conservation practices or present a hazard to their use and enjoyment.

Before Situation:

On any land where existing obstructions interfere with planned land use development, public safety or infrastructure. The site may be abandoned mine lands, construction sites, recreation areas, farms, ranches, and areas affected by natural disasters. This is not intended for the removal of obstructions from aquatic environments.

After Situation:

The typical area will be a 2.0 acre impaired area. The removal of brush and trees <6 inch diameter will be performed with the use of equipment and hand labor. Dispose of all brush and trees from the obstruction removal so that it does not impede subsequent work or cause onsite or offsite damage. Revegetate or otherwise protect from erosion disturbed areas as soon as possible. Refer to NRCS Conservation Practice Standard 342, Critical Area Planting for seedbed preparation, seeding, fertilizing, and mulching requirements. The practice is to improve site conditions in order to apply conservation practices or facilitate better use of the landscape.

Feature Measure: Land Area

Scenario Unit: Acres
Scenario Typical Size: 2.00
Scenario Total Cost: \$2,790.64
Scenario Cost/Unit: \$1,395.32
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160. Equipment and power unit costs. Labor not included.	Hours	\$98.78	8	\$790.24
Brush Chipper, 6 in. capacity	938	Brush Chipper, 6 inch capacity, typically 35 HP. Includes chipper and power unit. Labor not included.	Hours	\$34.47	8	\$275.76
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	8	\$199.92
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	9	\$304.83
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	9	\$244.44
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	8	\$222.08
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 500-Obstruction Removal
Scenario: \#165-Removal and Disposal of Brush and Trees > 6 inch Diameter

Scenario Description:

Remove and disposal of brush and trees > 6 inches in diameter by demolition, excavation or other means required for removal. Dispose of all brush and trees so that it does not impede subsequent work or cause onsite or offsite damage. Dispose of all brush and trees by removal to an approved landfill, wood chipping and or land distribution, or recycling center, burial at an approved location or burning. If burning is used, implement appropriate smoke management to protect public health and safety. Remove and dispose of brush and trees in order to apply conservation practices or facilitate the planned land use. Brush and tree removal will address the resource concerns of the prevention or hindrance to the installation of conservation practices or present a hazard to their use and enjoyment.

Before Situation:

On any land where existing obstructions interfere with planned land use development, public safety or infrastructure. The site may be abandoned mine lands, construction sites, recreation areas, farms, ranches, and areas affected by natural disasters. This is not intended for the removal of obstructions from aquatic environments.

After Situation:

The typical area will be a 2.0 acre impaired area. The removal of brush and trees >6 inch diameter will be performed with the use of equipment and hand labor. Dispose of all brush and trees from the obstruction removal so that it does not impede subsequent work or cause onsite or offsite damage. Revegetate or otherwise protect from erosion disturbed areas as soon as possible. Refer to NRCS Conservation Practice Standard 342, Critical Area Planting for seedbed preparation, seeding, fertilizing, and mulching requirements. The practice is to improve site conditions in order to apply conservation practices or facilitate better use of the landscape.

Feature Measure: Land Area

Scenario Unit: Acres
Scenario Typical Size: 2.00
Scenario Total Cost: \$4,568.06
Scenario Cost/Unit: \$2,284.03
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 200 HP	928	Track mounted Dozer with horsepower range of 160 to 250 . Equipment and power unit costs. Labor not included.	Hours	\$180.17	12	\$2,162.04
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	12	\$299.88
Brush Chipper, 15 in. capacity	1868	Brush Chipper, 15 inch capacity, typically 165 HP. Includes chipper and power unit. Does not include labor.	Hours	\$74.87	12	\$898.44
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	13	\$440.31
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	13	\$353.08
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	13	\$414.31

Practice: 500-Obstruction Removal
Scenario: \#166-Removal and Disposal of Fence

Scenario Description:

Remove and disposal of all existing fences by demolition, excavation or other means required for removal. Dispose of all fence materials from the site so that it does not impede subsequent work or cause onsite or offsite damage. Dispose of all materials by removal to an approved landfill, wood chipping and land distribution, or recycling center, burial at an approved location or burning. If burning is used, implement appropriate smoke management to protect public health and safety. Remove and dispose of the unwanted fence obstruction in order to apply conservation practices such as Upland Wildlife Habitat Management (645) or facilitate the planned land use. Fence removal will address the resource concerns of the prevention or hindrance to the installation of conservation practices or present a hazard to their use and enjoyment and reduce hazards to wildlife.

Before Situation:
On any land where existing fence interferes with planned land use development, public safety, wildlife movement and habitat, or infrastructure. The site may be abandoned mine lands, construction sites, recreation areas, farms, ranches, and areas affected by natural disasters. This is not intended for the removal of obstructions from aquatic environments.

After Situation:

The typical fence will be 2640 in linear feet. The removal of the fence will be performed with the use of equipment and hand labor. Dispose of all debris from the fence removal so that it does not impede subsequent work or cause onsite or offsite damage. Revegetate or otherwise protect from erosion disturbed areas as soon as possible. Refer to NRCS Conservation Practice Standard 342, Critical Area Planting for seedbed preparation, seeding, fertilizing, and mulching requirements. The practice is to improve site conditions in order to apply conservation practices or facilitate better use of the landscape such as Upland Wildlife Habitat Management (645).

Feature Measure: Length of Fence
Scenario Unit: Feet
Scenario Typical Size: 2,640.00
Scenario Total Cost: $\$ 3,499.53$
Scenario Cost/Unit: \$1.33

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Skidsteer, 80 HP	933	Skidsteer loader with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$56.04	20	\$1,120.80
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	20	\$499.80
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	21	\$570.36
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	20	\$555.20

Mobilization

Practice: 500-Obstruction Removal
Scenario: \#167-Removal and Disposal of Rock and or Boulders

Scenario Description:

Remove and disposal of rock and or boulders by drilling, blasting, demolition, excavation or other means required for removal. Dispose of all rocks and or boulders so that it does not impede subsequent work or cause onsite or offsite damage. Dispose of all rock and or boulders by removal to an approved location, or reuse location. Remove and dispose all rock and or boulders in order to apply conservation practices or facilitate the planned land use. Rocks and or boulders will address the resource concerns of the prevention or hindrance to the installation of conservation practices or present a hazard to their use and enjoyment.

Before Situation:
On any land where existing obstructions interfere with planned land use development, public safety or infrastructure. The site may be abandoned mine lands, construction sites, recreation areas, farms, ranches, and areas affected by natural disasters. This is not intended for the removal of obstructions from aquatic environments.

After Situation:

The typical area will be a 5.0 acre impaired area. The removal of rock and or boulders will be performed by drilling, blasting, demolition, excavation or other means required for removal with the use of heavy equipment and hand labor. Dispose of all rocks and boulders from the obstruction removal so that it does not impede subsequent work or cause onsite or offsite damage. Revegetate or otherwise protect from erosion disturbed areas as soon as possible. Refer to NRCS Conservation Practice Standard 342, Critical Area Planting for seedbed preparation, seeding, fertilizing, and mulching requirements. The practice is to improve site conditions in order to apply conservation practices or facilitate better use of the landscape.

Feature Measure: Volume

Scenario Unit: Cubic Yards
Scenario Typical Size: 500.00
Scenario Total Cost: \$70,976.90
Scenario Cost/Unit: \$141.95
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Hydraulic Excavator, . 5 CY	930	Track mounted hydraulic excavator with bucket capacity range of 0.3 to 0.8 CY . Equipment and power unit costs. Labor not included.	Hours	\$99.69	240	\$23,925.60
Truck, dump, 18 CY	1400	Dump truck for moving bulk material. Typically capacity is 25 ton or 18 cubic yards. Includes equipment only.	Hours	\$102.76	240	\$24,662.40
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	241	\$8,162.67
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	241	\$6,545.56
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	241	\$7,680.67

Practice: 500-Obstruction Removal
Scenario: \#168 - Removal and Disposal of Wood Structures

Scenario Description:

Remove and disposal of wood structures by demolition, excavation or other means required for removal. Dispose of all wood structures so that it does not impede subsequent work or cause onsite or offsite damage. Dispose of all wood structures by removal to an approved location, landfill, or reuse location. Remove and dispose all wood structures in order to apply conservation practices or facilitate the planned land use. Wood structure removal will address the resource concerns of the prevention or hindrance to the installation of conservation practices or present a hazard to their use and enjoyment.

Before Situation:
On any land where existing obstructions interfere with planned land use development, public safety or infrastructure. The site may be abandoned mine lands, construction sites, recreation areas, farms, ranches, and areas affected by natural disasters. This is not intended for the removal of obstructions from aquatic environments.

After Situation:

The typical area will be a 2000 square feet of impaired land. The removal of wood structures will be performed by demolition, excavation or other means required for removal with the use of heavy equipment and hand labor. Dispose of all wood structures from the obstruction removal so that it does not impede subsequent work or cause onsite or offsite damage. Revegetate or otherwise protect from erosion disturbed areas as soon as possible. Refer to NRCS Conservation Practice Standard 342 , Critical Area Planting for seedbed preparation, seeding, fertilizing, and mulching requirements. The practice is to improve site conditions in order to apply conservation practices or facilitate better use of the landscape.

Feature Measure: Land Area
Scenario Unit: Square Feet
Scenario Typical Size: 2,000.00
Scenario Total Cost: \$15,309.54
Scenario Cost/Unit: \$7.65
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 200 HP	928	Track mounted Dozer with horsepower range of 160 to 250 . Equipment and power unit costs. Labor not included.	Hours	\$180.17	32	\$5,765.44
Hydraulic Excavator, . 5 CY	930	Track mounted hydraulic excavator with bucket capacity range of 0.3 to 0.8 CY . Equipment and power unit costs. Labor not included.	Hours	\$99.69	32	\$3,190.08
Truck, dump, 18 CY	1400	Dump truck for moving bulk material. Typically capacity is 25 ton or 18 cubic yards. Includes equipment only.	Hours	\$102.76	32	\$3,288.32
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	33	\$1,117.71
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	33	\$896.28
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	33	\$1,051.71

Practice: 511 - Forage Harvest Management

Scenario: \#2 - Perennial Forage Crops, Delayed Mowing

Scenario Description:

This scenario is based on forages being harvested from existing native hay meadows where the current practice for harvest of hay is on 100% of the field and the timing and schedule is planned to change to benefit lesser prairie chicken habitat. The typical scenario wouldbe harvesting native grass between dates of July 1 and July 20 , leaving approximately 6 inches standing residue. Hay harvest onlyoccurs on $70-80 \%$ of the field acres ($20-30 \%$ not harvested) each year with no portion having a harvest in consecutive years. The typicalsize of native hay meadows for this scenario is 60 acres.. The delayed harvest results in a decrease in overall forage quality. Farmers could see as much as a 50% reduction in market value due to declines in protein ($\sim 50 \%$) and digestibility ($\sim 20 \%$), making the forage crop less palatable and lower in relative feed value. The selected fields should be large enough to promote ground nesting birds. After young have fledged the field will be harvested for dry forages.

Before Situation:

Perennial forage crops are produced and harvested; ground nesting birds are disturbed and/or fledgling birds are killed in the process.

After Situation:

Perennial hay crop is harvested while leaving 20-30\% of the field unharvested aiding in the survival of ground nesting birds and other wildlife species. Results are increased numbers of grassland birds and higher survival of endemic wildlife that inhabit the forage fields.

Feature Measure: Acres of forage
Scenario Unit: Acres
Scenario Typical Size: 60.00
Scenario Total Cost: \$1,282.08

Scenario Cost/Unit:
 \$21.37

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Foregone Income						
FI, Hay, General Grass	2122	General Grass Hay is Primary Land Use	Ton	\$49.18	22.5	\$1,106.55
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	1	\$33.87
Materials						
Test, Plant Tissue Test	301	Tissue analysis for crops. Includes materials and shipping only.	Each	\$25.27	1	\$25.27

Practice: 512 - Pasture and Hay Planting
Scenario: \#1 - Native Perennial Grass (one species)

Scenario Description:

Establish or reseed a single species of adpated perennial native grass. The seedbed shall be prepared using typical tillage techniques for conventional drilling or no-till seeding of native grasses. This scenario assumes fertilizer, seed, equipment and labor for seed bed prep, tillage, and seeding. This practice may be utilized for organic or regular production.

Before Situation:
A 40 acre dryland wheat or corn field is experiencing degraded plant conditions due to soil loss from long term sheet and rill erosion. Soil health is poor and organic matter has been depleted due to the long term conventional tillage cropping history. Additionally water quality has suffered due to the excessive loading of soil and/or nutrients leaving the field.

After Situation:
The field is established to a single species of native grass (eg. switchgrass) for forage or biomass production which has solved soil erosion concerns while additionaly acting as a buffer to areas to improve water quality.

Feature Measure: Acres of Grass Planted

Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: $\$ 11,133.53$

Scenario Cost/Unit: \$278.34
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	40	\$538.00
Tillage, Primary	946	Includes heavy disking (offset) or chisel plow. Includes equipment, power unit and labor costs.	Acres	\$20.44	40	\$817.60
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	40	\$300.00
Cultipacking	1100	Includes equipment, power unit and labor costs.	Acres	\$10.03	40	\$401.20
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	26.4	\$6,010.49
FI, Wheat Dryland	1963	Dryland Wheat is Primary Crop	Acres	\$98.94	13.6	\$1,345.58

Materials

Phosphorus, P2O5	73	Price per pound of P2O5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	800	\$728.00
Potassium, K2O	74	K2O supplied by Muriate Of Potash. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.68	800	\$544.00
Test, Soil Test, Standard	299	Includes materials, shiping, labor, and equipment costs.	Each	\$14.23	1	\$14.23
Native Perennial Grasses, Low Density	2750	Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$134.97	1	\$134.97
Mobilization						
Mobilization, small equipment	1138	Equipment <70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: 512 - Pasture and Hay Planting
Scenario: \#2 - Warm Season Introduced Perennial Warm Season Grasses. Seeding

Scenario Description:

Establish by seeding a single species of adpated perennial warm season introduced grass. The seedbed shall be prepared using typical tillage techniques for conventional drilling or no-till seeding of introduced grasses. This scenario assumes fertilizer, seed, equipment and labor for seed bed prep, tillage, and seeding. This practice may be utilized for organic or regular production where applicable.

Before Situation:
A 40 acre dryland wheat or corn field is experiencing degraded plant conditions due to soil loss from long term sheet and rill erosion. Soil health is poor and organic matter has been depleted due to the long term conventional tillage cropping history. Additionally water quality has suffered due to the excessive loading of soil and/or nutrients leaving the field.

After Situation:
The field is established to a single species of introduced warm season grass (eg. bermudagrass) for forage or biomass production which has solved soil erosion concerns while additionaly acting as a buffer to areas to improve water quality.

Feature Measure: Acres of Grass Planted

Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: $\$ 12,255.87$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	40	\$538.00
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	40	\$300.00
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	40	\$805.20
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	8	\$1,821.36
FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	Acres	\$251.94	2	\$503.88
FI, Wheat Dryland	1963	Dryland Wheat is Primary Crop	Acres	\$98.94	30	\$2,968.20

Materials

Nitrogen (N), Urea	71	Price per pound of N supplied by Urea. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.65	800	\$520.00
Phosphorus, P2O5	73	Price per pound of P 2 O 5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	800	\$728.00
Potassium, K2O	74	K2O supplied by Muriate Of Potash. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.68	20	\$13.60
Test, Soil Test, Standard	299	Includes materials, shiping, labor, and equipment costs.	Each	\$14.23	1	\$14.23
Perennial Grass Sprigs or Rhizomes, acre	2323	Perennial grasses used across a large area using vegetative propagules including sprigs or rhizomes. Includes materials and shipping.	Acres	\$96.60	40	\$3,864.00
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40

Practice: 512 - Pasture and Hay Planting
Scenario: \#3 - Warm Season Introduced Perennial Warm Season Grasses: Sprigging

Scenario Description:

Establish bermudagrass by sprigging adpated varieties. The seedbed shall be prepared using typical tillage techniques for conventional sprigging of introduced warm season grasses. This scenario assumes fertilizer, seed, equipment and labor for seed bed prep, tillage, and seeding. This practice may be utilized for organic or regular production where applicable.

Before Situation:
A 40 acre dryland wheat or corn field is experiencing degraded plant conditions due to soil loss from long term sheet and rill erosion. Soil health is poor and organic matter has been depeted due to the long term conventional tillage cropping history. Additionally water quality has suffered due to the excessive loading of soil and/or nutrients leaving the field.

After Situation:
The field is established to a single species of introduced warm season grass (eg. bermudagrass) for forage or biomass production which has solved soil erosion concerns while additionaly acting as a buffer to areas to improve water quality.

Feature Measure: Acres of Grass Planted

Scenario Unit: Acres

Scenario Typical Size: 40.00

Scenario Total Cost: $\$ 14,607.07$
Scenario Cost/Unit: \$365.18

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	40	\$538.00
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	40	\$300.00
Ground sprigging	1101	Includes costs for equipment, power unit and labor.	Acres	\$65.65	40	\$2,626.00
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	8	\$1,821.36
FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	Acres	\$251.94	2	\$503.88
FI, Wheat Dryland	1963	Dryland Wheat is Primary Crop	Acres	\$98.94	30	\$2,968.20

Materials

Nitrogen (N), Urea	71	Price per pound of N supplied by Urea. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.65	800	\$520.00
Phosphorus, P2O5	73	Price per pound of P 2 O 5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	800	\$728.00
Potassium, K2O	74	K2O supplied by Muriate Of Potash. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.68	800	\$544.00
Test, Soil Test, Standard	299	Includes materials, shiping, labor, and equipment costs.	Each	\$14.23	1	\$14.23
Perennial Grass Sprigs or Rhizomes, acre	2323	Perennial grasses used across a large area using vegetative propagules including sprigs or rhizomes. Includes materials and shipping.	Acres	\$96.60	40	\$3,864.00
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40

Practice: 512 - Pasture and Hay Planting
Scenario: \#4 - Warm Season Introduced Perennial Warm Season Grasses. Seeding with Lime

Scenario Description:

Establish by seeding a single species of adpated perennial warm season introduced grass. The seedbed shall be prepared using typical tillage techniques for conventional drilling or no-till seeding of introduced grasses. This scenario assumes fertilizer, seed, equipment and labor for seed bed prep, tillage, lime, lime application and seeding. This practice may be utilized for organic or regular production where applicable.

Before Situation:

A 40 acre dryland wheat or corn field is experiencing degraded plant conditions due to soil loss from long term sheet and rill erosion and has a high pH as identified with a soil test. Soil health is poor and organic matter has been depeted due to the long term conventional tillage cropping history. Additionally water quality has suffered due to the excessive loading of soil and/or nutrients leaving the field.
After Situation:
The field is established to a single species of introduced warm season grass (eg. bermudagrass) for forage or biomass production which has solved soil erosion concerns while additionaly acting as a buffer to areas to improve water quality.

Feature Measure: Acres of Grass Planted

Scenario Unit: Acres

Scenario Typical Size: 40.00

Scenario Total Cost: \$16,780.27
Scenario Cost/Unit: \$419.51
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	40	\$538.00
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	40	\$300.00
Lime application	953	Lime application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$9.10	40	\$364.00
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	40	\$805.20
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	8	\$1,821.36
FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	Acres	\$251.94	2	\$503.88
FI, Wheat Dryland	1963	Dryland Wheat is Primary Crop	Acres	\$98.94	30	\$2,968.20

Materials

Nitrogen (N), Urea	71	Price per pound of N supplied by Urea. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.65	800	\$520.00
Phosphorus, P2O5	73	Price per pound of P2O5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	800	\$728.00
Potassium, K2O	74	K2O supplied by Muriate Of Potash. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.68	800	\$544.00
Lime, ENM	75	Fertilizer: Limestone Spread on field.	Ton	\$90.75	40	\$3,630.00
Test, Soil Test, Standard	299	Includes materials, shiping, labor, and equipment costs.	Each	\$14.23	1	\$14.23
Perennial Grass Sprigs or Rhizomes, acre	2323	Perennial grasses used across a large area using vegetative propagules including sprigs or rhizomes. Includes materials and shipping.	Acres	\$96.60	40	\$3,864.00
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40

Practice: 512 - Pasture and Hay Planting
Scenario: \#5 - Warm Season Introduced Perennial Warm Season Grasses: Sprigging with Lime

Scenario Description:

Establish bermudagrass by sprigging approved varieties. The seedbed shall be prepared using typical tillage techniques for conventional sprigging of introduced warm season grasses. This scenario assumes fertilizer, seed, equipment and labor for seed bed prep,lime, lime application, tillage, and seeding. This practice may be utilized for organic or regular production where applicable.

Before Situation:

A 40 acre dryland wheat or corn field is experiencing degraded plant conditions due to soil loss from long term sheet and rill erosion and has a high pH as identified with a soil test. Soil health is poor and organic matter has been depeted due to the long term conventional tillage cropping history. Additionally water quality has suffered due to the excessive loading of soil and/or nutrients leaving the field.

After Situation:
The field is established to a single species of introduced warm season grass (eg. bermudagrass) for forage or biomass production which has solved soil erosion concerns while additionaly acting as a buffer to areas to improve water quality.

Feature Measure: Acres of Grass Planted
Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: $\$ 18,601.07$
Scenario Cost/Unit: \$465.03
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	40	\$538.00
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	40	\$300.00
Lime application	953	Lime application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$9.10	40	\$364.00
Ground sprigging	1101	Includes costs for equipment, power unit and labor.	Acres	\$65.65	40	\$2,626.00
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	8	\$1,821.36
FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	Acres	\$251.94	2	\$503.88
FI, Wheat Dryland	1963	Dryland Wheat is Primary Crop	Acres	\$98.94	30	\$2,968.20

Materials

Nitrogen (N), Urea	71	Price per pound of N supplied by Urea. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.65	800	\$520.00
Phosphorus, P2O5	73	Price per pound of P2O5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	800	\$728.00
Potassium, K2O	74	K2O supplied by Muriate Of Potash. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.68	800	\$544.00
Lime, ENM	75	Fertilizer: Limestone Spread on field.	Ton	\$90.75	40	\$3,630.00
Test, Soil Test, Standard	299	Includes materials, shiping, labor, and equipment costs.	Each	\$14.23	1	\$14.23
Perennial Grass Sprigs or Rhizomes, acre	2323	Perennial grasses used across a large area using vegetative propagules including sprigs or rhizomes. Includes materials and shipping.	Acres	\$96.60	40	\$3,864.00
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40

Practice: 512 - Pasture and Hay Planting
Scenario: \#6-Cool Season Introduced Perennial Grass. Seeding

Scenario Description:

Establish by seeding a single species of adpated perennial cool season introduced grass. The seedbed shall be prepared using typical tillage techniques for conventional drilling or no-till seeding of introduced grasses. This scenario assumes fertilizer, seed, equipment and labor for seed bed prep, tillage, and seeding. This practice may be utilized for organic or regular production where applicable.

Before Situation:
A 40 acre dryland wheat or corn field is experiencing degraded plant conditions due to soil loss from long term sheet and rill erosion. Soil health is poor and organic matter has been depeted due to the long term conventional tillage cropping history. Additionally water quality has suffered due to the excessive loading of soil and/or nutrients leaving the field.

After Situation:
The field is established to a single species of introduced cool season grass (eg. Tall Fescue) for forage or biomass production which has solved soil erosion concerns while additionaly acting as a buffer to areas to improve water quality.

Feature Measure: Acres of Grass Planted
Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: $\$ 10,832.67$

Scenario Cost/Unit: \$270.82
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	40	\$538.00
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	40	\$300.00
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	40	\$805.20
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	8	\$1,821.36
FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	Acres	\$251.94	2	\$503.88
FI, Wheat Dryland	1963	Dryland Wheat is Primary Crop	Acres	\$98.94	30	\$2,968.20

Materials

Nitrogen (N), Urea	71	Price per pound of N supplied by Urea. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.65	800	\$520.00
Phosphorus, P2O5	73	Price per pound of P2O5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	800	\$728.00
Potassium, K2O	74	K2O supplied by Muriate Of Potash. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.68	800	\$544.00
Test, Soil Test, Standard	299	Includes materials, shiping, labor, and equipment costs.	Each	\$14.23	1	\$14.23
Introduced Perennial Grasses, Legumes and/or Forbs, Low Density	2747	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$47.76	40	\$1,910.40
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40

Practice: 512 - Pasture and Hay Planting
Scenario: \#9 - Warm Season Introduced Perennial Warm Season Grasses. Seeding, No FI

Scenario Description:

Establish by seeding a single species of adpated perennial warm season introduced grass. The seedbed shall be prepared using typical tillage techniques for conventional drilling or no-till seeding of introduced grasses. This scenario assumes fertilizer, seed, equipment and labor for seed bed prep, tillage, and seeding. This practice may be utilized for organic or regular production where applicable.

Before Situation:
A 40 acre dryland wheat or corn field is experiencing degraded plant conditions due to soil loss from long term sheet and rill erosion. Soil health is poor and organic matter has been depeted due to the long term conventional tillage cropping history. Additionally water quality has suffered due to the excessive loading of soil and/or nutrients leaving the field.

After Situation:
The field is established to a single species of introduced warm season grass (eg. bermudagrass) for forage or biomass production which has solved soil erosion concerns while additionaly acting as a buffer to areas to improve water quality.

Feature Measure: Acres of Grass Planted

Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: $\quad \$ 7,492.83$

Scenario Cost/Unit: \$187.32
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	40	\$538.00
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	40	\$300.00
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	40	\$805.20
Materials						
Nitrogen (N), Urea	71	Price per pound of N supplied by Urea. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.65	800	\$520.00
Phosphorus, P2O5	73	Price per pound of P2O5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	800	\$728.00
Potassium, K2O	74	K2O supplied by Muriate Of Potash. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.68	800	\$544.00
Test, Soil Test, Standard	299	Includes materials, shiping, labor, and equipment costs.	Each	\$14.23	1	\$14.23
Perennial Grass Sprigs or Rhizomes, acre	2323	Perennial grasses used across a large area using vegetative propagules including sprigs or rhizomes. Includes materials and shipping.	Acres	\$96.60	40	\$3,864.00
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40

Practice: 512 - Pasture and Hay Planting
Scenario: \#10 - Warm Season Introduced Perennial Warm Season Grasses: Sprigging, No FI

Scenario Description:

Establish by sprigging a single species of adpated perennial warm season introduced grass (eg. bermudagrass). The seedbed shall be prepared using typical tillage techniques for conventional sprigging of introduced warm season grasses. This scenario assumes fertilizer, seed, equipment and labor for seed bed prep, tillage, and seeding. This practice may be utilized for organic or regular production where applicable.

Before Situation:
A 40 acre dryland wheat or corn field is experiencing degraded plant conditions due to soil loss from long term sheet and rill erosion. Soil health is poor and organic matter has been depeted due to the long term conventional tillage cropping history. Additionally water quality has suffered due to the excessive loading of soil and/or nutrients leaving the field.

After Situation:
The field is established to a single species of introduced warm season grass (eg. bermudagrass) for forage or biomass production which has solved soil erosion concerns while additionaly acting as a buffer to areas to improve water quality.

Feature Measure: Acres of Grass Planted
Scenario Unit: Acres
Scenario Typical Size: 40.00

Scenario Total Cost:	$\$ 9,313.63$
Scenario Cost/Unit:	$\$ 232.84$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	40	\$538.00
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	40	\$300.00
Ground sprigging	1101	Includes costs for equipment, power unit and labor.	Acres	\$65.65	40	\$2,626.00
Materials						
Nitrogen (N), Urea	71	Price per pound of N supplied by Urea. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.65	800	\$520.00
Phosphorus, P2O5	73	Price per pound of P2O5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	800	\$728.00
Potassium, K2O	74	K2O supplied by Muriate Of Potash. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.68	800	\$544.00
Test, Soil Test, Standard	299	Includes materials, shiping, labor, and equipment costs.	Each	\$14.23	1	\$14.23
Perennial Grass Sprigs or Rhizomes, acre	2323	Perennial grasses used across a large area using vegetative propagules including sprigs or rhizomes. Includes materials and shipping.	Acres	\$96.60	40	\$3,864.00
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40

Practice: 512 - Pasture and Hay Planting
Scenario: \#11 - Warm Season Introduced Perennial Warm Season Grasses. Seeding with Lime, No FI

Scenario Description:

Establish by seeding a single species of adpated perennial warm season introduced grass. The seedbed shall be prepared using typical tillage techniques for conventional drilling or no-till seeding of introduced grasses. This scenario assumes fertilizer, seed, equipment and labor for seed bed prep, tillage, lime, lime application and seeding. This practice may be utilized for organic or regular production where applicable.

Before Situation

A 40 acre dryland wheat or corn field is experiencing degraded plant conditions due to soil loss from long term sheet and rill erosion and has a high pH as identified with a soil test. Soil health is poor and organic matter has been depeted due to the long term conventional tillage cropping history. Additionally water quality has suffered due to the excessive loading of soil and/or nutrients leaving the field.

After Situation:
The field is established to a single species of introduced warm season grass (eg. bermudagrass) for forage or biomass production which has solved soil erosion concerns while additionaly acting as a buffer to areas to improve water quality.

Feature Measure: Acres of Grass Planted
Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: $\$ 11,486.83$

Scenario Cost/Unit: \$287.17
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	40	\$538.00
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	40	\$300.00
Lime application	953	Lime application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$9.10	40	\$364.00
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	40	\$805.20
Materials						
Nitrogen (N), Urea	71	Price per pound of N supplied by Urea. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.65	800	\$520.00
Phosphorus, P2O5	73	Price per pound of P 2 O 5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	800	\$728.00
Potassium, K2O	74	K2O supplied by Muriate Of Potash. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.68	800	\$544.00
Lime, ENM	75	Fertilizer: Limestone Spread on field.	Ton	\$90.75	40	\$3,630.00
Test, Soil Test, Standard	299	Includes materials, shiping, labor, and equipment costs.	Each	\$14.23	1	\$14.23
Perennial Grass Sprigs or Rhizomes, acre	2323	Perennial grasses used across a large area using vegetative propagules including sprigs or rhizomes. Includes materials and shipping.	Acres	\$96.60	40	\$3,864.00
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40

Practice: 512 - Pasture and Hay Planting
Scenario: \#12 - Warm Season Introduced Perennial Warm Season Grasses: Sprigging with Lime, No FI

Scenario Description:

Establish bermudagrass by sprigging adpated varieties. The seedbed shall be prepared using typical tillage techniques for conventional sprigging of introduced warm season grasses. This scenario assumes fertilizer, seed, equipment and labor for seed bed prep,lime, lime application, tillage, and seeding. This practice may be utilized for organic or regular production where applicable.

Before Situation:
A 40 acre dryland wheat or corn field is experiencing degraded plant conditions due to soil loss from long term sheet and rill erosion and has a high pH as identified with a soil test. Soil health is poor and organic matter has been depeted due to the long term conventional tillage cropping history. Additionally water quality has suffered due to the excessive loading of soil and/or nutrients leaving the field.

After Situation:
The field is established to a single species of introduced warm season grass (eg. bermudagrass) for forage or biomass production which has solved soil erosion concerns while additionaly acting as a buffer to areas to improve water quality.

Feature Measure: Acres of Grass Planted

Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: \$13,307.63

Scenario Cost/Unit: \$332.69
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	40	\$538.00
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	40	\$300.00
Lime application	953	Lime application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$9.10	40	\$364.00
Ground sprigging	1101	Includes costs for equipment, power unit and labor.	Acres	\$65.65	40	\$2,626.00
Materials						
Nitrogen (N), Urea	71	Price per pound of N supplied by Urea. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.65	800	\$520.00
Phosphorus, P2O5	73	Price per pound of P 2 O 5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	800	\$728.00
Potassium, K2O	74	K2O supplied by Muriate Of Potash. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.68	800	\$544.00
Lime, ENM	75	Fertilizer: Limestone Spread on field.	Ton	\$90.75	40	\$3,630.00
Test, Soil Test, Standard	299	Includes materials, shiping, labor, and equipment costs.	Each	\$14.23	1	\$14.23
Perennial Grass Sprigs or Rhizomes, acre	2323	Perennial grasses used across a large area using vegetative propagules including sprigs or rhizomes. Includes materials and shipping.	Acres	\$96.60	40	\$3,864.00

Mobilization

Mobilization, very small equipment

1137 Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.

Practice: 512 - Pasture and Hay Planting
Scenario: \#84-Grass Establishment-Sprigging
Scenario Description:
Sprigging new grasses with sprigging application for the purpose of providing forage, increasing plant diversity, soil quality and fertility, and plant health. This practice may be utilized for organic or regular production. This scenario assumes fertilizer, sprigs, equipment and labor for seed bed prep, tillage, sprigging ,and spreading.
Before Situation:
Poor or nonexistent stand of grass species. Resource concerns may include undesireable plant productivity and health, inadequate feed and forage for livestock, soil erosion and soil quality.

After Situation:
Suitable species are established to improve forage quality and quantity and reduce soil erosion on cropland ,hayland, pasture, and/or biomass production.
Feature Measure: Acres of Forgage and Biomass Plant
Scenario Unit: Acres
Scenario Typical Size: 30.00
Scenario Total Cost: \$16,868.68

Scenario Cost/Unit:
 \$562.29

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	30	\$403.50
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	30	\$198.90
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	30	\$225.00
Ground sprigging	1101	Includes costs for equipment, power unit and labor.	Acres	\$65.65	30	\$1,969.50
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and	Hours	\$27.16	8	\$217.28

Materials

Nitrogen (N), Ammonium Nitrate	69	Price per pound of N supplied by Ammonium Nitrate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.69	1200	\$828.00
Phosphorus, P2O5	73	Price per pound of P2O5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	1500	\$1,365.00
Potassium, K2O	74	K2O supplied by Muriate Of Potash. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.68	1500	\$1,020.00
Lime, ENM	75	Fertilizer: Limestone Spread on field.	Ton	\$90.75	60	\$5,445.00
Test, Soil Test, Standard	299	Includes materials, shiping, labor, and equipment costs.	Each	\$14.23	1	\$14.23
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	30	\$379.80
Native Perennial Grasses, Low Density	2750	Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$134.97	30	\$4,049.10
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 512 - Pasture and Hay Planting
Scenario: \#85-Native Perennial 1 species

Scenario Description:

Establish or reseed adapted perennial native grasses to improve or maintain livestock/wildlife nutrition and health, extend the length of the grazing season, and provide soil cover to reduce erosion. Used for either conventional or no-till seeding of native grasses for pasture, hayland, and wildlife openings. This practice may be utilized for organic or regular production. This scenario assumes fertilizer, seed, equipment and labor for seed bed prep, tillage, seeding ,and spreading.

Before Situation:

Poorly managed/degraded pasture land or cropland being converted to pasture and/or hay.
After Situation:
Suitable species are established to improve forage quality and quantity and reduce soil erosion on cropland ,hayland, pasture, and/or biomass production.
Feature Measure: Acres of Forgage and Biomass Plant
Scenario Unit: Acres
Scenario Typical Size: 30.00
Scenario Total Cost: \$14,544.58

Scenario Cost/Unit: \$484.82

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	30	\$198.90
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	30	\$225.00
Lime application	953	Lime application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$9.10	30	\$273.00
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	30	\$603.90

Labor
General Labor
231 Labor performed using basic tools such as power tool, shovels, and
Hours $\quad \$ 27.16 \quad 8$
\$217.28 other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.
Materials

Phosphorus, P2O5	73	Price per pound of P 2 O 5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	1500	\$1,365.00
Potassium, K2O	74	K2O supplied by Muriate Of Potash. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.68	1500	\$1,020.00
Lime, ENM	75	Fertilizer: Limestone Spread on field.	Ton	\$90.75	60	\$5,445.00
Test, Soil Test, Standard	299	Includes materials, shiping, labor, and equipment costs.	Each	\$14.23	1	\$14.23
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	30	\$379.80
Native Perennial Grasses, Low Density	2750	Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$134.97	30	\$4,049.10
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and	Each	\$753.37	1	\$753.37

Practice: 516 - Livestock Pipeline
Scenario: \#1 - Plastic, 0.75 Inch to 1.25 Inch, Normal Trenching

Scenario Description:

Description: Below ground installation of HDPE or PVC 0.75 -inch to 1.25 -inch diameter pipeline. The typical scenario size is 1-inch. Construct one mile (5,280 feet) of 1 inch, SCH 40 PVC Pipeline with appurtenances, installed below ground with a minimum 1.5 feet of ground cover into material that includes sand, silt and/or clay. Gravel and occasional cobbles or rock may also be encountered during installation. The scenario unit is Length of Pipe. Appurtenances include: fittings, anchors, thrust blocks, gate valves (2), air release valves (2), drain valve (1), and pressure relief valve (1), and are included in the cost of pipe material (additional 10% of pipe material quantity). Revegetation is not included.Resource Concerns: Inadequate Livestock Water, Inefficient Energy Use. Associated Practices: Critical Area Planting (342), Pumping Plant (533), Watering Facility (614), and Water Harvesting Catchment (636).

Before Situation:
Water supplies need to be conveyed through pipelines for use by livestock or wildlife.
After Situation:
Pipeline(s) convey and/or distribute water to storage and/or watering facilities, for use by livestock or wildlife.
Feature Measure: Length of Pipe

Scenario Unit: Feet
Scenario Typical Size: 5,280.00

Scenario Total Cost:	\$13,616.23					
Scenario Cost/Unit:		2.58				
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Trenching, Earth, 12 in. x 48 in.	53	Trenching, earth, 12 inch wide $\times 48$ inch depth, includes equipment and labor for trenching and backfilling	Feet	\$1.30	5280	\$6,864.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	32	\$869.12
Materials						
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	1858.6	\$5,129.74
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 516 - Livestock Pipeline
Scenario: \#2 - Plastic, 0.75 Inch to 1.25 Inch, Rock Trenching

Scenario Description:

Description: Below ground installation of HDPE or PVC 0.75 -inch to 1.25 -inch diameter pipeline that requires rock excavation, to the extent that specialized installation equipment is required. The typical scenario size is 1-inch. Construct one mile (5,280 feet) of 1-inch, SCH 40 PVC Pipeline with appurtenances, installed below ground with a minimum 1.5 feet of ground cover. The scenario unit is Length of Pipe. Appurtenances include: fittings, anchors, thrust blocks, gate valves (2), air release valves (2), drain valve (1), and pressure relief valve (1), and are included in the cost of pipe material (additional 10% of pipe material quantity). Revegetation is not included.Resource Concerns: Inadequate Livestock Water, Inefficient Energy Use. Associated Practices: Critical Area Planting (342), Pumping Plant (533), Watering Facility (614), and Water Harvesting Catchment (636).

Before Situation:
Water supplies need to be conveyed through pipelines for use by livestock or wildlife.
After Situation:
Pipeline(s) convey and/or distribute water to storage and/or watering facilities, for use by livestock or wildlife.
Feature Measure: Length of pipe

Scenario Unit: Feet
Scenario Typical Size: 5,280.00
Scenario Total Cost: \$20,384.32

Scenario Cost/Unit: \$3.86
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Trenching, Earth, 12 in. x 48 in.	53	Trenching, earth, 12 inch wide x 48 inch depth, includes equipment and labor for trenching and backfilling	Feet	\$1.30	5016	\$6,520.80
Trenching, Rock	1097	Includes equipment and labor for cutting trench in rock 6 in. x 36 in.	Feet	\$23.26	264	\$6,140.64
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	40	\$1,086.40
Materials						
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	1858.6	\$5,129.74
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 516 - Livestock Pipeline
Scenario: \#3 - Plastic, 1.5 Inch to 2 Inch, Normal Trenching
Scenario Description:
Description: Below ground installation of PVC or HDPE 1.5-inch to 2-inch diameter pipeline. The typical scenario diameter size is 1.5 -inch. Construct one mile (5, 280 feet) of 1.5 -inch, Schedule 40, PVC Pipeline with appurtenances, installed below ground with a minimum 1.5 feet of ground cover into material that includes sand, silt and/or clay. Gravel and occasional cobbles or rock may also be encountered during installation. Appurtenances include: couplings, fittings, thrust blocks, gate valves (2), air release valves (2), drain valve (1), and pressure relief valve (1), and are included in the cost of pipe material (additional 10% of pipe material quantity). Revegetation is not included.Resource Concerns: Inadequate Livestock Water, Inefficient Energy Use. Associated Practices: Critical Area Planting (342), Pumping Plant (533), Watering Facility (614), and Water Harvesting Catchment (636).

Before Situation:
Water supplies need to be conveyed through pipelines for use by livestock or wildlife.
After Situation:
Pipeline(s) convey and/or distribute water to storage and/or watering facilities, for use by livestock or wildlife.
Feature Measure: Length of Pipe

Scenario Unit: Feet
Scenario Typical Size: 5,280.00
Scenario Total Cost: $\$ 16,822.24$
Scenario Cost/Unit: \$3.19

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Trenching, Earth, 12 in. x 48 in.	53	Trenching, earth, 12 inch wide $\times 48$ inch depth, includes equipment and labor for trenching and backfilling	Feet	\$1.30	5280	\$6,864.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	32	\$869.12
Materials						
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	3020.2	\$8,335.75
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 516 - Livestock Pipeline
Scenario: \#4 - Plastic, 1.5 Inch to 2 Inch, Rock Trenching
Scenario Description:
Description: Below ground installation of PVC or HDPE 1.5-inch to 2-inch diameter pipeline requiring rock excavation, to the extent that specialized installation equipment is required. The typical scenario size is 1.5 -inch. Construct one mile (5,280 feet) of 1.5 -inch, Schedule 40 , PVC Pipeline with appurtenances, installed below ground with a minimum 1.5 feet of ground cover. Appurtenances include: couplings, fittings, thrust blocks, gate valves (2), air release valves (2), drain valve (1), and pressure relief valve (1), and are included in the cost of pipe material (additional 10% of pipe material quantity). Revegetation is not included.Resource Concerns: Inadequate Livestock Water, Inefficient Energy Use. Associated Practices: Critical Area Planting (342), Pumping Plant (533), Watering Facility (614), and Water Harvesting Catchment (636).

Before Situation:

Water supplies need to be conveyed through pipelines for use by livestock or wildlife.
After Situation:
Pipeline(s) convey and/or distribute water to storage and/or watering facilities, for use by livestock or wildlife.
Feature Measure: Length of pipe
Scenario Unit: Feet
Scenario Typical Size: 5,280.00
Scenario Total Cost: \$23,590.33
Scenario Cost/Unit: \$4.47
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Trenching, Earth, 12 in. x 48 in.	53	Trenching, earth, 12 inch wide $\times 48$ inch depth, includes equipment and labor for trenching and backfilling	Feet	\$1.30	5016	\$6,520.80
Trenching, Rock	1097	Includes equipment and labor for cutting trench in rock 6 in. x 36 in.	Feet	\$23.26	264	\$6,140.64
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	40	\$1,086.40
Materials						
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	3020.2	\$8,335.75
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 516 - Livestock Pipeline
Scenario: \#5 - Plastic, Greater Than 2 Inch, Normal Trenching
Scenario Description:
Description: Below ground installation of PVC or HDPE pipeline greater than 2-inches in diameter. PVC and HDPE are manufactured in sizes (nominal diameter) from 0.5inch to 36 -inch; typical practice sizes range from 1-inch to 4 -inch; and typical scenario size is 3 -inch. Construct one mile (5,280 feet) of 3 -inch, Schedule 40 , PVC Pipeline with appurtenances, installed below ground with a minimum 1.5 feet of ground cover into material that includes sand, silt and/or clay. Gravel and occasional cobbles or rock may also be encountered during installation. Appurtenances include: couplings, fittings, thrust blocks, gate valves (2), air release valves (2), drain valve (1), and pressure relief valve (1), and are included in the cost of pipe material. Revegetation is not included.Resource Concerns: Inadequate Livestock Water, Inefficient Energy Use. Associated Practices: Critical Area Planting (342), Pumping Plant (533), Watering Facility (614), and Water Harvesting Catchment (636).

Before Situation:
Water supplies need to be conveyed through pipelines for use by livestock or wildlife.

After Situation:

Pipeline(s) convey and/or distribute water to storage and/or watering facilities, for use by livestock or wildlife.
Feature Measure: Length of pipe

Scenario Unit: Feet
Scenario Typical Size: 5,280.00

Scenario Total Cost:	\$29,325.59					
Scenario Cost/Unit:		5.55				
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Trenching, Earth, 12 in. x 48 in.	53	Trenching, earth, 12 inch wide $\times 48$ inch depth, includes equipment and labor for trenching and backfilling	Feet	\$1.30	5280	\$6,864.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	32	\$869.12
Materials						
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	7550.4	\$20,839.10
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 516 - Livestock Pipeline
Scenario: \#6 - Plastic, Greater Than 2 Inch, Rock Trenching

Scenario Description:

Description: Below ground installation of PVC or HDPE pipeline greater than 2-inches in diameter requiring rock excavation, to the extent that specialized installation equipment is required. The typical scenario size is 3 -inch. Construct one mile (5,280 feet) of 3 -inch, Schedule 40, PVC Pipeline with appurtenances, installed below ground with a minimum 1.5 feet of ground cover. The scenario unit is length of pipe material. Appurtenances include: couplings, fittings, thrust blocks, gate valves (2), air release valves (2), drain valve (1), and pressure relief valve (1), and are included in the cost of pipe material. Revegetation is not included.Resource Concerns: Inadequate Livestock Water, Inefficient Energy Use. Associated Practices: Critical Area Planting (342), Pumping Plant (533), Watering Facility (614), and Water Harvesting Catchment (636).

Before Situation:
Water supplies need to be conveyed through pipelines for use by livestock or wildlife.
After Situation:
Pipeline(s) convey and/or distribute water to storage and/or watering facilities, for use by livestock or wildlife.
Feature Measure: Length of Pipe

Scenario Unit: Feet
Scenario Typical Size: 5,280.00
Scenario Total Cost: $\$ 36,093.68$
Scenario Cost/Unit: \$6.84

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Trenching, Earth, 12 in. x 48 in.	53	Trenching, earth, 12 inch wide $\times 48$ inch depth, includes equipment and labor for trenching and backfilling	Feet	\$1.30	5016	\$6,520.80
Trenching, Rock	1097	Includes equipment and labor for cutting trench in rock $6 \mathrm{in} . \times 36 \mathrm{in}$.	Feet	\$23.26	264	\$6,140.64
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	40	\$1,086.40
Materials						
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	7550.4	\$20,839.10
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 516 - Livestock Pipeline
Scenario: \#7-HDPE, Less Than or Equal to 2 Inch, Surface Installation

Scenario Description:

Description: On-ground surface installation of HDPE (Iron Pipe Size \& Tubing) pipeline less than or equal to 2-inches in diameter. The typical scenario size is one mile of 2inch diameter pipe. Construct one mile (5,280 feet) of 2-inch, Class 200 (SDR-9.0, PE4708), HDPE Pipeline with appurtenances, installed on the ground surface. The scenario unit is length of pipe material, which is 5,280 feet of 2 -inch, Class 200 (SDR-9.0, PE4708), HDPE pipe. This pipe weighs $0.744 \mathrm{lb} / \mathrm{ft}$, or a total of 3,928 pounds. Appurtenances include: couplings, fittings, anchors, thrust blocks, gate valves (2), air release valves (2), drain valve (1), and pressure relief valve (1), and are included in the cost of pipe material (additional 15\% of pipe material quantity). Revegetation is not included.Resource Concerns: Inadequate Livestock Water, Inefficient Energy Use.

Associated Practices: Critical Area Planting (342), Pumping Plant (533), Watering Facility (614), and Water Harvesting Catchment (636).
Before Situation:
Water supplies need to be conveyed through pipelines for use by livestock or wildlife.
After Situation:
Pipeline(s) convey and/or distribute water to storage and/or watering facilities, for use by livestock or wildlife.
Feature Measure: Length of Pipe
Scenario Unit: Feet
Scenario Typical Size: 5,280.00
Scenario Total Cost: \$20,357.08
Scenario Cost/Unit: \$3.86

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Fuser for HDPE Pipe	1383	Fusing machine for 1 to 12 inch diameter HDPE pipe joints. Equipment costs only. Does not include labor.	Hours	\$28.17	8	\$225.36
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Materials						
Pipe, HDPE, smooth wall, weight priced	1379	High Density Polyethylene (HDPE) compound manufactured into smooth wall pipe. Materials only.	Pound	\$4.32	4518	\$19,517.76
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40

Practice: 516 - Livestock Pipeline
Scenario: \#8 - HDPE, Greater Than 2 Inch, Surface Installation

Scenario Description:

Description: On-ground surface installation of HDPE (Iron Pipe Size \& Tubing) pipeline greater than 2-inches in diameter. The typical scenario size is one mile of 3-inch diameter HDPE pipe. Construct one mile (5,280 feet) of 3 -inch, Class 200 (SDR-9.0, PE4708), HDPE Pipeline with appurtenances, installed on the ground surface. The scenario unit is length of pipe material. Appurtenances include: couplings, fittings, anchors, thrust blocks, gate valves (2), air release valves (2), drain valve (1), and pressure relief valve (1), and are included in the cost of pipe material (additional 15% of pipe material quantity). Revegetation is not included.Resource Concerns: Inadequate Livestock Water, Inefficient Energy Use. Associated Practices: Critical Area Planting (342), Pumping Plant (533), Watering Facility (614), and Water Harvesting Catchment (636).

Before Situation:
Water supplies need to be conveyed through pipelines for use by livestock or wildlife.
After Situation:
Pipeline(s) convey and/or distribute water to storage and/or watering facilities, for use by livestock or wildlife.
Feature Measure: Length of pipe

Scenario Unit: Feet
Scenario Typical Size: 5,280.00

Scenario Total Cost:	\$45,174.01					
Scenario Cost/Unit:	\$8.56					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Fuser for HDPE Pipe	1383	Fusing machine for 1 to 12 inch diameter HDPE pipe joints. Equipment costs only. Does not include labor.	Hours	\$28.17	8	\$225.36
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	24	\$651.84
Materials						
Pipe, HDPE, smooth wall, weight priced	1379	High Density Polyethylene (HDPE) compound manufactured into smooth wall pipe. Materials only.	Pound	\$4.32	10079.5	\$43,543.44
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 516 - Livestock Pipeline
Scenario: \#9-Steel pipe, Surface or Below Ground Installation

Scenario Description:

Description: Surface or below ground installation of Steel (Iron Pipe Size) pipeline. The typical scenario is for the construction of one mile (5,280 feet) of 1.5 -inch, Schedule 40, Galvanized Steel Pipeline with appurtenances, installed below ground with a minimum 1.5 feet of ground cover and the installation requires rock excavation, to the extent that specialized installation equipment is required. Appurtenances include: couplings, fittings, thrust blocks, gate valves (2), air release valves (2), drain valve (1), and pressure relief valve (1), and are included in the cost of pipe material. The components include an additional 10% of pipe length to address these cost. Revegetation is not included.Resource Concerns: Inadequate Livestock Water, Inefficient Energy Use. Associated Practices: Critical Area Planting (342), Pumping Plant (533), Watering Facility (614), and Water Harvesting Catchment (636).

Before Situation:
Water supplies need to be conveyed through pipelines for use by livestock or wildlife.
After Situation:
Pipeline(s) convey and/or distribute water to storage and/or watering facilities, for use by livestock or wildlife.
Feature Measure: Length of Pipe

Scenario Unit: Feet
Scenario Typical Size: 5,280.00

Scenario Total Cost:	$\$ 70,270.02$
Scenario Cost/Unit:	$\$ 13.31$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Trenching, Earth, 12 in. $\times 48$ in.	53	Trenching, earth, 12 inch wide $\times 48$ inch depth, includes equipment and labor for trenching and backfilling	Feet	\$1.30	5016	\$6,520.80
Trenching, Rock	1097	Includes equipment and labor for cutting trench in rock 6 in. $\times 36$ in.	Feet	\$23.26	264	\$6,140.64
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	72	\$1,955.52
Materials						
Pipe, smooth steel, weight priced	1325	Smooth Steel pipe priced by the weight of the pipe materials. Materials only.	Pound	\$3.43	15786.1	\$54,146.32
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 516-Livestock Pipeline
Scenario: \#108-HDPE (Iron Pipe Size and Tubing), Small Scale
Scenario Description:
Below ground installation of HDPE (Iron Pipe Size \&Tubing) pipeline. HDPE (IPS \&Tubing) is manufactured in sizes (nominal diameter) from ??-inch to 24-inch; and typical scenario size is 1 -inch. Construct 260 feet of 1 -inch, Class 130 (SDR 13.5), HDPE pipeline with appurtenances, installed below ground with a minimum 2 feet of ground cover. The unit is weight of pipe material in pounds. 260 feet of 1 -inch, Class 130 (SDR-13.5), HDPE weighs $0.16 \mathrm{lb} / \mathrm{ft}$, or a total of 42 pounds. Appurtenances include: fittings, air vents, pressure relief valves, thrust blocks, risers, and inline valves, and are included in the cost of pipe material (additional 10% of pipe material quantity). Cost of appurtenances does not include flow meters or backflow preventers. Typical installation applies to soils with no special bedding requirements. Resource Concerns: Inadequate Livestock Water, Inefficient Energy Use. Associated Practices: Critical Area Planting (342), Pumping Plant (533), Watering Facility (614), and Water Harvesting Catchment (636).

Before Situation:
Water supplies need to be conveyed through pipelines for use by livestock or wildlife.
After Situation:
Pipeline(s) convey and/or distribute water to storage and/or watering facilities, for use by livestock or wildlife.

Feature Measure: Weight of Pipe

Scenario Unit: Pound
Scenario Typical Size: 42.00
Scenario Total Cost: \$2,703.38
Scenario Cost/Unit: \$64.37

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Trenching, Earth, 12 in. x 48 in.	53	Trenching, earth, 12 inch wide $\times 48$ inch depth, includes equipment and labor for trenching and backfilling	Feet	\$1.30	260	\$338.00
Fuser for HDPE Pipe	1383	Fusing machine for 1 to 12 inch diameter HDPE pipe joints. Equipment costs only. Does not include labor.	Hours	\$28.17	8	\$225.36
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Materials						
Pipe, HDPE, smooth wall, weight priced	1379	High Density Polyethylene (HDPE) compound manufactured into smooth wall pipe. Materials only.	Pound	\$4.32	46	\$198.72
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 516 - Livestock Pipeline
Scenario: \#109-Surface HDPE (Iron Pipe Size and Tubing), Small Scale
Scenario Description:
On-ground surface installation of HDPE (Iron Pipe Size \&Tubing) pipeline. HDPE (IPS \&Tubing) is manufactured in sizes (nominal diameter) from ??-inch to $24-$ inch; and typical scenario size is 1-inch. Construct 260 feet of 1-inch, Class 130 (SDR 13.5), HDPE pipeline with appurtenances. The unit is weight of pipe material in pounds. 260 feet of 1-inch, Class 130 (SDR-13.5), HDPE weighs $0.16 \mathrm{lb} / \mathrm{ft}$, or a total of 42 pounds. Appurtenances include fittings, air vents, pressure relief valves, thrust blocks, risers, and inline valves, and are included in the cost of pipe material (additional 10% of pipe material quantity). Cost of appurtenances does not include flow meters or backflow preventers. Typical installation applies to soils with no special bedding requirements. Resource Concerns: Inadequate Livestock Water, Inefficient Energy Use. Associated Practices: Critical Area Planting (342), Pumping Plant (533), Watering Facility (614), and Water Harvesting Catchment (636).

Before Situation:

Water supplies need to be conveyed through pipelines for use by livestock or wildlife.

After Situation:

Pipeline(s) convey and/or distribute water to storage and/or watering facilities, for use by livestock or wildlife.
Feature Measure: Weight of Pipe

Scenario Unit: Pound
Scenario Typical Size: 42.00
Scenario Total Cost: \$891.52

Scenario Cost/Unit: \$21.23
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Fuser for HDPE Pipe	1383	Fusing machine for 1 to 12 inch diameter HDPE pipe joints. Equipment costs only. Does not include labor.	Hours	\$28.17	8	\$225.36
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	4	\$108.64
Materials						
Pipe, HDPE, smooth wall, weight priced	1379	High Density Polyethylene (HDPE) compound manufactured into smooth wall pipe. Materials only.	Pound	\$4.32	46	\$198.72
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	2	\$358.80

Practice: 516 - Livestock Pipeline
Scenario: \#174-PVC (Iron Pipe Size)
Scenario Description:
Description: Below ground installation of PVC (Iron Pipe Size) pipeline. PVC (IPS) is manufactured in sizes (nominal diameter) from ??-inch to 36 -inch; typical practice sizes range from 1 -inch to 4 -inch; and typical scenario size is 1??-inch. Construct one mile (5,280 feet) of 1 ??-inch, Schedule 40, PVC Pipeline with appurtenances, installed below ground with a minimum 1.5 feet of ground cover. The scenario unit is weight of pipe material in pounds. 5,280 feet of 1??-inch, Schedule 40, PVC pipe weighs $0.501 \mathrm{lb} / \mathrm{ft}$, or a total of 2,645 pounds. Appurtenances include: couplings, fittings, thrust blocks, gate valves (2), air release valves (2), drain valve (1), and pressure relief valve (1), and are included in the cost of pipe material (additional 10\% of pipe material quantity). Revegetation is not included.Resource Concerns: Inadequate Livestock Water, Inefficient Energy Use. Associated Practices: Critical Area Planting (342), Pumping Plant (533), Watering Facility (614), and Water Harvesting Catchment (636).

Before Situation:
Water supplies need to be conveyed through pipelines for use by livestock or wildlife.

After Situation:

Pipeline(s) convey and/or distribute water to storage and/or watering facilities, for use by livestock or wildlife.
Feature Measure: Weight of Pipe

Scenario Unit: Pound
Scenario Typical Size: 2,645.00
Scenario Total Cost: $\$ 17,706.02$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Trenching, Earth, 12 in. x 48 in.	53	Trenching, earth, 12 inch wide $\times 48$ inch depth, includes equipment and labor for trenching and backfilling	Feet	\$1.30	5280	\$6,864.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	48	\$1,303.68
Materials						
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	2910	\$8,031.60
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 516 - Livestock Pipeline
Scenario: \#175-HDPE (Iron Pipe Size \& Tubing)
Scenario Description:
Description: Below ground installation of HDPE (Iron Pipe Size \& Tubing) pipeline. HDPE (IPS \&Tubing) is manufactured in sizes (nominal diameter) from ??-inch to 24inch; typical practice sizes range from 1-inch to 4-inch; and typical scenario size is 1??-inch. Construct one mile (5,280 feet) of 1??-inch, Class 200 (SDR-9.0, PE4708), HDPE Pipeline with appurtenances, installed below ground with a minimum 1.5 feet of ground cover. Typical size range of pipe installed: 1-inch to 4 -inch. The scenario unit is weight of pipe material in pounds. 5,280 feet of 1 ??-inch, Class 200 (SDR-9.0, PE4708), HDPE pipe weighs $0.475 \mathrm{lb} / \mathrm{ft}$, or a total of 2,508 pounds. Appurtenances include: fittings, anchors, thrust blocks, gate valves (2), air release valves (2), drain valve (1), and pressure relief valve (1), and are included in the cost of pipe material (additional 10% of pipe material quantity). Revegetation is not included. Resource Concerns: Inadequate Livestock Water, Inefficient Energy Use. Associated Practices: Critical Area Planting (342), Pumping Plant (533), Watering Facility (614), and Water Harvesting Catchment (636).

Before Situation:
Water supplies need to be conveyed through pipelines for use by livestock or wildlife.
After Situation:
Pipeline(s) convey and/or distribute water to storage and/or watering facilities, for use by livestock or wildlife.
Feature Measure: Weight of Pipe
Scenario Unit: Pound
Scenario Typical Size: 2,508.00
Scenario Total Cost: \$20,011.30

Scenario Cost/Unit: \$7.98
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Trenching, Pipeline Plowing	1096	Includes equipment and labor for plowing small diameter lines in common earth (< 3 inch)	Feet	\$1.04	5280	\$5,491.20
Fuser for HDPE Pipe	1383	Fusing machine for 1 to 12 inch diameter HDPE pipe joints. Equipment costs only. Does not include labor.	Hours	\$28.17	8	\$225.36
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	32	\$869.12
Materials						
Pipe, HDPE, smooth wall, weight priced	1379	High Density Polyethylene (HDPE) compound manufactured into smooth wall pipe. Materials only.	Pound	\$4.32	2759	\$11,918.88
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 516 - Livestock Pipeline
Scenario: \#176 - Surface HDPE (Iron Pipe Size \& Tubing)
Scenario Description:
Description: on-ground surface installation of HDPE (Iron Pipe Size \& Tubing) pipeline. HDPE (IPS \& Tubing) is manufactured in sizes (nominal diameter) from ??-inch to 24 -inch; typical practice sizes range from 1-inch to 4 -inch; and typical scenario size is 1??-inch. Construct one mile (5,280 feet) of 1??-inch, Class 200 (SDR-9.0, PE4708), HDPE Pipeline with appurtenances, installed on the ground surface. Typical size range of pipe installed: 1-inch to 4-inch. The scenario unit is weight of pipe material in pounds. 5,280 feet of 1 ??-inch, Class 200 (SDR-9.0, PE4708), HDPE pipe weighs $0.475 \mathrm{lb} / \mathrm{ft}$, or a total of 2,508 pounds. Appurtenances include: couplings, fittings, anchors, thrust blocks, gate valves (2), air release valves (2), drain valve (1), and pressure relief valve (1), and are included in the cost of pipe material (additional 15\% of pipe material quantity). Revegetation is not included.Resource Concerns: Inadequate Livestock Water, Inefficient Energy Use. Associated Practices: Critical Area Planting (342), Pumping Plant (533), Watering Facility (614), and Water Harvesting Catchment (636).

Before Situation:
Water supplies need to be conveyed through pipelines for use by livestock or wildlife.
After Situation:
Pipeline(s) convey and/or distribute water to storage and/or watering facilities, for use by livestock or wildlife.

Feature Measure: Weight of Pipe

Scenario Unit: Pound
Scenario Typical Size: 2,508.00
Scenario Total Cost: $\quad \$ 13,912.16$
Scenario Cost/Unit: \$5.55

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Fuser for HDPE Pipe	1383	Fusing machine for 1 to 12 inch diameter HDPE pipe joints. Equipment costs only. Does not include labor.	Hours	\$28.17	8	\$225.36
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	32	\$869.12
Materials						
Pipe, HDPE, smooth wall, weight priced	1379	High Density Polyethylene (HDPE) compound manufactured into smooth wall pipe. Materials only.	Pound	\$4.32	2884	\$12,458.88
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	2	\$358.80

Practice: 516-Livestock Pipeline
Scenario: \#177 - Steel (Iron Pipe Size)
Scenario Description:
Description: Below ground installation of Steel (Iron Pipe Size) pipeline. Steel (IPS) is manufactured in sizes (nominal diameter) from ??-inch to 36 -inch; typical practice sizes range from 1-inch to 4-inch; and typical scenario size is 1??-inch. Construct one mile (5,280 feet) of 1??-inch, Schedule 40, Galvanized Steel Pipeline with appurtenances, installed below ground with a minimum 1.5 feet of ground cover. Typical size range of pipe installed: 1-inch to 4-inch. The scenario unit is weight of pipe material in pounds. 5,280 feet of 1??-inch, Schedule 40, Galvanized Steel Pipe weighs $2.718 \mathrm{lb} / \mathrm{ft}$, or a total of 14,351 pounds. Appurtenances include: couplings, fittings, thrust blocks, gate valves (2), air release valves (2), drain valve (1), and pressure relief valve (1), and are included in the cost of pipe material (additional 10\% of pipe material quantity). Revegetation is not included.Resource Concerns: Inadequate Livestock Water, Inefficient Energy Use. Associated Practices: Critical Area Planting (342), Pumping Plant (533), Watering Facility (614), and Water Harvesting Catchment (636).

Before Situation:
Water supplies need to be conveyed through pipelines for use by livestock or wildlife.
After Situation:
Pipeline(s) convey and/or distribute water to storage and/or watering facilities, for use by livestock or wildlife.
Feature Measure: Weight of Pipe
Scenario Unit: Pound
Scenario Typical Size: 14,351.00
Scenario Total Cost: \$47,484.56
Scenario Cost/Unit: \$3.31

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Trenching, Earth, 12 in. $\mathrm{x} 48 \mathrm{in}$.	53	Trenching, earth, 12 inch wide $\times 48$ inch depth, includes equipment and labor for trenching and backfilling	Feet	\$1.30	5280	\$6,864.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	144	\$3,911.04
Materials						
Pipe, steel, smooth wall, galvanized, weight priced	1381	Steel manufactured into galvanized smooth wall pipe	Pound	\$2.23	15786	\$35,202.78
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 516 - Livestock Pipeline
Scenario: \#178-Surface Steel (Iron Pipe Size)
Scenario Description:
Description: on-ground surface installation of Steel (Iron Pipe Size) pipeline. Steel (IPS) is manufactured in sizes (nominal diameter) from ??-inch to 36 -inch; typical practice sizes range from 1-inch to 4 -inch; and typical scenario size is 1??-inch. Construct one mile (5,280 feet) of 1??-inch, Schedule 40 , Galvanized Steel Pipeline with appurtenances, installed on the ground surface. Typical size range of pipe installed: 1-inch to 4 -inch. The scenario unit is weight of pipe material in pounds. 5,280 feet of 1??-inch, Schedule 40, Galvanized Steel Pipe weighs $2.718 \mathrm{lb} / \mathrm{ft}$, or a total of 14,351 pounds. Appurtenances include: couplings, fittings, expansion joints, anchors, thrust blocks, gate valves (2), air release valves (2), drain valve (1), and pressure relief valve (1), and are included in the cost of pipe material (additional 15% of pipe material quantity). Revegetation is not included. Resource Concerns: Inadequate Livestock Water, Inefficient Energy Use. Associated Practices: Critical Area Planting (342), Pumping Plant (533), Watering Facility (614), and Water Harvesting Catchment (636).

Before Situation:
Water supplies need to be conveyed through pipelines for use by livestock or wildlife.
After Situation:
Pipeline(s) convey and/or distribute water to storage and/or watering facilities, for use by livestock or wildlife.
Feature Measure: Weight of Pipe
Scenario Unit: Pound
Scenario Typical Size: 14,351.00
Scenario Total Cost: \$40,714.96
Scenario Cost/Unit: \$2.84

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	144	\$3,911.04
Materials						
Pipe, steel, smooth wall, galvanized, weight priced	1381	Steel manufactured into galvanized smooth wall pipe	Pound	\$2.23	16504	\$36,803.92

Practice: 516 - Livestock Pipeline

Scenario: \#199-Rural Water Connection Equipment

Scenario Description:

The rural water connection includes the 4' manhole, meter, 500' of pipe, valves, and necessary installation for connecting from a rural water pipeline to a livestock distribution pipeline. This item includes installation, all materials, appurtenances, and labor required to construct and install the meter pit. This item does not include the hook-up fees to the rural water system. Resource Concerns: Inadequate Livestock Water, Inefficient Energy Use.Associated Practices: Critical Area Planting (342), Pumping Plant (533), Watering Facility (614), and Water Harvesting Catchment (636), Spring Development (574), and Prescribed Grazing (528).

Before Situation:

Inadequate water supply for domestic animals located on grazed range, pasture, or grazed forest in the northern plains region.

After Situation:

A rural water connection which provides access to a reliable, high quality water supply for meeting the needs of domestic animals on grazed range, pasture, or grazed forest in the northern plains region. The 4' manhole, meter, pipe and appurtenances will enable the pipeline to meet the quantity requirements of domestic animals.

Feature Measure: Rural Water Connection
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$5,623.73

Scenario Cost/Unit: \$5,623.73
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	4	\$260.84
Trencher, 8 in.	936	Equipment and power unit costs. Labor not included.	Hours	\$50.23	6	\$301.38
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	12	\$325.92
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	10	\$277.60
Materials						
Freeze Proof Hydrant, <= 3 ft . bury	240	Freeze Proof Hydrant, 3 foot or less bury. Materials only.	Each	\$160.26	1	\$160.26
Manhole, $4 \mathrm{ft} \times 4 \mathrm{ft}$	1053	Precast Manhole with base and top delivered. 4 feet diameter $\times 4$ feet. Includes materials only.	Each	\$1,648.35	1	\$1,648.35
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	414	\$1,142.64
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 516 - Livestock Pipeline
Scenario: \#200-Plastic, Less Than or Equal to 2 Inch, Rock Trenching
Scenario Description:
Below ground installation of PVC or HDPE less than or equal to 2-inch diameter pipeline requiring rock excavation, to the extent that specialized installation equipment is required. The typical scenario size is 1.5 -inch. Construct one mile (5,280 feet) of 1.5 -inch, Schedule 40 , PVC Pipeline with appurtenances, installed below ground with a minimum 1.5 feet of ground cover. Appurtenances include: couplings, fittings, thrust blocks, gate valves (2), air release valves (2), drain valve (1), and pressure relief valve (1), and are included in the cost of pipe material (additional 10\% of pipe material quantity). Revegetation is not included.Resource Concerns: Inadequate Livestock Water, Inefficient Energy Use. Associated Practices: Critical Area Planting (342), Pumping Plant (533), Watering Facility (614), and Water Harvesting Catchment (636).

Before Situation:
Inadequate water available for livestock and grazing is not distributed appropriately.
After Situation:
Pipelines convey water supply to livestock to promote proper grazing and livestock distribution.
Feature Measure: Length of pipe
Scenario Unit: Linear Feet
Scenario Typical Size: 5,280.00
Scenario Total Cost: \$23,590.33
Scenario Cost/Unit: \$4.47
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Trenching, Earth, 12 in. x 48 in.	53	Trenching, earth, 12 inch wide $\times 48$ inch depth, includes equipment and labor for trenching and backfilling	Feet	\$1.30	5016	\$6,520.80
Trenching, Rock	1097	Includes equipment and labor for cutting trench in rock 6 in. x 36 in.	Feet	\$23.26	264	\$6,140.64
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	40	\$1,086.40
Materials						
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	3020.2	\$8,335.75
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 516 - Livestock Pipeline
Scenario: \#201 - Plastic, Less Than or Equal to 2 Inch, Normal Trenching
Scenario Description:
Below ground installation of PVC or HDPE less than or equal to 2 -inch diameter pipeline. The typical scenario diameter size is 1.5 -inch. Construct one mile (5,280 feet) of 1.5 -inch, Schedule 40, PVC Pipeline with appurtenances, installed below ground with a minimum 1.5 feet of ground cover into material that includes sand, silt and/or clay. Gravel and occasional cobbles or rock may also be encountered during installation. Appurtenances include: couplings, fittings, thrust blocks, gate valves (2), air release valves (2), drain valve (1), and pressure relief valve (1), and are included in the cost of pipe material (additional 10\% of pipe material quantity). Revegetation is not included.Resource Concerns: Inadequate Livestock Water, Inefficient Energy Use. Associated Practices: Critical Area Planting (342), Pumping Plant (533), Watering Facility (614), and Water Harvesting Catchment (636).

Before Situation:
Inadequate water available for livestock and grazing is not appropriately distributed.
After Situation:
Pipelines distribute water to livestock to provide adequate water and grazing distribution.
Feature Measure: Length of Pipe

Scenario Unit: Linear Feet
Scenario Typical Size: 5,280.00
Scenario Total Cost: $\$ 16,822.24$
Scenario Cost/Unit: \$3.19

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Trenching, Earth, 12 in. x 48 in.	53	Trenching, earth, 12 inch wide $\times 48$ inch depth, includes equipment and labor for trenching and backfilling	Feet	\$1.30	5280	\$6,864.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	32	\$869.12
Materials						
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	3020.2	\$8,335.75
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 520 - Pond Sealing or Lining, Compacted Soil Treatment
Scenario: \#28-Bentonite Treatment, Covered
Scenario Description:
Construction of a compacted soil liner, treated with bentonite, to reduce seepage from waste storage impoundment structures. Practice implementation includes incorporation of the bentonite with the soil under proper moisture conditions, compaction to the designed liner thickness, and placement of soil cover over the treated liner. Practice implementation may require filter compatibility with the subgrade (graded filter or geotextile).

Before Situation:
In-place soils at site exhibit seepage rates in excess of acceptable limits. Soils are suitable for treatment with bentonite.
After Situation:
Water conservation and environmental protection provided by limiting seepage losses from waste storage impoundments.
Feature Measure: Volume of Liner Material (includes
Scenario Unit: Cubic Yards

Scenario Typical Size: 1,613.00
Scenario Total Cost: \$35,324.42
Scenario Cost/Unit: \$21.90
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	3227	\$11,810.82
Tractor, agricultural, 120 HP	962	Agricultural tractor with horsepower range of 90 to 140 . Equipment and power unit costs. Labor not included.	Hours	\$74.02	6	\$444.12
Labor						
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	6	\$166.56
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	8	\$380.88
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	2	\$262.40

Materials

Bentonite, Bulk

Mobilization

Mobilization, medium equipment 1139 Equipment with 70-150 HP or typical weights between 14,000 and Each \$753.37 1

Practice: 520 - Pond Sealing or Lining, Compacted Soil Treatment
Scenario: \#29-Soil Dispersant, Covered

Scenario Description:

Construction of a compacted soil liner, treated with a soil dispersant, to reduce seepage from ponds or waste storage impoundment structures. Practice implementation includes incorporation of the dispersant with the soil liner under proper moisture conditions, compaction to the designed liner thickness, and placement of soil cover over the treated liner. Practice implementation may require filter compatibility with the subgrade (graded filter or geotextile).

Before Situation:
In-place soils at site exhibit seepage rates in excess of acceptable limits. Soils are suitable for treatment with dispersants.
After Situation:
Water conservation and environmental protection provided by limiting seepage losses from ponds or waste storage impoundments.
Feature Measure: Volume of Liner Material (includes
Scenario Unit: Cubic Yards

Scenario Typical Size: 1,613.00
Scenario Total Cost: \$17,190.51

Scenario Cost/Unit: \$10.66

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	3227	\$11,810.82
Tractor, agricultural, 120 HP	962	Agricultural tractor with horsepower range of 90 to 140 . Equipment and power unit costs. Labor not included.	Hours	\$74.02	6	\$444.12
Labor						
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	6	\$166.56
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	8	\$380.88
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	2	\$262.40
Materials						
Soil Dispersant	1490	Soil Amendment (tetrasodium pyrophosphate (TSPP), sodium tripolyphosphate (STPP), or soda ash or approved equivalent)	Ton	\$453.96	6.53	\$2,964.36
Mobilization						
Mobilization, Material, distance > 50 miles	1043	Mobilization cost of materials for special cases where the distance from the supplier delivery point to the job site exceeds 50 miles. The costs for shipping by UPS or bulk freight shipping to a location within 50 miles of the job site have already been included in the component price.	Dollars	\$1.00	408	\$408.00
Mobilization, medium equipment	1139	Equipment with $70-150 \mathrm{HP}$ or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 520 - Pond Sealing or Lining, Compacted Soil Treatment
Scenario: \#30-Onsite Material, no Subgrade Excavation

Scenario Description:

Construction of a compacted soil liner, treated with compacted clay, to reduce seepage from ponds. Practice implementation includes compaction of the soil liner under proper moisture conditions to the designed liner thickness, and soil cover to protect the finished liner. Material haul < 0.5 mile. Subgrade excavation is not included with this scenario.

Before Situation:
In-place soils at site exhibit seepage rates in excess of acceptable limits. An adequate quantity of soil suitable for constructing a clay liner without amendments is available at an economical haul distance. Material haul < 0.5 mile.

After Situation:
Water conservation and environmental protection provided by limiting seepage losses from ponds.

Feature Measure: Volume of Liner Material (including
Scenario Unit: Cubic Yards
Scenario Typical Size: 2,420.00
Scenario Total Cost: \$18,730.45
Scenario Cost/Unit: \$7.74

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 200 HP	928	Track mounted Dozer with horsepower range of 160 to 250 . Equipment and power unit costs. Labor not included.	Hours	\$180.17	24	\$4,324.08
Tractor, agricultural, 160 HP	1203	Agricultural tractor with horsepower range of 140 to 190. Equipment and power unit costs. Labor not included.	Hours	\$99.50	24	\$2,388.00
Tractor, agricultural, 260 HP	1204	Agricultural tractor with horsepower range of 240 to 290. Equipment and power unit costs. Labor not included.	Hours	\$163.19	24	\$3,916.56
Scraper, pull, 15 CY	1207	Pull type earthmoving scraper with 15 CY capacity. Does not include pulling equipment or labor. Add Tractor or Dozer, 260 HP typically required for single scraper.	Hours	\$25.61	24	\$614.64
Roller, static, towed, tamping foot	1328	Towed static tamping foot (sheepsfoot) roller compactor typically 60 inch diameter drum. Equipment cost only. Does not include pulling equipment. Add Tractor or Dozer.	Hours	\$15.19	24	\$364.56
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	72	\$2,294.64
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	16	\$2,099.20

Mobilization

Practice: 520-Pond Sealing or Lining, Compacted Soil Treatment
Scenario: \#31 - Imported Material, no Subgrade Excavation

Scenario Description:

Construction of a compacted soil liner, treated with compacted clay, to reduce seepage from ponds. Practice implementation includes compaction of the soil liner under proper moisture conditions to the designed liner thickness, and soil cover to protect the finished liner. Material haul > 0.5 mile. Subgrade excavation is not included with this scenario.

Before Situation:

In-place soils at site exhibit seepage rates in excess of acceptable limits. An adequate quantity of soil suitable for constructing a clay liner without amendments is available at an economical haul distance. Material haul >0.5 mile.

After Situation:
Water conservation and environmental protection provided by limiting seepage losses from ponds.

Feature Measure: Volume of Liner Material (including
Scenario Unit: Cubic Yards
Scenario Typical Size: 2,420.00
Scenario Total Cost:
\$26,868.96
Scenario Cost/Unit: \$11.10

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total

Equipment Installation

Dozer, 200 HP	928	Track mounted Dozer with horsepower range of 160 to 250 . Equipment and power unit costs. Labor not included.	Hours	\$180.17	24	\$4,324.08
Tractor, agricultural, 160 HP	1203	Agricultural tractor with horsepower range of 140 to 190. Equipment and power unit costs. Labor not included.	Hours	\$99.50	24	\$2,388.00
Tractor, agricultural, 260 HP	1204	Agricultural tractor with horsepower range of 240 to 290. Equipment and power unit costs. Labor not included.	Hours	\$163.19	24	\$3,916.56
Scraper, pull, 15 CY	1207	Pull type earthmoving scraper with 15 CY capacity. Does not include pulling equipment or labor. Add Tractor or Dozer, 260 HP typically required for single scraper.	Hours	\$25.61	24	\$614.64
Roller, static, towed, tamping foot	1328	Towed static tamping foot (sheepsfoot) roller compactor typically 60 inch diameter drum. Equipment cost only. Does not include pulling equipment. Add Tractor or Dozer.	Hours	\$15.19	24	\$364.56
Hauling, bulk, highway truck	1615	Hauling of bulk earthfill, rockfill, waste or debris. One-way travel distance using fully loaded highway dump trucks (typically 16 CY or 20 TN capacity). Includes equipment and labor for truck only. Does not include cost for loading truck.	Cubic Yard Mile	\$0.33	12100	\$3,993.00
Front End Loader, 185 HP	1619	Wheeled front end loader with horsepower range of 160 to 210. Equipment and power unit costs. Labor not included.	Hours	\$102.96	24	\$2,471.04
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	96	\$3,059.52
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	16	\$2,099.20

Mobilization

Practice: 520 - Pond Sealing or Lining, Compacted Soil Treatment
Scenario: \#32-Onsite Material, with Subgrade Excavation

Scenario Description:

Construction of a compacted soil liner, treated with compacted clay, to reduce seepage from waste storage impoundment structures. Practice implementation includes the subgrade excavation, compaction of the soil liner under proper moisture conditions to the designed liner thickness, and soil cover to protect the finished liner. Material haul < 0.5 mile.

Before Situation:

In-place soils at site exhibit seepage rates in excess of acceptable limits. An adequate quantity of soil suitable for constructing a clay liner without amendments is available at an economical haul distance. Material haul < 0.5 mile.

After Situation:
Water conservation and environmental protection provided by limiting seepage losses from waste storage impoundments.

Feature Measure: Volume of Liner Material (including
Scenario Unit: Cubic Yards
Scenario Typical Size: 2,420.00
Scenario Total Cost: $\$ 26,837.45$
Scenario Cost/Unit: \$11.09

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 200 HP	928	Track mounted Dozer with horsepower range of 160 to 250 . Equipment and power unit costs. Labor not included.	Hours	\$180.17	24	\$4,324.08
Tractor, agricultural, 160 HP	1203	Agricultural tractor with horsepower range of 140 to 190. Equipment and power unit costs. Labor not included.	Hours	\$99.50	24	\$2,388.00
Tractor, agricultural, 260 HP	1204	Agricultural tractor with horsepower range of 240 to 290. Equipment and power unit costs. Labor not included.	Hours	\$163.19	24	\$3,916.56
Scraper, pull, 15 CY	1207	Pull type earthmoving scraper with 15 CY capacity. Does not include pulling equipment or labor. Add Tractor or Dozer, 260 HP typically required for single scraper.	Hours	\$25.61	24	\$614.64
Excavation, common earth, large equipment, 150 ft	1223	Bulk excavation of common earth including sand and gravel with dozer $>100 \mathrm{HP}$ with average push distance of 150 feet. Includes equipment and labor.	Cubic Yards	\$3.35	2420	\$8,107.00
Roller, static, towed, tamping foot	1328	Towed static tamping foot (sheepsfoot) roller compactor typically 60 inch diameter drum. Equipment cost only. Does not include pulling equipment. Add Tractor or Dozer.	Hours	\$15.19	24	\$364.56

Labor
Equipment Operators, Heavy

Specialist Labor 235Labor requiring a specialized skill set: Includes Agronomists, Foresters, Hours Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.\quad\$131.20	

Mobilization

1140 Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.

Practice: 520 - Pond Sealing or Lining, Compacted Soil Treatment
Scenario: \#33-Imported Material, with Subgrade Excavation

Scenario Description:

Construction of a compacted soil liner, treated with compacted clay, to reduce seepage from waste storage impoundment structures. Practice implementation includes the subgrade excavation, compaction of the soil liner under proper moisture conditions to the designed liner thickness, and soil cover to protect the finished liner. Material haul > 0.5 mile.

Before Situation:
In-place soils at site exhibit seepage rates in excess of acceptable limits. An adequate quantity of soil suitable for constructing a clay liner without amendments is available at an economical haul distance. Material haul >0.5 mile.

After Situation:
Water conservation and environmental protection provided by limiting seepage losses from waste storage impoundments.

Feature Measure: Volume of Liner Material (including
Scenario Unit: Cubic Yards
Scenario Typical Size: 2,420.00
Scenario Total Cost: \$34,975.96
Scenario Cost/Unit: \$14.45
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 200 HP	928	Track mounted Dozer with horsepower range of 160 to 250 . Equipment and power unit costs. Labor not included.	Hours	\$180.17	24	\$4,324.08
Tractor, agricultural, 160 HP	1203	Agricultural tractor with horsepower range of 140 to 190 . Equipment and power unit costs. Labor not included.	Hours	\$99.50	24	\$2,388.00
Tractor, agricultural, 260 HP	1204	Agricultural tractor with horsepower range of 240 to 290. Equipment and power unit costs. Labor not included.	Hours	\$163.19	24	\$3,916.56
Scraper, pull, 15 CY	1207	Pull type earthmoving scraper with 15 CY capacity. Does not include pulling equipment or labor. Add Tractor or Dozer, 260 HP typically required for single scraper.	Hours	\$25.61	24	\$614.64
Excavation, common earth, large equipment, 150 ft	1223	Bulk excavation of common earth including sand and gravel with dozer $>100 \mathrm{HP}$ with average push distance of 150 feet. Includes equipment and labor.	Cubic Yards	\$3.35	2420	\$8,107.00
Roller, static, towed, tamping foot	1328	Towed static tamping foot (sheepsfoot) roller compactor typically 60 inch diameter drum. Equipment cost only. Does not include pulling equipment. Add Tractor or Dozer.	Hours	\$15.19	24	\$364.56
Hauling, bulk, highway truck	1615	Hauling of bulk earthfill, rockfill, waste or debris. One-way travel distance using fully loaded highway dump trucks (typically 16 CY or 20 TN capacity). Includes equipment and labor for truck only. Does not include cost for loading truck.	Cubic Yard Mile	\$0.33	12100	\$3,993.00
Front End Loader, 185 HP	1619	Wheeled front end loader with horsepower range of 160 to 210. Equipment and power unit costs. Labor not included.	Hours	\$102.96	24	\$2,471.04
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	96	\$3,059.52
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	16	\$2,099.20

Mobilization

Mobilization, large equipment
1140 Equipment >150HP or typical weights greater than 30,000 pounds or Each $\$ 909.59$

4
\$3,638.36

Practice: 521 - Pond Sealing or Lining, Geomembrane or Geosynthetic Clay Liner
Scenario: \#1 - Flexible Membrane, Uncovered, with liner drainage or venting

Scenario Description:

Installation of a flexible geosynthetic membrane liner, uncovered, to reduce seepage from waste storage impoundment structures. Practice implementation includes a geotextile or soil cushion to protect the liner from subgrade damage, and liner drainage or venting.

Before Situation:
In-place soils at site exhibit seepage rates in excess of acceptable limits.
After Situation:
Water conservation and enviromental protection provided by limiting seepage losses from ponds or waste storage impoundments.

Feature Measure: Surface area of Liner Material (incl
Scenario Unit: Square Yard
Scenario Typical Size: 4,840.00
Scenario Total Cost: $\$ 95,254.40$
Scenario Cost/Unit: \$19.68

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Geotextile, woven	42	Woven Geotextile Fabric. Includes materials, equipment and labor	Square Yard	\$1.11	4840	\$5,372.40
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	40	\$1,354.80
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	32	\$4,198.40
Materials						
Synthetic Liner, 40 mil	1387	Synthetic 40 mil HDPE, LLDPE, EPDM, etc membrane liner material. Includes materials and shipping only.	Square Yard	\$7.46	4840	\$36,106.40
Geonet	1778	Geosynthetic drainage liner, typically HDPE of 300 mil thickness. Includes materials and shipping only.	Square Yard	\$9.86	4840	\$47,722.40
Mobilization						
Mobilization, Material, distance > 50 miles	1043	Mobilization cost of materials for special cases where the distance from the supplier delivery point to the job site exceeds 50 miles. The costs for shipping by UPS or bulk freight shipping to a location within 50 miles of the job site have already been included in the component price.	Dollars	\$1.00	500	\$500.00

Practice: 521 - Pond Sealing or Lining, Geomembrane or Geosynthetic Clay Liner
Scenario: \#2 - Flexible Membrane, Covered, with liner drainage or venting

Scenario Description:

Installation of a flexible geosynthetic membrane liner to reduce seepage from waste storage impoundment structures. Practice implementation includes 1 foot of soil cover for liner protection, a geotextile or soil cushion to protect liner from subgrade damage, and liner drainage or venting.

Before Situation:
In-place soils at site exhibit seepage rates in excess of acceptable limits.
After Situation:
Water conservation and enviromental protection provided by limiting seepage losses from ponds or waste storage impoundments.

Feature Measure: Surface area of Liner Material (incl
Scenario Unit: Square Yard
Scenario Typical Size: 4,840.00
Scenario Total Cost: \$101,157.98
Scenario Cost/Unit: \$20.90

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Geotextile, woven	42	Woven Geotextile Fabric. Includes materials, equipment and labor	Square Yard	\$1.11	4840	\$5,372.40
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	1613	\$5,903.58
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	40	\$1,354.80
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	32	\$4,198.40

Materials

Synthetic Liner, 40 mil	1387	Synthetic 40 mil HDPE, LLDPE, EPDM, etc membrane liner material. Includes materials and shipping only.	Square Yard	\$7.46	4840	\$36,106.40
Geonet	1778	Geosynthetic drainage liner, typically HDPE of 300 mil thickness. Includes materials and shipping only.	Square Yard	\$9.86	4840	\$47,722.40
Mobilization						
Mobilization, Material, distance > 50 miles	1043	Mobilization cost of materials for special cases where the distance from the supplier delivery point to the job site exceeds 50 miles. The costs for shipping by UPS or bulk freight shipping to a location within 50 miles of the job site have already been included in the component price.	Dollars	\$1.00	500	\$500.00

Practice: 528-Prescribed Grazing
Scenario: \#1-Standard

Scenario Description:

Design and implementation of a grazing system on rangeland or pasture that will enhance ecosystem function, enhance habitat components for the identified wildlife species of concern and/or improve the plant community as well as optimize efficiency and economic return through monitoring. This scenario is for balancing grazing animal numbers with production of forage resulting in a stabilized system that resulted in decreasing the number of animals on the operating unit(s).

Before Situation:

A resource concern has been identified through field inventories and determined that the plant communities exhibit undesirable and inefficient use of forage plants and there is a negative impact on rangeland health, pasture condition, soil and water resources. Additionally, wildlife cover, shelter, food, water and movement are limited due to grazingland condition. Stocking rates are likely higher than the current level of production and efficiency of use can support without management changes. There is currently no monitoring plan in place to evaluate change on the landscape.

After Situation:

Prescribed grazing system has been implemented that results in the protection of the resource base and the health and vigor of the plant communities that are in place have recovered and/or enhanced to benefit habitat for targeted wildlife species. Livestock are managed in a way that enhances rangeland health or pasture condition and function through protection of sensitive areas, and efficient harvest of forage resources. Grazing system success will be evaluated through short term monitoring.

Feature Measure: Acres Properly Grazed
Scenario Unit: Acres

Scenario Typical Size: 500.00
Scenario Total Cost: \$5,357.69
Scenario Cost/Unit: \$10.72

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Equipment Installation						
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	60	\$1,071.60
Rangeland/grassland field monitoring kit	967	Miscellaneous tools needed to complete rangeland/grassland monitoring. Materials may include camera, clippers, plot frame, scale, tape measure, etc. Includes materials and shipping only.	Each	\$49.50	1	\$49.50
Foregone Income						
FI, Grazing AUMs	2079	Grazing is the Primary Land Use	Animal Unit Month	\$11.70	108	\$1,263.60
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	60	\$2,856.60

Practice: 528-Prescribed Grazing
Scenario: \#2 - Range Deferment

Scenario Description:

Defer Rangeland as required in the standard for up to one year after treatment for invasive weeds or brush to improve the health and vigor or to provide nesting habitat for wildlife species. Brush inventory or forage inventory records indicate the dates of deferment and monitoring will determine if the desired objectives have been accomplished

Before Situation:
Rangeland has been treated for invasive weeds or brush that requires deferment as required in the 528 standard.
After Situation:
Rangeland deferment has imporved the grazingland plant health, species diversity, vigor, ecosystem function, and forage production has increased to a level that will support moderate stocking rates in a planned grazing management system,

Feature Measure: Acres Deferred

Scenario Unit: Acres

Scenario Typical Size: 320.00
Scenario Total Cost: \$1,050.18
Scenario Cost/Unit: \$3.28

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Trucking, moving livestock to new paddock	961	Livestock transportation costs to implement a grazing rotation using a gooseneck trailer 6 ft . 8 inch $\times 24$ feet. Includes equipment, power unit and labor costs.	Mile	\$2.49	25	\$62.25
Rangeland/grassland field monitoring kit	967	Miscellaneous tools needed to complete rangeland/grassland monitoring. Materials may include camera, clippers, plot frame, scale, tape measure, etc. Includes materials and shipping only.	Each	\$49.50	1	\$49.50
Foregone Income						
FI, Grazing AUMs	2079	Grazing is the Primary Land Use	Animal Unit Month	\$11.70	68	\$795.60
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	3	\$142.83

Practice: 528-Prescribed Grazing
Scenario: \#4 - Expired CRP Field

Scenario Description:

Design and implementation of a grazing system on expired CRP that will ensure that the field remains in native grass and that a prescribed grazing system is in place; rangeland health and ecosystem function will be maintained

Before Situation:
The field was CP-1 or CP-2 under the Conservation Reserve Program, but has been expired or the client opted out. The field is very susceptible to wind or water erosion and maintaining the grass cover will prevent the erosion from occurring. The field may also offer valuable habitat for endemic wildlife species such as, but not limited to, lesser prairie chicken. The field may have been grazed or hayed, but is not currently under a grazing system. Stocking rates are likely higher than the current level of production and efficiency of use can support without management changes. There is currently no monitoring plan in place to evaluate change on the landscape.

After Situation:

Prescribed grazing system has been implemented that protects the soil from erosion and the plant community continues to provide habitat for endemic wildlife species. The resource base and the health and vigor of the plant communities that are in place have recovered. Livestock are managed in a way that enhances rangeland health and function through protection of sensitive areas, and efficient harvest of forage resources. Grazing system success will be evaluated through short term monitoring.

Feature Measure: Acres Properly Grazed
Scenario Unit: Acres
Scenario Typical Size: 120.00
Scenario Total Cost: $\$ 4,528.00$

Scenario Cost/Unit: \$37.73

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	30	\$749.70
Rangeland/grassland field monitoring kit	967	Miscellaneous tools needed to complete rangeland/grassland monitoring. Materials may include camera, clippers, plot frame, scale, tape measure, etc. Includes materials and shipping only.	Each	\$49.50	1	\$49.50
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	60	\$1,629.60
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	16	\$2,099.20

Practice: 528-Prescribed Grazing
Scenario: \#53-Prescribed Grazing - Small Ac.

Scenario Description:

Plan, implement and monitor a rotational grazing system that will enhance and maintain ecosystem function as well as optimize efficiency and economic return on small acreage grazinglands.

Before Situation:
Overuse and degradation of the soil and plant resources are occurring and animal health is compromised due to inappropriate timing, duration, frequency and intensity of animal utilization resulting in impaired ecosystem functions.

After Situation:

Planned movement of animals meets ecosystem functions due to proper timing, duration, frequency and intensity of animal utilization. Monitoring is showing that animal demand is in balance with available forage resources and ecological function and processes for soil, water and plant resources are being improved.

Feature Measure: Acres

Scenario Unit: Acres

Scenario Typical Size: 10.00

Scenario Total Cost:	\$1,129.59					
Scenario Cost/Unit:		12.96				
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Equipment Installation						
Rangeland/grassland field monitoring kit	967	Miscellaneous tools needed to complete rangeland/grassland monitoring. Materials may include camera, clippers, plot frame, scale, tape measure, etc. Includes materials and shipping only.	Each	\$49.50	1	\$49.50
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	6	\$203.22
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	28	\$760.48

Practice: 528-Prescribed Grazing

Scenario: \#62 - Rest Rotation Grazing
Scenario Description:
Rest or defer a unit of grazing land as necessary for up to one year to restore plant vigor, allow for seed development and ripening, or allow seed establishment before reintroducing a grazing rotation. This scenario can be used after vegetative treatments such as brush management, herbaceous weed treatment, or grass planting to improve the health and vigor of plants, allow for vegetative reestablishment, or to provide nesting habitat for wildlife species. Monitoring records will indicate plant recovery or establishment, and indicate desired objectives have been accomplished. Scenario size will be 80 acres. This is based on a typical operation of 640 acres with 8 fields (assumed equal size) and vegetative work (brush management, prescribed fire, herbaceous weed treatment, grass planting) is performed in only one field for which deferment is needed.

Before Situation:
Grazingland is in a state of health that a period of rest from grazing pressure will improve soil and plant health, OR grazing land has been treated with vegetative practices and plant establishment/recovery is needed.

After Situation:
Rest from grazing pressure has improved plant health, species diversity, vigor, ecosystem function, and forage production has increased to a level that will support moderate stocking rates in a planned grazing management system

Feature Measure: Acres in rest rotation

Scenario Unit: Acres

Scenario Typical Size: 80.00
Scenario Total Cost: \$917.93

Scenario Cost/Unit: \$11.47
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Equipment Installation						
Rangeland/grassland field monitoring kit	967	Miscellaneous tools needed to complete rangeland/grassland monitoring. Materials may include camera, clippers, plot frame, scale, tape measure, etc. Includes materials and shipping only.	Each	\$49.50	1	\$49.50
Foregone Income						
FI, Grazing AUMs	2079	Grazing is the Primary Land Use	Animal Unit Month	\$11.70	48	\$561.60
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44

Practice: 528 - Prescribed Grazing

Scenario: \#64-Intensive Management

Scenario Description:

Design and implementation of a grazing system on rangeland or pasture that will enhance ecosystem function as well as optimize efficiency and economic return through monitoring. The planned grazing management system will focus on timing, frequency, season of use and higher stock densities. This scenario is intended to be used on multi paddock high stock density grazing systems on rangeland and pasture. This sceranrio is for balancing grazing animal numbers with production of forage resulting in an intensively grazed, stabilized sytem that resulted in decreasing the number of animals on the operating unit(s).

Before Situation:
Current field inventories indicate that upward rangeland trend or pasture condition can be achieved through intensive management. The current system in operation meets minimum resource requirements, however opportunity exisits to increase species diversity, soil health, nutrient and water cycling.

After Situation:

Intensive grazing system has been implemented that results in the protection of the resource base and the health and vigor of the plant communities that are in place have recovered. Livestock are managed in a way that enhances rangeland health and function or pasture condition through protection of sensitive areas, and efficient harvest of forage resources. Grazing system success will be evaluated through short term monitoring.

Feature Measure: Acres Properly Grazed
Scenario Unit: Acres
Scenario Typical Size: 500.00
Scenario Total Cost: \$9,229.83
Scenario Cost/Unit: \$18.46
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Equipment Installation						
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	130	\$2,321.80
Rangeland/grassland field monitoring kit	967	Miscellaneous tools needed to complete rangeland/grassland monitoring. Materials may include camera, clippers, plot frame, scale, tape measure, etc. Includes materials and shipping only.	Each	\$49.50	1	\$49.50
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	130	\$6,189.30
Materials						
Nutritional Balance Analyzer, fecal sample analysis only	1127	NIRS fecal analysis, animal performance report. Includes materials and shipping only.	Each	\$46.07	12	\$552.84

Practice: 533 - Pumping Plant

Scenario: \#1 - Electric Powered Pump, 2 Hp or Less

Scenario Description:

The installation of an electrical-powered pump less than or equal to 2 horsepower. Typically, a 1 Hp submersible electric-powered pump is installed in a well or structure; or a close-coupled 1 Hp electric-powered centrifugal pump is mounted on a platform. This typical pump is used for watering livestock as part of a prescribed grazing system; or for pressurizing a small irrigation system; or for transferring liquid waste in a waste management system. Resource Concerns: Livestock Production Limitation Inadequate livestock water; Water Quality degradation - Excess nutrients in surface and ground waters; Insufficient water - Inefficient use of irrigation water.Associated Practices include: 374 - Farmstead Energy Improvement; 430 - Irrigation Pipeline; 441 - Irrigation System, Microirrigation; 449 - Irrigation Water Management; 516 Livestock Pipeline; 313 - Waste Storage Facility; 634 - Waste Transfer; and 614 - Watering Facility.

Before Situation:
Livestock: The present gravity flow system is inadequate to provide the proper flow rate for a prescribed grazing system. Irrigation: Available water is at an insufficient pressure to allow for even distribution of water. Waste Transfer: Contaminated water needs to be moved to a containment facility.

After Situation:

Livestock: Water is transferred at a sufficient rate and pressure to meet the requirements of a prescribed grazing system. Irrigation: A properly designed pump is installed to improve irrigation efficiency and reduce energy usage. Waste Transfer: Liquid wastes that have been collected through a waste transfer system are now efficiently transferred to an appropriate treatment or storage facility.

Feature Measure: Each Pumping Plant
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 2,707.02$
Scenario Cost/Unit: \$2,707.02

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	0.25	\$101.18
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	6	\$162.96
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	6	\$285.66
Materials						
Pump, <= 5 HP, pump and motor, fixed cost portion	1009	Fixed cost portion of a pump less than or equal to 5 HP pump and motor. This portion is the base cost and is not dependent on horsepower. The total cost of any pump will include this fixed cost plus a variable cost portion. Includes the motor and controls for materials and shipping only.	Each	\$1,659.42	1	\$1,659.42
Pump, <= 5 HP, pump and motor, variable cost portion	1010	Variable cost portion of a pump less than or equal to 5 HP pump and motor. This portion is dependent on the total horsepower for the pump. The total cost of any pump will include this variable cost plus the fixed cost portion. Includes the motor and controls for materials and shipping only.	Horsepower	\$447.82	1	\$447.82

Practice: 533 - Pumping Plant
Scenario: \#2 - Electric Powered Pump, 2 HP or Less, Pressure Tank

Scenario Description:

The installation of an electrical-powered pump less than or equal to 2 horsepower with a pressure tank. Typically, a 1 Hp submersible electric-powered pump is installed in a well or structure; or a close-coupled 1 Hp electric-powered centrifugal pump is mounted on a platform. This typical pump is used for watering livestock as part of a prescribed grazing system; or for pressurizing a small irrigation system. Resource Concerns: Livestock Production Limitation - Inadequate livestock water; Insufficient water - Inefficient use of irrigation water.Associated Practices include: 374 - Farmstead Energy Improvement; 430 - Irrigation Pipeline; 441 - Irrigation System, Microirrigation; 449 - Irrigation Water Management; 516 - Livestock Pipeline.

Before Situation:
Livestock: The present gravity flow system is inadequate to provide the proper flow rate for a prescribed grazing system. Irrigation: Available water is at an insufficient pressure to allow for even distribution of water.

After Situation:
Livestock: Water is transferred at a sufficient rate and pressure to meet the requirements of a prescribed grazing system. Irrigation: A properly designed pump is installed to improve irrigation efficiency and reduce energy usage.

Feature Measure: Each Pumping Plant
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$3,135.71

Scenario Cost/Unit: \$3,135.71
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	0.25	\$101.18
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	6	\$162.96
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	6	\$285.66
Materials						
Pump, <= 5 HP, pump and motor, fixed cost portion	1009	Fixed cost portion of a pump less than or equal to 5 HP pump and motor. This portion is the base cost and is not dependent on horsepower. The total cost of any pump will include this fixed cost plus a variable cost portion. Includes the motor and controls for materials and shipping only.	Each	\$1,659.42	1	\$1,659.42
Pump, <= 5 HP, pump and motor, variable cost portion	1010	Variable cost portion of a pump less than or equal to 5 HP pump and motor. This portion is dependent on the total horsepower for the pump. The total cost of any pump will include this variable cost plus the fixed cost portion. Includes the motor and controls for materials and shipping only.	Horsepower	\$447.82	1	\$447.82
Pressure Tank, 40 gallon	1038	Pressure Tank, 40 gallon. Includes materials and shipping only.	Each	\$428.69	1	\$428.69

Practice: 533 - Pumping Plant

Scenario: \#3 - Electric Powered Pump, Greater Than 2 HP and Less Than or Equal to 10 HP

Scenario Description:

The installation of an electrical-powered pump greater than 2 horsepower, but less than or equal to 10 horsepower. Typically, this is a close-coupled 7.5 Hp electricpowered centrifugal pump, mounted on a platform. This typical pump is for a large, high-pressure (200 psi) livestock pipeline, used for watering livestock as part of a prescribed grazing system; or for pressurizing a medium-sized (200 gpm and 40 psi) irrigation system; or a medium-sized (400 gpm and 20 psi) waste management system.

Resource Concerns: Livestock Production Limitation - Inadequate livestock water; Water Quality degradation - Excess nutrients in surface and ground waters; Insufficient water - Inefficient use of irrigation water.Associated Practices include: 374-Farmstead Energy Improvement; 430 - Irrigation Pipeline; 441 - Irrigation System, Microirrigation; 449 - Irrigation Water Management; 516 - Livestock Pipeline; 313 - Waste Storage Facility; 634 - Waste Transfer; and 614 - Watering Facility.

Before Situation

Livestock: Current system consists of a series of medium pressure and inefficient pump stations to transport water to a distant and higher-elevation watering facility. Irrigation: An existing irrigation system employs an inefficient, improperly sized pump, that prevents efficient water application resulting in water loss and high energy use. Waste Transfer: Various types of semi-solid or liquid waste are uncollected causing surface and ground water issues. Due to topography, gravity transfer is not possible and a properly sized pump is needed to transfer waste as part of a waste transfer system.

After Situation:

Livestock: A single, efficient, high-pressure pumping plant is installed, eliminating intermediate pump stations, reducing energy use and enabling better system management. Irrigation: A properly designed and efficient pumping plant is installed, reducing energy use and improving irrigation efficiency. Waste Transfer: Collected wastes are now efficiently transferred to an appropriate treatment or storage facility.

Feature Measure: Pump Power Requirement
Scenario Unit: Horsepower
Scenario Typical Size: 7.50
Scenario Total Cost: \$8,220.32
Scenario Cost/Unit: \$1,096.04
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	0.5	\$202.35
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	24	\$599.76
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	24	\$651.84
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	24	\$1,142.64
Materials						
Pump, > 5 HP to 30 HP, pump and motor, fixed cost portion	1011	Fixed cost portion of a pump between 5 and 30 HP , including the pump and motor. This portion is a base cost for the pump and is not dependent on horsepower. The total cost will include this fixed cost plus a variable cost portion. Includes material and shipping only.	Each	\$3,727.95	1	\$3,727.95
Pump, > 5 HP to 30 HP, pump and motor, variable cost portion	1012	Variable cost portion of a pump between 5 and 30 HP , including the pump and motor. This portion is dependent on the total horsepower for the pump. The total cost will include this variable cost plus a fixed cost portion. Includes material and shipping only.	Horsepower	\$252.77	7.5	\$1,895.78

Practice: 533 - Pumping Plant
Scenario: \#4 - Electric Powered Pump, Greater Than 10 HP and Less Than or Equal to 40 HP

Scenario Description:

The installation of an electrical-powered pump greater than 10 horsepower, but less than or equal to 40 horsepower. Typically, this is a close-coupled, $3-\mathrm{phase}, 25 \mathrm{Hp}$ electric-powered centrifugal pump mounted on a platform for pressurizing a medium-sized (600 gpm and 50 psi) sprinkler or large microirrigation (850 gpm and 35 psi) system or a large-sized surface irrigaiton system ($1,200 \mathrm{gpm}$) or a large-sized ($1,200 \mathrm{gpm}$ and 25 psi) waste management system. Resource Concerns: Water Quality degradation - Excess nutrients in surface and ground waters; Insufficient water - Inefficient use of irrigation water.Associated Practices include: 374 - Farmstead Energy Improvement; 430 - Irrigation Pipeline; 441 - Irrigation System, Microirrigation; 449 - Irrigation Water Management; 313 - Waste Storage Facility; 634 - Waste Transfer; and 614 - Watering Facility.

Before Situation:
Irrigation: An existing irrigation system employs an inefficient, improperly sized pump that prevents efficient water application resulting in water loss and high energy use. Waste Transfer: Various types of semi-solid or liquid waste are uncollected causing surface and ground water issues. Due to topography, gravity transfer is not possible and a properly sized pump is needed to transfer waste as part of a waste transfer system.

After Situation:

Irrigation: A properly designed and efficient pumping plant is installed, reducing energy use and improving irrigation efficiency. Waste Transfer: Collected wastes are now efficiently transferred to an appropriate treatment or storage facility or to a distribution system.

Feature Measure: Pump Power Requirement
Scenario Unit: Horsepower
Scenario Typical Size: 25.00
Scenario Total Cost: $\$ 18,997.50$

Scenario Cost/Unit: \$759.90

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	2	\$809.40
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	8	\$521.68
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	56	\$1,399.44
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	8	\$270.96
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	56	\$1,520.96
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	8	\$254.96
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	56	\$2,666.16

Materials

Pump, > 5 HP to 30 HP, pump and motor, fixed cost portion

Pump, > 5 HP to 30 HP, pump and 101 motor, variable cost portion

Mobilization

1011 Fixed cost portion of a pump between 5 and 30 HP , including the pump and motor. This portion is a base cost for the pump and is not dependent on horsepower. The total cost will include this fixed cost plus a variable cost portion. Includes material and shipping only.
12 Variable cost portion of a pump between 5 and 30 HP , including the pump and motor. This portion is dependent on the total horsepower for the pump. The total cost will include this variable cost plus a fixed cost portion. Includes material and shipping only.

Each
\$3,727.95
1
\$3,727.95
Horsepower \$252.77 25 \$6,319.25
quipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.

Each \$753.37
2

Practice: 533 - Pumping Plant
Scenario: \#5 - Electric Powered Pump, Greater Than 40 HP

Scenario Description:

The installation of an electrical-powered pump greater than 40 horsepower. Typically, this is a close-coupled, 3-phase, 50 Hp electric-powered centrifugal pump mounted on a platform for pressurizing a large-sized ($1,200 \mathrm{gpm}$ and 50 psi) sprinkler or very large microirrigation (1,700 gpm and 35 psi) system or a very large-sized surface irrigation system ($2,800 \mathrm{gpm}$) or a very large-sized ($2,400 \mathrm{gpm}$ and 25 psi) waste management system. Resource Concerns: Water Quality degradation - Excess nutrients in surface and ground waters; Insufficient water - Inefficient use of irrigation water.Associated Practices include: 374 - Farmstead Energy Improvement; 430 - Irrigation Pipeline; 441 - Irrigation System, Microirrigation; 442 - Irrigation System, Sprinkler; 449 - Irrigation Water Management; 313 - Waste Storage Facility; and 634 - Waste Transfer.

Before Situation:
Irrigation: An existing irrigation system employs an inefficient, improperly sized pump that prevents efficient water application resulting in water loss and high energy use.

After Situation:
Irrigation: A properly designed and efficient pumping plant is installed, reducing energy use and improving irrigation efficiency.
Feature Measure: Pump Power Requirement
Scenario Unit: Horsepower
Scenario Typical Size: 50.00
Scenario Total Cost: \$25,316.75
Scenario Cost/Unit: \$506.34
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	2	\$809.40
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	8	\$521.68
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	56	\$1,399.44
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	8	\$270.96
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	56	\$1,520.96
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	8	\$254.96
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	56	\$2,666.16
Materials						
Pump, > 5 HP to 30 HP, pump and motor, fixed cost portion	1011	Fixed cost portion of a pump between 5 and 30 HP , including the pump and motor. This portion is a base cost for the pump and is not dependent on horsepower. The total cost will include this fixed cost plus a variable cost portion. Includes material and shipping only.	Each	\$3,727.95	1	\$3,727.95
Pump, > 5 HP to 30 HP, pump and motor, variable cost portion	1012	Variable cost portion of a pump between 5 and 30 HP , including the pump and motor. This portion is dependent on the total horsepower for the pump. The total cost will include this variable cost plus a fixed cost portion. Includes material and shipping only.	Horsepower	\$252.77	50	\$12,638.50
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

USDA United States Department of Agriculture
Natural Resources Conservation Service
Practice: 533-Pumping Plant
Scenario: \#6 - Variable Frequency Drive (VFD), 40 HP or Less

Scenario Description:

This is an installation of electrical and electronic components designed to vary the frequency of the voltage to a 40 HP or less electric motor and thus the ability to vary the speed of the motor. This directly affects pressure and flowrate. This also could give the operator the flexibility to operate several systems separately or at the same time.Resource concerns: Insufficient water - Inefficient use of irrigation water; Inefficient energy use - Equipment and facilities and Farming/ranching practices and field operations.Associated Practices: 374 - Farmstead Energy Improvement; 430-Irrigation Pipeline; 441-Irrigation System, Microirrigation; 449 - Irrigation Water Management; 516 - Livestock Pipeline; and 614 - Watering Facility.

Before Situation:

Standard electrical connection from electrical utility to pump motor. No capability to match pump output pressure and/or flowrate to field(s) need(s). Result is over/under pressure(s) and/or flow rate(s), possible hydraulic anomalies, energy loss, and or inefficient water application in the irrigation system.

After Situation:

VFD Modifications are implemented at the pump site to allow for varying the speed of a 25 Hp electric motor to match the pressure and flow requirements for a center pivot irrigation system.

Feature Measure: Pump Power Requirement
Scenario Unit: Horsepower
Scenario Typical Size: 25.00
Scenario Total Cost: $\$ 4,682.90$
Scenario Cost/Unit: \$187.32
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	20	\$677.40
Materials						
Variable Speed Drive, 25 HP	2557	Variable speed drive for 25 Horsepower electric motor. Does not include motor. Materials only.	Horsepower	\$160.22	25	\$4,005.50

USDA United States Department of Agriculture
Natural Resources Conservation Service
Practice: 533-Pumping Plant
Scenario: \#7-VFD, Greater Than 40 HP and Less Than 100 HP

Scenario Description:

This is an installation of electrical and electronic components designed to vary the frequency of the voltage to an electric motor that is greater than 40 HP and less than 100 HP in order to vary the speed of the motor. This directly affects pressure and flowrate. This also could give the operator the flexibility to operate several systems separately or at the same time.Resource concerns: Insufficient water - Inefficient use of irrigation water; Inefficient energy use - Equipment and facilities and Farming/ranching practices and field operations.Associated Practices: 374 - Farmstead Energy Improvement; 430 - Irrigation Pipeline; 441 - Irrigation System, Microirrigation; 449 - Irrigation Water Management; 516 - Livestock Pipeline; and 614 - Watering Facility.

Before Situation:

Standard electrical connection from electrical utility to pump motor. No capability to match pump output pressure and/or flowrate to field(s) need(s). Result is over/under pressure(s) and/or flow rate(s), possible hydraulic anomalies, energy loss, and or inefficient water application in the irrigation system.

After Situation:

VFD Modifications are implemented at the pump site to allow for varying the speed of a 50 Hp electric motor to match the pressure and flow requirements for a center pivot irrigation system.

Feature Measure: Pump Power Requirement
Scenario Unit: Horsepower
Scenario Typical Size: 50.00
Scenario Total Cost: $\$ 6,979.90$
Scenario Cost/Unit: \$139.60

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	20	\$677.40
Materials						
Variable Speed Drive, 50 HP	1288	Variable speed drive for 50 Horsepower electric motor. Does not include motor. Materials only.	Horsepower	\$126.05	50	\$6,302.50

Practice: 533 - Pumping Plant

Scenario: \#9 - Internal Combustion Powered Pump, Less Than or Equal to 75 HP

Scenario Description:

The installation of an internal combustion-powered pump less than or equal to 75 horsepower. The typical installation is for a 45 HP pump to support an existing irrigation system on cropland. The size of the pump is determined by required GPM and pressure derived from a design for a specific irrigation system on cropland. The typical installation could also be for a 45 HP pump to support a waste management system. An example implementation of this scenario for waste management is a liquid manure pump used to transfer semi-solid manure from a small reception pit located either below a barnyard or at the end of a free-stall barn or scrape alley. Resource Concerns: Water Quality degradation - Excess nutrients in surface and ground waters; Insufficient water - Inefficient use of irrigation water.Associated Practices include: 374 - Farmstead Energy Improvement; 430 - Irrigation Pipeline; 441 - Irrigation System, Microirrigation; 449 - Irrigation Water Management; 313 - Waste Storage Facility; 634 - Waste Transfer; 436 - Irrigation Reservoir; and 447 - Irrigation System, Tailwater Recovery; and 614 - Watering Facility.

Before Situation:

Irrigation: Either an existing irrigation system employs an inefficient, improperly-sized pump that leads to inefficient water delivery resulting in high energy costs, or Waste Transfer: various types of semi-solid or liquid waste at the headquarters is uncollected causing surface and ground water issues.

After Situation:
Irrigation Setting: For irrigation system, a properly designed pump is installed, reducing water and energy usage. Waste Transfer Setting: For semi-solid or liquid waste, wastes that have been collected through a waste transfer system are now efficiently transferred to appropriate treatment or storage facilities or crop application. Due to topography, gravity transfer is not possible and a properly sized pump is needed to transfer waste as part of a waste transfer system.

Feature Measure: Pump Power Requirement
Scenario Unit: Horsepower

Scenario Typical Size: 45.00
Scenario Total Cost: \$36,938.23
Scenario Cost/Unit: \$820.85
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	1	\$404.70
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	8	\$521.68
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	4	\$99.96
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	8	\$270.96
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	32	\$869.12
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	8	\$254.96
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	16	\$761.76
Materials						
Pump, < 50 HP, Pump \& ICE power unit	1027	Materials, labor, controls: < 50 HP Pump \& ICE power unit	Horsepower	\$716.63	45	\$32,248.35
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 533 - Pumping Plant

Scenario: \#10 - Internal Combustion Powered Pump, Greater Than 75 HP

Scenario Description:

The installation of an internal combustion-powered pump greater than 75 horsepower. The typical installation is for a 100 HP pump to support an existing irrigation system on cropland. The size of the pump is determined by required GPM and pressure derived from a design for a specific irrigation system on cropland. The typical installation could also be for a 100 HP pump to support a waste management system. An example implementation of this scenario for waste managment is a liquid manure pump used to transfer semi-solid manure from a small reception pit located either below a barnyard or at the end of a free-stall barn or scrape alley. Resource Concerns: Water Quality degradation - Excess nutrients in surface and ground waters; Insufficient water - Inefficient use of irrigation water.Associated Practices include: 374 - Farmstead Energy Improvement; 430 - Irrigation Pipeline; 441 - Irrigation System, Microirrigation; 449 - Irrigation Water Management; 313 - Waste Storage Facility; 634 - Waste Transfer; and 614 - Watering Facility.

Before Situation:
Irrigation: Either an existing irrigation system employs an inefficient, improperly-sized pump that leads to inefficient water delivery resulting in high energy costs,
orWaste Transfer: various types of semi-solid or liquid waste at the facility site is uncollected, causing surface and groundwater issues.
After Situation:
Irrigation Setting: For an irrigation system a properly designed pump is installed to reduce water and energy usage. Waste Transfer Setting: For semi-solid or liquid waste, wastes that have been collected through a waste transfer system are now efficiently transferred to appropriate treatment or storage facilities or field application. Due to topography, gravity transfer is not possible and a properly-sized pump is needed to transfer waste as part of a waste transfer system.

Feature Measure: Pump Power Requirement
Scenario Unit: Horsepower
Scenario Typical Size: 100.00
Scenario Total Cost: $\$ 69,855.00$
Scenario Cost/Unit: \$698.55
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	2	\$809.40
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	8	\$521.68
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	6	\$149.94
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	8	\$270.96
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	48	\$1,303.68
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	8	\$254.96
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	24	\$1,142.64
Materials						
Pump, > 70 HP, Pump \& ICE power unit	1029	Materials, labor, controls: > 70 HP Pump \& ICE power unit	Horsepower	\$638.95	100	\$63,895.00
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 533 - Pumping Plant

Scenario: \#11 - Tractor Power Take Off (PTO) Pump - Regional

Scenario Description:

This scenario involves a PTO driven pump to either transfer water for an irrigation system from a Pond - 378 (includes backflow prevention as appropriate) to cropland or; to transfer semi-solid/ liquid manure (as part of a waste management system) from a Waste Storage Facility - 313, to an irrigation system or waste treatment facility. In both cases, a PTO driven pump is selected because the landowner has equipment available to supply power to the pump. Electricity is not readily available and/or a stationary engine is not a practical alternative.Resource Concerns: Water Quality degradation - Excess nutrients in surface and ground waters; Insufficient water Inefficient use of irrigation water.Associated Practices include: 430 - Irrigation Pipeline; 442 - Irrigation System, Sprinkler; 449 - Irrigation Water Management; 590 Nutrient Management; 378 - Pond; 313 - Waste Storage Facility; and 634 - Waste Transfer.

Before Situation:
Irrigation Setting: An existing surface irrigation system employs an inefficient, improperly sized pump that leads to inefficient water delivery resulting in high energy costs; Waste Transfer Setting: various types of semi-solid or liquid waste at the headquarters are uncollected causing surface and ground water issues. A transfer method for waste is needed. Due to topography, gravity transfer is not possible and a properly sized pump is needed to transfer waste as part of a waste transfer system.

After Situation:

Irrigation Setting: A properly designed PTO-driven pump is installed, to transfer water to an Irrigation Pipeline (430) or Irrigation Canal or Lateral (320). Waste Transfer Setting: Wastes that have been collected through a waste transfer system are now efficiently transferred from a Waste Storage Facility (313) to an appropriate treatment facility or to an irrigation system. The pump typically will move 2,000 gallons per minute and is portable so that it can be used at several locations.

Feature Measure: Pump Power Requirement
Scenario Unit: Horsepower
Scenario Typical Size: 60.00
Scenario Total Cost: \$9,866.48

Scenario Cost/Unit: \$164.44

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	2	\$809.40
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	16	\$399.84
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	16	\$761.76
Materials						
Pump, Ag Water PTO, 1,000 GPM	1923	Materials, labor, controls: Ag Water PTO Pump 1,000 GPM - 8 in.	Each	\$7,460.92	1	\$7,460.92

Practice: 533 - Pumping Plant
Scenario: \#12-Windmill Powered Pump

Scenario Description:

A windmill is installed in order to supply a reliable water source for livestock and/or wildlife. The windmill includes the tower, concrete footings, wheel blade unit, sucker rod, down pipe, gear box, pump, plumbing, and well head protection concrete pad. The typical scenario will be a windmill system with a 10 ft diameter mill and 27 -foot tower which is pumping from a 150 -foot well. As a result of installing this windmill, resource concerns of inadequate stock water, plant establishment, growth, productivity, health, and vigor, and water quantity can be addressed.Resource Concerns: Insufficient stockwater.

Before Situation:
In a rangeland or pasture setting, a reliable source of water for livestock is not available, or the spacing between water sources is such that grazing distribution and plant health are adversely impacted.

After Situation:
A windmill, with a wheel ranging from 6^{\prime} to 16^{\prime} in diameter, will be installed over a well that is located to provide a reliable source of livestock water at the rate of at least 2 gpm , to facilitate proper grazing distribution and improved plant health. To increase reliability, water is pumped into a storage tank to provide a given number of days of supply. Installation includes the footings, wellhead protection concrete pad, tower, gear box, sail, sucker rod, down hole accessories, and a short outlet pipe to a storage tank.

Feature Measure: Diameter of Mill Wheel
Scenario Unit: Feet
Scenario Typical Size: 10.00

Scenario Total Cost:	$\$ 13,325.48$
Scenario Cost/Unit:	$\$ 1,332.55$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	2	\$809.40
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	4	\$99.96
Aerial lift, telescoping bucket	1893	Aerial lift, bucket truck or cherry picker, typical 40' boom. Equipment only.	Hours	\$45.04	8	\$360.32
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	32	\$869.12
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	16	\$761.76
Materials						
Windmill, 10 ft . fan diameter	1036	Includes materials costs for windmill head and 27 foot tower	Each	\$8,918.18	1	\$8,918.18
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 533 - Pumping Plant

Scenario: \#13 - Photovoltaic Powered Pumping Plant, 150 ft or Less of Total Head on Pump

Scenario Description:

The installation of a photovoltaic-powered pumping plant with a design operating total dynamic head on pump less than or equal to 150 feet. The typical scenario assumes the installation of a submersible solar-powered pump in a well, pond, or a live stream. The installation includes the pump, wiring, drop pipe, solar panels, mounts, inverter, and all appurtenances. Grazing - Livestock exclusion from surface water will result in improved surface water quality and reduced erosion.Resource Concerns: Insufficient water for livestock.Associated Practices include: 374 - Farmstead Energy Improvement; 382 - Fence; 430 - Irrigation Pipeline; 436 - Irrigation Reservoir; 516 Livestock Pipeline; 561 - Heavy Use Area Protection; and, 614 - Watering Facility.

Before Situation:

Livestock: Inadequate supply or location of water for a prescribed grazing system. Eroded stream banks and degraded water quality due to livestock access to stream. Cattle are not well-distributed because of remote water location.

After Situation:

The typical scenario assumes installation of a 400-watt photovoltaic (PV) panel array, with a variable speed DC submersible pump operating at a TDH of 110 feet, with the pump set at 100 feet. The installation includes the pump, wiring, column pump pipe, solar panels, solar panel mount or racks, pump controller, and all appurtenances. Grazing - Livestock exclusion from surface water will result in improved surface water quality and reduced erosion. Grazing has potential to be well distributed.

Feature Measure: Each Pumping Plant

Scenario Unit: Each

Scenario Typical Size: 1.00
Scenario Total Cost: \$6,572.75
Scenario Cost/Unit: \$6,572.75

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	20	\$677.40
Materials						
Solar Pumping System, Fixed Cost Portion	2495	Fixed cost portion of a solar powered pumping system. This portion is a base cost for a complete system including the photovoltaic panels, pumping plant, support braces, electric controllers, service drop, etc., and is not dependant on KiloWatt. The total cost will include this fixed cost plus a variable cost portion. Includes the cost of materials only.	Each	\$4,050.01	1	\$4,050.01
Solar Pumping System, Variable Cost Portion	2496	Variable cost portion of a solar powered pumping system. This portion IS dependent upon the total kilowatts of the photovoltaic panels, but also includes the pumping plant, support braces, electric controllers, service drop, etc. The total cost will include this variable cost plus a fixed cost portion. Includes the cost of materials only.	Kilowatt	\$4,613.35	0.4	\$1,845.34

Practice: 533 - Pumping Plant

Scenario: \#14 - Photovoltaic Powered Pumping Plant, 151-300 ft of Total Head on Pump

Scenario Description:

The installation of a photovoltaic-powered pumping plant with a design operating total dynamic head on pump greater than 150 feet, and less than or equal to 300 feet. The typical scenario assumes installation of a submersible solar-powered pump in a well, pond, or a live stream. The installation includes the pump, wiring, drop pipe, solar panels, mounts, inverter, and all appurtenances. Grazing - Livestock exclusion from surface water will result in improved surface water quality and reduced erosion.

Resource Concerns: Insufficient livestock water.Associated Practices include: 374 - Farmstead Energy Improvement; 382 - Fence; 430 - Irrigation Pipeline; 436 - Irrigation Reservoir; 516 - Livestock Pipeline; 561 - Heavy Use Area Protection; and, 614 - Watering Facility.

Before Situation:
Livestock: Inadequate supply or location of water for a prescribed grazing system. Eroded stream banks and degraded water quality due to livestock access to stream. Cattle are not well-distributed because of remote water location.

After Situation:
The typical scenario assumes installation of a 700-watt photovoltaic (PV) panel array, with a variable speed DC submersible pump operating at a TDH of 245 feet, with the pump set at 225 feet. The installation includes the pump, wiring, column pump pipe, solar panels, solar panel mount or racks, pump controller, and all appurtenances. Grazing - Livestock exclusion from surface water will result in improved surface water quality and reduced erosion. Grazing has potential to be well distributed.

Feature Measure: Each Pumping Plant

Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: $\quad \$ 7,956.76$
Scenario Cost/Unit: \$7,956.76

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	20	\$677.40
Materials						
Solar Pumping System, Fixed Cost Portion	2495	Fixed cost portion of a solar powered pumping system. This portion is a base cost for a complete system including the photovoltaic panels, pumping plant, support braces, electric controllers, service drop, etc., and is not dependant on KiloWatt. The total cost will include this fixed cost plus a variable cost portion. Includes the cost of materials only.	Each	\$4,050.01	1	\$4,050.01
Solar Pumping System, Variable Cost Portion	2496	Variable cost portion of a solar powered pumping system. This portion IS dependent upon the total kilowatts of the photovoltaic panels, but also includes the pumping plant, support braces, electric controllers, service drop, etc. The total cost will include this variable cost plus a fixed cost portion. Includes the cost of materials only.	Kilowatt	\$4,613.35	0.7	\$3,229.35

Practice: 533 - Pumping Plant

Scenario: \#15 - Photovoltaic Powered Pumping Plant, Greater Than 300 ft of Total Head on Pump

Scenario Description:

The installation of a photovoltaic-powered pumping plant with a design operating total dynamic head on pump greater than 300 feet. The typical scenario assumes installation of a submersible solar-powered pump in a well, pond, or a live stream. The installation includes the pump, wiring, drop pipe, solar panels, mounts, inverter, and all appurtenances. Grazing - Livestock exclusion from surface water will result in improved surface water quality and reduced erosion.Resource Concerns: Insufficient stock water.Associated Practices include: 374 - Farmstead Energy Improvement; 382 - Fence; 430 - Irrigation Pipeline; 436 - Irrigation Reservoir; 516 Livestock Pipeline; 561 - Heavy Use Area Protection; and, 614 - Watering Facility.

Before Situation:

Livestock: Inadequate supply or location of water for a prescribed grazing system. Eroded stream banks and degraded water quality due to livestock access to stream. Cattle are not well-distributed because of remote water location.

After Situation:

The typical scenario assumes installation of a 1,100-watt photovoltaic (PV) panel array, with a variable speed DC submersible pump operating at a TDH of 400 feet, with the pump set at 350 feet. The installation includes the pump, wiring, column pump pipe, solar panels, solar panel mount or racks, pump controller, and all appurtenances. Grazing - Livestock exclusion from surface water will result in improved surface water quality and reduced erosion. Grazing has potential to be well distributed.

Feature Measure: Each Pumping Plant

Scenario Unit: Each

Scenario Typical Size: 1.00
Scenario Total Cost: \$10,423.82
Scenario Cost/Unit: \$10,423.82

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	32	\$1,083.84
Materials						
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	78	\$215.28
Solar Pumping System, Fixed Cost Portion	2495	Fixed cost portion of a solar powered pumping system. This portion is a base cost for a complete system including the photovoltaic panels, pumping plant, support braces, electric controllers, service drop, etc., and is not dependant on KiloWatt. The total cost will include this fixed cost plus a variable cost portion. Includes the cost of materials only.	Each	\$4,050.01	1	\$4,050.01
Solar Pumping System, Variable Cost Portion	2496	Variable cost portion of a solar powered pumping system. This portion IS dependent upon the total kilowatts of the photovoltaic panels, but also includes the pumping plant, support braces, electric controllers, service drop, etc. The total cost will include this variable cost plus a fixed cost portion. Includes the cost of materials only.	Kilowatt	\$4,613.35	1.1	\$5,074.69

Practice: 533 - Pumping Plant
Scenario: \#59-VFD, 100 HP and Greater

Scenario Description:

This is an installation of electrical and electronic components designed to vary the frequency of the voltage to a 100 HP or greater electric motor and thus the ability to vary the speed of the motor. This directly affects pressure and flowrate. This also could give the operator the flexibility to operate several systems separately or at the same time.Resource concerns: Insufficient water - Inefficient use of irrigation water; Inefficient energy use - Equipment and facilities and Farming/ranching practices and field operations.Associated Practices: 374 - Farmstead Energy Improvement; 430 - Irrigation Pipeline; 441 - Irrigation System, Microirrigation; 449 - Irrigation Water Management; 516 - Livestock Pipeline; and 614 - Watering Facility.

Before Situation:

Standard electrical connection from electrical utility to pump motor. No capability to match pump output pressure and/or flowrate to field(s) need(s). Result is over/under pressure(s) and/or flow rate(s), possible hydraulic anomalies, energy loss, and or inefficient water application in the irrigation system.

After Situation:

VFD Modifications are implemented at the pump site to allow for varying the speed of a 200 HP electric motor to match the pressure and flow requirements for a center pivot irrigation system.

Feature Measure: Pump Horsepower
Scenario Unit: Horsepower
Scenario Typical Size: 200.00
Scenario Total Cost: $\quad \$ 19,819.40$

Scenario Cost/Unit: \$99.10
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	20	\$677.40
Materials						
Variable Speed Drive, 200 HP	1290	Variable speed drive for 200 Horsepower electric motor. Does not include motor. Materials only.	Horsepower	\$95.71	200	\$19,142.00

Practice: 533-Pumping Plant
Scenario: \#99 - Electric-Powered Pump <= 5 Hp

Scenario Description:

A 1 Hp submersible electric-powered pump is installed in a well or structure; or a close-coupled 1 Hp electric-powered centrifugal pump is mounted on a platform. It is used for watering livestock as part of a prescribed grazing system; or for pressurizing a small irrigation system; or for transferring liquid waste in a waste transfer system.

Resource Concerns: Livestock Production Limitation - Inadequate livestock water; Water Quality degradation - Excess nutrients in surface and ground waters; Insufficient water - Inefficient use of irrigation water.Associated Practices include: 374 - Farmstead Energy Improvement; 430 - Irrigation Pipeline; 441 - Irrigation System, Microirrigation; 449 - Irrigation Water Management; 516 - Livestock Pipeline; 313 - Waste Storage Facility; 634 - Waste Transfer; and 614 - Watering Facility.

Before Situation:
Livestock: The present gravity flow system is inadequate to provide the proper flow rate for a prescribed grazing system. Irrigation: Available water is at an insufficient pressure to allow for even distribution of water. Waste Transfer: Contaminated water needs to be moved to a containment facility.

After Situation:

Livestock: Water is transferred at a sufficient rate and pressure to meet the requirements of a prescribed grazing system. Irrigation: A properly designed pump is installed to improve irrigation efficiency and reduce energy usage. Waste Transfer: Liquid wastes that have been collected through a waste transfer system are now efficiently transferred to an appropriate treatment or storage facility.

Feature Measure: Pump Power Requirement
Scenario Unit: Brake Horse Power
Scenario Typical Size: 2.50
Scenario Total Cost: $\$ 3,682.27$
Scenario Cost/Unit: \$1,472.91

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	1	\$404.70
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	6	\$162.96
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	6	\$285.66
Materials						
Pump, <= 5 HP, pump and motor, fixed cost portion	1009	Fixed cost portion of a pump less than or equal to 5 HP pump and motor. This portion is the base cost and is not dependent on horsepower. The total cost of any pump will include this fixed cost plus a variable cost portion. Includes the motor and controls for materials and shipping only.	Each	\$1,659.42	1	\$1,659.42
Pump, <= 5 HP, pump and motor, variable cost portion	1010	Variable cost portion of a pump less than or equal to 5 HP pump and motor. This portion is dependent on the total horsepower for the pump. The total cost of any pump will include this variable cost plus the fixed cost portion. Includes the motor and controls for materials and shipping only.	Horsepower	\$447.82	2.5	\$1,119.55

USDA United States Department of Agriculture

Practice: 533 - Pumping Plant

Scenario: \#100 - Electric-Powered Pump <= 5 HP with Pressure Tank

Scenario Description:

A 1 Hp submersible electric-powered pump is installed in a well or structure; or a close-coupled 1 Hp electric-powered centrifugal pump is mounted on a platform. It is used for watering livestock as part of a prescribed grazing system; or for pressurizing a small irrigation system. Resource Concerns: Livestock Production Limitation Inadequate livestock water; Insufficient water - Inefficient use of irrigation water.Associated Practices include: 374 - Farmstead Energy Improvement; 430 - Irrigation Pipeline; 441 - Irrigation System, Microirrigation; 449 - Irrigation Water Management; 516 - Livestock Pipeline.

Before Situation:

Livestock: The present gravity flow system is inadequate to provide the proper flow rate for a prescribed grazing system. Irrigation: Available water is at an insufficient pressure to allow for even distribution of water.

After Situation:

Livestock: Water is transferred at a sufficient rate and pressure to meet the requirements of a prescribed grazing system. Irrigation: A properly designed pump is installed to improve irrigation efficiency and reduce energy usage.

Feature Measure: Pump Power Requirement
Scenario Unit: Brake Horse Power
Scenario Typical Size: 1.00

Scenario Total Cost:	$\$ 3,135.71$
Scenario Cost/Unit:	$\$ 3,135.71$

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	0.25	\$101.18
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	6	\$162.96
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	6	\$285.66
Materials						
Pump, <= 5 HP, pump and motor, fixed cost portion	1009	Fixed cost portion of a pump less than or equal to 5 HP pump and motor. This portion is the base cost and is not dependent on horsepower. The total cost of any pump will include this fixed cost plus a variable cost portion. Includes the motor and controls for materials and shipping only.	Each	\$1,659.42	1	\$1,659.42
Pump, <= 5 HP, pump and motor, variable cost portion	1010	Variable cost portion of a pump less than or equal to 5 HP pump and motor. This portion is dependent on the total horsepower for the pump. The total cost of any pump will include this variable cost plus the fixed cost portion. Includes the motor and controls for materials and shipping only.	Horsepower	\$447.82	1	\$447.82
Pressure Tank, 40 gallon	1038	Pressure Tank, 40 gallon. Includes materials and shipping only.	Each	\$428.69	1	\$428.69

Practice: 533 - Pumping Plant
Scenario: \#220 - Electric-Powered Pump $>5 \mathrm{HP}<=30 \mathrm{hp}$

Scenario Description:

This is a close-coupled, 3 -phase, 20 Hp electric-powered centrifugal pump mounted on a platform for pressurizing a medium-sized (500 gpm and 50 psi) sprinkler or large microirrigation ($1,000 \mathrm{gpm}$ and 30 psi) system or a large-sized surface irrigation system ($1,500 \mathrm{gpm}$) or a medium-sized ($1,000 \mathrm{gpm}$ and 25 psi) waste transfer system.

Resource Concerns: Water Quality degradation - Excess nutrients in surface and ground waters; Insufficient water - Inefficient use of irrigation water.Associated Practices include: 374 - Farmstead Energy Improvement; 430 - Irrigation Pipeline; 441 - Irrigation System, Microirrigation; 442 - Irrigation System, Sprinkler; 449 - Irrigation Water Management; 313 - Waste Storage Facility; and 634 - Waste Transfer.

Before Situation:
Irrigation: An existing irrigation system employs an inefficient, improperly sized pump that prevents efficient water application resulting in water loss and high energy use.

After Situation:
Irrigation: A properly designed and efficient pumping plant is installed, reducing energy use and improving irrigation efficiency.
Feature Measure: Pump Power Requirement
Scenario Unit: Brake Horse Power
Scenario Typical Size: 20.00
Scenario Total Cost: \$17,733.65

Scenario Cost/Unit: \$886.68
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	2	\$809.40
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	8	\$521.68
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	56	\$1,399.44
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	8	\$270.96
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	56	\$1,520.96
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	8	\$254.96
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	56	\$2,666.16
Materials						
Pump, > 5 HP to 30 HP, pump and motor, fixed cost portion	1011	Fixed cost portion of a pump between 5 and 30 HP , including the pump and motor. This portion is a base cost for the pump and is not dependent on horsepower. The total cost will include this fixed cost plus a variable cost portion. Includes material and shipping only.	Each	\$3,727.95	1	\$3,727.95
Pump, > 5 HP to 30 HP, pump and motor, variable cost portion	1012	Variable cost portion of a pump between 5 and 30 HP , including the pump and motor. This portion is dependent on the total horsepower for the pump. The total cost will include this variable cost plus a fixed cost portion. Includes material and shipping only.	Horsepower	\$252.77	20	\$5,055.40
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 533 - Pumping Plant
Scenario: \#221 - Electric-Powered Pump >30 hp <=75

Scenario Description:

This is a close-coupled, 3 -phase, 50 Hp electric-powered centrifugal pump mounted on a platform for pressurizing a large-sized $1,000 \mathrm{gpm}$ and 50 psi) sprinkler or very large microirrigation ($2,000 \mathrm{gpm}$ and 30 psi) system or a very large-sized surface irrigation system ($3,000 \mathrm{gpm}$) or a large-sized ($2,000 \mathrm{gpm}$ and 25 psi) waste transfer system. Resource Concerns: Water Quality degradation - Excess nutrients in surface and ground waters; Insufficient water - Inefficient use of irrigation water.Associated Practices include: 374 - Farmstead Energy Improvement; 430 - Irrigation Pipeline; 441 - Irrigation System, Microirrigation; 442 - Irrigation System, Sprinkler; 449 - Irrigation Water Management; 313 - Waste Storage Facility; and 634 - Waste Transfer.

Before Situation:

Irrigation: An existing irrigation system employs an inefficient, improperly sized pump that prevents efficient water application resulting in water loss and high energy use.

After Situation:
A properly designed and efficient pumping plant is installed, reducing energy use and improving irrigation efficiency
Feature Measure: <Unknown>
Scenario Unit: Brake Horse Power
Scenario Typical Size: 50.00
Scenario Total Cost: $\$ 34,726.61$

Scenario Cost/Unit: $\quad-\quad$ _
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	2	\$809.40
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	16	\$1,043.36
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	56	\$1,399.44
Portable Welder	1407	Portable field welder. Equipment only. Labor not included.	Hours	\$19.17	16	\$306.72
Crane, truck mounted, hydraulic, 12 ton	1734	12 ton capacity truck mounted hydraulic crane. Equipment cost only.	Hours	\$280.31	16	\$4,484.96
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	56	\$1,896.72
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	24	\$764.88
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	56	\$2,666.16
Materials						
Pump, > 30 HP, pump and motor, fixed cost portion	1013	Fixed cost portion of a pump greater than 30 HP , including the pump and motor. This portion is a base cost for the pump and is not dependent on horsepower. The total cost will include this fixed cost plus a variable cost portion. Includes material and shipping only.	Each	\$6,467.67	1	\$6,467.67
Pump, >30 HP, Pump and motor, variable cost portion	1014	Variable cost portion of a pump greater than 30 HP , including the pump and motor. This portion is dependent on the total horsepower for the pump. The total cost will include this variable cost plus a fixed cost portion. Includes material and shipping only.	Horsepower	\$258.92	50	\$12,946.00
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 533 - Pumping Plant
Scenario: \#222 - Electric-Powered Pump >75

Scenario Description:

This is a close-coupled, 3 -phase, 100 Hp electric-powered centrifugal pump mounted on a platform for pressurizing a very large (2500 gpm and 50 psi) sprinkler or a largesized surface irrigation system ($3,000 \mathrm{gpm}$).Resource Concerns: Water Quality degradation - Excess nutrients in surface and ground waters; Insufficient water - Inefficient use of irrigation water.Associated Practices include: 374 - Farmstead Energy Improvement; 430 - Irrigation Pipeline; 441 - Irrigation System, Microirrigation; 442 Irrigation System, Sprinkler; 449 - Irrigation Water Management; 313 - Waste Storage Facility; and 634 - Waste Transfer.

Before Situation:

Irrigation: An existing irrigation system employs an inefficient, improperly sized pump that prevents efficient water application resulting in water loss and high energy use.

After Situation:
Irrigation: A properly designed and efficient pumping plant is installed, reducing energy use and improving irrigation efficiency.
Feature Measure: Pump Power Requirement
Scenario Unit: Brake Horse Power
Scenario Typical Size: 100.00
Scenario Total Cost:
\$42,382.33
Scenario Cost/Unit: \$423.82
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	4	\$1,618.80
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	8	\$521.68
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	56	\$1,399.44
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	12	\$406.44
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	56	\$1,520.96
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	12	\$382.44
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	56	\$2,666.16
Materials						
Pump, > 30 HP, pump and motor, fixed cost portion	1013	Fixed cost portion of a pump greater than 30 HP , including the pump and motor. This portion is a base cost for the pump and is not dependent on horsepower. The total cost will include this fixed cost plus a variable cost portion. Includes material and shipping only.	Each	\$6,467.67	1	\$6,467.67
Pump, >30 HP, Pump and motor, variable cost portion	1014	Variable cost portion of a pump greater than 30 HP , including the pump and motor. This portion is dependent on the total horsepower for the pump. The total cost will include this variable cost plus a fixed cost portion. Includes material and shipping only.	Horsepower	\$258.92	100	\$25,892.00
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 533 - Pumping Plant
Scenario: \#223-Variable Frequency Drive
Scenario Description:
This is an installation of electrical and electronic components designed to vary the frequency of the voltage to an electric motor and thus the ability to vary the speed of the motor. This directly affects pressure and flowrate. This also could give the operator the flexibility to operate several systems separately or at the same time.Resource concerns: Insufficient water - Inefficient use of irrigation water; Inefficient energy use - Equipment and facilities and Farming/ranching practices and field operations.Associated Practices: 374 - Farmstead Energy Improvement; 430-Irrigation Pipeline; 441-Irrigation System, Microirrigation; 449 - Irrigation Water Management; 516 - Livestock Pipeline; and 614 - Watering Facility.

Before Situation:

Standard electrical connection from electrical utility to pump motor. No capability to match pump output pressure and/or flowrate to field(s) need(s). Result is over/under pressure(s) and/or flow rate(s), possible hydraulic anomalies, energy loss, and or inefficient water application in the irrigation system.

After Situation:

VFD Modifications are implemented at the pump site to allow for varying the speed of a 40 Hp electric motor to match the pressure and flow requirements for a center pivot irrigation system.

Feature Measure: Pump Power Requirement
Scenario Unit: Brake Horse Power
Scenario Typical Size: 50.00
Scenario Total Cost: $\$ 6,302.50$
Scenario Cost/Unit: \$126.05

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Materials						
Variable Speed Drive, 50 HP	1288	Variable speed drive for 50 Horsepower electric motor. Does not include motor. Materials only.	Horsepower	\$126.05	50	\$6,302.50

Practice: 533 - Pumping Plant

Scenario: \#224-Internal Combustion-Powered Pump <= 50HP

Scenario Description:

The typical scenario supports installation of a pump in an existing irrigation system or installation of a new pump on cropland with a 30 BHP pump. Size of pump is determined by required GPM and pressure derived from a design for specific irrigation system on cropland. The combination of higher solids content and volume require a larger horse power pump. This liquid manure pump is used to transfer semi-solid manure from a small reception pit located either below a barnyard or at the end of a free-stall barn or scrape alley. Resource Concerns: Water Quality degradation - Excess nutrients in surface and ground waters; Insufficient water - Inefficient use of irrigation water.Associated Practices include: 374 - Farmstead Energy Improvement; 430 - Irrigation Pipeline; 441 - Irrigation System, Microirrigation; 449 - Irrigation Water Management; 313 - Waste Storage Facility; 634 - Waste Transfer; 436 - Irrigation Reservoir; and 447 - Irrigation System, Tailwater Recovery; and 614 - Watering Facility.

Before Situation:
Irrigation: Either an existing irrigation system employs an inefficient, improperly-sized pump that leads to inefficient water delivery resulting in high energy costs, or
Waste Transfer: various types of semi-solid or liquid waste at the headquarters is uncollected causing surface and ground water issues.
After Situation:
Irrigation Setting: For irrigation system, a properly designed pump is installed, reducing water and energy usage. Waste Transfer Setting: For semi-solid or liquid waste, wastes that have been collected through a waste transfer system are now efficiently transferred to appropriate treatment or storage facilities or crop application. Due to topography, gravity transfer is not possible and a properly sized pump is needed to transfer waste as part of a waste transfer system.

Feature Measure: Pump Power Requirement
Scenario Unit: Brake Horse Power
Scenario Typical Size: 30.00
Scenario Total Cost: $\$ 26,188.78$
Scenario Cost/Unit: \$872.96
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	1	\$404.70
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	8	\$521.68
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	4	\$99.96
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	8	\$270.96
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	32	\$869.12
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	8	\$254.96
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	16	\$761.76
Materials						
Pump, < 50 HP, Pump \& ICE power unit	1027	Materials, labor, controls: < 50 HP Pump \& ICE power unit	Horsepower	\$716.63	30	\$21,498.90
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 533 - Pumping Plant

Scenario: \#225-Internal Combustion-Powered Pump > 50 to 70 HP

Scenario Description:

The typical scenario supports installation of a pump in an existing irrigation system or installation of a new pump on cropland with a 60 BHP pump. Size of pump is determined by required GPM and pressure derived from a design for specific irrigation system on cropland. The combination of higher solids content and volume require a larger horse power pump. This liquid manure pump is used to transfer semi-solid manure from a small reception pit located either below a barnyard or at the end of a free-stall barn or scrape alley. Resource Concerns: Water Quality degradation - Excess nutrients in surface and ground waters; Insufficient water - Inefficient use of irrigation water.Associated Practices include: 374 - Farmstead Energy Improvement; 430 - Irrigation Pipeline; 441 - Irrigation System, Microirrigation; 449 - Irrigation Water Management; 313 - Waste Storage Facility; 634 - Waste Transfer; 436 - Irrigation Reservoir; and 447 - Irrigation System, Tailwater Recovery; and 614 - Watering Facility.

Before Situation:
Irrigation: Either an existing irrigation system employs an inefficient, improperly-sized pump that leads to inefficient water delivery resulting in high energy costs, or
Waste Transfer: various types of semi-solid or liquid waste at the headquarters is uncollected causing surface and ground water issues.
After Situation:
Irrigation Setting: For irrigation system, a properly designed pump is installed, reducing water and energy usage. Waste Transfer Setting: For semi-solid or liquid waste, wastes that have been collected through a waste transfer system are now efficiently transferred to appropriate treatment or storage facilities or crop application. Due to topography, gravity transfer is not possible and a properly sized pump is needed to transfer waste as part of a waste transfer system.

Feature Measure: Pump Power Requirement
Scenario Unit: Brake Horse Power
Scenario Typical Size: 60.00
Scenario Total Cost: \$44,192.08
Scenario Cost/Unit: \$736.53
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	1	\$404.70
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	8	\$521.68
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	4	\$99.96
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	8	\$270.96
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	32	\$869.12
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	8	\$254.96
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	16	\$761.76
Materials						
Pump, > 50 to 70 HP, Pump \& ICE power unit	1028	Materials, labor, controls: > 50 to 70 HP Pump \& ICE power unit	Horsepower	\$658.37	60	\$39,502.20
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 533 - Pumping Plant

Scenario: \#227-Internal Combustion-Powered Pump > 70 HP

Scenario Description:

The typical scenario supports replacement of a pump in an existing irrigation system or installation of a new pump on cropland that is 75 break HP pump or larger. Size of pump is determined by required GPM and pressure derived from a design for specific irrigation system on cropland. Scenario could also be used for a pump for silage leachate, barnyard runoff, and milk house waste (as part of a waste transfer system) at farm headquarters. Resource Concerns: Water Quality degradation - Excess nutrients in surface and ground waters; Insufficient water - Inefficient use of irrigation water.Associated Practices include: 374 - Farmstead Energy Improvement; 430 Irrigation Pipeline; 441 - Irrigation System, Microirrigation; 449 - Irrigation Water Management; 313 - Waste Storage Facility; 634 - Waste Transfer; and 614 - Watering Facility.

Before Situation:
Irrigation: Either an existing irrigation system employs an inefficient, improperly-sized pump that leads to inefficient water delivery resulting in high energy costs,
orWaste Transfer: various types of semi-solid or liquid waste at the headquarters is uncollected causing surface and ground water issues.

After Situation:

Irrigation Setting: For irrigation system, a properly designed pump is installed, reducing water and energy usage. Waste Transfer Setting: For semi-solid or liquid waste, wastes that have been collected through a waste transfer system are now efficiently transferred to appropriate treatment or storage facilities or crop application. Due to topography, gravity transfer is not possible and a properly sized pump is needed to transfer waste as part of a waste transfer system.

Feature Measure: Pump Power Requirement
Scenario Unit: Brake Horse Power

Scenario Typical Size: 100.00
Scenario Total Cost: \$69,855.00
Scenario Cost/Unit: \$698.55
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	2	\$809.40
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	8	\$521.68
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	6	\$149.94
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	8	\$270.96
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	48	\$1,303.68
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	8	\$254.96
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	24	\$1,142.64
Materials						
Pump, > 70 HP, Pump \& ICE power unit	1029	Materials, labor, controls: > 70 HP Pump \& ICE power unit	Horsepower	\$638.95	100	\$63,895.00
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 533 - Pumping Plant

Scenario: \#228 - Tractor Power Take Off (PTO) Pump

Scenario Description:

This scenario involves a PTO driven pump to either transfer water for an irrigation system from a Pond - 378 (includes backflow prevention as appropriate) to cropland or; to transfer semi-solid/ liquid manure (as part of a waste transfer system) at the farm headquarters from a Waste Storage Facility - 313, to an irrigation system or waste treatment facility. In both cases, a PTO driven pump is selected because the landowner has equipment available to supply power to the pump. Electricity is not readily available and/or a stationary engine is not a practical alternative.Resource Concerns: Water Quality degradation - Excess nutrients in surface and ground waters; Insufficient water - Inefficient use of irrigation water.Associated Practices include: 430-Irrigation Pipeline; 442 - Irrigation System, Sprinkler; 449 - Irrigation Water Management; 590 - Nutrient Management; 378 - Pond; 313 - Waste Storage Facility; and 634 - Waste Transfer.

Before Situation:
Irrigation Setting: An existing surface irrigation system employs an inefficient, improperly sized pump that leads to inefficient water delivery resulting in high energy costs; Waste Transfer Setting: various types of semi-solid or liquid waste at the headquarters are uncollected causing surface and ground water issues. A transfer method for waste is needed. Due to topography, gravity transfer is not possible and a properly sized pump is needed to transfer waste as part of a waste transfer system.

After Situation:

Irrigation Setting: A properly designed PTO-driven pump is installed, to transfer water to an Irrigation Pipeline (430) or Irrigation Canal or Lateral (320). Waste Transfer Setting: Wastes that have been collected through a waste transfer system are now efficiently transferred from a Waste Storage Facility (313) to an appropriate treatment facility or to an irrigation system. The pump typically will move 2,000 gallons per minute and is portable so that it can be used at several locations.

Feature Measure: Pump Power Requirement
Scenario Unit: Brake Horse Power
Scenario Typical Size: 60.00
Scenario Total Cost: \$9,866.48

Scenario Cost/Unit: \$164.44

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	2	\$809.40
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	16	\$399.84
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	16	\$761.76
Materials						
Pump, Ag Water PTO, 1,000 GPM	1923	Materials, labor, controls: Ag Water PTO Pump 1,000 GPM - 8 in.	Each	\$7,460.92	1	\$7,460.92

Practice: 533 - Pumping Plant

Scenario: \#229-Windmill-Powered Pump

Scenario Description:

A windmill is installed in order to supply a reliable water source for livestock and/or wildlife. The windmill includes the tower, concrete footings, wheel blade unit, sucker rod, down pipe, gear box, pump, plumbing, and well head protection concrete pad. The typical scenario will be a windmill system with a 10 ft diameter mill and 27 -foot tower which is pumping from a 150 -foot well. As a result of installing this windmill, resource concerns of inadequate stock water, plant establishment, growth, productivity, health, and vigor, and water quantity can be addressed.Resource Concerns: Insufficient stockwater.

Before Situation:
In a rangeland or pasture setting, a reliable source of water for livestock is not available, or the spacing between water sources is such that grazing distribution and plant health are adversely impacted.

After Situation:
A windmill, with a wheel ranging from 6^{\prime} to 16 ' in diameter, will be installed over a well that is located to provide a reliable source of livestock water at the rate of at least 2 gpm , to facilitate proper grazing distribution and improved plant health. To increase reliability, water is pumped into a storage tank to provide a given number of days of supply. Installation includes the footings, wellhead protection concrete pad, tower, gear box, sail, sucker rod, down hole accessories, and a short outlet pipe to a storage tank.

Feature Measure: Diameter of Mill Wheel

Scenario Unit: Feet

Scenario Typical Size: 10.00

Scenario Total Cost:	$\$ 13,325.48$
Scenario Cost/Unit:	$\$ 1,332.55$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	2	\$809.40
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	4	\$99.96
Aerial lift, telescoping bucket	1893	Aerial lift, bucket truck or cherry picker, typical 40' boom. Equipment only.	Hours	\$45.04	8	\$360.32
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	32	\$869.12
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	16	\$761.76
Materials						
Windmill, 10 ft . fan diameter	1036	Includes materials costs for windmill head and 27 foot tower	Each	\$8,918.18	1	\$8,918.18
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 533 - Pumping Plant
Scenario: \#230-Photovoltaic-Powered Pump, <4 kW

Scenario Description:

The typical scenario assumes installation of a submersible solar-powered pump in a well or a live stream. The installation includes the pump, wiring, drop pipe, solar panels, mounts, inverter, and all appurtenances. Note: It is generally not advisable to use a storage battery for a number of reasons. A storage tank is generally the most efficient method to store energy. Grazing - Livestock exclusion from surface water will result in improved surface water quality and reduced erosion. Irrigation - energy consumption will be reduced and the increased pressure and flow rates will improve irrigation efficiency.Resource Concerns: Insufficient stockwater.Associated Practices include: 374 - Farmstead Energy Improvement; 382 - Fence; 430 - Irrigation Pipeline; 436 - Irrigation Reservoir; 516 - Livestock Pipeline; 561 - Heavy Use Area Protection; and, 614 - Watering Facility.

Before Situation:
Livestock: Inadequate supply or location of water for a prescribed grazing system. Eroded stream banks and degraded water quality due to livestock access to stream. Cattle are not well-distributed because of remote water location. Irrigation: Pressure and flow rate is insufficient for uniform irrigation.

After Situation:
The typical scenario assumes installation of 1 kilowatt of photovoltaic (PV) panels, capable of operating a 1 horsepower solar-powered submersible pump in a well or other water source (Notes: 1) A PV panel is rated under standard and ideal conditions which will most likely not be replicated in the field; 2) 1 Horsepower is defined as 0.746 kilowatts.. The installation includes the pump, wiring, pipeline in the well, solar panels, frame mounts, controller, and all appurtenances. Water will be pumped to an existing storage tank at a higher elevation from which it will be used to pressurize the Livestock Pipeline (516) or Irrigation Pipeline (430). Grazing - Livestock exclusion from surface water will result in improved surface water quality and reduced erosion. Grazing has potential to be well distributed. Irrigation: Improved pressure and flow rate will improve irrigation efficiency.

Feature Measure: Pumping plant photovoltaic power
Scenario Unit: Kilowatt
Scenario Typical Size: 1.00
Scenario Total Cost: \$10,259.52
Scenario Cost/Unit: \$10,259.52
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	16	\$399.84
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	16	\$761.76
Materials						
Solar Pumping System, Fixed Cost Portion	2495	Fixed cost portion of a solar powered pumping system. This portion is a base cost for a complete system including the photovoltaic panels, pumping plant, support braces, electric controllers, service drop, etc., and is not dependant on KiloWatt. The total cost will include this fixed cost plus a variable cost portion. Includes the cost of materials only.	Each	\$4,050.01	1	\$4,050.01
Solar Pumping System, Variable Cost Portion	2496	Variable cost portion of a solar powered pumping system. This portion IS dependent upon the total kilowatts of the photovoltaic panels, but also includes the pumping plant, support braces, electric controllers, service drop, etc. The total cost will include this variable cost plus a fixed cost portion. Includes the cost of materials only.	Kilowatt	\$4,613.35	1	\$4,613.35

Practice: 533 - Pumping Plant

Scenario: \#231 - Water Ram Pump

Scenario Description:

A water ram is used to transfer water from a live stream to a Watering Facility (614) or small Irrigation Reservoir (436) utilizing the energy of moving water to transfer a portion of that water to a higher elevation. It is anchored to a small concrete pad. Bypass water (which could easily be 90% of the water diverted from the stream) is returned to the stream or transferred in a pipe, to a lower elevation tank (614 or 436), without erosion or impairment to water quality. In the livestock scenario, the objective is to provide water to the cattle outside of a live stream or other natural water source thereby eliminating a significant erosion situation while also improving water quality. The cattle thus have access to drinking water without having to enter the stream. The water ram may need to be fenced for protection from curious bovines. While it is generally not considered practical for irrigation, in the irrigation scenario, water can be retrieved from a stream and stored in a small 436 to provide water for a very small (0.1 acre) irrigation system.Resource Concerns: Insufficient stockwater.Associated Practices: 374 - Farmstead Energy Improvement; 382 - Fence; 430 - Irrigation Pipeline; 436 - Irrigation Reservoir; 516 - Livestock Pipeline; 561 - Heavy Use Area Protection; and, 614 - Watering Facility.

Before Situation:

Water in a nearby stream is not available at the desired location, pressure and/or flow rate.

After Situation:

A 2' diameter inlet pipe is installed and connected to a water ram pump with all appurtenances and anchored to a concrete pad ($9 \mathrm{ft} \times 4 \mathrm{ft} \times 5 \mathrm{in}$) or other appropriate secure base. Depending upon the application, either a 1-inch diameter Livestock Pipeline (516) or an Irrigation Pipeline (430) is installed from the water ram to a 5,000 gallon storage facility. Improved water quantity or quality, grazing management, plant diversity, animal health, and/or irrigation purposes as outlined in the appropriate NRCS irrigation system standard. A 2' water ram, with 10 gpm of inlet flow and 10 feet of drop, can supply about 1.0 gpm to a location about 50 feet higher than the water ram.

Feature Measure: Number of Ram Pumps
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$2,153.75
Scenario Cost/Unit: \$2,153.75
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	0.5	\$202.35
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	16	\$399.84
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	16	\$761.76
Materials						
Pump, Ram	1114	Ram pump kit, 2 inch. Includes materials and shipping only.	Each	\$355.24	1	\$355.24

Practice: 533 - Pumping Plant

Scenario: \#232-Livestock Nose Pump

Scenario Description:

A Nose Pump is a diaphragm pump located in a pasture for the purpose of providing water to cattle. For a permanent installation, it is typical to also install Heavy Use Area Protection (561) (separate contract item) where the cattle congregate around the pump. It is powered and operated by cattle to transfer water from a stream to a drinking bowl. The objective is to provide water to the cattle outside of a live stream or other natural water source thereby eliminating a significant erosion situation and while also improving water quality. The cattle thus have access to drinking water without having to enter the stream. Generally one nose pump is adequate for 20 cattle.Resource Concerns: Insufficient stockwater; Inefficient energy use - Equipment and facilities.Associated Practices include: 374 - Farmstead Energy Improvement; 382 - Fence; 516 Livestock Pipeline; 561 - Heavy Use Area Protection; and, 614 - Watering Facility.

Before Situation:
Livestock have open access to a live stream or other existing natural water supply. Water supply is contaminated due to animal activity and stream banks are eroded on a daily basis. Improper cattle distribution results in poor water quality, poor grazing distribution, over grazing, and soil erosion.

After Situation:

One nose pump is installed with all appurtenances anchored to concrete pad with 6'x6'x10 Gauge reinforcement wire ($9 \mathrm{ft} \times 4 \mathrm{ft} \times 5 \mathrm{in}$) or other appropriate secure base to supply water to cattle for improved livestock herd management. Additional Heavy Use Area Protection (561) in the form of crushed rock and at least 5 feet wide, may be installed (separate contract item) surrounding the concrete pad. Improved: water quality, soil quality, grazing management, plant diversity, and animal health.

Feature Measure: Number of Pumps
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 1,426.23$
Scenario Cost/Unit: \$1,426.23

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	0.5	\$202.35
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	8	\$199.92
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	8	\$380.88
Materials						
Nose Pump	1052	Materials and delivery.	Each	\$425.80	1	\$425.80

Practice: 548-Grazing Land Mechanical Treatment

Scenario: \#1 - Rangeland- Slope Less than 5\%

Scenario Description:

This practice utilizes bulldozer and ripper that modifies physical soil layer in an effort to increase infiltration and water capture on rangelands that have less than 5\% slopes.

Before Situation:
Hydrologic function is degraded by soil compaction that physically restricts the water cycle function, resulting in degraded rangeland health and ecological function.
After Situation:
Hydrologic function of the rangeland sites with slopes less than 5\% has been improved, plant health, vigor, and species diversity has increased, and forage production and rangeland trend are progressing in a positive direction.

Feature Measure: area of treatment

Scenario Unit: Acres
Scenario Typical Size: 150.00
Scenario Total Cost: \$8,963.04
Scenario Cost/Unit: \$59.75
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160. Equipment and power unit costs. Labor not included.	Hours	\$98.78	37	\$3,654.86
Ripper or subsoiler, 16 to 36 inch depth	1235	Deep ripper or subsoiler, (16-36 inches depth) includes tillage implement, power unit and labor.	Acres	\$23.26	150	\$3,489.00
Mobilization						
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	2	\$1,819.18

Practice: 548-Grazing Land Mechanical Treatment
Scenario: \#2-Rangeland- Slope greater than 5\%
Scenario Description:
This practice utilizes bulldozer and ripper that modifies physical soil layer in an effort to increase infiltration and water capture on rangelands that are more than 5% slopes
Before Situation:
Hydrologic function is degraded by soil compaction that physically restricts the water cycle function, resulting in degraded rangeland health and ecological function.
After Situation:
Hydrologic function of the rangeland site that is greater than 5% slopes has been improved, plant health, vigor, and species diversity has increased, and forage production and rangeland trend are progressing in a positive direction.

Feature Measure: area of treatment
Scenario Unit: Acres
Scenario Typical Size: 150.00
Scenario Total Cost: \$11,234.98

Scenario Cost/Unit: \$74.90
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160. Equipment and power unit costs. Labor not included.	Hours	\$98.78	60	\$5,926.80
Ripper or subsoiler, 16 to 36 inch depth	1235	Deep ripper or subsoiler, (16-36 inches depth) includes tillage implement, power unit and labor.	Acres	\$23.26	150	\$3,489.00
Mobilization						
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	2	\$1,819.18

Practice: 550-Range Planting
Scenario: \#1 - Cropland to Grassland, Standard Prep

Scenario Description:

Establishment of a mixture of PREDOMINANTLY NATIVE (at least 75% native) adapted perennial species on a unit to improve forage condition, improve wildlife habitat and/or reduce erosion. Seed mix of Predominantly Native species is chosen based on condition and availability of seed. Planting by preparing a seedbed with a LIGHT TO MODERATE TILLAGE and seeding with a no-till drill, range drill, or broadcasting.

Before Situation:

Cropland is currently in wheat, corn, cotton, milo or other commodity crop. Cropland field experiencing erosion from wind or water and poor soil health.

After Situation:

Land is established to Native or Predominately Native adapted perennial vegetation such as grasses, forbs, legumes, shrubs, and trees to reduce erosion and also improve soil health, improve water quality and improve wildlife habitat. Seed mix of Native or Predominantly Native species is chosen based onsite potential and availability of seed. Planting by preparing a seedbed with a LIGHT TO MODERATE TILLAGE and seeding with a grass seeding drill, or broadcasting.

Feature Measure: Acres of Range Planting
Scenario Unit: Acres
Scenario Typical Size: 150.00
Scenario Total Cost: \$49,626.00
Scenario Cost/Unit: \$330.84
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	150	\$2,017.50
Tillage, Primary	946	Includes heavy disking (offset) or chisel plow. Includes equipment, power unit and labor costs.	Acres	\$20.44	150	\$3,066.00
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	150	\$3,019.50
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	50	\$11,383.50
FI, Wheat Dryland	1963	Dryland Wheat is Primary Crop	Acres	\$98.94	100	\$9,894.00
Materials						
Native Perennial Grasses, Low Density	2750	Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$134.97	150	\$20,245.50

Practice: 550-Range Planting
Scenario: \#2 - Cropland to Grassland with Heavy Seedbed Preparation

Scenario Description:

Establishment of a mixture of PREDOMINANTLY NATIVE (at least 75% native) adapted perennial species on a unit to improve forage condition, improve wildlife habitat and/or reduce erosion. Seed mix of predominantly native species is chosen based on condition and availability of seed. Planting by preparing a seedbed with MODERATE TO HEAVY TILLAGE (ex: ripping \& heavy disk) and seeding with a range drill or broadcasting.

Before Situation:

Cropland is currently in cropland, wheat, corn, cotton, milo or other commodity crop. Cropland field experiencing erosion from wind or water and poor soil health. Moderate to Heavy tillage is required to break up plow pans and compacted soil layers.

After Situation:

Land is established to Native or Predominately Native adapted perennial vegetation such as grasses, forbs, legumes, shrubs, and trees to reduce erosion and also improve soil health, improve water quality and improve wildlife habitat. Seed mix of Native or Predominantly Native species is chosen based onsite potential and availability of seed. Planting by preparing a seedbed with a MODERATE TO HEAVY TILLAGE and seeding with a grass seeding drill, or broadcasting.

Feature Measure: Acres of Range Planting
Scenario Unit: Acres
Scenario Typical Size: 150.00
Scenario Total Cost: $\$ 54,709.50$

Scenario Cost/Unit: \$364.73
Cost Details:

Component Name	ID	Description	Unit	Cost		I

Equipment Installation

Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	300	\$4,035.00
Tillage, Primary	946	Includes heavy disking (offset) or chisel plow. Includes equipment, power unit and labor costs.	Acres	\$20.44	300	\$6,132.00
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	150	\$3,019.50
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	50	\$11,383.50
FI, Wheat Dryland	1963	Dryland Wheat is Primary Crop	Acres	\$98.94	100	\$9,894.00
Materials						
Native Perennial Grasses, Low Density	2750	Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$134.97	150	\$20,245.50

Practice: 550-Range Planting
Scenario: \#3-Highly Diverse Mixtures of Native Plants

Scenario Description:

Establishment of a mixture of PREDOMINANTLY NATIVE (at least 75% native) adapted perennial species on a unit to improve plant diversity. Seed mix of PREDOMINANTLY NATIVE (at least 75\%) with the inclusion at least 12 total species with a minimum of 5 forb species based on condition and availability of seed.

Before Situation:
Rangeland with existing stand of perennial or annual grasses OR monoculture OR no grasses present where natural reseeding or vegetation enhancement by grazing management alone is unlikely. Resource Concerns include: undesireable plant productivity and health, inadequate feed and forage for livestock, soil erosion and poor soil health. Rangeland or pastureland is currently in a degraded state with less than 15% desirable species, field experiencing erosion from wind or water and poor soil quality.

After Situation:

Establishment of PREDOMINANTLY NATIVE (at least 75\%) adapted perennial vegetation such as grasses, forbs, legumes, shrubs, and trees with an emphasis on increasing soil health through increased plant diversity and pollinator habitat. Site will benefit all forms of wildlife and relate closely to the ecological site description.

Feature Measure: Acres Planned
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$21,560.47
Scenario Cost/Unit: \$215.60
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	100	\$1,345.00
Tillage, Primary	946	Includes heavy disking (offset) or chisel plow. Includes equipment, power unit and labor costs.	Acres	\$20.44	100	\$2,044.00
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	100	\$2,013.00
Materials						
Native Perennial Grasses, Low Density	2750	Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$134.97	100	\$13,497.00
Native Perennial Grasses, Legumes and/or Forbs, Low Density	2753	A mix of native perennial grasses, legumes, and/or forbs, grasses typically greater than 50% of the mix, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Species typically easy to purchase. Includes material and shipping.	Acres	\$190.81	10	\$1,908.10
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 550-Range Planting
Scenario: \#4 - Native Plants with Standard Seedbed Preparation
Scenario Description:
Establishment of a mixture of PREDOMINANTLY NATIVE (at least 75% native) adapted perennial species on a unit to improve forage condition, improve wildlife habitat and/or reduce erosion. Seed mix of predominantly native species is chosen based on condition and availability of seed. Planting by preparing a seedbed with LIGHT TO MODERATE tillage and seeding with a range drill or broadcasting.

Before Situation:

Rangeland with existing stand of perennial or annual grasses OR monoculture OR no grasses present where natural reseeding or vegetation enhancement by grazing management alone is unlikely or following brush management. Existing conditions often require complete suppression or eradication of existing vegetation to ensure success of planting. Resource concerns may include: undesireable plant productivity and health, inadequate feed and forage for livestock, soil erosion and soil quality. Rangeland or pastureland is currently in a degraded state with less than 15% desirable species, field experiencing erosion from wind or water and poor soil health.

After Situation:
Land is established to Native or Predominately Native adapted perennial vegetation such as grasses, forbs, legumes, shrubs, and trees to reduce erosion and also improve soil health, improve water quality and improve wildlife habitat. Seed mix of Native or Predominantly Native species is chosen based onsite potential and availability of seed. Planting by preparing a seedbed with a LIGHT TO MODERATE TILLAGE and seeding with a grass seeding drill, or broadcasting.

Feature Measure: Acres of Range Planting
Scenario Unit: Acres

Scenario Typical Size: 150.00
Scenario Total Cost: \$29,101.87
Scenario Cost/Unit: \$194.01

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	150	\$2,017.50
Tillage, Primary	946	Includes heavy disking (offset) or chisel plow. Includes equipment, power unit and labor costs.	Acres	\$20.44	150	\$3,066.00
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	150	\$3,019.50
Materials						
Native Perennial Grasses, Low Density	2750	Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$134.97	150	\$20,245.50

Mobilization

| Mobilization, medium equipment 1139 | Equipment with 70-150 HP or typical weights between 14,000 and | Each $\$ 753.37 \quad 1 \quad \$ 753.37$ |
| :--- | :--- | :--- | :--- | :--- |

Practice: 550-Range Planting
Scenario: \#5 - Native Plants with Heavy Seedbed Preparation
Scenario Description:
Establishment of a mixture of PREDOMINANTLY NATIVE (at least 75% native) adapted perennial species on a unit to improve forage condition, improve wildlife habitat and/or reduce erosion. Seed mix of predominantly native species is chosen based on condition and availability of seed. Planting by preparing a seedbed with MODERATE TO HEAVY TILLAGE (ex: ripping \& heavy disk) and seeding with a range drill or broadcasting.

Before Situation:

Rangeland with existing stand of perennial or annual grasses OR monoculture OR no grasses present where natural reseeding or vegetation enhancement by grazing management alone is unlikely or following brush management. Existing conditions often require complete suppression or eradication of existing vegetation to ensure success of planting. Resource concerns may include: undesireable plant productivity and health, inadequate feed and forage for livestock, soil erosion and soil quality. Rangeland or pastureland is currently in a degraded state with less than 15% desirable species, field experiencing erosion from wind or water and poor soil health.

After Situation:

Land is established to Native or Predominately Native adapted perennial vegetation such as grasses, forbs, legumes, shrubs, and trees to reduce erosion and also improve soil health, improve water quality and improve wildlife habitat. Seed mix of Native or Predominantly Native species is chosen based onsite potential and availability of seed. Planting by preparing a seedbed with a MODERATE TO HEAVY TILLAGE and seeding with a grass seeding drill, or broadcasting.

Feature Measure: Acres of Range Planting
Scenario Unit: Acres
Scenario Typical Size: 150.00
Scenario Total Cost: \$34,185.37
Scenario Cost/Unit: $\$ 227.90$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	300	\$4,035.00
Tillage, Primary	946	Includes heavy disking (offset) or chisel plow. Includes equipment, power unit and labor costs.	Acres	\$20.44	300	\$6,132.00
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	150	\$3,019.50
Materials						
Native Perennial Grasses, Low Density	2750	Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$134.97	150	\$20,245.50

Mobilization

| Mobilization, medium equipment 1139 | Equipment with 70-150 HP or typical weights between 14,000 and | Each $\$ 753.37 \quad 1 \quad 153.37$ |
| :--- | :--- | :--- | :--- | :--- |

Practice: 550-Range Planting
Scenario: \#71 - Non-Native - Standard prep

Scenario Description:

Establishment of a mixture of PREDOMINANTLY NON-NATIVE adapted perennial species on a rangeland unit to improve forage condition, improve wildlife habitat and/or reduce erosion. Seed mix of Predominantly Non-Native species is chosen based on range conditions and availability of seed. Planting by preparing a seedbed with a LIGHT TO MODERATE tillage and seeding with a no-till drill, range drill, or broadcasting.

Before Situation:

Rangeland with existing stand of perennial or annual grasses OR monoculture OR no grasses present where natural reseeding or vegetation enhancement by grazing management alone is unlikely. Resource concerns may include: undesirable plant productivity and health, inadequate feed and forage for livestock, soil erosion and soil quality.

After Situation:
Establishment of PREDOMINANTLY NON-NATIVE adapted perennial vegetation such as grasses, forbs, legumes, shrubs, and trees to improve forage quality and quantity and reduce soil erosion on rangeland, native or naturalized pasture, grazed forest or other suitable location.

Feature Measure: Acres of Range Planting
Scenario Unit: Acres
Scenario Typical Size: 80.00
Scenario Total Cost: \$7,477.85

Scenario Cost/Unit: \$93.47
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	80	\$1,076.00
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	80	\$1,610.40
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28

Materials

Introduced Perennial Grasses,
Legumes and/or Forbs, Low Density

2747 Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.

Mobilization

Mobilization, medium equipment 1139 Equipment with $70-150 \mathrm{HP}$ or typical weights between 14,000 and \quad Each $\$ 753.37 \quad 1$ 30,000 pounds.

Practice: 554 - Drainage Water Management

Scenario: \#26-Automated Drainage Water Management

Scenario Description:
This scenario is the process of managing the drainage water discharge volume and water table elevation by regulating the flow from surface and/or subsurface agricultural drainage systems utilizing automation. Typical systems consist of a field with a fairly flat slope (less than 2% and preferably less than 1%) with existing drainage tile lines and installed water control structures which are operated with automated slide gates, and telemetry data systems coupled with cloud data management. Typical affected area for an automated drainage water management structure is 10 to 20 acres. The operator, from handheld device, adjusts water control structures (gate elevation) and logs data. Educational meeting is conducted between consultant and operator(s) annually for essential knowledge transfer Resource Concern: Water Quality - Excess Nutrients in surface and ground waters. Associated Practices: 606-Subsurface Drain; 607-Surface Drain, Field Ditch; 608-Surface Drain, Main or Lateral; 587-Structure for Water Control; 590-Nutrient Management.

Before Situation:
Existing inefficient drainage systems are in place and water flows uncontrolled, resulting in sediment and nutrient laden outflow entering ditches or streams.
After Situation:
Existing drainage systems are managed utilizing telemetry and real-time data to retain moisture in the soil for plant uptake and to allow for enhanced nutrient utilization.
Feature Measure: Acres of Managed Drainage
Scenario Unit: Acres
Scenario Typical Size: 50.00
Scenario Total Cost: \$418.03

Scenario Cost/Unit: \$8.36

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	7.5	\$254.03
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	1	\$47.61

Practice: 558-Roof Runoff Structure
Scenario: \#1-Roof Gutter with downspout, 4 to 6 inch

Scenario Description:

Installation of gutter(s) 4 to 6 inches in width with downspouts on an existing roof structure in accordance with the practice standard. The roof runoff from precipitation be: a) diverted away from a contaminated area or the foundation of a structure; b) collected and conveyed to a stable outlet or infiltration area; or c) collected and captured for other uses such as evaporative cooling systems, livestock water, and irrigation. Typical installation is on a roof requiring 200 linear feet of gutters. Associated practices include Waste Storage Facility (313), Composting Facility (317), Heavy Use Area Protection (561), Watering Facility(614), Underground Outlet (620), Diversion (362), and any relevant irrigation practices.

Before Situation:
No gutters are present to control the roof runoff.
After Situation:
A total of 200 linear feet of roof gutters with the appropriate number of downspouts are installed. The roof runoff is routed to a rainwater collection facility or a stable outlet.

Feature Measure: Linear Length of Roof to be Guttere

Scenario Unit: Feet
Scenario Typical Size: 200.00
Scenario Total Cost: $\$ 1,454.98$
Scenario Cost/Unit:

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	12	\$325.92
Materials						
Gutter, Aluminum, Small	1689	Aluminum gutter, 4 to 6 in. width with hangers. Materials only.	Feet	\$3.20	200	\$640.00
Downspout, Aluminum	1700	Aluminum downspout 3 to 5 inch width with hangers. Materials only.	Feet	\$3.16	60	\$189.60
Mobilization						
Mobilization, small equipment	1138	Equipment $<70 \mathrm{HP}$ but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: 558-Roof Runoff Structure
Scenario: \#2-Roof Gutter with downspouts,Greater than 6 inches

Scenario Description:

Installation of gutter(s) greater than 6 inches in width with downspouts on an existing roof structure in accordance with the practice standard. The roof runoff from precipitation be: a) diverted away from a contaminated area or the foundation of a structure; b) collected and conveyed to a stable outlet or infiltration area; or c) collected and captured for other uses such as evaporative cooling systems, livestock water, and irrigation. Typical installation is on a roof requiring 200 linear feet of gutters. Associated practices include Waste Storage Facility (313), Composting Facility (317), Heavy Use Area Protection (561), Watering Facility(614), Underground Outlet (620), Diversion (362), and any relevant irrigation practices.

Before Situation:
No gutters are present to control the roof runoff.
After Situation:
A total of 200 linear feet of roof gutters with the appropriate number of downspouts are installed. The roof runoff is routed to a rainwater collection facility or a stable outlet.

Feature Measure: Linear Length of Roof to be Guttere
Scenario Unit: Feet
Scenario Typical Size: 200.00

Scenario Total Cost:	$\$ 4,862.13$
Scenario Cost/Unit:	$\$ 24.31$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Materials						
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	431.2	\$1,190.11
Gutter, Aluminum, Medium	1690	Aluminum gutter, 7 to 9 in . width with hangers. Materials only.	Feet	\$14.69	200	\$2,938.00
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: 558-Roof Runoff Structure
Scenario: \#9 - Runoff Storage Tank (only)

Scenario Description:

Installation of a storage tank as part of a roof runoff structure. The roof has an existing gutter system that is adequate. Used to keep roof clean water runoff uncontaminated, provide storage for on-farm use of roof water and a stable outlet for any excess to ground surface in a way that avoids erosion. Facilitates waste management and protects environment by minimizing clean water additions to waste systems and addresses water quality concerns. 50' x 40 ' building. Design to capture 4^{\prime} of rainfall in storage tank, which is approximately 4,000 gallons.Associated practices include Waste Storage Facility (313), Composting Facility (317), Heavy Use Area Protection (561), Watering Facility (614), Underground Outlet (620), Diversion (362), and any relevant irrigation practices.

Before Situation:

Applicable where: (1) a roof runoff management facility is included in an overall plan for an overall plan for a waste management system; (2) roof runoff needs to be diverted away from structures or contaminated areas; (3) there is a need to collect, control, and transport runoff from roofs to a stable outlet.

After Situation:
A gutter and downspouts servicing the portion of the building roof that would otherwise drain into a waste management system or create erosion. Existing gutters are used to collect and transport water to the storage tank. A 4,000 gallon tank is installed for storage and use of roof runoff, which will capture approximately 4 ' of rainfall on a 2,000 square foot building. $0.5 \mathrm{gal} /(\mathrm{sq} \mathrm{ft} * \operatorname{lnch}) \mathrm{x}+2,000$ square $\mathrm{ft} \times 4$ inches of rain $=4,000$ gallons

Feature Measure: Storage Tank Nominal Size

Scenario Unit: Gallons

Scenario Typical Size: 4,000.00
Scenario Total Cost: $\$ 6,152.43$
Scenario Cost/Unit: \$1.54

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	2	\$11.40
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	1	\$33.87
Materials						
Aggregate, Gravel, Graded	46	Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$44.85	2	\$89.70
Tank, Poly Enclosed Storage, >1,000	1075	Water storage tanks. Includes materials and shipping only.	Gallons	\$1.42	4000	\$5,680.00
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46
Aggregate, Shipping, Cubic Yardmile	2360	Mobilization of aggregate material beyond 20 miles of local delivery from quarry to construction site. Cubic Yard-mile (Cubic Yard * miles of haul).	Cubic Yard Mile	\$0.38	100	\$38.00

Practice: 558-Roof Runoff Structure
Scenario: \#39-Storage Tank, Less than or Equal to 1,000 gallons

Scenario Description:

Installation of a storage tank as part of a roof runoff structure. The roof has an existing gutter system that is adequate. Used to keep roof clean water runoff uncontaminated, provide storage for on-farm use of roof water and a stable outlet for any excess to ground surface in a way that avoids erosion. Facilitates waste management and protects environment by minimizing clean water additions to waste systems and addresses water quality concerns. 50' x 20' building. Design to capture one inch of rainfall in storage tank, which is approximately 500 gallons.Associated practices include Waste Storage Facility (313), Composting Facility (317), Heavy Use Area Protection (561), Watering Facility (614), Underground Outlet (620), Diversion (362), and any relevant irrigation practices.

Before Situation

Applicable where: (1) a roof runoff management facility is included in an overall plan for an overall plan for a waste management system; (2) roof runoff needs to be diverted away from structures or contaminated areas; (3) there is a need to collect, control, and transport runoff from roofs to a stable outlet.

After Situation:

A gutter and downspouts servicing the portion of the building roof that would otherwise drain into a waste management system or create erosion. Existing gutters are used to collect and transport water to the storage tank. A 500 gallon tank is installed for storage and use of roof runoff, which will capture approximately one inch of rainfall on a 1,000 square foot building. $0.5 \mathrm{gal} /(\mathrm{sq} \mathrm{ft} * \operatorname{lnch}) \mathrm{x}+1,000$ square $\mathrm{ft} \times 1$ inches of rain $=500$ gallons

Feature Measure: Storage Tank Nominal Size

Scenario Unit: Gallons

Scenario Typical Size: 500.00
Scenario Total Cost: \$899.15
Scenario Cost/Unit: \$1.80

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	0.5	\$2.85
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	1	\$33.87
Materials						
Aggregate, Gravel, Graded	46	Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$44.85	0.5	\$22.43
Tank, Poly enclosed Storage, 3001000 gal	1074	Water storage tanks. Includes materials and shipping only.	Gallons	\$1.68	500	\$840.00

Practice: 558-Roof Runoff Structure
Scenario: \#43-High Tunnel Roof Runoff Trench Drain and Storage

Scenario Description:

NOT TO BE USED WHERE CONTAMINATED SOIL EXIST. An urban agricultural producer wishes to address a resource concern such as a need for water or erosion around high tunnel from roof runoff and collect and store roof runoff for reuse as supplemental irrigation/water supply water. Associated Practice: High Tunnel

Before Situation:
Producer has resource concern such as erosion caused by roof runoff from an installed high tunne
After Situation:
A 2' deep by 3' wide by 100' long trench filled with clean stone w/4-8 inch perforated PE pipe located on both sides of the hightunnel collect the roof runoff and divert to an underground storage tank. Trench drain typically installed at ground level under the edge of a high tunnel. Outlet from 'Trench Drain' conveys water to a buried storage tank. Typically installed to capture water for reuse or to stop erosion caused by concentrated roof runoff.

Feature Measure: Length of hightunnel
Scenario Unit: Linear Feet
Scenario Typical Size: 100.00
Scenario Total Cost: $\$ 5,166.88$

Scenario Cost/Unit: \$51.67

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Geotextile, woven	42	Woven Geotextile Fabric. Includes materials, equipment and labor	Square Yard	\$1.11	227	\$251.97
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	10	\$57.00
Excavation, common earth, large equipment, 150 ft	1223	Bulk excavation of common earth including sand and gravel with dozer $>100 \mathrm{HP}$ with average push distance of 150 feet. Includes equipment and labor.	Cubic Yards	\$3.35	72	\$241.20
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	10	\$271.60

Materials

Aggregate, Gravel, Ungraded, Quarry Run	1099	Includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$34.45	46	\$1,584.70
Pipe, HDPE, corrugated single wall, <= 12 in. weight priced Compound	1380	High Density Polyethylene (HDPE) compound manufactured into single wall corrugated pipe or tubing. Materials only.	Pound	\$2.51	15.2	\$38.15
Prefabricated concrete septic tank, 1500 gal	1738	Precast concrete septic tank, 1,500 gal. Materials only.	Each	\$1,633.27	1	\$1,633.27
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 560 - Access Road
Scenario: \#21-Rehabilitation of existing gravel road in wet, level terrain

Scenario Description:

Repair and rehabilitation of gravel road with min. 6 inch thick compacted gravel surface on existing alignment in wet, level terrain. The extent of construction work over an existing alignment is assumed to average 20% of the work for a new installation. A properly constructed, well defined access road will address resource concerns related with compaction, emissions of fugitive dust, and excessive sediment in surface water. It also improves the plant productivity, vigor and health and substantially reduces the chance of wild fire hazards. Short term air quality deterioration may result if proper dust control measures are not implemented during the practice installation. Costs include excavation, shaping, grading, surface material, vegetation of disturbed areas and all equipment, labor and incidental materials necessary to install the practice.

Before Situation:

An agricultural enterprise with an existing access road which is beyond its useful lifespan, can no longer be used as intended without rehabilitation. If left in its current condition, it will result in continued compaction, excessive sediment in surface water and emissions of fugitive dusts. This scenario is applicable where the resource activity areas with an existing but dilapidated access road consist of relatively wet and swampy but level terrain lands.

After Situation:

The damaged portions of the road will be repaired to a full 14 feet width with a 6' gravel surface at the top, mostly in embankment less than 3 feet in height, (average 2 ft), typical side slopes 2:1. A properly repaired access road will greatly reduce or eliminate compaction in land use areas where it is harmful, reduce emissions of fugitive dust and also reduce excessive sediment in surface water by reducing uncontrolled sediment transport and improving drainage of irrigated lands. Planned grades will include all dips and water bars. If clearing and grubbing of land in the alignment area is required, use Land Clearing (460). Pipe culverts installed as part of access road should be covered by either Structures for Water Control (587) or Stream Crossings (578) depending on the type of structure. Earthfill embankment above the culvert structure would still be covered by this Practice. Diversions constructed as part of access road should be covered by Diversion (362). All seeding or revegetation of disturbed areas is provided. Dust control must be addressed under Dust Control on Unpaved Roads and Surfaces (373).

Feature Measure: Length of Roadway
Scenario Unit: Feet
Scenario Typical Size: 1,000.00
Scenario Total Cost: \$5,295.05
Scenario Cost/Unit: $\$ 5.30$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Geotextile, woven	42	Woven Geotextile Fabric. Includes materials, equipment and labor	Square Yard	\$1.11	400	\$444.00
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	266	\$973.56
Earthfill, Dumped and Spread	51	Earthfill, dumped and spread without compaction effort, includes equipment and labor	Cubic Yards	\$3.15	266	\$837.90
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	11	\$372.57

Materials

Aggregate, Gravel, Ungraded, Quarry Run	1099	Includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$34.45	55	\$1,894.75
Native Perennial Grasses, Low Density	2750	Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$134.97	0.14	\$18.90
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and	Each	\$753.37	1	\$753.37

Practice: 561 - Heavy Use Area Protection
Scenario: \#1 - Aggregate, Crushed Rock or Gravel on Earthen Base

Scenario Description:

The stabilization of areas around facilities that are frequently and intensively used by livestock by surfacing with rock and or gravel on a stable earthen base material to provide a stable, non-eroding surface. Installation includes all materials, equipment, and labor to install this practice, The stabilized area will address the resource concerns of soil erosion and water quality degradation.

Before Situation:

The soil surface around stationary livestock watering facilities, hay rings, feeding troughs, mineral boxes and/or other facilities have become highly disturbed and have little to no vegetation to stabilize the soil surface, due to the frequency and intensity of use by livestock. As a result, soil erosion and water quality degradation are resource concerns that need to be addressed.

After Situation:
The soil surface around stationary livestock watering facilities, hay rings, feeding troughs, mineral boxes and/or other facilities has been stabilized with rock placed on a stable earthen base material to provide a non-eroding, well drained, skid resistant surface to reduce soil transport and water quality degradation concerns. A typical design would require approximately 640 square feet (12 cubic yards) of rock and or gravel on approximately 84 square yards of geotextile fabric foundation material.

Feature Measure: Surface Area
Scenario Unit: Square Feet
Scenario Typical Size: 640.00
Scenario Total Cost: \$964.26

Scenario Cost/Unit: \$1.51

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Skidsteer, 80 HP	933	Skidsteer loader with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$56.04	3	\$168.12
Labor						
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	3	\$83.28
Materials						
Aggregate, Gravel, Ungraded, Quarry Run	1099	Includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$34.45	12	\$413.40
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: 561 - Heavy Use Area Protection
Scenario: \#2 - Aggregate, Crushed Rock or Gravel on Geotextile

Scenario Description:

The stabilization of areas around facilities that are frequently and intensively used by livestock by surfacing with angular crushed rock and or gravel on a geotextile fabric foundation to provide a stable, non-eroding surface. Installation includes all materials, equipment, vegetation of disturbed areas and labor to install this practice, The stabilized area will address the resource concerns of soil erosion and water quality degradation.

Before Situation:

This practice applies to all land uses where frequently and/or intensively used areas require treatment to address soil erosion and water quality degradation. The soil surface around stationary livestock watering facilities, hay rings, feeding troughs, mineral boxes and/or other facilities have become highly disturbed due to frequent and intensity of use by livestock and have little to no vegetation to stabilize the soil surface. As a result, soil erosion and water quality degradation are resource concerns that need to be addressed.

After Situation:

The soil surface around stationary livestock watering facilities, hay rings, feeding troughs, mineral boxes and/or other facilities has been stabilized with angular crushed rock placed on geotextile fabric to provide a non-eroding, well drained, skid resistant surface to reduce soil transport and water quality degradation concerns. All seeding or revegetation of disturbed areas is considered included in the installation. The typical stabilized area is surfaced with approximately 640 square feet of angular crushed rock and or gravel on approximately 84 square yards of geotextile fabric foundation material.

Feature Measure: Area of Rock and or Gravel
Scenario Unit: Square Feet
Scenario Typical Size: 640.00
Scenario Total Cost: \$1,206.74

Scenario Cost/Unit: \$1.89

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Skidsteer, 80 HP	933	Skidsteer loader with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$56.04	3	\$168.12
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	2	\$54.32
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	3	\$83.28

Materials

Aggregate, Gravel, Ungraded, Quarry Run	1099	Includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$34.45	12	\$413.40
Geotextile, non-woven, heavy weight	1210	Non-woven greater than 8 ounce/square yard geotextile with staple anchoring. Materials and shipping only.	Square Yard	\$2.24	84	\$188.16
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: 561 - Heavy Use Area Protection
Scenario: \#3 - Aggregate, Crushed Rock or Gravel in GeoCell on Geotextile

Scenario Description:

The stabilization of areas around facilities that are frequently and intensively used by livestock by surfacing with angular crushed rock and or gravel confined in cellular containment grid on a geotextile fabric foundation to provide a stable, non-eroding surface. Installation includes all materials, equipment, vegetation of disturbed areas and labor to install this practice. The stabilized area will address the resource concerns of soil erosion and water quality degradation.

Before Situation:

This practice applies to all land uses where frequently and/or intensively used areas require treatment to address soil erosion and water quality degradation. The soil surface around stationary livestock watering facilities, hay rings, feeding troughs, mineral boxes and/or other facilities have become highly disturbed due to frequent and intensity of use by livestock and have little to no vegetation to stabilize the soil surface. As a result, soil erosion and water quality degradation are resource concerns that need to be addressed.

After Situation:

The soil surface around stationary livestock watering facilities, hay rings, feeding troughs, mineral boxes and/or other facilities has been stabilized with angular crushed rock placed in cellular containment grid on geotextile fabric to provide a non-eroding, well drained, skid resistant surface to reduce soil transport and water quality degradation concerns. All seeding or revegetation of disturbed areas is considered included in the installation. The typical stabilized area is surfaced with approximately 640 square feet of angular crushed rock and or gravel on approximately 84 square yards of geotextile fabric foundation material.

Feature Measure: Area of Rock and or Gravel
Scenario Unit: Square Feet
Scenario Typical Size: 640.00
Scenario Total Cost: $\$ 2,850.42$

Scenario Cost/Unit: \$4.45

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Skidsteer, 80 HP	933	Skidsteer loader with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$56.04	3	\$168.12
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	6	\$162.96
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	3	\$83.28

Materials
GeoCell, 4 inch
1054 4-inch thick cellular confinement system, three-dimensional,
Square Yard $\quad \$ 21.32$
\$1,535.04 expandable panels made from high-density polyethylene (HDPE), polyester or another polymer material. Includes materials, labor and equipment for the geocell only, does not include backfill

Aggregate, Gravel, Ungraded, Quarry Run	1099	Includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$34.45	12	\$413.40
Geotextile, non-woven, heavy weight	1210	Non-woven greater than 8 ounce/square yard geotextile with staple anchoring. Materials and shipping only.	Square Yard	\$2.24	84	\$188.16
Mobilization						
Mobilization, small equipment	1138	Equipment <70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: 561 - Heavy Use Area Protection
Scenario: \#4 - Other Cementitious Material, Crushed Gypsum Rock

Scenario Description:

The stabilization of areas around facilities that are frequently and intensively used by livestock by surfacing with crushed gypsum rock or other approved cementitious material to provide a stable, non-eroding surface. Installation includes all materials, equipment, vegetation of disturbed areas and labor to install this practice. The stabilized area will address the resource concerns of soil erosion and water quality degradation.

Before Situation:
This practice applies to all land uses where frequently and/or intensively used areas require treatment to address soil erosion and water quality degradation. The soil surface around stationary livestock watering facilities, hay rings, feeding troughs, mineral boxes and/or other facilities have become highly disturbed due to frequent and intensity of use by livestock and have little to no vegetation to stabilize the soil surface. As a result, soil erosion and water quality degradation are resource concerns that need to be addressed.

After Situation:

The soil surface around stationary livestock watering facilities, hay rings, feeding troughs, mineral boxes and/or other facilities has been stabilized with crushed gypsum rock or gravel to provide a non-eroding, well drained, skid resistant surface to reduce soil transport and water quality degradation concerns. All seeding or revegetation of disturbed areas is considered included in the installation. The typical stabilized area is surfaced with approximately 640 square feet of crushed gypsum rock and or gravel.

Feature Measure: Area of Rock and or Gravel

Scenario Unit: Square Feet

Scenario Typical Size: 640.00

Scenario Total Cost:	\$1,018.58					
Scenario Cost/Unit:		\$1.59				
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Skidsteer, 80 HP	933	Skidsteer loader with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$56.04	3	\$168.12
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	2	\$54.32
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	3	\$83.28
Materials						
Aggregate, Gravel, Ungraded, Quarry Run	1099	Includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$34.45	12	\$413.40
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: 561 - Heavy Use Area Protection
Scenario: \#5 - Other Cementitious Material, Compacted Caliche

Scenario Description:

The stabilization of areas around facilities that are frequently and intensively used by livestock by surfacing with compacted caliche from a local source to provide a stable, non-eroding surface. Installation includes all materials, equipment, vegetation of disturbed areas and labor to install this practice. The stabilized area will address the resource concerns of soil erosion and water quality degradation.

Before Situation:

This practice applies to all land uses where frequently and/or intensively used areas require treatment to address soil erosion and water quality degradation. The soil surface around stationary livestock watering facilities, hay rings, feeding troughs, mineral boxes and/or other facilities have become highly disturbed due to frequent and intensity of use by livestock and have little to no vegetation to stabilize the soil surface. As a result, soil erosion and water quality degradation are resource concerns that need to be addressed.

After Situation:
The soil surface around stationary livestock watering facilities, hay rings, feeding troughs, mineral boxes and/or other facilities has been stabilized with compacted caliche to provide a non-eroding, well drained, skid resistant surface to reduce soil transport and water quality degradation concerns. All seeding or revegetation of disturbed areas is considered included in the installation. The typical stabilized area is surfaced with approximately 640 square feet of compacted caliche from a local source.

Feature Measure: Area of Rock and or Gravel

Scenario Unit: Square Feet

Scenario Typical Size: 640.00
Scenario Total Cost: \$373.80
Scenario Cost/Unit: \$0.58

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	12	\$27.60
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	12	\$68.40
Track Loader, 95HP	935	Equipment and power unit costs. Labor not included.	Hours	\$95.63	2	\$191.26
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	2	\$63.74
Mobilization						
Aggregate, Shipping, Cubic Yardmile	2360	Mobilization of aggregate material beyond 20 miles of local delivery from quarry to construction site. Cubic Yard-mile (Cubic Yard * miles of haul).	Cubic Yard Mile	\$0.38	60	\$22.80

Practice: 561 - Heavy Use Area Protection
Scenario: \#6 - Reinforced Concrete with sand or gravel foundation - Regional

Scenario Description:

The stabilization of areas around facilities that are frequently and intensively used by livestock by surfacing with reinforced concrete on a sand or gravel foundation to provide a stable, non-eroding surface. Installation includes all materials, equipment, vegetation of disturbed areas and labor to install this practice. The stabilized area will address the resource concerns of soil erosion and water quality degradation.

Before Situation:

This practice applies to all land uses where frequently and/or intensively used areas require treatment to address soil erosion and water quality degradation. The soil surface around stationary livestock watering facilities, hay rings, feeding troughs, mineral boxes and/or other facilities have become highly disturbed due to frequent and intensity of use by livestock and have little to no vegetation to stabilize the soil surface. As a result, soil erosion and water quality degradation are resource concerns that need to be addressed.

After Situation:

The soil surface around stationary livestock watering facilities, hay rings, feeding troughs, mineral boxes and/or other facilities has been stabilized with reinforced concrete on a sand or gravel foundation to provide a non-eroding, well drained, skid resistant surface to reduce soil transport and water quality degradation concerns. All seeding or revegetation of disturbed areas is considered included in the installation. The typical stabilized area is surfaced with approximately 640 square feet of reinforced concrete.

Feature Measure: Area

Scenario Unit: Square Feet

Scenario Typical Size: 640.00
Scenario Total Cost: \$3,965.38
Scenario Cost/Unit: $\$ 6.20$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	8	\$3,237.60
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	16	\$36.80
Earthfill, Dumped and Spread	51	Earthfill, dumped and spread without compaction effort, includes equipment and labor	Cubic Yards	\$3.15	16	\$50.40
Materials						
Aggregate, Sand, Graded, Washed	45	Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$42.64	8	\$341.12
Mobilization						
Mobilization, small equipment	1138	Equipment <70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: 561 - Heavy Use Area Protection
Scenario: \#62-Reinforced Concrete with sand or gravel foundation

Scenario Description:

The stabilization of areas around facilities that are frequently and intensively used by people, animals or vehicles by surfacing with reinforced concrete on a sand or gravel foundation to provide a stable, non-eroding surface. Installation includes all materials, equipment, vegetation of disturbed areas, and labor to install this practice, The stabilized area will address the resource concerns soil erosion and water quality degradation.

Before Situation:
This practice applies to all land uses where frequently and/or intensively used areas require treatment to address soil erosion and water quality degradation.
After Situation:
The stabilized area is surfaced with approximately 630 square feet of approximately 8 cubic yards of welded wire mesh reinforced concrete with 8 cubic yards of sand or gravel foundation material for surfacing areas around facilities that are frequently and intensively used by people, animals or vehicles and will address soil erosion and water quality degradation. All seeding or revegetation of disturbed areas is provided. All needed roads must use Access Road (560). Any needed treatment of stream crossings must use Stream Crossing (578). Any needed vegetation of disturbed areas must use Critical Area Planting (342). Provisions to collect, store, utilize, and or treat contaminated runoff must use Sediment Basin (350), Waste Storage Facility (313), or Waste Treatment (629) as appropriate. To reduce the potential for air quality problems from particulate matter associated with heavy use areas, consider the use of Windbreak/Shelterbelt Establishment (380) or Herbaceous Wind Barriers (603).

Feature Measure: Area
Scenario Unit: Square Feet
Scenario Typical Size: 630.00
Scenario Total Cost: $\$ 4,424.12$
Scenario Cost/Unit: \$7.02

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	8	\$3,237.60
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	4	\$9.20
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	3	\$81.48

Materials

Aggregate, Sand, Graded, Washed	45	Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$42.64	8	\$341.12
Native Perennial Grasses, Low Density	2750	Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$134.97	0.01	\$1.35
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 561 - Heavy Use Area Protection
Scenario: \#63-Rock/Gravel on Geotextile

Scenario Description:

The stabilization of areas around facilities that are frequently and intensively used by people, animals or vehicles by surfacing with rock and or gravel on a geotextile fabric foundation to provide a stable, non-eroding surface. Installation includes all materials, equipment, vegetation of disturbed areas and labor to install this practice, The stabilized area will address the resource concerns of soil erosion and water quality degradation.

Before Situation:
This practice applies to all land uses where frequently and/or intensively used areas require treatment to address soil erosion and water quality degradation.

After Situation:

The stabilized area is surfaced with approximately 630 square feet of rock and or gravel on approximately 70 square yards of geotextile fabric foundation material for surfacing areas around facilities that are frequently and intensively used by people, animals or vehicles and will address soil erosion and water quality degradation. All seeding or revegetation of disturbed areas is provided. All needed roads must use Access Road (560). Any needed treatment of stream crossings must use Stream Crossing (578). Any needed vegetation of disturbed areas must use Critical Area Planting (342). Provisions to collect, store, utilize, and or treat contaminated runoff must use Sediment Basin (350), Waste Storage Facility (313), or Waste Treatment (629) as appropriate. To reduce the potential for air quality problems from particulate matter associated with heavy use areas, consider the use of Windbreak/Shelterbelt Establishment (380) or Herbaceous Wind Barriers (603).

Feature Measure: Area of Rock and or Gravel
Scenario Unit: Square Feet
Scenario Typical Size: 630.00
Scenario Total Cost: \$1,281.90
Scenario Cost/Unit: \$2.03
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Geotextile, woven	42	Woven Geotextile Fabric. Includes materials, equipment and labor	Square Yard	\$1.11	70	\$77.70
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	4	\$9.20
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	3	\$81.48
Materials						
Aggregate, Gravel, Graded	46	Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$44.85	8	\$358.80
Native Perennial Grasses, Low Density	2750	Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$134.97	0.01	\$1.35
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 561 - Heavy Use Area Protection
Scenario: \#64-Rock/Gravel-GeoCell-Geotextile

Scenario Description:

The stabilization of areas around facilities that are frequently and intensively used by people, animals or vehicles by surfacing with rock and or gravel in a cellular containment grid on a geotextile fabric foundation to provide a stable, non-eroding surface. Installation includes all materials, equipment, vegetation of disturbed areas and labor to install this practice. The stabilized area will address the resource concerns of soil erosion and water quality degradation.

Before Situation:

This practice applies to all land uses where frequently and/or intensively used areas require treatment to address soil erosion and water quality degradation.

After Situation:

The stabilized area is surfaced with approximately 630 square feet of rock and or gravel in approximately 70 square yards of cellular containment grid on approximately 70 square yards of geotextile fabric foundation material for surfacing areas around facilities that are frequently and intensively used by people, animals or vehicles and will address soil erosion and water quality degradation. All seeding or revegetation of disturbed areas is provided. All needed roads must use Access Road (560). Any needed treatment of stream crossings must use Stream Crossing (578). Any needed vegetation of disturbed areas must use Critical Area Planting (342). Provisions to collect, store, utilize, and or treat contaminated runoff must use Sediment Basin (350), Waste Storage Facility (313), or Waste Treatment (629) as appropriate. To reduce the potential for air quality problems from particulate matter associated with heavy use areas, consider the use of Windbreak/Shelterbelt Establishment (380) or Herbaceous Wind Barriers (603).

Feature Measure: Area of Rock and or Gravel
Scenario Unit: Square Feet
Scenario Typical Size: 630.00
Scenario Total Cost: \$2,774.30
Scenario Cost/Unit: \$4.40
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Geotextile, woven	42	Woven Geotextile Fabric. Includes materials, equipment and labor	Square Yard	\$1.11	70	\$77.70
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	4	\$9.20
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	3	\$81.48
Materials						
Aggregate, Gravel, Graded	46	Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$44.85	8	\$358.80
GeoCell, 4 inch	1054	4-inch thick cellular confinement system, three-dimensional, expandable panels made from high-density polyethylene (HDPE), polyester or another polymer material. Includes materials, labor and equipment for the geocell only, does not include backfill	Square Yard	\$21.32	70	\$1,492.40
Native Perennial Grasses, Low Density	2750	Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$134.97	0.01	\$1.35
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and	Each	\$753.37	1	\$753.37

Practice: 570-Stormwater Runoff Control						
Scenario: \#36-Rain Garden, 750 sqft or less						
Scenario Description:						
Typical Size: Drainage area 3750sqft. Garden size 20' x 30^{\prime} area, 4-8' deep. Additional Considerations from the practice standard that would be addressed by the practice are: Design stormwater control practices to fit into the visual landscape as well as to function for runoff control. If properly designed, stormwater control practices can be beneficial to wildlife.						
Before Situation:						
Stormwater from farmstead impervious surfaces causes erosion and flooding						
After Situation:						
Stormwater is managed to prevent erosion, reduce quantity of runoff, enhance visual impact and increase wildlife habitat and/or food.						
Feature Measure: sqft of rain garden						
Scenario Unit: Square Feet						
Scenario Typical Size: 600.00						
Scenario Total Cost:	\$1,128.83					
Scenario Cost/Unit:	\$1.88					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Skidsteer, 80 HP	933	Skidsteer loader with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$56.04	4	\$224.16
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	7	\$174.93
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	5	\$135.80
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	1	\$47.61
Materials						
Mulching, straw or hay	1214	Use of straw or hay for temporary ground cover. Includes application and methods necessary to keep in place such as tacking or crimping. Includes materials, equipment and labor.	Acres	\$3,736.39	0.02	\$74.73
Native Perennial Grasses, Legumes and/or Forb Mix for Targeted Wildlife/Pollinator Habitat or Ecological Restoration, moderate commercial availability	2619	Diverse mix of native perennial grasses, legumes and forbs, less than 50% grasses, may include biennials and a small percentage of annual species for establishment purposes and/or if allowed by the CPS. This is a mix composed of species required to meet specific wildlife/pollinator habitat or ecological requirements. Seed is moderately easy to purchase commercially. Includes materials and shipping.	Acres	\$469.81	0.02	\$9.40
Perennial Grass, Legume, and/or Forb Liners or Plugs, each	2758	Perennial grasses, legumes and/or forbs for small areas using vegetative propagules including liners or plugs. Includes materials and shipping.	Number	\$2.17	75	\$162.75
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: 574-Spring Development
Scenario: \#8-Spring Development
Scenario Description:
Develop a water source from a natural spring or seep (i.e., spring development) to provide water for livestock and/or wildlife needs. This typical scenario includes excavating and exposing the water source at the spring/seep (typically on a hillside), constructing a water collection structure by installing a 50 ft long, 4 inch diameter HDPE perforated pipe enclosed in a sand/gravel envelope overlaid by 2 ft wide filter fabric (50 ft long) and behind a concrete cutoff wall ($6 \mathrm{inch} \times 4 \mathrm{ft}$ height $\times 25 \mathrm{ft}$ long) to retain water. Water is directed (via 20 ft long, 4 inch PVC) to a spring box (48 inch diameter $x 6 \mathrm{ft}$ long CMP) that is located at the cutoff wall or below the wall, equipped with a watertight lid and two outlets. One outlet serves as overflow pipe to account for occasions where inflow exceeds outflow. The collection system is commonly composed of a single or a network of perforated 4 inch diameter drainage pipe placed in an excavated collection trench that runs across the slope. The outflow pipe from the spring box can be directed to buried large storage (not included), and to a watering facility (not included) for useResource Concern: Livestock production limitation Inadequate livestock water.Associated Practices: 516-Livestock Pipeline; 614-Watering Facility; 382-Fence; Critical Area Planting (342).

Before Situation:

Livestock operation with inadequate fresh water for livestock and an on-site undeveloped spring/seep.
After Situation:
Spring development system provides adequate water for the intended use. The system typically runs all year long in most zones.
Feature Measure: Number of Developments
Scenario Unit: Each

Scenario Typical Size: 1.00
Scenario Total Cost: $\quad \$ 5,671.48$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, formed reinforced	38	Steel reinforced concrete formed and cast-in-placed in formed structures such as walls or suspended slabs by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$457.84	2	\$915.68
Geotextile, woven	42	Woven Geotextile Fabric. Includes materials, equipment and labor	Square Yard	\$1.11	11	\$12.21
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	16	\$1,043.36
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	32	\$869.12
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	16	\$444.16
Materials						
Aggregate, Sand, Graded, Washed	45	Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$42.64	2	\$85.28
Aggregate, Gravel, Graded	46	Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$44.85	2	\$89.70
Spring Collection Box Cover, steel, 4 ft . diameter	1281	4 foot diameter $\times 1 / 4$ inch thick Steel lid with handle for spring collection box. Materials and fabrication.	Each	\$229.83	1	\$229.83
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	40.6	\$112.06
Pipe, HDPE, corrugated single wall, <= 12 in. weight priced Compound	1380	High Density Polyethylene (HDPE) compound manufactured into single wall corrugated pipe or tubing. Materials only.	Pound	\$2.51	16.25	\$40.79
Pipe, CMP, 14-12 gauge, weight priced	1589	14 and 12 gauge galvanized helical corrugated metal pipe priced by the weight of the pipe materials. Materials only.	Pound	\$1.12	288	\$322.56
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 575 - Trails and Walkways
Scenario: \#20-Rock/Gravel on Geotextile, Walkway

Scenario Description:

Layout and construct a walkway with rock and or gravel on a geotextile fabric foundation surface treatment, to facilitate the movement of animals, people, or off-road vehicles to provide or improve access to forage, water, working/handling facilities, and/or shelter, Improve grazing efficiency and distribution, and/or protect ecologically sensitive, erosive and/or potentially erosive sites, pedestrian or off-road vehicle access to agricultural, construction, or maintenance operations, provide walkways for recreational activities or access to recreation sites and address the resource conerns of soil erosion and water quality degradation. Costs include excavation, shaping, grading, rock and or gravel, geotextile, vegetation of disturbed areas, all equipment, labor and incidental materials necessary to install the practice.

Before Situation:
This practice applies on all lands where management of animal or human movement is needed to address soil erosion and water quality resource concerns. This practice applies to a trails or walkways constructed for use by off-road vehicles, such as All-Terrain Vehicles or snowmobiles, which are not designed for use on public roads. It does not apply to roads constructed for movement of equipment or vehicles. Use NRCS Conservation Practice Standard Access Road (Code 560).

After Situation:

The typical walkway will be a 12 foot wide 300 foot long, 3600 square foot of rock and or gravel on a geotextile fabric foundation surface treatment. All excavation, grading and shaping necessary to provide a smooth permanent travel surface for livestock or people is included. Included is aggregrate gravel of 3600 square foot for sufacing, and vegetation of 900 square foot of disturbed areas. The walkway consist of approximately 22 CY of excavation, 45 CY of aggregrate gravel on a 400 SY of geotextile fabric foundation. Stream Crossing, Code 578, will be used when the walkway crosses streams or shallow water areas. All culvets will be applied under Structure for Water Control (587). Use Access Road, Code 560 and Diversion (362) as appropriate. Fencing, Code 382, will be used when needed to control animal movement.

Feature Measure: Area of Walkway
Scenario Unit: Square Feet
Scenario Typical Size: 3,600.00
Scenario Total Cost: $\$ 3,942.20$

Scenario Cost/Unit: \$1.10
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Geotextile, woven	42	Woven Geotextile Fabric. Includes materials, equipment and labor	Square Yard	\$1.11	400	\$444.00
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	22	\$50.60
Dozer, 80 HP	929	Track mounted Dozer with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$77.14	3	\$231.42
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	3	\$74.97
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	4	\$135.48
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	5	\$135.80
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	3	\$95.61
Materials						
Aggregate, Gravel, Graded	46	Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$44.85	45	\$2,018.25
Native Perennial Grasses, Low Density	2750	Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$134.97	0.02	\$2.70
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 575 - Trails and Walkways
Scenario: \#21-Wood Chips, Walkway, greater than 1000 sqft

Scenario Description:

Layout and construct a wood chip surface treatment on a earthen foundation walkway to facilitate the movement of animals, people, or off-road vehicles to provide or improve access to forage, water, working/handling facilities, and/or shelter, Improve grazing efficiency and distribution, and/or protect ecologically sensitive, erosive and/or potentially erosive sites, pedestrian or off-road vehicle access to agricultural, construction, or maintenance operations, provide walkways for recreational activities or access to recreation sites and address the resource conerns of soil erosion and water quality degradation. Costs include excavation, shaping, grading, wood chip surfacing, vegetation of disturbed areas, all equipment, labor and incidental materials necessary to install the practice.

Before Situation:

This practice applies on all lands where management of animal or human movement is needed to address soil erosion and water quality resource concerns. This practice applies to a trails or walkways constructed for use by off-road vehicles, such as All-Terrain Vehicles or snowmobiles, which are not designed for use on public roads. It does not apply to roads constructed for movement of equipment or vehicles. Use NRCS Conservation Practice Standard Access Road (Code 560).

After Situation:

The typical walkway will be a 12 foot wide 300 foot long, 3600 square foot of wood chip srface treatment on earthen foundation. All excavation, grading and shaping necessary to provide a smooth permanent travel surface for livestock or people is included. Included is wood chips of 3600 square foot for sufacing, and vegetation of 900 square foot of disturbed areas. The walkway consist of approximately 22 CY of excavation, 3600 square feet of wood chip surfacing. Stream Crossing, Code 578 , will be used when the walkway crosses streams or shallow water areas. All culvets will be applied under Structure for Water Control (587). Use Access Road, Code 560 and Diversion (362) as appropriate. Fencing, Code 382, will be used when needed to control animal movement.

Feature Measure: Area of Walkway
Scenario Unit: Square Feet
Scenario Typical Size: 3,600.00
Scenario Total Cost: $\$ 3,606.28$
Scenario Cost/Unit: \$1.00

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	22	\$50.60
Dozer, 80 HP	929	Track mounted Dozer with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$77.14	3	\$231.42
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	3	\$74.97
Aggregate, Wood Chips	1098	Includes materials, equipment and labor to transport and place.	Cubic Yards	\$51.20	45	\$2,304.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	4	\$108.64
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	3	\$83.28

Mobilization

Practice: 575 - Trails and Walkways
Scenario: \#53-Wood Chips, Walkway, 1000 sqft or less

Scenario Description:

Layout and construct a wood chip surface treatment on a earthen foundation walkway to facilitate the movement of animals, people, or small off-road vehicles to provide or improve access to forage, water, working/handling facilities, and/or shelter, Improve grazing efficiency and distribution, and/or protect ecologically sensitive, erosive and/or potentially erosive sites, pedestrian or off-road vehicle access to agricultural, construction, or maintenance operations, provide walkways for recreational activities or access to recreation sites and address the resource concerns of soil erosion and water quality degradation. Costs include excavation, shaping, grading, wood chip surfacing, vegetation of disturbed areas, all equipment, labor and incidental materials necessary to install the practice.

Before Situation:

This practice applies on all lands where management of animal or human movement is needed to address soil erosion and water quality resource concerns. This practice applies to a trails or walkways constructed for use by small off-road vehicles, such as All-Terrain Vehicles or snowmobiles, which are not designed for use on public roads. It does not apply to roads constructed for movement of equipment or vehicles. Use NRCS Conservation Practice Standard Access Road (Code 560).

After Situation:
The typical walkway will be a 6 foot widex100 foot longx4' thick , 600 square foot of wood chip surface treatment on earthen foundation. All excavation, grading and shaping necessary to provide a smooth permanent travel surface for livestock or people is included. Included is wood chips of 600 square foot for surfacing.

Feature Measure: sqft of walkway

Scenario Unit: Square Feet

Scenario Typical Size: 600.00
Scenario Total Cost: \$1,178.90

Scenario Cost/Unit: \$1.96
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	7	\$174.93
Aggregate, Wood Chips	1098	Includes materials, equipment and labor to transport and place.	Cubic Yards	\$51.20	8	\$409.60
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	15	\$407.40
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	1	\$47.61
Materials						
Geotextile, non-woven, light weight	1209	Non-woven less than 8 ounce/square yard geotextile with staple anchoring. Materials and shipping only.	Square Yard	\$2.08	67	\$139.36

Practice: 575 - Trails and Walkways
Scenario: \#57-Earth or Vegetated Trail, Greater than 1000 sqft

Scenario Description:

Layout and construct an earth or vegetated trail to facilitate the movement of animals, people, or off-road vehicles to provide or improve access to forage, water, working/handling facilities, and/or shelter, Improve grazing efficiency and distribution, and/or protect ecologically sensitive, erosive and/or potentially erosive sites, pedestrian or off-road vehicle access to agricultural, construction, or maintenance operations, provide trails for recreational activities or access to recreation sites and address the resource conerns of soil erosion and water quality degradation. Costs include excavation, shaping, grading, earth and or vegetated surfaces and all equipment, labor and incidental materials necessary to install the practice.

Before Situation:

This practice applies on all lands where management of animal or human movement is needed to address soil erosion and water quality resource concerns. This practice applies to a trails or walkways constructed for use by off-road vehicles, such as All-Terrain Vehicles or snowmobiles, which are not designed for use on public roads. It does not apply to roads constructed for movement of equipment or vehicles. Use NRCS Conservation Practice Standard Access Road (Code 560).

After Situation:

The typical trail will be a 12 foot wide 300 foot long, 3600 square foot lane of earth and vegetation. All excavation, grading and shaping necessary to provide a smooth permanent travel surface for livestock or people is included. Included is 45 CY of excavation, vegetation of 1800 square foot for sufacing, 1800 square foot of earthen surfacing and vegetation of 900 square foot of disturbed areas. Consider the adequacy of natural surfacing. If the lane requires planting, the vegetation is provided. Where earth and or vegetation is not practical, adequate surface protection is provided under a different sceanrio. Stream Crossing, Code 578, will be used when the trail or lane crosses streams or shallow water areas. Consider the use of water bars to control and direct water flow in the trail. All culverts will be applied under Structure for Water Control (587). Use Access Road, Code 560 and Diversion (362) as appropriate. Fencing, Code 382, will be used when needed to control animal movement.

Feature Measure: Area of trail
Scenario Unit: Square Feet
Scenario Typical Size: 3,600.00
Scenario Total Cost: \$1,658.95
Scenario Cost/Unit: \$0.46
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	22	\$50.60
Dozer, 80 HP	929	Track mounted Dozer with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$77.14	3	\$231.42
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	3	\$74.97
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	4	\$135.48
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	6	\$191.22
Materials						
Introduced Perennial Grasses, Legumes and/or Forbs, Low Density	2747	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$47.76	0.04	\$1.91
Native Perennial Grasses, Low Density	2750	Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$134.97	0.02	\$2.70
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 576 - Livestock Shelter Structure
Scenario: \#11 - Prefabricated Portable Shade Structure

Scenario Description:

A flexible membrane or fabric-like roof placed on a steel or wood portable frame used to promote animal health where prescribed grazing practices have limited livestock access to shade. Cost estimate is based upon a $10 \mathrm{ft} \times 20 \mathrm{ft}$ prefab portable structure.Associated practices include Fence (382), Prescribed Grazing (528), and Watering Facility (614).

Before Situation:

Livestock are being managed using a prescribed grazing plan resulting in a lack of shade during the summer months. The livestock are stressed and eat less frequently.

After Situation:

Livestock shade structures are rotated and sized according to NRCS plans and specifications. Livestock access to water, shade, and forage are dispersed to decrease animal stress and promote a better grazing and nutrient spreading.

Feature Measure: Area of Roof Frame
Scenario Unit: Square Feet
Scenario Typical Size: 200.00
Scenario Total Cost: \$1,368.11

Scenario Cost/Unit: \$6.84
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	9	\$224.91
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	11	\$298.76
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44

Materials

High Tunnel, Quonset style, Variable Cost

Square Feet framework complete with all predrilled steel, hardware and instructions. Includes 6 mil 4-year polyethylene film to cover tunnel, and poly-lock for sides and ends for a quonset style (round top) hoop house. Materials and shipping only.

Practice: 576 - Livestock Shelter Structure
Scenario: \#12 - Portable Shade Structure

Scenario Description:

A flexible membrane or fabric-like roof placed on a steel or wood portable frame used to promote animal health where prescribed grazing practices have limited livestock access to shade. Cost estimate is based upon a $25 \mathrm{ft} \times 40 \mathrm{ft}$ portable structure.Associated practices include Fence (382), Prescribed Grazing (528), and Watering Facility (614).

Before Situation:

Livestock are being managed using a prescribed grazing plan resulting in a lack of shade during the summer months. The livestock are stressed and eat less frequently.
After Situation:
Livestock shade structures are rotated and sized according to NRCS plans and specifications. Livestock access to water, shade, and forage are dispersed to decrease animal stress and promote a better grazing and nutrient spreading.

Feature Measure: Area of Roof Frame

Scenario Unit: Square Feet
Scenario Typical Size: 1,000.00
Scenario Total Cost: $\$ 6,647.67$

Scenario Cost/Unit: \$6.65
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	8	\$199.92
Portable Welder	1407	Portable field welder. Equipment only. Labor not included.	Hours	\$19.17	16	\$306.72
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	16	\$541.92
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28

Materials

Steel, Plate, 3/16 in.	1048	Flat Steel Plate, 3/16 inch thick, materials only.	Square Feet	\$11.85	2	\$23.70
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	17.3	\$47.75
Pipe, smooth steel, weight priced	1325	Smooth Steel pipe priced by the weight of the pipe materials. Materials only.	Pound	\$3.43	889.5	\$3,050.99
Synthetic Liner, 60 mil	2109	Synthetic 60 mil HDPE, LLDPE, EPDM, etc. membrane liner material. Includes materials and shipping only.	Square Feet	\$2.08	1000	\$2,080.00
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40

Practice: 576 - Livestock Shelter Structure
Scenario: \#13 - Portable Fabricated Wind Shelter, equal to or greater than 8 foot

Scenario Description:

Portable Livestock Fabricated Wind Shelter is installed to provde protection for livestock. The shetler can be moved aroung the grazing unit in order to prevent heavy use resource concerns at any one location.

Before Situation:
Herds are held and fed in fragile riparian areas in order to reduce stress on domestic animals from harsh winter conditions and provide protection from wind. The concentration of animals in these areas degrade streambanks, cause excessive sedimentation, damage woody vegetation, overgraze herbacious vegetation, in addition to degrading water quality through manure deposition and erosion. Resouce concerns are water quality, animal health, plant productivity, health, and vigor, and inadequate shelter.

After Situation:

Portable fabricated wind shelters are utilized to provide shelter for livestock in upland grazing areas from the riparian zones. The portable shelters are moved in rotation with feeding areas thereby limiting soil disturbance and reducing the impacts of heavy use at any one location. As a result of implementing this practice, the herd can be moved out of the impacted area and water quality and vegetation health resource concerns will be addressed. A typical portable wind shelter involves a series of steel framed panels faced with corrugated metal. Each unit is approximately 9.5 feet tall and 24 feet long. Four panels (96 - feet) would be utilized to provide shelter to a herd size of 125 animals.

Feature Measure: Length of Wind Shelter
Scenario Unit: Feet
Scenario Typical Size: 96.00
Scenario Total Cost: $\$ 4,383.64$
Scenario Cost/Unit: \$45.66
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	16	\$399.84
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	24	\$812.88
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Materials						
Corrugated Steel, 22 gauge	224	Corrugated or ribbed, galvanized, 22 gauge, includes fasteners, materials only.	Square Feet	\$1.94	864	\$1,676.16
Drill Stem, steel, used	1393	Used drill stem typically 2-3/8 or 2-7/8 inch diameter. Materials only.	Feet	\$2.79	380	\$1,060.20

Practice: 576 - Livestock Shelter Structure
Scenario: \#14-Permanent Fabricated Wind Shelter, equal to or greater than 8 foot

Scenario Description:

Permanent Livestock Fabricated Wind Shelter is installed to provde protection for livestock.

Before Situation:

Herds are held and fed in fragile riparian areas in order to reduce stress on domestic animals from harsh winter conditions and provide protection from wind. The concentration of animals in these areas degrade streambanks, cause excessive sedimentation, damage woody vegetation, overgraze herbacious vegetation, in addition to degrading water quality through manure deposition and erosion. Resouce concerns are water quality, animal health, plant productivity, health, and vigor, and inadequate shelter.

After Situation:

Permanent fabricated wind shelters are installed in order to provide shelter for livestock in upland grazing areas away from the riparian zones. As a result, animals can be held in an area away from the riparian zone thereby eliminating the impacts to water quality and riparian health. A typical scenario is a Fabricated Wind Shelter installed in association with an animal feeding operation (AFO). The AFO has been moved out of the riparian zone where shelter was previously provided by the surrounding riparian woody vegetation. The AFO has been moved to a location where shelter is not naturally provided and needs to be fabricated. The typical fabrication involves a permanent, wood framed, metal or wood faced, 8.5 - foot high, 200 - foot long, fabricated wind shelter, 80% solid face, secured to the ground with wood posts.

Feature Measure: Length of Wind Shelter
Scenario Unit: Feet

Scenario Typical Size: 200.00

Scenario Total Cost: \$8,226.57

Scenario Cost/Unit: \$41.13
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	16	\$1,043.36
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	16	\$399.84
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	16	\$509.92

Materials

Post, Wood, CCA treated, 6 in. x 12-14 ft.	13	Wood Post, Line/End 6 inch dia. X 12-14 ft., CCA Treated. Includes materials and shipping only.	Each	\$38.12	26	\$991.12
Corrugated Steel, 22 gauge	224	Corrugated or ribbed, galvanized, 22 gauge, includes fasteners, materials only.	Square Feet	\$1.94	1360	\$2,638.40
Dimension Lumber, Treated	1044	Treated dimension lumber with nominal thickness equal or less than 2 inches. Includes lumber and fasteners	Board Feet	\$1.82	800	\$1,456.00
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 578-Stream Crossing
Scenario: \#1 - Ford, Constructed using Rock or Cast in Place Concrete

Scenario Description:

Stabilize the bottom and slope of a stream channel using rock riprap or cast in place concrete. This scenario includes site preparation, dewatering, acquiring and installing gravel or geotextile with rock riprap or cast in place concrete on channel bottom and approaches. Final travel surface shall be the rocks or concrete. If a different travel surface is needed, refer to another appropriate standard for the surfacing. Typical stream has 30 foot bottom width and approaches. Width is 14 feet for a total area as 420 sf. Use (396) Aquatic Organism Passage instead, when the primary intent is biological concerns, not hydrologic.

Before Situation:

Water flow could not cross access road or trail without erosion; or access road or trail could not cross channel.

After Situation:

Stream flow is not impeded and a stable base exists for equipment, people and/or animals to cross. Associated practices could be (342) Critical Area Planting, (560) Access Road, (575) Animal Trails and Walkways, (566) Recreational Trails and Walkways, (500) Obstruction Removal, or (584) Channel Stabilization.

Feature Measure: Area of Crossing
Scenario Unit: Square Feet
Scenario Typical Size: 420.00
Scenario Total Cost: \$4,593.18
Scenario Cost/Unit: \$10.94
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, dump, 12 CY	1215	Dump truck for moving bulk material. Typically capacity is 16 ton or 12 cubic yards. Includes equipment only.	Hours	\$103.14	2	\$206.28
Excavation, common earth, side cast, large equipment	1227	Bulk excavation and side casting of common earth with hydraulic excavator with less greater than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$1.47	18	\$26.46
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	2	\$63.74
Materials						
Rock Riprap, Placed with geotextile	44	Rock Riprap, placed with geotextile. Includes materials, local delivery within 20 miles of quarry, and placement.	Cubic Yards	\$137.64	18	\$2,477.52
Mobilization						
Mobilization, large equipment	1140	Equipment >150HP or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	2	\$1,819.18

Practice: 578-Stream Crossing
Scenario: \#2-Culvert Crossing

Scenario Description:

Install a new culvert. Work includes dewatering, site preparation and removing any old crossing, acquiring and installing culvert pipe with gravel bedding and fill (compacted), and building headwalls. If a different travel surface is needed, refer to another appropriate standard for the surfacing. 36 inch Culvert installation with < 75 cubic yards of fill needed and < 2 cubic yards of rock riprap for headwalls. Pipe is 40 feet long. Use (396) Aquatic Organism Passage instead, when the primary intent is biological concerns, not hydrologic. Use (587) Structure for Water Control instead, for ditch cross culverts and other intermittent flows.

Before Situation:
Water flow could not cross access road or trail without erosion; or access road or trail could not cross channel.

After Situation:

Access road and waterflow are able to cross each other in a stable manner.Stream flow is not impeded and a stable base exists for equipment, people and/or animals to cross. Associated practices could be (342) Critical Area Planting, (560) Access Road, (575) Animal Trails and Walkways, (566) Recreational Trails and Walkways, (500) Obstruction Removal, or (584) Channel Stabilization.

Feature Measure: Culvert Dimensions

Scenario Unit: Diameter Inch Foot
Scenario Typical Size: 1,440.00

Scenario Total Cost:	\$7,154.61					
Scenario Cost/Unit:	\$4.97					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	3	\$17.10
Hydraulic Excavator, 1 CY	931	Track mounted hydraulic excavator with bucket capacity range of 0.8 to 1.5 CY . Equipment and power unit costs. Labor not included.	Hours	\$128.59	10	\$1,285.90
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	10	\$318.70
Materials						
Rock Riprap, Placed with geotextile	44	Rock Riprap, placed with geotextile. Includes materials, local delivery within 20 miles of quarry, and placement.	Cubic Yards	\$137.64	2	\$275.28
Aggregate, Gravel, Graded	46	Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$44.85	50	\$2,242.50
Pipe, HDPE, corrugated double wall, GTE 15 in., soil tight, weight priced	1588	High Density Polyethylene (HDPE) compound manufactured into double wall corrugated pipe Greater Than or Equal to 15 inch diameter. Materials only.	Pound	\$2.85	793.6	\$2,261.76
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 578-Stream Crossing
Scenario: \#3 - Ford, Constructed using Prefabricated Material

Scenario Description:

To install a stable crossing medium on channel bottom and approatches. Medium includes but not limited to precast concrete blocks, geocells, pavers, and gabions. If a different travel surface is needed, refer to another appropriate standard for the surfacing. Typical stream has 30 foot bottom width and approaches. Width is 14 feet for a total area as 420 sf. Use (396) Aquatic Organism Passage instead, when the primary intent is biological concerns, not hydrologic.

Before Situation:
Water flow could not cross access road or trail without erosion; or access road or trail could not cross channel.

After Situation:

Access road and waterflow are able to cross each other in a stable manner.Stream flow is not impeded and a stable base exists for equipment, people and/or animals to cross. Associated practices could be (342) Critical Area Planting, (560) Access Road, (575) Animal Trails and Walkways, (566) Recreational Trails and Walkways, (500) Obstruction Removal, or (584) Channel Stabilization.

Feature Measure: Area of Crossing
Scenario Unit: Square Feet
Scenario Typical Size: 420.00
Scenario Total Cost: \$5,008.95
Scenario Cost/Unit: \$11.93
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, dump, 12 CY	1215	Dump truck for moving bulk material. Typically capacity is 16 ton or 12 cubic yards. Includes equipment only.	Hours	\$103.14	2	\$206.28
Excavation, common earth, side cast, large equipment	1227	Bulk excavation and side casting of common earth with hydraulic excavator with less greater than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$1.47	18	\$26.46
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	40	\$1,086.40
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	2	\$63.74
Materials						
Aggregate, Gravel, Graded	46	Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$44.85	9.07	\$406.79
Geotextile, non-woven, heavy weight	1210	Non-woven greater than 8 ounce/square yard geotextile with staple anchoring. Materials and shipping only.	Square Yard	\$2.24	46.67	\$104.54
Geocell, 6 inch	1842	6-inch thick cellular confinement system, three-dimensional, expandable panels made from high-density polyethylene (HDPE), polyester or another polymer material. Includes materials, labor and equipment for the geocell only, does not include backfill.	Square Yard	\$27.76	46.67	\$1,295.56
Mobilization						
Mobilization, large equipment	1140	Equipment >150HP or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	2	\$1,819.18

Practice: 580 - Streambank and Shoreline Protection
Scenario: \#1-Shaping

Scenario Description:

Protection of streambanks consisting of conventional plantings of vegetation to stabilize and protect against scour and erosion. The purpose of this practice is to maintain, improve, or restore physical, chemical, and biological functions of a stream to provide diverse aquatic communities to improve habitat for desired aquatic species. Payment cost include shaping a 6 -foot high bank at $3(\mathrm{H}): 1(\mathrm{~V})$ slope for 1000 linear feet (0.46 acres). Critical area vegetation and erosion control fabric associated with this practice shall be applied through 342 - Critical Area Planting and 484-Mulching.Resource Concerns: Soil Erosion - Excessive Bank Erosion from Streams, Shoreline and Water Conveyance Channels; Water Quality Degradation - Excessive Sediment in Surface Waters; Water Quality Degradation - Elevated Water Temperature; Excess/Insufficient Water - Excessive Sediment in Surface Waters; Inadequate Habitat for Fish and Wildlife- Habitat Degradation.Associated Practices include: 560 Access Road; 342 - Critical Area Planting; 484 - Mulching; 382 - Fence; 391 - Riparian Forest Buffer; 390 - Riparian Herbaceous Cover; 395 - Stream Habitat Improvement and Management; 614 - Watering Facility; 570 Stormwater Runoff Control.

Before Situation:
A stream bisects the agricultural property and has had all of the woody vegetation removed due to overgrazing or human manipulation; the stream has marginally degraded streambanks that are unstable and show signs of active erosion. Soil Erosion: The streambank is unstable.Water Quality Degradation: The sediment load has increased in the stream resulting in elevated water temperatures.Excess/Insufficient Water: The excessive sediment load has reduced the water conveyance capacity, storage capacity and flow within the stream.Inadequate Habitat for Fish and Wildlife: The deficiencies in the stream's habitat limit survival, growth, reproduction, and/or diversity of aquatic organisms within the stream.

After Situation:

The streambank is stable against further erosion and encourages natural sediment transport and deposition. Loss of riparian areas and sediment load is reduced in the stream.For Soil Erosion: The streambank is stable.For Water Quality Degradation: The sediment load has decreased in the stream resulting in improved aquatic habitat.For Excess/Insufficient Water: The water conveyance capacity, storage capacity and flow within the stream has been stabilized.For Inadequate Habitat for Fish and Wildlife: The reduction in the sediment load promotes survival, growth, reproduction, and/or diversity of aquatic organisms within the stream's habitat.

Feature Measure: Linear Feet of Streambank/Shorelin
Scenario Unit: Feet
Scenario Typical Size: 1,000.00

Scenario Total Cost:	$\$ 17,750.90$
Scenario Cost/Unit:	$\$ 17.75$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	2500	\$5,750.00
Dozer, 80 HP	929	Track mounted Dozer with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$77.14	16	\$1,234.24
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	224	\$6,083.84
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	16	\$509.92
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	56	\$2,666.16
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 580 - Streambank and Shoreline Protection

Scenario: \#3-Structural

Scenario Description:

Protection of streambanks using structural measures such as riprap, concrete block, gabions, etc. to stabilize and protect banks of streams or excavated channels against scour and erosion. Additional structural measures may also include tree revetments; log, rootwad and boulder revetments; dormant post plantings; piling revetments with wire or geotextile fencing; piling revetments with slotted fencing; jacks or jack fields; rock riprap; stream jetties; stream barbs; and gabions. The purpose of this practice is to maintain, improve, or restore physical, chemical, and biological functions of a stream to provide diverse aquatic communities to improve habitat for desired aquatic species. Payment cost include shaping bank, geotextile, and rock rip rap; a 6 -foot high bank at 3(H):1(V) slope for 1000 linear feet (0.46 acres) is used for estimation purposes. The rock toe will be 3^{\prime} thick and 5^{\prime} high. The bank above the riprap will be graded to a stable slope and revegetated. Critical area vegetation and erosion control fabric associated with this practice shall be applied through 342 - Critical Area Planting and 484 - Mulching.Resource Concerns: Soil Erosion - Excessive Bank Erosion from Streams, Shoreline and Water Conveyance Channels; Water Quality Degradation - Excessive Sediment in Surface Waters; Water Quality Degradation Elevated Water Temperature; Excess/Insufficient Water - Excessive Sediment in Surface Waters; Inadequate Habitat for Fish and Wildlife- Habitat
Degradation.Associated Practices include: 560 - Access Road; 342 - Critical Area Planting; 484 - Mulching; 382 - Fence; 391 - Riparian Forest Buffer; 390 - Riparian Herbaceous Cover; 395 - Stream Habitat Improvement and Management; 614 - Watering Facility; 570 Stormwater Runoff Control.

Before Situation:

A stream bisects the agricultural property and has had all of the woody vegetation removed due to overgrazing or human manipulation; the stream has severely degraded streambanks that are unstable and show signs of active erosion. Soil Erosion: The streambank is unstable.Water Quality Degradation: The sediment load has increased in the stream resulting in elevated water temperatures.Excess/Insufficient Water: The excessive sediment load has reduced the water conveyance capacity, storage capacity and flow within the stream. Inadequate Habitat for Fish and Wildlife: The deficiencies in the stream's habitat limit survival, growth, reproduction, and/or diversity of aquatic organisms within the stream.

After Situation:

The streambank is stable against further erosion and encourages natural sediment transport and deposition. Loss of riparian areas and sediment load is reduced in the stream.For Soil Erosion: The streambank is stable.For Water Quality Degradation: The sediment load has decreased in the stream resulting in improved aquatic habitat.For Excess/Insufficient Water: The water conveyance capacity, storage capacity and flow within the stream has been stabilized.For Inadequate Habitat for Fish and Wildlife: The reduction in the sediment load promotes survival, growth, reproduction, and/or diversity of aquatic organisms within the stream's habitat.

Feature Measure: Cubic Yards of Rock Riprap Placed
Scenario Unit: Cubic Yards
Scenario Typical Size: 1,667.00
Scenario Total Cost: \$266,006.37

Scenario Cost/Unit: \$159.57

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	2500	\$9,150.00
Dozer, 80 HP	929	Track mounted Dozer with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$77.14	16	\$1,234.24
Excavation, common earth, wet, side cast, large equipment	1228	Bulk excavation and side casting of wet common earth with hydraulic excavator or dragline with greater than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$4.30	2500	\$10,750.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	320	\$8,691.20
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	16	\$509.92
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for	Hours	\$47.61	80	\$3,808.80

Materials

Rock Riprap, Placed with geotextile
Mobilization

Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 580-Streambank and Shoreline Protection

Scenario: \#18-Bioengineered

Scenario Description:

Protection of streambanks consisting of a bioengineered technique comprised of non-structural measures such as earth revetments and benches with vegetative measures to stabilize and protect the streambank against scour and erosion. Soil bioengineering is a system of living plant materials used as structural components. Adapted types of woody vegetation (shrubs and trees) are initially installed in specified configurations that offer immediate soil protection and reinforcement. In addition, soil bioengineering systems create resistance to sliding or shear displacement in a streambank as they develop roots or fibrous inclusions. Environmental benefits derived from woody vegetation include diverse and productive riparian habitats, shade, organic additions to the stream, cover for fish, and improvements in aesthetic value and water quality. Under certain conditions, soil bioengineering installations work well in conjunction with structures to provide more permanent protection and healthy function, enhance aesthetics, and create a more environmentally acceptable product. Soil bioengineering systems normally use unrooted plant parts in the form of cut branches and rooted plants. For streambanks, living systems include brushmattresses, live stakes, joint plantings, vegetated geogrids, branchpacking, and live fascines. The purpose of this practice is to maintain, improve, or restore physical, chemical, and biological functions of a stream to provide diverse aquatic communities to improve habitat for desired aquatic species. Payment cost include shaping bank, critical area vegetation, livestake, rootwads and revetments: a 6-foot high bank at 3(H):1(V) slope for 1000 linear feet (0.46 acres) is used for estimation purposes. Resource Concerns: Soil Erosion - Excessive Bank Erosion from Streams, Shoreline and Water Conveyance Channels; Water Quality Degradation - Excessive Sediment in Surface Waters; Water Quality Degradation - Elevated Water Temperature; Excess/Insufficient Water - Excessive Sediment in Surface Waters; Inadequate Habitat for Fish and Wildlife- Habitat Degradation.Associated Practices include: 560 - Access Road; 342 Critical Area Planting; 382 - Fence; 391 - Riparian Forest Buffer; 390 - Riparian Herbaceous Cover; 395 - Stream Habitat Improvement and Management; 614 - Watering Facility

Before Situation:

A stream bisects the agricultural property and has had all of the woody vegetation removed due to overgrazing or human manipulation; the stream has moderately degraded streambanks that are unstable and show signs of active erosion. Soil Erosion: The streambank is unstable.Water Quality Degradation: The sediment load has increased in the stream resulting in elevated water temperatures.Excess/Insufficient Water: The excessive sediment load has reduced the water conveyance capacity, storage capacity and flow within the stream. Inadequate Habitat for Fish and Wildlife: The deficiencies in the stream's habitat limit survival, growth, reproduction, and/or diversity of aquatic organisms within the stream.

After Situation:

The streambank is stable against further erosion and encourages natural sediment transport and deposition. Loss of riparian areas and sediment load is reduced in the stream.For Soil Erosion: The streambank is stable.For Water Quality Degradation: The sediment load has decreased in the stream resulting in improved aquatic habitat.For Excess/Insufficient Water: The water conveyance capacity, storage capacity and flow within the stream has been stabilized.For Inadequate Habitat for Fish and Wildlife: The reduction in the sediment load promotes survival, growth, reproduction, and/or diversity of aquatic organisms within the stream's habitat.

Feature Measure: Linear Feet of Streambank/Shorelin

Scenario Unit: Feet
Scenario Typical Size: 1,000.00
Scenario Total Cost: \$57,397.34
Scenario Cost/Unit: \$57.40
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	2500	\$5,750.00
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	2500	\$9,150.00
Dozer, 80 HP	929	Track mounted Dozer with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$77.14	16	\$1,234.24
Hydraulic Excavator, 2 CY	932	Track mounted hydraulic excavator with bucket capacity range of 1.5 to 2.5 CY. Equipment and power unit costs. Labor not included.	Hours	\$142.87	75	\$10,715.25
Seeding Operation, Broadcast, Ground	959	Broadcast seed via ground operation. May require post tillage operation to incorporate seed. Includes equipment, power unit and labor costs.	Acres	\$13.81	0.46	\$6.35
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	418	\$11,352.88
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	16	\$444.16
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	75	\$2,390.25
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	90	\$4,284.90

Materials

Erosion Control Blanket, biodegradable	1213	Biodegradable erosion control blanket, typically a composite of natural fibers with reinforcing polymer netting. Materials and shipping only.	Square Yard	\$1.67	2222	\$3,710.74
Tree, Hardwood, Seedling, Medium	1510	Bare root hardwood seedlings 18 to 36 inches tall; includes tropical containerized seedlings of 10 to 20 cubic inches. Includes materials and shipping only.	Each	\$1.72	1000	\$1,720.00
Annual Grasses	2730	Annual grasses, one or more species, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$40.79	100	\$4,079.00
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	3	\$2,260.11

Practice: 584-Channel Bed Stabilization

Scenario: \#11-Bio-engineering

Scenario Description:

Stabilize the bottom and slope of a stream channel using bioengineering methods. Bio-engineering methods include live stakes, fascines, plantings, bare root stock, willow waddles, and live stakes. Re-vegetation of exposed surfaces will be completed using 342 - Critical Area Planting. Typical stream has 50 foot bottom width and 6 foot banks. Length of area 100 feet. Planting entire area at a 2×2 grid with live stakes, potted plants, and bare root mix

Before Situation:

Bed of an existing or newly constructed alluvial or threshold channel is undergoing damaging aggradation or degradation. Stream cannot be feasibly controlled with clearing and snagging, vegetation, bank protection or upstream water control.Soil Erosion: The stream is unstable.Water Quality Degradation: The sediment load has increased in the stream resulting in elevated water temperatures.Excess/Insufficient Water: The excessive sediment load has reduced the water conveyance capacity, storage capacity and flow within the stream. Inadequate Habitat for Fish and Wildlife: The deficiencies in the stream's habitat limit survival, growth, reproduction, and/or diversity of aquatic organisms within the stream.

After Situation:

Stream channel is stable and vegetated. Other associated practices could be (326) Clearing and Snagging, (396) Aquatic Organism Passage, (395) Stream Habitat Improvement and Management, (580) Streambank and Shoreline Protection, or (587) Structure for Water Control.For Soil Erosion: The streambank is stable.For Water Quality Degradation: The sediment load has decreased in the stream resulting in improved aquatic habitat.For Excess/Insufficient Water: The water conveyance capacity, storage capacity and flow within the stream has been stabilized.For Inadequate Habitat for Fish and Wildlife: The reduction in the sediment load promotes survival, growth, reproduction, and/or diversity of aquatic organisms within the stream's habitat.

Feature Measure: Area of planting

Scenario Unit: Square Feet
Scenario Typical Size: 2,500.00
Scenario Total Cost: \$14,101.38
Scenario Cost/Unit: \$5.64

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tractor, agricultural, 60 HP	963	Agricultural tractor with horsepower range of 50 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$35.80	40	\$1,432.00
Stripping and stockpiling, topsoil	1199	Stripping and stockpiling of topsoil adjacent to stripping area. Includes equipment and labor.	Cubic Yards	\$0.79	200	\$158.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	123	\$3,340.68
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	40	\$1,110.40
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	40	\$1,904.40

Materials

Erosion Control Blanket, biodegradable	1213	Biodegradable erosion control blanket, typically a composite of natural fibers with reinforcing polymer netting. Materials and shipping only.	Square Yard	\$1.67	800	\$1,336.00
Tree, Hardwood, Seedling, Medium	1510	Bare root hardwood seedlings 18 to 36 inches tall; includes tropical containerized seedlings of 10 to 20 cubic inches. Includes materials and shipping only.	Each	\$1.72	1500	\$2,580.00
Wattles or fascines, 6 to 8 inch diameter	1904	Fascines, or wattles: bundles of live tree stems of species that sprout roots, bound together, 6-8 inch diameter. Includes materials and shipping only.	Feet	\$9.16	200	\$1,832.00
Annual Grasses	2730	Annual grasses, one or more species, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$40.79	10	\$407.90

Practice: 584-Channel Bed Stabilization

Scenario: \#12-Rock structures

Scenario Description:

Stabilize the bottom and slope of a stream channel using rock riprap or engineered products that consist primarily of rock or concrete. This includes but not limited to gabions, rock weirs, J-hooks, cross veins, concrete blocks, boulders, etc. Typical stream has 50 foot bottom width and 6 foot banks. Length of area 100 feet. Based on degrading channel that needs to be riprapped its entire wetted perimeter.

Before Situation:

Bed of an existing or newly constructed alluvial or threshold channel is undergoing damaging aggradation or degradation. Changes cannot be controlled feasibly with clearing and snagging, vegetation, bank protection or upstream water control.Soil Erosion: The stream is unstable.Water Quality Degradation: The sediment load has increased in the stream resulting in elevated water temperatures.Excess/Insufficient Water: The excessive sediment load has reduced the water conveyance capacity, storage capacity and flow within the stream. Inadequate Habitat for Fish and Wildlife: The deficiencies in the stream's habitat limit survival, growth, reproduction, and/or diversity of aquatic organisms within the stream.

After Situation:

Stream channel is stable. Re-vegetation of exposed surfaces will be completed using 342 - Critical Area Planting. Other associated practices could be (326) Clearing and Snagging, (396) Aquatic Organism Passage, (395) Stream Habitat Improvement and Management, (580) Streambank and Shoreline Protection, or (587) Structure for Water Control.For Soil Erosion: The streambank is stable.For Water Quality Degradation: The sediment load has decreased in the stream resulting in improved aquatic habitat.For Excess/Insufficient Water: The water conveyance capacity, storage capacity and flow within the stream has been stabilized.For Inadequate Habitat for Fish and Wildlife: The reduction in the sediment load promotes survival, growth, reproduction, and/or diversity of aquatic organisms within the stream's habitat.

Feature Measure: Volume of rock
Scenario Unit: Cubic Yards
Scenario Typical Size: 600.00
Scenario Total Cost:
$\$ 88,156.50$
Scenario Cost/Unit: \$146.93
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Clearing and Grubbing	40	Clearing and Grubbing, includes materials, equipment and labor	Acres	\$290.55	0.2	\$58.11
Hydraulic Excavator, . 5 CY	930	Track mounted hydraulic excavator with bucket capacity range of 0.3 to 0.8 CY . Equipment and power unit costs. Labor not included.	Hours	\$99.69	20	\$1,993.80
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	60	\$1,629.60
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	20	\$637.40
Materials						
Rock Riprap, Placed with geotextile	44	Rock Riprap, placed with geotextile. Includes materials, local delivery within 20 miles of quarry, and placement.	Cubic Yards	\$137.64	600	\$82,584.00
Tree, Hardwood, Seedling, Medium	1510	Bare root hardwood seedlings 18 to 36 inches tall; includes tropical containerized seedlings of 10 to 20 cubic inches. Includes materials and shipping only.	Each	\$1.72	200	\$344.00
Mobilization						
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 584-Channel Bed Stabilization

Scenario: \#13-Wood structures

Scenario Description:

Stabilize the bottom and slope of a stream channel using engineered structures consisting primarily of wood. This includes but not limited to toe wood, log weirs, log vanes, root wads, log step pools, etc. Re-vegetation of exposed surfaces will be completed using 342 - Critical Area Planting. Typical stream has 50 foot bottom width and 6 foot banks. Length of area 100 feet. Structures spaced at 50 foot intervals.

Before Situation:

Bed of an existing or newly constructed alluvial or threshold channel is undergoing damaging aggradation or degradation. Changes cannot be controlled feasibly with clearing and snagging, vegetation, bank protection or upstream water control.Soil Erosion: The stream is unstable.Water Quality Degradation: The sediment load has increased in the stream resulting in elevated water temperatures.Excess/Insufficient Water: The excessive sediment load has reduced the water conveyance capacity, storage capacity and flow within the stream.Inadequate Habitat for Fish and Wildlife: The deficiencies in the stream's habitat limit survival, growth, reproduction, and/or diversity of aquatic organisms within the stream.

After Situation:

Stream channel is stable. Re-vegetation of exposed surfaces will be completed using 342 - Critical Area Planting. Other associated practices could be (326) Clearing and Snagging, (396) Aquatic Organism Passage, (395) Stream Habitat Improvement and Management, (580) Streambank and Shoreline Protection, or (587) Structure for Water Control.For Soil Erosion: The streambank is stable.For Water Quality Degradation: The sediment load has decreased in the stream resulting in improved aquatic habitat.For Excess/Insufficient Water: The water conveyance capacity, storage capacity and flow within the stream has been stabilized.For Inadequate Habitat for Fish and Wildlife: The reduction in the sediment load promotes survival, growth, reproduction, and/or diversity of aquatic organisms within the stream's habitat.

Feature Measure: Number of structures
Scenario Unit: Each
Scenario Typical Size: 3.00
Scenario Total Cost: $\$ 13,502.72$
Scenario Cost/Unit: \$4,500.91

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	40	\$92.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	42	\$1,140.72

Materials

Rock Riprap, Placed with geotextile
Wattles or fascines, 9 to 12 inch diameter

44 Rock Riprap, placed with geotextile. Includes materials, local delivery Cubic Yards $\$ 137.64 \quad 75 \quad \$ 10,323.00$ within 20 miles of quarry, and placement.
1905 Fascines, or wattles: bundles of live tree stems of species that sprout Feet \$12.98 $150 \quad$ \$1,947.00 roots, bound together, 9-12 inch diameter. Includes materials and shipping only.

Practice: 585-Stripcropping
Scenario: \#1 - Stripcropping - wind and water erosion

Scenario Description:

This scenario describes the implementation of a strip cropping system that is designed specifically for the control of wind and water erosion or minimizing the transport of sediments or other water borne contaminants originating from runoff on cropland. The planned strip cropping system will meet the current 585 standard. Implementation will result in alternating strips of erosion susceptible crops with erosion resistant crops that are oriented as close to perpendicular to water flows as possible. The designed system will reduce erosion/sediment/contaminants to desired objectives. The scenario includes the costs of designing the system, installing the strips on the landscape appropriately, and integrating a crop rotation that includes water erosion resistant species.

Before Situation:

In this geographic area, excessive water erosion is caused by raising crops in a manner that allows sheet water flows to travel down the slope causing sheet and rill erosion or concentrated flow conditions, degradation of soil health through loss of topsoil and organic matter, along with offsite negative impacts to water quality and aquatic wildlife habitat.

After Situation:

A strip cropping system that includes at least two or more strips within the planning slope will be designed to include parallel strips of approximately equal widths of water erosion resistant crop species with non-water erosion resistant crop species. Widths will be determined using current water erosion prediction technology to meet objectives. The design and implementation of a stripcropping system will minimize wind, sheet and rill erosion, protect soil quality, reduce offsite sedimentation, and benefit offsite aquatic wildlife habitat. Erosion prediction before and after practice application will be recorded showing the design and benefits of the practice. Erosion resistant strips in rotation must be managed to maintain the planned vegetative cover and surface roughness.

Feature Measure: area of strips

Scenario Unit: Acres

Scenario Typical Size: 80.00

Scenario Total Cost: \$156.45
Scenario Cost/Unit: \$1.96

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	3	\$74.97
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	3	\$81.48

Practice: 587 - Structure for Water Control
Scenario: \#1 - Fabricated Flashboard Riser, Metal
Scenario Description:
A Flashboard Riser fabricated of metal and used in a water management system that maintains a desired water surface elevation, controls the direction or rate of flow, or conveys water to address the resource concerns: Inadequate Water - Inefficient use of Irrigation Water and Inadequate habitat for Fish and Wildlife. The water surface elevation is controlled by addition or removal of slats or 'stoplogs'. This scenario is applicable to variable crest weir structures where the elevation is controlled at the embankment. They are often fabricated from vertical pipes with the stoplogs located in the middle or sheet steel in a box shape. Cost estimate is based on a 'Inline' flashboard riser shop fabricated using a 4' tall - 36' smooth steel pipe, a 90' long - 30' outlet pipe passing through an embankment. Payment rate is based upon the Flashboard Weir Length in inches multiplied by the barrel length in feet (Inch-Foot).

Before Situation:
The operator presently flood irrigates his field and has no means to accurately maintain a constant water level at varying elevations resulting in a lack of flexibility, and inefficient use of water and energy during pumping. The operator also desires to maintain a permanent pool for water fowl during the winter. In addition, the landowner wishes to provide for a way to control the water surface elevation in a wetland area. The landowner wishes to enhance and enlarge the area to provide habitat for fish and wildlife.

After Situation:

The operator has the capability to more efficiently control and maintain a range of water surface elevations thereby reducing the flow rate needed. Less water is wasted and both water and energy is conserved. The operator is now able to maintain adequate water during the winter as a benefit to waterfowl. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Irrigation Water Management (449), Irrigation Land Leveling (464), Irrigation Canal or Lateral (320), Irrigation System, Tailwater Recovery (447), Dike (356), Wetland Restoration (657), and Grade Stabilization Structure (410) will use the corresponding Standard(s) as appropriate.

Feature Measure: Flashboard Weir Length (in) x Barre
Scenario Unit: Diameter Inch Foot
Scenario Typical Size: 3,240.00
Scenario Total Cost: $\$ 15,758.95$

Scenario Cost/Unit: \$4.86
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	300	\$1,098.00
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	15	\$85.50
Hydraulic Excavator, . 5 CY	930	Track mounted hydraulic excavator with bucket capacity range of 0.3 to 0.8 CY . Equipment and power unit costs. Labor not included.	Hours	\$99.69	4	\$398.76
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	7	\$237.09
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	10	\$271.60
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	4	\$127.48
Materials						
Concrete mix, bag	1226	Pre-mixed dry concrete mix in 60 pound bag. Materials only.	Each	\$5.20	64	\$332.80
Pipe, smooth steel, weight priced	1325	Smooth Steel pipe priced by the weight of the pipe materials. Materials only.	Pound	\$3.43	81.6	\$279.89
Steel, Angle, 2 1/2 in. x 2 1/2 in. x $1 / 4 \mathrm{in}$.	1372	Materials: Angle, $21 / 2$ inch $\times 2$ 1/2 inch $\times 1 / 4$ inch. Meets ASTM A36	Feet	\$4.41	24	\$105.84
Steel, Plate, $3 / 8 \mathrm{in}$.	1375	Flat steel plate, $3 / 8$ inch thickness. Materials only.	Square Feet	\$23.71	10	\$237.10
Cattle Panel	1409	Welded wire cattle panel typically $1 / 4$ inch galvanized steel rods, 50 in. high $x 16 \mathrm{ft}$. long. Materials only.	Each	\$32.94	3	\$98.82
Lumber, planks, posts and timbers, treated	1609	Treated dimension lumber with nominal thickness greater than 2 inches. Includes lumber and fasteners. Does not include labor.	Board Feet	\$3.58	12	\$42.96
Welded Bar Grate, metal	1980	Heavy duty vertical bar welded grating, typically $1-1 / 4 \times 3 / 16 \mathrm{in}$. bars on 1 in . spacing with cross rod on 4 in . spacing. Materials only.	Square Feet	\$29.73	5	\$148.65
Pipe, Steel, Std Wt., Used, weight priced	2870	Schedule 40 steel pipe, used. Materials only.	Pound	\$1.01	11249.2	\$11,361.69

Mobilization

Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 587 - Structure for Water Control
Scenario: \#2-Commercial Inline Flashboard Riser - Regional

Scenario Description:

An Inline Water Control Structure (WCS) composed of plastic that maintains a desired water surface elevation, controls the direction or rate of flow, or conveys water to address the resource concern: Inadequate habitat for Fish and Wildlife. The water surface elevation is controlled by addition or removal of slats or 'stoplogs'. This scenario is applicable to variable crest weir structures where the elevation is controlled at point along a pipe extending through an embankment, providing ease of access to the structure and provide better protection against beaver activity. There are commercially available models composed of plastic that are commonly used when the width of the 'stoplog' wier is 24 ' or less. Payment rate is based upon the Flashboard Weir Length in inches multiplied by the outlet length in feet (Inch-Foot). Cost estimate is based on using such a commercial product. The typical scenario is an inline structure with a width of 20^{\prime}, height of six feet. The pipe is 90^{\prime} of 15^{\prime} SCH 40 PVC (inlet and outlet combined) passing through an embankment.

Before Situation:

The landowner wishes to provide for a way to control the water surface elevation in a wetland area. The landowner wishes to enhance and enlarge the area to provide habitat for fish and wildlife.

After Situation:

A WCS is installed in a flow line allowing shallow water impoundments. A wetland area is enhanced and water levels can be varied to better accommodate wildlife needs. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Wetland Restoration (657), Wetland Creation (658), Wetland Enhancement (659), Wetland Wildlife Habitat Management (644), Dike (356), Pond (378), and Grade Stabilization Structure (410) will use the corresponding Standard(s) as appropriate.

Feature Measure: Flashboard Weir Length (in) x Barre
Scenario Unit: Diameter Inch Foot
Scenario Typical Size: 1,800.00
Scenario Total Cost:
\$10,714.44
Scenario Cost/Unit: \$5.95
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	300	\$1,098.00
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	15	\$85.50
Hydraulic Excavator, . 5 CY	930	Track mounted hydraulic excavator with bucket capacity range of 0.3 to 0.8 CY . Equipment and power unit costs. Labor not included.	Hours	\$99.69	8	\$797.52
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	3	\$101.61
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	8	\$254.96

Materials

Concrete mix, bag	1226	Pre-mixed dry concrete mix in 60 pound bag. Materials only.	Each	\$5.20	37	\$192.40
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	2316.6	\$6,393.82
Pipe, smooth steel, weight priced	1325	Smooth Steel pipe priced by the weight of the pipe materials. Materials only.	Pound	\$3.43	81.6	\$279.89
Cattle Panel	1409	Welded wire cattle panel typically $1 / 4$ inch galvanized steel rods, 50 in. high $\times 16 \mathrm{ft}$. long. Materials only.	Each	\$32.94	3	\$98.82
Welded Bar Grate, metal	1980	Heavy duty vertical bar welded grating, typically $1-1 / 4 \times 3 / 16$ in. bars on 1 in. spacing with cross rod on 4 in . spacing. Materials only.	Square Feet	\$29.73	1.5	\$44.60
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 587 - Structure for Water Control
Scenario: \#12 - Concrete Turnout Structure - Large

Scenario Description:

A reinforced concrete turnout structure equipped with a 48 inch slide gate diverts irrigation water from a canal into a field or field ditch. This scenario is for a six ft tall, eight foot wide, and ten foot long turnout structure. A sloping trash rack fabricated from rebar is installed on the inlet. If needed fish screens may be installed at the inlet..

Before Situation:

A delivery canal exists, but a means to move water from the canal into a smaller ditch or field does not exist. A water supply of sufficient quantity and quality is available for irrigation.

After Situation:
Water is diverted from a canal to meet irrigation requirements. A eight foot wide and six foot tall turnout structure equipped with a 48 inch slide gate conducts water through the canal berm. The concrete structure is ten feet long and has an end sill. All footings, floors. and walls have a minimum thickness of six inches. The structure delivers water to field or ditch bottom elevation.

Feature Measure: Each
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$5,113.09

Scenario Cost/Unit: \$5,113.09
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, formed reinforced	38	Steel reinforced concrete formed and cast-in-placed in formed structures such as walls or suspended slabs by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$457.84	5	\$2,289.20
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	4	\$260.84
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	10	\$271.60
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	4	\$111.04
Materials						
Welded Bar Grate, metal	1980	Heavy duty vertical bar welded grating, typically $1-1 / 4 \times 3 / 16$ in. bars on 1 in . spacing with cross rod on 4 in . spacing. Materials only.	Square Feet	\$29.73	48	\$1,427.04
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 587-Structure for Water Control
Scenario: \#13-Flow Meter
Scenario Description:
Permanently installed mechanical or electronic water flow meter with cumulative volume and rate index. Meters can be any flow measurement device that meets CPS 433, (i.e. meters: turbine, propeller, acoustic, magnetic, venturi, orifice, etc.) with or without straightening vanes. Resource Concerns: Insufficient Water - Inefficient use of irrigation water, and Degraded Plant Condition - Undesirable plantproductivity and health, and Inefficient Energy Use - Equipment and facilitiesAssociated Practices: 533-Pumping Plant, 449-Irrigation Water Management, 441-Irrigation System, Microirrigation, 443-Irrigation System Surface and Subsurface, 442-Irrigation System, Sprinkler, 328-Conservation Crop Rotation, 634-Waste Transfer, and 590-Nutrient Management.

Before Situation:
Producer estimates seasonal and individual irrigation application flow rate and volumes based on energy costs, system operating pressure, or other means.
After Situation:
Producer is able to access instantaneous rate and cumulative flow volume data at the meter location. The information gained will enable the irrigator to improve irrigation water management, recognize system performance issues before they become critical, and reduce energy use.

Feature Measure: Nominal Diameter of Meter

Scenario Unit: Inch
Scenario Typical Size: 10.00

Scenario Total Cost:	$\$ 1,850.72$
Scenario Cost/Unit:	$\$ 185.07$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	4	\$108.64
Materials						
Flow Meter, with mechanical Index	1450	10 inch, Turbine Type Flow Meter with Mechanical Index, permanently installed. Includes materials and shipping only.	Each	\$1,742.08	1	\$1,742.08

Practice: 587 - Structure for Water Control
Scenario: \#14-Flow Meter with Telemetry
Scenario Description:
Permanently installed water flow meter with an electronic flow rate and volume index and data telemetry transmission system. Meters can be any flow measurement device that meets CPS 433, (i.e. meters: turbine, propeller, acoustic, magnetic, venturi, orifice, etc.) with or without straightening vanes. Meter nominal diameter for insert type turbine meters will be installation pipe size. Typical installation would include installation of a 10 inch magnetic flow meter, with electronic index output and telemetry data transfer system for monitoring irrigation system flow rate.Resource Concerns: Insufficient Water - Inefficient use of irrigation water, and Degraded Plant Condition - Undesirable plantproductivity and health, and Inefficient Energy Use - Equipment and facilitiesAssociated Practices: 533-Pumping Plant, 449-Irrigation Water Management, 441-Irrigation System, Microirrigation, 443-Irrigation System Surface and Subsurface, 442-Irrigation System, Sprinkler, 328-Conservation Crop Rotation, 634-Waste Transfer, and 590-Nutrient Management.

Before Situation:
Producer estimates seasonal and individual irrigation application flow rate and volumes based on energy costs, system operating pressure, or other means.
After Situation:
Producer is able to access instantaneous rate and cumulative flow volume data from a personal computer or cell phone at any time. The information gained will enable the irrigator to improve irrigation water management, recognize system performance issues before they become critical, and reduce energy use.

Feature Measure: Nominal Diameter of Meter

Scenario Unit: Inch

Scenario Typical Size: 10.00
Scenario Total Cost: $\$ 5,316.87$
Scenario Cost/Unit: \$531.69

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	4	\$108.64
Materials						
Flow Meter, with electronic Index and telemetry	1451	10 inch Magnetic Irrigation Flow Meter, with electronic index and equipped for telemetry, permanently installed. Includes material and shipping only.	Each	\$5,208.23	1	\$5,208.23

Practice: 587 - Structure for Water Control
Scenario: \#15 - Steel Toe Wall

Scenario Description:

When water quantity is a resource concern in the region of an existing irrigation system, a steel toe wall structure may be installed as part of a irrigation tailwater diversion system to control the elevation of water in drainage or irrigation ditches and to divert irrigation tailwater into other structures such as sediment traps and irrigation tailwater basins, in order to utilize water more efficiently and help minimize irrigation induced soil erosion. The typical job is for a structure that has a 160 ac drainage area and a 2.9 ft drop that consists of 227.5 sq ft of steel and includes all materials, equipment, installation, labor and mobilization. Associated Conservation Practices: 388-Irrigation Field Ditch; 443-Irrigation System, Surface or Subsurface; 533-Pumping Plant; 430-Irrigation Pipeline; 320 - Irrigation Cannal or Lateral; 449 Irrigation Water Management, 447-Irrigation System, Tailwater Recovery, 350-Sediment Basin.

Before Situation:

A delivery canal exists, but a means to divert irrigation tailwater into other structures such as sediment traps and irrigation tailwater basins does not exist. A water supply of sufficient quantity and quality is available for irrigation.

After Situation:

A steel toe wall structure is installed as part of a irrigation tailwater diversion system to control the elevation of water in drainage or irrigation ditches and to divert irrigation tailwater into other structures such as sediment traps and irrigation tailwater basins, in order to utilize water more efficiently to meet irrigation requirements and help minimize irrigation induced soil erosion. The typical job is for a structure that has a 160 ac drainage area and a 2.9 ft drop that consists of 227.5 sq ft of steel and includes all materials, equipment, installation, labor and mobilization.

Feature Measure: Area of Steel Toe Wall Structure

Scenario Unit: Square Feet

Scenario Typical Size: 227.50
Scenario Total Cost: \$16,066.30

Scenario Cost/Unit:
 $\$ 70.62$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, formed reinforced	38	Steel reinforced concrete formed and cast-in-placed in formed structures such as walls or suspended slabs by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$457.84	9.7	\$4,441.05
Hydraulic Excavator, . 5 CY	930	Track mounted hydraulic excavator with bucket capacity range of 0.3 to 0.8 CY . Equipment and power unit costs. Labor not included.	Hours	\$99.69	24	\$2,392.56
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	24	\$812.88
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	24	\$651.84
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment $>=150$ HP, Scrapers, Water Wagons.	Hours	\$31.87	24	\$764.88
Materials						
Rock Riprap, Placed with geotextile	44	Rock Riprap, placed with geotextile. Includes materials, local delivery within 20 miles of quarry, and placement.	Cubic Yards	\$137.64	2.7	\$371.63
Aggregate, Sand, Graded, Washed	45	Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$42.64	1.3	\$55.43
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	98.7	\$272.41
Steel, Plate, 3/8 in.	1375	Flat steel plate, $3 / 8$ inch thickness. Materials only.	Square Feet	\$23.71	227.5	\$5,394.03
Mobilization						
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 587 - Structure for Water Control

Scenario: \#16-Tailwater Pit Inlet

Scenario Description:

This scenario consists of a mechanical inlet structure designed for a tailwater pit. The inlet is to be installed in conjunction with an excavated pit and/or embankment designed to accumulate, store, deliver or regulate water for a surface irrigation system in areas where water quantity are a resource concern. The tailwater pit is to be implemented as a 436 - Irrigation Reservoir.Resource concern: Insufficient Water - Inefficient use of irrigation water.Associated Practices: 436 - Irrigation Reservoir; 521 - Pond Sealing or Lining (various); 320 - Irrigation Canal or Lateral; 430-Irrigation Pipeline; 428 - Irrigation Ditch Lining; 533 - Pumping Plant; 440 series - Irrigation Systems; 447 - Irrigation System, Tailwater Recovery; 378 - Pond; 484 - Mulching; and 342 - Critical Area Planting.

Before Situation:

Current irrigation system relies on an intermittent or low-flow rate water source. This results in untimely and/or inefficient water application.
After Situation:
A typical tailwater pit inlet would be an 18 inch diameter pipe, 100 feet in length. The pipe materials may include steel, HDPE, or other approved materials. Work includes site preparation, acquiring and installing culvert pipe.

Feature Measure: Pipe Diameter (In) x Pipe Length (Ft

Scenario Unit: Diameter Inch Foot
Scenario Typical Size: 1,800.00

Scenario Total Cost:	\$8,516.10					
Scenario Cost/Unit:	\$4.73					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	5	\$11.50
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	90	\$513.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	4	\$108.64
Materials						
Pipe, Steel, Std Wt., Used, weight priced	2870	Schedule 40 steel pipe, used. Materials only.	Pound	\$1.01	7059	\$7,129.59
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 587-Structure for Water Control
Scenario: \#17-Wetland Embankment
Scenario Description:
A embankment installed to restore and/or enhance wetland hydrology to address the resource concern: inadequate habitat for fish and wildlife, soil and water quality degradation, and/or degraded plant condition. The typical scenario is a 3,500 cubic yard embankment with $10: 1$ side slopes and a 20 ' wide top, with less than 24 ' of impounded water depth.

Before Situation:
The site has been converted to agricultural production. Primarily, resource concerns are related to soil and water quality degradation, degraded plant condition, and inadequate fish and wildlife habitat. The site may or may not be drained by surface ditches. The site may have also been cleared. The landowner wishes to provide for a way to restore the water surface elevation in a wetland area. The landowner wishes to enhance and enlarge the area to provide habitat for fish and wildlife.

After Situation:
A shallow water impoundment is installed with typically less than 24 ' of water depth. The typical wetland embankment is a 3,500 cubic yards in volume with $10: 1$ side slopes and a 20' wide top. A wetland area is restored and enhanced. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Wetland Creation (658), Wetland Enhancement (659) Wetland Wildlife Habitat Management (644), Dike (356), and Grade Stabilization Structure (410) will use the corresponding Standard(s) as appropriate.

Feature Measure: Volume of Embankment

Scenario Unit: Cubic Yards

Scenario Typical Size: 3,500.00
Scenario Total Cost: $\$ 13,719.59$
Scenario Cost/Unit: \$3.92
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	3500	\$12,810.00
Mobilization						
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 587 - Structure for Water Control
Scenario: \#18-Chemigation Valve(s)

Scenario Description:

Installation of chemigation valves on irrigated cropland based on local or State requirements or conservation technical assistance. These valves are a part of a planned irrigation delivery system and Irrigation Water Management Plan necessary for efficiently applying water to crops. Associated practices: 464-Irrigation Land Leveling, 449Irrigation Water Management, 443-Irrigation System, Surface and Subsurface.

Before Situation:
Certain irrigation practices require the installation of chemigation valves in order to be in compliance with local or State requirements. These valves also allow the injection of chemicals required for system maintenance and performance.

After Situation:

Chemigation valves are installed at two different locations in the system to allow for the injection of chemicals. One valve is 8 ' diameter and one is 12 ' diameter for a total of 20 inches for the scenario typical size.

Feature Measure: Nominal Diameter of Valve(s)
Scenario Unit: Inch
Scenario Typical Size: 20.00
Scenario Total Cost: \$2,416.99
Scenario Cost/Unit: \$120.85
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	4	\$108.64
Materials						
Valve, Chemigation, < 12 inch dia.	2369	Chemigation valve less than 12 inch diameter for controlling injection of chemicals into irrigation systems. Materials only.	Each	\$650.70	1	\$650.70
Valve, Chemigation, => 12 inch dia.	2370	Chemigation valve greater than or equal to 12 inch diameter for controlling injection of chemicals into irrigation systems. Materials only.	Each	\$1,657.65	1	\$1,657.65

Practice: 587-Structure for Water Control
Scenario: \#19-Pump Box, Concrete, In-Ground

Scenario Description:

A reinforced concrete structure that collects effluent water from a canal or ditch so that it can be pumped into an irrigation system. This scenario is for an 8-ft deep, 12foot wide, and 12 -foot long structure.

Before Situation:
A water supply of sufficient quantity and quality is available for irrigation. A delivery canal exists, but a tank is needed to provide a more constant head to the pump. The concrete tank is extra thick due to the consideration that the partially treated effluent should be handled similarly to agricultural waste.
After Situation:
Water is conveyed in a controlled manner. Associated practices could include Irrigation Canal or Lateral (320), Irrigation Pipeline (430), Irrigation System, Microirrigation (441), Irrigation System, Sprinkler (442), Irrigation System, Surface and Subsurface (443), Irrigation Water Management (449), and Pumping Plant (533).

Feature Measure: Each
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 8,729.89$
Scenario Cost/Unit: $\$ 8,729.89$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, formed reinforced	38	Steel reinforced concrete formed and cast-in-placed in formed structures such as walls or suspended slabs by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$457.84	17.3	\$7,920.63
Hydraulic Excavator, . 5 CY	930	Track mounted hydraulic excavator with bucket capacity range of 0.3 to 0.8 CY . Equipment and power unit costs. Labor not included.	Hours	\$99.69	4	\$398.76
Labor						
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	4	\$111.04
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: 587 - Structure for Water Control
Scenario: \#288-Slide Gate

Scenario Description:

This scenario is the installation of a permanent slide gate structure to control the conveyance of water. The typical size is a 4' diameter opening. The slide gate may be installed on an open channel or pipeline. The slide gate is made of steel and has a hand operated mechanical lifting system, i.e. screw. This scenario assists in addressing the resource concerns: water management. Conservation practices that may be associated are: 533-Pumping Plant.

Before Situation:

A channel or pipeline is in need of a head gate to control the flow of water.

After Situation:

A 4' slide gate is installed and operated by hand is installed.
Feature Measure: diameter
Scenario Unit: Feet
Scenario Typical Size: 4.00
Scenario Total Cost: \$9,488.86
Scenario Cost/Unit: \$2,372.22
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	6	\$391.26
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	12	\$406.44
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	12	\$325.92
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	6	\$191.22
Materials						
Screw gate, cast iron, 4 ft . diameter, 10/0 head	1746	4 ft . diameter cast iron screw (canal) gate rated at 10 seating head 0 feet unseating head. Includes materials only.	Each	\$7,420.65	1	\$7,420.65
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 587 - Structure for Water Control
Scenario: \#289-Flap Gate

Scenario Description:

This scenario is the installation of a permanent flap (tide) gate structure to control the direction of flow resulting from tides or high water or back-flow from flooding. The typical size is a 4' diameter opening. The gate may be installed on an open channel or pipeline. It is made of steel and operates automatically. This scenario assists in addressing the resource concerns: water management. Conservation practices that may be associated are:

Before Situation:
A wetland or other area is in need of a flap gate to control the direction of the water.
After Situation:
A flap gate 4 ' wide is installed.
Feature Measure: Feet Diameter (of Gate)
Scenario Unit: Feet
Scenario Typical Size: 4.00
Scenario Total Cost: \$10,022.88
Scenario Cost/Unit: \$2,505.72
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	6	\$391.26
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	12	\$406.44
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	12	\$325.92
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	6	\$191.22
Materials						
Flap Gate, cast iron, 4 ft . diameter	1745	4 ft . diameter cast iron flap gate. Materials only.	Each	\$7,954.67	1	\$7,954.67
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 587-Structure for Water Control
Scenario: \#290 - Flap Gate w/ Concrete Wall

Scenario Description:

Install a concrete cut off wall with tide gate at the outlet of a channel. A typical scenario would be installed in a 25 foot channel, 6 foot deep, with $2: 1$ side slopes. A concrete wall will extend 10 feet on each side, and include a 4' flap gate structure to control flooding. Work includes site preparation, forming and pouring concrete, backfilling and acquiring and installing the tide gate.

Before Situation:
Tides or flooding inundate and affect water quality of wetlands or other managed systems.
After Situation:
Tide or flood inundation is controlled. Associated practices could be Aquaculture Ponds (397), Aquatic Organism Passage (396), Bivalve Aquaculture Gear and Biofouling Control (400), Constructed Wetland (656), Drainage Water Management (554), Irrigation Canal or Lateral (320), Irrigation Field Ditch (388), Irrigation System, Surface and Subsurface (443), Irrigation Water Management (449), Salinity and Sodic Soil Management (610), Subsurface Drain (606), Surface Drain, Field Ditch (607), Surface Drain, Main or Lateral (608), Wetland Creation (658), Wetland Enhancement (659), Wetland Restoration (657), and Wetland Wildlife Habitat Management (644).

Feature Measure: Cubic Yards of Concrete

Scenario Unit: Cubic Yards
Scenario Typical Size: 10.00
Scenario Total Cost: \$13,949.95
Scenario Cost/Unit: \$1,395.00

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, formed reinforced	38	Steel reinforced concrete formed and cast-in-placed in formed structures such as walls or suspended slabs by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$457.84	10	\$4,578.40
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	200	\$460.00
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	200	\$732.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	2	\$54.32
Materials						
Aggregate, Sand, Graded, Washed	45	Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$42.64	4	\$170.56
Flap Gate, cast iron, 4 ft . diameter	1745	4 ft . diameter cast iron flap gate. Materials only.	Each	\$7,954.67	1	\$7,954.67

Practice: 587 - Structure for Water Control
Scenario: \#291 - Rock Checks for Water Surface Profile

Scenario Description:

Typical setting is in a stream that has become incised and is therefore disconnected from the floodplain. Typical installation consists of installing a 'Vee' shaped rock structures with points facing upstream for the purpose of raising the water surface profile. Cost estimate is for three check dams with a top width of 3 ', max height of 6^{\prime}, min height of 3^{\prime}, and 28 ' length; containing an average of 58 cubic yards or 29 tons of rock for a total of 87 tons. The check dams are underlain with geotextile fabric. Disturbed areas are protected with permanent vegetative cover. Addresses resource concerns such as water quality degradation and soil erosion-concentrated flow erosion.

Before Situation:
The stream presently is incised with near vertical banks caused by bank toe erosion and sloughing. This condition has caused the floodplains to be disconnected from the stream, with only floods well above normal high-water escaping the high banks of the stream.

After Situation:

Banks are stabilized, and pools are created raising the Water Surface Profile elevation and effectively reducing the slope. Riffle pool scheme is restored and banks are protected. Water quality is protected downstream due to erosion protection, and wetland features are restored in the floodplain. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Streambank and Shoreline Protection (580), Channel Bed Stabilization (584), Stream Habitat Improvement and Management (395), and Wetland Wildlife Habitat Management (644) will use the corresponding Standard(s) as appropriate.

Feature Measure: Tons of rock installed
Scenario Unit: Ton
Scenario Typical Size: 87.00
Scenario Total Cost: $\$ 9,092.47$

Scenario Cost/Unit: \$104.51
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, common earth, large equipment, 50 ft	1222	Bulk excavation of common earth including sand and gravel with dozer $>100 \mathrm{HP}$ with average push distance of 50 feet. Includes equipment and labor.	Cubic Yards	\$1.43	84	\$120.12
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28

Materials

Rock Riprap, Placed with geotextile
Mobilization

Practice: 587 - Structure for Water Control
Scenario: \#292-In-Stream Structure for Water Surface Profile
Scenario Description:
Typical setting is in a stream that has become incised and is therefore disconnected from the floodplain. Typical installation consists of installing a 'Vee' shaped concrete structure which points facing upstream for the purpose of raising the water surface profile. Cost estimate is for one cross vane with a effective length (Streambed width) of 36 ', and total length of 65 ', effective height of 3^{\prime}, max height of 6 ', and a 3^{\prime} by 1.5^{\prime} footer; containing 19 cubic yards of Concrete. Disturbed areas are protected with permanent vegetative cover. Addresses resource concerns such as water quality degradation and soil erosion-concentrated flow erosion.

Before Situation:
The stream presently is incised with near vertical banks caused by bank toe erosion and sloughing. This condition has caused the floodplains to be disconnected from the stream, with only floods well above normal high-water escaping the high banks of the stream.

After Situation:
Banks are stabilized, and pools are created raising the water surface elevation and effectively reducing the slope. Riffle pool scheme is restored and banks are protected. Water quality is protected downstream due to erosion protection, and wetland features are restored in the floodplain. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Streambank and Shoreline Protection (580) Channel Bed Stabilization (584), Stream Habitat Improvement and Management (395), and Wetland Wildlife Habitat Management (644) will use the corresponding Standard(s) as appropriate.

Feature Measure: Streambed Width

Scenario Unit: Feet

Scenario Typical Size: 36.00

Scenario Total Cost: \$10,622.81						
Scenario Cost/Unit:	\$295.08					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, formed reinforced	38	Steel reinforced concrete formed and cast-in-placed in formed structures such as walls or suspended slabs by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$457.84	19	\$8,698.96
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	18	\$41.40
Water management, Flooding \& dewatering	969	Includes equipment and power unit. Labor not included.	Acre Feet	\$188.59	1	\$188.59
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	10	\$271.60
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	7	\$333.27
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 587 - Structure for Water Control
Scenario: \#293-CMP Turnout
Scenario Description:
A corrugated metal pipe (CMP) equipped with a slide gate diverts water from a ditch or canal into a field or field ditch. This scenario is for a 15 inch diameter gate and pipe that will transmit approximately 4 cfs of flow.

Before Situation:
A ditch or canal exists, but a means to move water from the ditch into a smaller ditch or field does not exist. A water supply of sufficient quantity and quality is available for irrigation.

After Situation:
Water is diverted from a canal or ditch to meet irrigation requirements. A 15 inch diameter CMP is installed through the canal containment dike,. A 15 inch diameter slide gate is attached to the upstream end of the pipe. The top of the pipe inlet is below canal water surface elevation.

Feature Measure: Each
Scenario Unit: Each
Scenario Typical Size: 1.00

Scenario Total Cost:	\$1,530.41					
Scenario Cost/Unit:	\$1,5	3.41				
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	2	\$130.42
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	5	\$135.80
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	3	\$83.28
Materials						
Pipe, CMP, 18-16 gauge, weight priced	1322	18 and 16 gauge galvanized helical corrugated metal pipe priced by the weight of the pipe materials. Materials only.	Pound	\$2.41	94	\$226.54
Slide gate, steel, 1 ft . diameter, low head	1830	1 ft . diameter steel slide gate for low head installations	Each	\$201.00	1	\$201.00
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 587 - Structure for Water Control
Scenario: \#294-Concrete Turnout Structure - Small

Scenario Description:

A reinforced concrete turnout structure equipped with slide boards or panels diverts irrigation water from a ditch or canal into a field or field ditch. This scenario is for a four ft tall, two foot wide, and five foot long turnout structure.

Before Situation:
A ditch or canal exists, but a means to move water from the ditch into a smaller ditch or field does not exist. A water supply of sufficient quantity and quality is available for irrigation.

After Situation:
Water is diverted from a canal or ditch to meet irrigation requirements. A two foot wide and four foot tall turnout structure equipped with slots for slide boards and panels conducts water through the canal berm into a field. The concrete structure is five feet long and has an end sill. All footings, floors. and walls have a minimum thickness of six inches. The structure delivers water to field elevation or ditch bottom elevation. The top of the pipe inlet is below canal water surface elevation.

Feature Measure: Each
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$1,789.78

Scenario Cost/Unit: \$1,789.78
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, formed reinforced	38	Steel reinforced concrete formed and cast-in-placed in formed structures such as walls or suspended slabs by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$457.84	2	\$915.68
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90. Equipment and power unit costs. Labor not included.	Hours	\$65.21	1	\$65.21
Labor						
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	2	\$55.52
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 587 - Structure for Water Control
Scenario: \#351-Automated DWM Control Structure, 12 to 18 inch diameter pipe

Scenario Description:

A subsurface drainage system on a field with a fairly flat slope (less than 2% and preferably less than 1%) that outlets through a control structure which is operated with an automated slide gate and accommodates 12 to 18 inch diameter pipe sizes. This structure configuration facilitates meeting the conservation practice standard 554 Drainage Water Management by managing the subsurface water table year-round. This allows the operator to keep the water in the soil profile when it is not critical to dry the soil for crop health or field operations. This retention time reduces the volume of water discharged and thereby the quantity of nutrients lost. A single automated structure may have its influence extended by buried float-activated structures to provide a greater area of control. Resource Concerns: Water Quality Degradation (Nutrients). Associated Practices: 606 - Subsurface Drain; 554 - Drainage Water Management

Before Situation:
Uncontrolled discharge from a subsurface drainage system enters ditches or streams, often laden with sediment and nutrients.

After Situation:

The water surface profile in the subsurface drainage system is managed in a manner which retains moisture in the soil for plant update and to allow for enhanced nutrient utilization. The use of automated control structures allow water levels to be monitored and adjusted remotely to allow for more active management in accordance with the drainage systems Drainage Water Management plan. Typical affected area for a single structure is 10 to 20 acres. A single structure with an automated slide gate may have its influence extended by use of buried float-activated control structures.

Feature Measure: Number of Structures
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$11,290.46
Scenario Cost/Unit: \$11,290.46
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	2	\$130.42
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	3	\$101.61
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	2	\$54.32
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	2	\$55.52
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22

Materials

Switches and Controls,
1193 Programmable logic controller (with or without wireless Each \$623.08 telecommunications) commonly used to control pumps and irrigation systems
Pipe, PVC, dia. < 18 in., weight priced

Data Logger with Telemetry System

Water Control Structure, Stoplog, Inline, fixed costs portion
Water Control Structure, Stoplog, Inline, variable cost portion

Valve, Inline, => 12 inch dia.

Light Duty Linear Actuator

1323 Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.
1454 Data Logger W/Graphic Output for water management and telemetry data communication device with power supply in a weather proof enclosure. Equipment only.
2145 Fixed cost portion of Water Level Control Structure, Inline stoplog type. Typically made of PVC or fiberglass materials. Materials only.
2146 Variable cost portion of a Water Level Control Structure, Inline stoplog type. Typically made of PVC or fiberglass materials. Calculate total variable costs by multiplying by the structure height x pipe diameter. Materials only.
2368 Inline valve greater than or equal to 12 inch diameter to control direction and volume of flow within a pipeline system. Materials only.

12VDC aluminum light duty linear actuator with 12??? stroke and potentiometer. 110 lb dynamic load rating with 20:1 gear ratio, 500 lb static load rating.

Mobilization

Practice: 587 - Structure for Water Control

Scenario: \#367-Automation Retrofit to Manual Drainage Water Management Control Structure

Scenario Description:

A subsurface drainage system on a field with a fairly flat slope (less than 2% and preferably less than 1%) that outlets through a control structure which has been retrofitted to operate with an automated slide gate. This structure configuration facilitates meeting the conservation practice standard 554 - Drainage Water Management by managing the subsurface water table year-round. This allows the operator to keep the water in the soil profile when it is not critical to dry the soil for crop health or field operations. This retention time reduces the volume of water discharged and thereby the quantity of nutrients lost. A single retrofitted automated retrofit structure may have its influence extended by buried float-activated structures to provide a greater area of control. Resource Concerns: Field Sediment, Nutrient and Pathogen Loss. Associated Practices: 606 - Subsurface Drain; 554 - Drainage Water Management.

Before Situation:
Control structure with manually operated slide gate.

After Situation:

The water surface profile in the subsurface drainage system is managed in a manner which retains moisture in the soil for plant update and to allow for enhanced nutrient utilization. The use of retrofitted control structures for automated slide gate operation allow water levels to be monitored and adjusted remotely to allow for more active management in accordance with the drainage systems Drainage Water Management plan. Typical affected area for a single structure is 10 to 20 acres. A single structure with a retrofitted automated slide gate may have its influence extended by use of buried float-activated control structures.

Feature Measure: Number of Structures
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$5,308.31
Scenario Cost/Unit: \$5,308.31
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	4	\$135.48
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	4	\$108.64
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	2	\$262.40
Materials						
Solar Panels, fixed cost portion	1031	Fixed cost portion of the Solar Panels. This portion is a base cost for all Solar Panels and is not dependent on Kilowatt. The total cost of any Solar Panels will include this fixed cost plus a variable cost portion. The completed Solar Panels will include all materials (electrical, controllers, service drops and etc.).	Each	\$859.26	1	\$859.26
Solar Panels, variable cost portion	1135	Variable cost portion of the Solar Panels. This portion IS dependent on the total Kilowatt for the Solar Panels. The total cost of Solar Panels will include this variable cost plus the fixed cost portion. The completed Solar Panels will include all materials (electrical, controllers, service drop, etc.). Includes materials only.	Kilowatt	\$2,563.62	0.25	\$640.91
Switches and Controls, programmable controller	1193	Programmable logic controller (with or without wireless telecommunications) commonly used to control pumps and irrigation systems	Each	\$623.08	1	\$623.08
Data Logger with Telemetry System	1454	Data Logger W/Graphic Output for water management and telemetry data communication device with power supply in a weather proof enclosure. Equipment only.	Each	\$1,663.47	1	\$1,663.47
Battery Bank, Hydroelectric	2593	Device used to provide a way to store surplus energy when more is being produced than consumed. When demand increases beyond what is generated, the batteries can be called on to release energy to keep household loads operating. Includes materials and shipping only.	Each	\$672.44	1	\$672.44
Light Duty Linear Actuator	2724	12VDC aluminum light duty linear actuator with 12??? stroke and potentiometer. 110 lb dynamic load rating with $20: 1$ gear ratio, 500 lb static load rating.	Each	\$152.19	1	\$152.19

Practice: 587 - Structure for Water Control
Scenario: \#429-Automated DWM Control Structure, 6 to 10 inch diameter pipe
Scenario Description:
A subsurface drainage system on a field with a fairly flat slope (less than 2% and preferably less than 1%) that outlets through a control structure which is operated with an automated slide gate and accommodates 6 to 10 inch diameter pipe sizes. This structure configuration facilitates meeting the conservation practice standard 554 Drainage Water Management by managing the subsurface water table year-round. This allows the operator to keep the water in the soil profile when it is not critical to dry the soil for crop health or field operations. This retention time reduces the volume of water discharged and thereby the quantity of nutrients lost. A single automated structure may have its influence extended by buried float-activated structures to provide a greater area of control. Resource Concerns: Water Quality Degradation (Nutrients). Associated Practices: 606 - Subsurface Drain; 554 - Drainage Water Management

Before Situation:
Uncontrolled discharge from a subsurface drainage system enters ditches or streams, often laden with sediment and nutrients.

After Situation:

The water surface profile in the subsurface drainage system is managed in a manner which retains moisture in the soil for plant update and to allow for enhanced nutrient utilization. The use of automated control structures allow water levels to be monitored and adjusted remotely to allow for more active management in accordance with the drainage systems Drainage Water Management plan. Typical affected area for a single structure is 10 to 20 acres. A single structure with an automated slide gate may have its influence extended by use of buried float-activated control structures.

Feature Measure: Number of Structures
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 6,335.40$
Scenario Cost/Unit: $\$ 6,335.40$
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	2	\$130.42
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	3	\$101.61
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	2	\$54.32
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	2	\$55.52
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22

Materials

Switches and Controls,
1193 Programmable logic controller (with or without wireless Each \$623.08 telecommunications) commonly used to control pumps and irrigation systems
Pipe, PVC, dia. < 18 in., weight priced

Data Logger with Telemetry System

Water Control Structure, Stoplog, Inline, fixed costs portion
Water Control Structure, Stoplog, Inline, variable cost portion

Valve, Inline, < 12 inch dia.

Light Duty Linear Actuator

1323 Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.
1454 Data Logger W/Graphic Output for water management and telemetry data communication device with power supply in a weather proof enclosure. Equipment only.
2145 Fixed cost portion of Water Level Control Structure, Inline stoplog type. Typically made of PVC or fiberglass materials. Materials only.
2146 Variable cost portion of a Water Level Control Structure, Inline stoplog type. Typically made of PVC or fiberglass materials. Calculate total variable costs by multiplying by the structure height x pipe diameter. Materials only.
2367 Inline valve less than 12 inch diameter to control direction and volume of flow within a pipeline system. Materials only.

2724
12VDC aluminum light duty linear actuator with 12??? stroke and \quad Each $\quad \$ 152.19 \quad 1 \quad \$ 152.19$ potentiometer. 110 lb dynamic load rating with 20:1 gear ratio, 500 lb static load rating.

Mobilization

Practice: 587 - Structure for Water Control
Scenario: \#451-Inlet Flashboard Riser, Metal
Scenario Description:
A Flashboard Riser fabricated of metal and used in a water management system that maintains a desired water surface elevation, controls the direction or rate of flow, or conveys water to address the resource concerns: Inadequate Water - Inefficient use of Irrigation Water and Inadequate habitat for Fish and Wildlife. The water surface elevation is controlled by addition or removal of slats or 'stoplogs'. This scenario is applicable to variable crest weir structures where the elevation is controlled at the inlet (Half-Rounds). They are often fabricated from half pipes (i.e. half-rounds) or sheet steel in a box shape. Payment rate is based upon the Flashboard Weir Length in inches multiplied by the outlet length in feet (Inch-Foot). Cost estimate is based on a 'Half-Round' flashboard riser shop fabricated using a longitudinal cut 36' smooth steel pipe, a 50 ' long - 30 ' outlet pipe passing through an embankment.

Before Situation:
The operator presently flood irrigates his field and has no means to accurately maintain a constant water level at varying elevations resulting in a lack of flexibility, and inefficient use of water and energy during pumping. The operator also desires to maintain a permanent pool for water fowl during the winter.

After Situation:

The operator has the capability to more efficiently control and maintain a range of water surface elevations thereby reducing the flow rate needed. Less water is wasted and both water and energy is conserved. The operator is now able to maintain adequate water during the winter as a benefit to waterfowl. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Irrigation Water Management (449), Irrigation Land Leveling (464), Irrigation Canal or Lateral (320), Irrigation System, Tailwater Recovery (447), Dike (356), and Grade Stabilization Structure (410) will use the corresponding Standard(s) as appropriate.

Feature Measure: Flashboard Weir Length (in) x barre
Scenario Unit: Diameter Inch Foot

Scenario Typical Size: 1,800.00
Scenario Total Cost: \$9,452.33
Scenario Cost/Unit: \$5.25
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	190	\$695.40
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	10	\$57.00
Hydraulic Excavator, . 5 CY	930	Track mounted hydraulic excavator with bucket capacity range of 0.3 to 0.8 CY . Equipment and power unit costs. Labor not included.	Hours	\$99.69	2	\$199.38
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	5	\$169.35
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	6	\$162.96
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	2	\$63.74
Materials						
Steel, Angle, 2 1/2 in. x 2 1/2 in. x 1/4 in.	1372	Materials: Angle, $21 / 2$ inch $\times 2$ 1/2 inch $\times 1 / 4$ inch. Meets ASTM A36	Feet	\$4.41	24	\$105.84
Steel, Plate, 3/8 in.	1375	Flat steel plate, $3 / 8$ inch thickness. Materials only.	Square Feet	\$23.71	4	\$94.84
Lumber, planks, posts and timbers, treated	1609	Treated dimension lumber with nominal thickness greater than 2 inches. Includes lumber and fasteners. Does not include labor.	Board Feet	\$3.58	32	\$114.56
Pipe, Steel, Std Wt., Used, weight priced	2870	Schedule 40 steel pipe, used. Materials only.	Pound	\$1.01	6788.6	\$6,856.49
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 587 - Structure for Water Control

Scenario: \#452-Inline Flashboard Riser, Metal

Scenario Description:
A Flashboard Riser fabricated of metal and used in a water management system that maintains a desired water surface elevation, controls the direction or rate of flow, or conveys water to address the resource concerns: Inadequate Water - Inefficient use of Irrigation Water and Inadequate habitat for Fish and Wildlife. The water surface elevation is controlled by addition or removal of slats or 'stoplogs'. This scenario is applicable to variable crest weir structures where the elevation is controlled at the embankment. They are often fabricated from vertical pipes with the stoplogs are located in the middle (i.e. Full-Rounds) or sheet steel in a box shape. Payment rate is based upon the Flashboard Weir Length in inches multiplied by the outlet length in feet (Inch-Foot). Cost estimate is based on a 'Half-Round' flashboard riser shop fabricated using a longitudinal cut 36^{\prime} smooth steel pipe, a 50^{\prime} long - 30 ' outlet pipe passing through an embankment.

Before Situation:
The operator presently flood irrigates his field and has no means to accurately maintain a constant water level at varying elevations resulting in a lack of flexibility, and inefficient use of water and energy during pumping. The operator also desires to maintain a permanent pool for water fowl during the winter.

After Situation:

The operator has the capability to more efficiently control and maintain a range of water surface elevations thereby reducing the flow rate needed. Less water is wasted and both water and energy is conserved. The operator is now able to maintain adequate water during the winter as a benefit to waterfowl. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Irrigation Water Management (449), Irrigation Land Leveling (464), Irrigation Canal or Lateral (320), Irrigation System, Tailwater Recovery (447), Dike (356), and Grade Stabilization Structure (410) will use the corresponding Standard(s) as appropriate.

Feature Measure: Flashboard Weir Length (in) x Barre
Scenario Unit: Diameter Inch Foot

Scenario Typical Size: 1,800.00
Scenario Total Cost: \$9,689.65
Scenario Cost/Unit: \$5.38
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	190	\$695.40
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	15	\$85.50
Hydraulic Excavator, . 5 CY	930	Track mounted hydraulic excavator with bucket capacity range of 0.3 to 0.8 CY . Equipment and power unit costs. Labor not included.	Hours	\$99.69	4	\$398.76
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	7	\$237.09
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	10	\$271.60
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	4	\$127.48
Materials						
Steel, Angle, 2 1/2 in. x 2 1/2 in. x 1/4 in.	1372	Materials: Angle, $21 / 2$ inch $\times 2$ 1/2 inch $\times 1 / 4$ inch. Meets ASTM A36	Feet	\$4.41	24	\$105.84
Steel, Plate, 3/8 in.	1375	Flat steel plate, $3 / 8$ inch thickness. Materials only.	Square Feet	\$23.71	10	\$237.10
Lumber, planks, posts and timbers, treated	1609	Treated dimension lumber with nominal thickness greater than 2 inches. Includes lumber and fasteners. Does not include labor.	Board Feet	\$3.58	4	\$14.32
Pipe, Steel, Std Wt., Used, weight priced	2870	Schedule 40 steel pipe, used. Materials only.	Pound	\$1.01	6518.6	\$6,583.79
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 587-Structure for Water Control
Scenario: \#461-Commercial Inline Flashboard Riser

Scenario Description:

An Inline Water Control Structure (WCS) composed of plastic that maintains a desired water surface elevation, controls the direction or rate of flow, or conveys water to address the resource concern: Inadequate habitat for Fish and Wildlife. The water surface elevation is controlled by addition or removal of slats or 'stoplogs'. This scenario is applicable to variable crest weir structures where the elevation is controlled at point along a pipe extending through an embankment, providing ease of access to the structure and provide better protection against beaver activity. There are commercially available models composed of plastic that are commonly used when the width of the is 24 ' or less. Payment rate is based upon the Flashboard Weir Length in inches multiplied by the outlet length in feet (Inch-Foot). Cost estimate is based on a using a such a commercial product. The typical scenario is an inline structure with a width of 20^{\prime}, height of six feet, The pipe is 50 ' of 15^{\prime} SCH 40 PVC (inlet and outlet combined).

Before Situation:

The landowner wishes to provide for a way to control the water surface elevation in a wetland area. The landowner wishes to enhance and enlarge the area to provide habitat for fish and wildlife.

After Situation:

A WCS is installed in a flow line allowing shallow water impoundments. A wetland area is enhanced and water levels can be varied to better accommodate wildlife needs. Any needed re-vegetation of disturbed areas use Critical Area Planting (342). Other associated practices such as; Wetland Creation (658), Wetland Enhancement (659) Wetland Wildlife Habitat Management (644), Dike (356), and Grade Stabilization Structure (410) will use the corresponding Standard(s) as appropriate.

Feature Measure: Flashboard Weir Length (in) x Barre
Scenario Unit: Diameter Inch Foot

Scenario Typical Size: 1,000.00
Scenario Total Cost: \$5,847.80
Scenario Cost/Unit: \$5.85
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	190	\$695.40
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	15	\$85.50
Hydraulic Excavator, . 5 CY	930	Track mounted hydraulic excavator with bucket capacity range of 0.3 to 0.8 CY . Equipment and power unit costs. Labor not included.	Hours	\$99.69	2	\$199.38
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	3	\$101.61
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	2	\$63.74
Materials						
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	1287	\$3,552.12
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 587 - Structure for Water Control
Scenario: \#498-Concrete Turnout Structure

Scenario Description:

A reinforced concrete turnout structure equipped with a 48 inch screw gate diverts irrigation water from a canal into a field or field ditch. This scenario is for a six ft tall, eight foot wide, and ten foot long turnout structure. A sloping trash rack fabricated from rebar is installed on the inlet. If needed fish screens may be installed at the inlet..

Before Situation:

A delivery canal exists, but a means to move water from the canal into a smaller ditch or field does not exist. A water supply of sufficient quantity and quality is available for irrigation.

After Situation:
Water is diverted from a canal to meet irrigation requirements. A eight foot wide and six foot tall turnout structure equipped with a 48 inch slide gate conducts water through the canal berm. The concrete structure is ten feet long and has an end sill. All footings, floors. and walls have a minimum thickness of six inches. The structure delivers water to field or ditch bottom elevation.

Feature Measure: Each
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$12,561.50
Scenario Cost/Unit: \$12,561.50
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, formed reinforced	38	Steel reinforced concrete formed and cast-in-placed in formed structures such as walls or suspended slabs by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$457.84	5	\$2,289.20
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	4	\$260.84
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	10	\$271.60
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	5	\$138.80
Materials						
Screw gate, cast iron, 4 ft . diameter, 10/0 head	1746	4 ft . diameter cast iron screw (canal) gate rated at 10 seating head 0 feet unseating head. Includes materials only.	Each	\$7,420.65	1	\$7,420.65
Welded Bar Grate, metal	1980	Heavy duty vertical bar welded grating, typically 1-1/4 $\times 3 / 16$ in. bars on 1 in . spacing with cross rod on 4 in . spacing. Materials only.	Square Feet	\$29.73	48	\$1,427.04
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 587 - Structure for Water Control
Scenario: \#499-Flow Meter with Mechanical Index
Scenario Description:
Permanently installed water flow meter with mechanical, cumulative volume and rate index. Meters can be any flow measurement device that meets CPS 433 , (i.e. meters: turbine, propeller, acoustic, magnetic, venturi, orifice, etc.) with or without straightening vanes. Resource Concerns: Insufficient Water - Inefficient use of irrigation water, and Degraded Plant Condition - Undesirable plantproductivity and health, and Inefficient Energy Use - Equipment and facilitiesAssociated Practices: 533-Pumping Plant, 449-Irrigation Water Management, 441-Irrigation System, Microirrigation, 443-Irrigation System Surface and Subsurface, 442-Irrigation System, Sprinkler, 328-Conservation Crop Rotation, 634-Waste Transfer, and 590-Nutrient Management.

Before Situation:

Producer estimates seasonal and individual irrigation application flow rate and volumes based on energy costs, system operating pressure, or other means.
After Situation:
Producer is able to access instantaneous rate and cumulative flow volume data at the meter location. The information gained will enable the irrigator to improve irrigation water management, recognize system performance issues before they become critical, and reduce energy use.

Feature Measure: Nominal Diameter of Meter

Scenario Unit: Inch
Scenario Typical Size: 10.00
Scenario Total Cost: $\quad \$ 2,100.88$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Materials						
Flow Meter, with mechanical Index	1450	10 inch, Turbine Type Flow Meter with Mechanical Index, permanently installed. Includes materials and shipping only.	Each	\$1,742.08	1	\$1,742.08
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	2	\$358.80

Practice: 587 - Structure for Water Control
Scenario: \#500-Flow Meter with Electronic Index
Scenario Description:
Permanently installed water flow meter with an electronic index. Meters can be any flow measurement device that meets CPS 433, (i.e., meters: turbine, propeller, acoustic, magnetic, venturi, orifice, etc.) with or without straightening vanes or data logging capability. Meter nominal diameter for insert type turbine meters will be installation pipe size. Typical installation would include installation of a 10 inch turbine flow meter, with electronic index output. Resource Concerns: Insufficient Water - Inefficient use of irrigation water, and Degraded Plant Condition - Undesirable plantproductivity and health, and Inefficient Energy Use - Equipment and facilitiesAssociated Practices: 533-Pumping Plant, 449-Irrigation Water Management, 441-Irrigation System, Microirrigation, 443-Irrigation System Surface and Subsurface, 442-Irrigation System, Sprinkler, 328-Conservation Crop Rotation, 634-Waster Transfer, and 590-Nutrient Management.

Before Situation:
Producer estimates seasonal and individual irrigation application flow rate and volumes based on energy costs, system operating pressure, or other means.
After Situation:
Producer is able to access instantaneous rate and cumulative flow volume data at the meter location. The information gained will enable the irrigator to improve irrigation water management, recognize system performance issues before they become critical, and reduce energy use.

Feature Measure: Nominal Diameter of Meter
Scenario Unit: Inch
Scenario Typical Size: 10.00
Scenario Total Cost: \$3,987.44
Scenario Cost/Unit: \$398.74

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Materials						
Flow Meter, with Electronic Index	1452	10 inch Turbine Irrigation flow meter, with Electronic Index, Rate and Volume, permanently installed. Materials only.	Each	\$3,628.64	1	\$3,628.64
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	2	\$358.80

Practice: 587 - Structure for Water Control
Scenario: \#501 - Flow Meter with Electronic Index \& Telemetry
Scenario Description:
Permanently installed water flow meter with an electronic flow rate and volume index and data telemetry transmission system. Meters can be any flow measurement device that meets CPS 433, (i.e. meters: turbine, propeller, acoustic, magnetic, venturi, orifice, etc.) with or without straightening vanes. Meter nominal diameter for insert type turbine meters will be installation pipe size. Typical installation would include installation of a 10 inch magnetic flow meter, with electronic index output and telemetry data transfer system for monitoring irrigation system flow rate.Resource Concerns: Insufficient Water - Inefficient use of irrigation water, and Degraded Plant Condition - Undesirable plantproductivity and health, and Inefficient Energy Use - Equipment and facilitiesAssociated Practices: 533-Pumping Plant, 449-Irrigation Water Management, 441-Irrigation System, Microirrigation, 443-Irrigation System Surface and Subsurface, 442-Irrigation System, Sprinkler, 328-Conservation Crop Rotation, 634-Waste Transfer, and 590-Nutrient Management.

Before Situation:
Producer estimates seasonal and individual irrigation application flow rate and volumes based on energy costs, system operating pressure, or other means.
After Situation:
Producer is able to access instantaneous rate and cumulative flow volume data from a personal computer or cell phone at any time. The information gained will enable the irrigator to improve irrigation water management, recognize system performance issues before they become critical, and reduce energy use.

Feature Measure: Nominal Diameter of Meter

Scenario Unit: Inch

Scenario Typical Size: 10.00
Scenario Total Cost: \$5,567.03
Scenario Cost/Unit: \$556.70

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Materials						
Flow Meter, with electronic Index and telemetry	1451	10 inch Magnetic Irrigation Flow Meter, with electronic index and equipped for telemetry, permanently installed. Includes material and shipping only.	Each	\$5,208.23	1	\$5,208.23
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	2	\$358.80

Practice: 590-Nutrient Management
Scenario: \#8-Adaptive NM

Scenario Description:

The practice scenario is for the implementation of nutrient management on a small plot, as detailed in outlined in Agronomy Technical Note 7 - Adaptive Nutrient Management. Scenario includes implementing replicated strip trials on a field plot to evaluate, identify and implement various nutrient use efficiency improvement methods for timing, rate, method of application, or source of nutrients.

Before Situation:
The practice will be installed on cropland (small grain rotation or typical corn-soybean rotation) to address water quality degradation, air quality degradation and energy concerns. The scenario applies to non-organic and organic operations.

After Situation:

Installation of this scenario will result in adopting the four R's of nutrient management following the procedures outlined in Agronomy Technical Note 7 - Adaptive Nutrient Management. Implementation involves establishing the replicated plots to evaluate one or more of the 4 R's. The plot will consist of at least 4 replicated plots designed, laid out, managed and evaluated with the assistance of a consultant or extension professional knowledgeable in nutrient management and experimental design and data collection. Results are used to make nutrient application decisions to address water quality degradation issues and nutrient use efficiencies. Yields will be measured and statistically analyzed and summarized following the procedures in Agronomy Technical Note 7. The yields for each plot will be adjusted to the appropriate moisture content.

Feature Measure: <Unknown>
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$3,199.43

Scenario Cost/Unit: \$3,199.43
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Aerial Imagery	966	Aerial imagery. RBG (color), infrared or NDVI single image.	Acres	\$1.77	1	\$1.77
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	25	\$679.00
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	15	\$1,968.00
Materials						
Test, Soil Test, Standard	299	Includes materials, shiping, labor, and equipment costs.	Each	\$14.23	2	\$28.46
Test, Plant Tissue Test	301	Tissue analysis for crops. Includes materials and shipping only.	Each	\$25.27	14	\$353.78
Test, Soil Nitrogen Testing	311	Pre-Side Dress/Deep Soil Testing. Includes materials and shipping only.	Each	\$12.03	14	\$168.42

Practice: 590-Nutrient Management
Scenario: \#298-Small Scale Basic Nutrient Management

Scenario Description:

This scenario applies to small farms with diversified cropping systems which will improve the current level of management in applying nutrients. Improved level of management will be such to prevent nonpoint source pollution of surface and ground waters. Typical size is less than 1.0 acre. This scenario includes hand-labor as well as equipment.

Before Situation:

Little to no soil or manure testing is being conducted and typically lacks a nutrient budget. Application of fertilizers, including manures and amendments, are conducted based upon traditional fertilizer recommendations from LGU or based on historic use rates. Fields are overwintered with little or no erosion protection often times resulting in sheet, rill, and ephemeral erosion. Nutrients runoff into adjacent streams, tile drains, field surface drains, or other water courses is causing degradation to surface waters or leaching to shallow ground water sources.

After Situation:

Implementation Requirements have been developed to manage nutrients according to the criteria found in Nutrient Management (590) Conservation Practice Standard for either organic or non-organic operations as appropriate. A nutrient budget has been developed for each field or management zone. Nutrients are applied according to the 4 R???s. (Right rate, Right time, Right place and Right source). Records needed to complete the nutrient budget are provided which may include variety of pre-season, in-season, and post-season soil nutrient and plant tissue tests and analysis; compost or manure tests; application timing, method and rate; nutrient sources; and yield data for each field or management zone. Nutrient runoff into adjacent streams is minimized improving water quality and preventing leaching into shallow ground water sources.

Feature Measure: planted area
Scenario Unit: 1,000 Square Foot
Scenario Typical Size: 43.00
Scenario Total Cost: \$1,609.50
Scenario Cost/Unit: \$37.43
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	1	\$7.50
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	30	\$814.80
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	6	\$787.20

Practice: 590-Nutrient Management
Scenario: \#373-Nutrient Management

Scenario Description:

The scenario describes the development and implementation of a Nutrient Management (NM) system which will meet the current Nutrient Management (590) CPS General as well as Additional Criteria and utilizes synthetic fertilizer as well as animal manure as nutrient sources for crop production. The system provides crop nutrient recommendations which accounts for the removal of nitrogen (N), phosphorus (P), and potassium (K). Management of nutrients is based on the 4Rs of Nutrient Stewardship \& SMART Nutrient Management (apply the right nutrient source at the right rate, time and place) including activities to reduce nutrient loss by Assessment of comprehensive, site-specific conditions within the field. Nutrient management intensity must be sufficient to address site-specific risk for nutrient loss. Payment is to defray the costs of implementation of the NM system and recordkeeping. Typical treatment area is 40 acres.

Before Situation:
Currently, a nutrient management system for the farm operation accounting for all know measurable nutrient sources does not exist or does not meet the Nutrient Management (590) CPS requirements for General and Additional Criteria. Management of nutrients is not based on the 4Rs of Nutrient Stewardship \& SMART Nutrient Management. An environmental evaluation or risk assessment for the nutrient application area has not completed. Nutrients are subject to loss through surface water runoff, green-house gas emissions, drainage tile, soil erosion, or to ground water from leaching in quantities that degrade soil/water quality and limit use of the intended purpose.

After Situation:

A Nutrient Management (NM) system is developed and implemented to meet the current Nutrient Management (590) CPS for General and Additional Criteria, with nutrient management intensity sufficient to address site-specific risks for nutrient loss. Development and implementation of the NM system is based on site-specific risk assessment of comprehensive, site-specific conditions for the application of nutrients for each nutrient loss pathway that can negatively impact soil, water and air quality with excess nutrient loss. The NM system utilizes the 4Rs of nutrient stewardship and SMART Nutrient Management ??? the right Source, right Method, right Rate, and right Timing to meet both plant productivity and natural resource conservation goals.

Feature Measure: Ac.
Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: \$1,641.28

Scenario Cost/Unit: \$41.03
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	20	\$150.00
Manure, compost, application	955	Loading, hauling and spreading manure/compost by ground equipment. Includes equipment, power unit and labor costs.	Hours	\$135.28	4	\$541.12
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	6	\$162.96
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	6	\$787.20

Practice: 590-Nutrient Management
Scenario: \#374 - Nutrient Management - Manure Incorporation

Scenario Description:

The scenario describes the development and implementation of a Nutrient Management Plan (NMP) which will meet the current Nutrient Management (590) CPS General as well Additional Criteria and utilizes manure as a nutrient source for crop production. Manure nutrient sources will be incorporated into the soil after application. This scenario is applicable for all manure nutrient sources (manure, compost and other organic sources of nutrients). Management of nutrients is based on the 4Rs of Nutrient Stewardship \& SMART Nutrient Management (apply the right nutrient source at the right rate, time and place) including activities to reduce nutrient loss by Assessment of comprehensive, site-specific conditions within the field. Nutrient management intensity must be sufficient to address site-specific risk for nutrient loss. Payment is to defray the costs of implementation of the NMP and recordkeeping. Typical treatment area is 40 acres.

Before Situation:
Currently, a nutrient management plan for the farm operation accounting for all know measurable nutrient sources does not exist or does not meet the Nutrient Management (590) CPS requirements for General and Additional Criteria. Management of nutrients is not based on the 4Rs of Nutrient Stewardship \& SMART Nutrient Management. An environmental evaluation or risk assessment for the nutrient application area has not completed. Currently, manure applications are not incorporated into the soil. Nutrients are subject to loss through surface water runoff, green-house gas emissions, drainage tile, soil erosion, or to ground water from leaching in quantities that degrade water quality and limit use of the intended purpose. Soil quality may be degraded by excess or inadequate nutrients.

After Situation:

A Nutrient Management Plan (NMP) is developed to meet the current Nutrient Management (590) CPS for General and Additional Criteria with nutrient management intensity sufficient to address site-specific risks for nutrient loss. Development and implementation of the NMP is based on site-specific risk assessment of comprehensive, site-specific conditions for the application of nutrients for each nutrient loss pathway that can negatively impact soil, water and air quality with excess nutrient loss. Manure applications are incorporated into the soil. The NMP utilizes the 4Rs of nutrient stewardship and SMART Nutrient Management ??? the right Source, right Method, right Rate, and right Timing to meet both plant productivity and natural resource conservation goals.

Feature Measure: Ac.
Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: \$2,308.88
Scenario Cost/Unit: \$57.72

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Primary	946	Includes heavy disking (offset) or chisel plow. Includes equipment, power unit and labor costs.	Acres	\$20.44	40	\$817.60
Manure, compost, application	955	Loading, hauling and spreading manure/compost by ground equipment. Includes equipment, power unit and labor costs.	Hours	\$135.28	4	\$541.12
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	6	\$162.96
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	6	\$787.20

United States Department of Agriculture

Practice: 590-Nutrient Management

Scenario: \#375 - Nutrient Management - Manure Injection

Scenario Description:

The scenario describes the development and implementation of a Nutrient Management (NM) system which will meet the current Nutrient Management (590) CPS General as well as Additional Criteria and utilizes liquid manure as a nutrient source. Manure nutrients will be injected or placed subsurface. The system provides crop nutrient recommendations which accounts for the removal of nitrogen (N), phosphorus (P), and potassium (K). Management of nutrients is based on the 4Rs of Nutrient Stewardship \& SMART Nutrient Management (apply the right nutrient source at the right rate, time and place) including activities to reduce nutrient loss by Assessment of comprehensive, site-specific conditions within the field. Nutrient management intensity must be sufficient to address site-specific risk for nutrient loss. Payment is to defray the costs of implementation of the NM system, injection of manure nutrients and recordkeeping. Typical treatment area is 40 acres.

Before Situation:
Currently, a nutrient management system for the farm operation accounting for all know measurable nutrient sources does not exist or does not meet the Nutrient Management (590) CPS requirements for General and Additional Criteria. Liquid manure is currently surface applied. Management of nutrients is not based on the 4Rs of Nutrient Stewardship \& SMART Nutrient Management. An environmental evaluation or risk assessment for the nutrient application area has not completed. Nutrients are subject to loss through surface water runoff, green-house gas emissions, drainage tile, soil erosion, or to ground water from leaching in quantities that degrade soil/water quality and limit use of the intended purpose.

After Situation:

A Nutrient Management (NM) system is developed and implemented to meet the current Nutrient Management (590) CPS for General and Additional Criteria, with nutrient management intensity sufficient to address site-specific risks for nutrient loss. Liquid manure applications are injected below the soil surface at appropriate depth according to the nutrient management system using manure injection equipment to reduce nitrogen loss through surface runoff, leaching and ammonia volatilization. Development and implementation of the NM system is based on site-specific risk assessment of comprehensive, site-specific conditions for the application of nutrients for each nutrient loss pathway that can negatively impact soil, water and air quality with excess nutrient loss. The NM system utilizes the 4Rs of nutrient stewardship and SMART Nutrient Management ??? the right Source, right Method, right Rate, and right Timing to meet both plant productivity and natural resource conservation goals.

Feature Measure: Acres

Scenario Unit: Acres
Scenario Typical Size: 40.00

Scenario Total Cost:	\$8,950.16					
Scenario Cost/Unit:	\$223.75					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Manure, compost, injection	956	Loading, hauling and injecting manure/compost by ground equipment. Includes equipment, power unit and labor costs.	Gallons	\$0.02	400000	\$8,000.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	6	\$162.96
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	6	\$787.20

Practice: 590-Nutrient Management
Scenario: \#376-Nutrient Management - Non-Organic

Scenario Description:

The scenario describes the development and implementation of a Nutrient Management (NM) system which will meet the current Nutrient Management (590) CPS General as well as Specific Criteria and utilizes synthetic fertilizers as sole nutrient source for crop production. The system provides crop nutrient recommendations which accounts for the removal of nitrogen (N), phosphorus (P), and potassium (K). Management of nutrients is based on the 4Rs of Nutrient Stewardship \& SMART Nutrient Management (apply the right nutrient source at the right rate, time and place) including activities to reduce nutrient loss by Assessment of comprehensive, site-specific conditions within the field. Nutrient management intensity must be sufficient to address site-specific risk for nutrient loss. Payment is to defray the costs of implementation of the NM system and recordkeeping. Typical treatment area is 40 acres.

Before Situation:
Currently, a nutrient management system for the farm operation accounting for all know measurable nutrient sources does not exist or does not meet the Nutrient Management (590) CPS requirements for General and Additional Criteria. Management of nutrients is not based on the 4Rs of Nutrient Stewardship \& SMART Nutrient Management. An environmental evaluation or risk assessment for the nutrient application area has not completed. Nutrients are subject to loss through surface water runoff, green-house gas emissions, drainage tile, soil erosion, or to ground water from leaching in quantities that degrade soil/water quality and limit use of the intended purpose.

After Situation:

A Nutrient Management (NM) system is developed and implemented to meet the current Nutrient Management (590) CPS for General and Additional Criteria, with nutrient management intensity sufficient to address site-specific risks for nutrient loss. Development and implementation of the NM system is based on site-specific risk assessment of comprehensive, site-specific conditions for the application of nutrients for each nutrient loss pathway that can negatively impact soil, water and air quality with excess nutrient loss. The NM system utilizes the 4Rs of nutrient stewardship and SMART Nutrient Management ??? the right Source, right Method, right Rate, and right Timing to meet both plant productivity and natural resource conservation goals.

Feature Measure: Ac.
Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: \$1,250.16

Scenario Cost/Unit: \$31.25
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	40	\$300.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	6	\$162.96
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	6	\$787.20

Practice: 590-Nutrient Management

Scenario: \#377-Precision Nutrient Application

Scenario Description:

The planned Precision Nutrient Application system will meet the current Nutrient Management (590) CPS General and Additional Criteria. The Application system will include soil sampling methodology for variable rate application and systems. Use of additional nutrient/soil tests including chlorophyll meters, and/or spectral analysis may be used to further refine nutrient applications. Management of nutrients is based on the 4Rs of Nutrient Stewardship \& SMART Nutrient Management (apply the right nutrient source at the right rate, time and place) including activities to reduce nutrient loss by Assessment of comprehensive, site-specific conditions within the field. Nutrient management intensity must be sufficient to address site-specific risk for nutrient loss. Payment for implementation is to defray the costs of Precision Nutrient Application system, equipment to implement the practice, implementation of the NMP and recordkeeping. Typical treatment area is 40 acres.

Before Situation:
Currently, a nutrient management system for the farm operation accounting for all know measurable nutrient sources does not exist or does not meet the Nutrient Management (590) CPS requirements for General and Additional Criteria. Management of nutrients is not based on the 4Rs of Nutrient Stewardship \& SMART Nutrient Management. An environmental evaluation or risk assessment for the nutrient application area has not completed. Nutrients are subject to loss through surface water runoff, green-house gas emissions, drainage tile, soil erosion, or to ground water from leaching in quantities that degrade soil/water quality and limit use of the intended purpose.

After Situation:

A Precision Nutrient Application system will be developed to meet the current Nutrient Management (590) CPS General and Additional Criteria with nutrient management intensity sufficient to address site-specific risks for nutrient loss. Development and implementation of the NM system is based on site-specific risk assessment of comprehensive, site-specific conditions for the application of nutrients for each nutrient loss pathway that can negatively impact soil, water and air quality with excess nutrient loss. The NM system utilizes the 4Rs of nutrient stewardship and SMART Nutrient Management ??? the right Source, right Method, right Rate, and right Timing to meet both plant productivity and natural resource conservation goals. Utilizing GIS and GPS technologies, nutrients are applied based on soil test results for each grid or management zone using automated variable rate application equipment. Records provided annually include, the current soil test reports, planned nutrient application rates for each grid or management zone (prescription maps) and/or as applied maps, source, timing, and placement of all nutrients applied, actual crop yields and/or generated yield maps.

Feature Measure: acres treated
Scenario Unit: Acres

Scenario Typical Size: 40.00
Scenario Total Cost: $\$ 3,464.28$

Scenario Cost/Unit: \$86.61
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	2	\$232.78
Equipment Installation						
Fertilizer, precision application	952	Fertilizer application performed by light bar/GPS navigation system. Includes equipment, power unit and labor costs.	Acres	\$9.03	40	\$361.20
Aerial Imagery	966	Aerial imagery. RBG (color), infrared or NDVI single image.	Acres	\$1.77	40	\$70.80
Chlorophyll Reader	1125	Applicator and chlorophyll sensor includes labor. No materials	Acres	\$12.32	40	\$492.80
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	10	\$338.70
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	15	\$1,968.00

Practice: 590-Nutrient Management

Scenario: \#378-Prescription Nutrient Efficiency

Scenario Description:

The planned Precision Nutrient Efficiency system will meet the current Nutrient Management (590) CPS general and additional criteria. Precision nutrient efficiency system involves the testing or evaluation of crop and/or soil during the growing season to more accurately determine if additional nutrient application(s) are needed. This includes methods or technologies such as PPSN (pre-plant soil nitrate test), PSNT (pre-side dress nitrogen test), LSNT (late spring soil nitrate test), CSNT (corn stalk nitrate test) and chlorophyll meters, and/or spectral analysis may be used to determine if additional nutrients are needed. Nitrification or urease inhibitors (as well as other Enhanced Efficiency Fertilizer technologies recognized by Land Grant Universities) may also be used. Payment for implementation is to defray the costs of additional soil and plant nutrient testing and analysis, in-season crop nutrient testing, equipment, labor, implementation of the NMP and recordkeeping. Typical treatment area is 40 acres.

Before Situation:
This scenario takes a conventional cropping system where either no nutrient management or only a basic level of nutrient management is being practiced and improves it to address air quality (reduce emissions for N fertilizer) and/or minimize agricultural nonpoint source pollution of surface and groundwater. Application(s) of fertilizers, including manures and amendments, are based upon tradition and does not specifically consider the detrimental affects of improper timing or rates of nutrients, nitrous oxide emissions or excess nutrient build-up in the soil. Runoff transports nutrients and sediment to adjacent streams, water courses, tile drains, field surface drains, or other water courses causing degradation to receiving waters. Leaching transports soluble nutrients to shallow ground water sources. There is typically no environmental evaluation of the potential for off-site nutrient movement.

After Situation:

A Precision Nutrient Management Efficiency system will be developed to meet the current Nutrient Management (590) CPS general and additional criteria. When applicable the system will also meet NOP (National Organic Program) regulations, including reducing nitrogen emissions. Implementation of the adopted efficiency system improves the $4 R$ Stewardship installation which will reduce nutrient loss reducing the potential of off-site movement of nutrients. A nutrient budget is developed for each field or management zone annually for the crop rotation or sequence. The Nutrient Management Plan will include current soil test results, nutrient application rates, source, timing, and placement of all nutrients applied, risk assessments and actual crop yields. Record keeping includes documentation of as applied nutrients by field annually plus and State record keeping requirements.

Feature Measure: acres treated
Scenario Unit: Acres

Scenario Typical Size: 40.00
Scenario Total Cost: \$2,563.59
Scenario Cost/Unit: \$64.09
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	40	\$300.00
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	2	\$35.72
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	6	\$203.22
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	10	\$1,312.00
Materials						
Nitrogen-Urease inhibitor	260	Nitrogen-Urease inhibitor	Acres	\$11.13	40	\$445.20
Test, Plant Tissue Test	301	Tissue analysis for crops. Includes materials and shipping only.	Each	\$25.27	4	\$101.08

Practice: 591 - Amendments for Treatment of Agricultural Waste
Scenario: \#1 - Litter Amendments applied for Water Quality Impacts

Scenario Description:

This practice scenario includes the application of a litter treatment amendment that is approved by NRCS to the entire poultry house to reduce water-soluble phosphorous in the poultry litter by a specified percentage. The amendment used is proven to transform nitrogen into a form of ammonium and reduce the concentration of watersoluble phosphorous in the litter and reduces ammonia levels in the house. Resource concerns from existing nutrient levels may contribute to water quality degradation from nutrient runoff and leaching from fields fertilized with poultry litter and air quality impacts such as objectionable odors and ammonia emissions.Associated practices: Nutrient Management (590).

Before Situation:

Integrator does not currently apply waste treatment amendments to the litter that reduce ammonia emissions and soluble phosphorus.
After Situation:
This scenario is based on a typical poultry operation with a desired application rate is 10% by weight of the litter ($10 \% \mathrm{w} / \mathrm{w}$) of a phosphorus binding amendment. Typical operation consists of 2 houses, 40 ' $\times 400$ house ($16,000 \mathrm{SF}$), 20,000 birds (4 pound finished bird weight), 0.5 lb litter/bird (assume 54 pounds P205/Ton of litter). The operation raises 5 flocks per year. Formula to calculate required amendment at the prescribed rate in tons per year is:(Number of birds) X (Finish weight of birds (lbs)) X (Pounds of litter)/bird) X (Number of houses) X (application rate) X (Number of applications per year) / 2000 pounds/ton 20,000 birds X 4 lb bird X 0.50 lb litter/bird X 2 houses X 0.10 lb amendment/ lb litter X $5 \mathrm{app} /$ year / $2000 \mathrm{lb} /$ ton $=20$ tons/year. An NRCS approved amendment is applied between each flock at the prescribed rate. The selected amendment is applied in conformance with the manufacturer???s recommendations and the rates required. The amendment is proven to reduce soluble phosphorus in the litter, to control the odor, and to reduce ammonia emissions. The resulting litter contains higher levels of nutrients and nutrient management plans must account for this. Nutrient level testing of the litter and nutrient planning shall be in conformance with CPS Nutrient Management, Code 590. The amendment successfully addresses water quality degradation due to nutrients in surface and ground water and air quality impacts from objectionable odors, ammonia emissions, PM and PM precursors and bird health resource concerns. When this practice is applied in a nutrient limited watershed in Oklahoma, the only acceptable application rate shall be 10 percent by weight of the litter.

Feature Measure: Tons of amendment per year.

Scenario Unit: Ton

Scenario Typical Size: 20.00
Scenario Total Cost: $\$ 9,853.40$
Scenario Cost/Unit: \$492.67

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Application of ag waste amendment for poultry litter	2020	Litter amendment application performed in house. Includes equipment, power unit and labor costs.	Ton	\$55.17	20	\$1,103.40
Materials						
Ag Waste Amendment, aluminum sulfate, alum	1684	Aluminum sulfate, alum, poultry Litter amendment. NRCS approved for air and water quality concerns to reduce ammonia emissions and soluble phosphorus in the litter. Materials only.	Ton	\$437.50	20	\$8,750.00

Practice: 591 - Amendments for Treatment of Agricultural Waste
Scenario: \#2 - Litter Amendments applied for Air Quality resource concerns

Scenario Description:

This practice scenario includes the application of a litter treatment amendment that is approved by NRCS to the entire poultry house to reduce ammonia emissions from the house and facilitate manure management. The amendment used is proven to reduce ammonia levels in the house by transforming nitrogen into a form of ammonium. The purpose of the practice is to address resource concerns from existing nutrient levels that may contribute to air quality impacts such as objectionable odors and ammonia emissions and impacts on bird health due to excess nutrients and pathogens.Associated practices: Nutrient Management (590).

Before Situation:
Integrator does not currently apply waste treatment amendments to the litter that reduce ammonia emissions. Producer may be currently applying at lower rate for bird health reasons.

After Situation:

This scenario is based on a typical poultry operation with a 2-house facility and each house size is $40^{\prime} \times 200 ', 8,000 \mathrm{SF}$. An NRCS approved amendment is applied between flocks, 5 flocks annually, at rate required to meet air quality resource concern, typically 100 pounds per 1000 SF. Formula to calculate the amount of amendment per year on a 1000 SF basis:(Square Feet of house) / 1000 SF X (Number of houses) X (Number of Applications per Year)= Number of 1000SF. 8,000 SF / 1000 SF X 2 houses X 5 applications/year= 80 units of 1000SFAn NRCS approved amendment is applied between each flock, 5 applications, at rate required for treatment to address air quality resource concerns. For most products, this is 100 pounds per 1000 SF. The amendment is proven to control the odor, and to reduce ammonia emissions. The selected amendment is applied in conformance with the manufacturer???s recommendations and the rates required. The resulting litter contains higher levels of nutrients and nutrient management plans must account for this. Nutrient level testing of the litter and nutrient planning shall be in conformance with CPS Nutrient Management, Code 590. The amendment successfully addresses the air quality impacts of objectionable odors, ammonia emissions, PM and PM precursors and bird health resource concerns.

Feature Measure: Number of 1000SF applications per
Scenario Unit: 1,000 Square Foot
Scenario Typical Size: 80.00
Scenario Total Cost: \$2,690.68
Scenario Cost/Unit: \$33.63
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Application of ag waste amendment for poultry litter	2020	Litter amendment application performed in house. Includes equipment, power unit and labor costs.	Ton	\$55.17	4	\$220.68
Materials						
Ag Waste Amendment, sodium bisulfate	1686	Sodium bisulfate poultry litter amendment. NRCS approved for air quality concerns to reduce ammonia emissions from the litter. Includes materials only.	Ton	\$617.50	4	\$2,470.00

Practice: 592 - Feed Management
Scenario: \#29-Animal Group

Scenario Description:

Feed ration management on an animal operation that does not have access to enough acres to spread all of its manure nutrients at an agronomic rate. The resource concerns are water quality degradation, excessive manure nutrients, particularly nitrogen and phosphorus. The goal of the practice is to reduce the amount of nutrients in the raw manure so that it is easier for ???landlocked??? farmers to apply the manure at agronomic rates, thereby reducing or eliminating water quality degradation concerns. Associated practices: Nutrient Management (590), Prescribed Grazing (528), Forage Harvest Management (511).

Before Situation:
Producer is feeding a higher level of protein and/or phosphorus than is needed to meet National Research Council (NRC) recommendations for a group of animals of this type and at this stage of production. The operation does not have all of the available acres that it needs to use the nutrients in the manure when spread at agronomic rates causing over application of nutrients on land affecting soil quality, which may lead to water quality degradation.

After Situation:

The scenario assumes that a specific group of animals is being evaluated. A baseline analysis of 4 samples each with 4 quarterly reports of manure, and feed will be completed to determine the current inputs and outputs. The producer will reduce feed protein and phosphorus levels to that of NRC recommendations for a group of animals of this type and at this stage of production. The producer will explore alternative feedstuffs and alternative feeding strategies to bring manure nitrogen and/or phosphorus levels down without hurting production of the animals or profitability of the operation. Alternative feeding strategies can include such things as grouping animals by similar age, sex, or stage of production, feeding based on individual rolling average production, or feeding ???homegrown??? or local feedstuffs.

Feature Measure: Group
Scenario Unit: Each

Scenario Typical Size: 1.00
Scenario Total Cost: \$4,545.44
Scenario Cost/Unit: \$4,545.44
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	24	\$651.84
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	20	\$2,624.00
Materials						
Test, Manure Analysis	306	Moisture, Total N, P, K. Includes materials and shipping only.	Each	\$48.54	16	\$776.64
Test, Feed Analysis	1989	Representative sample of feed. Includes materials and shipping only.	Each	\$30.81	16	\$492.96

Practice: 592 - Feed Management
Scenario: \#45-Feed Additive

Scenario Description:

Feed ration management on an animal operation by inclusion of a feed additive. The resource concerns may be water quality degradation (pathogens, soluble nutrients), air quality (odors, green house gas). The goal of the practice is to add an approved feed additive that has been proven to reduce pathogens, or tie up soluble nutrients, or improve air quality by reducing odors, ammonia, or green house gases to the animal diet. For this scenario, zeolite will be added to beef and dairy rations to reduce ammonia emissions. Associated practices: Nutrient Management (590).

Before Situation:
Producer is feeding a balanced diet to his animals. He knows that the diet, however is leading to resource concerns by soluble nutrients or pathogens entering the surface water from his operation, or that odors, NOx, or Methane are affecting air quality. For this scenario, the producer knows that nitrogen loss via ammonia volatilization from manure is affecting air quality and that adding zeolite to the ration will decrease this effect and improve air quality for his animals.

After Situation:

The scenario assumes that a specific group of animals is being evaluated for a resource concern, and that a proven feed additive can have an effect on that concern. For this particular scenario, a zeolite is added to a beef or dairy ration at a rate of 2% of the daily ration. The zeolite will absorb ammonia and other compounds, resulting in lower nitrogen excretion and thus lower ammonia emissions from the manure and result in improved air quality. Assume that one hour of general labor will be needed per year per animal unit to load/unload zeolite into feed mixing equipment. Assume that the zeolite is added based on a 2% inclusion rate of the dry matter ration of 25 pounds/day/animal unit or the amount of zeolite needed is 0.5 pounds/day/animal unit or about 0.1 tons/year/animal unit.

Feature Measure: Per Animal unit, per year
Scenario Unit: Animal Unit

Scenario Typical Size: 1.00
Scenario Total Cost: \$65.86
Scenario Cost/Unit: \$65.86
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	1	\$27.16
Materials						
Zeolite, Bulk	2683	Zeolite applied as a pen surface amendment or used as a feed ingredient. Zeolite is added to feed as a nutrition-based strategies or applied to pen surface as an ammonia abatement measures in livestock production, means of reducing ammonia emissions from concentrated animal feeding operations.	Ton	\$387.00	0.1	\$38.70

Practice: 595 - Pest Management Conservation System
Scenario: \#156 - Pest Management Precision Ag
Scenario Description:
This scenario takes a conventional cropping system where either no pest management or only a basic level of pest management is being practiced and improves it to address air quality and/or minimize agricultural nonpoint sources pollution of surface and groundwater. The planned Pest Management system will meet the current Pest Management Conservation System (595) CPS general and additional criteria. Precision pest management system includes such items as pest monitoring, targeted applications, eliminates overlap, tissue testing, specialized nozzles etc. to further refine pesticide applications. Payment for implementation is to defray the costs of tissue testing, additional testing and analysis, equipment implementation of the PMCS and recordkeeping. Typical treatment area is 40 acres.

Before Situation:

Conventional pest management programs involve little or no monitoring and testing. Application of pesticides are completed annually based upon product salesmen recommendations that do not specifically consider the detrimental affects of inexact application methods. Fields are overwintered with little or no erosion protection often resulting in sheet, rill and ephemeral erosion. Runoff flows into adjacent streams, water courses, tile drains, field surface drains or other water courses causing degradation to receiving waters or leaching of pesticides to shallow ground water sources. There is typically no environmental evaluation of the potential for off-site movement. Soil health may also be detrimentally affected.

After Situation:

A precision pest management system will be developed to meet the current Pest Management Conservation System (595) CPS general and additional criteria, when applicable the system will also meet NOP regulations. Development and implementation of a PMCS will benefit plant productivity while reducing potential of off-site movement of pesticides. PMCS may include practices such as use of spot applications, proper timing of applications, more appropriate formulations etc. Additional monitoring and tissue testing may also be used to further refine pesticide applications. Smart sprayer and advanced nozzle technology may also be employed. Records will be provided annually of the current monitoring, test analysis, application rates, formulations for each field including crop yields.

Feature Measure: Acres of management applied
Scenario Unit: Acres
Scenario Typical Size: 40.00

Scenario Total Cost:	$\$ 2,792.19$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total

Equipment Installation

Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	4	\$99.96
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	$\$ 17.86$	8	$\$ 142.88$
Aerial Imagery	966	Aerial imagery. RBG (color), infrared or NDVI single image.	Acres	$\$ 1.77$	40	$\$ 70.80$

Labor

Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	8	\$270.96
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	12	\$325.92
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	14	\$1,836.80
Materials						
Miscellaneous, containers, traps, etc.	298	Pheromone Traps, Culture container with lid. Includes materials and shipping only.	Each	\$4.90	4	\$19.60
Test, Plant Tissue Test	301	Tissue analysis for crops. Includes materials and shipping only.	Each	\$25.27	1	\$25.27

USDA United States Department of Agriculture

Practice: 595 - Pest Management Conservation System
Scenario: \#157- Plant Health PAMS (acs) High Labor and materials

Scenario Description:

PAMS activities with high labor and material costs will be implemented on a large scale crop production area (weather station, netting, field sanitation, mating disruption etc.).

Before Situation:
Before practice conditions vary widely. Conditions range from the client is not using any PAMS techniques to the client is using many different PAMS techniques for many different pests. In all cases at least one planned PAMS technique has risk to an identified resource concern (Plant Pest Pressure).

After Situation:

Planned Prevention (Netting to exclude insect or birds, resistant cultivar selection, etc.), Avoidance (IWM for disease avoidance, change in rotation to avoid problem spots, etc.), and Monitoring (Degree day monitoring, field scouting, etc.) activities have been implemented to help meet the minimum criteria for the identified resource concerns (i.e. Plant Pest Pressure).

Feature Measure: Acres of Management Applied
Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: $\$ 18,744.73$
Scenario Cost/Unit:
\$468.62
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Equipment Installation						
Tractor, agricultural, 120 HP	962	Agricultural tractor with horsepower range of 90 to 140 . Equipment and power unit costs. Labor not included.	Hours	\$74.02	150	\$11,103.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	150	\$4,074.00
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	30	\$1,428.30
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	8	\$1,049.60
Materials						
Weather Station, Advanced	2550	Advance Weather Station which collects and records recording rainfall, humidity, barometric pressure, wind speed, temperature, and solar radiation from a solar powered self-standing tripod to an advance weather recording console. Used for both 449 advance irrigation water management and for Activity 202 water quality monitoring .	Each	\$973.44	1	\$973.44

Practice: 595 - Pest Management Conservation System						
Scenario Description:						
Plant Health PAMS (acs) High labor only (intensive scouting etc.)						
Before Situation:						
Before practice conditions vary widely. Conditions range from the client is not using any PAMS techniques to the client is using many different PAMS techniques for many different pests. In all cases at least one planned PAMS technique has risk to an identified resource concern (Plant Pest Pressure).						
After Situation:						
Planned Prevention (resistant cultivar selection, pest habitat removal, etc.), Avoidance (IWM for disease avoidance, change in rotation to avoid problem spots, etc.), and Monitoring (field scouting, etc.) activities have been implemented to help meet the minimum criteria for the identified resource concerns (i.e. Plant Pest Pressure).						
Feature Measure: Acres of Management Applied						
Scenario Unit: Acres						
Scenario Typical Size: 40.00						
Scenario Total Cost:	\$2,102.85					
Scenario Cost/Unit:	\$52.57					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	2	\$67.74
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	32	\$869.12
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	8	\$1,049.60

Practice: 595 - Pest Management Conservation System
Scenario: \#159-Plant Health PAMS (acs) High Labor, materials and mitigation.

Scenario Description:

PAMS activities with high labor and material costs (weather station, netting, field sanitation, mating disruption) plus mitigation will be implemented on a large scale crop production area.

Before Situation:
Before practice conditions vary widely. Conditions range from the client is not using any PAMS techniques to the client is using many different PAMS techniques for many different pests. In all cases at least one planned PAMS technique has risk to an identified resource concern (Plant Pest Pressure). Mitigation over 30 points.

After Situation:

Planned Prevention (Netting to exclude insect or birds, resistant cultivar selection, etc.), Avoidance (IWM for disease avoidance, change in rotation to avoid problem spots, etc.), and Monitoring (Degree day monitoring, field scouting, etc.) activities have been implemented to help meet the minimum criteria for the identified resource concerns (i.e. Plant Pest Pressure). Mitigation over 30 points.

Feature Measure: Acres of management applied
Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: \$21,089.58
Scenario Cost/Unit: \$527.24
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Equipment Installation						
Tractor, agricultural, 120 HP	962	Agricultural tractor with horsepower range of 90 to 140 . Equipment and power unit costs. Labor not included.	Hours	\$74.02	150	\$11,103.00
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	15	\$508.05
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	150	\$4,074.00
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	30	\$1,428.30
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	22	\$2,886.40
Materials						
Weather Station, Advanced	2550	Advance Weather Station which collects and records recording rainfall, humidity, barometric pressure, wind speed, temperature, and solar radiation from a solar powered self-standing tripod to an advance weather recording console. Used for both 449 advance irrigation water management and for Activity 202 water quality monitoring .	Each	\$973.44	1	\$973.44

Practice: 595 - Pest Management Conservation System Scenario: \#160 - Plant Health PAMS (acs) Low labor only						
Scenario Description:						
PAMS activities with low labor costs will be implemented on a large scale crop production area.						
Before Situation:						
Before practice conditions vary widely. Conditions range from the client is not using any PAMS techniques to the client is using many different PAMS techniques for many different pests. In all cases at least one planned PAMS technique has risk to an identified resource concern (Plant Pest Pressure).						
After Situation:						
Planned Prevention (resistant cultivar selection, pest habitat removal, etc.), Avoidance (IWM for disease avoidance, change in rotation to avoid problem spots, etc.), and Monitoring (field scouting, etc.) activities have been implemented to help meet the minimum criteria for the identified resource concerns (i.e. Plant Pest Pressure).						
Feature Measure: Acres of management applied						
Scenario Unit: Acres						
Scenario Typical Size: 40.00						
Scenario Total Cost:	\$663.81					
Scenario Cost/Unit:	\$16.60					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	2	\$67.74
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	2	\$262.40

Practice: 595 - Pest Management Scenario: \#161-Plant Health PAN	acs) L	ion System w Labor, materials and mitigation.				
Scenario Description:						
PAMS activities with low labor and material costs will be implemented plus mitigation on a large scale crop production area.						
Before Situation:						
Before practice conditions vary widely. Conditions range from the client is not using any PAMS techniques to the client is using many different PAMS techniques for many different pests. In all cases at least one planned PAMS technique has risk to an identified resource concern (Plant Pest Pressure). Mitigation up to 30 points.						
After Situation:						
Planned Prevention (Netting to exclude insect or birds, resistant cultivar selection, etc.), Avoidance (IWM for disease avoidance, change in rotation to avoid problem spots, etc.), and Monitoring (Degree day monitoring, field scouting, etc.) activities have been implemented to help meet the minimum criteria for the identified resource concerns (i.e. Plant Pest Pressure). Mitigation up to 30 points.						
Feature Measure: Acres of Management Applied						
Scenario Unit: Acres						
Scenario Typical Size: 40.00						
Scenario Total Cost:	\$2,777.63					
Scenario Cost/Unit:	\$69.44					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	8	\$270.96
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	14	\$1,836.80
Materials						
Miscellaneous, containers, traps, etc.	298	Pheromone Traps, Culture container with lid. Includes materials and shipping only.	Each	\$4.90	10	\$49.00
Weather Station, Basic	314	Basic Weather Station which collects and records recording rainfall, humidity, barometric pressure, wind speed, and temperature to a home weather console. Includes materials only.	Each	\$287.20	1	\$287.20

Practice: 595 - Pest Management Conservation System						
Scenario Description:						
PAMS activities with labor costs will be implemented plus mitigation on a small scale crop production area.						
Before Situation:						
Before practice conditions vary widely. Conditions range from the client is not using any PAMS techniques to the client is using many different PAMS techniques for many different pests. In all cases at least one planned PAMS technique has risk to an identified resource concern (Plant Pest Pressure). Mitigation up to 30 points.						
After Situation:						
Planned Prevention (resistant cultivar selection, pest habitat removal, etc.), Avoidance (IWM for disease avoidance, change in rotation to avoid problem spots, etc.), and Monitoring (field scouting, etc.) activities have been implemented to help meet the minimum criteria for the identified resource concerns (i.e. Plant Pest Pressure). Mitigation up to 30 points.						
Feature Measure: Small farm, typically = 5Ac						
Scenario Unit: Each						
Scenario Typical Size: 1.00						
Scenario Total Cost:	\$1,988.65					
Scenario Cost/Unit:		8.65				
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	14	\$474.18
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	9	\$1,180.80

Practice: 595 - Pest Management Conservation System						
Scenario: \#163-Plant health PAMS (Small Farm - each) labor only						
Scenario Description:						
PAMS activities with labor costs will be implemented on a small scale crop production area.						
Before Situation:						
Before practice conditions vary widely. Conditions range from the client is not using any PAMS techniques to the client is using many different PAMS techniques for many different pests. In all cases at least one planned PAMS technique has risk to an identified resource concern (Plant Pest Pressure).						
After Situation:						
Planned Prevention (resistant cultivar selection, pest habitat removal, etc.), Avoidance (IWM for disease avoidance, change in rotation to avoid problem spots, etc.), and Monitoring (field scouting, etc.) activities have been implemented to help meet the minimum criteria for the identified resource concerns (i.e. Plant Pest Pressure).						
Feature Measure: Small farm, typically <=5 ac						
Scenario Unit: Each						
Scenario Typical Size: 1.00						
Scenario Total Cost:	\$629.94					
Scenario Cost/Unit:		9.94				
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	1	\$33.87
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	2	\$262.40

Practice: 595 - Pest Management Conservation System						
Scenario Description:						
PAMS activities with labor and material costs will be implemented on a small scale crop production area.						
Before Situation:						
Before practice conditions vary widely. Conditions range from the client is not using any PAMS techniques to the client is using many different PAMS techniques for many different pests. In all cases at least one planned PAMS technique has risk to an identified resource concern (Plant Pest Pressure).						
After Situation:						
Planned Prevention (Netting to exclude insect or birds, resistant cultivar selection, etc.), Avoidance (IWM for disease avoidance, change in rotation to avoid problem spots, etc.), and Monitoring (Degree day monitoring, field scouting, etc.) activities have been implemented to help meet the minimum criteria for the identified resource concerns (i.e. Plant Pest Pressure).						
Feature Measure: Small Farm, typically <= 5 ac						
Scenario Unit: Each						
Scenario Typical Size: 1.00						
Scenario Total Cost:	\$4,4	6.64				
Scenario Cost/Unit:	\$4,	6.64				
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	1	\$33.87
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	2	\$262.40
Materials						
Miscellaneous, containers, traps, etc.	298	Pheromone Traps, Culture container with lid. Includes materials and shipping only.	Each	\$4.90	3	\$14.70
Weather Station, Basic	314	Basic Weather Station which collects and records recording rainfall, humidity, barometric pressure, wind speed, and temperature to a home weather console. Includes materials only.	Each	\$287.20	1	\$287.20
Netting, Crop Protection, Large Mesh	2762	Synthetic netting, large mesh to exclude birds and small animals. Approximately 6 to 7 inch mesh. Includes materials and shipping only.	Square Feet	\$0.04	87120	\$3,484.80

Practice: 595 - Pest Management Conservation System						
Scenario: \#165-Plant Health PAMS activities (Small Farm - each) labor, materials and mitigation.						
Scenario Description:						
PAMS activities with labor and material costs plus mitigation will be implemented on a small scale crop production area.						
Before Situation:						
Before practice conditions vary widely. Conditions range from the client is not using any PAMS techniques to the client is using many different PAMS techniques for many different pests. In all cases at least one planned PAMS technique has risk to an identified resource concern (Plant Pest Pressure). Mitigation over 30 points.						
After Situation:						
Planned Prevention (Netting to exclude insect or birds, resistant cultivar selection, etc.), Avoidance (IWM for disease avoidance, change in rotation to avoid problem spots, etc.), and Monitoring (Degree day monitoring, field scouting, etc.) activities have been implemented to help meet the minimum criteria for the identified resource concerns (i.e. Plant Pest Pressure). Mitigation over 30 points.						
Feature Measure: Small farm, typically = 5Ac						
Scenario Unit: Each						
Scenario Typical Size: 1.00						
Scenario Total Cost:	\$7,265.26					
Scenario Cost/Unit:	\$7,2	5.26				
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	27	\$914.49
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	17	\$2,230.40
Materials						
Miscellaneous, containers, traps, etc.	298	Pheromone Traps, Culture container with lid. Includes materials and shipping only.	Each	\$4.90	3	\$14.70
Weather Station, Basic	314	Basic Weather Station which collects and records recording rainfall, humidity, barometric pressure, wind speed, and temperature to a home weather console. Includes materials only.	Each	\$287.20	1	\$287.20
Netting, Crop Protection, Large Mesh	2762	Synthetic netting, large mesh to exclude birds and small animals. Approximately 6 to 7 inch mesh. Includes materials and shipping only.	Square Feet	\$0.04	87120	\$3,484.80

Practice: 595 - Pest Management Conservation System
Scenario: \#166 - Water Quality Pesticide Mitigation = 30 Point AND/OR Beneficial Insect Pesticide Mitigation

Scenario Description:

The minimum amount of planned IPM mitigation techniques needed to reduce water quality pesticide-related resource concerns is = 30 mitigation index score. An IPM plan will be developed in accordance with this standard and the CPS 595 Implementation Requirement will document how specific pesticide hazards will be prevented or mitigated AND/OR impacts to wildlife-beneficial insects including pollinators.

Before Situation:

Before practice conditions vary widely. Conditions range from the client is not using many pest suppression techniques (pesticides, tillage for weed control, burning, etc.) to the client is using many different pest suppression techniques for many different pests, but in all cases at least one planned pest suppression technique has risk to an identified resource concern (e.g. Water Quality - Impacts to Human Drinking Water AND/OR Wildlife-beneficial insects including pollinators).

After Situation:
An IPM system with planned. Mitigation techniques ($=30$ points) have been implemented to meet the minimum criteria for the identified resource concerns (i.e. Water Quality - Impacts to Human Drinking Water or Fish) AND/OR 10 points of mitigation for Wildlife (beneficial insects including pollinators) with either risk prevention (i.e. planned pesticides have no risk to the identified resource concern) or risk mitigation (i.e. planned pesticides have appropriate mitigation planned from Agronomy Technical Note 5 AND Agronomy Technical Note 9).

Feature Measure: Acres of Management Applied

Scenario Unit: Acres

Scenario Typical Size: 40.00
Scenario Total Cost: \$1,811.49

Scenario Cost/Unit: \$45.29
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	7	\$237.09
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	12	\$1,574.40

Practice: 595 - Pest Management Conservation System
Scenario: \#167 - Water Quality Pesticide Mitigation = 30 Point AND/OR Beneficial Insect Pesticide Mitigation - Small Farm

Scenario Description:

The minimum amount of planned IPM mitigation techniques needed to reduce water quality pesticide-related resource concerns is = 30 mitigation index score. An IPM plan will be developed in accordance with this standard and the CPS 595 Implementation Requirement will document how specific pesticide hazards will be prevented or mitigated AND/OR impacts to wildlife-beneficial insects including pollinators.

Before Situation:

Before practice conditions vary widely. Conditions range from the client is not using many pest suppression techniques (pesticides, tillage for weed control, burning, etc.) to the client is using many different pest suppression techniques for many different pests, but in all cases at least one planned pest suppression technique has risk to an identified resource concern (e.g. Water Quality - Impacts to Human Drinking Water AND/OR Wildlife-beneficial insects including pollinators).

After Situation:
An IPM system with planned. Mitigation techniques ($=30$ points) have been implemented to meet the minimum criteria for the identified resource concerns (i.e. Water Quality - Impacts to Human Drinking Water or Fish) AND/OR 10 points of mitigation for Wildlife (beneficial insects including pollinators) with either risk prevention (i.e. planned pesticides have no risk to the identified resource concern) or risk mitigation (i.e. planned pesticides have appropriate mitigation planned from Agronomy Technical Note 5 AND/OR Agronomy Technical Note 9).

Feature Measure: Small Farm, typically <= 5 acres
Scenario Unit: Each

Scenario Typical Size: 1.00
Scenario Total Cost: \$1,261.38

Scenario Cost/Unit: \$1,261.38
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	14	\$474.18
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	6	\$787.20

Practice: 595 - Pest Management Conservation System
Scenario: \#168 - Water Quality Pesticide Mitigation > 30 Point AND/OR Beneficial Insect Pesticide Mitigation

Scenario Description:

The minimum amount of planned IPM mitigation techniques needed to reduce water quality pesticide-related resource concerns is > 30 mitigation index score. An IPM plan will be developed in accordance with this standard and the CPS 595 Implementation Requirement will document how specific pesticide hazards will be prevented or mitigated AND/OR impacts to wildlife-beneficial insects including pollinators.

Before Situation:

Before practice conditions vary widely. Conditions range from the client is not using many pest suppression techniques (pesticides, tillage for weed control, burning, etc.) to the client is using many different pest suppression techniques for many different pests, but in all cases at least one planned pest suppression technique has risk to an identified resource concern (e.g. Water Quality - Impacts to Human Drinking Water AND/OR Wildlife-beneficial insects including pollinators).

After Situation:
An IPM system with planned. Mitigation techniques (>30 points) have been implemented to meet the minimum criteria for the identified resource concerns (i.e. Water Quality - Impacts to Human Drinking Water or Fish) AND/OR 10 points of mitigation for Wildlife (beneficial insects including pollinators) with either risk prevention (i.e. planned pesticides have no risk to the identified resource concern) or risk mitigation (i.e. planned pesticides have appropriate mitigation planned from Agronomy Technical Note 5 AND/OR Agronomy Technical Note 9).

Feature Measure: Acres of Management Applied

Scenario Unit: Acres

Scenario Typical Size: 40.00
Scenario Total Cost: \$3,132.05

Scenario Cost/Unit: $\$ 78.30$
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	15	\$508.05
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	20	\$2,624.00

Practice: 595 - Pest Management Conservation System
Scenario: \#169 - Water Quality Pesticide Mitigation > 30 Point AND/OR Beneficial Insect Pesticide Mitigation - Small Farm

Scenario Description:

The minimum amount of planned IPM mitigation techniques needed to reduce water quality pesticide-related resource concerns is > 30 mitigation index score. An IPM plan will be developed in accordance with this standard and the CPS 595 Implementation Requirement will document how specific pesticide hazards will be prevented or mitigated AND/OR impacts to wildlife-beneficial insects including pollinators.

Before Situation:

Before practice conditions vary widely. Conditions range from the client is not using many pest suppression techniques (pesticides, tillage for weed control, burning, etc.) to the client is using many different pest suppression techniques for many different pests, but in all cases at least one planned pest suppression technique has risk to an identified resource concern (e.g. Water Quality - Impacts to Human Drinking Water AND/OR Wildlife-beneficial insects including pollinators).

After Situation:
An IPM system with planned. Mitigation techniques (>30 points) have been implemented to meet the minimum criteria for the identified resource concerns (i.e. Water Quality - Impacts to Human Drinking Water or Fish) AND 10 points of mitigation for Wildlife (beneficial insects including pollinators) with either risk prevention (i.e. planned pesticides have no risk to the identified resource concern) or risk mitigation (i.e. planned pesticides have appropriate mitigation planned from Agronomy Technical Note 5 AND Agronomy Technical Note 9).

Feature Measure: Small Farm, typically <= 5 acs
Scenario Unit: Each

Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 2,120.60$
Scenario Cost/Unit: $\quad \$ 2,120.60$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	20	\$677.40
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	11	\$1,443.20

Practice: 600-Terrace
Scenario: \#1-Broadbased, Parallel, Level

Scenario Description:

An earthen embankment with channel constructed across the field slope as part of a system to shorten slope lengths, and reduce sheet, rill, and gully erosion in a cropped field. The typical installation is a broadbased, parallel, and level terrace storing runoff with a length of 2,500 feet and side slopes of $8: 1$ or greater in a field with slopes from 2% to 8% constructed in loam soils or similar in regards to workability. Costs include all equipment and forces necessary to excavate, shape, and compact terrace. This practice addresses Concentrated Flow Erosion and Excessive Sediment in surface waters.

Before Situation:
Long slope lengths contribute to excessive sedimentation and soil erosion in cropped fields as a result of gully, rill, and sheet erosion. The excessive erosion may lead to deterioration of receiving waters due to excessive sedimentation and nutrient transport.

After Situation:
A system of broadbased, parallel, and level terraces with approximately $8: 1$ front and back slopes, 1.7 feet height, and 2,500 feet in length is installed with spacing designed to intercept flow of water and shorten slope length to reduce erosion to acceptable levels. Work is done with dozer, scraper, or road grader. The installed terrace is typically farmed. Associated practices are Critical Area Planting (342), Grassed Waterway (412), and Underground Outlet (620).

Feature Measure: Length of Terrace
Scenario Unit: Feet
Scenario Typical Size: 2,500.00
Scenario Total Cost: \$3,687.46

Scenario Cost/Unit: \$1.47

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160 . Equipment and power unit costs. Labor not included.	Hours	\$98.78	21	\$2,074.38
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	21	\$669.27
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 600-Terrace
Scenario: \#2 - Broadbased, Parallel, Graded
Scenario Description:
An earthen embankment with channel constructed across the field slope as part of a system to shorten slope lengths and reduce sheet, rill, and gully erosion in a cropped field. The typical installation is a broadbased, parallel, and graded terrace having $8: 1$ slopes measuring 2,500 feet in a field with slopes from 2% to 8% constructed in loam soils or similar in regards to workability. A stable outlet is provided in the form of a Grassed Waterway or Underground Outlet. Costs include all equipment and forces necessary to excavate, shape, and compact terrace. This practice addresses Concentrated Flow Erosion and Excessive Sediment in surface waters.

Before Situation:
Long slope lengths contribute to excessive sedimentation and soil erosion in cropped fields as a result of gully, rill, and sheet erosion. The excessive erosion may lead to deterioration of receiving waters due to excessive sedimentation and nutrient transport.

After Situation:
A system of broadbased, parallel, and graded terraces with approximately 8:1 front and back slopes, 1.7 feet height, and 2,500 feet in length is installed with spacing designed to intercept flow of water and shorten slope length to reduce erosion to acceptable levels. Work is done with dozer, scraper, or road grader. The installed terrace is typically farmed. This terrace requires approximately 20% additional earthwork to form stable waterway on uphill side. Associated practices are Critical Area Planting (342), Grassed Waterway (412), and Underground Outlet (620).

Feature Measure: Length of Terrace
Scenario Unit: Feet

Scenario Typical Size: 2,500.00
Scenario Total Cost: $\$ 4,388.32$

Scenario Cost/Unit: \$1.76
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160 . Equipment and power unit costs. Labor not included.	Hours	\$98.78	26	\$2,568.28
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	26	\$828.62
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	5	\$238.05
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 600-Terrace
Scenario: \#3-Broadbased, contour, graded
Scenario Description:
An earthen embankment with channel constructed across the field slope as part of a system to shorten slope lengths and reduce sheet, rill, and gully erosion in a cropped field. The typical installation is a broadbased, contour, and graded terrace having $8: 1$ slopes measuring 2,750 feet in a field with slopes from 2% to 8% constructed in loam soils or similar in regards to workability. A stable outlet is provided in the form of a Grassed Waterway or Underground Outlet. Costs include all equipment and forces necessary to excavate, shape, and compact terrace. This practice addresses Concentrated Flow Erosion and Excessive Sediment in surface waters.

Before Situation:
Long slope lengths contribute to excessive sedimentation and soil erosion in cropped fields as a result of gully, rill, and sheet erosion. The excessive erosion may lead to deterioration of receiving waters due to excessive sedimentation and nutrient transport.

After Situation:
A system of broadbased, contour, and graded terraces with approximately $8: 1$ front and back slopes, 1.7 feet height, and 2,750 feet in length is installed with spacing designed to intercept flow of water and shorten slope length to reduce erosion to acceptable levels. Work is done with dozer, scraper, or road grader. The installed terrace is typically farmed. This terrace requires approximately 20% additional earthwork to form stable waterway on uphill side and length increases approximately 10% due to following contours. Associated practices are Critical Area Planting (342), Grassed Waterway (412), and Underground Outlet (620).

Feature Measure: Length of Terrace

Scenario Unit: Feet

Scenario Typical Size: 2,750.00

Scenario Total Cost: \$4,649.62						
Scenario Cost/Unit:	\$1.69					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160 . Equipment and power unit costs. Labor not included.	Hours	\$98.78	28	\$2,765.84
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	28	\$892.36
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	5	\$238.05
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and	Each	\$753.37	1	\$753.37

Practice: 600-Terrace
Scenario: \#4-Standard, contour
Scenario Description:
An earthen embankment with channel constructed across the field slope as part of a system to shorten slope lengths and reduce sheet, rill, and gully erosion in a cropped field. The typical installation is a standard terrace on a contour having 5:1 upstream and 5:1 downstream slopes measuring 2,500 feet in a field with slopes from 2% to 8% constructed in loam soils or similar in regards to workability. A stable outlet is provided in the form of a Grassed Waterway or Underground Outlet. Costs include all equipment and forces necessary to excavate, shape, and compact terrace. This practice addresses Concentrated Flow Erosion and Excessive Sediment in surface waters.

Before Situation:
Long slope lengths contribute to excessive sedimentation and soil erosion in cropped fields as a result of gully, rill, and sheet erosion. The excessive erosion may lead to deterioration of receiving waters due to excessive sedimentation and nutrient transport.

After Situation:
A system of standard, contour terraces measuring 2,500 feet in length, 1.5 feet in height, and 5:1 front and back slopes is installed with spacing designed to intercept flow of water and shorten slope length to reduce erosion to acceptable levels. Work is done with dozer, scraper, or road grader. The installed terrace is typically farmed. Associated practices are Critical Area Planting (342), Grassed Waterway (412), and Underground Outlet (620).

Feature Measure: Length of Terrace
Scenario Unit: Feet
Scenario Typical Size: 2,500.00
Scenario Total Cost: \$2,380.96
Scenario Cost/Unit: \$0.95

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160. Equipment and power unit costs. Labor not included.	Hours	\$98.78	11	\$1,086.58
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	11	\$350.57
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 600-Terrace
Scenario: \#5 - Basin and/or RUSLE spaced
Scenario Description:
An earthen embankment with channel constructed across the field slope near the lower end of a field to reduce the amount of sediment that leaves the cropped field. Field normally from 100 to 400 acres, row crop rotation, with flat to moderate slopes with sheet \& rill and concentrated flow erosion. Terrace spacing is based on Basin and/or RUSLE spacing. Costs include all equipment and forces necessary to excavate, shape, and compact terrace. This practice addresses Concentrated Flow Erosion and Excessive Sediment in surface waters. Basin and/or RUSLE spaced terraces are designed based on the required storage area or storage volume per linear foot instead of terrace spacing. These terraces are larger and require more earthwork per linear foot than standard or broadbased terraces. Typical scenario is a 1000 cy basin terrace that is 3 feet tall and 800 feet long built from both sides.

Before Situation:
Long slope lengths contribute to excessive sedimentation and soil erosion in cropped fields as a result of gully, rill, and sheet erosion. The excessive erosion may lead to deterioration of receiving waters due to excessive sedimentation and nutrient transport.

After Situation:

An earthen embankment, a channel, or a combination ridge and channel constructed across the slope. Basin terrace is constructed to shorten slope lengths and reduce erosion and sedimentation. Associated practices are Critical Area Planting (342), Grassed Waterway (412), and Underground Outlet (620).

Feature Measure: Volume of settled embankment

Scenario Unit: Cubic Yards

Scenario Typical Size: 1,000.00
Scenario Total Cost: \$2,469.03
Scenario Cost/Unit: \$2.47

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, common earth, large equipment, 50 ft	1222	Bulk excavation of common earth including sand and gravel with dozer $>100 \mathrm{HP}$ with average push distance of 50 feet. Includes equipment and labor.	Cubic Yards	\$1.43	1000	\$1,430.00
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	6	\$285.66
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 600-Terrace

Scenario: \#6-Broadbased Rehabilitation

Scenario Description:

A system of existing inadequate terraces reconstructed on the same alignment after the existing terrace system exceeds the terrace design life. A terrace is an earthen embankment with channel constructed across the field slope as part of a system to shorten slope lengths and reduce sheet, rill, and gully erosion in a cropped field. A typical installation consists of rebuilding 2,500 feet of existing broadbased terraces. A typical broadbased terrace has $8: 1$ upstream and $8: 1$ downstream side slopes in a field with slopes from 2% to 8% constructed in loam soils or similar in regards to workability. Channel and berm are farmed. A stable outlet is typically provided in the form of a Grassed Waterway or Underground Outlet. The costs include all equipment and forces necessary to excavate, shape, and compact the existing terrace system to meet current design criteria. Existing terraces shall not be removed prior to rebuilding. This practice addresses Concentrated Flow Erosion and Excessive Sediment in surface waters.

Before Situation:

An existing terrace system meets the current spacing limits and current channel grade criteria, however, the terraces have numerous breaches, the height of the berm above the channel is less than 0.7 feet, or the channel cross sectional area is less than 50% of the design. As a result of these deficiencies, gully, rill, and/or sheet erosion are contributing to excessive sedimentation and soil erosion in a cropped field. The excessive erosion may lead to deterioration of receiving waters due to excessive sedimentation and nutrient transport.

After Situation:

The system of existing inadequate terraces are rehabilitated to current design criteria. The rehabilitated system of broadbased terraces measuring 2,500 feet in length, 1.7 height, and 8:1 front and back slopes is installed with spacing designed to intercept flow of water and shorten slope length to reduce erosion to acceptable levels. Work is done with dozer, scraper, or road grader. The installed terrace is typically farmed. Associated practices are Critical Area Planting (342), Grassed Waterway (412), and Underground Outlet (620).

Feature Measure: Length of Rehabilitated Terraces

Scenario Unit: Feet
Scenario Typical Size: 2,500.00

Scenario Total Cost: \$3,034.21						
Scenario Cost/Unit:	\$1.21					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160. Equipment and power unit costs. Labor not included.	Hours	\$98.78	16	\$1,580.48
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	16	\$509.92
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 600-Terrace
Scenario: \#64-Broadbased

Scenario Description:

An earthen embankment with channel constructed across the field slope as part of a system to shorten slope lengths and reduce sheet, rill, and gully erosion in a cropped field. The typical installation is a broadbased terrace having 5:1 upstream and 5:1 downstream slopes measuring 2,500 feet in a field with slopes from 2% to 8% constructed in loam soils or similar in regards to workability. Channel and berm are farmed. A stable outlet is provided in the form of a Grassed Waterway or Underground Outlet. Costs include all equipment and forces necessary to excavate, shape, and compact terrace. This practice addresses Concentrated Flow Erosion and Excessive Sediment in surface waters.

Before Situation:
Long slope lengths contribute to excessive sedimentation and soil erosion in cropped fields as a result of gully, rill, and sheet erosion. The excessive erosion may lead to deterioration of receiving waters due to excessive sedimentation and nutrient transport.

After Situation:

A system of broadbased terraces measuring 2,500 feet in length, 2.5 height, and $5: 1$ front and back slopes is installed with spacing designed to intercept flow of water and shorten slope length to reduce erosion to acceptable levels. Work is done with dozer, scraper, or road grader. The installed terrace is typically farmed. Associated practices are Critical Area Planting (342), Grassed Waterway (412), and Underground Outlet (620).

Feature Measure: Length of Terrace
Scenario Unit: Feet

Scenario Typical Size: 2,500.00
Scenario Total Cost: $\$ 5,481.13$

Scenario Cost/Unit: \$2.19
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160 . Equipment and power unit costs. Labor not included.	Hours	\$98.78	34	\$3,358.52
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	34	\$1,083.58
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	6	\$285.66
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 600-Terrace
Scenario: \#65-Flat Channel

Scenario Description:

An earthen embankment with channel constructed across the field slope as part of a system to shorten slope lengths, and reduce sheet, rill, and gully erosion in a cropped field. The typical installation is a flat channel (level) terrace storing runoff with a length of 2,500 feet and side slopes of $8: 1$ or greater in a field with slopes from 2% to 8% constructed in loam soils or similar in regards to workability. Costs include all equipment and forces necessary to excavate, shape, and compact terrace. This practice addresses Concentrated Flow Erosion and Excessive Sediment in surface waters.

Before Situation:
Long slope lengths contribute to excessive sedimentation and soil erosion in cropped fields as a result of gully, rill, and sheet erosion. The excessive erosion may lead to deterioration of receiving waters due to excessive sedimentation and nutrient transport.

After Situation:
A system of flat channel (level) terraces with approximately $8: 1$ front and back slopes, 2.5 feet height, and 2,500 feet in length is installed with spacing designed to intercept flow of water and shorten slope length to reduce erosion to acceptable levels. Work is done with dozer, scraper, or road grader. The installed terrace is typically farmed. Associated practices are Critical Area Planting (342), Grassed Waterway (412), and Underground Outlet (620).

Feature Measure: Length of Terrace
Scenario Unit: Feet
Scenario Typical Size: 2,500.00
Scenario Total Cost: $\$ 8,581.30$
Scenario Cost/Unit: \$3.43

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160 . Equipment and power unit costs. Labor not included.	Hours	\$98.78	57	\$5,630.46
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	57	\$1,816.59
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	8	\$380.88
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 600-Terrace
Scenario: \#66-Grass Backed

Scenario Description:

\{Only name change from 5 to $1 \& 2$ to 1 to Grass Back\} An earthen embankment with channel constructed across the field slope as part of a system to shorten slope lengths and reduce sheet, rill, and gully erosion in a cropped field. The typical installation is a system of terraces (2,500 feet in length) that have one relatively flat (5:1) slope and one steep (2:1) slope constructed in a field with slopes from 2% to 8% installed in loam soils or similar soils in regards to workability. The steep slope is established to permanent vegetation with the flatter slope farmed. A stable outlet is provided in the form of a Grassed Waterway or Underground Outlet. Costs include all equipment and forces necessary to excavate, shape, and compact terrace. Seeding is not included. This practice addresses Concentrated Flow Erosion and Excessive Sediment in surface waters.

Before Situation:
Long slope lengths contribute to excessive sedimentation and soil erosion in cropped fields as a result of gully, rill, and sheet erosion. The excessive erosion may lead to deterioration of receiving waters due to excessive sedimentation and nutrient transport.

After Situation:

A system of terraces with one steep (2:1) and one flat (5:1) slope measuring 2,500 feet in length and 2.5' height is installed with spacing designed to intercept flow of water and shorten slope length to reduce erosion to acceptable levels. Work is done with dozer, scraper, or road grader. Associated practices are Critical Area Planting (342), Grassed Waterway (412), and Underground Outlet (620).

Feature Measure: Length of Terrace
Scenario Unit: Feet
Scenario Typical Size: 2,500.00
Scenario Total Cost: $\$ 3,378.55$
Scenario Cost/Unit: \$1.35

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160. Equipment and power unit costs. Labor not included.	Hours	\$98.78	19	\$1,876.82
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	19	\$605.53
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	3	\$142.83
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 600-Terrace
Scenario: \#67-Narrow Base, less than 8\% slope
Scenario Description:
An earthen embankment with channel constructed across the field slope as part of a system to shorten slope lengths and reduce sheet, rill, and gully erosion in a cropped field. The typical installation is a system of narrow base terraces with $2: 1$ slopes, 2,500 ' length, and 2.5^{\prime} height in a field with slopes from 3% to 8% constructed in loam soils or similar in regards to workability. A stable outlet is provided in the form of a Grassed Waterway or Underground Outlet. Costs include all equipment and forces necessary to excavate, shape, and compact terrace. Permanent vegetation is established. Seeding is not included. This practice addresses Concentrated Flow Erosion and Excessive Sediment in surface waters.

Before Situation:
Long slope lengths contribute to excessive sedimentation and soil erosion in cropped fields as a result of gully, rill, and sheet erosion. The excessive erosion may lead to deterioration of receiving waters due to excessive sedimentation and nutrient transport.

After Situation:

A system of narrow base terraces with approximately 2:1 front and back slopes measuring 2,500 feet in length and 2.5 feet height is constructed with spacing designed to intercept flow of water and shorten slope length to reduce erosion to acceptable levels. Work is done with dozer, scraper, or road grader. Associated practices are Critical Area Planting (342), Grassed Waterway (412), and Underground Outlet (620).

Feature Measure: Length of Terrace
Scenario Unit: Feet

Scenario Typical Size: 2,500.00

Scenario Total Cost: \$4,031.80						
Scenario Cost/Unit:	\$1.61					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160 . Equipment and power unit costs. Labor not included.	Hours	\$98.78	24	\$2,370.72
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	24	\$764.88
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	3	\$142.83
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and	Each	\$753.37	1	\$753.37

Practice: 600-Terrace
Scenario: \#68 - Narrow Base, greater than 8\% slope
Scenario Description:
An earthen embankment with channel constructed across the field slope as part of a system to shorten slope lengths and reduce sheet, rill, and gully erosion in a cropped field. The typical installation is a system of narrow base terraces with $2: 1$ slopes, 2,500 ' length, and 2.5 ' height in a field with slopes exceeding 8% constructed in loam soils or similar in regards to workability. A stable outlet is provided in the form of a Grassed Waterway or Underground Outlet. Costs include all equipment and forces necessary to excavate, shape, and compact terrace. Permanent vegetation is established. Seeding is not included. This practice addresses Concentrated Flow Erosion and Excessive Sediment in surface waters.

Before Situation:
Long slope lengths contribute to excessive sedimentation and soil erosion in cropped fields as a result of gully, rill, and sheet erosion. The excessive erosion may lead to deterioration of receiving waters due to excessive sedimentation and nutrient transport.

After Situation:

A system of narrow base terraces with approximately $2: 1$ front and back slopes measuring 2,500 feet in length and 2.5' height is constructed with spacing designed to intercept flow of water and shorten slope length to reduce erosion to acceptable levels. Work is done with dozer, scraper, or road grader. Associated practices are Critical Area Planting (342), Grassed Waterway (412), and Underground Outlet (620).

Feature Measure: Length of Terrace

Scenario Unit: Feet

Scenario Typical Size: 2,500.00

Scenario Total Cost: \$4,340.71						
Scenario Cost/Unit:	\$1.74					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160 . Equipment and power unit costs. Labor not included.	Hours	\$98.78	26	\$2,568.28
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	26	\$828.62
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and	Each	\$753.37	1	\$753.37

Practice: 601 -Vegetative Barrier
Scenario: \#2 - Seeded Barrier
Scenario Description:
Permanent strips of stiff, dense vegetation established along the general contour of slopes.
Before Situation:
Significant erosion is occurring resulting in substantial transport of sediment across the slope. A large amount of sediment is subsequently delivered to the edge of the field and/or waterways.

After Situation:
Implementation Requirements are prepared and implemented for the site according to the Vegetative Barrier (601) standard. A strip or strips of stiff, dense vegetation is established by seeding along the general contour of the slope that effectively settles a significant amount of sediment above the leading edge of the vegetative barrier. Barrier may also help to connect green areas to provide shelter for wildlife.

Feature Measure: Per 1000 Linear feet of practice inst
Scenario Unit: Feet
Scenario Typical Size: 1,000.00
Scenario Total Cost: \$315.53

Scenario Cost/Unit: \$0.32

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	0.09	\$1.21
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	0.09	\$1.81
Cultipacking	1100	Includes equipment, power unit and labor costs.	Acres	\$10.03	0.09	\$0.90
Materials						
Native Perennial Grasses, Low Density	2750	Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$134.97	0.09	\$12.15

Mobilization

Practice: 601 -Vegetative Barrier
Scenario: \#3 - Vegetative Planting
Scenario Description:
Permanent strips of stiff, dense vegetation established along the general contour of slopes.
Before Situation:
Significant erosion is occurring resulting in substantial transport of sediment across the slope. A large amount of sediment is subsequently delivered to the edge of the field and/or waterways.

After Situation:
Implementation Requirements are prepared and implemented for the site according to the Vegetative Barrier (601) standard. A strip or strips of stiff, dense vegetation such as Vetiver Grass is/are established along the general contour of the slope that effectively settles a significant amount of sediment above the leading edge of the vegetative barrier. Barrier may also help to connect green areas to provide shelter for wildlife.

Feature Measure: Per 100 foot Linear feet of practice

Scenario Unit: Feet

Scenario Typical Size: 100.00
Scenario Total Cost: \$859.99

Scenario Cost/Unit: \$8.60

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	0.01	\$0.07
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	0.01	\$0.08
Ground sprigging	1101	Includes costs for equipment, power unit and labor.	Acres	\$65.65	0.01	\$0.66
Materials						
Nitrogen (N), Ammonium Sulfate	70	Price per pound of N supplied by Ammonium Sulfate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$1.01	0.46	\$0.46
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	0.01	\$0.13
Perennial Grass, Legume, and/or Forb Liners or Plugs, linear planting per 100 feet	2324	Perennial grasses, legumes and/or forbs established in a row using vegetative propagules including liners or plugs. Includes materials and shipping.	100 Foot	\$858.60	1	\$858.60

Practice: 601 - Vegetative Barrier
Scenario: \#9 - Caribbean and Virgin Island Veg Barriers with Cuttings
Scenario Description:
Permanent strips of stiff, dense vegetation established along the general contour of slopes.
Before Situation:
Significant erosion is occurring resulting in substantial sheet and rill erosion. A large amount of sediment is subsequently delivered to the edge of the field and/or waterways, and the soil resource is degraded.

After Situation:
Implementation Requirements for 601 are prepared for the unique site conditions and the practice is implemented. A strip or strips of stiff, dense vegetation such as Vetivier Grass is/are established along the general contour of the slope that effectively settles a significant amount or sediment above the leading edge of the vegetative barrier. Barrier may also help to connect green areas to provide shelter for wildlife.

Feature Measure: Length treated
Scenario Unit: 100 Foot
Scenario Typical Size: 1.00
Scenario Total Cost: \$1,264.59
Scenario Cost/Unit: \$1,264.59

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Track Loader, 95HP	935	Equipment and power unit costs. Labor not included.	Hours	\$95.63	2	\$191.26
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Site Preparation, Mechanical	944	Aerator, rolling drum chopper, etc. Includes equipment, power unit and labor costs.	Acres	\$88.05	0.01	\$0.88
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	6	\$162.96

Materials

Phosphorus, P2O5	73	Price per pound of P2O5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	1	\$0.91
Perennial Grass, Legume, and/or Forb Liners or Plugs, linear planting per 100 feet	2324	Perennial grasses, legumes and/or forbs established in a row using vegetative propagules including liners or plugs. Includes materials and shipping.	100 Foot	\$858.60	1	\$858.60

Practice: 601 -Vegetative Barrier
Scenario: \#10-Pac. Island Area Vegetative Barrier
Scenario Description:
Permanent strips of stiff, dense vegetation established along the general contour of slopes.
Before Situation:
Significant erosion is occurring resulting in substantial transport of sediment across the slope. A large amount of sediment is subsequently delivered to the edge of the field and/or waterways.

After Situation:
Implementation Requirements are prepared for the site according to the 601 Vegetative Barrier Standard and is implemented. A strip or strips of stiff, dense vegetation such as Vetivier Grass is/are established along the general contour of the slope that effectively settles a significant amount or sediment above the leading edge of the vegetative barrier. Barrier may also help to connect green areas to provide shelter for wildlife.

Feature Measure: Linear feet planted
Scenario Unit: Feet
Scenario Typical Size: 1,000.00
Scenario Total Cost: $\$ 8,850.89$

Scenario Cost/Unit: \$8.85

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	1	\$47.61
Materials						
Perennial Grass, Legume, and/or Forb Liners or Plugs, linear planting per 100 feet	2324	Perennial grasses, legumes and/or forbs established in a row using vegetative propagules including liners or plugs. Includes materials and shipping.	100 Foot	\$858.60	10	\$8,586.00

Practice: 601 - Vegetative Barrier
Scenario: \#11 - Pacific Islands Area - Vegetative Barrier for Small Area
Scenario Description:
Permanent strips of stiff, dense vegetation established along the general contour of slopes for small areas needing erosion control.
Before Situation:
Significant erosion is occurring resulting in substantial transport of sediment across the slope. A large amount of sediment is subsequently delivered to the edge of the field and/or waterways.

After Situation:
Implementation Requirements are prepared for the site according to the 601 Vegetative Barrier Standard and is implemented. A strip or strips of stiff, dense vegetation of a warm season grass established along the general contour of the slope that effectively settles a significant amount or sediment above the leading edge of the vegetative barrier. Barrier may also help to connect green areas to provide shelter for wildlife.

Feature Measure: Number of 100 ft segments
Scenario Unit: 1,000 Foot
Scenario Typical Size: 1.00
Scenario Total Cost: \$8,742.25
Scenario Cost/Unit: \$8,742.25

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	4	\$108.64
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	1	\$47.61
Materials						
Perennial Grass, Legume, and/or Forb Liners or Plugs, linear planting per 100 feet	2324	Perennial grasses, legumes and/or forbs established in a row using vegetative propagules including liners or plugs. Includes materials and shipping.	100 Foot	\$858.60	10	\$8,586.00

Practice: 603 - Herbaceous Wind Barriers
Scenario: \#1-Cool Season Annual/Perennial Species

Scenario Description:

This scenario describes the implementation of herbaceous barriers to reduce wind velocities and wind-borne particulate matter. In this scenario barriers are composed of cool season annual or perennial vegetation. Plant materials shall be selected for local adaptation and climatic conditions and are resistant to lodging and are nonspreading in their habit. Barriers will be designed as close to perpendicular to prevailing winds as practical. Barrier direction, spacing, and composition needed to achieve the desired purpose shall be designed using the currently approved wind erosion technology.

Before Situation:
Typically cropland has excessive soil disturbance and unsheltered distance that results in excessive wind erosion that affect soil resources. Seedling development and wildlife habitat are negatively affected by wind-borne sediment and sediment-borne contaminants travelling offsite.

After Situation:
Implementation Requirements will be prepared and implemented for the site according to the Herbaceous Wind Barrier (603) standard. Implementation of herbaceous wind barriers will modify the flow and velocity of air dependent upon barrier height, porosity, spacing and wind speed. Orientation is generally placed across an entire field perpendicular to applicable prevailing wind direction. Implementation will reduce soil loss, protect growing plants from damage by wind-blown soil particles, and provide food and cover for wildlife. The scenario includes the design and implementation of annual barriers and required reestablishment.

Feature Measure: linear feet of barrier planted
Scenario Unit: Linear Feet

Scenario Typical Size: 1,320.00
Scenario Total Cost: \$128.10
Scenario Cost/Unit: \$0.10
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	2	\$54.32
Materials						
Annual Grasses	2730	Annual grasses, one or more species, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$40.79	0.09	\$3.67

Practice: 603 - Herbaceous Wind Barriers
Scenario: \#6-Small Farm Herbaceous Barrier

Scenario Description:

This scenario describes the annual implementation of herbaceous barriers to reduce wind velocities and wind-borne particulate matter. In this scenario barriers are composed of annual living vegetation. Plant materials shall be selected for local adaptation and climatic conditions and are resistant to lodging and are non-spreading in their habit. Barriers will be designed as close to perpendicular to prevailing winds as practical. Barrier direction, spacing, and composition needed to achieve the desired purpose shall be designed using the currently approved wind erosion technology. Establishment is done either by using light tillage or chemical application and no till drill.

Before Situation:
Typically cropland has excessive soil disturbance and un-sheltered distance that results in excessive wind erosion that affect soil resources. Seedling development and wildlife habitat are negatively affected by wind-borne sediment and sediment-borne contaminants travelling offsite.

After Situation:
Implementation Requirements will be prepared for the site according to the 603 Herbaceous Wind Barrier Standard and implemented. Implementation of herbaceous wind barriers will modify the flow and velocity of air dependent upon barrier height, porosity, spacing and wind speed. Orientation is generally placed across an entire field perpendicular to applicable prevailing wind direction. Implementation will reduce soil loss; protect growing plants from damage by wind blown soil particles, provide food and cover for wildlife. Payment is for the design and implementation of annual barriers and required reestablishment.

Feature Measure: Linear Feet Planted

Scenario Unit: Feet

Scenario Typical Size: 1,000.00
Scenario Total Cost: \$353.40
Scenario Cost/Unit: \$0.35

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	1	\$13.45
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	0.5	\$10.07
Labor						
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	2	\$262.40

Materials

Native Perennial Grasses, Low Density

2750 Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.

Practice: 603 - Herbaceous Wind Barriers
Scenario: \#7-Pacific Island Area Herbaceous Wind Barriers

Scenario Description:

This is for the Pacific Island Area. This scenario describes implementation of warm or cool season perennial herbaceous barriers to reduce wind velocities and wind-borne particulate matter. In this scenario barriers are composed of annual living vegetation. Plant materials shall be selected for local adaptation and climatic conditions and are resistant to lodging and are non-spreading in their habit. Barriers will be designed as close to perpendicular to prevailing winds as practical. Barrier direction, spacing, and composition needed to achieve the desired purpose shall be designed using the currently approved wind erosion technology. Establishment is done either by using light tillage or chemical application and no till drill.

Before Situation:

Typically cropland has excessive soil disturbance and unsheltered distance that results in excessive wind erosion that affect soil resources. Seedling development and wildlife habitat are negatively affected by wind-borne sediment and sediment-borne contaminants travelling offsite.

After Situation:

Implementation Requirements will be prepared for the site according to the 603 Herbaceous Wind Barrier Standard and implemented. Implementation of perennial herbaceous wind barriers will modify the flow and velocity of air dependent upon barrier height, porosity, spacing and wind speed. Orientation is generally placed across an entire field perpendicular to applicable prevailing wind direction. Implementation will reduce soil loss; protect growing plants from damage by wind blown soil particles, provide food and cover for wildlife. Payment is for the establishment of perennial barriers and required reestablishment.

Feature Measure: Feet extablished
Scenario Unit: Feet
Scenario Typical Size: 1,320.00
Scenario Total Cost: \$122.05

Scenario Cost/Unit: \$0.09

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	1	\$24.99
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	0.06	\$0.81
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	0.06	\$1.21
Foregone Income						
FI, Soybeans Irrigated	1962	Irrigated Soybeans is Primary Crop	Acres	\$369.27	0.02	\$7.39
FI, Wheat Irrigated	1964	Irrigated Wheat is Primary Crop	Acres	\$250.34	0.02	\$5.01
FI, Vegetables	2033	Vegetables is Primary Crop	Acres	\$2,088.46	0.02	\$41.77

Labor

General Labor
231 Labor performed using basic tools such as power tool, shovels, and
Hours $\quad \$ 27.16 \quad 1$
\$27.16 other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.

Materials

Native and Introduced Perennial
2757 A mix of native and introduced perennial grasses, legumes, and or
Acres \$228.68 0.06 \$13.72

Grasses, Legumes and/or Forbs, High Density
forbs, grasses typically greater than 50% of the mix, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at high density (greater than 60 pure live seeds/sq ft). Includes material and shipping.

Practice: 606-Subsurface Drain
Scenario: \#1-Corrugated Plastic Pipe (CPP), Single-Wall, Less Than or Equal to 6 Inches Diameter

Scenario Description:

Description: Below ground installation of perforated HDPE (Corrugated Plastic Pipe) pipeline, using a drainage plow. HDPE (CPP) Single-Wall is manufactured in sizes (nominal diameter) from 3 -inch to 24 -inch; typical practice sizes range from 3-inch to 12 -inch; and typical scenario size is 5 -inch. Construct 2,000 feet of 5 -inch, SingleWall, perforated HDPE Corrugated Plastic Pipe (CPP), installed below ground to a minimum depth 5 feet. The unit is in weight of pipe material in pounds. 2,000 feet of $5-$ inch, Single-Wall, perforated HDPE CPP weighs $0.50 \mathrm{lb} / \mathrm{ft}$, or a total of 1,000 pounds. The typical number of mainline connections for 2,000 feet of subsurface drainline is a total of 3 each. Resource Concerns: Excess Water (Seasonal High Water Table); Degraded Plant Condition; Water Quality Degradation (Nutrients). Associated Practices: 608 - Surface Drain, Main or Lateral; 587 - Structure for Water Control, 533 - Pumping Plant; and 554 - Drainage Water Management.

Before Situation:
Before installation soil conditions are excessively wet in the spring due to poor internal soil drainage. Excess soil water is causing crop stress and delay of field operations (seed bed preparation, planting, etc.).

After Situation:
The drainage modifications result in reduced plant stress due to excessive wetness caused by a seasonal high water table, or improved drainage water quality due to system retrofit enabling drainage water management.

Feature Measure: Weight of Pipe

Scenario Unit: Pound

Scenario Typical Size: 1,000.00
Scenario Total Cost: \$10,420.19

Scenario Cost/Unit: \$10.42
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Trenching, tile line plowing, earth, 60 in.	1457	Plowing in 3-15 inch CPP drain line into earth, 60 inch depth, includes equipment and labor for trenching, laying, and backfilling.	Feet	\$2.25	2000	\$4,500.00
Materials						
Pipe, HDPE, corrugated single wall, <= 12 in. weight priced Compound	1380	High Density Polyethylene (HDPE) compound manufactured into single wall corrugated pipe or tubing. Materials only.	Pound	\$2.51	1000	\$2,510.00
Drainage Lateral Connection	1458	Connect 3-6 inch drainage lateral to main drain, includes excavation to 6 foot depth, install tee on main line, connect lateral, and backfill. Includes material cost for tee.	Each	\$28.09	3	\$84.27
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	2	\$1,819.18

Practice: 606-Subsurface Drain
Scenario: \#2 - Corrugated Plastic Pipe (CPP), Single-Wall, Less Than or Equal to 6 Inches Diameter, Enveloped

Scenario Description:

Description: Below ground installation of perforated HDPE (Corrugated Plastic Pipe) pipeline with Sand-Gravel envelope, using a drainage trencher. HDPE (CPP) SingleWall is manufactured in sizes (nominal diameter) from 3-inch to 24 -inch; typical practice sizes range from 3-inch to 12-inch; and typical scenario size is 5-inch. Construct 2,000 feet of 5-inch, Single-Wall, perforated HDPE Corrugated Plastic Pipe (CPP), installed below ground to a minimum depth of 5 feet, and surrounded with a sand-gravel envelope. The unit is in weight of pipe material in pounds. 2,000 feet of 5 -inch, Single-Wall, perforated HDPE CPP weighs $0.50 \mathrm{lb} / \mathrm{ft}$, or a total of 1,000 pounds. The typical volume sand-gravel for 2,000 feet of 12 'wide $\times 12$ ' high envelope is 64 cubic yards. The typical number of mainline connections for 2,000 feet of subsurface drainline is a total of 3 each. Resource Concerns: Excess Water (seasonal High Water Table); Degraded Plant Condition; Water Quality Degradation (Nutrients). Associated Practices: 608 - Surface Drain, Main or Lateral; 587 - Structure for Water Control, 533 - Pumping Plant; and 554 - Drainage Water Management.

Before Situation:

Before installation soil conditions are excessively wet in the spring due to poor internal soil drainage. Excess soil water is causing crop stress and delay of field operations (seed bed preparation, planting, etc.).

After Situation:

The drainage modifications result in reduced plant stress due to excessive wetness caused by a seasonal high water table, or improved drainage water quality due to system retrofit enabling drainage water management.

Feature Measure: Weight of Pipe
Scenario Unit: Pound
Scenario Typical Size: 1,000.00
Scenario Total Cost: $\$ 13,330.59$

Scenario Cost/Unit: \$13.33

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Track Loader, 95HP	935	Equipment and power unit costs. Labor not included.	Hours	\$95.63	8	\$765.04
Trenching, Earth, $12 \mathrm{in} . \times 60 \mathrm{in}$.	1459	Trenching, earth, 12 inch wide $\times 60$ inch depth, includes equipment and labor for trenching, laying 3 to 6 inch CPP drain line with envelope, and backfilling.	Feet	\$1.76	2000	\$3,520.00
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	8	\$254.96

Materials

Aggregate, Gravel, Graded	46	Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$44.85	64	\$2,870.40
Pipe, HDPE, corrugated single wall, <= 12 in . weight priced Compound	1380	High Density Polyethylene (HDPE) compound manufactured into single wall corrugated pipe or tubing. Materials only.	Pound	\$2.51	1000	\$2,510.00
Drainage Lateral Connection	1458	Connect 3-6 inch drainage lateral to main drain, includes excavation to 6 foot depth, install tee on main line, connect lateral, and backfill. Includes material cost for tee.	Each	\$28.09	3	\$84.27
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	2	\$1,819.18

Practice: 609-Surface Roughening
Scenario: \#27-Tillage for Random Surface Roughness
Scenario Description:
Emergency Tillage on soils that are stable enough to sustain effective ridges and cloddiness and have a high wind erosion potential due to lack of surface cover. Wind erodibility factor (I) is less than 104.

Before Situation:
Current well -planned and properly applied wind erosion control systems have failed. Tillage operations have not effectively reduced soil erosion from wind and windborne sediment, Particulate Matter emissions occur. Crop damage from wind-borne particles can occur.

After Situation:

Emergency Tillage has been conducted to produce random roughness (RR) values large enough to achieve a 25% reduction in the potential erosion rate, or reduced wind erosion during the management period by 25%.

Feature Measure: Acres of Surface Roughening

Scenario Unit: Acres

Scenario Typical Size: 160.00
Scenario Total Cost: $\$ 3,746.50$

Scenario Cost/Unit: \$23.42
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Primary	946	Includes heavy disking (offset) or chisel plow. Includes equipment, power unit and labor costs.	Acres	\$20.44	160	\$3,270.40
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	10	\$476.10

Practice: 609-Surface Roughening

Scenario: \#28-Tillage with Wind Erodibility factor (I) greater than 104

Scenario Description:

Emergency Tillage on soils that are stable enough to sustain effective ridges and cloddiness and have a high wind erosion potential due to lack of surface cover.
Before Situation:
Current well-planned and properly applied wind erosion control systems have failed. Tillage operations have not effectively reduced soil erosion from wind and windborne sediment, Particulate Matter emissions occur. Crop damage from wind-borne particles can occur.

After Situation:
Emergency Tillage has been conducted to produce random roughness (RR) values large enough to achieve a 25% reduction in the potential erosion rate, or reduced wind erosion during the management period by 25%.

Feature Measure: Acres of Surface Roughening
Scenario Unit: Acres
Scenario Typical Size: 160.00
Scenario Total Cost: \$4,197.70
Scenario Cost/Unit: \$26.24
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Ripper or subsoiler, 16 to 36 inch depth	1235	Deep ripper or subsoiler, (16-36 inches depth) includes tillage implement, power unit and labor.	Acres	\$23.26	160	\$3,721.60
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	10	\$476.10

Practice: 610-Salinity and Sodic Soil Management

Scenario: \#1 - Soil Management - Drainage

Scenario Description:

This scenario is for deep tillage operations planned to lower excessive salt concentrations (high salinity levels) in the soil and are associated with the construction of surface drainage ditches.

Before Situation:
Salt concentrations within the soil profile of a 40 acre corn field have been tested to contain an EC $>4 \mathrm{mmho} / \mathrm{cm}, \mathrm{SAR}<13$ and ESP $<15 \%$ which has resulted reduced stand density, poor plant health and vigor and an overall reduction in crop yield.

After Situation:

Salt concentrations in the soil profile have been reduced by deep tillage that improves internal drainage in the soil profile; tillage is coupled with the removal of surface water through the installation of drainage ditches. The removal of excessive water has lowered the salt concentration within the soil profile which has resulted in improved seedling/plant density, plant health and vigor and an overall increase in crop yields.

Feature Measure: Acres included in Salinity Managem
Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: \$1,084.55
Scenario Cost/Unit: \$27.11
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Primary	946	Includes heavy disking (offset) or chisel plow. Includes equipment, power unit and labor costs.	Acres	\$20.44	40	\$817.60
Materials						
Testing, soil sampling and EC analysis, bore hole	2055	Collecting and testing 5 soil samples per 60 inch bore hole. Inclueds EC measurements. Includes equipment and labor.	Hours	\$266.95	1	\$266.95

Practice: 610-Salinity and Sodic Soil Management
Scenario: \#2-Sodic Soil Treatment

Scenario Description:

This scenario is to be used to assist in reclaiming alkaline (sodic) areas of a field by applying gypsum. Gypsum is applied to replace the sodium in the soil and allow it to leach through the soil profile. The soils are to be identified using designated procedures in the NRCS Salinity and Sodic Soil Management (610) standard.

Before Situation:
A 40 acre corn field with a medium soil texture was tested to have an Exchangeable Sodium reading of 20. The sodic characteristic of the soil has resulted in reduced plant health and vigor which is leading to reduced corn yields.

After Situation:

A gypsum application has lowered the Exchangeable Sodium level within the soil profile so that the plant health and vigor has improved, which results in increased corn yields.

Feature Measure: Acres included in Sodic Soil Manag

Scenario Unit: Acres

Scenario Typical Size: 40.00
Scenario Total Cost: \$37,196.95

Scenario Cost/Unit: \$929.92

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Lime application	953	Lime application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$9.10	40	\$364.00
Materials						
Gypsum, Ground Ag Grade, Bulk	1224	Agricultural grade quarry ground gypsum (CaCO4) for dispersive soil treatment. Materials and delivery only.	Ton	\$182.83	200	\$36,566.00
Testing, soil sampling and EC analysis, bore hole	2055	Collecting and testing 5 soil samples per 60 inch bore hole. Inclueds EC measurements. Includes equipment and labor.	Hours	\$266.95	1	\$266.95

Practice: 610-Salinity and Sodic Soil Management
Scenario: \#14-Small Farm less than 10 ac. saline sodic management irrigated lands

Scenario Description:

The producer secures training in Salinity and Sodic Soil Management and develops and carries out a Salinity and Sodic Soil Management Plan. Scenario includes cost of attending a 6 hr University, NRCS, or commodity group sponsored training session and 12 hours of mgt labor a year to analyze available data and field situation, develop (or review and modify as necessary) plan and carry it out. Resource Concerns: Soil Quality Degradation - Concentration of salts or other chemicals, and Water Quality Degradation- Excessive salts in surface and ground waters.Associated Practices: 328-Conservation Crop Rotation; 449-Irrigation Water Management; and 590-Nutrient Management.

Before Situation:

Salintiy and or Sodic conditions have developed in the root zone of a 100 acre irrigated cropland field resulting in decreased soil quality, plant health problems, and yield reductions.

After Situation:

Producer conducts soil conductivity and salinity test to determine the root zone depth of water application necessary for flushing accumulated salts and maintaining a proper salt balance. Producer conducts irrigation suitability test of water supply results to determine suitability of applied water for irrigation and additional irrigation volumes needed for leaching. Routine periodic checks of water EC will be conducted by producer to monitor for water salinity which might require changes to Salinity and Sodic Soil Management Plan. The Salinity and Sodic Soil Management Plan is carried out employing soil and water testing and as applicable changes in Irrigation Water Management (449), Conservation Crop Rotation (328), tillage, and use of soil amendments. The producer has developed and is carrying out a Salinity and Sodic Soil Management Plan resulting in improved soil quality and plant health.

Feature Measure: Acres included in Salinity and Sodic

Scenario Unit: Acres

Scenario Typical Size: 10.00

Scenario Total Cost: $\$ 1,296.15$
Scenario Cost/Unit: \$129.62

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	20	\$952.20

Materials

Test, Soil Test, Standard	299	Includes materials, shiping, labor, and equipment costs.	Each	\$14.23	12	\$170.76
Test, Standard Water Test, Irrigation Suitability	310	Irrigation water suitability lab analysis. Includes pH, alkalinity, carbonates/bicarbonates, EC, dissolved solids, $\mathrm{B}, \mathrm{Cl}, \mathrm{Ca}, \mathrm{Mg}, \mathrm{Na}, \mathrm{SAR}$, and hardness.	Each	\$56.80	1	\$56.80

Practice: 612 -Tree/Shrub Establishment
Scenario: \#1-Conifer, Interplanting

Scenario Description:

Tree seedlings will be hand planted in the forested area where few or no forest trees are growing, the existing stand of trees needs underplanting, or the previously planted seedling tree stocking level is below desirable conditions. Individual conifer seedlings may be planted as shade trees in a pasture, to supplement a riparian forest buffer or to stabilize a critical area.

Before Situation:
The stocking level of the forest does not meet the minimum recommended number of trees per acre. The existing condition of the forest stand does not meet the landowners objectives. To be a viable forest additional seedlings need planting. Wildlife habitat is degraded by loss of forest conditions. This resource concern addressed is degraded plant condition -- and inadequate structure and composition, and inadequate wildlife \& fish habitat.

After Situation:
The prescribed number of trees are hand planted on 20 acres, and the objectives of the landowner are met. The forest will provide wildlife habitat, provide a long term ground cover, and capture atmospheric carbon. Larger and smaller acreages may be treated with this practice. The specific tree species and numbers per acre should be specified in the job sheet based on the local site conditions, markets and the landowner's goals.

Feature Measure: Area Planted
Scenario Unit: Each
Scenario Typical Size: 3,000.00
Scenario Total Cost: $\$ 3,378.08$

Scenario Cost/Unit: \$1.13
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	8	\$199.92
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	8	\$380.88
Materials						
Tree, Conifer, Seedling, Small	1512	Containerized conifer seedlings, 4 or 6 cubic inches; or bare root conifer seedlings 1+0 (one-year old seedlings grown in their original seedbed). Includes materials and shipping only.	Each	\$0.86	3000	\$2,580.00

Practice: 612 -Tree/Shrub Establishment
Scenario: \#2 - Plant Bareroot Conifer Seedlings

Scenario Description:

This practice involves planting of pine tree seedlings after the site has been prepared for seedling growth and establishment. The productivity of the site is good and will handle a medium density planting rate of approxmately 500 trees per acre (7 ' $\times 12^{\prime}$ spacing). When the terrain is moderately to steeply sloping, hand planting is recommended. On gentle slopes or flat terrain, hand or machine planting can be used.

Before Situation:

The land has little/no tree cover, or is stocked with the wrong tree species. Competing vegetation is a before and after planting concern. Soil condition is degraded due to the loss of the native forest ecosystem (organic matter in top soil depleted). Resource concerns addressed are degraded plant condition -- undesirable plant productivity and health, and inadequate structure and composition and degraded wildlife habitat.

After Situation:
Approximately 500 pine trees/ac are planted on 40 acres of land to established permanent tree cover that will improve degraded plant condition, reduce soil erosion, establish wildlife habitat, sequester carbon and reduce invasive species presence. Establishing forest vegetation also creates corridors for wildlife movement. Larger or smaller acreages can be treated with this practice. The specific tree species and numbers per acre should be specified in the job sheet based on the local site conditions, markets and the landowner's goals.

Feature Measure: Area of Treatment

Scenario Unit: Each
Scenario Typical Size: 20,720.00
Scenario Total Cost: \$21,304.24

Scenario Cost/Unit: \$1.03
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	40	\$999.60
Mechanical tree planter	1600	Mechanical tree planter. Requires a pulling unit of either tractor or small dozer depending upon site conditions. Does not include labor.	Hours	\$5.88	16	\$94.08
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	60	\$1,629.60
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	16	\$761.76
Materials						
Tree, Conifer, Seedling, Small	1512	Containerized conifer seedlings, 4 or 6 cubic inches; or bare root conifer seedlings 1+0 (one-year old seedlings grown in their original seedbed). Includes materials and shipping only.	Each	\$0.86	20720	\$17,819.20

Practice: 612-Tree/Shrub Establishment
Scenario: \#3 - Plant Containerized Conifer Seedlings

Scenario Description:

This practice involves planting container grown pine seedlings after the site has been prepared for seedling growth and establishment. The productivity of the site is good and will handle a medium density planting rate of 545 trees per acre (approximately a $8^{\prime} \times 10^{\prime}$ spacing). On gentle slopes or flat terrain, hand or machine planting can be used, however, hand planting is common with Longleaf containers.

Before Situation:

The land has little/no tree cover, or is stocked with the wrong tree species. Competing vegetation is a before and after planting concern. Soil condition is degraded due to the loss of the native forest ecosystem (organic matter in top soil depleted). Resource concerns addressed are degraded plant condition -- undesirable plant productivity and health, and inadequate structure and composition and degraded wildlife habitat. When the terrain is moderatey to steeply sloping, hand planting is recommended.

After Situation:
Approximately 545 container grown pine seedlings/ac are planted on 40 acres of land to establish permanent tree cover which will improve degraded plant condition, reduce soil erosion, establish wildlife habitat, sequester carbon and reduce invasive species presence. Larger and smaller acreages can be treated with this practice. Establishing forest vegetation also creates corridors for wildlife movement. Once the practice is applied, the area will be reforested, landowner's objectives will be met and the resource concerns addressed. The specific tree species and numbers per acre should be specified in the job sheet based on the local site conditions, markets and the landowner's goals.

Feature Measure: Area of Treatment
Scenario Unit: Each
Scenario Typical Size: $21,800.00$
Scenario Total Cost: \$25,054.88
Scenario Cost/Unit: \$1.15
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	48	\$1,199.52
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	160	\$4,345.60
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	16	\$761.76
Materials						
Tree, Conifer, Seedling, Small	1512	Containerized conifer seedlings, 4 or 6 cubic inches; or bare root conifer seedlings $1+0$ (one-year old seedlings grown in their original seedbed). Includes materials and shipping only.	Each	\$0.86	21800	\$18,748.00

Practice: 612 -Tree/Shrub Establishment
Scenario: \#4 - Planting Bareroot Hardwood Seedlings,

Scenario Description:

Establish or improving a hardwood forest by hand planting hardwood seedlings at a density of 300 trees per acre (approximately a 12 ' X 12 ' spacing). The area is lacking desirable tree species and the area is suitable for growing hardwood trees. The resource setting is an area that historically was a hardwood forest either an upland or bottomland site.

Before Situation:

In an existing forest the present trees are poor quality, at low stocking levels, or are undesirable species or the area does not have any trees at all. Wildlife habitat is poor due to the above described conditions. Another condition where this scenario may be used is to reforest abandoned agriculture fields or pastures. Prior to planting any needed vegetation control should be conducted first. The existing conditions do not meet the landowner's objectives of growing hardwood trees to reforest and area and improve wildlife habitat. Resource concerns are degrade plant condition - undesireable productivity and health, inadequate structure and composition; inadequate habitat for fish and wildlife, and soil sheet and rill erosion.

After Situation:
Approximately 300 hardwood seedlings are planted on 20 acres, however, larger and smaller tracts of land can be planted with this practice. Bareroot hardwood seedlings are planted by hand. Post vegetation control should be evaluated and conducted it necessary. The specific tree species and numbers per acre should be specified in the job sheet based on the local site conditions, markets and the landowner's goals. Upon completion of this practice, a hardwood forest will be re-established.

Feature Measure: Area of Treatment
Scenario Unit: Each
Scenario Typical Size: 6,040.00
Scenario Total Cost: \$14,109.04

Scenario Cost/Unit: \$2.34
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	6	\$149.94
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	90	\$1,125.90
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	90	\$2,444.40

Materials

Tree, Hardwood, Seedling, Medium
1510 Bare root hardwood seedlings 18 to 36 inches tall; includes tropical \quad Each $\$ 1.72 \quad 6040$ \$10,388.80 containerized seedlings of 10 to 20 cubic inches. Includes materials and shipping only.

Practice: 612 -Tree/Shrub Establishment
Scenario: \#5 - Direct Seeding for Hardwood Establishment

Scenario Description:

Using a mechanical nut planter to direct seed native nuts (acorns) directly into the soil at a rate of 30 lbs ./ac. Site preparation is completed (disking to eliminate competing vegetation). The native seed are collected/purchased locally so as to get trees known to be adapted to local conditions. The planting will equal approximately 3000 seed per acre.

Before Situation:

The hardwood forest is degrading. High value species, lumber and widlife habitat, are not regenerating due to changes in the natural disturbance regime or past harvesting. Unwanted shade tolerant tree species have regenerated and are in the overstory competing with desirable species as well as in the mid and understory where they will eventually out-compete with desirable species. Additionally, old fields or areas cleared of trees can be revegetated using direct seeding methods. Resource concerns are degraded plant condition, inadequate habitat for fish and widllife and possible soil sheet and rill erosion.

After Situation:

A 10 acre tract may be the typical area however, larger and smaller areas may be treated. Seed from native species are collected or purchased and planted at prescribed rates. Site preparation is done prior to direct seeding. The degraded plant condition due to poor species composition will improve and habitat for wildlife will be more diverse. The landowner's objectives will be met and the resource concerns addressed using this practice.

Feature Measure: Area of Treatment

Scenario Unit: Acres

Scenario Typical Size: 10.00

Scenario Total Cost: \$5,004.14						
Scenario Cost/Unit:	\$500.41					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	4	\$53.80
Tractor, agricultural, 60 HP	963	Agricultural tractor with horsepower range of 50 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$35.80	10	\$358.00
Labor						
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	10	\$277.60
Materials						
Trees and shrubs, seed	1871	Tree or shrub seed, e.g., acorns, to establish trees. Includes materials and shipping only.	Pound	\$9.36	300	\$2,808.00
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 612-Tree/Shrub Establishment
Scenario: \#6 - Shrub Planting, Per Plant

Scenario Description:

Shrubs are planted to provide a more diverse habitat. Plantings are in either uplands or bottomlands; in existing forests or old fields. The site lacks ground level habitat structure and diversity for widlife.

Before Situation:
Shrubbery vegetation is lacking under the forest overstory or in open fields. Wildlife species that need shrub cover are not present. The forest may have an adequate stand of overstory trees, but lacking in a diversity of shrubs and the open field does not have many trees or shrubs present. Resource concern is inadequate habitat for fish and wildife - habitat fragmentation.

After Situation:

A 10 acre area is planted with shrubs. Larger and smaller acreages can be treated as well. Shrubs can be planted over the entire 10 acres or they can be planted in groups or mottes. The mottes are typically circular in shape containing 50 to 100 plants in a 50 ft . circle, and the groups can be spaced out across the entire acreage. The shrub planting meets the landowner's objectives and the resource concerns of improving wildlife habitat and plant species diversity.

Feature Measure: Area of Treatment
Scenario Unit: Each
Scenario Typical Size: 500.00
Scenario Total Cost: \$1,153.34

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	1	\$24.99
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	5	\$62.55
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	5	\$135.80
Materials						
Shrub, Seedling, Medium	1507	Bare root shrub seedling, 18 to 36 inches tall; includes tropical containerized seedlings 10 to 20 cubic inches. Includes materials and shipping only.	Each	\$1.86	500	\$930.00

Practice: 612-Tree/Shrub Establishment
Scenario: \#7 - Tree Planting Using Tree Cuttings, Per Acre

Scenario Description:

Establish trees using cuttings into a suitably prepared site to re-establish an area that does not have trees due to a total pasture conversion to forest, an area with the previous trees removed using a timber harvest or an area that has the trees removed due to debris clean-up following a catastropic event. The planting will consist of hardwood tree and/or shrub poles and live stakes (whips) planted by hand. Cuttings should be planted at a minimum of 200 per acre.

Before Situation:

The area is void of trees as the former trees have been removed or the old field or pasture did not have a substantial amount of trees. In some instances, vegetation cover is minimal and some soil is exposed. The resource concerns include plant health and vigor, plant adaptability to the site, Wildlife Inadequate food and cover, soil sheet and rill erosion.

After Situation:

Cuttings are used to re-vegetate the site with desirable and appropriate tree seedlings. Properly established cuttings will quickly grow into seedlings tht will improve plant vigor, wildlife cover, and help prevent soil loss. When this practice is completed, the site will be re-vegetated with desirable and appropriate tree seedlings. The landowner's objectives and the resource concerns will be met.

Feature Measure: Area of treatment
Scenario Unit: Each
Scenario Typical Size: 2,000.00
Scenario Total Cost: \$4,546.02

Scenario Cost/Unit: \$2.27

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	12	\$150.12
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	12	\$325.92

Materials

Tree \& Shrub, Woody, Cuttings, Medium

1308 Woody cuttings, live stakes or whips typically $1 / 4$ to 1 inch diameter and 24 to 48 inches long. Includes materials and shipping only.

Each \$2.01 2000
$\$ 4,020.00$

Practice: 612 -Tree/Shrub Establishment
Scenario: \#8 - Planting Mixed Pine and Hardwood Seedlings

Scenario Description:

This scenario is to re-establish a mixed stand of conifer and hardwood seedlings using bareroot stock to re-establish trees on an area that does not have trees due to a total pasture conversion to forest, an area with the pervious trees removed using a timber harvest, an area that has the trees removed due to debris clean-up following a catastropic event. The seedlings are planted at a density of approximately 450 per acre. The area does not currently have a stand of trees and the objective is to have trees on the site.

Before Situation:
A typical site would be about 20 acres in size which is void of trees as the former trees have been removed or the old field or pasture did not have a substantial amount of trees. In some instances, vegetation cover is minimal and some soil is exposed. The resource concerns include plant health and vigor, plant adaptability to the site, Wildlife Inadequate food and cover, soil sheet and rill erosion.

After Situation:

When this practice is completed, the site will be re-vegetated with desirable and appropriate tree seedlings. The site will contain both hardwood and conifer seedlings that match the site conditions. Plant vigor will be enhanced with plants adapted to the site along with improved wildlife habitat and reduced soil erosion. The landowner's objectives will be met along with the resource concerns. Larger and smaller tracts could be treated with this practice.

Feature Measure: Acres Planted

Scenario Unit: Each

Scenario Typical Size: 10,000.00
Scenario Total Cost: $\$ 16,148.20$
Scenario Cost/Unit: \$1.61

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	12	\$299.88
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	96	\$1,200.96
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	96	\$2,607.36
Materials						
Tree, Hardwood, Seedling, Medium	1510	Bare root hardwood seedlings 18 to 36 inches tall; includes tropical containerized seedlings of 10 to 20 cubic inches. Includes materials and shipping only.	Each	\$1.72	4000	\$6,880.00
Tree, Conifer, Seedling, Small	1512	Containerized conifer seedlings, 4 or 6 cubic inches; or bare root conifer seedlings 1+0 (one-year old seedlings grown in their original seedbed). Includes materials and shipping only.	Each	\$0.86	6000	\$5,160.00

Practice: 612 -Tree/Shrub Establishment
Scenario: \#107-Tree-Shrub Establishment - Small Acreage
Scenario Description:
Seedling (potted) to be planted for conservation purposes other than reforestation. Planting will be by hand. The resource setting is an area that historically was an upland forest. Resource concerns are degraded plant condition - undesirable productivity and health, and inadequate structure and composition; inadequate habitat for fish and wildlife.

Before Situation:
The native forest has been removed and the land is either row cropped, farmstead, or associated agricultural land. If any upland trees exist, they are poor quality or undesirable species. Terrain is gently to moderately sloping with soil erosion-sheet and rill occurring.

After Situation:
Typical treatment area can range from less than 1 acre to 5 acres; typical scenario based on $1 \mathrm{ac}, 150 \mathrm{TPA}$. Potted/containerized hardwood seedlings are planted by hand. Post vegetation control should be evaluated and conducted, if necessary.

Feature Measure: Planted Seedling
Scenario Unit: Each
Scenario Typical Size: 150.00
Scenario Total Cost: \$2,919.98
Scenario Cost/Unit: \$19.47
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Trailer, flatbed, small	1505	Small flatbed trailer (typically less than 30' in length) pulled by a pickup to transport materials and equipment. Truck not included.	Hours	\$10.21	3	\$30.63
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	5	\$62.55
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	35	\$950.60
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22
Materials						
Shrub, Potted, Small	1524	Potted shrub seedling, 1 quart to 1 gallon. Includes materials and shipping only.	Each	\$7.79	75	\$584.25
Tree, Hardwood, Potted, Medium	1532	Potted hardwood seedling, 2 gallons or larger. Includes materials and shipping only.	Each	\$15.29	75	\$1,146.75

Practice: 614 - Watering Facility
Scenario: \#1 - Wildlife Watering Facility, Less Than 400 Gallons

Scenario Description:

A wildlife watering facility with less than 400 gallons of storage. Materials utilized for this type of facility may not meet the practice lifespan. However, the operator shall be responsible for maintaining the facility for the practice lifespan, which may include a total replacement of all facility materials. This watering facility will address the resource concerns of inadequate supply of water for wildlife, habitat degradation, and water quality.

Before Situation:

This practice applies to all land uses where there is a need for new or improved watering facilities for wildlife, where water is not available in sufficient quantities at specific locations, and habitat and water quality needs to be improved.

After Situation:

A typical solution would be to install a prefabricated wildlife watering facility with 200 to 1,000 gallons of storage where the amount of storage is determined adequate to meet the resource need. Designed storage will be adequate to meet the wildlife needs. Installation is all inclusive, and includes the guzzler, anchorage, catchment, and drinker. The drinker will include wildlife escape ramps. The cooperator will install fencing at own expense to exclude feral hogs and/or livestock where indicated by NRCS resource assessment. Fences shall be installed using Fence (382). All needed pipelines are installed using Livestock Pipeline (516). Any needed vegetation of disturbed areas will use Critical Area Planting (342). Another associated practice is Upland Wildlife Habitat Management (645).

Feature Measure: Each Facility
Scenario Unit: Each

Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 1,527.82$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total

Equipment Installation

Skidsteer, 80 HP	933	Skidsteer loader with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$56.04	4	\$224.16
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	6	\$162.96
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	4	\$111.04
Materials						
Wildlife Escape Ramp	242	Pool size $15^{\prime} \times 30$ ', for small mammals less than one pound.	Each	\$76.20	1	\$76.20
Tank, Poly Enclosed Storage, <= 300 gallon	1073	Water storage tanks. Includes materials and shipping only.	Gallons	\$2.18	300	\$654.00
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: 614 - Watering Facility
Scenario: \#2 - Wildlife Watering Facility, Greater Than or Equal to 400 Gallons

Scenario Description:

A wildlife watering facility with greater than or equal to 400 gallons of storage. Materials utilized for this type of facility may not meet the practice lifespan. However, the operator shall be responsible for maintaining the facility for the practice lifespan, which may include a total replacement of all facility materials. This watering facility will address the resource concerns of inadequate supply of water for wildlife, habitat degradation, and water quality.

Before Situation:

This practice applies to all land uses where there is a need for new or improved watering facilities for wildlife, where water is not available in sufficient quantities at specific locations, and habitat and water quality needs to be improved.

After Situation:

A typical solution would be to install a prefabricated wildlife watering facility with 200 to 1,000 gallons of storage where the amount of storage is determined adequate to meet the resource need. Designed storage will be adequate to meet the wildlife needs. Installation is all inclusive, and includes the guzzler, anchorage, catchment, and drinker. The drinker will include wildlife escape ramps. The cooperator will install fencing at own expense to exclude feral hogs and/or livestock where indicated by NRCS resource assessment. Fences shall be installed using Fence (382). All needed pipelines are installed using Livestock Pipeline (516). Any needed vegetation of disturbed areas will use Critical Area Planting (342). Another associated practice is Upland Wildlife Habitat Management (645).

Feature Measure: Each Facility
Scenario Unit: Each

Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 2,824.62$

Cenario Cost/Unit:
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	

Equipment Installation

Skidsteer, 80 HP	933	Skidsteer loader with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$56.04	8	\$448.32
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	8	\$222.08
Materials						
Wildlife Escape Ramp	242	Pool size $15^{\prime} \times 30$ ', for small mammals less than one pound.	Each	\$76.20	1	\$76.20
Tank, Poly enclosed Storage, 3001000 gal	1074	Water storage tanks. Includes materials and shipping only.	Gallons	\$1.68	800	\$1,344.00
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: 614 - Watering Facility

Scenario: \#3 - Freeze Proof Trough or Sheep/Goat Trough

Scenario Description:

Freeze proof concrete tank installed into a pond embankment or a $12^{\prime} \times 1^{\prime} \times 2^{\prime}$ goat/sheep concrete trough that have no significant storage and provide drinking space for a limited number of animals. Materials utilized for this type of facility may not meet the practice lifespan. However, the operator shall be responsible for maintaining the facility for the practice lifespan, which may include a total replacement of all facility materials. These watering facilities will address the resource concerns of inadequate supply of water for livestock, water quality, and undesirable plant productivity and health.

Before Situation:
This practice applies to all land uses where there is a need for new or improved watering facilities for livestock, where water is not available in sufficient quantities at specific locations, and water quality, plant productivity and health needs to be improved.

After Situation:
A 200 gallon concrete freeze proof tank is installed into the downstream side of a pond embankment or a 12'x1'x2' concrete goat/sheep trough is installed consistent with a resource assessment to provide a livestock drinking facility to ensure proper water quantity is available and improved plant health through proper grazing distribution. Materials may be concrete, steel, or other approved materials. Cost includes proper foundation preparation and required plumbing. All needed pipelines are installed using Livestock Pipeline (516). Any needed vegetation of disturbed areas will use Critical Area Planting (342). Any needed water source installation will use Water Well (642), Pumping Plant (533), or Livestock Pipeline (516) as appropriate. Areas around watering facilities where animal concentrations or overflow from the watering facility will cause resource concerns will be protected by using Heavy Use Area Protection (561) as appropriate. Install a Fence (382) to exclude or limit access to the facility, as appropriate.

Feature Measure: Each Trough
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 2,329.19$
Scenario Cost/Unit: \$2,329.19

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	10	\$57.00
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	8	\$521.68
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	4	\$108.64
Materials						
Tank, Freeze Proof, concrete, => 200 gallons	285	Concrete tank with sloping sides, cover for partial burial providing freeze protection. Includes materials and shipping.	Each	\$888.50	1	\$888.50
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 614 - Watering Facility
Scenario: \#4 - Energy Free Fountains
Scenario Description:
Energy-free fountain trough that has no significant storage and provides drinking space for a limited number of animals. Materials utilized for this type of facility may not meet the practice lifespan. However, the operator shall be responsible for maintaining the facility for the practice lifespan, which may include a total replacement of all facility materials. This watering facility will address the resource concerns of inadequate supply of water for livestock, water quality, and undesirable plant productivity and health.

Before Situation:
This practice applies to all land uses where there is a need for new or improved watering facilities for livestock, where water is not available in sufficient quantities at specific locations, and water quality, plant productivity and health needs to be improved.

After Situation:

A 4-ball prefabricated energy-free fountain trough with 45.5 gallons of storage is installed with a concrete apron consistent with a resource assessment to provide a livestock drinking facility to ensure proper water quantity is available and improved plant health through proper grazing distribution. Materials may be concrete, steel, or other approved materials. Cost includes proper foundation preparation and required plumbing. All needed pipelines are installed using Livestock Pipeline (516). Any needed vegetation of disturbed areas will use Critical Area Planting (342). Any needed water source installation will use Water Well (642), Pumping Plant (533), or Livestock Pipeline (516) as appropriate. Areas around watering facilities where animal concentrations or overflow from the watering facility will cause resource concerns will be protected by using Heavy Use Area Protection (561) as appropriate. Install a Fence (382) to exclude or limit access to the facility, as appropriate.

Feature Measure: Capacity in Gallons
Scenario Unit: Gallons
Scenario Typical Size: 45.50
Scenario Total Cost: \$1,970.81
Scenario Cost/Unit: \$43.31
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	0.5	\$202.35
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Materials						
Tank, Freeze Proof, 4 hole	281	Tank, Freeze Proof with 4 drinking holes. Includes materials and shipping.	Each	\$1,154.50	1	\$1,154.50
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40

Practice: 614 - Watering Facility
Scenario: \#5 - Watering Facility, Less than 1000 gallons

Scenario Description:

A livestock drinking trough or water storage facility with 300-1000 gallons of nominal capacity. Materials utilized for this type of facility may not meet the practice lifespan. However, the operator shall be responsible for maintaining the facility for the practice lifespan, which may include a total replacement of all facility materials. This watering facility will address the resource concerns of inadequate supply of water for livestock, water quality, and undesirable plant productivity and health. The typical scenario is a 750 gallon livestock drinking trough.

Before Situation:
This practice applies to all land uses where there is a need for new or improved watering facilities for livestock, where water is not available in sufficient quantities at specific locations, and water quality, plant productivity and health needs to be improved.

After Situation:

A watering facility of approved materials with a capacity of 300 to 1000 gallons will be installed consistent with a resource assessment to provide adequate water storage and/or drinking capacity as part of a livestock watering system to ensure proper water quantity is available and improved plant health through proper grazing distribution. Materials may be steel, fiberglass, concrete, or other approved materials installed in accordance with drawings and specifications. Troughs made exclusively of metal are not included. Cost is all inclusive including required plumbing. All needed pipelines are installed using Livestock Pipeline (516). Any needed vegetation of disturbed areas will use Critical Area Planting (342). Any needed water source installation will use Water Well (642), Pumping Plant (533), or Livestock Pipeline (516) as appropriate. Areas around watering facilities where animal concentrations or overflow from the watering facility will cause resource concerns will be protected by using Heavy Use Area Protection (561) as appropriate. Install a Fence (382) to exclude or limit access to the facility, as appropriate.

Feature Measure: Capacity in Gallons
Scenario Unit: Gallons
Scenario Typical Size: 750.00

Scenario Total Cost:	$\$ 2,709.81$
	$\$ 3.61$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	1	\$404.70
Skidsteer, 80 HP	933	Skidsteer loader with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$56.04	8	\$448.32
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	8	\$222.08

Materials

Aggregate, Sand, Graded, Washed
Wildlife Escape Ramp
Tank, Galvanized Steel
Bottomless Livestock, $<=6,000$

Bottomless Livestock, <= 6,000
gallon

Mobilization

45 Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.

242	Pool size $15^{\prime} \times 30^{\prime}$, for small mammals less than one pound.	Each	$\$ 76.20$	1	$\$ 76.20$
1069	Includes tank materials, shipping, and float valve, no liner	Gallons	$\$ 0.46$	750	$\$ 345.00$

Practice: 614 - Watering Facility
Scenario: \#6 - Watering Facility, 1001-1400 gallons
Scenario Description:
A livestock drinking trough or water storage facility with 1001-1400 gallons of nominal capacity. Materials utilized for this type of facility may not meet the practice lifespan. However, the operator shall be responsible for maintaining the facility for the practice lifespan, which may include a total replacement of all facility materials. This watering facility will address the resource concerns of inadequate supply of water for livestock, water quality, and undesirable plant productivity and health. The typical scenario is a 1300 gallon livestock drinking trough.

Before Situation:
This practice applies to all land uses where there is a need for new or improved watering facilities for livestock, where water is not available in sufficient quantities at specific locations, and water quality, plant productivity and health needs to be improved.

After Situation:

A watering facility of approved materials with a capacity of 1001 to 1400 gallons will be installed consistent with a resource assessment to provide adequate water storage and/or drinking capacity as part of a livestock watering system to ensure proper water quantity is available and improved plant health through proper grazing distribution. Materials may be steel, fiberglass, concrete, or other approved materials installed in accordance with drawings and specifications. Troughs made exclusively of metal are not included. Cost is all inclusive including required plumbing. All needed pipelines are installed using Livestock Pipeline (516). Any needed vegetation of disturbed areas will use Critical Area Planting (342). Any needed water source installation will use Water Well (642), Pumping Plant (533), or Livestock Pipeline (516) as appropriate. Areas around watering facilities where animal concentrations or overflow from the watering facility will cause resource concerns will be protected by using Heavy Use Area Protection (561) as appropriate. Install a Fence (382) to exclude or limit access to the facility, as appropriate.

Feature Measure: Capacity in Gallons
Scenario Unit: Gallons
Scenario Typical Size: $1,300.00$
Scenario Total Cost: \$3,060.81
Scenario Cost/Unit: \$2.35

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	1.2	\$485.64
Skidsteer, 80 HP	933	Skidsteer loader with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$56.04	8	\$448.32
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	8	\$222.08

Materials

Aggregate, Sand, Graded, Washed
Wildlife Escape Ramp
Tank, Galvanized Steel
Bottomless Livestock, $<=6,000$

Bottomless Livestock, <= 6,000
gallon

Mobilization

45 Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.

242	Pool size $15^{\prime} \times 30^{\prime}$, for small mammals less than one pound.	Each	$\$ 76.20$	1	$\$ 76.20$
1069	Includes tank materials, shipping, and float valve, no liner	Gallons	$\$ 0.46$	1300	$\$ 598.00$

Practice: 614 - Watering Facility
Scenario: \#7-Watering Facility, 1401-2100 gallons

Scenario Description:

A livestock drinking trough or water storage facility with 1401-2100 gallons of nominal capacity. Materials utilized for this type of facility may not meet the practice lifespan. However, the operator shall be responsible for maintaining the facility for the practice lifespan, which may include a total replacement of all facility materials. This watering facility will address the resource concerns of inadequate supply of water for livestock, water quality, and undesirable plant productivity and health. Typical scenario is a 1750 gallon livestock drinking trough.

Before Situation:
This practice applies to all land uses where there is a need for new or improved watering facilities for livestock, where water is not available in sufficient quantities at specific locations, and water quality, plant productivity and health needs to be improved.

After Situation:

A watering facility of approved materials with a capacity of 1401 to 2100 gallons will be installed consistent with a resource assessment to provide adequate water storage and/or drinking capacity as part of a livestock watering system to ensure proper water quantity is available and improved plant health through proper grazing distribution. Materials may be steel, fiberglass, concrete, or other approved materials installed in accordance with drawings and specifications. Troughs made exclusively of metal are not included. Cost is all inclusive including required plumbing. All needed pipelines are installed using Livestock Pipeline (516). Any needed vegetation of disturbed areas will use Critical Area Planting (342). Any needed water source installation will use Water Well (642), Pumping Plant (533), or Livestock Pipeline (516) as appropriate. Areas around watering facilities where animal concentrations or overflow from the watering facility will cause resource concerns will be protected by using Heavy Use Area Protection (561) as appropriate. Install a Fence (382) to exclude or limit access to the facility, as appropriate.

Feature Measure: Capacity in Gallons
Scenario Unit: Gallons
Scenario Typical Size: 1,750.00
Scenario Total Cost: $\$ 3,527.69$
Scenario Cost/Unit: \$2.02

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	1.8	\$728.46
Skidsteer, 80 HP	933	Skidsteer loader with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$56.04	8	\$448.32
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	8	\$222.08

Materials

Aggregate, Sand, Graded, Washed

Wildlife Escape Ramp	24
Tank, Galvanized Steel	10
Bottomless Livestock, $<=6,000$	

Bors Livestock, <=6,000
gallon

Mobilization

45 Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.

242	Pool size 15' x 30', for small mammals less than one pound.	Each	$\$ 76.20$	1	$\$ 76.20$
1069	Includes tank materials, shipping, and float valve, no liner	Gallons	$\$ 0.46$	1750	$\$ 805.00$

Practice: 614 - Watering Facility
Scenario: \#8 - Watering Facility, 2101-3000 gallons
Scenario Description:
A livestock drinking trough or water storage facility with 2101-3000 gallons of nominal capacity. Materials utilized for this type of facility may not meet the practice lifespan. However, the operator shall be responsible for maintaining the facility for the practice lifespan, which may include a total replacement of all facility materials. This watering facility will address the resource concerns of inadequate supply of water for livestock, water quality, and undesirable plant productivity and health. Typical scenario is a 2500 gallon livestock drinking trough.

Before Situation:
This practice applies to all land uses where there is a need for new or improved watering facilities for livestock, where water is not available in sufficient quantities at specific locations, and water quality, plant productivity and health needs to be improved.

After Situation:

A watering facility of approved materials with a capacity of 2101 to 3000 gallons will be installed consistent with a resource assessment to provide adequate water storage and/or drinking capacity as part of a livestock watering system to ensure proper water quantity is available and improved plant health through proper grazing distribution. Materials may be steel, fiberglass, concrete, or other approved materials installed in accordance with drawings and specifications. Troughs made exclusively of metal are not included. Cost is all inclusive including required plumbing. All needed pipelines are installed using Livestock Pipeline (516). Any needed vegetation of disturbed areas will use Critical Area Planting (342). Any needed water source installation will use Water Well (642), Pumping Plant (533), or Livestock Pipeline (516) as appropriate. Areas around watering facilities where animal concentrations or overflow from the watering facility will cause resource concerns will be protected by using Heavy Use Area Protection (561) as appropriate. Install a Fence (382) to exclude or limit access to the facility, as appropriate.

Feature Measure: Capacity in Gallons
Scenario Unit: Gallons
Scenario Typical Size: 2,500.00
Scenario Total Cost: \$4,141.09
Scenario Cost/Unit: \$1.66

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	2.4	\$971.28
Skidsteer, 80 HP	933	Skidsteer loader with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$56.04	8	\$448.32
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	8	\$222.08

Materials

Aggregate, Sand, Graded, Washed
Wildlife Escape Ramp

Tank, Galvanized Steel
gallon

Mobilization

45 Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.

242	Pool size $15^{\prime} \times 30^{\prime}$, for small mammals less than one pound.	Each	$\$ 76.20$	1	$\$ 76.20$
1069	Includes tank materials, shipping, and float valve, no liner	Gallons	$\$ 0.46$	2500	$\$ 1,150.00$

Practice: 614 - Watering Facility
Scenario: \#9 - Watering Facility, 3001-5000 gallons
Scenario Description:
A livestock drinking trough or water storage facility with 3001-5000 gallons of nominal capacity. Materials utilized for this type of facility may not meet the practice lifespan. However, the operator shall be responsible for maintaining the facility for the practice lifespan, which may include a total replacement of all facility materials. This watering facility will address the resource concerns of inadequate supply of water for livestock, water quality, and undesirable plant productivity and health. Typical scenario is a 5000 gallon livestock drinking trough.

Before Situation:
This practice applies to all land uses where there is a need for new or improved watering facilities for livestock, where water is not available in sufficient quantities at specific locations, and water quality, plant productivity and health needs to be improved.

After Situation:

A watering facility of approved materials with a capacity of 3001-5000 gallons will be installed consistent with a resource assessment to provide adequate water storage and/or drinking capacity as part of a livestock watering system to ensure proper water quantity is available and improved plant health through proper grazing distribution. Materials may be steel, fiberglass, concrete, or other approved materials installed in accordance with drawings and specifications. Troughs made exclusively of metal are not included. Cost is all inclusive including required plumbing. All needed pipelines are installed using Livestock Pipeline (516). Any needed vegetation of disturbed areas will use Critical Area Planting (342). Any needed water source installation will use Water Well (642), Pumping Plant (533), or Livestock Pipeline (516) as appropriate. Areas around watering facilities where animal concentrations or overflow from the watering facility will cause resource concerns will be protected by using Heavy Use Area Protection (561) as appropriate. Install a Fence (382) to exclude or limit access to the facility, as appropriate.

Feature Measure: Capacity in Gallons
Scenario Unit: Gallons
Scenario Typical Size: 5,000.00
Scenario Total Cost: $\$ 6,863.14$

Scenario Cost/Unit: \$1.37
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	6	\$2,428.20
Skidsteer, 80 HP	933	Skidsteer loader with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$56.04	8	\$448.32
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	8	\$222.08

Materials

Aggregate, Sand, Graded, Washed
Wildlife Escape Ramp
Tank, Galvanized Steel
Bottomless Livestock, $<=6,000$

Bottomless Livestock, <= 6,000
gallon

Mobilization

45 Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.

242	Pool size 15' x 30', for small mammals less than one pound.	Each	$\$ 76.20$	1	$\$ 76.20$
1069	Includes tank materials, shipping, and float valve, no liner	Gallons	$\$ 0.46$	5000	$\$ 2,300.00$

1139 Equipment with $70-150 \mathrm{HP}$ or typical weights between 14,000 and 30,000 pounds.

Practice: 614 - Watering Facility
Scenario: \#10 - Watering Facility, Greater than 5,000 gallons

Scenario Description:

A livestock drinking trough or water storage facility with more than 5000 gallons of nominal capacity. Materials utilized for this type of facility may not meet the practice lifespan. However, the operator shall be responsible for maintaining the facility for the practice lifespan, which may include a total replacement of all facility materials. This watering facility will address the resource concerns of inadequate supply of water for livestock, water quality, and undesirable plant productivity and health. Typical scenario is a 10,000 gallon, above ground, water storage tank.

Before Situation:
This practice applies to all land uses where there is a need for new or improved watering facilities for livestock, where water is not available in sufficient quantities at specific locations, and water quality, plant productivity and health needs to be improved.

After Situation:

A water storage facility with a capacity of more than 5,000 gallons will be installed consistent with a resource assessment to provide adequate water storage and/or drinking capacity to ensure proper water quantity is available and improved plant health through proper grazing distribution. These storage tanks are not drinking facilities. Materials may be fiberglass, concrete, steel, or other approved materials. Cost includes proper foundation preparation and required plumbing. All needed pipelines are installed using Livestock Pipeline (516). Any needed vegetation of disturbed areas will use Critical Area Planting (342). Any needed water source installation will use Water Well (642), Pumping Plant (533), or Livestock Pipeline (516) as appropriate. Areas around watering facilities where animal concentrations or overflow from the watering facility will cause resource concerns will be protected by using Heavy Use Area Protection (561) as appropriate. Install a Fence (382) to exclude or limit access to the facility, as appropriate.

Feature Measure: Capacity in Gallons

Scenario Unit: Gallons
Scenario Typical Size: 10,000.00
Scenario Total Cost: $\quad \$ 11,008.41$
Scenario Cost/Unit: \$1.10

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	12	\$4,856.40
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	16	\$1,043.36
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	16	\$444.16

Materials

Aggregate, Sand, Graded, Washed

45

 d, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.| Wildlife Escape Ramp | 242 | Pool size $15^{\prime} \times$ x 30 , for small mammals less than one pound. | Each | \$76.20 | 1 | \$76.20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tank, Steel, Bottomless, 12 Gauge, 30 ft . dia. x 33 in . height | 276 | Tank, 12 gauge steel - Approximately 10500 gallons, Includes necessary hardware. | Each | \$3,191.24 | 1 | \$3,191.24 |
| Mobilization | | | | | | |
| Mobilization, medium equipment | 1139 | Equipment with 70-150 HP or typical weights between 14,000 and | Each | \$753.37 | 1 | \$753.37 |

Practice: 614 - Watering Facility

Scenario: \#15-Watering Ramp, Rock on Geotextile

Scenario Description:

A watering ramp with rock on geotextile to facilitate animal movement, to provide or improve access to water, and/or protect ecologically sensitive, erosive and/or potentially erosive sites and address soil erosion and water quality resource concerns, by providing a stabilized access point to a pond or stream. The watering ramp will be stabilized by surfacing the designated area with rock and or gravel on a geotextile fabric foundation to provide a stable, non-eroding surface. The stabilized area will address the resource concerns of soil erosion and water quality degradation. Installation costs includes all excavation, materials, equipment, labor, and mobilization necessary to install the practice.

Before Situation:

On a pastureland and/or rangeland area, the shoreline soil surface around a farm pond or stream has become highly disturbed and has little to no vegetation to stabilize the soil surface, due to the frequency and intensity of use by livestock. As a result, soil erosion, water quality, and animal health are resource concerns that need to be addressed.

After Situation:

The typical watering ramp with rock on geotextile will be for a 100 head herd of cattle, and is 16 feet wide X 40 feet long, 640 square feet. The watering ramp is stabilized with surfacing material comprised of 640 square feet of rock and or gravel on approximately 84 square yards of geotextile fabric foundation material. The watering ramp is for areas frequently and intensively used by animals and will address soil erosion and water quality degradation. Installation includes all excavation, materials, equipment, labor, and mobilization to install a watering ramp with rock on geotextile. Diversion, Code 362, may also be beneficial. Fencing, Code 382, will be used when needed to control animal movement.

Feature Measure: Area of Ramp
Scenario Unit: Square Feet

Scenario Typical Size: 640.00

Scenario Total Cost: \$1,074.34
Scenario Cost/Unit: \$1.68

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	24	\$55.20
Stripping and stockpiling, topsoil	1199	Stripping and stockpiling of topsoil adjacent to stripping area. Includes equipment and labor.	Cubic Yards	\$0.79	12	\$9.48
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	4	\$108.64

Materials

Aggregate, Gravel, Ungraded,
Quarry Run
Geotextile, non-woven, heavy
weight
Mobilization

1099 Includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.

1210 Non-woven greater than 8 ounce/square yard geotextile with staple anchoring. Materials and shipping only.
Cubic Yards $\quad \$ 34.45 \quad 12$

12
\$413.40

| Square Yard | $\$ 2.24$ | 84 | $\$ 188.16$ |
| :--- | :--- | :--- | :--- | $\$ 2.24$

84 \$188.16

Practice: 614 - Watering Facility
Scenario: \#17 - Watering Ramp, Rock in Geocell on Geotextile

Scenario Description:

A watering ramp with rock in geocell on geotextile to facilitate animal movement, to provide or improve access to water, and/or protect ecologically sensitive, erosive and/or potentially erosive sites and address soil erosion and water quality resource concerns, by providing a stabilized access point to a pond or stream. The watering ramp will be stabilized by surfacing the designated area with rock and or gravel in geocell on a geotextile fabric foundation to provide a stable, non-eroding surface. The stabilized area will address the resource concerns of soil erosion and water quality degradation. Installation costs includes all excavation, materials, equipment, labor, and mobilization necessary to install the practice.

Before Situation:

On a pastureland and/or rangeland area, the shoreline soil surface around a farm pond or stream has become highly disturbed and has little to no vegetation to stabilize the soil surface, due to the frequency and intensity of use by livestock. As a result, soil erosion, water quality, and animal health are resource concerns that need to be addressed.

After Situation:

The typical watering ramp with rock in geocell on geotextile will be for 70 Animal Units (AU). Typical geocell mats are sold with the nominal expanded dimensions of 27 ft $(\mathrm{L}) \times 8.5 \mathrm{ft}(\mathrm{W})$. To prevent livestock from trailing around the ramp surfacing material, the ramp fence must be installed 1 foot inside from the edge of the ramp geocell mat area. To prevent wasting geocell materials and to achieve the minimum width, two geocell mats must be installed into the permanent pool, which will result in a ramp with a nominal width of 15 ft . A third geocell mat, which is perpendicular to the other two geocell mats, is also recommended at the top of the ramp to help further prevent erosion from livestock trailing. The area at the top of the ramp typically lacks a well-established stand of vegetation, due to the concentration of livestock at the ramp. The watering ramp is stabilized with surfacing material comprised of 19.2 cubic yards of rock and or gravel in 76.5 square yards (688.5 square feet) of geocell on approximately 95 square yards (including overlaps and anchors) of geotextile fabric foundation material. The watering ramp is for areas frequently and intensively used by animals and will address soil erosion and water quality degradation. Installation includes all excavation, materials, equipment, labor, and mobilization to install a watering ramp with rock in geocell on geotextile. Diversion, Code 362, may also be beneficial. Fencing, Code 382, will be used when needed to control animal movement.

Feature Measure: Area of Ramp
Scenario Unit: Square Feet
Scenario Typical Size: 688.50
Scenario Total Cost: $\$ 3,558.78$
Scenario Cost/Unit: \$5.17

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	19.2	\$44.16
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Materials						
Aggregate, Gravel, Ungraded, Quarry Run	1099	Includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$34.45	19.2	\$661.44
Geotextile, non-woven, heavy weight	1210	Non-woven greater than 8 ounce/square yard geotextile with staple anchoring. Materials and shipping only.	Square Yard	\$2.24	95	\$212.80
Geocell, 6 inch	1842	6-inch thick cellular confinement system, three-dimensional, expandable panels made from high-density polyethylene (HDPE), polyester or another polymer material. Includes materials, labor and equipment for the geocell only, does not include backfill.	Square Yard	\$27.76	76.5	\$2,123.64
Mobilization						
Mobilization, small equipment	1138	Equipment <70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: 614 - Watering Facility
Scenario: \#150 - Permanent Drinking or Storage, Capacity less than 500 Gallons

Scenario Description:

A permanent watering facility as a means for providing controlled access to drinking water for livestock or wildlife constructed of approved materials with less than 500 gallons of capacity that stores adequate quantity and quality of water for storage or direct drinking access. The watering facility will be constructed from approved durable materials that have a life expectancy that meets or exceeds the planned useful life of the installation. The watering facility will address the resource concerns of inadequate supply of water for livestock or wildlife, habitat degradation, water quality, and undesirable plant productivity and health.

Before Situation:

This practice applies to all land uses where there is a need for a watering facility for livestock or wildlife, where there is a source of water that is adequate in quantity and quality for the purpose, and where soils and topography are suitable for a facility to provide controlled access to drinking water for livestock or wildlife to provide daily water requirements, improve animal distribution to better utilize grazing resources, provide a water source that is an alternative to a sensitive resource.

After Situation:
A permanent watering facility as a means for providing controlled access to drinking water for livestock or wildlife constructed of approved materials with less than 500 gallons of capacity, installed with all tank materials, tank plumbing and float valve, that stores adequate quantity and quality of water for storage or direct drinking access. The watering facility will be constructed from approved durable materials that have a life expectancy that meets or exceeds the planned useful life of the installation. The watering facility will address the resource concerns of inadequate supply of water for livestock or wildlife, habitat degradation, water quality, and undesirable plant productivity and health. The watering facility is placed on a properly prepared foundation with all required materials, plumbing and vegetation for stabilizing disturbed areas. All needed pipelines are installed using Livestock Pipeline (516). All collectors or catchments for collecting precipitation will be addressed by using Water Harvesting Catchment (636). Any needed water source installation will use Water Well (642), Pumping Plant (533), Spring Development (574), or Livestock Pipeline (516) as appropriate. Areas around watering facilities where animal concentrations or overflow from the watering facility will cause resource concerns will be protected by using Heavy Use Area Protection (561) as appropriate. All fencing will use Fence (382).

Feature Measure: Capacity in Gallons
Scenario Unit: Gallons

Scenario Typical Size: 250.00
Scenario Total Cost: \$1,576.69
Scenario Cost/Unit: \$6.31
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	0.5	\$1.15
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	2	\$130.42
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	3	\$81.48
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	2	\$55.52
Materials						
Wildlife Escape Ramp	242	Pool size $15^{\prime} \times 3{ }^{\prime}$ ', for small mammals less than one pound.	Each	\$76.20	1	\$76.20
Tank, Galvanized Steel Livestock, >75-300 gallon	1067	Includes tank materials and float valve	Gallons	\$1.64	250	\$410.00
Aggregate, Gravel, Ungraded, Quarry Run	1099	Includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$34.45	0.5	\$17.23
Native Perennial Grasses, Low Density	2750	Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$134.97	0.01	\$1.35
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 614 - Watering Facility
Scenario: \#151 - Permanent Drinking or Storage Capacity from 500 to 1000 Gallons

Scenario Description:

A permanent watering facility as a means for providing controlled access to drinking water for livestock or wildlife constructed of approved materials with 500 to 1,000 gallons of capacity that stores adequate quantity and quality of water for storage or direct drinking access. The watering facility will be constructed from approved durable materials that have a life expectancy that meets or exceeds the planned useful life of the installation. The watering facility will address the resource concerns of inadequate supply of water for livestock or wildlife, habitat degradation, water quality, and undesirable plant productivity and health.

Before Situation:

This practice applies to all land uses where there is a need for a watering facility for livestock or wildlife, where there is a source of water that is adequate in quantity and quality for the purpose, and where soils and topography are suitable for a facility to provide controlled access to drinking water for livestock or wildlife to provide daily water requirements, improve animal distribution to better utilize grazing resources, provide a water source that is an alternative to a sensitive resource.

After Situation:
A permanent watering facility as a means for providing controlled access to drinking water for livestock or wildlife constructed of approved materials with a capacity of 500 to 1,000 gallons of capacity, installed with all tank materials, tank plumbing and float valve, that stores adequate quantity and quality of water for storage or direct drinking access. The watering facility will be constructed from approved durable materials that have a life expectancy that meets or exceeds the planned useful life of the installation. The watering facility will address the resource concerns of inadequate supply of water for livestock or wildlife, habitat degradation, water quality, and undesirable plant productivity and health. The watering facility is placed on a properly prepared foundation with all required materials, plumbing and vegetation for stabilizing disturbed areas. All needed pipelines are installed using Livestock Pipeline (516). All collectors or catchments for collecting precipitation will be addressed by using Water Harvesting Catchment (636). Any needed water source installation will use Water Well (642), Pumping Plant (533), Spring Development (574), or Livestock Pipeline (516) as appropriate. Areas around watering facilities where animal concentrations or overflow from the watering facility will cause resource concerns will be protected by using Heavy Use Area Protection (561) as appropriate. All fencing will use Fence
(382).

Feature Measure: Capacity in Gallons
Scenario Unit: Gallons
Scenario Typical Size: 750.00
Scenario Total Cost: $\$ 2,898.02$
Scenario Cost/Unit: \$3.86
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	2	\$4.60
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	6	\$391.26
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	6	\$149.94

Labor

Skilled Labor
uiring a high level skill set: Inclur electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.
General Labor
231 Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.

Equipment Operators, Light
Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers

242 Pool size $15^{\prime} \times 30$ ', for small mammals less than one pound.
1068 Includes tank materials and float valve

1099 Includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.
2750 Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.

Practice: 614 - Watering Facility
Scenario: \#152 - Permanent Drinking or Storage, Capacity greater than 1000 to 5000 Gallons
Scenario Description:
A permanent watering facility as a means for providing controlled access to drinking water for livestock or wildlife constructed of approved materials with greater than 1,000 to 5,000 gallons of capacity that stores adequate quantity and quality of water for storage or direct drinking access. The watering facility will be constructed from approved durable materials that have a life expectancy that meets or exceeds the planned useful life of the installation. The watering facility will address the resource concerns of inadequate supply of water for livestock or wildlife, habitat degradation, water quality, and undesirable plant productivity and health.

Before Situation:

This practice applies to all land uses where there is a need for a watering facility for livestock or wildlife, where there is a source of water that is adequate in quantity and quality for the purpose, and where soils and topography are suitable for a facility to provide controlled access to drinking water for livestock or wildlife to provide daily water requirements, improve animal distribution to better utilize grazing resources, provide a water source that is an alternative to a sensitive resource.

After Situation:
A permanent watering facility as a means for providing controlled access to drinking water for livestock or wildlife constructed of approved materials with a capacity of greater than 1,000 to 5,000 gallons of capacity, installed with all tank materials, tank plumbing and float valve, that stores adequate quantity and quality of water for storage or direct drinking access. The watering facility will be constructed from approved durable materials that have a life expectancy that meets or exceeds the planned useful life of the installation. The watering facility will address the resource concerns of inadequate supply of water for livestock or wildlife, habitat degradation, water quality, and undesirable plant productivity and health. The watering facility is placed on a properly prepared foundation with all required materials, plumbing and vegetation for stabilizing disturbed areas. All needed pipelines are installed using Livestock Pipeline (516). All collectors or catchments for collecting precipitation will be addressed by using Water Harvesting Catchment (636). Any needed water source installation will use Water Well (642), Pumping Plant (533), Spring Development (574), or Livestock Pipeline (516) as appropriate. Areas around watering facilities where animal concentrations or overflow from the watering facility will cause resource concerns will be protected by using Heavy Use Area Protection (561) as appropriate. All fencing will use Fence (382).

Feature Measure: Capacity in Gallons

Scenario Unit: Gallons
Scenario Typical Size: 2,000.00
Scenario Total Cost: \$5,136.48

Scenario Cost/Unit: \$2.57

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	4	\$1,618.80
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	4	\$9.20
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	8	\$521.68
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	8	\$199.92
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	8	\$270.96
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	9	\$244.44
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	8	\$222.08
Materials						
Aggregate, Sand, Graded, Washed	45	Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$42.64	7	\$298.48
Wildlife Escape Ramp	242	Pool size $15^{\prime} \times 30$ ', for small mammals less than one pound.	Each	\$76.20	1	\$76.20
Tank, Galvanized Steel	1069	Includes tank materials, shipping, and float valve, no liner	Gallons	\$0.46	2000	\$920.00

Native Perennial Grasses, Low

 Density2750 Native perennial grasses, may include a small percentage of annual
species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.
Mobilization

Practice: 614 - Watering Facility
Scenario: \#153 - Permanent Drinking or Storage, Capacity greater than 5000 Gallons
Scenario Description:
A permanent watering facility as a means for providing controlled access to drinking water for livestock or wildlife constructed of approved materials with greater than 5,000 gallons of capacity that stores adequate quantity and quality of water for storage or direct drinking access. The watering facility will be constructed from approved durable materials that have a life expectancy that meets or exceeds the planned useful life of the installation. The watering facility will address the resource concerns of inadequate supply of water for livestock or wildlife, habitat degradation, water quality, and undesirable plant productivity and health.

Before Situation:

This practice applies to all land uses where there is a need for a watering facility for livestock or wildlife, where there is a source of water that is adequate in quantity and quality for the purpose, and where soils and topography are suitable for a facility to provide controlled access to drinking water for livestock or wildlife to provide daily water requirements, improve animal distribution to better utilize grazing resources, provide a water source that is an alternative to a sensitive resource.

After Situation:
A permanent watering facility as a means for providing controlled access to drinking water for livestock or wildlife constructed of approved materials with a capacity of greater than 5,000 gallons of capacity, installed with all tank materials, tank plumbing and float valve, that stores adequate quantity and quality of water for storage or direct drinking access. The watering facility will be constructed from approved durable materials that have a life expectancy that meets or exceeds the planned useful life of the installation. The watering facility will address the resource concerns of inadequate supply of water for livestock or wildlife, habitat degradation, water quality, and undesirable plant productivity and health. The watering facility is placed on a properly prepared foundation with all required materials, plumbing and vegetation for stabilizing disturbed areas. All needed pipelines are installed using Livestock Pipeline (516). All collectors or catchments for collecting precipitation will be addressed by using Water Harvesting Catchment (636). Any needed water source installation will use Water Well (642), Pumping Plant (533), Spring Development (574), or Livestock Pipeline (516) as appropriate. Areas around watering facilities where animal concentrations or overflow from the watering facility will cause resource concerns will be protected by using Heavy Use Area Protection (561) as appropriate. All fencing will use Fence
(382).

Feature Measure: Capacity in Gallons
Scenario Unit: Gallons
Scenario Typical Size: 10,000.00
Scenario Total Cost: $\$ 10,094.40$
Scenario Cost/Unit: \$1.01
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	7	\$2,832.90
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	13	\$29.90
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	12	\$782.52
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	12	\$299.88
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	12	\$406.44
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	13	\$353.08
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	12	\$333.12
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	12	\$571.32
Materials						
Aggregate, Sand, Graded, Washed	45	Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$42.64	13	\$554.32
Wildlife Escape Ramp	242	Pool size $15^{\prime} \times 30$ ', for small mammals less than one pound.	Each	\$76.20	1	\$76.20

Tank, Galvanized Steel Bottomless Livestock, > 6,000 gallon	1070	Includes tank materials, shipping, and float valve, no liner	Gallons	\$0.31	10000	\$3,100.00
Native Perennial Grasses, Low Density	2750	Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$134.97	0.01	\$1.35
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 614 - Watering Facility
Scenario: \#154 - Water Ramp, Rock on Geotextile

Scenario Description:

A permanent watering facility-water ramp as a means for providing drinking water by storing or providing controlled access for livestock or wildlife constructed of approved materials consisting of rock and or gravel surfacing on geotextile fabric foundation. The watering facility will be constructed from approved durable materials that have a life expectancy that meets or exceeds the planned useful life of the installation. The watering facility includes all materials, equipment, labor and needed vegatation of disturbed areas to install the surfacing material and will address the resource concerns of inadequate water, soil erosion, water quality degradation and undesirable plant productivity and health.

Before Situation:
This practice applies to all land uses where there is a need for a watering facility for livestock or wildlife, where there is a source of water that is adequate in quantity and quality for the purpose, and where soils and topography are suitable for a facility to provide controlled access to drinking water for livestock or wildlife to provide daily water requirements, improve animal distribution to better utilize grazing resources, provide a water source that is an alternative to a sensitive resource.

After Situation:

 Development (574), Pond (378), or Livestock Pipeline (516) as appropriate. All fencing will use Fence (382).

Feature Measure: Area of Ramp

Scenario Unit: Square Feet
Scenario Typical Size: 640.00

Scenario Total Cost:	$\$ 1,402.31$
Scenario Cost/Unit:	$\$ 2.19$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	24	\$55.20
Stripping and stockpiling, topsoil	1199	Stripping and stockpiling of topsoil adjacent to stripping area. Includes equipment and labor.	Cubic Yards	\$0.79	12	\$9.48
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	5	\$135.80

Materials

Aggregate, Gravel, Ungraded,
Quarry Run
Geotextile, non-woven, heavy
weight
Native Perennial Grasses, Low Density

1099 Includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.

1210 Non-woven greater than 8 ounce/square yard geotextile with staple anchoring. Materials and shipping only.
2750 Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.

Mobilization

Mobilization, small equipment
1138 Equipment < 70 HP but can't be transported by a pick-up truck or with
Each
\$299.46
2
\$598.92

Practice: 614 - Watering Facility

Scenario: \#155 - Water Ramp, Rock in GeoCell on Geotextile

Scenario Description:

A permanent watering facility-water ramp as a means for providing drinking water by storing or providing controlled access for livestock or wildlife constructed of approved materials consisting of rock and or gravel surfacing in cellar containment grid place on geotextile fabric foundation. The watering facility will be constructed from approved durable materials that have a life expectancy that meets or exceeds the planned useful life of the installation. The watering facility includes all materials, equipment, labor, and needed vegatation of disturbed areas to install the surfacing material and will address the resource concerns of inadequate water, soil erosion, water quality degradation and undesirable plant productivity and health.

Before Situation:
This practice applies to all land uses where there is a need for a watering facility for livestock or wildlife, where there is a source of water that is adequate in quantity and quality for the purpose, and where soils and topography are suitable for a facility to provide controlled access to drinking water for livestock or wildlife to provide daily water requirements, improve animal distribution to better utilize grazing resources, provide a water source that is an alternative to a sensitive resource.

After Situation:

A permanent watering facility-water ramp as a means for providing drinking water by storing or providing controlled access for livestock or wildlife constructed of approved materials consisting of 640 square feet of rock and or gravel surfacing in 72 square yards of 4 inch cellar containment grid on 84 square yards of geotextile fabric foundation for livestock or wildlife constructed of approved materials for providing controlled access to drinking water. The watering facility will be constructed from approved durable materials that have a life expectancy that meets or exceeds the planned useful life of the installation. The watering facility will address the resource concerns of inadequate supply of water for livestock or wildlife, habitat degradation, water quality, and undesirable plant productivity and health. The watering facility includes all materials, equipment, and labor to install the surfacing material and any needed vegetation for stabilizing disturbed areas. Any needed water source installation will use Water Well (642), Pumping Plant (533), Spring Development (574), Pond (378), or Livestock Pipeline (516) as appropriate. All fencing will use Fence (382).

Feature Measure: Area of Ramp
Scenario Unit: Square Feet
Scenario Typical Size: 640.00
Scenario Total Cost: \$2,991.67
Scenario Cost/Unit: \$4.67
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	24	\$55.20
Stripping and stockpiling, topsoil	1199	Stripping and stockpiling of topsoil adjacent to stripping area. Includes equipment and labor.	Cubic Yards	\$0.79	12	\$9.48
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	7	\$190.12
Materials						
GeoCell, 4 inch	1054	4-inch thick cellular confinement system, three-dimensional, expandable panels made from high-density polyethylene (HDPE), polyester or another polymer material. Includes materials, labor and equipment for the geocell only, does not include backfill	Square Yard	\$21.32	72	\$1,535.04
Aggregate, Gravel, Ungraded, Quarry Run	1099	Includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$34.45	12	\$413.40
Geotextile, non-woven, heavy weight	1210	Non-woven greater than 8 ounce/square yard geotextile with staple anchoring. Materials and shipping only.	Square Yard	\$2.24	84	\$188.16
Native Perennial Grasses, Low Density	2750	Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$134.97	0.01	\$1.35
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	2	\$598.92

Practice: 614 - Watering Facility
Scenario: \#156-Above ground poly storage tank <300 gallons

Scenario Description:

A permanent watering facility constructed of approved materials having <300 gallons of water storage capacity for an adequate quantity and quality of water in situations where a lower capacity water supply source such as a spring or solar pump is the only feasible water source and backup capacity is needed during peak water demand periods. All watering facilities will be constructed from approved durable materials that have a life expectancy that meets or exceeds the planned useful life of the installation. Payment includes materials and labor costs for installing the storage tank. A stabilized area under and around the watering facility is not included and must be addressed through an associated practice of Heavy Use Area Protection (561). This watering facility will address the resource concerns of inadequate supply of water for livestock, habitat degradation, water quality, and undesirable plant productivity and health.

Before Situation:
This practice applies to all land uses where there is a need for new or improved watering facilities for livestock and or wildlife, where water is not available in sufficient quantities at specific locations, and habitat, water quality, or plant productivity and health needs to be improved.

After Situation:

A permanent watering facility with water storage capacity of <300 gallons is typically installed to provide adequate water storage capacity to ensure an adequate supply and quality of water for livestock or wildlife. Installation facilitates improved plant productivity and health, water quality, and habitat. All watering facilities are constructed from approved durable materials that have a life expectancy that meets or exceeds the planned useful life of the installation and placed on a properly prepared foundation with required plumbing. All needed pipelines are installed using Pipeline (516). Any needed vegetation of disturbed areas will use Critical Area Planting (342). All collectors or catchments for collecting precipitation will be addressed by using Water Harvesting Catchment (636). Any needed water source installation will use Water Well (642), Pumping Plant (533), Spring Development (574), or Pipeline (516) as appropriate. Areas around watering facilities where animal concentrations will cause resource concerns will be protected by using Heavy Use Area Protection (561) as appropriate.

Feature Measure: number of Tanks
Scenario Unit: Each
Scenario Typical Size: 1.00

Scenario Total Cost:	\$1,564.86					
Scenario Cost/Unit:	\$1,5	64.86				
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	2	\$130.42
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	3	\$74.97
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	3	\$81.48
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	2	\$63.74
Materials						
Wildlife Escape Ramp	242	Pool size $15^{\prime} \times \times 30$, for small mammals less than one pound.	Each	\$76.20	1	\$76.20
Tank, Poly Enclosed Storage, <= 300 gallon	1073	Water storage tanks. Includes materials and shipping only.	Gallons	\$2.18	160	\$348.80
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	13	\$35.88
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and	Each	\$753.37	1	\$753.37

Practice: 614 - Watering Facility
Scenario: \#157-Above ground poly storage tank 300-1000 gallons
Scenario Description:
A permanent watering facility constructed of approved materials having 300 to 1,000 gallons of water storage capacity for an adequate quantity and quality of water in situations where a lower capacity water supply source such as a spring or solar pump is the only feasible water source and backup capacity is needed during peak water demand periods. All watering facilities will be constructed from approved durable materials that have a life expectancy that meets or exceeds the planned useful life of the installation. Payment includes materials and labor costs for installing the storage tank. A stabilized area under and around the watering facility is not included and must be addressed through an associated practice of Heavy Use Area Protection (561). This watering facility will address the resource concerns of inadequate supply of water for livestock, habitat degradation, water quality, and undesirable plant productivity and health.

Before Situation:
This practice applies to all land uses where there is a need for new or improved watering facilities for livestock and or wildlife, where water is not available in sufficient quantities at specific locations, and habitat, water quality, or plant productivity and health needs to be improved.

After Situation:

A permanent watering facility with water storage capacity of 300 to 1,000 gallons is typically installed to provide adequate water storage capacity to ensure an adequate supply and quality of water for livestock or wildlife. Installation facilitates improved plant productivity and health, water quality, and habitat. All watering facilities are constructed from approved durable materials that have a life expectancy that meets or exceeds the planned useful life of the installation and placed on a properly prepared foundation with required plumbing. All needed pipelines are installed using Pipeline (516). Any needed vegetation of disturbed areas will use Critical Area Planting (342). All collectors or catchments for collecting precipitation will be addressed by using Water Harvesting Catchment (636). Any needed water source installation will use Water Well (642), Pumping Plant (533), Spring Development (574), or Pipeline (516) as appropriate. Areas around watering facilities where animal concentrations will cause resource concerns will be protected by using Heavy Use Area Protection (561) as appropriate.

Feature Measure: Number of tanks
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 2,182.24$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total

Equipment Installation

Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	2	\$130.42
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	3	\$74.97
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	3	\$81.48
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	2	\$55.52

Materials

Wildlife Escape Ramp	242	Pool size $15^{\prime} \times \times 30$, for small mammals less than one pound.	Each	\$76.20	1	\$76.20
Tank, Poly enclosed Storage, 3001000 gal	1074	Water storage tanks. Includes materials and shipping only.	Gallons	\$1.68	580	\$974.40
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	13	\$35.88
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 614 - Watering Facility
Scenario: \#158-Tire Trough

Scenario Description:

A permanent watering facility for livestock and/or wildlife constructed from tires that stores adequate quantity and quality of water for storage and/or direct drinking access. All watering facilities will be constructed from approved durable materials that have a life expectancy that meets or exceeds the planned useful life of the installation. This watering facility will address the resource concerns of inadequate supply of water for livestock and/or wildlife, habitat degradation, water quality, and undesirable plant productivity and health.

Before Situation:
There is insufficient water to meet livestock or wildlife watering needs at a site. Animals may have access to streams or ponds, need to travel a long distance to available water or pasture use and rotation may be affected. This practice applies to all land uses where there is a need for new or improved watering facilities for livestock and/or wildlife where water is not available in sufficient quantities at specific locations; and where habitat, water quality, plant productivity and health needs to be improved. Resource concerns include, but may not be limited to, Plant Condition and Quality, Soil Erosion and Stream Habitat/Water Quality.

After Situation:

A permanent watering facility using a 10' diameter tire is installed with all tank materials, tank plumbing and float valve, to provide adequate water storage capacity to ensure an adequate supply and quality of water for livestock or wildlife for storage and/or direct drinking access and provides improved plant productivity and health, water quality, and habitat. All watering facilities are constructed from approved durable materials that have a life expectancy that meets or exceeds the planned useful life of the installation and placed on a properly prepared foundation with required plumbing. All needed pipelines are installed using Livestock Pipeline (516). Any needed vegetation of disturbed areas will use Critical Area Planting (342). All collectors or catchments for collecting precipitation will be addressed by using Water Harvesting Catchment (636). Any needed water source installation will use Water Well (642), Pumping Plant (533), Spring Development (574), or Livestock Pipeline (516) as appropriate. Areas around watering facilities where animal concentrations or overflow from the watering facility will cause resource concerns will be protected by using Heavy Use Area Protection (561) as appropriate.

Feature Measure: Capacity in Gallons
Scenario Unit: Gallons
Scenario Typical Size: 981.00
Scenario Total Cost: \$2,738.61
Scenario Cost/Unit: \$2.79
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, formless, non reinforced	36	Non reinforced concrete cast-in-placed without forms by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$177.66	0.7	\$124.36
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	6	\$391.26
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	13	\$353.08
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	7	\$194.32
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22
Materials						
Freeze Proof Hydrant, <= 3 ft . bury	240	Freeze Proof Hydrant, 3 foot or less bury. Materials only.	Each	\$160.26	1	\$160.26
Wildlife Escape Ramp	242	Pool size $15^{\prime} \times 30$ ', for small mammals less than one pound.	Each	\$76.20	1	\$76.20
Tank, Tire, 10' diameter	287	Tire, includes material cost for tank and shipping. Labor and other appurtenance costs not included.	Each	\$1,060.85	1	\$1,060.85
Dimension Lumber, Treated	1044	Treated dimension lumber with nominal thickness equal or less than 2 inches. Includes lumber and fasteners	Board Feet	\$1.82	24	\$43.68
Post, Wood, CCA Treated, 4-5 in. $X 7 \mathrm{ft}$.	1050	Wood Post, Line 4-5 inch dia. X 7 feet, CCA Treated. Includes materials and shipping only.	Each	\$14.02	2	\$28.04
Tank, Float Valve Assembly	1077	Float Valve, Stem, Swivel, Float Ball	Each	\$102.79	1	\$102.79
Aggregate, Gravel, Ungraded, Quarry Run	1099	Includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$34.45	1.7	\$58.57

Practice: 614 - Watering Facility
Scenario: \#166-Above ground poly storage tank 1000-3000 gallons

Scenario Description:

A permanent watering facility constructed of approved materials having 1,000 to 3,000 gallons of water storage capacity for an adequate quantity and quality of water in situations where a lower capacity water supply source such as a spring or solar pump is the only feasible water source and backup capacity is needed during peak water demand periods. All watering facilities will be constructed from approved durable materials that have a life expectancy that meets or exceeds the planned useful life of the installation. Payment includes materials and labor costs for installing the storage tank. A stabilized area under and around the watering facility is not included and must be addressed through an associated practice of Heavy Use Area Protection (561). This watering facility will address the resource concerns of inadequate supply of water for livestock, habitat degradation, water quality, and undesirable plant productivity and health.

Before Situation:
This practice applies to all land uses where there is a need for new or improved watering facilities for livestock and or wildlife, where water is not available in sufficient quantities at specific locations, and habitat, water quality, or plant productivity and health needs to be improved.

After Situation:

to ensure an adequate supply and quality of water for livestock or wildlife. Installation facilitates improved plant productivity and health, water quality, and habitat. All watering facilities are constructed from approved durable materials that have a life expectancy that meets or exceeds the planned useful life of the installation and placed on a properly prepared foundation with required plumbing. All needed pipelines are installed using Pipeline (516). Any needed vegetation of disturbed areas will use Critical Area Planting (342). All collectors or catchments for collecting precipitation will be addressed by using Water Harvesting Catchment (636). Any needed water source installation will use Water Well (642), Pumping Plant (533), Spring Development (574), or Pipeline (516) as appropriate. Areas around watering facilities where animal concentrations will cause resource concerns will be protected by using Heavy Use Area Protection (561) as appropriate.

Feature Measure: Number of tanks
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$4,757.84
Scenario Cost/Unit: \$4,757.84
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	2	\$130.42
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	3	\$74.97
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	3	\$81.48
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	2	\$55.52
Materials						
Wildlife Escape Ramp	242	Pool size $15^{\prime} \times 30$ ', for small mammals less than one pound.	Each	\$76.20	1	\$76.20
Tank, Poly Enclosed Storage, >1,000	1075	Water storage tanks. Includes materials and shipping only.	Gallons	\$1.42	2500	\$3,550.00
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	13	\$35.88
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 620-Underground Outlet
Scenario: \#1-4 inch pipe

Scenario Description:

Install 100 feet of 4' diameter approved plastic pipe to convey stormwater from one location to a suitable and stable outlet. Trench is excavated 48 ' deep and 12 ' wide by hydraulic track excavator. Costs include 4' SCH 40 PVC pipe, trench excavation, trench backfill, labor, and supervision. This practice is often installed in conjunction with terraces, diversions, sediment control basins, waterways, roof runoff structure, or similar practices.

Before Situation:

Excessive sedimentation and soil erosion as a result of gully, rill or sheet erosion which exceeds ' T ' from farm fields and other locations. Also, roof runoff or surface runoff that becomes contminated with agricultural wastes that significantly contributes to the amount of runoff that has to be stored or treated.

After Situation:

Field system meets 'T' or 'clean' storm water runoff is diverted away from an agricultural waste management system to minimize the volume of runoff that is contaminated by agricultural waste. Associated practices are Critical Area Planting (342), Grassed Waterway (412), Terrace (600), Diversion (342), Water and Sediment Control Basin (638), Roof Runoff Structure (558), and Subsurface Drainage (606)

Feature Measure: Length of Conduit
Scenario Unit: Feet
Scenario Typical Size: 100.00

Scenario Total Cost:	$\$ 1,858.08$
Scenario Cost/Unit:	$\$ 18.58$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Trenching, Earth, 12 in. x 48 in.	53	Trenching, earth, 12 inch wide $\times 48$ inch depth, includes equipment and labor for trenching and backfilling	Feet	\$1.30	100	\$130.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	10	\$271.60
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	3	\$142.83
Materials						
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	203	\$560.28
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 620-Underground Outlet
Scenario: \#2-6 inch pipe

Scenario Description:

Install 100 feet of 6 ' diameter approved plastic pipe to convey stormwater from one location to a suitable and stable outlet. Trench is excavated 48 deep and 12 ' wide by hydraulic track excavator. Costs include 6' SCH 40 PVC pipe, trench excavation, trench backfill, labor, and supervision. This practice is often installed in conjunction with terraces, diversions, sediment control basins, waterways, roof runoff structure, or similar practices.

Before Situation:
Excessive sedimentation and soil erosion as a result of gully, rill or sheet erosion which exceeds ' T ' from farm fields and other locations. Also, roof runoff or surface runoff that becomes contminated with agricultural wastes that significantly contributes to the amount of runoff that has to be stored or treated.

After Situation:

Field system meets ' T ' or 'clean' storm water runoff is diverted away from an agricultural waste management system to minimize the volume of runoff that is contaminated by agricultural waste. Associated practices are Critical Area Planting (342), Grassed Waterway (412), Terrace (600), Diversion (342), Water and Sediment Control Basin (638), Roof Runoff Structure (558), and Subsurface Drainage (606)

Feature Measure: Length of Conduit

Scenario Unit: Feet
Scenario Typical Size: 100.00

Scenario Total Cost:	$\$ 2,285.88$
Scenario Cost/Unit:	$\$ 22.86$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Trenching, Earth, 12 in. $\mathrm{x} 48 \mathrm{in}$.	53	Trenching, earth, 12 inch wide $\times 48$ inch depth, includes equipment and labor for trenching and backfilling	Feet	\$1.30	100	\$130.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	10	\$271.60
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	3	\$142.83
Materials						
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	358	\$988.08
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 620-Underground Outlet
Scenario: \#3-8 inch pipe

Scenario Description:

Install 100 feet of 8 ' diameter approved plastic pipe to convey stormwater from one location to a suitable and stable outlet. Trench is excavated 48 deep and 12 ' wide by hydraulic track excavator. Costs include 8' SCH 40 PVC pipe, trench excavation, trench backfill, labor, and supervision. This practice is often installed in conjunction with terraces, diversions, sediment control basins, waterways, roof runoff structure, or similar practices.

Before Situation:

Excessive sedimentation and soil erosion as a result of gully, rill or sheet erosion which exceeds ' T ' from farm fields and other locations. Also, roof runoff or surface runoff that becomes contminated with agricultural wastes that significantly contributes to the amount of runoff that has to be stored or treated.

After Situation:

Field system meets ' T ' or 'clean' storm water runoff is diverted away from an agricultural waste management system to minimize the volume of runoff that is contaminated by agricultural waste. Associated practices are Critical Area Planting (342), Grassed Waterway (412), Terrace (600), Diversion (342), Water and Sediment Control Basin (638), Roof Runoff Structure (558), and Subsurface Drainage (606)

Feature Measure: Length of Conduit

Scenario Unit: Feet
Scenario Typical Size: 100.00

Scenario Total Cost:	$\$ 2,833.05$
Scenario Cost/Unit:	$\$ 28.33$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Trenching, Earth, 12 in. x 48 in.	53	Trenching, earth, 12 inch wide $\times 48$ inch depth, includes equipment and labor for trenching and backfilling	Feet	\$1.30	100	\$130.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	10	\$271.60
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44
Materials						
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	539	\$1,487.64
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 620-Underground Outlet
Scenario: \#4-10 inch pipe

Scenario Description:

Install 100 feet of 10 ' diameter approved pipe to convey stormwater from one location to a suitable and stable outlet. Trench is excavated 48 ' deep and 24 ' wide by hydraulic track excavator. Costs include 10' SDR 35 PVC pipe, trench excavation, trench backfill, labor, and supervision. This practice is often installed in conjunction with terraces, diversions, sediment control basins, waterways, roof runoff structure, or similar practices.

Before Situation:
Excessive sedimentation and soil erosion as a result of gully, rill or sheet erosion which exceeds ' T ' from farm fields and other locations. Also, roof runoff or surface runoff that becomes contminated with agricultural wastes that significantly contributes to the amount of runoff that has to be stored or treated.

After Situation:

Field system meets ' T ' or 'clean' storm water runoff is diverted away from an agricultural waste management system to minimize the volume of runoff that is contaminated by agricultural waste. Associated practices are Critical Area Planting (342), Grassed Waterway (412), Terrace (600), Diversion (342), Water and Sediment Control Basin (638), Roof Runoff Structure (558), and Subsurface Drainage (606)

Feature Measure: Length of Conduit

Scenario Unit: Feet
Scenario Typical Size: 100.00

Scenario Total Cost: \$3,430.37						
Scenario Cost/Unit:	\$34.30					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Trenching, Earth, clay, 24 in. x 48 in.	55	Trenching, earth, clay, 24 inch wide $x 48$ inch depth, includes equipment and labor for trenching and backfilling and shoring/dewatering	Feet	\$3.28	100	\$328.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	12	\$325.92
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44
Materials						
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	664	\$1,832.64
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 620-Underground Outlet
Scenario: \#5-12 inch or greater pipe
Scenario Description:
Install 100 feet of 12^{\prime} or greater diameter approved pipe to convey stormwater from one location to a suitable and stable outlet. Trench is excavated 48 ' deep and 24^{\prime} wide by hydraulic track excavator. Costs include 12' CMP pipe, trench excavation, trench backfill, labor, and supervision. This practice is often installed in conjunction with terraces, diversions, sediment control basins, waterways, roof runoff structure, or similar practices.

Before Situation:
Excessive sedimentation and soil erosion as a result of gully, rill or sheet erosion which exceeds ' T ' from farm fields and other locations. Also, roof runoff or surface runoff that becomes contminated with agricultural wastes that significantly contributes to the amount of runoff that has to be stored or treated.

After Situation:
Field system meets ' T ' or 'clean' storm water runoff is diverted away from an agricultural waste management system to minimize the volume of runoff that is contaminated by agricultural waste. Associated practices are Critical Area Planting (342), Grassed Waterway (412), Terrace (600), Diversion (342), Water and Sediment Control Basin (638), Roof Runoff Structure (558), and Subsurface Drainage (606)

Feature Measure: Length of Conduit

Scenario Unit: Feet
Scenario Typical Size: 100.00

Scenario Total Cost:	\$3,971.77					
Scenario Cost/Unit:	\$39.72					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Trenching, Earth, clay, 24 in. x 48 in.	55	Trenching, earth, clay, 24 inch wide $\times 48$ inch depth, includes equipment and labor for trenching and backfilling and shoring/dewatering	Feet	\$3.28	100	\$328.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44
Materials						
Pipe, CMP, 18-16 gauge, weight priced	1322	18 and 16 gauge galvanized helical corrugated metal pipe priced by the weight of the pipe materials. Materials only.	Pound	\$2.41	940	\$2,265.40
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 620-Underground Outlet
Scenario: \#155-6 inch or less pipe

Scenario Description:

Install 500 feet of 6 ' approved plastic pipe to convey stormwater from one location to a suitable and stable outlet. Trench is excavated 52' deep and 24 ' wide by hydraulic track excavator. Costs include 6' SDR-35 pipe, Precast concrete drop inlet with steel grate, trench excavation, trench backfill, rodent guard and laid up stone headwall at outlet. This practice is often installed in conjunction with terraces, diversions, sediment control basins, waterways or simlar practices.

Before Situation:
Excessive sedimentation and soil erosion as a result of gully, rill or sheet erosion which exceeds ' T ' from farm fields and other locations. Also, roof runoff or surface runoff that becomes contminated with agricultural wastes that significantly contributes to the amount of runoff that has to be stored or treated.

After Situation:

Field system meets ' T ' or 'clean' storm water runoff is diverted away from an agricultural waste management system to minimize the volume of runoff that is contaminated by agricultural waste. Associated practices are Critical Area Planting (342), Grassed Waterway (412), Terrace (600), Diversion (342), Water and Sediment Control Basin (638), and Subsurface Drainage (606)

Feature Measure: Length of Conduit

Scenario Unit: Feet
Scenario Typical Size: 500.00
Scenario Total Cost: $\$ 6,450.73$

Scenario Cost/Unit: \$12.90
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, common earth, small equipment, 50 ft	1220	Bulk excavation of common earth with dozer <100 HP with average push distance of 50 feet. Includes equipment and labor.	Cubic Yards	\$2.56	170	\$435.20
Excavation, common earth, side cast, large equipment	1227	Bulk excavation and side casting of common earth with hydraulic excavator with less greater than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$1.47	170	\$249.90
Compaction, earthfill, vibratory plate	1260	Compaction of earthfill with a walk behind vibratory plate compactor in typical 6-8 inch thick lifts, 2 passes. Includes equipment and labor.	Cubic Yards	\$2.56	2	\$5.12
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22

Materials

Rock Riprap, Placed with geotextile	44	Rock Riprap, placed with geotextile. Includes materials, local delivery within 20 miles of quarry, and placement.	Cubic Yards	\$137.64	1	\$137.64
Catch Basin, concrete, 2 ft . 2 ft . x 6 ft .	1257	Catch Basin, Precast Concrete, 2 ft . square or round, cast grate, 6 ft . deep. Includes materials, equipment and labor.	Each	\$764.11	1	\$764.11
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	1180	\$3,256.80
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 620-Underground Outlet
Scenario: \#156-6 inch or less, Riser

Scenario Description:

Install 500 feet of 6 ' approved plastic pipe to convey stormwater from one location to a suitable and stable outlet. Trench is excavated approximately 54 " deep and 15^{\prime} wide by trencher. Costs include 6' HDPE corrugated single wall plastic tubing, 8' Perforated PVC Riser Inlet, trench excavation, trench backfill, rodent guard and laid up stone headwall at outlet. This practice is often installed in conjunction with terraces, diversions, sediment control basins, waterways or simlar practices.

Before Situation:

Excessive sedimentation and soil erosion as a result of gully, rill or sheet erosion which exceeds ' T ' from farm fields and other locations. Also, roof runoff or surface runoff that becomes contminated with agricultural wastes that significantly contributes to the amount of runoff that has to be stored or treated.

After Situation:

Field system meets ' T ' or 'clean' storm water runoff is diverted away from an agricultural waste management system to minimize the volume of runoff that is contaminated by agricultural waste. Associated practices are Critical Area Planting (342), Grassed Waterway (412), Terrace (600), Diversion (342), Water and Sediment Control Basin (638), and Subsurface Drainage (606)

Feature Measure: Length of Conduit
Scenario Unit: Feet
Scenario Typical Size: 500.00
Scenario Total Cost: \$4,286.83

Scenario Cost/Unit: \$8.57
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, common earth, small equipment, 50 ft	1220	Bulk excavation of common earth with dozer <100 HP with average push distance of 50 feet. Includes equipment and labor.	Cubic Yards	\$2.56	105	\$268.80
Trencher, wheel type	1259	Wheel type Trencher, typically 350 HP with 6 foot max depth. Equipment only.	Hours	\$174.45	5	\$872.25
Compaction, earthfill, vibratory plate	1260	Compaction of earthfill with a walk behind vibratory plate compactor in typical 6-8 inch thick lifts, 2 passes. Includes equipment and labor.	Cubic Yards	\$2.56	2	\$5.12
Labor						
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	5	\$138.80
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22

Materials

Rock Riprap, Placed with geotextile	44	Rock Riprap, placed with geotextile. Includes materials, local delivery within 20 miles of quarry, and placement.	Cubic Yards	\$137.64	1	\$137.64
Inlet, riser, 8 in.	1262	Riser, polymer, complete vertical perforated UGO inlet with Tee, orifice plate if needed, 8 inch diameter. Materials only.	Each	\$154.23	2	\$308.46
Pipe, HDPE, corrugated single wall, <= 12 in. weight priced Compound	1380	High Density Polyethylene (HDPE) compound manufactured into single wall corrugated pipe or tubing. Materials only.	Pound	\$2.51	380	\$953.80
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 620-Underground Outlet

Scenario: \#157-12 inch or less

Scenario Description:

Install 500 feet of 10 ' approved plastic pipe to convey stormwater from one location to a suitable and stable outlet. Trench Excavation is 58' deep and 28 ' wide. Costs include 10' HDPE pipe, Precast concrete drop inlet with steel grate, trench excavation, trench backfill, rodent guard and laid up stone headwall at outlet. This practice is often installed in conjunction with terraces, diversions, sediment control basins, waterways or simlar practices.

Before Situation:

Excessive sedimentation and soil erosion as a result of gully, rill or sheet erosion which exceeds ' T ' from farm fields and other locations. Also, roof runoff or surface runoff that becomes contminated with agricultural wastes that significantly contributes to the amount of runoff that has to be stored or treated.

After Situation:
Field system meets ' T ' or 'clean' storm water runoff is diverted away from an agricultural waste management system to minimize the volume of runoff that is contaminated by agricultural waste. Associated practices are Critical Area Planting (342), Grassed Waterway (412), Terrace (600), Diversion (342), Water and Sediment Control Basin (638), and Subsurface Drainage (606)

Feature Measure: Length of Conduit

Scenario Unit: Feet
Scenario Typical Size: 500.00
Scenario Total Cost: $\$ 7,758.50$
Scenario Cost/Unit: \$15.52

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, common earth, small equipment, 50 ft	1220	Bulk excavation of common earth with dozer <100 HP with average push distance of 50 feet. Includes equipment and labor.	Cubic Yards	\$2.56	210	\$537.60
Excavation, common earth, side cast, large equipment	1227	Bulk excavation and side casting of common earth with hydraulic excavator with less greater than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$1.47	210	\$308.70
Compaction, earthfill, vibratory plate	1260	Compaction of earthfill with a walk behind vibratory plate compactor in typical 6-8 inch thick lifts, 2 passes. Includes equipment and labor.	Cubic Yards	\$2.56	2	\$5.12
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44
Materials						
Rock Riprap, Placed with geotextile	44	Rock Riprap, placed with geotextile. Includes materials, local delivery within 20 miles of quarry, and placement.	Cubic Yards	\$137.64	1	\$137.64
Catch Basin, concrete, $2 \mathrm{ft} . \mathrm{x} 2 \mathrm{ft} . \mathrm{x}$ 6 ft .	1257	Catch Basin, Precast Concrete, 2 ft . square or round, cast grate, 6 ft . deep. Includes materials, equipment and labor.	Each	\$764.11	1	\$764.11
Pipe, HDPE, corrugated double wall, LTE-12 in., soil tight, weight priced	1587	High Density Polyethylene (HDPE) compound manufactured into double wall corrugated pipe LTE-12 inch diameter. Materials only.	Pound	\$3.73	1155	\$4,308.15
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 620-Underground Outlet
Scenario: \#158-12 inch or less, riser

Scenario Description:

Install 500 feet of 10 ' approved plastic pipe to convey stormwater from one location to a suitable and stable outlet. Trench Excavation is 58 ' deep and 28 wide. Costs include 10' HDPE pipe, 12' Perforated PVC Riser Inlet, trench excavation, trench backfill, rodent guard and laid up stone headwall at outlet. This practice is often installed in conjunction with terraces, diversions, sediment control basins, waterways or simlar practices.

Before Situation:

Excessive sedimentation and soil erosion as a result of gully, rill or sheet erosion which exceeds ' T ' from farm fields and other locations. Also, roof runoff or surface runoff that becomes contminated with agricultural wastes that significantly contributes to the amount of runoff that has to be stored or treated.

After Situation:

Field system meets ' T ' or 'clean' storm water runoff is diverted away from an agricultural waste management system to minimize the volume of runoff that is contaminated by agricultural waste. Associated practices are Critical Area Planting (342), Grassed Waterway (412), Terrace (600), Diversion (342), Water and Sediment Control Basin (638), and Subsurface Drainage (606)

Feature Measure: Length of Conduit
Scenario Unit: Feet
Scenario Typical Size: 500.00
Scenario Total Cost: $\$ 8,113.68$

Scenario Cost/Unit: \$16.23
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, common earth, small equipment, 50 ft	1220	Bulk excavation of common earth with dozer <100 HP with average push distance of 50 feet. Includes equipment and labor.	Cubic Yards	\$2.56	210	\$537.60
Trencher, wheel type	1259	Wheel type Trencher, typically 350 HP with 6 foot max depth. Equipment only.	Hours	\$174.45	5	\$872.25
Compaction, earthfill, vibratory plate	1260	Compaction of earthfill with a walk behind vibratory plate compactor in typical 6-8 inch thick lifts, 2 passes. Includes equipment and labor.	Cubic Yards	\$2.56	2	\$5.12
Labor						
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	5	\$138.80
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44

Materials

Rock Riprap, Placed with geotextile	44	Rock Riprap, placed with geotextile. Includes materials, local delivery within 20 miles of quarry, and placement.	Cubic Yards	\$137.64	1	\$137.64
Inlet, riser, 10 in .	1263	Riser, polymer, complete vertical perforated UGO inlet with Tee, orifice plate if needed, 10 inch diameter. Materials only.	Each	\$208.47	2	\$416.94
Pipe, HDPE, corrugated double wall, LTE-12 in., soil tight, weight priced	1587	High Density Polyethylene (HDPE) compound manufactured into double wall corrugated pipe LTE-12 inch diameter. Materials only.	Pound	\$3.73	1155	\$4,308.15
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 620-Underground Outlet

Scenario: \#159-18 inch or less

Scenario Description:

Install 500 feet of 18 ' approved plastic pipe to convey stormwater from one location to a suitable and stable outlet. Trench excavation is 66 ' deep x 39 ' wide. Costs include 18' HDPE pipe, Precast concrete drop inlet with steel grate, trench excavation, bedding material, trench backfill, rodent guard and laid up stone headwall at outlet. This practice is often is installed in conjunction with terraces, diversions, sediment control basins, waterways or simlar practices.

Before Situation:

Excessive sedimentation and soil erosion as a result of gully, rill or sheet erosion which exceeds ' T ' from farm fields and other locations. Also, roof runoff or surface runoff that becomes contminated with agricultural wastes that significantly contributes to the amount of runoff that has to be stored or treated.

After Situation:
Field system meets ' T ' or 'clean' storm water runoff is diverted away from an agricultural waste management system to minimize the volume of runoff that is contaminated by agricultural waste. Associated practices are Critical Area Planting (342), Grassed Waterway (412), Terrace (600), Diversion (342), Water and Sediment Control Basin (638), and Subsurface Drainage (606)

Feature Measure: Length of Conduit

Scenario Unit: Feet
Scenario Typical Size: 500.00
Scenario Total Cost: $\$ 15,787.70$
Scenario Cost/Unit: \$31.58
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, common earth, small equipment, 50 ft	1220	Bulk excavation of common earth with dozer <100 HP with average push distance of 50 feet. Includes equipment and labor.	Cubic Yards	\$2.56	330	\$844.80
Excavation, common earth, side cast, large equipment	1227	Bulk excavation and side casting of common earth with hydraulic excavator with less greater than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$1.47	330	\$485.10
Compaction, earthfill, vibratory plate	1260	Compaction of earthfill with a walk behind vibratory plate compactor in typical 6-8 inch thick lifts, 2 passes. Includes equipment and labor.	Cubic Yards	\$2.56	2	\$5.12
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44

Materials

Rock Riprap, Placed with geotextile	44	Rock Riprap, placed with geotextile. Includes materials, local delivery within 20 miles of quarry, and placement.	Cubic Yards	\$137.64	1	\$137.64
Aggregate, Gravel, Graded	46	Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$44.85	60	\$2,691.00
Catch Basin, concrete, $2 \mathrm{ft} . \mathrm{x} 2 \mathrm{ft}$. x 6 ft .	1257	Catch Basin, Precast Concrete, 2 ft . square or round, cast grate, 6 ft . deep. Includes materials, equipment and labor.	Each	\$764.11	1	\$764.11
Pipe, HDPE, corrugated double wall, GTE 15 in., soil tight, weight priced	1588	High Density Polyethylene (HDPE) compound manufactured into double wall corrugated pipe Greater Than or Equal to 15 inch diameter. Materials only.	Pound	\$2.85	3215	\$9,162.75
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 620 - Underground Outlet

Scenario: \#160-24 inch or less

Scenario Description:

Install 500 feet of 24 ' approved plastic pipe to convey stormwater from one location to a suitable and stable outlet. Trench excavation is 72 ' x 48 ' wide. Costs include 24 ' HDPE pipe, Precast concrete drop inlet with steel grate, 24 ' HDPE pipe, trench excavation, bedding material, trench backfill, rodent guard and laid up stone headwall at outlet. Practice is often installed in conjunction with terraces, diversions, sediment control basins, waterways or simlar practices.

Before Situation:

Excessive sedimentation and soil erosion as a result of gully, rill or sheet erosion which exceeds ' T ' from farm fields and other locations. Also, roof runoff or surface runoff that becomes contminated with agricultural wastes that significantly contributes to the amount of runoff that has to be stored or treated.

After Situation:
Field system meets ' T ' or 'clean' storm water runoff is diverted away from an agricultural waste management system to minimize the volume of runoff that is contaminated by agricultural waste. Associated practices are Critical Area Planting (342), Grassed Waterway (412), Terrace (600), Diversion (342), Water and Sediment Control Basin (638), and Subsurface Drainage (606)

Feature Measure: Length of Conduit

Scenario Unit: Feet
Scenario Typical Size: 500.00
Scenario Total Cost: \$23,913.15

Scenario Cost/Unit: \$47.83
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, common earth, small equipment, 50 ft	1220	Bulk excavation of common earth with dozer <100 HP with average push distance of 50 feet. Includes equipment and labor.	Cubic Yards	\$2.56	445	\$1,139.20
Excavation, common earth, side cast, large equipment	1227	Bulk excavation and side casting of common earth with hydraulic excavator with less greater than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$1.47	445	\$654.15
Compaction, earthfill, vibratory plate	1260	Compaction of earthfill with a walk behind vibratory plate compactor in typical 6-8 inch thick lifts, 2 passes. Includes equipment and labor.	Cubic Yards	\$2.56	2	\$5.12
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44

Materials

Rock Riprap, Placed with geotextile	44	Rock Riprap, placed with geotextile. Includes materials, local delivery within 20 miles of quarry, and placement.	Cubic Yards	\$137.64	1	\$137.64
Aggregate, Gravel, Graded	46	Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$44.85	85	\$3,812.25
Catch Basin, concrete, $2 \mathrm{ft} . \mathrm{x} 2 \mathrm{ft}$. x 6 ft .	1257	Catch Basin, Precast Concrete, 2 ft . square or round, cast grate, 6 ft . deep. Includes materials, equipment and labor.	Each	\$764.11	1	\$764.11
Pipe, HDPE, corrugated double wall, GTE 15 in., soil tight, weight priced	1588	High Density Polyethylene (HDPE) compound manufactured into double wall corrugated pipe Greater Than or Equal to 15 inch diameter. Materials only.	Pound	\$2.85	5510	\$15,703.50
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 620 - Underground Outlet

Scenario: \#161-30 inch or less

Scenario Description:

Install 500 feet of 30 ' approved plastic pipe to convey stormwater from one location to a suitable and stable outlet. Trench excavation is 78 ' deep $\times 56$ ' wide. Costs include 30' HDPE pipe, Precast concrete drop inlet with steel grate, trench excavation, bedding material, trench backfill, rodent guard and laid up stone headwall at outlet. This practices is often installed in conjunction with terraces, diversions, sediment control basins, waterways or simlar practices.

Before Situation:

Excessive sedimentation and soil erosion as a result of gully, rill or sheet erosion which exceeds ' T ' from farm fields and other locations. Also, roof runoff or surface runoff that becomes contminated with agricultural wastes that significantly contributes to the amount of runoff that has to be stored or treated.

After Situation:
Field system meets ' T ' or 'clean' storm water runoff is diverted away from an agricultural waste management system to minimize the volume of runoff that is contaminated by agricultural waste. Associated practices are Critical Area Planting (342), Grassed Waterway (412), Terrace (600), Diversion (342), Water and Sediment Control Basin (638), and Subsurface Drainage (606)

Feature Measure: Length of Conduit

Scenario Unit: Feet
Scenario Typical Size: 500.00
Scenario Total Cost: $\$ 32,303.92$

Scenario Cost/Unit: \$64.61
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, common earth, small equipment, 50 ft	1220	Bulk excavation of common earth with dozer <100 HP with average push distance of 50 feet. Includes equipment and labor.	Cubic Yards	\$2.56	565	\$1,446.40
Excavation, common earth, side cast, large equipment	1227	Bulk excavation and side casting of common earth with hydraulic excavator with less greater than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$1.47	565	\$830.55
Compaction, earthfill, vibratory plate	1260	Compaction of earthfill with a walk behind vibratory plate compactor in typical 6-8 inch thick lifts, 2 passes. Includes equipment and labor.	Cubic Yards	\$2.56	2	\$5.12
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44

Materials

Rock Riprap, Placed with geotextile	44	Rock Riprap, placed with geotextile. Includes materials, local delivery within 20 miles of quarry, and placement.	Cubic Yards	\$137.64	1	\$137.64
Aggregate, Gravel, Graded	46	Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$44.85	105	\$4,709.25
Catch Basin, concrete, $3 \mathrm{ft} . \times 3 \mathrm{ft}$. $x 6 \mathrm{ft}$.	1258	Catch Basin, Precast Concrete, 3 feet square or round, cast grate, 6 feet deep. Includes materials, equipment and labor.	Each	\$1,490.03	1	\$1,490.03
Pipe, HDPE, corrugated double wall, GTE 15 in., soil tight, weight priced	1588	High Density Polyethylene (HDPE) compound manufactured into double wall corrugated pipe Greater Than or Equal to 15 inch diameter. Materials only.	Pound	\$2.85	7715	\$21,987.75
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 620-Underground Outlet
Scenario: \#162-Greater than 30 inch

Scenario Description:

Install 500 feet of 36 ' approved plastic pipe to convey stormwater from one location to a suitable and stable outlet. Trench excavation is 84 ' deep $\times 64$ ' wide. Costs include 36' HDPE pipe, Precast concrete drop inlet with steel grate, trench excavation, bedding material, trench backfill, rodent guard and laid up stone headwall at outlet. This practice is often installed in conjunction with terraces, diversions, sediment control basins, waterways or simlar practices.

Before Situation:

Excessive sedimentation and soil erosion as a result of gully, rill or sheet erosion which exceeds ' T ' from farm fields and other locations. Also, roof runoff or surface runoff that becomes contminated with agricultural wastes that significantly contributes to the amount of runoff that has to be stored or treated.

After Situation:

Field system meets ' T ' or 'clean' storm water runoff is diverted away from an agricultural waste management system to minimize the volume of runoff that is contaminated by agricultural waste. Associated practices are Critical Area Planting (342), Grassed Waterway (412), Terrace (600), Diversion (342), Water and Sediment Control Basin (638), and Subsurface Drainage (606)

Feature Measure: Length of Conduit
Scenario Unit: Feet
Scenario Typical Size: 500.00
Scenario Total Cost: \$40,437.42

Scenario Cost/Unit: \$80.87
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, common earth, small equipment, 50 ft	1220	Bulk excavation of common earth with dozer <100 HP with average push distance of 50 feet. Includes equipment and labor.	Cubic Yards	\$2.56	690	\$1,766.40
Excavation, common earth, side cast, large equipment	1227	Bulk excavation and side casting of common earth with hydraulic excavator with less greater than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$1.47	690	\$1,014.30
Compaction, earthfill, vibratory plate	1260	Compaction of earthfill with a walk behind vibratory plate compactor in typical 6-8 inch thick lifts, 2 passes. Includes equipment and labor.	Cubic Yards	\$2.56	2	\$5.12
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44

Materials

Rock Riprap, Placed with geotextile	44	Rock Riprap, placed with geotextile. Includes materials, local delivery within 20 miles of quarry, and placement.	Cubic Yards	\$137.64	1	\$137.64
Aggregate, Gravel, Graded	46	Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$44.85	135	\$6,054.75
Catch Basin, concrete, $3 \mathrm{ft} . \times 3 \mathrm{ft}$. $x 6 \mathrm{ft}$.	1258	Catch Basin, Precast Concrete, 3 feet square or round, cast grate, 6 feet deep. Includes materials, equipment and labor.	Each	\$1,490.03	1	\$1,490.03
Pipe, HDPE, corrugated double wall, GTE 15 in., soil tight, weight priced	1588	High Density Polyethylene (HDPE) compound manufactured into double wall corrugated pipe Greater Than or Equal to 15 inch diameter. Materials only.	Pound	\$2.85	9920	\$28,272.00
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 629-Waste Treatment
Scenario: \#1-Litter Windrow Pasteurization

Scenario Description:

This practice scenario includes the in house windrowing of poultry litter to promote pasteurization between flocks. The purpose of the practice is to address resource concerns related to water quality degradation due to (excess nutrient and pathogens) and air quality impacts (PM \& PM precursors, and objectionable odors).Associated practices: Amendments for Treatment of Agricultural Waste (591), Waste Storage Facility (313), \& Nutrient Management (590)

Before Situation:

A poultry operation typically removes part of the litter and bedding between flocks, called a cakeout. A full cleanout of litter and bedding is typically done once every $1-3$ years depending on the operation. Over time, the accumulation of poultry waste in the litter contributes to an increase in odors and high ammonia emissions in the house contribute to impacts on bird health.

After Situation:

This practice may be done in conjunction with the poultry litter amendment practice. In house windrowing of poultry litter pasteurizes the litter for reuse. This improves the quality and reduces the amount of poultry litter that must be spread on farmland. Bird health is improved and bird mortality is reduced. This decreases the number of dead birds and pathogens associated with them that must be disposed of. The practice requires that the litter be windrowed into piles and turned once to promote composting. After the proper temperature has been reached and the litter is pastureized it is leveled and respread before the new flock is brought into the poultry house. The cost savings asociated with foregoing a crust out when you windrow is deducted from the cost of windrowing. The purpose of the practice is for nutrient abatement and air quality and the payment rate is applied to the entire square footage of the house. Typical poultry house size is 40 ' $\times 500$ ' or 20,000 sq.. ft ./house, windrowing is done after each flock up to a max of 6 per year for maximum of 3 years. The scenario is based on one house with 6 in-house composting processes completed.

Feature Measure: Surface Area of housing floor windr

Scenario Unit: 1,000 Square Foot
Scenario Typical Size: 120.00
Scenario Total Cost: $\$ 2,566.30$
Scenario Cost/Unit: \$21.39

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tractor, agricultural, 120 HP	962	Agricultural tractor with horsepower range of 90 to 140 . Equipment and power unit costs. Labor not included.	Hours	\$74.02	22	\$1,628.44
Aerator Attachment, 8 in., PTO	1707	Aerator attachment for mounting to tractor and PTO, 8 inch diameter. Equipment cost only with out tractor. Brown Bear R24C-8' or equivalent	Hours	\$14.87	22	\$327.14
Labor						
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	22	\$610.72

Practice: 632 - Waste Separation Facility
Scenario: \#1 - Earthen Settling Structure
Scenario Description:
An earthen settling basin used to capture and separate a portion of the solids from a liquid stream from a animal feeding or confinement facility. Removes as portion of the solids to facilitate waste handling and to address water quality concerns. Associated practices include Nutrient Management (590), Composting Facility (317), Waste Storage Facility (313), Waste Recycling (633), Waste Transfer (634), Vegetated Treatment Area (635), Pond Lining or Sealing (521A-D), and Waste Treatment (629).

Before Situation:
Applicable to situations where partitioning solids, liquids, and nutrients will facilitate the management of an animal waste management system, improve air quality (reduce odors), and address water quality concerns.

After Situation:

One earthen settling basin structure (70 ft wide by 140 ft long by 8 ft deep, with outlet structures to a liquid waste storage or treatment facility) constructed around or at a livestock feeding operation. Removes a portion of the solids that otherwise would leave with the runoff from an animal feeding operation. Part of an animal waste management system.

Feature Measure: Cubic Foot of Design Storage

Scenario Unit: Cubic Feet
Scenario Typical Size: 124,875.00
Scenario Total Cost: $\$ 12,903.98$
Scenario Cost/Unit: \$0.10
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	3114	\$11,397.24
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 632-Waste Separation Facility
Scenario: \#2 - Concrete Basin

Scenario Description:

A concrete structure, such as a basin with concrete walls and floor, used to capture and separate a portion of the solids from a liquid stream from a feedlot or confinement facility. Removes as portion of the solids to facilitate waste handling and to address water quality concerns. Associated practices include Nutrient Management (590), Composting Facility (317), Waste Storage Facility (313), Waste Recycling (633), Waste Transfer (634), Vegetated Treatment Area (635), and Waste Treatment (629).

Before Situation:

Applicable to situations where partitioning solids, liquids, and nutrients will facilitate the management of an animal waste management system, improve air quality (reduce odors), and address water quality concerns.

After Situation:

One concrete settling basin structure (80 ft wide by 102 ft long with 3 ft 4 ' high side walls and weeping wall with two cells) constructed around or at a livestock feeding operation. Removes a portion of the solids that otherwise would leave with the runoff from an animal feeding operation. Waste Transfer (634) shall be used to transfer liquid waste to a storage or treatment facilty via pipeline.

Feature Measure: Cubic Foot of Design Storage

Scenario Unit: Cubic Feet
Scenario Typical Size: 14,166.00
Scenario Total Cost: $\$ 88,501.68$
Scenario Cost/Unit: \$6.25

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	153	\$61,919.10
Concrete, CIP, formed reinforced	38	Steel reinforced concrete formed and cast-in-placed in formed structures such as walls or suspended slabs by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$457.84	43	\$19,687.12
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	1170	\$2,691.00
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	404	\$1,478.64
Materials						
Weeping Wall	1765	Weeping wall or picket screen structure for solid settling basin. Materials only.	Feet	\$38.76	16	\$620.16
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	2	\$598.92
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 632-Waste Separation Facility
Scenario: \#3 - Earthen Settling Structure with Concrete Floor and weeping wall

Scenario Description:

An earthen settling basin with concrete floor and weeping wall used to capture and separate a portion of the solids from a liquid stream from a animal feeding or confinement facility. Removes as portion of the solids to facilitate waste handling and to address water quality concerns. Associated practices include Nutrient Management (590), Composting Facility (317), Waste Storage Facility (313), Waste Recycling (633), Waste Transfer (634), Vegetated Treatment Area (635), Pond Lining or Sealing (521A-D), and Waste Treatment (629).

Before Situation:
Applicable to situations where partitioning solids, liquids, and nutrients will facilitate the management of an animal waste management system, improve air quality (reduce odors), and address water quality concerns.

After Situation:
One earthen settling basin structure (Bottom dimensions 12 ft wide by 277 ft long with 98 ft long ramp, with three weeping wall outlet structures). Total design volume of $20,475 \mathrm{CF}$, with outlet structures to a liquid waste storage or treatment facility) constructed around or at a livestock feeding operation. Removes a portion of the solids that otherwise would leave with the runoff from an animal feeding operation. Part of an animal waste management system.

Feature Measure: Cubic Foot of Design Storage
Scenario Unit: Cubic Feet
Scenario Typical Size: 20,475.00
Scenario Total Cost: \$61,104.72
Scenario Cost/Unit: \$2.98
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	82	\$33,185.40
Concrete, CIP, formed reinforced	38	Steel reinforced concrete formed and cast-in-placed in formed structures such as walls or suspended slabs by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$457.84	3.5	\$1,602.44
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	8286	\$19,057.80
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	1160	\$4,245.60
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	4	\$3,013.48

Practice: 632-Waste Separation Facility
Scenario: \#4 - Mechanical Separation Facility

Scenario Description:

A small mechanical separation facility to partition solids, liquids, and/or associated nutrients from animal waste streams. The partitioning of the previously mentioned components facilitates the protection of air and water quality, protects animal health, and improves the management of an animal waste management system. Mechanical separators may include, but are not limited to: static inclined screens, vibratory screens, rotating screens, centrifuges, screw or roller presses, or other systems. Associated practices include Nutrient Management (590), Composting Facility (317), Anaerobic Digester (366), Waste Storage Facility (313), Waste Recycling (633), Waste Transfer (634), Amendments for the Treatment of Agricultural Waste (591), Pumping Plant (533), Vegetated Treatment Area (635), Pond Lining or Sealing (521A-D), and Waste Treatment (629).

Before Situation:
Applicable to situations where partitioning solids, liquids, and nutrients will facilitate the management of an animal waste management system, improve air quality (reduce odors), and address water quality concerns.

After Situation:

One small mechanical separation facility (a screw press) installed at livestock facility before storage or treatment or after treatment, for example, after an anaerobic digester. Part of an animal waste management system.

Feature Measure: Item

Scenario Unit: Each

Scenario Typical Size: 1.00
Scenario Total Cost: $\quad \$ 67,912.50$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	10	\$4,047.00
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	16	\$541.92
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	32	\$869.12
Materials						
Vibratory or Rotating Screen	1948	Vibratory or Rotating Screen, includes materials, shipping and equipment.	Each	\$59,990.00	1	\$59,990.00
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	2	\$358.80
Mobilization, small equipment	1138	Equipment <70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	2	\$598.92
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 632-Waste Separation Facility
Scenario: \#18-Concrete Sand Settling Lane

Scenario Description:

A concrete structure, a concrete lane with curbs, used to capture and separate a portion of the solids, mainly sand, from a liquid stream from a confinement facility. Removes as portion of the solids to facilitate waste handling and to address water quality concerns. Associated practices include Nutrient Management (590), Composting Facility (317), Anaerobic Digester (366), Waste Storage Facility (313), Waste Recycling (633), Waste Transfer (634), Pumping Plant (533), Vegetated Treatment Area (635), Pond Lining or Sealing (521A-D), and Waste Treatment (629).

Before Situation:
Applicable to situations where partitioning solids, liquids, and nutrients will facilitate the management of an animal waste management system, improve air quality (reduce odors), and address water quality concerns.

After Situation:

One concrete settling lane structure (25 ft wide by 200 ft long by 0.5 ft thick) constructed around or at a livestock feeding operation. Removes a portion of the solids (sand) that otherwise would leave with the runoff from an animal feeding operation. Part of an animal waste management system.

Feature Measure: Square Foot of Settling Lane Footpr
Scenario Unit: Square Feet
Scenario Typical Size: 5,000.00
Scenario Total Cost: \$54,217.13
Scenario Cost/Unit: \$10.84

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	90	\$36,423.00
Concrete, CIP, formed reinforced	38	Steel reinforced concrete formed and cast-in-placed in formed structures such as walls or suspended slabs by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$457.84	20	\$9,156.80
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	180	\$414.00
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	90	\$329.40
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	8	\$270.96
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	24	\$651.84
Materials						
Aggregate, Gravel, Graded	46	Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$44.85	93	\$4,171.05
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	3	\$538.20
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	2	\$598.92
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 634-Waste Transfer
Scenario: \#17-Pipeline, PVC, Pressure Flow, under 6 inch diameter

Scenario Description:

Pressure flow pipeline used to transfer manure wastewater by pumping from the waste storage pond to the field where it is to be applied according to the CNMP. Pressure flow transfer pipelines between 4 ' and 6 ' diameter. Pressure pipe will handle an internal pumping pressure exceeding 80 psi depending on the designed pumping system and must have gasketted joints to seal for the wastewater transfer. The pressure pipe moves the water by pumping from the intake riser location, through a buried mainline with outlet risers spaced at 300 ft intervals for a traveler applicator. This practice includes the pipe plus an inlet riser structure, clean-out risers and outlet risers plus all other valves and fittings, trench excavation and backfill, labor and a equipment for installation. Appurtenances include: couplings, fittings, air vents, pressure relief valves, thrust blocks, risers, and inline valves, and are included in the cost of pipe material (additional 10% of pipe material quantity). Cost of appurtenances does not include flow meters or backflow preventers. Typical installation applies to soils with no special bedding requirements. This pipeline is part of a manure transfer system for a planned waste management or comprehensive nutrient management plan. This scenario addresses the transport of liquid waste to a waste storage or treatment facility to prevent a water quality resource concern of excessive nutrients/organics and harmful levels of pathogens in surface water and/or excessive nutrients/organics in ground water. Associated practices may include: PS 313 Waste Storage Facility for storage structures; PS 533, Pumping Plant; PS 430, Irrigation Pipeline; PS 632, Solid/Liquid Waste Separation Facility; PS 468, Lined Waterway or Outlet; PS 590 Nutrient Management for waste application; PS 633, Waste Recycling; PS 635, Vegetated Treatment Area.

Before Situation:

The waste storage structure is separated from the application fields where wastewater nutrients are needed. Soil nutrients in the near fields have high phosphorus levels from over application near the waste storage facility. The current application operation is high in the use of time and energy and may cause water quality concerns as it is not efficient in transporting the waste to the field.
After Situation:
Install a 1500 foot long 4 inch diameter PVC pipe that has a pressure rating of 80 psi or greater and is water tight under pressure flow to transfer the manure wastewater. An inlet riser and is located near the pump site of the waste storage pond and designed for the desired pressure and flow for the application system. This scenario includes the pipe, inlet riser, couplers, air-vac vents, all other fittings, and risers placed as specified by the design, trench excavation, pipe bedding and backfill. The site should be evaluated by the designing engineer to make sure the design will function. The transfer pipeline will deliver the manure slurry to the fields for agronomic nutrient utilization according to the CNMP, thereby protecting water quality resources.

Feature Measure: Length of pipe installed
Scenario Unit: Feet
Scenario Typical Size: 1,500.00
Scenario Total Cost: $\$ 9,112.18$
Scenario Cost/Unit: \$6.07
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, formless, non reinforced	36	Non reinforced concrete cast-in-placed without forms by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$177.66	1	\$177.66
Trenching, Earth, $12 \mathrm{in} . \times 48 \mathrm{in}$.	53	Trenching, earth, 12 inch wide $\times 48$ inch depth, includes equipment and labor for trenching and backfilling	Feet	\$1.30	1500	\$1,950.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	40	\$1,086.40
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	20	\$952.20
Materials						
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	1575	\$4,347.00
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	2	\$598.92

Practice: 634-Waste Transfer
Scenario: \#18-Pipeline, PVC, Pressure Flow, 8 to 10 inch
Scenario Description:
Pressure flow pipeline used to transfer manure wastewater by pumping from the waste storage pond to the field where it is to be applied according to the CNMP. Pressure flow transfer pipelines between 8 ' and 10' diameter. Pressure pipe will handle an internal pumping pressure exceeding 80 psi depending on the designed pumping system and must have gasketted joints to seal for the wastewater transfer. The pressure pipe moves the water by pumping from the intake riser location, through a buried mainline with outlet risers spaced at 300 ft intervals for a traveler applicator. This practice includes the pipe plus an inlet riser structure, clean-out risers and outlet risers plus all other valves and fittings, trench excavation and backfill, labor and a equipment for installation. Appurtenances include: couplings, fittings, air vents, pressure relief valves, thrust blocks, risers, and inline valves, and are included in the cost of pipe material (additional 10% of pipe material quantity). Cost of appurtenances does not include flow meters or backflow preventers. Typical installation applies to soils with no special bedding requirements.This pipeline is part of a manure transfer system for a planned waste management or comprehensive nutrient management plan. This scenario addresses the transport of liquid waste to a waste storage or treatment facility to prevent a water quality resource concern of excessive nutrients/organics and harmful levels of pathogens in surface water and/or excessive nutrients/organics in ground water. Associated practices may include: PS 313 Waste Storage Facility for storage structures; PS 533, Pumping Plant; PS 430, Irrigation Pipeline; PS 632, Solid/Liquid Waste Separation Facility; PS 468, Lined Waterway or Outlet; PS 590 Nutrient Management for waste application; PS 633, Waste Recycling; PS 635, Vegetated Treatment Area.

Before Situation:

The waste storage structure is separated from the application fields where wastewater nutrients are needed. Soil nutrients in the near fields have high phosphorus levels from over application near the waste storage facility. The current application operation is high in the use of time and energy and may cause water quality concerns as it is not efficient in transporting the waste to the field.

After Situation:
Install a 1500 foot long 8 inch diameter PVC pipe that has a pressure rating of 80 psi or greater and is water tight under pressure flow to transfer the manure wastewater. An inlet riser and is located near the pump site of the waste storage pond and designed for the desired pressure and flow for the application system. This scenario includes the pipe, inlet riser, couplers, air-vac vents, all other fittings, and risers placed as specified by the design, trench excavation, pipe bedding and backfill. The site should be evaluated by the designing engineer to make sure the design will function. The transfer pipeline will deliver the manure slurry to the fields for agronomic nutrient utilization according to the CNMP, thereby protecting water quality resources.

Feature Measure: Length of pipe installed
Scenario Unit: Feet
Scenario Typical Size: 1,500.00
Scenario Total Cost: \$19,503.58

Scenario Cost/Unit: \$13.00

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, formless, non reinforced	36	Non reinforced concrete cast-in-placed without forms by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$177.66	1	\$177.66
Trenching, Earth, $12 \mathrm{in} . \times 48 \mathrm{in}$.	53	Trenching, earth, 12 inch wide $\times 48$ inch depth, includes equipment and labor for trenching and backfilling	Feet	\$1.30	1500	\$1,950.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	40	\$1,086.40
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	20	\$952.20
Materials						
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	5340	\$14,738.40
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	2	\$598.92

Practice: 634-Waste Transfer
Scenario: \#19-Pipeline, PVC, Pressure Flow, 12 inch and greater
Scenario Description:
Pressure flow pipeline used to transfer manure wastewater by pumping from the waste storage pond to the field where it is to be applied according to the CNMP. Pressure flow transfer pipelines equal to and greater than 12' diameter. Pressure pipe will handle an internal pumping pressure exceeding 80 psi depending on the designed pumping system and must have gasketted joints to seal for the wastewater transfer. The pressure pipe moves the water by pumping from the intake riser location, through a buried mainline with outlet risers spaced at 300 ft intervals for a traveler applicator. This practice includes the pipe plus an inlet riser structure, cleanout risers and outlet risers plus all other valves and fittings, trench excavation and backfill, labor and a equipment for installation. Appurtenances include: couplings, fittings, air vents, pressure relief valves, thrust blocks, risers, and inline valves, and are included in the cost of pipe material (additional 10% of pipe material quantity). Cost of appurtenances does not include flow meters or backflow preventers. Typical installation applies to soils with no special bedding requirements.This pipeline is part of a manure transfer system for a planned waste management or comprehensive nutrient management plan. This scenario addresses the transport of liquid waste to a waste storage or treatment facility to prevent a water quality resource concern of excessive nutrients/organics and harmful levels of pathogens in surface water and/or excessive nutrients/organics in ground water. Associated practices may include: PS 313 Waste Storage Facility for storage structures; PS 533, Pumping Plant; PS 430, Irrigation Pipeline; PS 632, Solid/Liquid Waste Separation Facility; PS 468, Lined Waterway or Outlet; PS 590 Nutrient Management for waste application; PS 633, Waste Recycling; PS 635, Vegetated Treatment Area.

Before Situation:

The waste storage structure is separated from the application fields where wastewater nutrients are needed. Soil nutrients in the near fields have high phosphorus levels from over application near the waste storage facility. The current application operation is high in the use of time and energy and may cause water quality concerns as it is not efficient in transporting the waste to the field.

After Situation:
Install a 1500 foot long 12 inch diameter PVC pipe that has a pressure rating of 80 psi or greater and is water tight under pressure flow to transfer the manure wastewater. An inlet riser and is located near the pump site of the waste storage pond and designed for the desired pressure and flow for the application system. This scenario includes the pipe, inlet riser, couplers, air-vac vents, all other fittings, and risers placed as specified by the design, trench excavation, pipe bedding and backfill. The site should be evaluated by the designing engineer to make sure the design will function. The transfer pipeline will deliver the manure slurry to the fields for agronomic nutrient utilization according to the CNMP, thereby protecting water quality resources.

Feature Measure: Length of pipe installed
Scenario Unit: Feet
Scenario Typical Size: 1,500.00
Scenario Total Cost: \$39,292.18

Scenario Cost/Unit: \$26.19

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, formless, non reinforced	36	Non reinforced concrete cast-in-placed without forms by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$177.66	1	\$177.66
Trenching, Earth, loam, 24 in. x 48 in.	54	Trenching, earth, loam, 24 inch wide $\times 48$ inch depth, includes equipment and labor for trenching and backfilling	Feet	\$2.79	1500	\$4,185.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	40	\$1,086.40
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	20	\$952.20
Materials						
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	11700	\$32,292.00
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	2	\$598.92

Practice: 634-Waste Transfer
Scenario: \#47-12 inch diameter, Low pressure flow, PVC conduit

Scenario Description:

Low pressure flow conduit is typically a PVC pipeline used to transfer wastewater or manure slurry by pumping from one production location to a storage or treatment location. Low pressure flow PVC transfer pipelines can be between 3 ' and 30 ' diameter and are designed for a pumping pressure of no more than 100 psi. The low pressure transfer system typically consists of an inlet structure or hopper connected to a smooth interior PVC pipe sized to deliver the design flow. This practice includes the pipe plus the inlet structure connection and all other fittings, trench excavation and backfill, labor and a equipment for installation. This conduit is part of a manure transfer system for a planned waste management or comprehensive nutrient management plan. This scenario addresses the transport of liquid waste to a waste storage or treatment to prevent a water quality resource concern of excessive nutrients/organics and harmful levels of pathogens in surface water and/or excessive nutrients/organics in ground water. Associated practices may include: PS 313 Waste Storage Facility; PS 533, Pumping Plant; PS 430, Irrigation Pipeline; PS 632, Waste Separation Facility; PS 468, Lined Waterway or Outlet; PS 590 Nutrient Management; PS 633, Waste Recycling.

Before Situation:

An area of waste production is separated from the waste storage facility and current operations may cause water quality concerns. The site of waste collection or structure has the capacity to install a pumping plant but needs a pipeline to transfer the liquid manure slurry under low pressure from the collection site to the treatment or storage structure.

After Situation:

Install a 300 foot long 12 inch diameter low pressure wastewater pipeline to transfer wastewater or manure slurry from one location to another. The low pressure flow situation refers to pipeflow that has an unrestricted outlet and low pumping head pressure. A pumping plant will send the liquid through a pipe inlet at an existing waste collection basin into a 12 inch diameter pipeline to transfer the design volume to an outlet at the wastewater treatment or storage site. This scenario includes the pipe, inlet connection, outlet, couplers and all other fittings, trench excavation, pipe bedding and backfill. The site should be evaluated by the designing engineer before contracting. If required a pumping plant may be contracted under PS 533, Pumping Plant to support this system. The low pressure transfer conduit will provide collection, transfer and containment of the manure slurry, thereby protecting water quality resources.

Feature Measure: Length of pipe installed
Scenario Unit: Feet
Scenario Typical Size: 300.00
Scenario Total Cost: $\$ 22,542.59$
Scenario Cost/Unit: \$75.14
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	14	\$5,665.80
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	97	\$223.10
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	56	\$319.20
Earthfill, Dumped and Spread	51	Earthfill, dumped and spread without compaction effort, includes equipment and labor	Cubic Yards	\$3.15	33	\$103.95
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	32	\$2,086.72
Demolition, concrete	1498	Demolition and disposal of reinforced concrete structures including slabs and walls. Includes labor and equipment.	Cubic Yards	\$10.55	7	\$73.85
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	64	\$1,738.24
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	32	\$1,019.84
Materials						
Aggregate, Sand, Graded, Washed	45	Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$42.64	14	\$596.96
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	3336.3	\$9,208.19
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 634-Waste Transfer
Scenario: \#48-10 inch diameter, Low pressure flow PVC pipeline, from waste storage pond to land application site.

Scenario Description:

Low pressure flow pipeline used to transfer manure wastewater by a low pressure pump from the waste storage pond to the field where it is applied according to the CNMP. The pipeline moves the water from the pond through a buried mainline with low pressure outlets that spread the water on a vegetated treatment area or to a site where the water is applied through an existing field application system. Low pressure flow PVC transfer pipelines can be between 3^{\prime} and 30 diameter and are designed for a pumping pressure of 100 psi or less. This practice includes the pipe plus an inlet riser structure, clean-out risers and outlet risers plus all other valves and fittings, trench excavation and backfill, labor and a equipment for installation. Appurtenances include: couplings, fittings, air vents, pressure relief valves, thrust blocks, risers, and inline valves, and are included in the cost of pipe material (additional 10% of pipe material quantity). Cost of appurtenances does not include flow meters or backflow preventers. Typical installation applies to soils with no special bedding requirements. This pipeline is part of a manure transfer system for a planned waste management or comprehensive nutrient management plan. This scenario addresses the transport of liquid waste to a waste storage or treatment facility to prevent a water quality resource concern of excessive nutrients/organics and harmful levels of pathogens in surface water and/or excessive nutrients/organics in ground water. Associated practices may include: PS 313 Waste Storage Facility; PS 533, Pumping Plant; PS 430, Irrigation Pipeline; PS 632, Waste Separation Facility; PS 468, Lined Waterway or Outlet; PS 590 Nutrient Management; PS 633, Waste Recycling; PS 635, Vegetated Treatment Area.

Before Situation:

The waste storage structure is separated from the application fields where wastewater nutrients are needed. Soil nutrients in the near fields have high phosphorus levels from over application near the waste storage facility. The current application operation is high in the use of time and energy and may cause water quality concerns as it is not efficient in transporting the waste to the field.

After Situation:

Install a 1000 foot long 10 inch diameter PVC gasketted IPS pipe that has an SDR of 41 and is water tight under low pressure flow to transfer the manure wastewater. An inlet riser and is located near the pump site of the waste storage pond and designed for the desired pumping pressure and flow volume for the application system. This scenario includes the pipe, inlet riser, couplers, air-vac vents, all other fittings, and risers placed as specified by the design, trench excavation, pipe bedding and backfill. The site should be evaluated by the designing engineer to make sure the design will function. The transfer pipeline will deliver the manure slurry to the fields for agronomic nutrient utilization according to the CNMP, thereby protecting water quality resources.

Feature Measure: Length of pipe installed
Scenario Unit: Feet
Scenario Typical Size: 1,000.00
Scenario Total Cost: \$40,051.14
Scenario Cost/Unit: \$40.05
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, formless, non reinforced	36	Non reinforced concrete cast-in-placed without forms by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$177.66	1	\$177.66
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	127	\$723.90
Trenching, Earth, loam, 24 in. x 48 in.	54	Trenching, earth, loam, 24 inch wide $\times 48$ inch depth, includes equipment and labor for trenching and backfilling	Feet	\$2.79	1000	\$2,790.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	70	\$1,901.20
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	20	\$952.20
Materials						
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	11594	\$31,999.44
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 634-Waste Transfer

Scenario: \#49-Concrete Channel

Scenario Description:

Installation of a concrete channel that consists of a slab with curb and footing on each side of the slab for the entire length of the channel to enable the facility manager to direct liquid waste to an existing collection basin and/or waste storage facility.

Water quality concerns will be addressed by preventing liquid waste from entering surface waters, and to facilitate timely land application of manure and wastewater at agronomic rates according to the CNMP. This scenario addresses the potential for surface water and groundwater quality degradation. Associated practices may include: PS 313 Waste Storage Facility; PS 533, Pumping Plant; PS 430, Irrigation Pipeline; PS 632, Waste Separation Facility; PS 468, Lined Waterway or Outlet; PS 590 Nutrient Management; PS 633, Waste Recycling.

Before Situation:
Current facility operations are allowing liquid waste to flow uncontrolled during periods of precipitation events or cleaning operations such that water resources can be contaminated.

After Situation:

Typical installation of a 12 foot wide 100 ' long concrete channel that consists of a 5 ' thick concrete slab with curbing on each side of the slab that is 2 ' high, 6 ' thick with footing for the entire length. The purpose is to transfer liquids or manure slurry from one area to an existing collection basin or waste storage facility. Includes safety chain for equipment.Alternative configurations can consist of the installation of a more narrow or wider channel that may or may not have curbs or a deeper shaped channel and may include a half pipe on the bottom.

Feature Measure: Bottom surface area of concrete ch
Scenario Unit: Square Feet
Scenario Typical Size: 1,200.00
Scenario Total Cost: \$21,734.78

Scenario Cost/Unit: \$18.11

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	22	\$8,903.40
Concrete, CIP, formed reinforced	38	Steel reinforced concrete formed and cast-in-placed in formed structures such as walls or suspended slabs by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$457.84	11	\$5,036.24
Dozer, 80 HP	929	Track mounted Dozer with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$77.14	8	\$617.12
Demolition, concrete	1498	Demolition and disposal of reinforced concrete structures including slabs and walls. Includes labor and equipment.	Cubic Yards	\$10.55	4	\$42.20
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	64	\$1,738.24
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	8	\$254.96
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for	Hours	\$47.61	50	\$2,380.50

Materials

Aggregate, Gravel, Ungraded, Quarry Run	1099	Includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$34.45	26	\$895.70
Safety gate, span manure transfer channel or chute	1952	Safety gate to span manure transfer channel at push off wall or chute outlet. Minimum of 4 ft . tall with openings that will not pass a 6 inch or larger sphere. Includes materials only.	Feet	\$22.48	16	\$359.68
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and	Each	\$753.37	2	\$1,506.74

Practice: 634-Waste Transfer
Scenario: \#61-Agitator, small, mixing contents of a reception pit that is no more than 10 ft . deep.

Scenario Description:

This scenario is for a manure and wastewater agitator associated with an agricultural production operation to transfer agricultural waste product from the production source to a storage facility for proper utilization. This agitator is typically no more than 15 HP and is used for smaller waste storage facilities that are less than 10 feet deep. This scenario does not include a pump.Associated practices may include: PS 313 Waste Storage Facility; PS 533, Pumping Plant; PS 430, Irrigation Pipeline; PS 632, Waste Separation Facility; PS 468, Lined Waterway or Outlet; PS 590 Nutrient Management; PS 633, Waste Recycling. The waste transfer equipment is installed to address water quality concerns by facilitating timely land application of waste at agronomic rates according to the nutrient management plan. This scenario addresses the potential for surface water and groundwater quality degradation.

Before Situation:
In this typical setting, the operator has a small waste storage structure from a confined animal feeding operation without an effective waste handling and transfer system to manage the waste stream departing from the facility.

After Situation:
The typical installation would be for a small manure 10 HP agitator to put settled manure solids into suspension for removal from an animal waste storage structure and transfer to the next step of waste treatment, utilization or storage. Part of an animal waste management system to address water quality concerns. If required a wastewater reception pit, concrete channel or transfer conduit scenario may need to be contracted to support the operation of this waste transfer system equipment.

Feature Measure: Agitator for wastewater, installed
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: $\quad \$ 12,625.70$
Scenario Cost/Unit: $\$ 12,625.70$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	11	\$372.57
Materials						
Manure agitator, mixing depth less than 10 feet.	1768	Agitator to move put settled manure solids into suspension for removal from an animal waste storage structure. Materials only.	Each	\$11,894.33	1	\$11,894.33
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	2	\$358.80

Practice: 634-Waste Transfer
Scenario: \#62-Agitator, medium, mixing contents of a reception pit that is 10 ft to 15 ft . deep.

Scenario Description:

This scenario is for a manure and wastewater agitator associated with an agricultural production operation to transfer agricultural waste product from the storage facility to a site for proper utilization. This agitator is typically 30 HP and is used where the waste storage facility tank or pond is between 10 and 15 feet deep. This scenario does not include a pump.Associated practices may include: PS 313 Waste Storage Facility; PS 533, Pumping Plant; PS 430, Irrigation Pipeline; PS 632, Waste Separation Facility; PS 468, Lined Waterway or Outlet; PS 590 Nutrient Management; PS 633, Waste Recycling. The waste transfer equipment is installed to address water quality concerns by facilitating timely land application of waste at agronomic rates according to the nutrient management plan. This scenario addresses the potential for surface water and groundwater quality degradation.

Before Situation:
In this typical setting, the operator has waste production from a confined animal feeding operation without an effective waste handling and transfer system to manage the waste stream departing from the facility.

After Situation:

A typical installation would be for a medium 30 HP manure agitator to put settled manure solids into suspension for removal from an animal waste storage structure and transfer to the next step of waste treatment, utilization or storage. Part of an animal waste management system to address water quality concerns. If required a wastewater reception pit, concrete channel or transfer conduit scenario may need to be contracted to support the operation of this waste transfer system equipment.

Feature Measure: Agitator for wastewater, installed

Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$14,035.69
Scenario Cost/Unit: \$14,035.69

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	12	\$406.44
Materials						
Manure agitator, mixing depth 10 to 15 feet deep	1766	Agitator to move put settled manure solids into suspension for removal from an animal waste storage structure. Materials only.	Each	\$13,030.33	1	\$13,030.33
Mobilization						
Mobilization, small equipment	1138	Equipment <70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	2	\$598.92

Practice: 634-Waste Transfer
Scenario: \#63-Agitator, large, mixing contents of a reception pit that is over 15 ft . deep.

Scenario Description:

This scenario is for a large manure and wastewater agitator associated with an agricultural production operation to transfer agricultural waste product from the storage facility to a site for proper utilization. This agitator is typically 100 HP and is used where the waste storage facility tank or pond is greater than 15 feet deep. This scenario does not include a pump.Associated practices may include: PS 313 Waste Storage Facility; PS 533, Pumping Plant; PS 430, Irrigation Pipeline; PS 632, Waste Separation Facility; PS 468, Lined Waterway or Outlet; PS 590 Nutrient Management; PS 633, Waste Recycling. The waste transfer equipment is installed to address water quality concerns by facilitating timely land application of waste at agronomic rates according to the nutrient management plan. This scenario addresses the potential for surface water and groundwater quality degradation.

Before Situation:
In this typical setting, the operator has waste production from a confined animal feeding operation without an effective waste handling and transfer system to manage the waste stream departing from the facility.

After Situation:
A typical installation would be for a large 100 HP manure agitator to put settled manure solids into suspension for removal from an animal waste storage structure and facilitate the transfer of this material to the next step of waste treatment or utilization. This agitator is for a tank deeper than 15 feet and is part of an animal waste management system to address water quality concerns. This covers the cost of the agitator equipment materials and labor for the electrical hook-up.

Feature Measure: Agitator for wastewater, installed
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 16,264.85$
Scenario Cost/Unit: \$16,264.85

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	12	\$406.44
Materials						
Manure agitator, mixing depth greater than 15 feet deep.	1767	Agitator to move put settled manure solids into suspension for removal from an animal waste storage structure. Materials only.	Each	\$14,351.67	1	\$14,351.67
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 634-Waste Transfer
Scenario: \#64-Wastewater Flush Transfer System, Pipes only, 12 inch diameter

Scenario Description:

Installation of the pipe for a manure and wastewater flush system that provides the structures to utilize recycled wastewater to flush waste from a concrete surface into a waste storage pond. This may include pipe and valves, concrete flush lane, concrete curbs or gutter. The animal waste will be transferred by recycled flush water through the pipe system to rinse the concrete surface and carry the waste to a waste storage pond.Associated practices may include: PS 313 Waste Storage Facility; PS 533,
Pumping Plant; PS 430, Irrigation Pipeline; PS 632, Waste Separation Facility; PS 468, Lined Waterway or Outlet; PS 590 Nutrient Management; PS 633, Waste Recycling.
This scenario addresses the potential for surface water and groundwater quality degradation from animal waste.
Before Situation:
An animal production facility does not have an efficient method for collecting and transferring the animal waste produced. Wastewater however is available in a sufficient quantity to provide a flush cycle to clean the production floor and collect the waste materials deposited.

After Situation:

This practice scenario is suitable where wastewater can be recycled for a flush system. Supplemental piping is needed to install the recycled flush water as a means to collect the animal waste deposited on the concrete surfaces. The pipe design for the flush volume requires 100 feet of 12 inch diameter pipe for pressure flow. The flushed wastes are then piped from an existing collection basin to the waste storage pond an estimated length of 200 feet through a 12 inch diameter low pressure pipe with an open outlet at the pond. The cost includes excavation, placement of bedding as needed, flush and conveyance pipelines with valves and pipe backfill. Pumps must be contracted under pumping plant, PS 533.

Feature Measure: Flush - pipes
Scenario Unit: Feet
Scenario Typical Size: 300.00
Scenario Total Cost: \$21,199.74
Scenario Cost/Unit: \$70.67
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	8	\$3,237.60
Earthfill, Manually Compacted	50	Earthfill, manually compacted, includes equipment and labor	Cubic Yards	\$5.70	66	\$376.20
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	30	\$1,956.30
Tractor, agricultural, 120 HP	962	Agricultural tractor with horsepower range of 90 to 140 . Equipment and power unit costs. Labor not included.	Hours	\$74.02	8	\$592.16
Demolition, concrete	1498	Demolition and disposal of reinforced concrete structures including slabs and walls. Includes labor and equipment.	Cubic Yards	\$10.55	4	\$42.20
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	70	\$1,901.20
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	8	\$222.08
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	30	\$956.10
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	35	\$1,666.35

Materials

Aggregate, Sand, Graded, Washed

Aggregate, Gravel, Ungraded, Quarry Run
Pipe, PVC, dia. < 18 in., weight priced

45 Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.
1099 Includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.
1323 Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.

Mobilization

Mobilization, small equipment	1138	Equipment <70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	2	\$598.92
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 634-Waste Transfer
Scenario: \#65 - Wastewater basin, 5000 gal. and larger

Scenario Description:

Installation for a wastewater collection system that includes materials and structures to collect liquids of a design volume greater than 5000 gallons such as lot runoff, manure slurry and other contaminated liquid effluent. The wastewater collected in this pit is intended to be transferred to final storage within a 48 hour period. This scenario includes a reinforced concrete manure reception pit for temporary storage and transfer of manure and wastewater for an animal operation. Reception Pit includes safety fence w/gate or solid/grated cover. The wastewater will typically be transferred from the collection basin to a waste storage facility through a gravity or low pressure flow conduit. Associated practices may include: PS 313 Waste Storage Facility; PS 533, Pumping Plant; PS 430, Irrigation Pipeline; PS 632, Waste Separation Facility; PS 468, Lined Waterway or Outlet; PS 590 Nutrient Management; PS 633, Waste Recycling. This scenario addresses the potential for surface water and groundwater quality degradation from liquid wastewater running unchecked out of silage bunkers and off of animal feeding lots.

Before Situation:

Inadequate storage is available to collect wastewater from an operation that may contaminate surface or groundwater resources.

After Situation:

This practice scenario is suitable where the estimated maximum design volume for wastewater collected is greater than 5000 gallons of liquid waste within 48 hours or before it is stored or treated. The practice scenario typically includes materials and installation of flat and formed concrete for curbs and gutters inlet area to collect liquid slurry waste and the installation of an 12 ft wide $\times 16 \mathrm{ft}$ long x 6 ft deep reinforced concrete reception pit formed in place that includes safety fence $w /$ gate or solid/grated cover. The cost includes excavation, placement of subgrade as needed, forming, pouring and finishing of concrete structure and backfilling. Transfer pump if needed must be contracted under pumping plant, PS 533.

Feature Measure: Collection volume installed
Scenario Unit: Gallons
Scenario Typical Size: $8,600.00$
Scenario Total Cost: $\$ 27,475.83$

Scenario Cost/Unit: \$3.19
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, slab on grade, reinforced	37	Steel reinforced concrete formed and cast-in-placed as a slab on grade by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$404.70	11	\$4,451.70
Concrete, CIP, formed reinforced	38	Steel reinforced concrete formed and cast-in-placed in formed structures such as walls or suspended slabs by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$457.84	22	\$10,072.48
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	32	\$2,086.72
Dozer, 80 HP	929	Track mounted Dozer with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$77.14	12	\$925.68
Tractor, agricultural, 120 HP	962	Agricultural tractor with horsepower range of 90 to 140. Equipment and power unit costs. Labor not included.	Hours	\$74.02	16	\$1,184.32
Demolition, concrete	1498	Demolition and disposal of reinforced concrete structures including slabs and walls. Includes labor and equipment.	Cubic Yards	\$10.55	4	\$42.20
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	80	\$2,172.80
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	28	\$777.28
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	32	\$1,019.84
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	40	\$1,904.40
Materials						
Aggregate, Gravel, Ungraded, Quarry Run	1099	Includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$34.45	15	\$516.75
Safety chain tractor barrier	1725	3/8 in. transport chain barrier installed to prevent tractor equipment from entering wastewater collection basin or pit. Material cost only.	Feet	\$3.60	60	\$216.00

Mobilization

Mobilization, small equipment	1138	Equipment <70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	2	\$598.92
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 636-Water Harvesting Catchment
Scenario: \#3 - Storage Tank for Rainwater Harvesting System

Scenario Description:

This is for a storage tank for a rainwater harvesting system that sits on the ground surface to hold rainwater for later use by livestock, wildlife or other uses in accordance with the standard.

Before Situation:
Rainfall runoff immediately leaves the site, potentially causing erosion and water quality degradation. Rainwater is not stored and facility is dependent upon groundwater or other water supply system. Areas that might be useful for grazing are not utilized by livestock or wildlife because of lack of water.

After Situation:

The installed system will be sized to contain rainfall typically occurring in accordance with design guidance. Typical structure size to be fitted with rainwater harvesting tank, would be a 50 ' $\times 100$ ' gabled roof structure. The tank would be sized to capture 0.6 gallons/(square ft * inches of rainfall). The total storage in tank(s) for this structure would be 12,000 gallons based on capturing 4 inches of rainfall. The tank(s) must be set on a stable foundation. Rainwater will be filtered prior to storage.

Roof runoff structure, underground pipeline, and pumping system may also be needed to facilitate the collection of rainfall runoff and transfer to the storage tank. This practice encourages livestock and wildlife to utilize areas farther away from creeks and streams, thereby reducing the deposits of manure and feces close to streams and other water bodies. It also reduces the demand on groundwater during the dry season

Feature Measure: Storage Capacity
Scenario Unit: Gallons
Scenario Typical Size: 12,000.00
Scenario Total Cost: $\quad \$ 19,865.25$

Scenario Cost/Unit: \$1.66

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, formed reinforced	38	Steel reinforced concrete formed and cast-in-placed in formed structures such as walls or suspended slabs by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$457.84	3.1	\$1,419.30
Dozer, 80 HP	929	Track mounted Dozer with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$77.14	2	\$154.28
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	4	\$135.48
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	4	\$108.64
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	2	\$63.74
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44

Materials

Tank, Poly Enclosed Storage,
1075 Water storage tanks. Includes materials and shipping only.
Gallons $\quad \$ 1.42 \quad 12000$
>1,000

Mobilization

Mobilization, medium equipment 1139 Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.

Practice: 636-Water Harvesting Catchment
Scenario: \#13-Elevated Catchment
Scenario Description:
Build a wooden frame, 'post-and-pier' structure, with a corrugated metal roof (dimensions are 24 feet wide by 20 feet long), to collect rain water. The structure is supported by 9-each, 'poured-in-place', concrete footings (dimensions are 2'x2' square x1' thick), 8 feet on-center, with tie-down straps. Divert collected water from catchment area with guttering and downspout through a 4' diameter PVC Schedule 40 pipe, to a tank (not included)for a reliable storage and subsequent use. Resource concerns: Livestock production limitation - Inadequate livestock water; Insufficient water - Inefficient use of irrigation water.Associated practices: 382 - Fence; 614 Watering Facility; or 436 - Irrigation Reservoir.

Before Situation:
Inadequate water available to address resource concerns. Client hauls water to supply needs.
After Situation:
The guttering and downspouts collects the roof runoff and the water is conveyed through a pipe, by gravity, to a storage tank for use by livestock or a very small irrigation system. This system is the primary collection component of a Water Harvesting Catchment (CPS 636) facility. Divert collected water from roof with guttering and downspout through a 4' diameter PVC Sch-40 pipe,

Feature Measure: Surface Area of Catchment
Scenario Unit: Square Yard
Scenario Typical Size: 53.00
Scenario Total Cost: \$9,257.05
Scenario Cost/Unit: \$174.66
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, formed reinforced	38	Steel reinforced concrete formed and cast-in-placed in formed structures such as walls or suspended slabs by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$457.84	1.5	\$686.76
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	4	\$260.84
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	120	\$4,064.40
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	1	\$31.87
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	40	\$1,904.40
Materials						
Dimension Lumber, Treated	1044	Treated dimension lumber with nominal thickness equal or less than 2 inches. Includes lumber and fasteners	Board Feet	\$1.82	512	\$931.84
Pipe, PVC, dia. < 18 in., weight priced	1323	Polyvinyl Chloride (PVC) pressure rated pipe priced by the weight of the pipe materials for pipes with diameters less than 18 inch. Materials only.	Pound	\$2.76	214.8	\$592.85
Gutter, Downspout, PVC, 5 in.	1388	5 inch PVC guttering. Materials only.	Feet	\$1.28	24	\$30.72
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 638-Water and Sediment Control Basin
Scenario: \#1-Earthen Embankment

Scenario Description:

An earthen embankment or combination ridge and channel generally constructed across the slope and minor watercourses to form a sediment trap and water detention basin. A typical scenario is for the construction of 700 CY earthen embankment. Outlet is typically an underground outlet. Work is done with dozer, scraper, or road grader Costs include all equipment necessary to excavate, shape, grade and compact the Water and Sediment Control Basin and mobilization of equipment. This practice is utilized to reduce watercourse and gully erosion, trap sediment, reduce and manage onsite and downstream runoff. Sheet and rill erosion will be controlled by other conservation practices.

Before Situation:

Farming fields with excessive slope length has resulted in multiple rills and/or ephemeral gullies that will continue to worsen over time. The excessive erosion may lead to deterioration of receiving waters due to excessive sedimentation and nutrient transport. Resource concern addressed includes soil erosion and water quality by trapping sediment and/or reduce erosion in a field to protect riparian areas and water bodies from sediment deposition. Surface water causes erosion and the sediment (and potentially pesticides) to be transported into the riparian areas and water bodies downstream.

After Situation:

Water and Sediment Control Basin is constructed with 700 CY of excavation/earthfill with dozer, scraper and/or road grader. Rill and/or gully erosion is reduced. If riser and underground outlet are needed, then include Underground Outlet (620). Include Critical Area Planting (342) where necessary to prevent erosion following construction activities.

Feature Measure: Volume of WASCOB Embankment

Scenario Unit: Cubic Yards
Scenario Typical Size: 700.00
Scenario Total Cost: \$2,438.20
Scenario Cost/Unit: \$3.48
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160 . Equipment and power unit costs. Labor not included.	Hours	\$98.78	11.7	\$1,155.73
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	11.7	\$372.88
Mobilization						
Mobilization, large equipment	1140	Equipment >150HP or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 642-Water Well
Scenario: \#1-Well depths 150 feet or less

Scenario Description:

Typical construction of a well in areas where sufficient water is known to occur at depths up to or equal to 150 ' from the ground surface. The well shall be drilled, dug, driven, bored, jetted or otherwise constructed to an aquifer for water supply. The purpose of the well is to provide water for livestock. Wells for this scenario are typically based on a 100 ' minimum depth. Well casings are 6 ' in diameter, with a bore hole a minimum 3^{\prime} greater in diameter. Casing is installed to a depth of 75 ' with 25 ' of screen on the bottom. A filter is place the length of the screened interval and a seal the length of the casing.

Before Situation:
Livestock have insufficient water or are fenced from their water source.
After Situation:
Sufficient water is available for livestock. Utilize Well Water Testing (355) as associated practice. Use Critical Area Seeding (342) where necessary to prevent erosion following construction activities.

Feature Measure: Number of Wells
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$6,773.61

Scenario Cost/Unit: \$6,773.61
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Rotary Drill Rig	1595	Rotary drill rig including equipment and power unit costs. Labor not included.	Hours	\$347.89	9	\$3,131.01
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	9	\$244.44
Materials						
Aggregate, Sand, Graded, Washed	45	Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$42.64	0.5	\$21.32
Grout, cement	1333	Cement grout meeting ASTM specifications for well sealing. Includes both neat-cement grout and bentonite gout mixtures. Includes materials, equipment and labor to place.	Cubic Yards	\$607.10	0.5	\$303.55
Chlorine	1335	Liquid chlorine bleach. Includes materials only.	Gallons	\$6.95	1	\$6.95
Well Cap, 6 in.	1786	Well cap, 6 inch. Materials only.	Each	\$58.35	1	\$58.35
Well Casing, Plastic, 6 in.	1804	PVC or ABS non-threaded well casing, 6 inch. Materials only.	Feet	\$11.81	75	\$885.75
Well Screen, plastic, 6 in.	1999	6 inch PVC well screen. Materials only.	Feet	\$24.62	25	\$615.50
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 642-Water Well
Scenario: \#2 - Wells greater than 150 feet deep to 300 feet deep.

Scenario Description:

Typical construction of a well in areas where sufficient water is known to occur at depths greater than 150' and less than or equal to 300 ' from the ground surface. The well shall be drilled, dug, driven, bored, jetted or otherwise constructed to an aquifer for water supply. The purpose of the well is to provide water for livestock. An average well depth is 200 '. Well casings are 6 ' in diameter, with a bore hole a minimum 3^{\prime} greater in diameter. Casing is installed to a depth of 150 ' with 50 ' of screen on the bottom. A filter is place the length of the screened interval and a seal the length of the casing.

Before Situation:
Livestock have insufficient water or are fenced from their water source.
After Situation:
Sufficient water is available for livestock. Utilize Well Water Testing (355) as associated practice. Use Critical Area Seeding (342) where necessary to prevent erosion following construction activities.

Feature Measure: Number of Wells
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$12,486.68

Scenario Cost/Unit: \$12,486.68
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Rotary Drill Rig	1595	Rotary drill rig including equipment and power unit costs. Labor not included.	Hours	\$347.89	20	\$6,957.80
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	12	\$325.92
Materials						
Aggregate, Sand, Graded, Washed	45	Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$42.64	0.5	\$21.32
Grout, cement	1333	Cement grout meeting ASTM specifications for well sealing. Includes both neat-cement grout and bentonite gout mixtures. Includes materials, equipment and labor to place.	Cubic Yards	\$607.10	1	\$607.10
Chlorine	1335	Liquid chlorine bleach. Includes materials only.	Gallons	\$6.95	1	\$6.95
Well Cap, 6 in.	1786	Well cap, 6 inch. Materials only.	Each	\$58.35	1	\$58.35
Well Casing, Plastic, 6 in.	1804	PVC or ABS non-threaded well casing, 6 inch. Materials only.	Feet	\$11.81	150	\$1,771.50
Well Screen, plastic, 6 in.	1999	6 inch PVC well screen. Materials only.	Feet	\$24.62	50	\$1,231.00
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 642-Water Well
Scenario: \#3-Wells greater than 300 feet deep to 600 feet deep

Scenario Description:

Typical construction of a well in areas where sufficient water is known to occur at depths greater than 300' from the ground surface. The well shall be drilled, dug, driven, bored, jetted or otherwise constructed to an aquifer for water supply. The purpose of the well is to provide water for livestock. An average well depth is 450 '. Well casings are 6 ' in diameter, with a bore hole a minimum 3' greater in diameter. Casing is installed to a depth of 350' with 100' of screen on the bottom. A filter is placed the length of the screened section and a seal is placed along the length of the casing.

Before Situation:
Livestock have insufficient water or are fenced from their water source.
After Situation:
Sufficient water is available for livestock. Utilize Well Water Testing (355) as associated practice. Use Critical Area Seeding (342) where necessary to prevent erosion following construction activities.

Feature Measure: Number of Wells
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$19,606.81

Scenario Cost/Unit: \$19,606.81
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Rotary Drill Rig	1595	Rotary drill rig including equipment and power unit costs. Labor not included.	Hours	\$347.89	28	\$9,740.92
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Materials						
Aggregate, Sand, Graded, Washed	45	Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$42.64	1	\$42.64
Grout, cement	1333	Cement grout meeting ASTM specifications for well sealing. Includes both neat-cement grout and bentonite gout mixtures. Includes materials, equipment and labor to place.	Cubic Yards	\$607.10	2	\$1,214.20
Chlorine	1335	Liquid chlorine bleach. Includes materials only.	Gallons	\$6.95	2	\$13.90
Well Cap, 6 in.	1786	Well cap, 6 inch. Materials only.	Each	\$58.35	1	\$58.35
Well Casing, Plastic, 6 in.	1804	PVC or ABS non-threaded well casing, 6 inch. Materials only.	Feet	\$11.81	350	\$4,133.50
Well Screen, plastic, 6 in.	1999	6 inch PVC well screen. Materials only.	Feet	\$24.62	100	\$2,462.00
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 642-Water Well
Scenario: \#69-Wells greater than 600 feet deep

Scenario Description:

Typical construction of a well in areas where sufficient water is known to occur at depths greater than 600' from the ground surface. The well shall be drilled, dug, driven, bored, jetted or otherwise constructed to an aquifer for water supply. The purpose of the well is to provide water for livestock. An average well depth is 650 '. Well casings are 6 ' in diameter, with a bore hole a minimum 3' greater in diameter. Casing is installed to a depth of 550' with 100' of screen on the bottom. A filter is placed the length of the screened section and a seal is placed along the length of the casing. The well casing and screen are steel and stainless steel, respectively.

Before Situation:

Livestock have insufficient water or are fenced from their water source.
After Situation:
Sufficient water is available for livestock. Utilize Well Water Testing (355) as associated practice. Use Critical Area Seeding (342) where necessary to prevent erosion following construction activities.

Feature Measure: Number of Wells
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$40,796.74

Scenario Cost/Unit: \$40,796.74
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Rotary Drill Rig	1595	Rotary drill rig including equipment and power unit costs. Labor not included.	Hours	\$347.89	28	\$9,740.92
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	28	\$892.36
Materials						
Aggregate, Sand, Graded, Washed	45	Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$42.64	1	\$42.64
Grout, cement	1333	Cement grout meeting ASTM specifications for well sealing. Includes both neat-cement grout and bentonite gout mixtures. Includes materials, equipment and labor to place.	Cubic Yards	\$607.10	2	\$1,214.20
Chlorine	1335	Liquid chlorine bleach. Includes materials only.	Gallons	\$6.95	2	\$13.90
Well Cap, 6 in.	1786	Well cap, 6 inch. Materials only.	Each	\$58.35	1	\$58.35
Well Casing, Metal, 6 in.	1810	Steel well casing, 6 inch. Materials only.	Feet	\$31.20	550	\$17,160.00
Well Screen, stainless steel, 6 in.	1995	6 inch Stainless steel well screen. Materials only.	Feet	\$109.21	100	\$10,921.00
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 642-Water Well
Scenario: \#154-Dug Well

Scenario Description:

Typical construction is for the excavation of a shallow dug well. The purpose of the practice is to provide water for livestock. A typical dug well is 4 foot in diameter and 15 feet in depth. The well is excavated using a backhoe. Excavate to a depth where the water recharge is greater than the equipment can remove. Washed gravel is placed in the base of the dug opening. Concrete manhole risers are installed to hold the water. Pea gravel is placed above the washed gravel to transition to the earth backfill. The hole is backfilled and sloped to direct surface water away from entering the manhole cover.

Before Situation:
Livestock have insufficient water or are fenced from their water source.
After Situation:
Sufficient water is available for livestock. Utilize Pumping Plant (533) and Pipeline (516) as associated practices. Use Critical Area Seeding (342) where necessary to prevent erosion following construciton activities.

Feature Measure: No.
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$14,789.91

Scenario Cost/Unit: \$14,789.91
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	10	\$652.10
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	10	\$271.60
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	11	\$350.57
Materials						
Aggregate, Gravel, Graded	46	Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$44.85	3	\$134.55
Test, Standard Water Test, Well Water	309	Well Water Suitability test. Includes materials and shipping only.	Each	\$53.50	1	\$53.50
Manhole, $4 \mathrm{ft} \times 4 \mathrm{ft}$	1053	Precast Manhole with base and top delivered. 4 feet diameter $\times 4$ feet. Includes materials only.	Each	\$1,648.35	5	\$8,241.75
Aggregate, gravel, washed, pea gravel	1331	Washed and graded pea gravel river stone. Includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$48.02	1	\$48.02
Grout, cement	1333	Cement grout meeting ASTM specifications for well sealing. Includes both neat-cement grout and bentonite gout mixtures. Includes materials, equipment and labor to place.	Cubic Yards	\$607.10	7	\$4,249.70
Chlorine	1335	Liquid chlorine bleach. Includes materials only.	Gallons	\$6.95	5	\$34.75
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and	Each	\$753.37	1	\$753.37

Practice: 642-Water Well
Scenario: \#155-Shallow Well

Scenario Description:

Typical construction is for the installation of a well, in areas where sufficient water is known to occur within 100 feet of the ground surface. The well shall be drilled, dug, driven, bored, jetted or otherwise constructed to an aquifer for water supply. The purpose of the practice is to provide water for livestock or irrigation. An average well depth is 75 feet. Well casings are 4-6' in diameter. Steel casing is installed to a depth of 50 feet.

Before Situation:

Livestock have insufficient water or are fenced from their water source. There is insufficient water for use in micro-irrigation.

After Situation:

Sufficient water is available for livestock or irrigation. Utilize Pumping Plant (533) and Pipeline (516) as associated practices. Use Critical Area Seeding (342) where necessary to prevent erosion following construciton activities.

Feature Measure: No.
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 9,855.52$
Scenario Cost/Unit: $\$ 9,855.52$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Rotary Drill Rig	1595	Rotary drill rig including equipment and power unit costs. Labor not included.	Hours	\$347.89	10	\$3,478.90
Materials						
Test, Standard Water Test, Well Water	309	Well Water Suitability test. Includes materials and shipping only.	Each	\$53.50	1	\$53.50
Grout, cement	1333	Cement grout meeting ASTM specifications for well sealing. Includes both neat-cement grout and bentonite gout mixtures. Includes materials, equipment and labor to place.	Cubic Yards	\$607.10	2	\$1,214.20
Chlorine	1335	Liquid chlorine bleach. Includes materials only.	Gallons	\$6.95	1	\$6.95
Well Cap, 6 in.	1786	Well cap, 6 inch. Materials only.	Each	\$58.35	1	\$58.35
Well Casing, Metal, 6 in.	1810	Steel well casing, 6 inch. Materials only.	Feet	\$31.20	50	\$1,560.00
Well Screen, stainless steel, 6 in.	1995	6 inch Stainless steel well screen. Materials only.	Feet	\$109.21	25	\$2,730.25

Mobilization

Mobilization, medium equipment 1139 Equipment with $70-150 \mathrm{HP}$ or typical weights between 14,000 and \quad Each $\$ 753.37$ \$753.37

Practice: 642-Water Well
Scenario: \#156-Typical Well

Scenario Description:

Typical construction is for the installation of a well, in areas where sufficient water is known to occur 100-600 feet of the ground surface. The well shall be drilled, dug, driven, bored, jetted or otherwise constructed to an aquifer for water supply. The purpose of the practice is to provide water for livestock or micro-irrigation. An average well depth is 400 feet. Well casings are 4-6' in diameter. Steel casing is installed to a depth of 300 feet.

Before Situation:
Livestock have insufficient water or are fenced from their water source. There is insufficient water for use in micro-irrigation.

After Situation:

Sufficient water is available for livestock or micro-irrigation. Utilize Pumping Plant (533) and Pipeline (516) as associated practices. Use Critical Area Seeding (342) where necessary to prevent erosion following construciton activities.

Feature Measure: No.
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 36,456.92$
Scenario Cost/Unit: \$36,456.92

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Rotary Drill Rig	1595	Rotary drill rig including equipment and power unit costs. Labor not included.	Hours	\$347.89	40.5	\$14,089.55
Materials						
Test, Standard Water Test, Well Water	309	Well Water Suitability test. Includes materials and shipping only.	Each	\$53.50	1	\$53.50
Grout, cement	1333	Cement grout meeting ASTM specifications for well sealing. Includes both neat-cement grout and bentonite gout mixtures. Includes materials, equipment and labor to place.	Cubic Yards	\$607.10	2	\$1,214.20
Chlorine	1335	Liquid chlorine bleach. Includes materials only.	Gallons	\$6.95	1	\$6.95
Well Cap, 6 in.	1786	Well cap, 6 inch. Materials only.	Each	\$58.35	1	\$58.35
Well Casing, Metal, 6 in.	1810	Steel well casing, 6 inch. Materials only.	Feet	\$31.20	300	\$9,360.00
Well Screen, stainless steel, 6 in.	1995	6 inch Stainless steel well screen. Materials only.	Feet	\$109.21	100	\$10,921.00

Mobilization

Mobilization, medium equipment 1139 Equipment with $70-150 \mathrm{HP}$ or typical weights between 14,000 and \quad Each $\$ 753.37$ 1

Practice: 642-Water Well
Scenario: \#157-Deep Well

Scenario Description:

Typical construction is for the installation of a well, in areas where sufficient water is known to occur > 600 feet of the ground surface. The well shall be drilled, dug, driven bored, jetted or otherwise constructed to an aquifer for water supply. The purpose of the practice is to provide water for livestock or micro-irrigation. An average well depth is 800 feet. Well casings are 4-6' in diameter. Steel casing is installed to a depth of 600 feet.

Before Situation:
Livestock have insufficient water or are fenced from their water source. There is insufficient water for use in micro-irrigation.

After Situation:

Sufficient water is available for livestock or micro-irrigation. Utilize Pumping Plant (533) and Pipeline (516) as associated practices. Use Critical Area Seeding (342) where necessary to prevent erosion following construciton activities.

Feature Measure: No.
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 67,174.62$
Scenario Cost/Unit: \$67,174.62

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Rotary Drill Rig	1595	Rotary drill rig including equipment and power unit costs. Labor not included.	Hours	\$347.89	70.5	\$24,526.25
Materials						
Test, Standard Water Test, Well Water	309	Well Water Suitability test. Includes materials and shipping only.	Each	\$53.50	1	\$53.50
Grout, cement	1333	Cement grout meeting ASTM specifications for well sealing. Includes both neat-cement grout and bentonite gout mixtures. Includes materials, equipment and labor to place.	Cubic Yards	\$607.10	2	\$1,214.20
Chlorine	1335	Liquid chlorine bleach. Includes materials only.	Gallons	\$6.95	1	\$6.95
Well Cap, 6 in.	1786	Well cap, 6 inch. Materials only.	Each	\$58.35	1	\$58.35
Well Casing, Metal, 6 in.	1810	Steel well casing, 6 inch. Materials only.	Feet	\$31.20	600	\$18,720.00
Well Screen, stainless steel, 6 in.	1995	6 inch Stainless steel well screen. Materials only.	Feet	\$109.21	200	\$21,842.00

Mobilization

Mobilization, medium equipment 1139 Equipment with $70-150 \mathrm{HP}$ or typical weights between 14,000 and \quad Each $\$ 753.37$ \$753.37

Practice: 642-Water Well
Scenario: \#158-High Volume Shallow Well

Scenario Description:

Typical construction is for the installation of a well, in areas where sufficient water is known to occur within 100 feet of the ground surface. The well shall be drilled, dug, driven, bored, jetted or otherwise constructed to an aquifer for water supply. The purpose of the practice is to provide water for overhead irrigation. An average well depth is 75 feet. Well casings are $=8^{\prime}$ in diameter. Steel casing is installed to a depth of 50 feet.

Before Situation:
There is insufficient water for use in irrigation.
After Situation:
Sufficient water is available for livestock or micro-irrigation. Utilize Pumping Plant (533) and Pipeline (516) as associated practices. Use Critical Area Seeding (342) where necessary to prevent erosion following construciton activities.

Feature Measure: No.
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 14,857.67$
Scenario Cost/Unit: \$14,857.67

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Rotary Drill Rig	1595	Rotary drill rig including equipment and power unit costs. Labor not included.	Hours	\$347.89	10.5	\$3,652.85
Materials						
Test, Standard Water Test, Well Water	309	Well Water Suitability test. Includes materials and shipping only.	Each	\$53.50	1	\$53.50
Grout, cement	1333	Cement grout meeting ASTM specifications for well sealing. Includes both neat-cement grout and bentonite gout mixtures. Includes materials, equipment and labor to place.	Cubic Yards	\$607.10	2	\$1,214.20
Chlorine	1335	Liquid chlorine bleach. Includes materials only.	Gallons	\$6.95	1	\$6.95
Well Cap, 10 in .	1788	Well cap, 10 inch. Materials only.	Each	\$120.05	1	\$120.05
Well Casing, Metal, 10 in .	1812	Steel well casing, 10 inch. Materials only.	Feet	\$63.59	50	\$3,179.50
Well Screen, stainless steel, 10 in .	1996	10 inch Stainless steel well screen. Materials only.	Feet	\$235.09	25	\$5,877.25

Mobilization

Mobilization, medium equipment 1139 Equipment with 70-150 HP or typical weights between 14,000 and Each \$753.37 1 \$753.37

Practice: 642-Water Well
Scenario: \#159-High Volume Deep Well

Scenario Description:

Typical construction is for the installation of a well, in areas where sufficient water is known to occur > 600 feet of the ground surface. The well shall be drilled, dug, driven bored, jetted or otherwise constructed to an aquifer for water supply. The purpose of the practice is to provide water for livestock or micro-irrigation. An average well depth is 400 feet. Well casings are $=8$ ' in diameter. Steel casing is installed to a depth of 600 feet.

Before Situation:
There is insufficient water for use in irrigation.
After Situation:
Sufficient water is available for livestock or micro-irrigation. Utilize Pumping Plant (533) and Pipeline (516) as associated practices. Use Critical Area Seeding (342) where necessary to prevent erosion following construciton activities.

Feature Measure: No.
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$111,846.32
Scenario Cost/Unit: \$111,846.32

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Rotary Drill Rig	1595	Rotary drill rig including equipment and power unit costs. Labor not included.	Hours	\$347.89	70.5	\$24,526.25
Materials						
Test, Standard Water Test, Well Water	309	Well Water Suitability test. Includes materials and shipping only.	Each	\$53.50	1	\$53.50
Grout, cement	1333	Cement grout meeting ASTM specifications for well sealing. Includes both neat-cement grout and bentonite gout mixtures. Includes materials, equipment and labor to place.	Cubic Yards	\$607.10	2	\$1,214.20
Chlorine	1335	Liquid chlorine bleach. Includes materials only.	Gallons	\$6.95	1	\$6.95
Well Cap, 10 in .	1788	Well cap, 10 inch. Materials only.	Each	\$120.05	1	\$120.05
Well Casing, Metal, 10 in .	1812	Steel well casing, 10 inch. Materials only.	Feet	\$63.59	600	\$38,154.00
Well Screen, stainless steel, 10 in .	1996	10 inch Stainless steel well screen. Materials only.	Feet	\$235.09	200	\$47,018.00

Mobilization

Mobilization, medium equipment 1139 Equipment with $70-150$ HP or typical weights between 14,000 and \quad Each $\$ 753.37$ \$753.37

Practice: 642-Water Well
Scenario: \#168-High Volume Typical Well

Scenario Description:

Typical construction is for the installation of a well, in areas where sufficient water is known to occur 100-600 feet of the ground surface. The well shall be drilled, dug, driven, bored, jetted or otherwise constructed to an aquifer for water supply. The purpose of the practice is to provide water for livestock or micro-irrigation. An average well depth is 400 feet. Well casings are $=8$ ' in diameter. Steel casing is installed to a depth of 300 feet.

Before Situation:
There is insufficient water for use in irrigation.
After Situation:
Sufficient water is available for livestock or micro-irrigation. Utilize Pumping Plant (533) and Pipeline (516) as associated practices. Use Critical Area Seeding (342) where necessary to prevent erosion following construciton activities.

Feature Measure: No.
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 58,823.62$
Scenario Cost/Unit: \$58,823.62

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Rotary Drill Rig	1595	Rotary drill rig including equipment and power unit costs. Labor not included.	Hours	\$347.89	40.5	\$14,089.55
Materials						
Test, Standard Water Test, Well Water	309	Well Water Suitability test. Includes materials and shipping only.	Each	\$53.50	1	\$53.50
Grout, cement	1333	Cement grout meeting ASTM specifications for well sealing. Includes both neat-cement grout and bentonite gout mixtures. Includes materials, equipment and labor to place.	Cubic Yards	\$607.10	2	\$1,214.20
Chlorine	1335	Liquid chlorine bleach. Includes materials only.	Gallons	\$6.95	1	\$6.95
Well Cap, 10 in .	1788	Well cap, 10 inch. Materials only.	Each	\$120.05	1	\$120.05
Well Casing, Metal, 10 in .	1812	Steel well casing, 10 inch. Materials only.	Feet	\$63.59	300	\$19,077.00
Well Screen, stainless steel, 10 in .	1996	10 inch Stainless steel well screen. Materials only.	Feet	\$235.09	100	\$23,509.00

Mobilization

Mobilization, medium equipment 1139 Equipment with $70-150 \mathrm{HP}$ or typical weights between 14,000 and \quad Each $\$ 753.37$ \$753.37

Practice: 642-Water Well
Scenario: \#186-Steel or Copper, 100 ft . or deeper
Scenario Description:
Typical construction is for the installation of a well, in areas where sufficient water is known to occur greater than 2000 feet from the ground surface. The well shall be drilled, dug, driven, bored, jetted or otherwise constructed to an aquifer for water supply. The purpose of the practice is to provide water for livestock or micro-irrigation. An average well depth is 2500 feet. Plastic Surface casings are 6 in diameter with smaller diameter casing and screen extending into the water bearing formation. Steel casing and screen is installed to a typical depth of 2500 feet.

Before Situation:
Livestock have insufficient water or are fenced from their water source. There is insufficient water for use in micro-irrigation.
After Situation:
Sufficient water is available for livestock or micro-irrigation. Utilize Pumping Plant (533) and Pipeline (516) as associated practices. Use Critical Area Seeding (342) where necessary to prevent erosion following construction activities.

Feature Measure: Depth of Well
Scenario Unit: Linear Feet
Scenario Typical Size: 2,000.00
Scenario Total Cost: \$127,788.94
Scenario Cost/Unit: \$63.89

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Rotary Drill Rig	1595	Rotary drill rig including equipment and power unit costs. Labor not included.	Hours	\$347.89	120	\$41,746.80
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	200	\$5,432.00
Materials						
Test, Standard Water Test, Well Water	309	Well Water Suitability test. Includes materials and shipping only.	Each	\$53.50	1	\$53.50
Grout, cement	1333	Cement grout meeting ASTM specifications for well sealing. Includes both neat-cement grout and bentonite gout mixtures. Includes materials, equipment and labor to place.	Cubic Yards	\$607.10	1	\$607.10
Chlorine	1335	Liquid chlorine bleach. Includes materials only.	Gallons	\$6.95	1	\$6.95
Well Cap, 6 in.	1786	Well cap, 6 inch. Materials only.	Each	\$58.35	1	\$58.35
Well Casing, Stainless Steel/Copper, 2 in.	1796	Stainless steel or Copper well casing, 2 inch. Materials only.	Feet	\$35.00	2000	\$70,000.00
Well Casing, Plastic, 6 in.	1804	PVC or ABS non-threaded well casing, 6 inch. Materials only.	Feet	\$11.81	500	\$5,905.00
Well Screen, stainless steel, 2 in .	2278	2 inch Stainless steel well screen. Materials only.	Feet	\$49.45	50	\$2,472.50
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: 643 - Restoration of Rare or Declining Natural Communities
Scenario: \#1 - Monitoring and Management of existing habitat

Scenario Description:

Setting is any land use with the potential to provide habitat for species of plants and animals where requred habitat has been identified as Rare and Declining and the habitat potential is not currently being captured. The identified habitat limiting factors can be restored, enhanced or created, with the application of this practice alone, or in combination with other supporting and facilitating practices. Monitoring will be used to determine if the conservation system meets or exceeds the minimum quality criteria for the targeted species. Management will be implemented based on the findings of the habitat assessment and monitoring. Habitat management and monitoring needed to treat the resource concerns may require training, qualitative data assessment, water quality monitoring and is high in complexity and intensity. Examples of prescribed monitoring, include but are not limited to: qualitative data assessment or water quality monitoring, photo points taken, use documentation by livestock, regeneration/breeding success, completing an annual management records log, documenting wildlife sightings, documenting location and species of invasive plants and condition of vegetative and structural treatments. Decisions or treatments associated with this practice or facilitating practices will require income foregone. The planner will specify locations and identify the methods to the customer who will implement the monitoring and management plan.
Before Situation:
Existing degraded plant conditions and resulting inadequate habitat for fish and wildlife have resulted in inadequate use of the area by target rare and declining species and/or other associated wildlife species.

After Situation:
Based on the results of a State-approved wildlife habitat assessment process, the application of habitat management efforts and prescribed monitoring and necessary habitat management of invasive brush species have been implemented. With the application of this practice alone, or in combination with other supporting and facilitating practices, the inadequate conditions and deficiencies have been addressed. Monitoring has maximized the benefits of the needed habitat treatment efforts.

Feature Measure: Acres Managed and Monitored.
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$4,696.39
Scenario Cost/Unit: \$46.96
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	8	\$199.92
Mower, Bush Hog	940	Equipment and power unit costs. Labor not included.	Hours	\$31.13	16	\$498.08
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	8	\$142.88
Aerial Imagery	966	Aerial imagery. RBG (color), infrared or NDVI single image.	Acres	\$1.77	100	\$177.00
Rangeland/grassland field monitoring kit	967	Miscellaneous tools needed to complete rangeland/grassland monitoring. Materials may include camera, clippers, plot frame, scale, tape measure, etc. Includes materials and shipping only.	Each	\$49.50	2	\$99.00

Foregone Income

FI, Grazing AUMs
2079 Grazing is the Primary Land Use

Animal Unit Month	$\$ 11.70$	7	$\$ 81.90$
Hours	$\$ 33.87$	50	$\$ 1,693.50$
Hours	$\$ 131.20$	8	$\$ 1,049.60$

Materials

Miscellaneous, containers, traps, etc.
Mobilization

230 Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.
235 Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.

Labor

Skilled Labor

Specialist Labor

Pheromone Traps, Culture container with lid. Includes materials and shipping only.

Each

8\$39.201138 Equipment <70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.

Practice: 643-Restoration of Rare or Declining Natural Communities
Scenario: \#94 - High Species Richness on Cropland, with FI

Scenario Description:

On cropland, a resource concern has identified the need to re-establish, by planting of seed, a rare or declining plant community or community of local cultural importance. This practice scenario applies to areas in crop production. The restoration effort will consist of planting a rich and diverse mix of species native to the area and representative of the historic plant community. Seed for the desired species are not of limited supply (e.g. local genotypes), difficult to produce, or excessively difficult to harvest. Herbicide is applied, but no other seedbed preparation prior to seeding with the seed drill.

Before Situation:
Cropland suitable for the implementation of Restoration of Rare or Declining Communities (CPS 643).
After Situation:
Desired species have been established, restoring the identified rare and declining community, or community of local cultural importance.
Feature Measure: acres
Scenario Unit: Acres
Scenario Typical Size: 10.00

Scenario Total Cost: \$7,943.08						
Scenario Cost/Unit:		4.31				
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	10	\$66.30
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	10	\$201.30
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	10	\$2,276.70
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22
Materials						
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	10	\$126.60
Native Perennial Grasses, Legumes and/or Forb Mix for Targeted Wildlife/Pollinator Habitat or Ecological Restoration, moderate commercial availability	2619	Diverse mix of native perennial grasses, legumes and forbs, less than 50% grasses, may include biennials and a small percentage of annual species for establishment purposes and/or if allowed by the CPS. This is a mix composed of species required to meet specific wildlife/pollinator habitat or ecological requirements. Seed is moderately easy to purchase commercially. Includes materials and shipping.	Acres	\$469.81	10	\$4,698.10
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: 643 - Restoration of Rare or Declining Natural Communities
Scenario: \#95-Specialized Species on Fallow or Non-Cropland, no FI

Scenario Description:

A resource concern has identified the need to re-establish, by planting of seed, a rare or declining plant community or community of local cultural importance. This practice scenario applies to areas not recently in crop production, including fallow cropland currently supporting native or non-native vegetation needing control prior to planting. The restoration effort will consist of planting a rich and diverse mix of species native to the area and representative of the historic plant community. Seed for the desired species are of limited supply (e.g. local genotypes), difficult to produce, or excessively difficult to harvest. Light site preparation will occur prior to planting via herbicide burndown, burning, mowing or disking. If the plant community supported difficult to control species; those species were treated previous to the planting via the implementation of CPS Brush Management (Code 314) and/or Herbaceous Weed Control (Code 315).

Before Situation:
The site supports a common plant community (not rare or declining) in the region and does not require aggressive techniques for control, making the site suitable establishment of the identified rare or declining community or community of local cultural importance.

After Situation:

Desired specialized species have been established, restoring the identified rare and declining community, or community of local cultural importance.

Feature Measure: acres

Scenario Unit: Acres
Scenario Typical Size: 10.00
Scenario Total Cost: \$11,163.18

Scenario Cost/Unit: \$1,116.32

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	10	\$134.50
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	10	\$66.30
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	10	\$201.30
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22

Materials

Herbicide, Glyphosate

Native Perennial Grasses, Legumes and/or Forbs Mix for Targeted Wildlife/Pollinator Habitat or Ecological Restoration, limited species availability.

334 A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.
2618 Diverse mix of native perennial grasses, legumes and forbs, less than 50% grasses, may include biennials and a small percentage of annual species for establishment purposes and/or if allowed by the CPS. This is a highly specialized mix composed of species required to meet specific wildlife/pollinator habitat or ecological requirements. Seed may have limited availability and be difficult to obtain, e.g. milkweed species. Restricted for use with Wildlife Habitat Planting (420) and Restoration of Rare or Declining Natural Communities (643). Includes materials and shipping.

Mobilization
Mobilization, very small
1137 Equipment that is small enough to be transported by a pick-up truck
Each
$\$ 179.40$ with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.
Mobilization, small equipment
Each $\quad \$ 299.46 \quad 1$

Practice: 643 - Restoration of Rare or Declining Natural Communities
Scenario: \#96-High Species Richness on Fallow or Non-Cropland, no FI

Scenario Description:

A resource concern has identified the need to re-establish, by planting of seed, a rare or declining plant community or community of local cultural importance. This practice scenario applies to areas not recently in crop production, including fallow cropland currently supporting native or non-native vegetation needing control prior to planting. The restoration effort will consist of planting a rich and diverse mix of species native to the area and representative of the historic plant community. Seed for the desired species are not of limited supply (e.g. local genotypes), difficult to produce, or excessively difficult to harvest. Light site preparation will occur prior to planting via herbicide burndown, burning, mowing or disking. If the plant community supported difficult to control species; those species were treated previous to the planting via the implementation of CPS Brush Management (Code 314) and/or Herbaceous Weed Control (Code 315).

Before Situation:
The site supports a common plant community (not rare or declining) in the region and does not require aggressive techniques for control, making the site suitable establishment of the identified rare or declining community or community of local cultural importance.
After Situation:
Desired species have been established, restoring the identified rare and declining community, or community of local cultural importance.
Feature Measure: acres
Scenario Unit: Acres
Scenario Typical Size: 10.00
Scenario Total Cost: $\$ 5,800.88$

Scenario Cost/Unit: \$580.09
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	10	\$134.50
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	10	\$66.30
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	10	\$201.30
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22

Materials

Herbicide, Glyphosate

Native Perennial Grasses,
Legumes and/or Forb Mix for Targeted Wildlife/Pollinator Habitat or Ecological Restoration, moderate commercial availability

Mobilization

Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: 643 - Restoration of Rare or Declining Natural Communities
Scenario: \#97-Specialized Species on Cropland, with FI

Scenario Description:

On cropland, a resource concern has identified the need to re-establish, by planting of seed, a rare or declining plant community or community of local cultural importance. This practice scenario applies to areas in crop production. The restoration effort will consist of planting a mix of rich and diverse specialized of species that are native to the area and representative of the historic plant community. Seed for the specialized species are of limited supply (e.g. local genotypes), difficult to produce, or excessively difficult to harvest. Herbicide is applied, but no other seedbed preparation prior to seeding with the seed drill.

Before Situation:
Cropland suitable for the implementation of Restoration of Rare or Declining Communities (CPS 643).
After Situation:
Specialized species have been established, restoring the identified rare and declining community, or community of local cultural importance.
Feature Measure: acres

Scenario Unit: Acres

Scenario Typical Size: 10.00

Scenario Total Cost: \$13,305.38
Scenario Cost/Unit: \$1,330.54

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	10	\$66.30
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	10	\$201.30
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	10	\$2,276.70

Labor

Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22
Materials						
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	10	\$126.60
Native Perennial Grasses, Legumes and/or Forbs Mix for Targeted Wildlife/Pollinator Habitat or Ecological Restoration, limited species availability.	2618	Diverse mix of native perennial grasses, legumes and forbs, less than 50% grasses, may include biennials and a small percentage of annual species for establishment purposes and/or if allowed by the CPS. This is a highly specialized mix composed of species required to meet specific wildlife/pollinator habitat or ecological requirements. Seed may have limited availability and be difficult to obtain, e.g. milkweed species. Restricted for use with Wildlife Habitat Planting (420) and Restoration of Rare or Declining Natural Communities (643). Includes materials and shipping.	Acres	\$1,006.04	10	\$10,060.40
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40
Mobilization, small equipment	1138	Equipment <70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: 643 - Restoration of Rare or Declining Natural Communities
Scenario: \#100-Very small acres planting with seedlings or plugs

Scenario Description:

A resource concern has identified the need to re-establish, by planting of live plants (seedlings or plugs) to restore the site to the natural rare or declining plant community or community of local cultural importance. This practice scenario applies to areas not recently in crop production, including fallow cropland currently supporting native or non-native vegetation needing control prior to planting. The restoration effort will consist of planting a rich and diverse mix of species native to the area and representative of the historic plant community. Light site preparation will occur prior to planting via herbicide burndown followed by burning, mowing or disking. If the plant community supported difficult to control species; those species were treated previous to the planting via the implementation of CPS Brush Management (Code 314) and/or Herbaceous Weed Control (Code 315).

Before Situation:
The site supports a common plant community (not rare or declining) in the region and does not require aggressive techniques for control and the site is suitable for the implementation of Restoration on Rare or Declining Habitats (CPS Code 643).

After Situation:

Desired species have been established by planting seedlings or plugs, restoring the identified rare and declining community, or community of local cultural importance.

Feature Measure: acres

Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 3,670.77$

Scenario Cost/Unit: \$3,670.77
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	2	\$26.90
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	1	\$6.63
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44

Materials

Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	1	\$12.66
Tree \& Shrub, Specialty	1523	Locally-sourced, culturally significant, native, or other highly specialized trees and shrubs (e.g., American chestnut, American elm, Canada yew, Sagebrush). Potted or balled and burlapped tree or shrub, 5 gallon. Includes materials and shipping only.	Each	\$13.69	200	\$2,738.00
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40
Mobilization, small equipment	1138	Equipment <70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: 643 - Restoration of Rare or Declining Natural Communities
Scenario: \#107-Development of Shallow Micro-Topographic Features with Normal Farming Equipment.
Scenario Description:
This typical scenario is installed on open non-wetlands. The purpose is to increase plant species richness and diversity, create micro-habitats for invertebrates, increase water infiltration and reduce run-off. The area is plowed to loosen the soil. Then the soil is excavated with normal farming equipment (e.g. tractor and box-blade) to a depth of 2-6 inches and immediately deposited. This lowering and raising of a box-blade restores the original micro-topographic features (6' X 6' depressions and mounds) common to most landscapes and landforms prior to clearing, tilling, and annual mowing. Restoration of shallow but frequent micro-topographic features has been lost by the smoothing action of tillage, mowing and the original land-clearing. This scenario it typically implemented for ecosystem restoration projects such as prairie restoration and range-land restoration, and particularly on moderately well-drained soils.

Before Situation:
Micro-topographic features have been eliminated by past conversion to agriculture and/or past cultural practices. This has resulted in the lack of micro-soil moisture gradients within the field. The opportunity for plant species richness and diversity is minimal. Water storage potential is absent. Water rapidly runs off the field after rains and snow melt, carrying nutrients, solids and surface organic materials. No micro-ponding sites are available for invertebrate use.

After Situation:

Shallow micro-depressions and mounds are numerous. This varied micro-topographic features provided varied moisture gradients required for high plant species richness and diversity. Wildlife habitat is improved. Water conservation is increased, increasing vegetative production. Water quality is improved as the micro depressions capture sediments, nutrients and manure. Over time, the micro-depressions become more nutrient rich than the micro-highs, further increasing plant species richness.

Feature Measure: hours of tractor use

Scenario Unit: Acres
Scenario Typical Size: 20.00
Scenario Total Cost: \$1,019.48
Scenario Cost/Unit: \$50.97
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Primary	946	Includes heavy disking (offset) or chisel plow. Includes equipment, power unit and labor costs.	Acres	\$20.44	20	\$408.80
Tractor, agricultural, 120 HP	962	Agricultural tractor with horsepower range of 90 to 140 . Equipment and power unit costs. Labor not included.	Hours	\$74.02	6	\$444.12
Labor						
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	6	\$166.56

Practice: 643 -Restoration of Rare or Declining Natural Communities
Scenario: \#108 - Development of Deep Micro-Topographic Features with Heavy Equipment.

Scenario Description:

This typical scenario is installed on open non-wetlands, where micro-topographic features have been removed by past farming and/or ranching cultural practices. The purpose is to increase plant species richness and diversity, create micro-habitats for invertebrates, increase water infiltration and reduce run-off. The area is plowed 2 weeks prior to excavation to kill existing vegetation and allow for proper dirt work. Then the soil is excavated with track equipment (dozer) to a depth of 6-12 inches and immediately deposited. This lowering and raising of a dozer -blade restores the original deep micro-topographic features (10' X10' depressions and mounds) common to many landscapes and landforms prior to the lands conversion to agricultural lands. This scenario it typically implemented for ecosystem restoration projects such as wetland restoration (herbaceous or prior to planting of woody species), prairie restoration and range-land restoration. It is most commonly applied to well-drained soils as the purpose is for the micro-depression to pond water for short duration (less than 7 days).

Before Situation:

Micro-topographic features have been eliminated by past conversion to agriculture and/or past cultural practices. This has resulted in the lack of micro-soil moisture gradients within the field. The opportunity for plant species richness and diversity is minimal. Water storage potential is absent. Water rapidly runs off the field after rains and snow melt, carrying nutrients, solids and surface organic materials. No micro-ponding sites are available aquatic dependent invertebrates. Vertebrate wildlife habitat is lacking diversity.

After Situation:
Deep ($6^{\prime}-12^{\prime}$ depth) micro-depressions and mounds are numerous. These varied micro-topographic features provide varied moisture gradients required for development of high plant species richness and diversity. Wildlife habitat is improved. Water conservation is increased, increasing vegetative production. Water quality is improved as the deep micro-depressions capture sediments, nutrients and manure. Over time, the micro-depressions become more nutrient rich than the micro-highs, further increasing plant species richness.

Feature Measure: Hours
Scenario Unit: Acres
Scenario Typical Size: 20.00
Scenario Total Cost: \$2,654.37

Scenario Cost/Unit: \$132.72
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total

Equipment Installation

Dozer, 200 HP	928	Track mounted Dozer with horsepower range of 160 to 250 . Equipment and power unit costs. Labor not included.	Hours	\$180.17	6	\$1,081.02
Tillage, Primary	946	Includes heavy disking (offset) or chisel plow. Includes equipment, power unit and labor costs.	Acres	\$20.44	20	\$408.80
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	8	\$254.96

Mobilization

Mobilization, large equipment
1140 Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or
Each
1
$\$ 909.59$

Practice: 643 - Restoration of Rare or Declining Natural Communities

Scenario: \#109-Rock Structure

Scenario Description:

A low cost, low risk, rock structure will be installed at the head of the gully to arrest the continued cutting of the gully uphill. The structure is designed to protect the soil surface from further erosion while dissipating water energy. Below the head cut structure a series of structures will be installed to reduce water velocity and cause deposition of sediments to heal the gully and reduce drainage from the adjacent upland area. This will reduce the loss of and restore mesic riparian/meadow habitats. Typical installation involves the installation of one structure to address head-cutting and three additional structures to reduce stream velocity and collect sediment. The head cut structure typically requires 1.5 cubic yards of rock. Typical sediment checks require 1.0 cubic yards of rock. This scenario addresses Soil Erosion, classic gully and inadequate fish and wildlife habitat.

Before Situation:
Head cutting is proceeding uphill creating a gully that serves as a drain to the adjacent habitat lowering the local water table, reducing the available moisture to the adjacent mesic plant communities. Mesic riparian/meadow habitats shift to more xeric habitats and the period of active growth is reduced.

After Situation:

Head cut is arrested, stopping the advance of the gully uphill and protecting mesic riparian/meadow habitats upstream. Additionally, sediment is collected, raising the base of the gully and restoring the hydrologic regime and mesic riparian/meadow habitats. Re-vegetation is generally via natural regeneration. Should additional revegetation be needed, use vegetation standards, 612, Tree and shrub establishment, 550, Range Planting, 342 Critical Area Treatment, and/or 420 Wildlife Habitat Planting as appropriate.

Feature Measure: Cubic Yards

Scenario Unit: Cubic Yards

Scenario Typical Size: 4.50
Scenario Total Cost: \$3,295.21
Scenario Cost/Unit: \$732.27
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	8	\$521.68
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	1	\$24.99
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	2	\$35.72
Truck, dump, 8 CY	1401	Dump truck for moving bulk material. Typically capacity is 12 ton or 8 cubic yards. Includes equipment only.	Hours	\$54.41	8	\$435.28
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	8	\$270.96
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	64	\$1,738.24
Materials						
Rock Riprap, graded, angular, material and shipping	1200	Graded Rock Riprap for all gradation ranges. Includes materials and local delivery within 20 miles of quarry. Placement costs are not included.	Ton	\$59.63	4.5	\$268.34

Practice: 643 - Restoration of Rare or Declining Natural Communities
Scenario: \#110-Beaver Dam Analogues or Post-Assisted Log Structures

Scenario Description:

This scenario includes installation of low-tech woody structures (Beaver Dam Analogues (BDAs) or Post-Assisted Log Structures (PALS)) to facilitate process-based restoration in perennial, intermittent, or ephemeral streams and riparian areas. These simple structures are low, semi-permeable, and hand-built using native materials (wood, sod, etc.). Untreated wooden fence posts are added where necessary for extra stability. Structures are designed to be short-lived and used primarily as a temporary tool to promote natural process recovery. Structures mimic the function of natural beaver dams and wood accumulation in streams by reducing water velocities, raising water tables, enhancing floodplain connectivity, and inducing other dynamic ecological and hydrogeomorphic processes. Typically, complexes consisting of multiple structures within a reach are used to meet project objectives. Structures can be used on all land uses to address a variety of resource concerns and are strategically placed to meet specific purposes, such as, mesic and wetland vegetation expansion, floodplain development in incised channels, increased habitat complexity for fish and wildlife, and beaver re-establishment. Associated practices include: 528, 391, 644, 612, 382. Typical scenario includes 20 structures averaging 20 ft length each (total $=400$ lin ft of structures). Crew of one biologist, one crew manager, and three laborers (one skilled).

Before Situation:

Degraded stream channel and associated riparian/mesic/wetland vegetation are impaired by lack of structural complexity, channel incision, reduced floodplain connectivity, or inadeqaute habitat features. Extent of potential riparian/mesic/wetland vegetation is reduced due to lack of floodplain inundation or low water table. Channel condition/complexity is insufficient to permit proper hydrologic function, vegetation maintenance/recovery, or to support desired fish and wildlife habitat.

After Situation:

Low-tech structures mimic and promote ecological and physical processes that foster recovery of streams, riparian areas, wet meadows, or aquatic ecosystems. Channel complexity is increased and condition improved by promoting riparian/mesic/wetland vegetation expansion, reconnecting floodplains, and increasing habitat structure for fish and wildlife. Additional treatments may be needed through time until ecosystem is self-sustaining.

Feature Measure: Linear Feet
Scenario Unit: Linear Feet
Scenario Typical Size: 400.00
Scenario Total Cost: $\$ 18,300.24$
Scenario Cost/Unit: \$45.75
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	24	\$149.04
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	12	\$299.88
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	18	\$321.48
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	48	\$600.48
Portable Post Driver	2722	Gas or Hydraulic Powered Post Driver, Portable, <300 lbs, labor not included	Hours	\$17.49	48	\$839.52
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	72	\$2,438.64
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	120	\$3,259.20
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	60	\$2,856.60
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	30	\$3,936.00
Materials						
Post, Wood, Untreated, 3-4 in. x 7 ft.	2721	Round Post, Wood, Untreated, 3-4 inch diameter $\times 7$ feet	Each	\$8.55	400	\$3,420.00
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40

Practice: 644-Wetland Wildlife Habitat Management
Scenario: \#1 - Monitoring, management, Low intensity and complexity

Scenario Description:

This practice is applicable to natural and manmade wetlands as well as those previously restored,created or enhanced using conservation practices 657,658 or 659 . A habitat evaluation or appraisal method had determined one or more habitat elements are weak or missing. Based on a habitat assessment a plan of operations and management is prepared as a guiding document. Monitoring will determine if the conservation system meets or exceeds the minimum quality criteria for the targeted wildlife. In this case, water level manipulation is of low intensity (e.g. seasonal). The habitat management and monitoring requires no training, no qualitative data assessment, no water quality monitoring, and is low in complexity and intensity. Examples of prescribed monitoring include photos, livestock use documentation, regeneration/breeding success, management records log, documenting wildlife sightings, documenting location and species of invasive plants, and condition of vegetative and structural treatments.

Before Situation:
Existing degraded plant conditions and inadequate habitat for wildlife have resulted in low use of the area by target and associated wetland wildlife species.
After Situation:
At least twice annually, managment and monitoring activities are conducted. Based on results of a State-approved wildlife habitat assessment, prescribed wetland wildlife habitat management and monitoring have been implemented. Inadequate wetland wildlife habitat conditions have addressed.

Feature Measure: Acres Managed and Monitored

Scenario Unit: Acres

Scenario Typical Size: 80.00
Scenario Total Cost: \$1,153.18

Scenario Cost/Unit: \$14.41
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	8	\$199.92
Water management, Flooding \& dewatering	969	Includes equipment and power unit. Labor not included.	Acre Feet	\$188.59	2	\$377.18
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	2	\$358.80

Practice: 644 - Wetland Wildlife Habitat Management
Scenario: \#2 - Monitoring, management, high intensity

Scenario Description:

This practice is applicable to natural and manmade wetlands as well as those previously restored,created or enhanced using conservation practices 657,658 or 659 . Water control structures are present and allow water level manipulation. A habitat evaluation or appraisal method had determined one or more habitat elements are weak or missing. Based on a habitat assessment a plan of operations and management is prepared as a guiding document. Monitoring will determine if the conservation system meets or exceeds the minimum quality criteria for the targeted wildlife. In this case, water level manipulation is of high intensity with flooding and draining of wetlands slowely (4-6 weeks) and responsive to specific vegetation management goals and species. The habitat management and monitoring requires some training in plant identification and moist soil management and more visits to the site so that water management is responsive. Examples of prescribed monitoring include photos, livestock use documentation, regeneration/breeding success, management records log, documenting wildlife sightings, documenting location and species of invasive plants, and condition of vegetative and structural treatments.

Before Situation:
Existing degraded plant conditions and inadequate habitat for wildlife have resulted in low use of the area by target and associated wetland wildlife species.

After Situation:

Site is actively managed involving at least six annual visits to monitor and manipulate vegetation through water management. Based on results of a State-approved wildlife habitat assessment, prescribed wetland wildlife habitat management and monitoring have been implemented. Wetland wildlife habitat conditions are optimized.

Feature Measure: Acres Managed and Monitored.
Scenario Unit: Acres
Scenario Typical Size: 80.00
Scenario Total Cost: \$2,294.67

Scenario Cost/Unit: \$28.68

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	12	\$299.88
Water management, Flooding \& dewatering	969	Includes equipment and power unit. Labor not included.	Acre Feet	\$188.59	4	\$754.36
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	12	\$406.44
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	4	\$717.60

Practice: 645 - Upland Wildlife Habitat Management
Scenario: \#1-Habitat Creation - Low Intensity

Scenario Description:

Includes development, implementation, and use of an approved NRCS wildlife habitat management plan/system that specifically targets improving, enhancing, or creating wildlife habitat. When available State or Federal (NRCS, USFWS, etc.) agency specific Wildlife Habitat Assessments/Evaluation Guides and/or UWHM Supplements and/or Ecological Site Descriptions shall be used to assess habitat and develop a comprehensive habitat management plan/system for identified target specie(s). The habitat assessment shall be based on the three basic wildlife requirements: Food, Water, and Shelter (Cover/Space). The comprehensive wildlife habitat management plan/system shall be developed for the entire operating unit but may be implemented and eligible for payment on a per field basis or on the entire operating unit. Low intensity is participant agrees to address, i.e., improve, enhance, or create, only one requirement (e.g., Food, Water, Shelter) on the entire operating unit or on a per field basis. Facilitating practices may include but are not limited to: 314, 327, 338, 340, 378, 380, 382, 390, 391, 394, 472, 500, 511, 528, 550, 612, 614, 636, 646, 647, 666

Before Situation:
Habitat, based on a completed wildlife habitat assessment, is degraded for endemic or target wildlife species due to a lack of Food, Water, and/or Shelter (Cover/Space).
After Situation:
A comprehensive wildlife habitat management plan/system including associated practices is developed for the entire operating unit and implemented to address missing or degraded habitat elements for the targeted specie(s) as identified through the completed, site-specific wildlife habitat assessment. Additional targeted specie(s) information available from TWPD, USFWS, and NRCS UWHM Supplement should be taken into consideration for site specific habitat assessments. Implementation of the comprehensive wildlife habitat management plan and UWHM practice payment eligibility may be on the entire operating unit or specific field. Regardless of whether the wildlife plan is implemented on the entire operating unit or a specific field, implementation of planned practices and management activities must address and meet the minimum requirements for one habitat component (e.g., Food, Water and/or Shelter) as identified through the site-specific wildlife habitat assessment. Activities may also include any of the following: installation of wildlife escape ramps in existing watering facilities, monitoring livestock use of habitat (e.g., grazing exclosures), interseeding food sources (e.g., small grains, forbs, etc.), treating invasive brush species (e.g., salt cedar, Russian Olive, Eastern Red Cedar, mesquite, etc.) that are currently below the Brush Management Standard threshold of 10% canopy or 50 plants per acre, developing watering facility overflow ponds, wildlife friendly fencing of overflow ponds, modifying existing fences to make them wildlife friendly, leaving 14???, minimum, grain stubble heights from harvest until April 1st, leaving a minimum of 5 acres of unharvested grains per field, implementing census routes and harvest record keeping, installing nest boxes, bat houses/condos, and other pollinator nest structures, implementing water harvesting methods for wildlife, planting food plots, implementing edge feathering, etc. This list is not all inclusive and so other opportunities may exist that can improve habitat for the targeted specie(s) such as strip disking or mowing. The Zone Range Management Specialist or Wildlife Biologist should be contacted for assistance on other specific questions or treatments.

Feature Measure: Acers of Habitat Created

Scenario Unit: Acres

Scenario Typical Size: 75.00
Scenario Total Cost: \$813.35

Scenario Cost/Unit: \$10.84
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	2	\$262.40

Practice: 645 - Upland Wildlife Habitat Management

Scenario: \#2 - Habitat Creation - High Intensity

Scenario Description:

Includes development, implementation, and use of an approved NRCS wildlife habitat management plan/system that specifically targets improving, enhancing, or creating wildlife habitat. When available State or Federal (NRCS, USFWS, etc.) agency specific Wildlife Habitat Assessments/Evaluation Guides and/or UWHM Supplements and/or Ecological Site Descriptions shall be used to assess habitat and develop a comprehensive habitat management plan/system for identified target specie(s). The habitat assessment shall be based on the three basic wildlife requirements: Food, Water, and Shelter (Cover/Space). The comprehensive wildlife habitat management plan/system shall be developed for the entire operating unit but may be implemented and eligible for payment on a per field basis or on the entire operating unit. High intensity is participant agrees to address, i.e., improve, enhance, or create, all three requirement (e.g., Food, Water, Shelter) on the entire operating unit or on a per field basis. Facilitating practices may include but are not limited to: $314,327,338,340,378,380,382,390,391,394,472,500,511,528,550,612,614,636,646,647,666$

Before Situation:
Habitat, based on a completed wildlife habitat assessment, is degraded for endemic or target wildlife species due to a lack of Food, Water, and Shelter (Cover/Space).
After Situation:
A comprehensive wildlife habitat management plan/system including associated practices is developed for the entire operating unit and implemented to address missing or degraded habitat elements for the targeted specie(s) as identified through the completed, site-specific wildlife habitat assessment. Additional targeted specie(s) information available from TWPD, USFWS, and NRCS UWHM Supplement should be taken into consideration for site specific habitat assessments. Implementation of the comprehensive wildlife habitat management plan and UWHM practice payment eligibility may be on the entire operating unit or specific field. Regardless of whether the wildlife plan is implemented on the entire operating unit or a specific field, implementation of planned practices and management activities must address and meet the minimum requirements for all three habitat components (e.g., Food, Water and/or Shelter) as identified through the site-specific wildlife habitat assessment. Activities may also include any of the following: installation of wildlife escape ramps in existing watering facilities, monitoring livestock use of habitat (e.g., grazing exclosures), interseeding food sources (e.g., small grains, forbs, etc.), treating invasive brush species (e.g., salt cedar, Russian Olive, Eastern Red Cedar, mesquite, etc.) that are currently below the Brush Management Standard threshold of 10\% canopy or 50 plants per acre, developing watering facility overflow ponds, wildlife friendly fencing of overflow ponds, modifying existing fences to make them wildlife friendly, leaving 14???, minimum, grain stubble heights from harvest until April 1st, leaving a minimum of 5 acres of unharvested grains per field, implementing census routes and harvest record keeping, installing nest boxes, bat houses/condos, and other pollinator nest structures, implementing water harvesting methods for wildlife, planting food plots, implementing edge feathering, etc. This list is not all inclusive and so other opportunities may exist that can improve habitat for the targeted specie(s). The Zone Range Management Specialist or Wildlife Biologist should be contacted for assistance on other specific questions or treatments.

Feature Measure: acres of habitat created

Scenario Unit: Acres

Scenario Typical Size: 75.00

Scenario Total Cost:	$\$ 2,500.79$
Scenario Cost/Unit:	$\$ 33.34$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	40	\$248.40
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	40	\$1,086.40
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	8	\$1,049.60

Practice: 645 - Upland Wildlife Habitat Management
Scenario: \#297-Establishment of seasonal wildlife forage or cover on cropland, no FI

Scenario Description:

This typical scenario occurs on cropland. The habitat assessment identifed the need to provide seasonal forage or cover for target wildlife species or guild. This habitat need will be met through the establishment of annual food plants or cover plants by planting of seed. The typical scenario for seasonal forage or cover will be established outside of crop season, thus FI is not needed. Seedbed preparation (light tilliage) will be furthered by firming the seed bed by cultipacking the site. The only fertilizer need is N as this is cropland and P and K levels are sufficient. Cropland, so mobilization of equipment not needed.

Before Situation:
Cropland that fails to provided food or cover for target species at the proper location and season to meet the needs of wildlife.

After Situation:

The availability of high-quality seasonal forage or seasonal cover for the target wildlife species is provided. Target wildlife health is improved and populations are increased.

Feature Measure: acre
Scenario Unit: Acres
Scenario Typical Size: 10.00
Scenario Total Cost: \$1,730.70
Scenario Cost/Unit: \$173.07
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	10	\$134.50
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	10	\$75.00
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	10	\$201.30
Cultipacking	1100	Includes equipment, power unit and labor costs.	Acres	\$10.03	10	\$100.30
Materials						
Nitrogen (N), Ammonium Sulfate	70	Price per pound of N supplied by Ammonium Sulfate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$1.01	600	\$606.00
Annual Grasses, Legumes or Forbs	2732	A mix of annual grasses, legumes and/or forbs, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$61.36	10	\$613.60

Practice: 645 - Upland Wildlife Habitat Management
Scenario: \#298 - Establishment of seasonal forage or cover for wildlife on cropland, with FI

Scenario Description:

The habitat assessment identified the need to provide seasonal forage or cover for target wildlife species or guild. This habitat needs will be met through the establishment of annuals by planting of seed. The typical scenario is for cropland. Seed bed preparation is limited to one light disking, furthered by firming the seed bed by cultipacking the site. The only fertilizer need is N as this is cropland and P and K levels are sufficient. These wildlife forages or seasonal cover will be be available for wildlife during the cropping seasion, and are in lieu of the cash crops typically planted on the field. Thus, income from the cash crop will be foregone for a year.

Before Situation:

Cropland does not provide forage or cover needed for wildlife during the season on dearth.
After Situation:
Annual wildlife forages are planted in lieu of a cash crop. Target wildlife health is improved and populations are increased.
Feature Measure: acre

Scenario Unit: Acres

Scenario Typical Size: 10.00

Scenario Total Cost: $\$ 4,028.45$

Scenario Cost/Unit: \$402.85

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	10	\$134.50
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	10	\$75.00
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	10	\$201.30
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	5	\$1,138.35
FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	Acres	\$251.94	5	\$1,259.70

Materials

Nitrogen (N), Ammonium Sulfate	70	Price per pound of N supplied by Ammonium Sulfate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$1.01	600	\$606.00
Annual Grasses, Legumes or Forbs	2732	A mix of annual grasses, legumes and/or forbs, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$61.36	10	\$613.60

Practice: 645 - Upland Wildlife Habitat Management
Scenario: \#299-Establishment of seasonal forage or cover for wildlife on non-cropland.

Scenario Description:

The habitat assessment identifies the need to provide seasonal forage or cover for target wildlife species or guild. This habitat need will be met through the establishment of annual plants by planting of seed. The typical scenario is that this activity will occur on herbaceous areas, not currently in cropland. Due to existing dense vegetation, these area will need to be mowed 2-3 weeks prior to disking (primarily disking), then followed by a light disking. Seed bed preparation will be furthered by firming the seed bed by cultipacking the site. Mixed fertilizer is required to establish planted wildlife seasonal forage or seasonal cover..

Before Situation:

The existing habitat has an excess of herbaceous perineal habitat, but is lacking high-quality seasonal forage, or the existing cover is too dense and cover conditions found in annual plant communities are absent.

After Situation:
The availability of high-quality seasonal forage, or cover condition common in annual plant communities is provided and target wildlife health and populations are increased.

Feature Measure: acre
Scenario Unit: Acres
Scenario Typical Size: 10.00
Scenario Total Cost: $\$ 3,520.99$

Scenario Cost/Unit: \$352.10
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Mower, Bush Hog	940	Equipment and power unit costs. Labor not included.	Hours	\$31.13	3	\$93.39
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	20	\$269.00
Tillage, Primary	946	Includes heavy disking (offset) or chisel plow. Includes equipment, power unit and labor costs.	Acres	\$20.44	10	\$204.40
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	10	\$75.00
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	10	\$201.30
Cultipacking	1100	Includes equipment, power unit and labor costs.	Acres	\$10.03	10	\$100.30
Materials						
Nitrogen (N), Ammonium Sulfate	70	Price per pound of N supplied by Ammonium Sulfate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$1.01	1000	\$1,010.00
Phosphorus, P2O5	73	Price per pound of P2O5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	600	\$546.00
Potassium, K2O	74	K2O supplied by Muriate Of Potash. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.68	600	\$408.00
Annual Grasses, Legumes or Forbs	2732	A mix of annual grasses, legumes and/or forbs, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$61.36	10	\$613.60

Practice: 645 - Upland Wildlife Habitat Management
Scenario: \#348-Livestock Exclusion for Widlife

Scenario Description:

This scenario is applied to grazed Pasture, Range, Forest NRCS Land Uses where wildlife habitat is identified as a resource concern. Livestock are excluded from the planning unit for at least a year to allow the existing plant community sufficient time to respond favorably, creating improved wildlife habitat vegetative conditions. In addition to habitat vegetative condition, livestock may be excluded to reduce interactions between livestock and associated livestock management activities, and wildlife species that are particularly sensitive to such interactions. This scenario is for livestock exclusion and not seasonal livestock deferment in support of Prescribed Grazing (Code 528). The area is monitored per the State developed Livestock Exclusion for Wildlife Habitat Implementation Requirement document. Monitoring data is used to trigger adaptive wildlife habitat management actions, as provided in the implementation requirements document.

Before Situation:

The vegetation has been grazed at levels that reduce the functional value (e.g. plant community structure, diversity and richness) of the area for wildlife as identified by NRCS, or the livestock and accompanying livestock management activities create stress to wildlife species particularly sensitive to such activities.

After Situation:

The exclusion of livestock improves habitat conditions to the benefit of target wildlife species. Livestock exclusion, habitat or livestock exclusion monitoring, and resulting management actions has maximized the benefits of excluding livestock from the area. If fencing is required to exclude livestock, it will be planned and applied according to Fence (Code 382). Other associated practices might be Access Control (Code 472), Brush Management (Code 314), Herbaceous Weed Control (Code 315), Prescribed Burning (Code 338), and Structures for Wildlife (Code 649). The agricultural producer incurs a loss in income on the site, due to livestock exclusion.

Feature Measure: Acres excluded
Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: \$788.22
Scenario Cost/Unit: \$19.71
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Foregone Income						
FI, Grazing AUMs	2079	Grazing is the Primary Land Use	Animal Unit Month	\$11.70	50	\$585.00
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	6	\$203.22

Practice: 645 - Upland Wildlife Habitat Management

Scenario: \#362-Habitat Monitoring and Management, Low Intensity and Complexity

Scenario Description:

This scenario is applied to all landuse types including those with wildlife as a modifier, where any resource concern is identified for wildlife, and where low intensity and complexity of monitoring or management will treat the identified resource concern. Only 1-2 monitoring efforts are needed and each requiring less than 2 people and 4 hours per effort. The adaptive management actions such as cutting of limbs that are impeding access of birds into nest boxs, replacing damaged fence markers, cleaning of nest structures and debris around other structures requires only hand labor and less than 8 hours labor per year.

Before Situation:

Wildlife habitat is deficient due to the absence of annual monitoring and adaptive management actions of low intensity and complexity.

After Situation:

Widlife habitat is improved by implementation of annual adaptive management actions of low intensity and complexity.
Feature Measure: Monitoring efforts and adaptive m

Scenario Unit: Acres

Scenario Typical Size: 160.00
Scenario Total Cost: \$676.92

Scenario Cost/Unit: \$4.23
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	1	\$6.21
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	1.5	\$37.49
Rangeland/grassland field monitoring kit	967	Miscellaneous tools needed to complete rangeland/grassland monitoring. Materials may include camera, clippers, plot frame, scale, tape measure, etc. Includes materials and shipping only.	Each	\$49.50	1	\$49.50
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	7	\$190.12
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	3	\$393.60

Practice: 645 - Upland Wildlife Habitat Management
Scenario: \#363-Habitat Monitoring and Management, Medium Intensity and Complexity

Scenario Description:

This scenario is applied to all landuse types including those with wildlife as a modifier, where any resource concern is identified for wildlife, and where medium intensity and complexity of monitoring or management will treat the identified resource concern. Two or three monitoring efforts are needed and each requiring less than 2 people and less than 8 hours per effort. Two or three adaptive management efforts are required (such as cutting of limbs that are impeding access of birds into nest boxes, replacing damaged fence markers, cleaning of nest structures and debris around other structures). The adaptive mgmt requires hand labor and the occasional use of light equipment. A crew of 2 is needed for the hand labor efforts and the crew will require less than 16 total hours of labor per mgmt effort. Mowing of roads and trail is required to provide access for monitoring and management.

Before Situation:
Wildlife habitat is deficient due to the absence of annual monitoring and adaptive management actions of medium intensity and complexity.
After Situation:
Wildlife habitat is improved by implementation of annual adaptive management actions of medium intensity and complexity.
Feature Measure: Monitoring efforts and adaptive m
Scenario Unit: Acres
Scenario Typical Size: 160.00
Scenario Total Cost: \$2,373.93

Scenario Cost/Unit: \$14.84
Cost Details:

Component Name	ID	Description		Cos		

Equipment Installation

Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	4	\$24.84
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	6	\$149.94
Mower, Bush Hog	940	Equipment and power unit costs. Labor not included.	Hours	\$31.13	5	\$155.65
Rangeland/grassland field monitoring kit	967	Miscellaneous tools needed to complete rangeland/grassland monitoring. Materials may include camera, clippers, plot frame, scale, tape measure, etc. Includes materials and shipping only.	Each	\$49.50	1	\$49.50
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	20	\$543.20
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	5	\$138.80
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	10	\$1,312.00

Practice: 646 - Shallow Water Development and Management
Scenario: \#1-Low intensity, natural flooding/ponding

Scenario Description:

This scenario addresses inadequate habitat for wildlife on cropland. The resource concern is addressed by providing shallow water habitat for wildlife species that require shallow water for at least part of their life cycle. Sites are flooded up to a depth of 18 ' with an average depth of 9 '. Water is provided by natural flooding and/or precipitation

Before Situation:
The site is cropland and lacks habitat to provide optimum resting, nesting, and feeding needs for waterfowl, shorebirds, and other wildlife, e.g., amphibians, reptiles, mammals, invertebrates, etc.

After Situation:
Two percent of the crop is left standing in strips and several small scattered stands. A single or series of shallow water areas managed per standard and specification. Water levels are regulated to maintain temporary wildlife habitat. Timing and duration of flooding and de-watering is dependent on specific species requirements. Flooded sites vary from mudflats to water depths of 18 ' with an average depth of 9 '. Hydrologic conditions (frequency, depth, duration, and timing of flooding or ponding) provide optimum seasonal habitat for waterfowl, shorebirds, and other wildlife (amphibians, reptiles, mammals, invertebrates, etc.). If needed and dikes or water control structures are not currently present on the fields planned to be flooded, these practices may be planned for the same fields and cost shared under Structure for Water Control (587) and Dike (356). Depending on local conditions, other Conservation Practices may also be required.

Feature Measure: Acre of shallow water
Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: \$725.52

Scenario Cost/Unit: \$18.14
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Foregone Income						
FI, Corn Irrigated	1960	Irrigated Corn is Primary Crop	Acres	\$508.24	1	\$508.24
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28

Practice: 646-Shallow Water Development and Management
Scenario: \#2 - High intensity, artificial flooding/ponding (pumped water)

Scenario Description:

This scenario addresses inadequate habitat for wildlife on cropland. To facilitate practice codes 643, 644, 645, or 395, seasonal shallow water is provided annually for target species by purchasing of water, lifting of such water, monitoring of the water quality, response by target plant community, use by target flora or fauna. Sites are flooded up to a depth of 18 'with an average depth of 9 '. Monitoring and adaptive management accomplished of existing water control structures is accomplished to meet very specific conditions needed to address previously identified degraded plant conditions or inadequate habitat for wildlife. This high-level managmenet is applied to lands used for crop, pasture, hay, forests or wildlife lands where target flora and fauna have been identified as a primary concern. Loss of some level of crop, forage, hay or forest products may occur depending on site specific conditions.

Before Situation:
The site is a cropland with existing infrastructure (reliable water source, dikes, water control structures, pumps, gates) to provide a reliable seasonal water source. The site is not subject to frequent natural flooding and will require pumping to provide reliable shallow water. The potential benefits to target fauna and flora is not being captured.

After Situation:

Two percent of the crop is left standing in strips and several small scattered stands. A single or series of shallow water areas that are managed per standard and specification. Water levels are regulated to maintain temporary wildlife habitat. Timing and duration of flooding and de-watering is dependent on specific species requirements. Water is pumped into area to be flooded. Flooded sites vary from mudflats to water depths of 18 ' with an average depth of 9 '. Hydrologic conditions (frequency, depth, duration, timing) provide optimum seasonal habitat for waterfowl, shorebirds, and other wildlife (amphibians, reptiles, mammals, invertebrates, etc.). Depending on local conditions, other Conservation Practices may also be required.

Feature Measure: Acre of shallow water
Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: \$6,763.46
Scenario Cost/Unit: \$169.09
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Water management, Flooding \& dewatering	969	Includes equipment and power unit. Labor not included.	Acre Feet	\$188.59	30	\$5,657.70
Foregone Income						
FI, Corn Irrigated	1960	Irrigated Corn is Primary Crop	Acres	\$508.24	1	\$508.24
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	22	\$597.52

Practice: 647-Early Successional Habitat Development-Mgt

Scenario: \#2 - Disking

Scenario Description:

This practice addresses inadequate wildlife habitat for species requiring early successional habitat. This scenario provides early successional habitat by setting back succession and manipulating species composition by disking vegetation and creating bare ground. The typical setting for this scenario is at the edge of crop fields, in pastures, and in odd areas such as pivot corners. Where the management of woody plants is require to create or maintain early successional habitat conservation practice 314 brush management or 666 forest stand improvement should be used. Where chemical control of weeds, including invasives, is required to reduce competition for the desired plant community conservation practice 315 herbaceous weed control should be used. Where the seedbank is inadequate for natural regeneration and seeding is required, use conservation practice 550 range seeding or 327 Conservation Cover. Where the need is to create early successional habitat within or at the edge of woodland or forest use conservation practice 666 forest stand improvement to remove trees.

Before Situation:
The site is static or trending to higher successional plant species. The disturbance regeme to maintain a lower successional stage is lacking. Pastures are often monotypic, lacking in diversity. Bare ground for seedling establishment is absent. Stands are often dense and inhibit the movements of younger wildlife species such as game bird chicks.

After Situation:
The application of this scenario improves wildlife habitat for species requiring early successional plant communities by reducing competition and creating bare ground for the establishment of early successional plants. Additionally, brood rearing habitat is improved both by the resultant food resources and the increased openess of the plant community that allows chicks to negotiate the terrain and exploit those food resources.

Feature Measure: acres of treated area

Scenario Unit: Acres

Scenario Typical Size: 2.00
Scenario Total Cost: \$326.36
Scenario Cost/Unit: \$163.18

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	2	\$26.90
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: 647-Early Successional Habitat Development-Mgt
Scenario: \#9 - Mowing
Scenario Description:
This scenario address inadequate habitat for fish and wildlife where setting back succession by mowing will improve habitat for the target species. Mowing can be used to increase structural diversity, enhance forb establishment and encourage re-sprouting of preferred browse and pollinator plants. Mowing can prompt regrowth of milkweed plants allowing them to be available for fall migrating monarch butterflies.

Before Situation:
The site is static or trending to later successional plant community. The disturbance regime to maintain an earlier successional plant community is lacking. Brush is shading out preferred herbaceous plants and preferred browse species has grown beyond the reach browsing wildlife species. Vegetation lacks structural diversity. Because of a lack of disturbance, milkweed plants senescence and are not available to host monarch butterfly larva during the fall migration.

After Situation:
Early successional habitat is restored/maintained. Mowing will provide more sun light for forb establishment. The heterogeneity of the habitat structure will be increased. Quantity and quality of browse is improved for target wildlife species. In response to mowing milkweeds growth and flowering will extend into the fall when monarch butterflies are migrating southward.

Feature Measure: Acres of Treated Area
Scenario Unit: Acres
Scenario Typical Size: 2.00
Scenario Total Cost: \$358.35
Scenario Cost/Unit: \$179.18
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Mower, Bush Hog	940	Equipment and power unit costs. Labor not included.	Hours	\$31.13	1	\$31.13
Labor						
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	1	\$27.76
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: 647-Early Successional Habitat Development-Mgt
Scenario: \#20 - Strip spraying
Scenario Description:
Chemical herbicide is sprayed in strips across a grass dominated field treating ?? of the acres to increase the forb composition and bare ground to support early successional species. Typical size based on 10 acres which $=25 \%$ of a 40 acre field.

Before Situation:
Grass dominates (>75\% cover) the herbaceous community where an evaluation of wildlife habitat indicates a food resources and/or the availability of bare ground is a limiting factor.

After Situation:
Grass density is reduced, forbs increase in cover and diversity from seeds/rootstock existing in the seedbank and the amount of bare ground is increased to improve foraging opportunities for early successional species.

Feature Measure: Acres

Scenario Unit: Acres

Scenario Typical Size: 10.00
Scenario Total Cost: \$990.27

Scenario Cost/Unit: \$99.03

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	10	\$66.30
Materials						
Herbicide, Sethoxydim	339	A selective post emergence herbicide used to control annual and perennial grass weeds. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$17.06	10	\$170.60
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: 647-Early Successional Habitat Development-Mgt
Scenario: \#28-Habitat Non-Selective Herbicide

Scenario Description:

This scenario addresses inadequate habitat for fish and wildlife where setting back succession by applying herbicide to fully control undesirable plant growth will improve habitat for the target species. Thorough vegetation control is needed to increase habitat structural and botanical diversity by creating opportunities for grasses and forbs, preferred by target wildlife species during certain stages of life, to compete for sunlight, water, and space. In this typical scenario a non-selective herbicide containing the active ingredient Glyphosate is applied by ground equipment to the target area. The typical setting for this scenario is at the edge of crop fields, the edge of pastures, the edge of forests, and in odd areas around agricultural operations.

Before Situation:

The site is static or trending to later successional plant community. The disturbance forces needed to maintain an earlier successional plant community is lacking. Pastures are often monotypic, lacking in diversity. Competition for sunlight from dense grass stands prevents seedling establishment. Stands are often dense and inhibit the movements of young wildlife such as game birds chicks. Area lacks diversity in the height of vegetation.

After Situation:
Early successional habitat conditions are created or improved. The diversity of the habitat structure and composition has been increased.
Feature Measure: Width and length of treated area
Scenario Unit: Acres
Scenario Typical Size: 2.00
Scenario Total Cost: \$38.58
Scenario Cost/Unit: \$19.29

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	2	\$13.26
Materials						
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	2	\$25.32

Practice: 647-Early Successional Habitat Development-Mgt
Scenario: \#29-Habitat Non-Selective Herbicide

Scenario Description:

This scenario address inadequate habitat for fish and wildlife where setting back succession by applying herbicide to fully control undesirable plant growth will improve habitat for the target species. Throrough vegetation control is needed to increase habitat structural and botanical diversity by creating opportunities for grasses and forbs, preferred by target wildlife species during certain stages of life, to compete for sunlight, water and space. In this typical scenario a non-selective herbicide containing the active ingredient Glyphosate is applied by ground equipment to the target area. The typical setting for this scenario is at the edge of crop fields, the edge of pastures, the edge of forests, and in odd areas around agricultural operations.

Before Situation:

The site is static or trending to later successional plant community. The disturbance forces needed to maintain an earlier successional plant community is lacking. Pastures are often monotypic, lacking in diversity. Competition for sunlight from dense grass stands prevents seedling establishment. Stands are often dense and inhibit the movements of young wildlife such as game bird chicks. Area lacks diversity in the height of vegetation.

After Situation:
Early successsional habitat conditions are created or improved. The diversity of the habitat structure and composition has been increased.
Feature Measure: width and length of treated area
Scenario Unit: Acres
Scenario Typical Size: 2.00
Scenario Total Cost: \$38.58

Scenario Cost/Unit: \$19.29
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	2	\$13.26
Materials						
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	2	\$25.32

Practice: 649-Structures for Wildlife

Scenario: \#1 - Nesting Box, Small no pole
Scenario Description:
A structure is provided to support the nesting and rearing of smaller targeted species, such as bees and birds, and is directly mounted to a tree, building or other structure. Addresses resource concern for wildlife of inadequate cover/shelter
Before Situation:
The area lacks sufficient nesting habitat sites (natural cavities). A suitable location to mount the box is available.
After Situation:
The installation of nesting and rearing boxes support the life-cycle needs of targeted speces, such as birds, bats and pollinators. These structures/features enhance habitat, cover, and improve species survivability.

Feature Measure: Number of structures
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$46.27
Scenario Cost/Unit: \$46.27
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	0.5	\$13.58
Materials						
Habitat Box, Bird	251	Bluebird nesting box to increase nesting success. Each is $1-1 / 2 \times 6 \times 12-$ $1 / 2$ Inch with a 1-1/2 inch diameter opening. Includes materials and shipping.	Each	\$32.69	1	\$32.69

Practice: 649-Structures for Wildlife
Scenario: \#2 - Nesting Box, Small, with wood pole

Scenario Description:

Constructing a nest box and mounting on a pole. A structure is provided to support the nesting and rearing of targeted species, such as pollinators and birds. Trees, buildings or other structures are not available. These structures are designed to meet targeted species biology and life history needs. Addresses Resource Concern: Inadequate Cover/Shelter.

Before Situation:
This area lacked sufficient nesting sites to support viable populations of targeted species. Location and conditions suggest that predator guards are not needed.

After Situation:

The installation nesting and rearing boxes support the life-cycle needs of targeted speces, such as blue birds and waterfowl. Location and conditions suggest that predator guards are not needed. These structures/features enhance habitat, cover, and improve species survivability.

Feature Measure: Number of structures with poles.

Scenario Unit: Number

Scenario Typical Size: 1.00
Scenario Total Cost: \$77.75

Scenario Cost/Unit: \$77.75

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	0.75	\$20.37
Materials						
Post, Wood, CCA treated, 6 in. x 8 ft.	12	Wood Post, End 6 inch dia. X 8 ft., CCA Treated. Includes materials and shipping only.	Each	\$24.69	1	\$24.69
Habitat Box, Bird	251	Bluebird nesting box to increase nesting success. Each is 1-1/2 $\times 6 \times 12-$ $1 / 2$ Inch with a 1-1/2 inch diameter opening. Includes materials and shipping.	Each	\$32.69	1	\$32.69

Practice: 649-Structures for Wildlife
Scenario: \#3 - Nesting Box, Large

Scenario Description:

A structure is provided to support the nesting and rearing of larger targeted species such as waterfowl, bats and barn owls, and is directly mounted to a tree, building or other structure. These structures are designed to meet targeted species biology and life history needs. Addresses Resource Concern: Inadequate Cover/Shelter.

Before Situation:
The area lacks sufficient overall habitat conditions to support viable populations of targeted species. A suitable location to mount the box is available. Predator guards not needed.

After Situation:
The installation of nesting and rearing boxes support the life-cycle needs of targeted species, such as birds, bats and pollinators. Because of suitable location and conditions the nesting box can be directly mounted such as on a tree or building, thereby eliminating the need for mounting poles and predator guards. Species such as cavity dwelling birds and pollinators use this approach, but this treatment is not limited to those species. These structures/features enhance habitat, cover, and improve species survivability.

Feature Measure: Number of structures.
Scenario Unit: Each
Scenario Typical Size: 1.00

Scenario Total Cost:	$\$ 144.37$
Scenario Cost/Unit:	$\$ 144.37$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	0.5	\$13.58
Materials						
Habitat Box, waterfowl	1449	Wood Duck Box, typically $24 \times 11 \times 12$ inch with 4 inch wide oval entrance, single. Includes material and shipping only.	Each	\$130.79	1	\$130.79

Practice: 649-Structures for Wildlife
Scenario: \#4 - Nesting Box or Raptor Perch, Large, with Pole
Scenario Description:
Constructing a nest box or rapture perch on a steel pole with a predator guard where needed. A structure is provided to support the nesting and rearing of larger targeted species such as woodducks, bats, barn owls or to provide needed perches or nesting structures for raptures. Addresses Resource Concern: Inadequate Cover/Shelter.

Before Situation:
The area lacks sufficient overall nesting sites to support viable populations of targeted species. Predator guards provide needed protection of target species during nesting and rearing.

After Situation:

The installation of pole mounted nesting and rearing boxes support the life-cycle needs of targeted species, such as bats and waterfowl.
Feature Measure: Number of structures
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$431.36
Scenario Cost/Unit: \$431.36
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Concrete, CIP, formless, non reinforced	36	Non reinforced concrete cast-in-placed without forms by chute placement. Typical strength is 3000 to 4000 psi. Includes materials, labor and equipment to transport, place and finish.	Cubic Yards	\$177.66	0.1	\$17.77
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	0.5	\$8.93
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	1.5	\$40.74
Materials						
Pipe, steel, galvanized, threaded, 1 1/4 inch, schedule 40	256	Spec. A-53, includes coupling and clevis hanger assembly sized for covering, 10 ft . OC	Feet	\$18.22	10	\$182.20
Habitat Box, waterfowl	1449	Wood Duck Box, typically $24 \times 11 \times 12$ inch with 4 inch wide oval entrance, single. Includes material and shipping only.	Each	\$130.79	1	\$130.79
Predator Guard	1461	Predator guards (i.e. stove pipes, cone, hole guard, etc.) for habitat boxes. Materials only. Includes material and shipping only.	Each	\$50.93	1	\$50.93

Practice: 649-Structures for Wildlife
Scenario: \#5 - Escape Ramp
Scenario Description:
Retrofit an existing watering trough/tank with an appropriately designed and installed wildlife escape ramp to reduce wildlife mortality and maintain water quality within the watering facility.

Before Situation:
Existing watering facilities lack escape potential for wildlife. This results in death of the small wildlife accessing the facility for water, and resulting poor water quality as the animal decays.

After Situation:
Watering facilities provide wildlife safe access. Water quality is improved within the watering facility and wildlife mortality is reduced.
Feature Measure: Each Ramp
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$89.78
Scenario Cost/Unit: \$89.78
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	0.5	\$13.58
Materials						
Wildlife Escape Ramp	242	Pool size $15^{\prime} \times 3{ }^{\prime}$ ', for small mammals less than one pound.	Each	\$76.20	1	\$76.20

Practice: 649-Structures for Wildlife

Scenario: \#6 - Fence Markers, Vinyl Undersill

Scenario Description:

Existing fences are retrofitted with vinyl markers that increase wire visibility and reduce mortality due to collision for wildlife species of concern. Markers are installed approximately every 3 feet along top wire. Scenario is typically implemented along fences in potential high risk areas (red areas in SGI Fence Collision Risk Model) or where a known problem exists.

Before Situation:
Wire fences located in high risk areas pose a collision threat to wildlife of special concern.
After Situation:
Fence related mortality of species of special concern is reduced.
Feature Measure: feet of fence marked
Scenario Unit: Feet
Scenario Typical Size: 1,320.00
Scenario Total Cost: \$289.93

Scenario Cost/Unit: \$0.22

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	0.5	\$8.93
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	5	\$135.80

Materials

Practice: 650-Windbreak/Shelterbelt Renovation
Scenario: \#7-Supplemental Planting-Containerized Seedlings
Scenario Description:
Parts of the windbreak being renovated have died. Supplemental plantings of large containerized (2-3 gallons) trees/shrubs will improve the effectiveness and longevity of the windbreak. Planting is achieved through hand planting.

Before Situation:
Mortality of woody plants has resulted in openings in the windbreak, inhibiting windbreak effectiveness. Resource concerns include soil erosion - wind erosion, degraded plant condition -Inadequate structure and composition, and livestock production limitation - inadequate livestock shelter.

After Situation

The integrity and function of the windbreak is restored. The windbreak/shelterbelt is expanded through the hand-planting of containerized tree and shrub seedlings.
Feature Measure: Number of trees planted
Scenario Unit: Each

Scenario Typical Size: 50.00
Scenario Total Cost: \$1,291.01
Scenario Cost/Unit: \$25.82
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	3	\$74.97
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	12	\$150.12
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	12	\$325.92
Materials						
Tree, Conifer, Potted, Medium	1537	Potted conifer seedling, 2 gallons or larger. Includes materials and shipping only.	Each	\$14.80	50	\$740.00

Practice: 654-Road/Trail/Landing Closure and Treatment
Scenario: \#1-Road/Trail Abandonment/Rehabilitation (Light)

Scenario Description:

Reshaping a 12' wide trail to natural conditions. This scenario includes using light equipment such as a backhoe for the installation of water control devices such as water bars, rolling dips, controlling access, use of woody residue and pulling drainages on 500 feet of road on 35% hill slopes and a moderate grade. Cool season Native grasses are re-established by seeding. Some light hand work may be needed to clear site for the equipment. This practice addresses one or more resource concerns: Excessive sediment in surface waters, Habitat degradation, and Concentrated flow erosion. Since not all segments of the road/trail system may require this level of treatment, this scenario applies only to those segments that are causing the resource concerns.

Before Situation:

The legacy trail/roads are severely affecting wetland/riparian areas, slope stability, and water quality. The trail/roads can no longer serve it's intended use and is incapable of handling needed equipment and traffic. Alternative access is possible. Therefore abandonment and rehabilitation is the best way to address the resource concerns and problems that are being created.

After Situation:

The resource concerns are addressed by the abandonment of the road and its drainage elements, and by re-seeding to native grasses.

Feature Measure: length

Scenario Unit: Feet
Scenario Typical Size: 500.00
Scenario Total Cost: \$1,838.73

Scenario Cost/Unit: \$3.68

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Backhoe, 80 HP	926	Wheel mounted backhoe excavator with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$65.21	6	\$391.26
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	3	\$18.63
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	1	\$13.45
Seeding Operation, Broadcast, Ground	959	Broadcast seed via ground operation. May require post tillage operation to incorporate seed. Includes equipment, power unit and labor costs.	Acres	\$13.81	1	\$13.81
Water Bars	1500	Installation of graded trail water controlling structures such as water bars, broad based dips for erosion control. Typical cross section is 1.5 feet high with $4: 1$ side slopes yielding about $0.33 \mathrm{CY} / \mathrm{ft}$ of length.	Feet	\$3.12	85	\$265.20
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	3	\$81.48
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	6	\$166.56

Materials

Native Perennial Grasses, Low Density

2750 Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.

Mobilization

Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and	Each $\quad \$ 753.37 \quad 1$	153.37

Practice: 654 - Road/Trail/Landing Closure and Treatment
Scenario: \#2-Road/Trail/Landing Closure and Treatment, <35\% hillslope

Scenario Description:

The practice includes permanent road/trail/landing closure, treatment, or removal and to hydrologically reconnect the hillslope to applicable drainage networks. The treatment will prohibit future access. The typical scenario includes decommissioning a 500 ft of an 18 -foot wide trail/road with a landing on 30% forest slopes, using heavy equipment such as a bulldozer or similar equipment (excavator or road grader with ripper) to re-shape and obliterate the road base and landings in order to re-establish native cool season vegetation. It also includes restoring hydrology with the removal of culverts and drainage fills. Necessary erosion control measures such as water bars are installed. Some hand-work may be necessary to clear the site for the equipment. The work will be supervised by a consultant forester, land manager, or other resource professional. Tree/Shrub Site Prep is not included, however, Tree/Shrub Planting is recommended. When completed, there is no additional maintenance with heavy equipment needed. This practice addresses one or more resource concerns: Excessive sediment in surface waters and Concentrated flow erosion. Since not all segments of the road/trail system may require this level of treatment, this scenario applies only to those segments that are causing the resource concerns.

Before Situation:

The legacy trail/road is severely affecting wetlands, riparian areas, slope stability, water quality and possibly T\&E species. The trail/road can no longer serve it's intended use and is incapable of handling needed equipment and traffic. Alternative access is possible. Therefore abandonment and site restoation are the best approaches to address the resource concerns and problems that are being created.

After Situation:

The resource concerns are addressed by the abandonment of the road and its drainage elements, and by re-seeding to native grasses.
Feature Measure: length
Scenario Unit: Feet
Scenario Typical Size: 500.00
Scenario Total Cost: \$4,060.58
Scenario Cost/Unit: \$8.12
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 80 HP	929	Track mounted Dozer with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$77.14	6	\$462.84
Hydraulic Excavator, 1 CY	931	Track mounted hydraulic excavator with bucket capacity range of 0.8 to 1.5 CY. Equipment and power unit costs. Labor not included.	Hours	\$128.59	3	\$385.77
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	4	\$24.84
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	1	\$13.45
Seeding Operation, Broadcast, Ground	959	Broadcast seed via ground operation. May require post tillage operation to incorporate seed. Includes equipment, power unit and labor costs.	Acres	\$13.81	1	\$13.81
Water Bars	1500	Installation of graded trail water controlling structures such as water bars, broad based dips for erosion control. Typical cross section is 1.5 feet high with $4: 1$ side slopes yielding about $0.33 \mathrm{CY} / \mathrm{ft}$ of length.	Feet	\$3.12	225	\$702.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	6	\$191.22
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22
Materials						
Native Perennial Grasses, Low Density	2750	Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$134.97	1	\$134.97
Mobilization						
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	2	\$1,819.18

Practice: 654 - Road/Trail/Landing Closure and Treatment
Scenario: \#3-Road/Trail/Landing Closure and Treatment, >35\% hillslope

Scenario Description:

The practice includes permanent road/trail/landing closure and treatment, and the hydrologically reconnection of the hillslope to applicable drainage networks. The treatment will limit future access. The typical scenario includes decommissioning a 24 -foot wide, earthen road with landings on forest slopes over 35%, using a bulldozer or other heavy equipment such as an excavator or road grader with ripper to re-shape and obliterate the road base and landings in order to re-establish native vegetation. It also includes restoring hydrology with the removal of culverts and drainage fills. Necessary erosion control measures such as water bars are installed. The steep slopes makes this scenario costly due to the increased time needed to apply the measures and the need for additional water control devices. Some hand-work may be necessary to clear the site for the equipment. The work will be supervised by a consultant forester, land manager, or other resource professional. Tree/Shrub Site Prep is not included. However, Tree/Shrub Planting is recommended. When completed, there is no additional maintenance with heavy equipment needed. This practice addresses one or more resource concerns: Excessive sediment in surface waters and Concentrated flow erosion. Since not all segments of the road/trail system may require this level of treatment, this scenario applies only to those segments that are causing the resource concerns.
Before Situation:
The legacy trail/road is severely affecting wetlands, riparian areas, unstable slopes, water quality, and possibly T\&E species. The trail/road can no longer serve it's intended use and is incapable of handling needed equipment and traffic. Alternative access was possible. Therefore abandonment and site restoration are the best approaches to address the resource concerns and problems that are being created.

After Situation:
The resource concerns are addressed by the abandonment of the road and its drainage elements, and by re-seeding to native grasses.
Feature Measure: length
Scenario Unit: Feet
Scenario Typical Size: 500.00
Scenario Total Cost: \$5,912.38
Scenario Cost/Unit: \$11.82
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 80 HP	929	Track mounted Dozer with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$77.14	8	\$617.12
Hydraulic Excavator, 2 CY	932	Track mounted hydraulic excavator with bucket capacity range of 1.5 to 2.5 CY. Equipment and power unit costs. Labor not included.	Hours	\$142.87	6	\$857.22
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	2	\$12.42
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	8	\$199.92
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	1	\$13.45
Seeding Operation, Broadcast, Ground	959	Broadcast seed via ground operation. May require post tillage operation to incorporate seed. Includes equipment, power unit and labor costs.	Acres	\$13.81	1	\$13.81
Water Bars	1500	Installation of graded trail water controlling structures such as water bars, broad based dips for erosion control. Typical cross section is 1.5 feet high with $4: 1$ side slopes yielding about $0.33 \mathrm{CY} / \mathrm{ft}$ of length.	Feet	\$3.12	500	\$1,560.00

Labor

General Labor

Equipment Operators, Heavy
233 Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.
Supervisor or Manager

$$
234
$$ supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.

Hours $\quad \$ 27.16 \quad 8 \quad \$ 217.28$

Hours	$\$ 31.87$	8	$\$ 254.96$
Hours	$\$ 47.61$	6	$\$ 285.66$

Materials

2732 A mix of annual grasses, legumes and/or forbs, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.

Mobilization

Mobilization, large equipment
1140 Equipment >150HP or typical weights greater than 30,000 pounds or
Each
\$909.59
2
\$1,819.18

Acres
\$61.36
1
\$61.36 loads requiring over width or over length permits.

Practice: 654 - Road/Trail/Landing Closure and Treatment
Scenario: \#4-Road/Trail removal and restoration (Vegetative)

Scenario Description:

Minimal re-shaping to natural conditions using light equipment and the establishment of permanent vegetation. This scenario includes using smaller equipment (ag tractor/skidsteer/small dozer/backhoe/) for the installation of water control devices such as water bars and rolling dips, controlling access, and pulling drainages on 500 feet of 12 ' wide road on $5 \%-35 \%$ hill slopes and little grade. The site is re-vegetated to permanent improved grass and temporarily protected with a thin layer of hay mulch. Soil amendments are applied as per the FOTG guidance. This practice addresses one or more resource concerns: Excessive sediment in surface waters, Wildlife habitat degradation, and Concentrated flow erosion. Since not all segments of the road/trail system may require this level of treatment, this scenario applies only to those segments that are causing the resource concerns.

Before Situation:
Legacy trail/road is not necessary and is affecting wetlands, riparian areas, water quality, and possibly T\&E species. The trail/road can no longer serve it's intended use and is incapable of handling needed equipment and traffic. Alternative access was possible. Therefore abandonment and site restoration are the best approaches to address the resource concerns and problems that are being created.

After Situation:
The re-vegetated, eliminated road addressed the resource concern.
Feature Measure: length of landing/trail(s)
Scenario Unit: Feet

Scenario Typical Size: 500.00

Scenario Total Cost: \$2,546.53

Scenario Cost/Unit: \$5.09
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Skidsteer, 80 HP	933	Skidsteer loader with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$56.04	1	\$56.04
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	1	\$13.45
Tillage, Primary	946	Includes heavy disking (offset) or chisel plow. Includes equipment, power unit and labor costs.	Acres	\$20.44	1	\$20.44
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	1	\$7.50
Lime application	953	Lime application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$9.10	1	\$9.10
Seeding Operation, Broadcast, Ground	959	Broadcast seed via ground operation. May require post tillage operation to incorporate seed. Includes equipment, power unit and labor costs.	Acres	\$13.81	1	\$13.81
Water Bars	1500	Installation of graded trail water controlling structures such as water bars, broad based dips for erosion control. Typical cross section is 1.5 feet high with $4: 1$ side slopes yielding about $0.33 \mathrm{CY} / \mathrm{ft}$ of length.	Feet	\$3.12	100	\$312.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	6	\$162.96
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	2	\$55.52
Materials						
Nitrogen (N), Ammonium Nitrate	69	Price per pound of N supplied by Ammonium Nitrate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.69	15	\$10.35
Phosphorus, P2O5	73	Price per pound of P2O5 supplied by Superphosphate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.91	10	\$9.10
Potassium, K2O	74	K2O supplied by Muriate Of Potash. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.68	10	\$6.80
Lime, ENM	75	Fertilizer: Limestone Spread on field.	Ton	\$90.75	1	\$90.75
Straw	1237	Small grain straw (non organic and certified organic). Includes materials only.	Ton	\$137.00	1	\$137.00
Native Perennial Grasses, Low Density	2750	Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$134.97	1	\$134.97

Practice: 655 - Forest Trails and Landings
Scenario: \#1-Trail and Landing Installation
Scenario Description:
Construction of forest trails and landings for the purpose of providing access to a gently sloping forested tract, Access will allow the application of other conservation practices, monitoring and the removal of forest products. Installation will include removal of trees and brush as needed, a minimum amount of blading and soil disturbance, and the installing of water control measures such as water bars, broad-based dips, wing ditches, etc. It will not include measures more common to access roads such as gravelling or ditching. Installation will be supervised by a consultant forester, land manager, or other resource professional.

Before Situation:
Access to the tract is not available for occasional travel by the landowner or manager for the purposes of monitoring, installing conservation practices and/or the removal of forest products. Improperly installed trails and landings will cause soil erosion and water quality problems. Resource concerns include excessive sediment in surface waters, sheet \& rill erosion, and concentrated flow erosion

After Situation:
A trail system is installed that provides access to the forested tract and does not cause excessive erosion or water quality concerns.
Feature Measure: Length of trail treated

Scenario Unit: Feet
Scenario Typical Size: 2,000.00
Scenario Total Cost: $\$ 5,194.40$

Scenario Cost/Unit: \$2.60
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 80 HP	929	Track mounted Dozer with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$77.14	32	\$2,468.48
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	24	\$149.04
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	8	\$199.92
Water Bars	1500	Installation of graded trail water controlling structures such as water bars, broad based dips for erosion control. Typical cross section is 1.5 feet high with $4: 1$ side slopes yielding about $0.33 \mathrm{CY} / \mathrm{ft}$ of length.	Feet	\$3.12	100	\$312.00

Labor

General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	24	\$651.84
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	32	\$888.32
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	4	\$524.80

Practice: 655 - Forest Trails and Landings
Scenario: \#2 - Trail Erosion Control w/o Vegetation, Slopes < 35\%

Scenario Description:

Rehabilitation of existing forest access trail segments on slopes less than 35%. Typically the trail is a single lane (18-foot wide, including cut and fill), seasonal prism requiring sustained erosion control measures installed by using heavy equipment such as dozers, graders, backhoes, and/or excavators. This scenario includes designing and installing measures such as cross drains, rock drains, relief drains, out sloping (or changing surface drainage), rolling dips and water bars and ditch outs as needed, and applies to only those segments of the trail system that have resource concerns requiring rehabilitation. Some hand work (chainsaw) will be needed to allow the use of the equipment and vegetative cover can be planted on exposed soil. Installation will be supervised. Other practices such as Stream Crossing, and Critical Area Planting, Access Road, and Structure for Water Control can be adjacent/appurtenant but not part of this practice scenario. Treatments are for long-term reduction of sediment, restoration of fish habitat, creation of fire access, and the removal of routes off unstable slopes.

Before Situation:
Trails are delivering sediment to waterways, impacting riparian areas and wetlands and possibly affecting T\&E species. The system's usefulness for access is also being compromised by inadequate erosion and drainage control systems. However rehabilitation over abandonment is an acceptable course of action. Resource concerns include: Excessive sedimentation in surface waters, concentrated flow erosion, sheet and rill erosion, and degradation of wildlife species.

After Situation:
Trails and landings provide access and soil loss is ameliorated.
Feature Measure: Length of trail treated
Scenario Unit: Feet
Scenario Typical Size: 2,000.00
Scenario Total Cost: $\$ 6,008.10$

Scenario Cost/Unit: \$3.00

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 80 HP	929	Track mounted Dozer with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$77.14	32	\$2,468.48
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	32	\$198.72
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	8	\$199.92
Seeding Operation, Broadcast, Ground	959	Broadcast seed via ground operation. May require post tillage operation to incorporate seed. Includes equipment, power unit and labor costs.	Acres	\$13.81	2	\$27.62
Water Bars	1500	Installation of graded trail water controlling structures such as water bars, broad based dips for erosion control. Typical cross section is 1.5 feet high with $4: 1$ side slopes yielding about $0.33 \mathrm{CY} / \mathrm{ft}$ of length.	Feet	\$3.12	100	\$312.00

Labor

General Labor
Equipment Operators, Light 232

Specialist Labor 235

$$
235 \mathrm{~L}
$$ requiring a specialized skill set: Includes Agronomists, Foresters,

Hours \$131.20

32
\$869.12 other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.
32 Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers Hours \$27.76 32 \$888.32 <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.

Materials

Nitrogen (N), Ammonium Nitrate	69	Price per pound of N supplied by Ammonium Nitrate. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.69	200	\$138.00
Straw	1237	Small grain straw (non organic and certified organic). Includes materials only.	Ton	\$137.00	4	\$548.00
Introduced Perennial Grasses, Legumes and/or Forbs, Low Density	2747	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$47.76	2	\$95.52

Practice: 655 - Forest Trails and Landings
Scenario: \#3-Trail Erosion Control w/o Vegetation, Slopes >35\%

Scenario Description:

Rehabilitation of existing forest access trails and landings by addressing resource issues such as sedimentation and soil loss to enable long-term use of the trail. Typically the trail is a single lane, existing 18 -foot wide including cut and fill seasonal road prism on a moderately steep (35% and greater) slope on forestland requiring sustained erosion control measures applied by using heavy equipment such as dozers, backhoes, graders, excavators, rock and rollers. This includes the design and installation of cross drains, rock drains, relief drains, out sloping (or changing road surface drainage), rolling dips and water bars and ditch outs as needed. This scenario applies to only those segments of the trail system that have resource concerns requiring rehabilitation. A typical water bar or rolling dip installed in this scenario is on a 75 to 100 foot spacing with a depth of about 1 foot. A layer of aggregate rock is compacted into a 20 foot length of road around the deepest section of the dip. Some hand work (chainsaw) will be needed to allow the use of the equipment.

Before Situation:
Trails are delivering sediment to waterways, impacting riparian/wetlands and/or possibly affecting fish/T\&E species. The usefulness of the trail/landing system is being adversely affected by soil erosion. Resource concerns include: Excessive sedimentation in surface waters, concentrated flow erosion, sheet and rill erosion, and potential gully erosion.

After Situation:
Trails and landings provide access and soil loss is ameliorated.
Feature Measure: Length of trail treated
Scenario Unit: Feet
Scenario Typical Size: 500.00
Scenario Total Cost: $\$ 5,795.69$

Scenario Cost/Unit: \$11.59

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total

Equipment Installation

Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160. Equipment and power unit costs. Labor not included.	Hours	\$98.78	32	\$3,160.96
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	9	\$55.89
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	4	\$99.96
Water Bars	1500	Installation of graded trail water controlling structures such as water bars, broad based dips for erosion control. Typical cross section is 1.5 feet high with $4: 1$ side slopes yielding about $0.33 \mathrm{CY} / \mathrm{ft}$ of length.	Feet	\$3.12	100	\$312.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	20	\$543.20
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	32	\$1,019.84
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44

Materials

Aggregate, Gravel, Ungraded,
Quarry Run

1099 Includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.

Practice: 657 - Wetland Restoration
Scenario: \#1-Mineral Flat, Tile Drain Removal
Scenario Description:
A Mineral Flat wetland is to be restored by tile drain removal. The tract size is 160 Acres consists of surface saturated soils interspersed with shallow depressions that are not depressional class HGM wetlands. The wetland size is also 160 acres. Resource Concerns are: 4-SOIL QUALITY DEGRADATION - Organic matter depletion, 11- WATER QUALITY DEGRADATION - Excess nutrients in surface and ground waters, 12 - WATER QUALITY DEGRADATION - Pesticides transported to surface and ground waters, 16 WATER QUALITY DEGRADATION - Excessive sediment in surface waters, 18 - DEGRADED PLANT CONDITION - Undesirable plant productivity and health, 19 - DEGRADED PLANT CONDITION, Inadequate strucuture and composition, 22- INADEQUATE HABITAT FOR FISH AND WILDLIFE - Habitat degradation.

Before Situation:
The site has been drained with a tile drain system. A suitable seed bank exists for natural regeneration to re-establish hydrophytic vegetation. The site is in agricultural production.

After Situation:

The drain tiles have been rendered non-functional by excavating 50 foot lengths of tile mains and laterals in 24 separate locations, and backfilling with excavated earth, which is compacted with the excavator bucket. There are no facilitating practices. Restoration of hydrology and plant community functions will improve the WATER QUALITY and DEGRADED PLANT CONDITION concerns listed above. The hydrologic and vegetative practices will address the SOIL QUALITY DEGRADATION and INADEQUATE HABITAT FOR FISH AND WILDLIFE concerns.

Feature Measure: Acres of Tract
Scenario Unit: Acres
Scenario Typical Size: 160.00
Scenario Total Cost: $\$ 3,812.17$

Scenario Cost/Unit: \$23.83
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Hydraulic Excavator, . 5 CY	930	Track mounted hydraulic excavator with bucket capacity range of 0.3 to 0.8 CY . Equipment and power unit costs. Labor not included.	Hours	\$99.69	24	\$2,392.56
Labor						
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	24	\$666.24
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and	Each	\$753.37	1	\$753.37

Practice: 657 - Wetland Restoration
Scenario: \#2 - Palustrine Floodplain features and levee removal

Scenario Description:

A palustrine emergent wetland tract on a floodplain is to be restored by mirco and macrotopographic features and/or levee removal. It has been converted to agricultural production. Primarily, resource concerns are related to soil and water quality degradation, degraded plant condition, and inadequate fish and wildlife habitat

Before Situation:
A levee prevents floodwater from entering a 4 acre typical sized tract. The original cover was forest or prairie. The site may or may not be drained by surface ditches. The site has been cleared. The lateral connectivity between the channel and floodplain has been altered by construction of levees along the reach.

After Situation:

The hydrology of the 4 ac tract is restored using wetland embankments, ditch plugs, excavation of macrotopographic features, earthfill placement of macrotopographic features, and levee removal. Wetland embankments are typically less than 3 feet in height and have an associated water control structure. Marcotopographic excavations and earthfill features constructed on the wetland and adjacent non-wetland area typically have a maximum depth or height of 24 inches. The levee is breached at the upstream and downstream ends of the tract reach, restoring dynamic stream flooding. The breach length is 150 feet long at both locations. Both the wetland and nonwetland areas are planted with a mix of species adapted to the site. Facilitating practices include Structure for Water Control, Grade Stabilization Structure, Conservation Cover, and Tree and Shrub Planting. Restoration of hydrology and plant community functions will improve the WATER QUALITY and DEGRADED PLANT CONDITION concerns listed above. The hydrologic and vegetative practices will address the SOIL QUALITY DEGRADATION and INADEQUATE HABITAT FOR FISH AND WILDLIFE concerns.

Feature Measure: Cubic Yards of Earthwork
Scenario Unit: Cubic Yards
Scenario Typical Size: 4,700.00
Scenario Total Cost: \$21,261.18
Scenario Cost/Unit: \$4.52
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	1200	\$4,392.00
Excavation, common earth, wet, side cast, large equipment	1228	Bulk excavation and side casting of wet common earth with hydraulic excavator or dragline with greater than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$4.30	3500	\$15,050.00
Mobilization						
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	2	\$1,819.18

Practice: 657-Wetland Restoration
Scenario: \#3 - Depression or Playa wetland restoration, CY units

Scenario Description:

A depressional or playa wetland is to be restored by sediment removal. The site is an enclosed depression or playa whose hydrology is supplied from either surface runoff or sub-surface flow. Restoration may or maynot involve ditch plugging. Primarily, resource concerns are related to soil and water quality degradation, degraded plant condition, and in-adequate habitat for wildlife. The restoration shall be for the purpose of maintaining the depression or playa as wetland habitat. The depression or playa shall be cultivated only under natural condtions and not annually. Livestock may graze the site according to grazing management plan.

Before Situation:
An average 10 acre wetland has been converted to agricultural production. The wetland in question receives surface runoff from its surrounding watershed. Once entering the wetland, the water flows through a drainage ditch. The wetland in question may receive water from an underlying water table. Largely, the watershed has been converted to an agricultural land-use. On average, soil erosion resulting from the land-use conversion has deposited 6 inches of sediment in the bottom of the depression or playa.

After Situation:

In the depression or playa, sediment has been removed down to the original topsoil layer. A hydro-phytic, herbaceous plant community adapted to the site has been seeded. Facilitative practices include Conservation cover and Wetland wildlife habitat management. Restoration of hydrology and plant community functions will improve the WATER QUALITY and DEGRADED PLANT CONDITION concerns listed above. The hydrologic and vegetative practices will address the SOIL QUALITY DEGRADATION and INADEQUATE HABITAT FOR FISH AND WILDLIFE concerns.

Feature Measure: Cubic Yards of Earthwork

Scenario Unit: Cubic Yards
Scenario Typical Size: 8,298.00
Scenario Total Cost: \$38,262.33
Scenario Cost/Unit: \$4.61
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	231	\$845.46
Excavation, common earth, wet, side cast, large equipment	1228	Bulk excavation and side casting of wet common earth with hydraulic excavator or dragline with greater than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$4.30	8067	\$34,688.10
Mobilization						
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	3	\$2,728.77

Practice: 657-Wetland Restoration
Scenario: \#4 - Depression or playa wetland restoration, Ac units

Scenario Description:

A depressional or playa wetland is to be restored by sediment removal and ditch plugging. The site is an enclosed depression or playa whose hydrology is supplied from either surface runoff or sub-surface flow. Primarily, resource concerns are related to soil and water quality degradation, degraded plant condition, and in-adequate habitat for wildlife. The restoration shall be for the purpose of maintaining the depression or playa as wetland habitat. The depression or playa shall be cultivated only under natural condtions and not annually. Livestock may graze the site according to grazing management plan.

Before Situation:

The wetland has been converted to agricultural production, and is drained by a surface ditch or ditches. On average, the ditch is 4 feet deep, and 12 feet wide. The wetland in question receives surface runoff from its surrounding watershed. Once entering the wetland, the water ponds. The wetland in question may receive water from an underlying water table. Largely, the watershed has been converted to an agricultural land-use. On average, soil erosion resulting from the land-use conversion has deposited 6 inches of sediment in the bottom of the depression or playa.

After Situation:
The ditch has been plugged by installation of compacted clay or loam fill. In the depression or playa, sediment has been removed down to the original topsoil layer. A hydro-phytic, herbaceous plant community adapted to the site has been seeded. Facilitative practices include Conservation cover and Wetland wildlife habitat management. Restoration of hydrology and plant community functions will improve WATER QUALITY and DEGRADED PLANT CONDITION concerns. Hydrologic and vegetative practices will address SOIL QUALITY DEGRADATION and INADEQUATE HABITAT FOR FISH AND WILDLIFE concerns.

Feature Measure: Acres of Earthwork
Scenario Unit: Acres
Scenario Typical Size: 10.00
Scenario Total Cost: \$38,262.33
Scenario Cost/Unit: $\$ 3,826.23$
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	231	\$845.46
Excavation, common earth, wet, side cast, large equipment	1228	Bulk excavation and side casting of wet common earth with hydraulic excavator or dragline with greater than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$4.30	8067	\$34,688.10
Mobilization						
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	3	\$2,728.77

Practice: 657 - Wetland Restoration
Scenario: \#5 - Estuarine fringe, levee removal
Scenario Description:
An estuarine fringe landscape is to be restored. Potentially, the wetland is subject to tidal fluctuations. The tract size is 120 acres; the wetland area is 100 acres. This is an area that has been converted to cropland or pastureland and will be restored to estuarine fringe habitat where hydrology, primarily in the form of tides, is unmanaged. Resource concerns are soil and water quality degradation, degraded plant condition, and inadequate wildlife habitat.

Before Situation:

By construction of a dike to prevent tidal flows, the wetland has been converted to agricultural production. The dike has a culvert with a flapgate to allow surface water to flow out, but prevents tide water from entering. Typically, the dike is about seven feet high above the current marsh surface. Typically, the dike has side slopes of $3: 1$ and a 12 -foot top. A suitable seedbank exists for natural regeneration of the original plant community. Loss of hydrology has caused the land surface to subside due to aerobic decomposition of organic matter (mineralization).

After Situation:

Corresponding to the number of original inlet channels, the dike has been breached in about four locations. Breaches are designed and installed to minimize erosion caused by tidal surge. Original flap-gate culverts have been removed and salvaged. Breach bottom elevations correspond to normal ground. To facilitate operation and maintenance, the breach bottom is 20 feet wide with $4: 1$ side slopes. Restoration of hydrology and plant community functions will improve the WATER QUALITY and DEGRADED PLANT CONDITION concerns listed above. Hydrologic and vegetative practices will address the SOIL QUALITY DEGRADATION and INADEQUATE HABITAT FOR FISH AND WILDLIFE concerns.

Feature Measure: Acres of Tract

Scenario Unit: Acres
Scenario Typical Size: 120.00
Scenario Total Cost: \$9,793.67
Scenario Cost/Unit: \$81.61
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, common earth, wet, side cast, large equipment	1228	Bulk excavation and side casting of wet common earth with hydraulic excavator or dragline with greater than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$4.30	1643	\$7,064.90
Mobilization						
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	3	\$2,728.77

Practice: 657 - Wetland Restoration
Scenario: \#6-Stream floodplain restoration

Scenario Description:

A Riverine HGM landscape on a small stream on a low stream order riparian landscape has been converted to agricultural production. The stream channel has degraded. The reach is 1500 feet in length, and the tract size is 15 acres. The wetland area is 10 acres. Resource Concerns are: 4-SOIL QUALITY DEGRADATION - Organic matter depletion, 11- WATER QUALITY DEGRADATION - Excess nutrients in surface and ground waters, 12 - WATER QUALITY DEGRADATION - Pesticides transported to surface and ground waters, 16 - WATER QUALITY DEGRADATION - Excessive sediment in surface waters, 18 - DEGRADED PLANT CONDITION - Undesirable plant productivity and health, 19 - DEGRADED PLANT CONDITION, Inadequate strucuture and composition, 22- INADEQUATE HABITAT FOR FISH AND WILDLIFE - Habitat degradation.

Before Situation:

Channel incision has broken the lateral connectivity between the stream and floodplain. The coversion to cropland was accompanied by filling and leveling of backswamp, side channel, and oxbow features which formerly ponded water or exposed the floodplain groundwater table. The site no longer has access to floodwater or water surface profile supported groundwater. No suitable seed bank exists for natural regeneration of the original hydrophytic plant community, either in the channel, or on the floodplain.

After Situation:

The hydrology of the site is restored by the installation of a series of rock check structures to raise the stream water surface profile. Floodplain macrotopographic features replicating the original side channels, oxbows, and backswamps are constructed by excavation. Spoil is placed adjacent to the excavations to replicate natural depositional features. The average depth of the excavated features is 2 feet, and the surface area of the excavations is 25% of the tract size. The eroding stream bank is stabilized with soil bio-engineering features, and fish habitat improvement measures are installed in the channel. The tract is seeded to appropriate hydrophytic and upland vegetation, both woody and herbaceous. Facilitating practices are Streambank and Shoreline protection, Structure for Water Control, Conservation Cover, Tree/Shrub Establishment, and Stream Habitat Improvement and Management. Restoration of hydrology and plant community functions will improve the WATER QUALITY and DEGRADED PLANT CONDITION concerns listed above. The hydrologic and vegetative practices will address the SOIL QUALITY DEGRADATION and INADEQUATE HABITAT FOR FISH AND WILDLIFE concerns.

Feature Measure: Acres of Tract

Scenario Unit: Acres
Scenario Typical Size: 15.00

Scenario Total Cost:	\$8,776.68					
Scenario Cost/Unit:	\$585.11					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	3025	\$6,957.50
Mobilization						
Mobilization, large equipment	1140	Equipment >150HP or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	2	\$1,819.18

Practice: 658-Wetland Creation
Scenario: \#1-Wetland Creation, wildlife habitat
Scenario Description:
Habitat for wildlife species has been assessed using agency specific Wildlife Habitat Assessments/Evaluation Guides and/or WHMI Supplements which indicated Inadequate Habitat for Fish or Wildlife-habitat degradation. A wetland is constructed by intercepting and ponding surface runoff on a sight that was historically a nonwetland as identified by the absence of hydric soils.

Before Situation:

Habitat, based on a completed wildlife habitat assessment, is degraded for target wetland wildlife species due to a lack of Food, Water, and/or Shelter (Cover/Space). The typical site is 1 acre and has a landscape position, slope and soil type capable of seasonally ponding shallow water by excavation and/or diking. The under-lying material has very slow permeability but is not hydric.

After Situation:
Excavation and/or diking has created a shallow depression in a broad swale which intercepts surface runoff. Excavated material is used for dike construction and/or to create mounds within the wetland boundary. Excavated materials outside of wetland boundary is placed such that it does not adversely affected adjacent areas. At full cappacity the average water depth will be less than 12 inches. Natural collonization of desirable vegetation is expected to occur within 5 years. The INADEQUATE HABITAT FOR FISH AND WILDLIFE resource concern has been addressed with the provision of seasonal open water for terrestrial, aquatic, and waterfowl species.

Feature Measure: Cubic yards of earthwork
Scenario Unit: Cubic Yards

Scenario Typical Size: 807.00
Scenario Total Cost: $\quad \$ 2,822.18$

Scenario Cost/Unit: \$3.50
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, clay, large equipment, 50 ft	1218	Bulk excavation of clay with dozer $>100 \mathrm{HP}$ with average push distance of 50 feet. Includes equipment and labor.	Cubic Yards	\$2.37	807	\$1,912.59
Mobilization						
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 659-Wetland Enhancement
Scenario: \#1-Mineral Flat-Tile Drain Removal
Scenario Description:
A Mineral Flat wetland is to be enhanced by tile drain removal. The tract size is 160 Acres consists of surface saturated soils interspersed with shallow depressions that are not depressional class HGM wetlands. The wetland size is also 160 acres. Resource Concerns are: 4-SOIL QUALITY DEGRADATION - Organic matter depletion, 11- WATER QUALITY DEGRADATION - Excess nutrients in surface and ground waters, 12 - WATER QUALITY DEGRADATION - Pesticides transported to surface and ground waters, 16 WATER QUALITY DEGRADATION - Excessive sediment in surface waters, 18 - DEGRADED PLANT CONDITION - Undesirable plant productivity and health, 19 - DEGRADED PLANT CONDITION, Inadequate strucuture and composition, 22- INADEQUATE HABITAT FOR FISH AND WILDLIFE - Habitat degradation.

Before Situation:
The site has been drained with a tile drain system. A suitable seed bank exists for natural regeneration to re-establish hydrophytic vegetation. The site is in agricultural production.

After Situation:

The drain tiles have been rendered non-functional by excavating 50 foot lengths of tile mains and laterals in 24 separate locations, and backfilling with excavated earth, which is compacted with the excavator bucket. There are no facilitating practices. Enhancement of hydrology and plant community functions will improve the WATER QUALITY and DEGRADED PLANT CONDITION concerns listed above. The hydrologic and vegetative practices will address the SOIL QUALITY DEGRADATION and INADEQUATE HABITAT FOR FISH AND WILDLIFE concerns.

Feature Measure: Acres of Tract
Scenario Unit: Acres
Scenario Typical Size: 160.00
Scenario Total Cost: $\$ 3,812.17$

Scenario Cost/Unit: \$23.83
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Hydraulic Excavator, . 5 CY	930	Track mounted hydraulic excavator with bucket capacity range of 0.3 to 0.8 CY . Equipment and power unit costs. Labor not included.	Hours	\$99.69	24	\$2,392.56
Labor						
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	24	\$666.24
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and	Each	\$753.37	1	\$753.37

Practice: 659-Wetland Enhancement
Scenario: \#2 - Palustrine Flood-plain features and levee removal

Scenario Description:

A riverine wetland site on a floodplain is to be enhanced by features and levee removal. The site has been converted to agricultural production. In this instance, enhancement means a manipulation that increases or expands the capacity of some wetland function(s) at the expense of other wetland functions which are diminished adversely affected, or penalized by the same manipulation. Primarily, resource concerns are related to soil and water quality degradation, degraded plant condition, and in-adequate habitat for wildlife. The enhancement shall be for the purpose of maintaining the site as wetland habitat. The site shall be cultivated only under natural condtions and not annually, and such cultivation shall not diminish the site's capacity to function as wildlife habitat. Livestock may graze the site according to a grazing management plan that allows for establishment of any planted species.

Before Situation:
A levee keeps flood-water off the site. The original cover was forest. The site may or may not be drained by surface ditches which collect surface water and direct it to a river or stream. The site has been completely cleared. For natural regeneration of forest species, a suitable, adjacent seed-wall may or may not exist . The lateral connectivity between the channel and floodplain has been altered by construction of levees along the reach.

After Situation:

The hydrology of the site is enhanced using wetland embankments, ditch plugs, excavation of macrotopographic features, earthfill placement of macrotopographic features, and levee removal. Wetland embankments are typically less than 3 feet in height and have an associated water control structure. Marcotopographic excavations and earthfill features constructed on the wetland and adjacent non-wetland area typically have a maximum depth or height of 24 inches. The levee is breached at the upstream and downstream ends of the tract reach, restoring dynamic stream flooding. The breach length is 150 feet long at both locations. Both the wetland and nonwetland areas are planted with a mix of bottomland hardwood species adapted to the site. Facilitating practices include Structure for Water Control, Grade Stabilization Structure, Conservation Cover, and Tree and Shrub Planting. Restoration of hydrology and plant community functions will improve the WATER QUALITY and DEGRADED PLANT CONDITION concerns listed above. The hydrologic and vegetative practices will address the SOIL QUALITY DEGRADATION and INADEQUATE HABITAT FOR FISH AND WILDLIFE concerns.

Feature Measure: Cubic Yards of Earthwork

Scenario Unit: Cubic Yards
Scenario Typical Size: 4,700.00
Scenario Total Cost: \$21,261.18
Scenario Cost/Unit: \$4.52

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	1200	\$4,392.00
Excavation, common earth, wet, side cast, large equipment	1228	Bulk excavation and side casting of wet common earth with hydraulic excavator or dragline with greater than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$4.30	3500	\$15,050.00
Mobilization						
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	2	\$1,819.18

Practice: 659-Wetland Enhancement
Scenario: \#3 - Depression or playa restoration, Ac units

Scenario Description:

A depressional or playa wetland is to be enhanced by sediment removal and ditch plugging. In this instance, enhancement means a manipulation that increases or expands the capacity of some wetland function(s) at the expense of other wetland functions which are diminished, adversely affected, or penalized by the same manipulation. The site is an enclosed depression or playa whose hydrology is supplied from either surface runoff or sub-surface flow. Primarily, resource concerns are related to soil and water quality degradation, degraded plant condition, and in-adequate habitat for wildlife. The enhancement shall be for the purpose of maintaining the depression or playa as wetland habitat. The depression or playa shall be cultivated only under natural condtions and not annually. Livestock may graze the site according to a grazing management plan.

Before Situation:

The wetland has been converted to agricultural production, and may or may not be drained by a surface ditch. The ditch is 4 ' average depth, and 12 feet average width. The wetland receives surface runoff from the adjacent upland watershed, and ponds water on a shallow perched layer. The watershed has been converted from native to an agricultural land-use, and the resultant soil erosion has deposited 6' of sediment in the bottom of the depression.

After Situation:

The ditch has been plugged by the installation of a 50 ' long section of compacted clay fill, and the deposition has been removed down to the original topsoil layer. A herbaceous plant community has been seeded. Facilitative practices include Conservation Cover. Restoration of hydrology and plant community functions will improve the WATER QUALITY and DEGRADED PLANT CONDITION concerns listed above. The hydrologic and vegetative practices will address the SOIL QUALITY DEGRADATION and INADEQUATE HABITAT FOR FISH AND WILDLIFE concerns.

Feature Measure: Acres of Earthwork

Scenario Unit: Acres

Scenario Typical Size: 10.00
Scenario Total Cost: $\$ 38,262.33$
Scenario Cost/Unit: $\$ 3,826.23$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	231	\$845.46
Excavation, common earth, wet, side cast, large equipment	1228	Bulk excavation and side casting of wet common earth with hydraulic excavator or dragline with greater than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$4.30	8067	\$34,688.10
Mobilization						
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	3	\$2,728.77

Practice: 659-Wetland Enhancement
Scenario: \#4 - Estuarine Fringe Levee Removal
Scenario Description:
An Estuarine Fringe HGM landscape is to be enhanced. The wetland is subject to tidally induced water level fluctuations. The tract size is 120 acres, and the wetland area is 100 acres. Resource Concerns are: 4-SOIL QUALITY DEGRADATION - Organic matter depletion, 11- WATER QUALITY DEGRADATION - Excess nutrients in surface and ground waters, 12 - WATER QUALITY DEGRADATION - Pesticides transported to surface and ground waters, 16 - WATER QUALITY DEGRADATION - Excessive sediment in surface waters, 18 - DEGRADED PLANT CONDITION - Undesirable plant productivity and health, 19 - DEGRADED PLANT CONDITION, Inadequate strucuture and composition, 22- INADEQUATE HABITAT FOR FISH AND WILDLIFE - Habitat degradation.

Before Situation:

The wetland has been converted to agricultural production by construction of a dike to prevent tidal flows. The dike has a culvert with a flapgate to allow surface water to flow out, but prevents tide water from entering. The dike is 7 feet high above the current marsh surface. The dike has side slopes of $3: 1$, with a 12 foot top. A suitable seedbank exists for natural regeneration of the original plant community. The soils are organic, and loss of hydrology has caused the land surface to subside 3 feet due to aerobic decomposition of organic matter (mineralization).

After Situation:

The dike has been breached in 4 locations, corresponding to the number of original inlet channels. The breach locations have 8 foot long steel sheet pile Structures for Water Control installed to prevent tidal surges from causing serious erosion on the subsided land surface. The original flap gate culvert has been removed. The dike is 4 feet higher than the weir crests, so the excavations are 4 feet by 8 feet long, with $3: 1$ side slopes. The culvert has been removed and salvaged by the landowner. Facilitating practices are Structure for Water Control. Restoration of hydrology and plant community functions will improve the WATER QUALITY and DEGRADED PLANT CONDITION concerns listed above. The hydrologic and vegetative practices will address the SOIL QUALITY DEGRADATION and INADEQUATE HABITAT FOR FISH AND WILDLIFE concerns.

Feature Measure: Acres of Tract

Scenario Unit: Acres
Scenario Typical Size: 120.00
Scenario Total Cost: $\$ 3,381.97$

Scenario Cost/Unit: \$28.18
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	284	\$653.20
Mobilization						
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	3	\$2,728.77

Practice: 659-Wetland Enhancement
Scenario: \#5 - Riverine Channel and Floodplain Restoration

Scenario Description:

A Riverine HGM landscape on a small stream on a low stream order riparian landscape has been converted to agricultural production. The stream channel has degraded. The reach is 1500 feet in length, and the tract size is 15 acres. The wetland area is 10 acres. Resource Concerns are: 4-SOIL QUALITY DEGRADATION - Organic matter depletion, 11- WATER QUALITY DEGRADATION - Excess nutrients in surface and ground waters, 12 - WATER QUALITY DEGRADATION - Pesticides transported to surface and ground waters, 16 - WATER QUALITY DEGRADATION - Excessive sediment in surface waters, 18 - DEGRADED PLANT CONDITION - Undesirable plant productivity and health, 19 - DEGRADED PLANT CONDITION, Inadequate strucuture and composition, 22- INADEQUATE HABITAT FOR FISH AND WILDLIFE - Habitat degradation.

Before Situation:

Channel incision has broken the lateral connectivity between the stream and floodplain. The coversion to cropland was accompanied by filling and leveling of backswamp, side channel, and oxbow features which formerly ponded water or exposed the floodplain groundwater table. The site no longer has access to floodwater or water surface profile supported groundwater. No suitable seed bank exists for natural regeneration of the original hydrophytic plant community, either in the channel, or on the floodplain.

After Situation:

The hydrology of the site is restored by the installation of a series of rock check structures to raise the stream water surface profile. Floodplain macrotopographic features replicating the original side channels, oxbows, and backswamps are constructed by excavation. Spoil is placed adjacent to the excavations to replicate natural depositional features. The average depth of the excavated features is 2 feet, and the surface area of the excavations is 25% of the tract size. The eroding stream bank is stabilized with soil bio-engineering features, and fish habitat improvement measures are installed in the channel. The tract is seeded to appropriate hydrophytic and upland vegetation, both woody and herbaceous. Facilitating practices are Streambank and Shoreline protection, Structure for Water Control, Conservation Cover, Tree/Shrub Establishment, and Stream Habitat Improvement and Management. Restoration of hydrology and plant community functions will improve the WATER QUALITY and DEGRADED PLANT CONDITION concerns listed above. The hydrologic and vegetative practices will address the SOIL QUALITY DEGRADATION and INADEQUATE HABITAT FOR FISH AND WILDLIFE concerns.

Feature Measure: Acres of Tract

Scenario Unit: Acres
Scenario Typical Size: 15.00

Scenario Total Cost:	\$8,776.68					
Scenario Cost/Unit:	\$585.11					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Excavation, Common Earth, side cast, small equipment	48	Bulk excavation and side casting of common earth with hydraulic excavator with less than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$2.30	3025	\$6,957.50
Mobilization						
Mobilization, large equipment	1140	Equipment >150HP or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	2	\$1,819.18

Practice: 659-Wetland Enhancement
Scenario: \#6 - Depression or Playa wetland restoration, CY units

Scenario Description:

A depressional or playa wetland is to be enhanced by sediment removal and ditch plugging. In this instance, enhancement means a manipulation that increases or expands the capacity of some wetland function(s) at the expense of other wetland functions which are diminished, adversely affected, or penalized by the same manipulation. The site is an enclosed depression or playa whose hydrology is supplied from either surface runoff or sub-surface flow. Primarily, resource concerns are related to soil and water quality degradation, degraded plant condition, and in-adequate habitat for wildlife. The enhancement shall be for the purpose of maintaining the depression or playa as wetland habitat. The depression or playa shall be cultivated only under natural condtions and not annually. Livestock may graze the site according to a grazing management plan.

Before Situation:

A typical deprssional/playa wetland of 10 acres has been converted to agricultural production, and may or may not be drained by a surface ditch. The ditch is 4 ' average depth, and 12 feet average width. The wetland receives surface runoff from the adjacent upland watershed, and ponds water on a shallow perched layer. The watershed has been converted from native to an agricultural land-use, and the resultant soil erosion has deposited 6' of sediment in the bottom of the depression.

After Situation:

The ditch has been plugged by the installation of a 50 ' long section of compacted clay fill, and the deposition has been removed down to the original topsoil layer. A herbaceous plant community has been seeded. Facilitative practices include Conservation Cover. Restoration of hydrology and plant community functions will improve the WATER QUALITY and DEGRADED PLANT CONDITION concerns listed above. The hydrologic and vegetative practices will address the SOIL QUALITY DEGRADATION and INADEQUATE HABITAT FOR FISH AND WILDLIFE concerns.

Feature Measure: Cubic Yards of Earthwork
Scenario Unit: Cubic Yards
Scenario Typical Size: 8,298.00
Scenario Total Cost: $\$ 38,262.33$
Scenario Cost/Unit: \$4.61

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Roller Compacted	49	Earthfill, roller or machine compacted, includes equipment and labor	Cubic Yards	\$3.66	231	\$845.46
Excavation, common earth, wet, side cast, large equipment	1228	Bulk excavation and side casting of wet common earth with hydraulic excavator or dragline with greater than 1 CY capacity. Includes equipment and labor.	Cubic Yards	\$4.30	8067	\$34,688.10
Mobilization						
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	3	\$2,728.77

Practice: 660-Tree-Shrub Pruning
Scenario: \#1 - Pruning-Fire Hazard

Scenario Description:

Pruning trees of branches in a forest stand where wildfires are considered a high and very high hazard. Hand tools and power tools are used to cut branches from trees. Resource concerns include Degraded plant condition-wildfire hazard and Undesirable plant productivity and health.

Before Situation:
The forest stand is well to over-stocked, generally with 200 to $300+$ trees per acre. Branches are touching understory vegetation or are in close proximity to forest floor where a ground fire can ignite the lower branches and move into the upper canopy. Wildfire hazard is very high.

After Situation:
The typical forest pruning treatment is 20 acres. Trees are pruned to the desirable height (generally 8-10') based on desired separation space between ground vegetation and tree crown. Pruned branches are treated if they are a hazard, see Woody Residue Treatment standard.

Feature Measure: area of treatment

Scenario Unit: Acres

Scenario Typical Size: 20.00

Scenario Total Cost: $\$ 3,926.40$
Scenario Cost/Unit: \$196.32

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	100	\$621.00
Pruning tools, hand tools	1318	Pruning tools, hand tools, shears, loppers, pole saw, handsaw. Material costs only. Labor not included.	Hours	\$2.31	20	\$46.20
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	120	\$3,259.20

Practice: 660-Tree-Shrub Pruning
Scenario: \#2 - Pruning-Low Height
Scenario Description:
Pruning is done by hand with chain saws, tree loppers, hand shears, or hand saws. Trees are identified for pruning. To improve the quality of the stem wood, branches are pruned from the trees. Trees are growing at a fast pace, with leader growth on trees anywhere from 1.5 feet to 4 feet in length.

Before Situation:
Trees are retaining lower limbs along the entire tree bole, reducing wood quality. Pruning height will be based on overall stand diameter and height. Stand has been thinned and crop trees are identified for pruning. Degrade plant condition- undesirable plant productivity and health is the resource concern.

After Situation:

The typical forest pruning treatment is 20 acres. Trees are pruned to the desirable height of 8-10 feet. Pruned branches are treated if they are a hazard, see Woody Residue Treatment standard.

Feature Measure: area of treatment

Scenario Unit: Acres

Scenario Typical Size: 20.00

Scenario Total Cost: $\$ 2,683.40$
Scenario Cost/Unit: \$134.17

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	20	\$124.20
Pruning tools, hand tools	1318	Pruning tools, hand tools, shears, loppers, pole saw, handsaw. Material costs only. Labor not included.	Hours	\$2.31	60	\$138.60
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	80	\$2,172.80

Materials

Practice: 660-Tree-Shrub Pruning
Scenario: \#3 - Pruning- High Height
Scenario Description:
Pruning is done by hand with pole saws or with gas pole saw. Crop trees are identified for pruning. The forest is on highly productive soils. Trees are growing at a fast pace, with leader growth on trees anywhere from 1.5 feet to 4 feet in length. To improve the quality of the stem wood, branches are pruned from the trees.

Before Situation:
Trees are retaining limbs mostly along the mid to upper section of the tree bole, reducing quality. Lower branches ($0-8$ feet) may have already been pruned, have naturally self pruned to differing heights. Pruning height is at least to eighteen (18) feet above the ground. Degrade plant condition- undesirable plant productivity and health is the resource concern.

After Situation:
The typical forest pruning treatment is 20 acres. Trees are pruned to the height of 18 feet or more. Pruned branches are treated so they do not become a fire or health hazard.

Feature Measure: area of treatment
Scenario Unit: Acres
Scenario Typical Size: 20.00
Scenario Total Cost: \$4,337.50

Scenario Cost/Unit: \$216.88
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	20	\$124.20
Pruning tools, hand tools	1318	Pruning tools, hand tools, shears, loppers, pole saw, handsaw. Material costs only. Labor not included.	Hours	\$2.31	20	\$46.20
Pruning tool, pole saw	1319	Gasoline powered pole chainsaw. Labor not included.	Hours	\$9.80	80	\$784.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	120	\$3,259.20
Materials						
Tree Marking Paint	313	Trees to be cut through tree marking are physically identified through the application of paint on the tree. Typically one quart of paint is used to mark one acre of trees. Includes materials and shipping only.	Acres	\$12.39	10	\$123.90

Practice: 660-Tree-Shrub Pruning
Scenario: \#4 - Pruning-Wildlife

Scenario Description:

Pruning of hard/soft mast trees and shrubs to stimulate increased fruit/nut production for wildlife food. Primarily done around old agricultural fields, in old orchards, in forested areas. Is usually done with a chainsaw or handsaw to open the canopy and remove dead branches to increase airflow and sunlight penetration. Resource concerns are inadequate habitat for fish and wildlife - habitat degrdation and plant condition- undesirable plant productivity and health

Before Situation:
Trees have reduced mast production due to tree reaching maturity or heavy shade. Pruning is needed to remove older branches, dead material and increase sunlight into the canopy. New branching will be stimulated, increasing mast production.

After Situation:
Selected trees (10 per acre) are re-invigorated with new branching and an increase in mast production.

Feature Measure: area of treatment

Scenario Unit: Acres

Scenario Typical Size: 2.00
Scenario Total Cost: \$336.67
Scenario Cost/Unit: \$168.34

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	5	\$31.05
Pruning tools, hand tools	1318	Pruning tools, hand tools, shears, loppers, pole saw, handsaw. Material costs only. Labor not included.	Hours	\$2.31	2	\$4.62
Pruning tool, pole saw	1319	Gasoline powered pole chainsaw. Labor not included.	Hours	\$9.80	3	\$29.40
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	10	\$271.60

Practice: 660-Tree-Shrub Pruning
Scenario: \#5 - Pruning-Multistory Cropping Understory

Scenario Description:

Pruning trees and/or shrubs is accomplished to extend the life span of trees and or shrubs. Pruning reduces the time periods of replacement by $2 / 3 r d s$, exposing less bare soil. Pruning is accomplished by hand with hand tools and/or chainsaw. Trees and or shrubs are growing where the average rainfall is very high, with cooler temperatures and deep steep soils. Resouce concerns are degraded plant condition-undesireable plant productivity and health, soil erosion-sheet and rill.

Before Situation:
Trees and/or shrubs are showing signs of reduced health (thinning crowns/less branching) and fruit production. Loss of trees or shrubs will occur within a few years. Severe soil erosion and sedimentation is a great concern if trees or shrubs are removed.

After Situation:
Tree/shrub pruning is completed on trees and/or shrubs. Cut vegetative material is left on the ground providing cover, and increasing organic matter. Alternative row pruning, treating every other row (or one-half the plants), in the same field, is completed 2 times. Renovation pruning is conducted one time for the entire field.

Feature Measure: individual tree/shrub pruned
Scenario Unit: Each
Scenario Typical Size: 120.00
Scenario Total Cost: \$628.40

Scenario Cost/Unit: \$5.24
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	10	\$62.10
Pruning tools, hand tools	1318	Pruning tools, hand tools, shears, loppers, pole saw, handsaw. Material costs only. Labor not included.	Hours	\$2.31	10	\$23.10
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	20	\$543.20

Practice: 660-Tree-Shrub Pruning
Scenario: \#6 - Pruning-Multistory Cropping-Overstory
Scenario Description:
Overstory tree crowns are pruned to increase sunlight to understory shrubs and low growing trees that have been purposely established to grow on the same acre of ground. Resource concern is degraded plant condition - undesirable plant productivity and health.

Before Situation:
The overstory trees are expanding their crowns, providing to much shade on the understory plants. The shade is affecting the growth and production of the understory plants. Pruning of branches, leaves, frawns, etc. are needed to maintain the desired amount of sunlight reaching the understory.

After Situation:
Pruning of the overstory tree crowns is completed, allowing the proper amount of sunlight to reach the understory vegetation, maintaining their growth, health and vigor, and wildlife benefits.

Feature Measure: Overstory Trees Pruned
Scenario Unit: Each
Scenario Typical Size: 120.00
Scenario Total Cost: \$799.64

Scenario Cost/Unit: \$6.66

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	16	\$99.36
Pruning tools, hand tools	1318	Pruning tools, hand tools, shears, loppers, pole saw, handsaw. Material costs only. Labor not included.	Hours	\$2.31	4	\$9.24
Pruning tool, pole saw	1319	Gasoline powered pole chainsaw. Labor not included.	Hours	\$9.80	4	\$39.20
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	24	\$651.84

Practice: 660-Tree-Shrub Pruning
Scenario: \#7-Pruning -Fruit and Nut trees

Scenario Description:

This scenario is to prune the trees that produce nuts or fruits. The trees are generally planted in rows but not always. The resource concerns include: Plant condition inadaquate health and productivity, Animal - Inadaquate food, cover, water for wildlife.

Before Situation:
This scenario will be conducted on areas with nut producing trees or trees that provide edible fruit. The condition of the trees are limby and their overall condition is poor.
After Situation:
This scenario will be conducted on areas with nut producing trees or trees that provide edible fruit, typically on areas about 50 ft . wide and 1320 feet in length. The trees will look much better following a proper pruning and the health and condition of the trees will be improved.

Feature Measure: acres
Scenario Unit: Acres
Scenario Typical Size: 20.00
Scenario Total Cost: \$661.08

Scenario Cost/Unit: \$33.05

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	4	\$24.84
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	4	\$71.44
Pruning tools, hand tools	1318	Pruning tools, hand tools, shears, loppers, pole saw, handsaw. Material costs only. Labor not included.	Hours	\$2.31	4	\$9.24
Pruning tool, pole saw	1319	Gasoline powered pole chainsaw. Labor not included.	Hours	\$9.80	4	\$39.20
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	12	\$325.92
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44

Practice: 660 - Tree-Shrub Pruning
Scenario: \#8-Pruning - Christmas Trees
Scenario Description:
This scenario will conducted on existing christmas trees. The resource concern is Plant - inadaquate health and vigor.
Before Situation:
An existing Christmas tree farm where the trees are limby and mis-shapened.

After Situation:

The typical scenario will involve pruning Christmas trees in a row that runs for 1320 feet in length. Once the trees are pruned, they will appear in good form, stringy branches will be pruned back to balance the look of the tree.

Feature Measure: acre
Scenario Unit: Acres
Scenario Typical Size: 20.00
Scenario Total Cost: \$733.40

Scenario Cost/Unit: \$36.67
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	4	\$71.44
Pruning tools, hand tools	1318	Pruning tools, hand tools, shears, loppers, pole saw, handsaw. Material costs only. Labor not included.	Hours	\$2.31	16	\$36.96
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44

Practice: 660-Tree-Shrub Pruning
Scenario: \#27-Pruning Individual Agroforestry tree - small acreage

Scenario Description:

In agroforestry settings (crop or forest lands) overstory tree crowns are pruned to increase sunlight to understory shrubs, low growing trees, and crop plants that have been purposely established to grow on the same ground. Thirty trees or less per acre require pruning. Associated Conservation Practice Standard (CPS) 384 - Woody Residue Treatment. Resource concern is degraded plant condition - undesirable plant productivity and health.

Before Situation:

Overstory trees are expanding their crowns, providing too much shade on the understory plants. The shade is affecting the growth and production of the understory plants. Pruning branches, leaves, frawns, etc. are needed to maintain the desired about of sunlight reaching the understory.

After Situation:
Pruning of the overstory tree crowns is completed, allowing the proper amount of sunlight to reach the understory vegetation, maintaining their grown, health and vigor, and wildlife benefits. Typical treatment area is less than 1 acre; typical scenario based on 1 ac, 30 TPA.

Feature Measure: Tree Pruned
Scenario Unit: Each
Scenario Typical Size: 30.00
Scenario Total Cost: \$361.41
Scenario Cost/Unit: \$12.05
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	5	\$31.05
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	1	\$24.99
Pruning tools, hand tools	1318	Pruning tools, hand tools, shears, loppers, pole saw, handsaw. Material costs only. Labor not included.	Hours	\$2.31	3	\$6.93
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	5	\$169.35
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	3	\$81.48
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	1	\$47.61

Practice: 666 - Forest Stand Improvement
Scenario: \#1-Pre-commercial Thinning - Hand tools

Scenario Description:

Adjusting the stocking of a young, non-merchantable stand of pine trees. The operation is carried out using hand tools such as machetes, axes, brush hooks, chainsaws or other approved hand cutting tools.

Before Situation:
The stocking of a stand of pine trees that are too small to make a commercial thinning exceeds the recommended fully stocked level for the species and site. The effect is much slower growth than is reasonable or expected for the site, increased susceptibility to insects and disease, and an unacceptable devastating wildfire risk. Resource concerns include undesirable plant productivity and health; wildlife habitat degradation; wildfire hazard; and inadequate structure and composition.

After Situation:

After completing a pre-commercial thinning operation, the number of trees on the site will be much less than the before operation numbers. The remaining trees will have space to grow making them healthier and more capable of withstanding insect and disease. After adjusting the stocking to an acceptable level, stand growth, condition, and overall quality is improved. In addition, wildlife habitat is improved with the resulting increase of sunlight reaching the forest floor causing more desirable forbs and shrubs to grow. The vertical structure of the stand is improved as the understory plants have a chance to develop. The improved growing conditions and more open canopy cover reduces the likelyhood of wildfires.

Feature Measure: Area treated

Scenario Unit: Acres
Scenario Typical Size: 10.00
Scenario Total Cost: $\$ 2,789.56$
Scenario Cost/Unit: \$278.96

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	40	\$248.40
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	4	\$99.96
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	40	\$1,354.80
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	40	\$1,086.40

Practice: 666 - Forest Stand Improvement
Scenario: \#2 - Timber Stand Improvement - Single Stem Treatment

Scenario Description:

Altering the composition and stocking of a stand of trees by means of individual stem treatment such as stem injection or basal bark spraying. The trees to be retained are marked by a consultant forester or other forestry professional.

Before Situation

The existing condition of the pine stand cannot meet the landowners objectives because the composition consists of unwanted hardwood species and the stocking exceeds the recommended level. The species and quality of the trees to be controlled makes a commercial operation unfeasible. Resource concerns include undesirable plant productivity and health; wildlife habitat degradation; wildfire hazard; and inadequate structure and composition.

After Situation:
Using a single stem treatment the resulting stand is comprised with desirable trees with the poorly formed and less desirable trees and/or shrubs removed. The remaining trees on the site are of desirable species and quality and they are free to grow as the competition for nutrients and water is reduced by the removal of the poor quality or less desirable trees. The composition of the stand can meet the landowners objectives and the growth, condition and quality of the remaining trees is improved. Wildlife habitat is improved as desirable trees are left in the stand along with improved structure. The improved stand structure and tree growth also reduces the likelyhood of wildfires.

Feature Measure: Acres treated
Scenario Unit: Acres
Scenario Typical Size: 10.00
Scenario Total Cost: \$1,269.99
Scenario Cost/Unit: \$127.00

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	4	\$99.96
Chemical, spot treatment, single stem application	964	Ground applied chemical to individual plants or group of plants, e.g., backpack sprayer treatment. Equipment and labor cost included.	Hours	\$80.61	5	\$403.05
Labor						
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	4	\$524.80
Materials						
Tree Marking Paint	313	Trees to be cut through tree marking are physically identified through the application of paint on the tree. Typically one quart of paint is used to mark one acre of trees. Includes materials and shipping only.	Acres	\$12.39	2	\$24.78
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	5	\$63.30
Herbicide, Imazapyr	336	Pre and post-emergent, non-selective herbicide for control of undesirable vegetation in non-crop areas. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$42.89	2	\$85.78
Herbicide, Triclopyor	338	Refer to WIN-PST for product names and active ingredients. Materials and shipping	Acres	\$34.16	2	\$68.32

Practice: 666 - Forest Stand Improvement
Scenario: \#3-Timber Stand Improvement - Chemical, Ground

Scenario Description:

Using ground equipment as an over-the-top chemical spray applied to release young desirable pine trees from competing and/or overtopping hardwood vegetation. Skidders, tractors or other ground equipment will be used to spray a selected herbicide, according to label directions, to remove targeted deciduous tree or shrub species.

Before Situation:
An adequately stocked stand of desirable pine trees is not growing to its potential for the site due to severe competition from undesirable hardwood trees and brush. Resource concerns include: Undesirable plant productivity and health, and wildlife habitat degradation.

After Situation:

The pine trees are free to grow with the competition from the less desirable hardwood trees removed by spraying an appropriate herbicide using skidders, tractors or other ground equipment. The residual trees will have more space, water and nutrients improving their growth and development. The reduction of the less desirable hardwood stems will allow more beneficial forbs and shrubs to grow as a result of sunlight reaching the forest floor. The released stand of trees contains the composition and quality needed to meet the landowner's objectives and address the resource concerns.

Feature Measure: Acres treated
Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: \$4,672.44

Scenario Cost/Unit: \$116.81
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	4	\$99.96
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	40	\$265.20
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	24	\$651.84
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	24	\$1,142.64
Materials						
Herbicide, Imazapyr	336	Pre and post-emergent, non-selective herbicide for control of undesirable vegetation in non-crop areas. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$42.89	40	\$1,715.60
Herbicide, Sulfometuron-methyl	340	Used for the control of annual and perennial grasses and broad leaved weeds in non-crop land. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$19.93	40	\$797.20

Practice: 666 - Forest Stand Improvement
Scenario: \#4 - Timber Stand Improvement - Chemical, Aerial

Scenario Description:

Using an aerially applied herbicide, according to label directions, to release desirable trees from competing and/or overtopping vegetation. Helicopters are the primary source of spraying over-the-top forestry herbicides but other aerial methods can be used as well. The work will be professionally planned and supervised.

Before Situation:
An adequately stocked stand of desirable pine trees is not growing to its potential for the site due to severe competition from undesirable hardwood trees and brush. Resource concerns include: Undesirable plant productivity and health, and wildlife habitat degradation.

After Situation:

The pine trees are free to grow with the competition from the less desirable hardwood trees removed by spraying an appropriate herbicide using helicopters or other aerial equipment. The residual trees will have more space, water and nutrients improving their growth and development. The reduction of the less desirable hardwood stems will allow more beneficial forbs and shrubs to grow as a result of sunlight reaching the forest floor. The released stand of trees contains the composition and quality needed to meet the landowner's objectives and address the resource concerns.

Feature Measure: Area treated
Scenario Unit: Acres
Scenario Typical Size: 40.00

Scenario Total Cost:	$\$ 5,932.22$
Scenario Cost/Unit:	$\$ 148.31$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	4	\$99.96
Chemical, aerial application, helicopter	1991	Chemical application performed by helicopter on forest only. Includes equipment, mobilization, and labor.	Acres	\$44.03	40	\$1,761.20
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	4	\$108.64
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22
Materials						
Herbicide, Imazapyr	336	Pre and post-emergent, non-selective herbicide for control of undesirable vegetation in non-crop areas. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$42.89	40	\$1,715.60
Herbicide, Sulfometuron \& metsulfuron	344	A residual sulfonylurea herbicide that kills broadleaf weeds and some annual grasses. It is a systemic compound with foliar and soil activity. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$11.34	40	\$453.60
Herbicide, Sulfometuron methyl \& Hexazinone	1282	Broad spectrum herbicide for residual weed control for christmas trees and other trees. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$42.45	40	\$1,698.00

Practice: 666 - Forest Stand Improvement
Scenario: \#5 - Competition Control - Mechanical, Light Equipment
Scenario Description:
Using light equipment such as a tractor with brush hog or a small dozer to control vegetation that is competing with desirable trees and species or to reduce the stocking level of a stand of desirable trees. The current trees are small enough that they can be mowed or shredded. The work can be done by mowing or shredding strips through the stand leaving strips of desirable trees.

Before Situation:

A stand of young, desirable pine trees is adversely affected by competition because the stand is overstocked. Resource concerns include undesirable plant productivity and health; wildlife habitat degradation; wildfire hazard; and inadequate structure and composition.

After Situation:

The post treatment stand will have strips of desirable trees remaining on the site created by mowing or shredding strips through the stand of trees. The remaining trees will be desirable species that are free to grow with the competition reduced. The productivity and health of the remaining trees is enhanced and the wildfire hazard will be reduced. Wildlife habitat and structure is improved as more desirable plants and shrubs can grow following removal of some of the trees. After adjusting the stocking to an acceptable level and/or controlling the competing vegetation, stand growth, condition, and overall quality of the stand is improved.

Feature Measure: Area Treated
Scenario Unit: Acres
Scenario Typical Size: 10.00
Scenario Total Cost: $\$ 488.78$
Scenario Cost/Unit: \$48.88
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Mechanical weed control, Vegetation termination	957	Mechanical operations, Includes: Roller/crimper, mower, shredder, etc. Includes equipment, power unit and labor costs.	Acres	\$26.67	10	\$266.70
Labor						
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	8	\$222.08

Practice: 666 - Forest Stand Improvement
Scenario: \#6-Competition Control - Mechanical, Heavy Equipment

Scenario Description:

Using equipment such as a bulldozer, drum chopper or other approved methods to control woody vegetation that is competing with desirable trees or to reduce the stocking level of a dense stand of desirable trees. The trees to be retained will be marked by a consultant or forestry professional.

Before Situation:
A stand of desirable trees is adversely affected by competition either from undesirable species, cull trees, or because the stand is overstocked. The vegetation to be controlled is too large to be mowed or shredded. Resource concerns include undesirable plant productivity and health; wildlife habitat degradation; wildfire hazard; and inadequate structure and composition.

After Situation:

The stand of trees is more open with the desirable trees remaining. The heavy equipment removed the less desirable species and poorly formed trees or a reduction in the number of trees per acre in a dense stand of desirable trees. The TSI improved the health and productivity of the residual trees while reducing the wildfire hazards. Wildlife habitat and structure is improved as sunlight can reach the forest floor increasing desirable plants and shrubs. The released stand of trees contains the composition and quality needed to meet the landowner's objectives and address the resource concerns.

Feature Measure: Area treated
Scenario Unit: Acres
Scenario Typical Size: 10.00
Scenario Total Cost: \$3,298.71

Scenario Cost/Unit: \$329.87
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	4	\$99.96
Mechanical cutter, chopper	943	Forestry mulcher, flail shredder, hydro axe, brush cutter, etc. Equipment and power unit costs. Labor not included.	Hours	\$115.16	12	\$1,381.92
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	12	\$382.44
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	4	\$524.80
Mobilization						
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 666 - Forest Stand Improvement
Scenario: \#7-Creating Patch Clearcuts

Scenario Description:

Creating 2 acre patches in over-mature and/or degraded stands using hand tools such as chainsaws. The cleared patches are areas that can be used to initiate new trees or to promote wildlife habitat. Creating small openings by cutting all trees greater than 2 ' in diameter will foster the regeneration of high-value shade intolerant species.

Before Situation:

The existing stand is overly mature and/or has been degraded in value by past harvesting practices. The level of acceptable growing stock is too low to justify managing this stand in its present condition. The present form, species composition and structure cannot meet the resource concerns and landowner objectives. Resource concerns include: Undesirable plant productivity and health, inadequate structure and composition, and habitat degradation.

After Situation:

Patch clearcuts or openings created conditions where a new, young stand of desirable species is established improving forest health and productivity. The small patch clearcuts may also be used to create early successional wildlife habitat improving plant diversity and structure. The stand of trees is still present with the additions of the small cleared areas.

Feature Measure: Area treated

Scenario Unit: Acres
Scenario Typical Size: 2.00

Scenario Total Cost:	\$881.85					
Scenario Cost/Unit:	\$440.93					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	12	\$74.52
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	3	\$74.97
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	12	\$406.44
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	12	\$325.92

Practice: 666 - Forest Stand Improvement
Scenario: \#8 - Thinning for Wildlife and Forest Health

Scenario Description:

Management to partially open a forest canopy to facilitate development of understory and midstory vegetation, and create conditions more favorable for desired wildlife species and tree health. A forester marks trees to be felled and/or treated. Selected trees will be targeted for control which will reduce the canopy cover and number of trees per acre. Thinning and timber stand improvement will occur using applications that will include hack-n-squirt, basal bark, girdling or stump cut. Treatment requires skilled labor chemical applications. Costs involved in any commercial harvest operation, including access and transportation costs, are not included in this scenario. Costs involved in marking trees to be treated, and supervising the treatment work, are included. Resource concerns include: - Inadequate structure and composition; Undesirable plant productivity and health; and - Wildlife habitat degradation.

Before Situation:
A densely stocked oak/hickory timber stand resulting in a closed canopy which provides very little sunlight to reach the forest floor. The basal area is excessively high and herbaceous ground cover is minimal. The forest lacks midstory and horizontal structure, the herbaceous layer is lacking or in poor condition, and/or the desired and characteristic plant diversity for the eco-site is not present. Without management, the site will not reach the desired future condition and meet landowners' objectives for wildlife habitat and forest health.

After Situation:
After management, stand density, structure and composition are at an acceptable level. The stand will evolve toward an open canopy, moderately stocked, mature forest with an herbaceous understory, thus improving the wildlife habitat of the desirable wildlife species. Air movement, and understory plant growth, condition and quality are improved. Stand density enhances eco-site diversity, Trees are healthy and less susceptible to damaging levels of insect pests and diseases.

Feature Measure: Acres treated

Scenario Unit: Acres

Scenario Typical Size: 10.00

Scenario Total Cost: $\$ 3,120.44$
Scenario Cost/Unit: \$312.04

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	4	\$99.96
Chemical, spot treatment, single stem application	964	Ground applied chemical to individual plants or group of plants, e.g., backpack sprayer treatment. Equipment and labor cost included.	Hours	\$80.61	8	\$644.88
Labor						
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	16	\$2,099.20

Materials

Tree Marking Paint
313 Trees to be cut through tree marking are physically identified through
Acres
\$12.39
5
\$61.95 the application of paint on the tree. Typically one quart of paint is used to mark one acre of trees. Includes materials and shipping only.
Herbicide, Imazapyr
336 Pre and post-emergent, non-selective herbicide for control of
Acres $\quad \$ 42.89 \quad 5 \quad \$ 214.45$ undesirable vegetation in non-crop areas. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.

Practice: 666 - Forest Stand Improvement
Scenario: \#9-TSI - Mulching

Scenario Description:

Densely stocked, pine, oak-hickory or hardwood-pine timber stands will be thinned in an effort to improve wildlife habitat, promote healthy trees and minimize the risk of wildfires. Mulching uses heavy mechanical equipment (e.g. masticator) that cuts and shreads small trees, shrubs and other vegetation leaving very little on the site except for the residual trees and shreaded material.

Before Situation:

Overstocked pine, hardwood or hardwood-pine stands resulting in degraded tree health and condition resulting in degraded wildlife habitat. The resource concerns include: Soil erosion; plant suitability - intended use; plant condition - productivity, health and vigor; wildlife habitat - inadequate food and cover.

After Situation:

The typical area treated will be approximately 40 acres in size, however, smaller and larger tract sizes are commonly treated using mulching. The stand will look very good with the residual trees covering the site and the poor form, damaged or undesirable trees removed from the stand. The stand is open underneath allowing herbaceous vegetation to return to the site along with some understory shrubs that are beneficial to wildlife. Also, the wildfire potential has been decreased as the fuel is now in low contact with the ground.

Feature Measure: acres
Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: $\$ 15,044.71$

Scenario Cost/Unit: \$376.12
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	8	\$199.92
Mechanical cutter, chopper	943	Forestry mulcher, flail shredder, hydro axe, brush cutter, etc. Equipment and power unit costs. Labor not included.	Hours	\$115.16	80	\$9,212.80
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	80	\$2,172.80
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	80	\$2,549.60
Mobilization						
Mobilization, large equipment	1140	Equipment >150HP or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	1	\$909.59

Practice: 670-Energy Efficient Lighting System

Scenario: \#5 - Automatic Controller System
Scenario Description:
The typical scenario consists of an automatic control system installed on an existing manually controlled agricultural system. Typical components may include any of the following: wiring, sensors, data logger, logic controller, communication link, software, switches, and relay.

Before Situation:
A manually controlled system is existing in an agricultural facility that causes the inefficient use of energy, as evidenced by an on-farm energy audit.
After Situation:
An on-farm energy audit has determined that energy use can be reduced through use of an automatic controller that helps regulates the energy consumption of the existing system. Associated practices/activities may include: 122-AgEMP - HQ, and other activities within 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.

Feature Measure: Each system
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$497.26
Scenario Cost/Unit: \$497.26
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	4	\$135.48
Materials						
Programable LED Dimmer	2720	Programable light dimmer/controller for poultry and hog barns Includes material and shipping only	Each	\$361.78	1	\$361.78

Practice: 670-Energy Efficient Lighting System

Scenario: \#19-Lighting - LED

Scenario Description:

To install dimmable LEDs to replace incandescent lamps on a one-for-one basis. Light fixtures do not have to be replaced. A typical poultry house has 48 fixtures. LED requirements: minimum 6 Watt, 3700 Kelvin, dimmable, grow-out bulb; industrial grade; suitably protected from dirt accumulation. In high humidity environments or areas subject to wash down, gasketted or weatherproof housings are required to prevent corrosion and premature failure.

Before Situation:

An inefficient lighting system such as one using incandescent lamps has been identified by an on-farm energy audit.

After Situation:

More efficient lighting is provided by Light-Emitting Diode (LED) lamps in order to reduce energy use as evidenced by the energy audit.Associated practices/activities: 122AgEMP - HQ and 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on nonrenewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE 6612.

Feature Measure: Each lamp replaced
Scenario Unit: Each
Scenario Typical Size: 1.00

Scenario Total Cost:	$\$ 11.94$
Scenario Cost/Unit:	$\$ 11.94$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	0.17	\$4.62
Materials						
Lighting, bulb, LED, dimmable, minimum 450 lumens	1167	Light Emitting Diode (LED), typically 3700 Kelvin, dimmable, grow-out bulb; industrial grade; suitably protected from dirt accumulation. Materials only.	Each	\$7.32	1	\$7.32

Practice: 670-Energy Efficient Lighting System
Scenario: \#27-Dairy Lighting - Interior

Scenario Description:

Replacement of existing lighting system in enclosed or covered areas on a dairy operation, including but not limited to, free stalls, milking parlors, wash rooms, and other interior spaces. Lighting system will include needed protection for wet, wet/damp, dust-proof as required by standards. Lighting levels will meet the industry and/or ASABE standards for lighting and coefficient of variation. The example is based on lighting a total area of 30,000 square feet.

Before Situation:

Inefficient energy use of lighting systems as indicated in energy audit. Typical dairy will have a combination of lighting that is not efficient. The area may also be underlit in certain areas and overlit in others.

After Situation:
Dairy facility with a lighting system design utilizing LEDs and controller to efficiently utilizes energy. Associated practices are Agricultural Energy Management Plan (128) and Farmstead Energy Improvement (374).

Feature Measure: Indoor Area to be lit with new LED f
Scenario Unit: 1,000 Square Foot
Scenario Typical Size: 30.00
Scenario Total Cost: \$5,954.74
Scenario Cost/Unit: \$198.49
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	16	\$541.92
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Materials						
High Bay, LED, >= 13,000 Lumens, Wet Location rated	2641	High Bay, Light Emitting Diode (LED), typically 4,000K, minimum 50,000 hour lifespan, rated for wet locations. Includes materials only.	Each	\$145.22	30	\$4,356.60
Lighting, Exterior Fixture with LED, Min. 5,000 Lumens, IP65 Rated	2704	LED Lighting fixture with a minimum of 5,000 lumens for exterior/outdoor uses such as buildings, doorway, or pathways. Includes light and fixture. All materials and appurtenances included.	Each	\$129.94	2	\$259.88
Programable LED Dimmer	2720	Programable light dimmer/controller for poultry and hog barns Includes material and shipping only	Each	\$361.78	1	\$361.78

Practice: 670-Energy Efficient Lighting System
Scenario: \#28-Dairy Lighting - Exterior

Scenario Description:

Replacement of existing lighting system in pens and other exterior areas on a dairy operation. Lighting system will include needed protection for exterior, wet locations. This scenario is bases on lighting an open area of $100^{\prime} \times 100$ ' with lights placed every 50 ' in a grid mounted 15-20 feet above the pen surface. This will provide a minimum of .5 foot candles with an average of 2 ft candles for the area. This will require 9 fixtures with a lumen output rating of 5,000 lumens per lamp. The example is based on lighting a total area of 10,000 square feet.

Before Situation:
Inefficient energy use of lighting systems as indicated in energy audit. Typical dairy will have a combination of lighting that is not efficient. The area may also be underlit in certain areas and overlit in others.

After Situation:
Dairy facility with a lighting system design for exterior areas utilizing LEDs and controller as required to efficiently utilizes energy. '128 ??? Agricultural Energy Management Plan ??? Written??? and ???374 ??? Farmstead Energy Improvement??? are associated practices.

Feature Measure: Exterior area to be lit with new LED
Scenario Unit: 1,000 Square Foot
Scenario Typical Size: 10.00

Scenario Total Cost:	\$2,140.90					
Scenario Cost/Unit:	\$214.09					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	18	\$609.66
Materials						
Lighting, Exterior Fixture with LED, Min. 5,000 Lumens, IP65 Rated	2704	LED Lighting fixture with a minimum of 5,000 lumens for exterior/outdoor uses such as buildings, doorway, or pathways. Includes light and fixture. All materials and appurtenances included.	Each	\$129.94	9	\$1,169.46
Programable LED Dimmer	2720	Programable light dimmer/controller for poultry and hog barns Includes material and shipping only	Each	\$361.78	1	\$361.78

Practice: 672 - Energy Efficient Building Envelope
Scenario: \#1-Building Envelope, Attic Insulation

Scenario Description:

Install a minimum R-7 insulation in addition to existing attic or ceiling to reduce heat transfer. Increased insulation reduces seasonal heat loss and heat gain which reduces the respective need for heating and cooling equipment to operate. Based on a 40' $\times 500$ poultry house.

Before Situation:
An on-farm energy audit has identified a poultry house with an inefficient building envelope due to limited attic insulation.
After Situation:
A more effective and efficient building envelope can be created through addition of, or increased, attic insulation. Associated practices/activities: 128 / 122-AgEMP - HQ, 672 -Building Envelope Improvement, and other activities within 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.

Feature Measure: Area of Attic Insulated
Scenario Unit: Square Feet
Scenario Typical Size: 20,000.00
Scenario Total Cost: $\$ 16,600.00$
Scenario Cost/Unit: \$0.83
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Materials						
Insulation, Fiberglass or cellulose, R-15	1196	Fiberglass or cellulose insulation R-15, includes materials, equipment and labor to install.	Square Feet	\$0.83	20000	\$16,600.00

Practice: 672 - Energy Efficient Building Envelope
Scenario: \#2 - Building Envelope, Wall Insulation

Scenario Description:

Enclose both sidewalls and endwalls from ceiling to floor in one of two manners: 1) metal exterior, 3.5' fiberglass batts (R-11), vapor barrier, \& interior plywood or OSB sheathing, or 2) spray polyurethane foam (closed-cell, minimum 1', R-7 value), thermal barrier (3/4' treated plywood or other equivalent), and a physical protective barrier on the lower 2' of wall (if not already concrete) of treated lumber. Based on a 40' x 500' poultry house.

Before Situation:
An on-farm energy audit has identified a poultry house with an inefficient building envelope due to limited wall insulation.

After Situation:

A more effective and efficient building envelope can be created through addition of, or increased, insulation. Associated practices/activities: may include 128 / 122-
AgEMP - HQ, 672-Building Envelope Improvement, and other activities within 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.

Feature Measure: Area of Wall Insulated
Scenario Unit: Square Feet
Scenario Typical Size: 6,000.00
Scenario Total Cost: $\$ 25,431.44$

Scenario Cost/Unit: \$4.24
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Materials						
Insulation, polyurethane, R-7, with sheathing skirt	1198	Closed-cell polyurethane foam insulation (minimum 1 inch thickness (R 7) with a protective sheeting barrier on lower 2 feet of wall height. Includes materials, equipment and labor to install.	Square Feet	\$2.66	6000	\$15,960.00
Plywood, 3/4 inch, treated	2363	Treated $4 \times 8 \mathrm{ft}$. sheets of $3 / 4$ inch exterior grade plywood	Each	\$50.38	188	\$9,471.44

Practice: 672 -Energy Efficient Building Envelope
Scenario: \#3-Building Envelope, Sealant

Scenario Description:

A typical scenario is sealing the gaps between walls, gables, ceiling, etc. in a poultry house or greenhouse. Sealing is performed by a professional contractor, not merely use of spray foam from a can. The unit basis of payment in this scenario is each house based on 60 ' $\times 500$ ' poultry house with an assumed need of sealant to seal 2750 linear feet of gap.

Before Situation

An on-farm energy audit has identified an agricultural facility with an inefficient building envelope due to gaps between walls, ceiling, etc.

After Situation:

A more effective and efficient building envelope can be created through interior sealing of the exterior walls at the footer plate, eaves, ridge cap, and gable ends. The sealant reduces seasonal heat loss and heat gain due to infiltration which reduces the respective need for heating and cooling equipment to operate. Associated practices/activities: may include 128 / 122-AgEMP - HQ, 672-Building Envelope Improvement, and other activities within 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.

Feature Measure: Gap Length to be Sealed
Scenario Unit: Feet
Scenario Typical Size: 2,750.00
Scenario Total Cost: $\$ 8,760.18$
Scenario Cost/Unit: \$3.19
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Materials						
Sealant	1150	Greenhouse and building gap sealant. Performed by a professional contractor spraying the areas with an approved sealant for poultry production facilities. Includes materials, equipment and labor to install.	Feet	\$1.61	2750	\$4,427.50
Plywood, 3/4 inch, treated	2363	Treated $4 \times 8 \mathrm{ft}$. sheets of $3 / 4$ inch exterior grade plywood	Each	\$50.38	86	\$4,332.68

Practice: 672 - Energy Efficient Building Envelope

Scenario: \#78-Building Envelope, Insulated Roll-Up Door

Scenario Description:

A typical scenario is the replacement of non-insulated rollup doors on poultry houses with insulated rollup doors. The increased insulation reduces seasonal heat loss and heat gain which reduces the respective need for heating and cooling equipment to operate.

Before Situation:
Poultry house has non-insulated or inefficiently insulated rollup doors causing high heat loss or gain.
After Situation:
A more effective and efficient energy seal can be created through the addition of, or increased R -value, insulated rollup doors. Associated practices/activities: may include 128 / 122-AgEMP, 672-Building Envelope Improvement, and other activities within 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.

Feature Measure: Each Door
Scenario Unit: Each
Scenario Typical Size: 1.00
Scenario Total Cost: \$1,748.60

Scenario Cost/Unit: \$1,748.60
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	5	\$135.80
Materials						
Door, Insulated, Roll-up	2392	Rolling service insulated steel door, 20 gauge. Includes hardware required to install. Used to replace non insulated door in buildings. Materials only.	Square Feet	\$10.08	160	\$1,612.80

Practice: 672 - Energy Efficient Building Envelope							
Scenario: \#80-Building Envelope, Tunnel Doors							
Scenario Description:							
A typical scenario is the installation of tunnel doors to replace tunnel curtain openings. Tunnel curtain openings are typically 5 ft . by 60 ft . on each side of a 40 ft . by 500 ft . poultry house; 600 sq . ft . of opening per house.							
Before Situation:							
A 40 ft . by 500 ft . poultry house with an inefficient building envelope has 5 ft . by 60 ft . tunnel curtain openings on each side of the poultry house.							
After Situation:							
A more effective and efficient building envelope can be created through replacement of the tunnel curtain openings with tunnel doors. Associated practices/activities: may include 128 / 122-AgEMP, and other activities within 672-Building Envelope Improvement and 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.							
Feature Measure: Area of Opening							
Scenario Unit: Square Feet							
Scenario Typical Size: 600.00							
Scenario Total Cost:	\$8,139.84						
Scenario Cost/Unit:	\$13.57						
Cost Details:							
Component Name	ID		Description	Unit	Cost	QTY	Total
Labor							
General Labor	231	Labo othe herd	tools such as re extensive tr materials spre	Hours	\$27.16	24	\$651.84
Materials							
Tunnel doors	2413	Tunn hous	lace curtains ly.	Square	\$12.48	600	\$7,488.00

Practice: 672 - Energy Efficient Building Envelope

Scenario: \#89-Building Envelope - Greenhouse Screens

Scenario Description:

The mechanical energy screen system consists of a drive motor, support cables, controls, and shade material, which may be woven, knitted, or non-woven strips of aluminum fiber, polyethylene, nylon or other synthetic material. The screen provides a means to better control solar heat gain and heat transfer during night or cold weather conditions to reduce energy use. Screens and similar devices may also be used to divide internal areas and allow for differentiated heating, ventilation, or cooling system operation to reduce energy use.

Before Situation:
Heating and cooling of an existing greenhouse, or similar structure with conditioned spaces, is inefficient due to poorly regulated heat transfer. A need to regulate an entire space for uniform conditions when some portions have differing, intermittent requirements can also reduce efficiency.

After Situation:
The greenhouse is fitted with a mechanically controlled energy screen installed truss-to-truss or gutter-to-gutter, with side screens as necessary, reducing heat loss in the greenhouse. Associated practices/activities: may include 122-AgEMP - HQ and 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.

Feature Measure: Area of Screen

Scenario Unit: Square Feet
Scenario Typical Size: 25,000.00
Scenario Total Cost: \$77,041.92

Scenario Cost/Unit: \$3.08
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	16	\$541.92
Materials						
Thermal blanket 10,001-50,000 square foot	1148	Thermal blanket greenhouse screens: mechanical energy screen system consists of a drive motor, support cables, controls, and shade material, which may be woven, knitted, or non-woven. Size Range is 10,001 to 50,000 square feet. Materials only.	Square Feet	\$3.06	25000	\$76,500.00

United States Department of Agriculture

Practice: 672 -Energy Efficient Building Envelope
Scenario: \#90-Greenhouse - Insulate Unglazed Walls
Scenario Description:
A typical scenario is the installation insulation in green house to address energy loss. The insulation can be either of the cellouse or bubble type (or equivalent). The increased insulation reduces seasonal heat loss and heat gain which reduces the respective need for heating and cooling equipment to operate.

Before Situation:
Green house with standard glazing, plastic or polycarbonate walls and no insulation. Heating and cooling of an existing greenhouse is inefficient due to excessive heat loss.
After Situation:
The greenhouse is fitted with insulation installed truss-to-truss or gutter-to-gutter and/or non glazed endwalls and/or sidewalls, reducing heat loss and gain in the greenhouse. Associated practices/activities: may include 122-AgEMP - HQ and 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.

Feature Measure: Square Feet of insulation
Scenario Unit: Square Feet
Scenario Typical Size: 25,000.00
Scenario Total Cost: \$10,291.92
Scenario Cost/Unit: \$0.41
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	16	\$541.92
Materials						
Insulation, Greenhouse, Reflective Bubble	2410	Double bubble reflective insulation with aluminum foil on both sides. Includes materials and shipping only.	Square Feet	\$0.39	25000	\$9,750.00

Practice: 810-Annual Forages for Grazing Systems
Scenario: \#14-Annual forages mix

Scenario Description:

Seeding crop, pasture or grazing land to multi-species mix of annual grasses, legumes, forbs or similar species. This mix will address all the planned purposes of the Annual Forages for Grazing Systems (810) standard. Plant forage immediately after harvest of a row crop, small grain, or other forage. Seeding equipment typically used is available on-site. When applicable, terminate the annual forage using an approved method prior to planting a subsequent crop per the NRCS Cover Crop Termination.

Before Situation:

Existing forage stands do not meet the forage demands and or quality for grazing animals, particularly during periods of low forage production. Resource concerns include undesirable plant productivity and health, inadequate feed and forage for livestock, soil erosion, and soil quality. In cases where poor quality or low yields exist in current annual pasture, annual forages replace the existing undesirable forage species and provides temporary forage and erosion control. This payment scenario is based on the no-till drilling of annual forages with no chemical applications.

After Situation:
Established annual forage mix improved livestock nutrition through improved forage quality and quantity, reduced erosion and improved soil condition. Over time, soil health is improved due to the additional biomass, ground cover, soil infiltration, and plant diversity introduced to the cropping or pasture system.

Feature Measure: acres of annual forages planted
Scenario Unit: Acres
Scenario Typical Size: 20.00
Scenario Total Cost: \$1,901.40

Scenario Cost/Unit: $\$ 95.07$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	20	\$402.60
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	10	\$271.60

Materials

Annual Grasses, Legumes or Forbs	2732	A mix of annual grasses, legumes and/or forbs, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	$\$ 61.36$	20

Practice: 812 - Raised Beds
Scenario: \#51 - Unframed Raised Bed field size <0.10 acres Contamination or Debris Sites only

Scenario Description:

The soil at this site has characteristics that restrict the ability to grow food and fiber crops directly in the soil. The soil has heavy metal contaminants and/or buried debris from past activities on the site. The owner/operator desires to bring the site into agricultural production. Typical size of raised bed is $4 \mathrm{ft} \times 16 \mathrm{ft}$ and minimum 16 inches deep and less than 100 sq ft . Field size 0.10 Acres (4356 sq ft) or less.

Before Situation:

Soils on site are unsuitable for agricultural production. Soil cannot be be remediated or debris cannot be removed practically.

After Situation:

Raised beds or mounds are created above the existing soil. Geomembrane may be used to separate plant roots from contacting soil contaminants. Raised beds are designed to meet the owner/operator objectives for overall size. Associated practices may include Trails and Walkways (575), Critical Area Planting (342).

Feature Measure: square feet of bed

Scenario Unit: Square Feet

Scenario Typical Size: 85.00

Scenario Total Cost: \$403.90

Scenario Cost/Unit: \$4.75

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Dumped and Spread	51	Earthfill, dumped and spread without compaction effort, includes equipment and labor	Cubic Yards	\$3.15	3	\$9.45
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	4	\$135.48
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	4	\$108.64
Materials						
Geotextile, non-woven, light weight	1209	Non-woven less than 8 ounce/square yard geotextile with staple anchoring. Materials and shipping only.	Square Yard	\$2.08	12	\$24.96
Earthfill Material, purchased, topsoil	2745	Purchased topsoil or screened loam. Material only.	Cubic Yards	\$25.13	3	\$75.39

Practice: 812 - Raised Beds
Scenario: \#52 - Unframed Raised Bedfield size <0.5 acres Contamination or Debris Sites only
Scenario Description:
The soil at this site has characteristics that restrict the ability to grow food and fiber crops directly in the soil. The soil has heavy metal contaminants and/or buried debris from past activities on the site. The owner/operator desires to bring the site into agricultural production. Bed area is 100 to 500 square feet. Raised bed size and shape varies. Field size up to 0.5 acres. NOT TO BE USED FOR RIDGE TILLAGE.

Before Situation:
Soils on site are unsuitable for agricultural production. Soil cannot be be remediated or debris cannot be removed practically.

After Situation:

Raised beds or mounds are created above the existing soil. Geomembrane may be used to separate plant roots from contacting soil contaminants. Raised beds are designed to meet the owner/operator objectives for overall size. Associated practices may include Trails and Walkways (575), Critical Area Planting (342).

Feature Measure: square feet per bed

Scenario Unit: Square Feet

Scenario Typical Size: 300.00

Scenario Total Cost: \$1,120.58

Scenario Cost/Unit: \$3.74

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Dumped and Spread	51	Earthfill, dumped and spread without compaction effort, includes equipment and labor	Cubic Yards	\$3.15	22	\$69.30
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	4	\$135.48
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Materials						
Geotextile, non-woven, light weight	1209	Non-woven less than 8 ounce/square yard geotextile with staple anchoring. Materials and shipping only.	Square Yard	\$2.08	46	\$95.68
Earthfill Material, purchased, topsoil	2745	Purchased topsoil or screened loam. Material only.	Cubic Yards	\$25.13	22	\$552.86

Practice: 812 - Raised Beds
Scenario: \#53 - Framed Raised Bed Small Lot Contamination or Debris Sites only

Scenario Description:

The soil at this site has characteristics that restrict the ability to grow food and fiber crops directly in the soil. The soil has heavy metal contaminants and/or buried debris from past activities on the site. The owner/operator desires to bring the site into agricultural production. Typical size of raised bed $4 \mathrm{ft} \times 16 \mathrm{ft}$ less than or equal to 100 sq ft . Field size 0.10 Acres or less.

Before Situation:

Soils on site are unsuitable for agricultural production. Soil cannot be be remediated or debris cannot be removed practically.

After Situation:

Raised beds or mounds are created above the existing soil. Geomembrane may be used to separate plant roots from contacting soil contaminants. Raised beds are designed to meet the owner/operator objectives for overall size. Associated practices may include Trails and Walkways (575), Critical Area Planting (342).

Feature Measure: sq ft
Scenario Unit: Square Feet
Scenario Typical Size: 64.00
Scenario Total Cost: \$923.46

Scenario Cost/Unit: \$14.43

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Dumped and Spread	51	Earthfill, dumped and spread without compaction effort, includes equipment and labor	Cubic Yards	\$3.15	3	\$9.45
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	4	\$135.48
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	4	\$108.64
Materials						
Geotextile, non-woven, light weight	1209	Non-woven less than 8 ounce/square yard geotextile with staple anchoring. Materials and shipping only.	Square Yard	\$2.08	9	\$18.72
Lumber, planks, posts and timbers, untreated, rot resistant	1612	Untreated dimension lumber with nominal thickness greater than 2 inches, milled from rot resistant species such as cedar. Includes lumber and fasteners. Does not include labor.	Board Feet	\$4.84	108	\$522.72
Steel, Structural Braces and Supports	2497	Structural steel in various sizes and shapes. Includes materials and shipping only.	Pound	\$1.54	2	\$3.08
Earthfill Material, purchased, topsoil	2745	Purchased topsoil or screened loam. Material only.	Cubic Yards	\$25.13	3	\$75.39

Practice: 812 - Raised Beds
Scenario: \#54-Framed Raised Bed < 500 sq ft Contamination or Debris Sites only

Scenario Description:

The soil at this site has characteristics that restrict the ability to grow food and fiber crops directly in the soil. The soil has heavy metal contaminants and/or buried debris from past activities on the site. The owner/operator desires to bring the site into agricultural production. Typical size of raised bed ranges from 100 square feet to 500 square feet. Field size 0.10 Acres or less.

Before Situation:

Soils on site are unsuitable for agricultural production. Soil cannot be be remediated or debris cannot be removed practically.

After Situation:

Raised beds or mounds are created above the existing soil. Geomembrane may be used to separate plant roots from contacting soil contaminants. Raised beds are designed to meet the owner/operator objectives for overall size. Associated practices may include Trails and Walkways (575), Critical Area Planting (342).

Feature Measure: sq ft

Scenario Unit: Square Feet

Scenario Typical Size: 200.00

Scenario Total Cost:	$\$ 1,535.62$
Scenario Cost/Unit:	$\$ 7.68$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Dumped and Spread	51	Earthfill, dumped and spread without compaction effort, includes equipment and labor	Cubic Yards	\$3.15	10	\$31.50
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	8	\$270.96
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	4	\$108.64
Materials						
Geotextile, non-woven, light weight	1209	Non-woven less than 8 ounce/square yard geotextile with staple anchoring. Materials and shipping only.	Square Yard	\$2.08	22	\$45.76
Lumber, planks, posts and timbers, untreated, rot resistant	1612	Untreated dimension lumber with nominal thickness greater than 2 inches, milled from rot resistant species such as cedar. Includes lumber and fasteners. Does not include labor.	Board Feet	\$4.84	160	\$774.40
Steel, Structural Braces and Supports	2497	Structural steel in various sizes and shapes. Includes materials and shipping only.	Pound	\$1.54	2	\$3.08
Earthfill Material, purchased, topsoil	2745	Purchased topsoil or screened loam. Material only.	Cubic Yards	\$25.13	10	\$251.30

Practice: 812 - Raised Beds
Scenario: \#55 - Framed Raised Bed greater than or equal to 500 sq ft Contamination or Debris Sites only

Scenario Description:

The soil at this site has characteristics that restrict the ability to grow food and fiber crops directly in the soil. The soil has heavy metal contaminants and/or buried debris from past activities on the site. The owner/operator desires to bring the site into agricultural production. Typical size of raised bed ranges from 500 square feet to 2000 square feet. Scenario assumes $16 * 50 \mathrm{ft}$ bed size.

Before Situation:

Soils on site are unsuitable for agricultural production. Soil cannot be be remediated or debris cannot be removed practically.

After Situation:

Raised beds or mounds are created above the existing soil. Geomembrane may be used to separate plant roots from contacting soil contaminants. Raised beds are designed to meet the owner/operator objectives for overall size. Associated practices may include Trails and Walkways (575), Critical Area Planting (342).

Feature Measure: sq ft
Scenario Unit: Square Feet
Scenario Typical Size: 800.00

Scenario Total Cost:	$\$ 3,635.21$
Scenario Cost/Unit:	$\$ 4.54$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Earthfill, Dumped and Spread	51	Earthfill, dumped and spread without compaction effort, includes equipment and labor	Cubic Yards	\$3.15	40	\$126.00
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	4	\$99.96
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	12	\$406.44
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Materials						
Geotextile, non-woven, light weight	1209	Non-woven less than 8 ounce/square yard geotextile with staple anchoring. Materials and shipping only.	Square Yard	\$2.08	35	\$72.80
Lumber, planks, posts and timbers, untreated, rot resistant	1612	Untreated dimension lumber with nominal thickness greater than 2 inches, milled from rot resistant species such as cedar. Includes lumber and fasteners. Does not include labor.	Board Feet	\$4.84	352	\$1,703.68
Steel, Structural Braces and Supports	2497	Structural steel in various sizes and shapes. Includes materials and shipping only.	Pound	\$1.54	2.5	\$3.85
Earthfill Material, purchased, topsoil	2745	Purchased topsoil or screened loam. Material only.	Cubic Yards	\$25.13	40	\$1,005.20

Practice: 821 - Low Tunnel Systems
Scenario: \#31-Low tunnel < 1000 square feet- Year 1

Scenario Description:

Garden or small farm grows annual crops including vegetables and other truck crops. Rows require a tunnel or floating cover to extend the growing season (early and late) or to protect from other environmental damage. Typical tunnel floats over crop or is supported by hoop or frame above crop. Tunnel cover is less than 48 inches above the soil. Typical row ranges in size from 30 inches by 200 feet up to 400 feet in length. Producer manages seasonal conditions such as soil temperature, exposure to early or late frost, and insects of food crops. Year 1 of implementation only.

Before Situation:
Crop production occurs within the zone growing season. Plant productivity and health is negatively impacted due to weather/environmental conditions delaying planting.

After Situation:

Row covers are applied and managed to improve plant health and productivity by controlling the micro-climate under the tunnel.
Feature Measure: area covered by tunnel
Scenario Unit: Square Feet
Scenario Typical Size: 500.00
Scenario Total Cost: \$3,020.99

Scenario Cost/Unit: \$6.04
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98

Labor

General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	12	\$325.92
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	46	\$2,190.06
Materials						
Clear polyethylene plastic, 6.0 mil	2725	6.0 mil, UV-stabilized greenhouse clear plastic with anti-condensation coating.	Square Feet	\$0.14	600	\$84.00
Netting, Crop Protection, Fine mesh	2761	Synthetic netting fine mesh to exclude small insects. Includes materials and shipping only.	Square Feet	\$0.14	600	\$84.00
Row Cover Hoops	2810	Galvanized wire hoops to create low tunnels, 9 or 10 gauge wire. Materials and shipping only.	Each	\$1.56	44	\$68.64
Frost Blanket	2811	Heavy weight blanket, minimum 2 ounces per square yard, for frost protection. Materials and shipping only.	Square Feet	\$0.17	600	\$102.00

Practice: 821 - Low Tunnel Systems
Scenario: \#32-Low tunnel management- Year 2-3
Scenario Description:
Garden or small farm grows annual crops including vegetables and other truck crops. Rows require a tunnel or floating cover to extend the growing season (early and late) or to protect from other environmental damage. Typical tunnel floats over crop or is supported by hoop or frame above crop. Tunnel cover is less than 48 inches above the soil. Producer manages seasonal conditions such as soil temperature, exposure to early or late frost, and insects of food crops. Year 2-3 of implementation.

Before Situation:
Crop production occurs within the zone growing season. Low tunnel system Year 1 was implemented. Producer is building skill to manage the tunnel coverings as needed during the growing season to improve plant productivity and health.

After Situation:
Row covers are applied and managed to improve plant health and productivity by controlling the micro-climate under the tunnel.
Feature Measure: area of tunnel
Scenario Unit: Square Feet
Scenario Typical Size: 1,000.00
Scenario Total Cost: \$545.28

Scenario Cost/Unit: \$0.55
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	2	\$232.78
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22

Practice: 821 - Low Tunnel Systems
Scenario: \#33-Low tunnel 1000-5000 square feet, Year 1

Scenario Description:

Garden or small farm grows annual crops including vegetables and other truck crops. Rows require a tunnel or floating cover to extend the growing season (early and late) or to protect from other environmental damage. Typical tunnel floats over crop or is supported by hoop or frame above crop. Tunnel cover is less than 48 inches above the soil. Typical row ranges in size from 30 inches by 500 feet up to 2000 feet in length. Producer manages seasonal conditions such as soil temperature, exposure to early or late frost, and insects of food crops. Year 1 of implementation only.

Before Situation:

Crop production occurs within the zone growing season. Plant productivity and health is negatively impacted due to weather/environmental conditions delaying planting.

After Situation:

Row covers are applied and managed to improve plant health and productivity by controlling the micro-climate under the tunnel.

Feature Measure: area covered by tunnel
Scenario Unit: Square Feet
Scenario Typical Size: 3,000.00

Scenario Total Cost: \$4,837.91						
Scenario Cost/Unit:		\$1.61				
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	30	\$814.80
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	46	\$2,190.06
Materials						
Clear polyethylene plastic, 6.0 mil	2725	6.0 mil, UV-stabilized greenhouse clear plastic with anti-condensation coating.	Square Feet	\$0.14	3000	\$420.00
Netting, Crop Protection, Fine mesh	2761	Synthetic netting fine mesh to exclude small insects. Includes materials and shipping only.	Square Feet	\$0.14	3000	\$420.00
Row Cover Hoops	2810	Galvanized wire hoops to create low tunnels, 9 or 10 gauge wire. Materials and shipping only.	Each	\$1.56	203	\$316.68
Frost Blanket	2811	Heavy weight blanket, minimum 2 ounces per square yard, for frost protection. Materials and shipping only.	Square Feet	\$0.17	3000	\$510.00

Practice: B000BFF1 - Buffer Bundle\#1
Scenario: \#1-Buffer Bundle\#1

Scenario Description:

Addresses water quality degradation, degraded plant condition, fish/wildlife inadequate habitat, and/or air quality impacts.
Before Situation:
Resources are protected at the minimum level of the conservation practice standard(s) applied as part of the enhancement.

After Situation:

The adoption of this enhancement will provide resource protection above the minimum level of the conservation practice standard(s) applied
Feature Measure: Acre
Scenario Unit: Acres

Scenario Typical Size: 3.00

Scenario Total Cost: $\$ 9,460.55$

Scenario Cost/Unit: \$3,153.52
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	8	\$199.92
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	1	\$13.45
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	7	\$46.41
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13
Tractor, agricultural, 60 HP	963	Agricultural tractor with horsepower range of 50 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$35.80	6	\$214.80
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	10	\$178.60
Cultipacking	1100	Includes equipment, power unit and labor costs.	Acres	\$10.03	1	\$10.03
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	10	\$125.10
Mechanical tree planter	1600	Mechanical tree planter. Requires a pulling unit of either tractor or small dozer depending upon site conditions. Does not include labor.	Hours	\$5.88	6	\$35.28
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	1.23	\$280.03
FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	Acres	\$251.94	1.08	\$272.10
FI, Wheat Dryland	1963	Dryland Wheat is Primary Crop	Acres	\$98.94	0.69	\$68.27
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	2	\$67.74
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	6	\$166.56
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	6	\$285.66
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	2	\$262.40

Materials

Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	5	\$63.30
Herbicide, Sulfometuron \& metsulfuron	344	A residual sulfonylurea herbicide that kills broadleaf weeds and some annual grasses. It is a systemic compound with foliar and soil activity. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$11.34	5	\$56.70
Herbicide, Surfactant	1095	Surfactants reduce the surface tension of water to produce more uniform coverage and penetration of herbicides, and weed killers. Paraffin Based Petroleum Surfactant. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$1.61	5	\$8.05
Shrub, Seedling, Medium	1507	Bare root shrub seedling, 18 to 36 inches tall; includes tropical containerized seedlings 10 to 20 cubic inches. Includes materials and shipping only.	Each	\$1.86	341	\$634.26
Tree, Hardwood, Seedling, Medium	1510	Bare root hardwood seedlings 18 to 36 inches tall; includes tropical containerized seedlings of 10 to 20 cubic inches. Includes materials and shipping only.	Each	\$1.72	2518	\$4,330.96
Annual Grasses, Legumes or Forbs	2732	A mix of annual grasses, legumes and/or forbs, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$61.36	1	\$61.36
Native Perennial Grasses, Legumes and/or Forbs, Medium Density	2754	A mix of native perennial grasses, legumes, and/or forbs, Grasses typically greater than 50% of the mix, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at medium to higher density (41-60 pure live seeds/sq ft). Species typically easy to purchase. Includes material and shipping.	Acres	\$272.59	1	\$272.59
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	2	\$598.92
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

USDA United States Department of Agriculture

Practice: B000CPL10 - YEAR 1 Irrigated Cropland (MRBI/Ogallala)
Scenario: \#2 - YEAR 1 Irrigated Cropland (MRBI/Ogallala)

Scenario Description:

Addresses water quality degradation, insufficient water, soil erosion, and inefficient energy.
Before Situation:
Resources are protected at the minimum level of the conservation practice standard(s) applied as part of the enhancement.

After Situation:

The adoption of this enhancement will provide resource protection above the minimum level of the conservation practice standard(s) applied
Feature Measure: acres of cropland where enhancem
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$14,279.64
Scenario Cost/Unit: \$142.80
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	30	\$749.70
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	19	\$643.53
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	16	\$761.76
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	41	\$5,379.20

Materials

Nitrogen-Urease inhibitor	260	Nitrogen-Urease inhibitor	Acres	\$11.13	100	\$1,113.00
Test, Soil Nitrogen Testing	311	Pre-Side Dress/Deep Soil Testing. Includes materials and shipping only.	Each	\$12.03	5	\$60.15
Switches and Controls, temp sensors	1192	Temperature and soil moisture sensors installed as part of an electronic monitoring (with or without wireless telecommunications) commonly used to control pumps and irrigation systems	Each	\$646.73	3	\$1,940.19
Data Logger with Telemetry System	1454	Data Logger W/Graphic Output for water management and telemetry data communication device with power supply in a weather proof enclosure. Equipment only.	Each	\$1,663.47	1	\$1,663.47
Weather Station, Advanced	2550	Advance Weather Station which collects and records recording rainfall, humidity, barometric pressure, wind speed, temperature, and solar radiation from a solar powered self-standing tripod to an advance weather recording console. Used for both 449 advance irrigation water management and for Activity 202 water quality monitoring .	Each	\$973.44	1	\$973.44
Annual Grasses	2730	Annual grasses, one or more species, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$40.79	20	\$815.80
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40

Practice: B000CPL11 - YEAR 2+ Irrigated Cropland (MRBI/Ogallala)
Scenario: \#13 - YEAR 2+ Irrigated Cropland (MRBI/Ogallala)
Scenario Description:
Addresses water quality degradation, insufficient water, and soil erosion.
Before Situation:
Resources are protected at the minimum level of the conservation practice standard(s) applied as part of the enhancement.
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level of the conservation practice standard(s) applied.
Feature Measure: acres of cropland where enhancem
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$4,782.66

Scenario Cost/Unit: \$47.83
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	41	\$1,388.67
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	24	\$1,142.64
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	2	\$262.40
Materials						
Nitrogen-Urease inhibitor	260	Nitrogen-Urease inhibitor	Acres	\$11.13	100	\$1,113.00
Test, Soil Nitrogen Testing	311	Pre-Side Dress/Deep Soil Testing. Includes materials and shipping only.	Each	\$12.03	5	\$60.15
Annual Grasses	2730	Annual grasses, one or more species, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$40.79	20	\$815.80

Practice: B000CPL12 - Non-Irrigated Precision Ag (MRBI)
Scenario: \#13 - Non-Irrigated Precision Ag (MRBI)
Scenario Description:
Addresses water quality degradation, soil quality, and soil erosion.
Before Situation:
Resources are protected at the minimum level of the conservation practice standard(s) applied as part of the enhancement.
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level of the conservation practice standard(s) applied
Feature Measure: acres of cropland where enhancem
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$4,292.52

Scenario Cost/Unit: \$42.93
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chemical, precision application	949	Chemical application performed by light bar/GPS navigation system. Includes equipment, power unit and labor costs.	Acres	\$8.61	100	\$861.00
Fertilizer, precision application	952	Fertilizer application performed by light bar/GPS navigation system. Includes equipment, power unit and labor costs.	Acres	\$9.03	100	\$903.00
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	1	\$33.87
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	9	\$1,180.80
Materials						
Test, Soil Test, Standard	299	Includes materials, shiping, labor, and equipment costs.	Each	\$14.23	35	\$498.05
Annual Grasses	2730	Annual grasses, one or more species, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$40.79	20	\$815.80

Practice: B000CPL13 - Non-Irrigated Cropland (MRBI)
Scenario: \#13-Non-Irrigated Cropland (MRBI)
Scenario Description:
Addresses water quality degradation, soil quality, and soil erosion.
Before Situation:
Resources are protected at the minimum level of the conservation practice standard(s) applied as part of the enhancement.
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level of the conservation practice standard(s) applied.
Feature Measure: acres of cropland where enhancem
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: $\$ 3,673.52$

Scenario Cost/Unit: \$36.74
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	11	\$372.57
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	10	\$1,312.00
Materials						
Nitrogen-Urease inhibitor	260	Nitrogen-Urease inhibitor	Acres	\$11.13	100	\$1,113.00
Test, Soil Nitrogen Testing	311	Pre-Side Dress/Deep Soil Testing. Includes materials and shipping only.	Each	\$12.03	5	\$60.15
Annual Grasses	2730	Annual grasses, one or more species, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$40.79	20	\$815.80

Practice: B000CPL14 - YEAR 1 Irrigated Precision Ag Cropland (MRBI)
Scenario: \#13-YEAR 1 Irrigated Precision Ag Cropland (MRBI)

Scenario Description:

Addresses water quality degradation, insufficient water, soil erosion, and inefficient energy.
Before Situation:
Resources are protected at the minimum level of the conservation practice standard(s) applied as part of the enhancement.

After Situation:

The adoption of this enhancement will provide resource protection above the minimum level of the conservation practice standard(s) applied
Feature Measure: acres of cropland where enhancem
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$14,507.54
Scenario Cost/Unit: \$145.08
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	30	\$749.70
Fertilizer, precision application	952	Fertilizer application performed by light bar/GPS navigation system. Includes equipment, power unit and labor costs.	Acres	\$9.03	100	\$903.00
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	19	\$643.53
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	16	\$761.76
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	41	\$5,379.20

Materials

Test, Soil Test, Standard	299	Includes materials, shiping, labor, and equipment costs.	Each	\$14.23	35	\$498.05
Switches and Controls, temp sensors	1192	Temperature and soil moisture sensors installed as part of an electronic monitoring (with or without wireless telecommunications) commonly used to control pumps and irrigation systems	Each	\$646.73	3	\$1,940.19
Data Logger with Telemetry System	1454	Data Logger W/Graphic Output for water management and telemetry data communication device with power supply in a weather proof enclosure. Equipment only.	Each	\$1,663.47	1	\$1,663.47
Weather Station, Advanced	2550	Advance Weather Station which collects and records recording rainfall, humidity, barometric pressure, wind speed, temperature, and solar radiation from a solar powered self-standing tripod to an advance weather recording console. Used for both 449 advance irrigation water management and for Activity 202 water quality monitoring .	Each	\$973.44	1	\$973.44
Annual Grasses	2730	Annual grasses, one or more species, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$40.79	20	\$815.80
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40

Practice: B000CPL15-YEAR 2+ Irrigated Precision Ag Cropland (MRBI)
Scenario: \#13-YEAR 2+ Irrigated Precision Ag Cropland (MRBI)
Scenario Description:
Addresses water quality degradation, insufficient water, and soil erosion.
Before Situation:
Resources are protected at the minimum level of the conservation practice standard(s) applied as part of the enhancement.
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level of the conservation practice standard(s) applied
Feature Measure: acres of cropland where enhancem
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$5,010.56

Scenario Cost/Unit: \$50.11
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Fertilizer, precision application	952	Fertilizer application performed by light bar/GPS navigation system. Includes equipment, power unit and labor costs.	Acres	\$9.03	100	\$903.00
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	41	\$1,388.67
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	24	\$1,142.64
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	2	\$262.40

Materials

Test, Soil Test, Standard	299	Includes materials, shiping, labor, and equipment costs.	Each	$\$ 14.23$	35	$\$ 498.05$
Annual Grasses	2730	Annual grasses, one or more species, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	$\$ 40.79$	20	$\$ 815.80$

Practice: B000CPL16 - Non-Irrigated Cropland with Water Bodies (MRBI)
Scenario: \#13 - Non-Irrigated Cropland with Water Bodies (MRBI)
Scenario Description:
Addresses water quality degradation, soil erosion, and soil quality
Before Situation:
Resources are protected at the minimum level of the conservation practice standard(s) applied as part of the enhancement.

After Situation:

The adoption of this enhancement will provide resource protection above the minimum level of the conservation practice standard(s) applied
Feature Measure: acres of cropland where enhancem
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$4,365.16
Scenario Cost/Unit: \$43.65
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	2	\$13.26
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	2	\$40.26
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	0.82	\$186.69
FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	Acres	\$251.94	0.72	\$181.40
FI, Wheat Dryland	1963	Dryland Wheat is Primary Crop	Acres	\$98.94	0.46	\$45.51

Labor

Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	11	\$372.57
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	9	\$1,180.80

Materials

Nitrogen-Urease inhibitor	260	Nitrogen-Urease inhibitor	Acres	\$11.13	100	\$1,113.00
Test, Soil Nitrogen Testing	311	Pre-Side Dress/Deep Soil Testing. Includes materials and shipping only.	Each	\$12.03	5	\$60.15
Herbicide, Imazapyr	336	Pre and post-emergent, non-selective herbicide for control of undesirable vegetation in non-crop areas. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$42.89	2	\$85.78
Annual Grasses	2730	Annual grasses, one or more species, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$40.79	20	\$815.80
Native Perennial Grasses, Low Density	2750	Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$134.97	2	\$269.94

Practice: B000CPL17 - Non-Irrigated Cropland with Water Bodies Riparian Forest Buffer (MRBI)
Scenario: \#13 - Non-Irrigated Cropland with Water Bodies Riparian Forest Buffer (MRBI)

Scenario Description:

Addresses water quality degradation, soil erosion, and soil quality
Before Situation:
Resources are protected at the minimum level of the conservation practice standard(s) applied as part of the enhancement.

After Situation:

The adoption of this enhancement will provide resource protection above the minimum level of the conservation practice standard(s) applied
Feature Measure: acres of cropland where enhancem
Scenario Unit: Acres

Scenario Typical Size: 100.00
Scenario Total Cost: $\$ 8,184.89$
Scenario Cost/Unit: \$81.85

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	18	\$449.82
Mower, Bush Hog	940	Equipment and power unit costs. Labor not included.	Hours	\$31.13	2	\$62.26
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	2	\$13.26
Tractor, agricultural, 60 HP	963	Agricultural tractor with horsepower range of 50 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$35.80	4	\$143.20
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	16	\$200.16
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	0.82	\$186.69
FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	Acres	\$251.94	0.72	\$181.40
FI, Wheat Dryland	1963	Dryland Wheat is Primary Crop	Acres	\$98.94	0.46	\$45.51

Labor

Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	11	\$372.57
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	18	\$488.88
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	4	\$111.04
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	9	\$1,180.80
Materials						
Nitrogen-Urease inhibitor	260	Nitrogen-Urease inhibitor	Acres	\$11.13	100	\$1,113.00
Test, Soil Nitrogen Testing	311	Pre-Side Dress/Deep Soil Testing. Includes materials and shipping only.	Each	\$12.03	5	\$60.15
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	1	\$12.66

Herbicide, Sulfometuron \& metsulfuron	344	A residual sulfonylurea herbicide that kills broadleaf weeds and some annual grasses. It is a systemic compound with foliar and soil activity. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$11.34	1	\$11.34
Herbicide, Surfactant	1095	Surfactants reduce the surface tension of water to produce more uniform coverage and penetration of herbicides, and weed killers. Paraffin Based Petroleum Surfactant. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$1.61	1	\$1.61
Tree, Hardwood, Seedling, Medium	1510	Bare root hardwood seedlings 18 to 36 inches tall; includes tropical containerized seedlings of 10 to 20 cubic inches. Includes materials and shipping only.	Each	\$1.72	872	\$1,499.84
Tree shelter, solid tube type, 4 in. x 48 in.	1566	4 inch $x 48$ inch tree tube for protection from animal damage. Materials and shipping only.	Each	\$5.29	100	\$529.00
Stakes, wood, 1 in. x 1 in. x 48 in.	1578	1 in. x 1 in. x 48 in. wood stakes to fasten items in place. Includes materials only.	Each	\$2.16	100	\$216.00
Annual Grasses	2730	Annual grasses, one or more species, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$40.79	20	\$815.80
Mobilization						
Mobilization, small equipment	1138	Equipment <70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: B000CPL18-Crop Bundle \#18-Precision Ag						
Scenario: \#13-Crop Bundle \#18-Precision Ag						
Scenario Description:						
Addresses water quality degradation, fish and wildlife inadequate habitat, air quality impairment, and either soil erosion or soil quality degradation resource concerns.						
Before Situation:						
Resources are protected at the minimum level of the conservation practice standard(s) applied as part of the enhancement.						
After Situation:						
The adoption of this enhancement will provide resource protection above the minimum level of the conservation practice standard(s) applied						
Feature Measure: acres of cropland where enhancem						
Scenario Unit: Acres						
Scenario Typical Size: 100.00						
Scenario Total Cost:	\$4,307.28					
Scenario Cost/Unit:	\$43.07					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chemical, precision application	949	Chemical application performed by light bar/GPS navigation system. Includes equipment, power unit and labor costs.	Acres	\$8.61	100	\$861.00
Fertilizer, precision application	952	Fertilizer application performed by light bar/GPS navigation system. Includes equipment, power unit and labor costs.	Acres	\$9.03	100	\$903.00
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	0.17	\$38.70
FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	Acres	\$251.94	0.17	\$42.83
FI, Wheat Dryland	1963	Dryland Wheat is Primary Crop	Acres	\$98.94	0.17	\$16.82
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	1	\$33.87
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	1	\$47.61
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	8	\$1,049.60
Materials						
Test, Soil Test, Standard	299	Includes materials, shiping, labor, and equipment costs.	Each	\$14.23	35	\$498.05
Annual Grasses	2730	Annual grasses, one or more species, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$40.79	20	\$815.80

Practice: B000CPL19-Crop Bundle \#19-Soil Health Precision Ag						
Scenario: \#13-Crop Bundle \#19-Soil Health Precision Ag						
Scenario Description:						
Addresses water quality degradation, soil quality degradation, fish and wildlife inadequate habitat, and insufficient water resource concerns.						
Before Situation:						
Resources are protected at the minimum level of the conservation practice standard(s) applied as part of the enhancement.						
After Situation:						
The adoption of this enhancement will provide resource protection above the minimum level of the conservation practice standard(s) applied						
Feature Measure: acres of cropland where enhancem						
Scenario Unit: Acres						
Scenario Typical Size: 100.00						
Scenario Total Cost:	\$4,307.98					
Scenario Cost/Unit: \$43.08						
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chemical, precision application	949	Chemical application performed by light bar/GPS navigation system. Includes equipment, power unit and labor costs.	Acres	\$8.61	100	\$861.00
Fertilizer, precision application	952	Fertilizer application performed by light bar/GPS navigation system. Includes equipment, power unit and labor costs.	Acres	\$9.03	100	\$903.00
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	2	\$67.74
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	13	\$1,705.60
Materials						
Test, Soil Test, Standard	299	Includes materials, shiping, labor, and equipment costs.	Each	\$14.23	35	\$498.05
Native Perennial Grasses, Legumes and/or Forbs, Medium Density	2754	A mix of native perennial grasses, legumes, and/or forbs, Grasses typically greater than 50% of the mix, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at medium to higher density (41-60 pure live seeds/sq ft). Species typically easy to purchase. Includes material and shipping.	Acres	\$272.59	1	\$272.59

Practice: B000CPL20 - Crop Bundle \#20 - Soil Health Assessment
Scenario: \#13-Crop Bundle \#20 - Soil Health Assessment
Scenario Description:
Addresses water quality degradation, soil quality degradation, fish and wildlife inadequate habitat, and insufficient water resource concerns.
Before Situation:
Resources are protected at the minimum level of the conservation practice standard(s) applied as part of the enhancement.
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level of the conservation practice standard(s) applied.
Feature Measure: acres of cropland where enhancem
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$4,164.83
Scenario Cost/Unit: \$41.65
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	12	\$406.44
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	16	\$2,099.20
Materials						
Nitrogen-Urease inhibitor	260	Nitrogen-Urease inhibitor	Acres	\$11.13	100	\$1,113.00
Test, Soil Test, Standard	299	Includes materials, shiping, labor, and equipment costs.	Each	\$14.23	15	\$213.45
Test, Soil Nitrogen Testing	311	Pre-Side Dress/Deep Soil Testing. Includes materials and shipping only.	Each	\$12.03	5	\$60.15
Native Perennial Grasses, Legumes and/or Forbs, Medium Density	2754	A mix of native perennial grasses, legumes, and/or forbs, Grasses typically greater than 50% of the mix, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at medium to higher density (41-60 pure live seeds/sq ft). Species typically easy to purchase. Includes material and shipping.	Acres	\$272.59	1	\$272.59

Practice: B000CPL21-Crop Bundle \#21-Crop Bundle (Organic)
Scenario: \#13-Crop Bundle \#21-Crop Bundle (Organic)

Scenario Description:

Addresses soil quality degradation, water quality degradation, and degraded plant condition resource concerns.
Before Situation:
Resources are protected at the minimum level of the conservation practice standard(s) applied as part of the enhancement.

After Situation:

The adoption of this enhancement will provide resource protection above the minimum level of the conservation practice standard(s) applied.
Feature Measure: acres of cropland where enhancem
Scenario Unit: Acres

Scenario Typical Size: 100.00
Scenario Total Cost: \$6,347.18
Scenario Cost/Unit: \$63.47
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	10	\$249.90
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	1	\$13.45
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	2	\$13.26
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	10	\$178.60
Cultipacking	1100	Includes equipment, power unit and labor costs.	Acres	\$10.03	1	\$10.03
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	10	\$125.10
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	0.82	\$186.69
FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	Acres	\$251.94	0.72	\$181.40
FI, Wheat Dryland	1963	Dryland Wheat is Primary Crop	Acres	\$98.94	0.46	\$45.51
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	10	\$338.70
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	10	\$271.60
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	9	\$1,180.80
Materials						
Nitrogen-Urease inhibitor	260	Nitrogen-Urease inhibitor	Acres	\$11.13	100	\$1,113.00
Test, Soil Nitrogen Testing	311	Pre-Side Dress/Deep Soil Testing. Includes materials and shipping only.	Each	\$12.03	5	\$60.15
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	1	\$12.66
Herbicide, Sulfometuron \& metsulfuron	344	A residual sulfonylurea herbicide that kills broadleaf weeds and some annual grasses. It is a systemic compound with foliar and soil activity. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$11.34	1	\$11.34

Herbicide, Surfactant	1095	Surfactants reduce the surface tension of water to produce more uniform coverage and penetration of herbicides, and weed killers. Paraffin Based Petroleum Surfactant. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$1.61	1	\$1.61
Shrub, Seedling, Medium	1507	Bare root shrub seedling, 18 to 36 inches tall; includes tropical containerized seedlings 10 to 20 cubic inches. Includes materials and shipping only.	Each	\$1.86	341	\$634.26
Tree, Hardwood, Seedling, Medium	1510	Bare root hardwood seedlings 18 to 36 inches tall; includes tropical containerized seedlings of 10 to 20 cubic inches. Includes materials and shipping only.	Each	\$1.72	340	\$584.80
Annual Grasses, Legumes or Forbs	2732	A mix of annual grasses, legumes and/or forbs, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$61.36	1	\$61.36
Mobilization						
Mobilization, small equipment	1138	Equipment <70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: B000CPL22 - Crop Bundle \#22 - Erosion Bundle (Organic)
Scenario: \#13 - Crop Bundle \#22 - Erosion Bundle (Organic)
Scenario Description:
Addresses soil quality degradation, water quality degradation, soil erosion, and fish and wildlife inadequate habitat resource concerns.
Before Situation:
Resources are protected at the minimum level of the conservation practice standard(s) applied as part of the enhancement.
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level of the conservation practice standard(s) applied.
Feature Measure: acres of cropland where enhancem
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$4,538.65
Scenario Cost/Unit: \$45.39
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	13	\$440.31
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	14	\$1,836.80
Materials						
Nitrogen-Urease inhibitor	260	Nitrogen-Urease inhibitor	Acres	\$11.13	100	\$1,113.00
Test, Soil Nitrogen Testing	311	Pre-Side Dress/Deep Soil Testing. Includes materials and shipping only.	Each	\$12.03	5	\$60.15
Annual Grasses	2730	Annual grasses, one or more species, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$40.79	20	\$815.80
Native Perennial Grasses, Legumes and/or Forbs, Medium Density	2754	A mix of native perennial grasses, legumes, and/or forbs, Grasses typically greater than 50% of the mix, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at medium to higher density (41-60 pure live seeds/sq ft). Species typically easy to purchase. Includes material and shipping.	Acres	\$272.59	1	\$272.59

Practice: B000CPL23 - Crop Bundle \#23 - Pheasant and quail habitat
Scenario: \#4 - Crop Bundle \#23-Pheasant and quail habitat

Scenario Description:

Addresses wildlife inadequate habitat, water quality degradation and/or air quality impacts, and soil health and/or degraded plant condition.
Before Situation:
Resources are protected at the minimum level of the conservation practice standards applied as part of the bundle.

After Situation:

The adoption of these enhancements will provide resource protection above the minimum level of the conservation practice standard(s) applied
Feature Measure: Acres where the bundle is impleme
Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: \$2,482.36
Scenario Cost/Unit: \$62.06
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	1	\$13.45
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	1	\$6.63
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	0.41	\$93.34
FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	Acres	\$251.94	0.36	\$90.70
FI, Wheat Dryland	1963	Dryland Wheat is Primary Crop	Acres	\$98.94	0.23	\$22.76
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	2	\$67.74
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	2	\$54.32
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	4	\$524.80
Materials						
Annual Grasses, Legumes or Forbs	2732	A mix of annual grasses, legumes and/or forbs, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$61.36	20	\$1,227.20
Introduced Perennial Grasses, Legumes and/or Forbs, High Density	2749	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at high density (greater than 60 pure live seeds/sq ft). Includes material and shipping.	Acres	\$88.70	1	\$88.70
Native Perennial Grasses, Legumes and/or Forbs, Medium Density	2754	A mix of native perennial grasses, legumes, and/or forbs, Grasses typically greater than 50% of the mix, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at medium to higher density (41-60 pure live seeds/sq ft). Species typically easy to purchase. Includes material and shipping.	Acres	\$272.59	1	\$272.59

Practice: B000CPL24 - Crop Bundle \#24-Cropland Soil Health Management System
Scenario: \#13 - Crop Bundle \#24- Cropland Soil Health Management System
Scenario Description:
Addresses soil health, water quality (or water quality and air quality), and either soil erosion, soil compaction, or plant pest pressure.
Before Situation:
Resources are protected at the minimum level of the conservation practice standards applied as part of the bundle.
After Situation:
The adoption of these enhancements will provide resource protection above the minimum level of the conservation practice standard(s) applied.
Feature Measure: acre

Scenario Unit: Acres

Scenario Typical Size: 100.00
Scenario Total Cost: \$3,329.99

Scenario Cost/Unit: \$33.30
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	2	\$67.74
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	14	\$1,836.80
Materials						
Nitrogen-Urease inhibitor	260	Nitrogen-Urease inhibitor	Acres	\$11.13	100	\$1,113.00
Test, Soil Nitrogen Testing	311	Pre-Side Dress/Deep Soil Testing. Includes materials and shipping only.	Each	\$12.03	5	\$60.15
Test, Soil Health, Basic Package	2734	Basic soil health laboratory assessment for soil organic carbon, aggregation, bioavailable nitrogen, respiration, and active carbon according to technical note 450-03. Includes shipping and handling.	Number	\$126.15	2	\$252.30

Practice: B000CPL25-Climate Smart Advanced Soil Health
Scenario: \#13-Crop Land Bundle\# 25-Climate Smart Advanced Soil Health
Scenario Description:
Improve crop land soil health by minimizing soil disturbance, PAMS pest management, building soil organic matter, providing habitat and reducing nutrient and pesticide loss to water

Before Situation:
Resources are protected at the minimum level of the conservation practice standards applied as part of the bundle.
After Situation:
The adoption of these enhancements will provide resource protection above the minimum level of the conservation practice standard(s) applied.

Feature Measure: Acres applied
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: $\$ 14,752.49$
Scenario Cost/Unit: \$147.52

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	100	\$1,345.00
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	100	\$663.00
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	100	\$2,013.00
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	11	\$372.57
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	17	\$2,230.40

Nitrogen-Urease inhibitor	260	Nitrogen-Urease inhibitor	Acres	\$11.13	100	\$1,113.00
Annual Grasses, Legumes or Forbs	2732	A mix of annual grasses, legumes and/or forbs, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$61.36	100	\$6,136.00
Test, Soil Health, Basic Package	2734	Basic soil health laboratory assessment for soil organic carbon, aggregation, bioavailable nitrogen, respiration, and active carbon according to technical note 450-03. Includes shipping and handling.	Number	\$126.15	1	\$126.15
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: B000FST1 - Forest Bundle\#1
Scenario: \#1 - Forest Bundle\#1

Scenario Description:

?Addresses forest management on sites that are not adapted to natural fire disturbances. Addresses resouce concerns air quality impacts, degraded plant condition and fish/wildlife inadequate habitat.

Before Situation:
Resources are protected at the minimum level of the conservation practice standard(s) applied as part of the enhancement.
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level of the conservation practice standard(s) applied

Feature Measure: Acre

Scenario Unit: Acres

Scenario Typical Size: 20.00
Scenario Total Cost: \$29,802.56

Scenario Cost/Unit: \$1,490.13

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	36	\$223.56
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	21	\$524.79
Mechanical cutter, chopper	943	Forestry mulcher, flail shredder, hydro axe, brush cutter, etc. Equipment and power unit costs. Labor not included.	Hours	\$115.16	16	\$1,842.56
Chemical, spot treatment, single stem application	964	Ground applied chemical to individual plants or group of plants, e.g., backpack sprayer treatment. Equipment and labor cost included.	Hours	\$80.61	50	\$4,030.50
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	4	\$71.44
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	69	\$863.19

Labor

Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	40	\$1,354.80
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	69	\$1,874.04
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	16	\$444.16
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	14	\$666.54
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	37	\$4,854.40

Materials

Test, Soil Test, Standard	299	Includes materials, shiping, labor, and equipment costs.	Each	\$14.23	10	\$142.30
Tree Marking Paint	313	Trees to be cut through tree marking are physically identified through the application of paint on the tree. Typically one quart of paint is used to mark one acre of trees. Includes materials and shipping only.	Acres	\$12.39	15	\$185.85
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	6	\$75.96
Herbicide, Imazapyr	336	Pre and post-emergent, non-selective herbicide for control of undesirable vegetation in non-crop areas. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$42.89	20	\$857.80
Herbicide, Picloram	337	Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$19.28	11	\$212.08

Herbicide, Sulfometuron \& metsulfuron	344	A residual sulfonylurea herbicide that kills broadleaf weeds and some annual grasses. It is a systemic compound with foliar and soil activity. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$11.34	6	\$68.04
Herbicide, Surfactant	1095	Surfactants reduce the surface tension of water to produce more uniform coverage and penetration of herbicides, and weed killers. Paraffin Based Petroleum Surfactant. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$1.61	6	\$9.66
Shrub, Seedling, Medium	1507	Bare root shrub seedling, 18 to 36 inches tall; includes tropical containerized seedlings 10 to 20 cubic inches. Includes materials and shipping only.	Each	\$1.86	150	\$279.00
Tree, Hardwood, Seedling, Small	1509	Bare root hardwood seedlings 6 to 18 inches tall; includes tropical containerized seedlings of 8 cubic inches or smaller. Includes materials and shipping only.	Each	\$0.84	1225	\$1,029.00
Tree shelter, solid tube type, 4 in. x 60 in.	1567	4 inch x 60 inch tree tube for protection from animal damage. Materials and shipping only.	Each	\$6.67	1225	\$8,170.75
Cable ties, plastic	1575	Plastic cable ties (typ. 8-12 in.) to assist in securing items. Materials only.	Each	\$0.07	3675	\$257.25
Stakes, wood, 1 in. x 1 in. x 36 in.	1577	1 in. x 1 in. x 36 in. wood stakes to fasten items in place. Includes materials only.	Each	\$1.01	1225	\$1,237.25
Certified Organic, Annual Grasses, Legumes and/or Forbs	2343	Annual grasses, mostly introduced but may be native. Used for temporary cover or cover crops. Certified organic. Includes material and shipping only.	Acres	\$76.06	3	\$228.18
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: B000FST2 - Forest Bundle \#2 - Post-fire Management
Scenario: \#14 - Forest Bundle \#2 - Post-fire Management
Scenario Description:
Forest stand improvement that improves forest health to reduce the risk of wildfire and wildlife habitat. Addresses air quality impacts, degraded plant condition, and fish/wildlife inadequate habitat.

Before Situation:
Resources are protected at the minimum level of conservation practice standard(s) applied as part of the enhancement.
After Situation:
The adoption of these enhancements will provide resource protection above the minimum level of the conservation practice standard(s) applied.

Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 10.00
Scenario Total Cost: $\$ 10,819.66$
Scenario Cost/Unit: \$1,081.97

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	8	\$49.68
Mechanical cutter, chopper	943	Forestry mulcher, flail shredder, hydro axe, brush cutter, etc. Equipment and power unit costs. Labor not included.	Hours	\$115.16	28	\$3,224.48
Chemical, spot treatment, single stem application	964	Ground applied chemical to individual plants or group of plants, e.g., backpack sprayer treatment. Equipment and labor cost included.	Hours	\$80.61	30	\$2,418.30
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	8	\$270.96
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	28	\$777.28
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	19	\$2,492.80

Materials

| Herbicide, Imazapyr | 336 | Pre and post-emergent, non-selective herbicide for control of
 undesirable vegetation in non-crop areas. Refer to WIN-PST for product
 names and active ingredients. Includes materials and shipping only. | Acres | $\$ 42.89$ | $\$ 0$ | $\$ 1,286.70$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Practice: B000FST3 - Forest Bundle \#3
Scenario: \#13-B000FST3 - Forest Bundle \#3
Scenario Description:
Forest stand improvement that improves forest health due to poor logging practices. Addresses soil organic matter depletion, degraded plant condition, and inadequate fish/wildlife habitat.

Before Situation:
Resources are protected at the minimum level of conservation practice standard(s) applied as part of the enhancement.
After Situation:
The adoption of these enhancements will provide resource protection above the minimum level of the conservation practice standard(s) applied.

Feature Measure: Acres

Scenario Unit: Acres

Scenario Typical Size: 20.00
Scenario Total Cost: $\$ 10,745.28$

Scenario Cost/Unit: \$537.26

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	27	\$167.67
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	5	\$124.95
Chemical, spot treatment, single stem application	964	Ground applied chemical to individual plants or group of plants, e.g., backpack sprayer treatment. Equipment and labor cost included.	Hours	\$80.61	43	\$3,466.23
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	20	\$357.20

Labor

Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	59	\$1,998.33
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	4	\$108.64
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	1.5	\$71.42
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	21	\$2,755.20
Materials						
Test, Soil Test, Standard	299	Includes materials, shiping, labor, and equipment costs.	Each	\$14.23	10	\$142.30
Tree Marking Paint	313	Trees to be cut through tree marking are physically identified through the application of paint on the tree. Typically one quart of paint is used to mark one acre of trees. Includes materials and shipping only.	Acres	\$12.39	15	\$185.85
Herbicide, Picloram	337	Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$19.28	1	\$19.28
Herbicide, Triazine	1321	Broad spectrum herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$66.83	10	\$668.30
Certified Organic, Perennial Grasses, Legumes and/or Forbs	2340	Perennial grasses, legumes, and/or forbs, mostly introduced but may be native, may include biennials. Used for permanent plantings such as pastures. Certified organic. Includes material and shipping only.	Acres	\$88.02	3	\$264.06

Mobilization

Practice: B000FST4 - Forest Bundle \#4
Scenario: \#13-B000FST4 - Forest Bundle \#4
Scenario Description:
Forest management to improve sugar maple stands. Addresses soil organic matter depletion, degraded plant condition, and inadequate fish/wildlife habitat.

Before Situation:

Resources are protected at the minimum level of the conservation practice standard(s) applied as part of the enhancement.

After Situation:

The adoption of this enhancement will provide resource protection above the minimum level of the conservation practice standard(s) applied
Feature Measure: Acres

Scenario Unit: Acres

Scenario Typical Size: 20.00
Scenario Total Cost: \$26,461.13
Scenario Cost/Unit: \$1,323.06
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	33	\$204.93
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	10	\$249.90
Mechanical cutter, chopper	943	Forestry mulcher, flail shredder, hydro axe, brush cutter, etc. Equipment and power unit costs. Labor not included.	Hours	\$115.16	16	\$1,842.56
Chemical, spot treatment, single stem application	964	Ground applied chemical to individual plants or group of plants, e.g., backpack sprayer treatment. Equipment and labor cost included.	Hours	\$80.61	50	\$4,030.50
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	12	\$214.32
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	36	\$450.36

Labor

Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	33	\$1,117.71
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	44	\$1,195.04
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	16	\$444.16
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	10	\$476.10
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	40	\$5,248.00
Materials						
Test, Soil Test, Standard	299	Includes materials, shiping, labor, and equipment costs.	Each	\$14.23	10	\$142.30
Tree Marking Paint	313	Trees to be cut through tree marking are physically identified through the application of paint on the tree. Typically one quart of paint is used to mark one acre of trees. Includes materials and shipping only.	Acres	\$12.39	15	\$185.85
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	1.5	\$18.99
Herbicide, Imazapyr	336	Pre and post-emergent, non-selective herbicide for control of undesirable vegetation in non-crop areas. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$42.89	20	\$857.80
Herbicide, Picloram	337	Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$19.28	10	\$192.80

Herbicide, Sulfometuron \& metsulfuron	344	A residual sulfonylurea herbicide that kills broadleaf weeds and some annual grasses. It is a systemic compound with foliar and soil activity. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$11.34	1.5	\$17.01
Herbicide, Surfactant	1095	Surfactants reduce the surface tension of water to produce more uniform coverage and penetration of herbicides, and weed killers. Paraffin Based Petroleum Surfactant. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$1.61	1.5	\$2.42
Shrub, Potted, Small	1524	Potted shrub seedling, 1 quart to 1 gallon. Includes materials and shipping only.	Each	\$7.79	340	\$2,648.60
Tree, Hardwood, Potted, Small	1529	Potted hardwood seedling, 1 quart to 1 gallon. Includes materials and shipping only.	Each	\$7.66	360	\$2,757.60
Tree shelter, solid tube type, 4 in. x 60 in.	1567	4 inch x 60 inch tree tube for protection from animal damage. Materials and shipping only.	Each	\$6.67	360	\$2,401.20
Cable ties, plastic	1575	Plastic cable ties (typ. 8-12 in.) to assist in securing items. Materials only.	Each	\$0.07	360	\$25.20
Stakes, wood, $3 / 4$ in. x 3/4 in. x 60 in.	1583	$3 / 4 \mathrm{in} . \times 3 / 4 \mathrm{in} . \times 60 \mathrm{in}$. wood stakes to fasten items in place. Includes materials only.	Each	\$2.43	360	\$874.80
Certified Organic, Perennial Grasses, Legumes and/or Forbs	2340	Perennial grasses, legumes, and/or forbs, mostly introduced but may be native, may include biennials. Used for permanent plantings such as pastures. Certified organic. Includes material and shipping only.	Acres	\$88.02	3	\$264.06
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	2	\$598.92

Practice: B000FST5 - Forest Bundle \#5 Climate Smart Increase Carbon Storage
Scenario: \#13-B000FST5 - Forest Bundle \# 5: Increase Carbon Sequestration \& Storage

Scenario Description:

Improve forest and tree health, enhance wildlife, and reduce soil erosion to support climate change mitigation. Build carbon stocks by increasing sequestration and storage.

Before Situation:
Resources are enhanced above the minimum level of the conservation practice standard(s) applied as part of the bundle.
After Situation:
The adoption of this bundle will provide resource protection above the minimum level of the conservation practice standard(s) applied

Feature Measure: acres

Scenario Unit: Acres

Scenario Typical Size: 10.00
Scenario Total Cost: \$25,835.69

Scenario Cost/Unit: \$2,583.57

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	44	\$273.24
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	23	\$574.77
Mechanical cutter, chopper	943	Forestry mulcher, flail shredder, hydro axe, brush cutter, etc. Equipment and power unit costs. Labor not included.	Hours	\$115.16	8	\$921.28
Chemical, spot treatment, single stem application	964	Ground applied chemical to individual plants or group of plants, e.g., backpack sprayer treatment. Equipment and labor cost included.	Hours	\$80.61	41	\$3,305.01
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	16	\$285.76
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	54	\$675.54

Labor

Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	48	\$1,625.76
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	54	\$1,466.64
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	8	\$222.08
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	9	\$428.49
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	38	\$4,985.60

Materials

Test, Soil Test, Standard	299	Includes materials, shiping, labor, and equipment costs.	Each	\$14.23	10	\$142.30
Tree Marking Paint	313	Trees to be cut through tree marking are physically identified through the application of paint on the tree. Typically one quart of paint is used to mark one acre of trees. Includes materials and shipping only.	Acres	\$12.39	20	\$247.80
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	5	\$63.30
Herbicide, Imazapyr	336	Pre and post-emergent, non-selective herbicide for control of undesirable vegetation in non-crop areas. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$42.89	10	\$428.90
Herbicide, Picloram	337	Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$19.28	11	\$212.08

Herbicide, Sulfometuron \& metsulfuron	344	A residual sulfonylurea herbicide that kills broadleaf weeds and some annual grasses. It is a systemic compound with foliar and soil activity. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$11.34	5	\$56.70
Herbicide, Surfactant	1095	Surfactants reduce the surface tension of water to produce more uniform coverage and penetration of herbicides, and weed killers. Paraffin Based Petroleum Surfactant. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$1.61	5	\$8.05
Tree, Hardwood, Seedling, Small	1509	Bare root hardwood seedlings 6 to 18 inches tall; includes tropical containerized seedlings of 8 cubic inches or smaller. Includes materials and shipping only.	Each	\$0.84	1075	\$903.00
Tree shelter, solid tube type, 4 in. x 60 in.	1567	4 inch x 60 inch tree tube for protection from animal damage. Materials and shipping only.	Each	\$6.67	1075	\$7,170.25
Cable ties, plastic	1575	Plastic cable ties (typ. 8-12 in.) to assist in securing items. Materials only.	Each	\$0.07	3225	\$225.75
Stakes, wood, 1 in. x 1 in. x 36 in.	1577	1 in. x 1 in. x 36 in. wood stakes to fasten items in place. Includes materials only.	Each	\$1.01	1075	\$1,085.75
Certified Organic, Annual Grasses, Legumes and/or Forbs	2343	Annual grasses, mostly introduced but may be native. Used for temporary cover or cover crops. Certified organic. Includes material and shipping only.	Acres	\$76.06	3	\$228.18
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: B000GRZ1 - Grazing Bundle 1 - Range and Pasture
Scenario: \#13-Grazing Bundle 1 - Range and Pasture

Scenario Description:

This bundle addresses soil erosion, degraded plant condition, and fish and wildlife inadequate habitat resource concerns through adoption of enhancements E528L, E315A, and E645A.

Before Situation:
Resources are protected at the minimum level of the conservation practice standard(s) applied as part of the enhancement.
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level of the conservation practice standard(s) applied.

Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: $\$ 3,716.31$

Scenario Cost/Unit: \$92.91
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	24	\$599.76
Chemical, spot treatment, single stem application	964	Ground applied chemical to individual plants or group of plants, e.g., backpack sprayer treatment. Equipment and labor cost included.	Hours	\$80.61	2	\$161.22
Trailer, enclosed, small	1503	Small enclosed trailer (typically less than 30' in length) pulled by a pickup to transport materials and equipment. Truck not included.	Hours	\$14.56	24	\$349.44

Foregone Income

FI, Grazing AUMs	2079	Grazing is the Primary Land Use	Animal Unit Month	\$11.70	10	\$117.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	58	\$1,575.28
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22

Materials

Wire, Polywire	8	Wire, Polywire for electric fence - 1,300 ft. Includes materials and shipping only.	Each	\$46.53	1	\$46.53
Electric, Energizer, Solar	27	Electric, Energizer, Solar for electric fence. Includes materials and shipping only.	Each	\$356.01	1	\$356.01
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: B000GRZ2 - Grazing Bundle 2 - Range and Pasture
Scenario: \#13-Grazing Bundle 2 - Range and Pasture

Scenario Description:

This bundle addresses water quality degradation, fish and wildlife inadequate habitat, and soil erosion resource concerns through adoption of enhancements E472A, E382A, and E580A.

Before Situation:
Resources are protected at the minimum level of the conservation practice standard(s) applied as part of the enhancement.
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level of the conservation practice standard(s) applied.

Feature Measure: Acre

Scenario Unit: Acres

Scenario Typical Size: 3.50
Scenario Total Cost: $\$ 8,948.97$
Scenario Cost/Unit: \$2,556.85
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Auger, Post driver attachment	934	Auger or post driver attachment to a tractor or skidsteer. Does not include power unit. Labor not included.	Hours	\$9.74	5	\$48.70
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	13	\$324.87
Tractor, agricultural, 60 HP	963	Agricultural tractor with horsepower range of 50 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$35.80	5	\$179.00
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	9	\$160.74
Trailer, enclosed, small	1503	Small enclosed trailer (typically less than 30' in length) pulled by a pickup to transport materials and equipment. Truck not included.	Hours	\$14.56	8	\$116.48
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	8	\$100.08

Labor

General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	81	\$2,199.96
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	5	\$138.80
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	8	\$380.88
Materials						
Wire, Barbed, Galvanized, 12.5 Gauge, 1,320' roll	1	Galvanized 12.5 gauge, 1,320' roll. Includes materials and shipping only.	Each	\$122.84	4	\$491.36
Post, Wood, CCA treated, 3-4 in. x 7 ft .	9	Wood Post, Line 3-4 inch dia. X 7 ft., CCA Treated. Includes materials and shipping only.	Each	\$11.12	20	\$222.40
Post, Wood, CCA treated, 6 in. x 8 ft .	12	Wood Post, End 6 inch dia. X 8 ft., CCA Treated. Includes materials and shipping only.	Each	\$24.69	8	\$197.52
Post, Steel T, $1.33 \mathrm{lbs}, 6 \mathrm{ft}$.	15	Steel Post, Studded 6 ft - 1.33 lb . Includes materials and shipping only.	Each	\$7.08	90	\$637.20
Fence, Wire Assembly, Barbed Wire	30	Brace pins, battens, clips, staples. Includes materials and shipping only.	Feet	\$0.20	1320	\$264.00
Vinyl Undersill Strips	241	Marking material using the undersill strips of vinyl siding. Priced per foot of fence per each wire. Materials only.	Feet	\$0.11	2000	\$220.00
Gate, Pipe, 12 ft .	1057	6 rail tube gate, 16 gauge. Includes materials and shipping only.	Each	\$234.46	2	\$468.92
Shrub, Potted, Small	1524	Potted shrub seedling, 1 quart to 1 gallon. Includes materials and shipping only.	Each	\$7.79	65	\$506.35
Tree, Hardwood, Potted, Small	1529	Potted hardwood seedling, 1 quart to 1 gallon. Includes materials and shipping only.	Each	\$7.66	65	\$497.90
Tree, Conifer, Potted, Small	1534	Potted conifer seedling, 1 quart to 1 gallon. Includes materials and shipping only.	Each	\$7.16	65	\$465.40

Tree shelter, mesh tree tube, 48 in.	1556	48 inch tall vexar or other open weave tubular tree shelter to protect from animal damage. Materials only.	Each	\$1.54	65	\$100.10
Tree shelter, solid tube type, 4 in. $\times 24$ in.	1563	4 inch $\times 24$ inch tree tube for protection from animal damage. Materials and shipping only.	Each	\$2.52	65	\$163.80
Tree shelter, solid tube type, 4 in. $\times 48$ in.	1566	4 inch $x 48$ inch tree tube for protection from animal damage. Materials and shipping only.	Each	\$5.29	65	\$343.85
Stakes, wood, 1 in. x 1 in. x 48 in.	1578	$1 \mathrm{in} . \times 1$ in. x 48 in. wood stakes to fasten items in place. Includes materials only.	Each	\$2.16	195	\$421.20
Mobilization						
Mobilization, small equipment	1138	Equipment <70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: B000GRZ3 - Grazing Bundle 3 - Range and Pasture
Scenario: \#13-Grazing Bundle 3 - Range and Pasture

Scenario Description:

This bundle addresses water quality degradation, fish and wildlife inadequate habitat, and soil erosion resource concerns through adoption of enhancements E472A, E390B, and E580A.

Before Situation:
Resources are protected at the minimum level of the conservation practice standard(s) applied as part of the enhancement.
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level of the conservation practice standard(s) applied.

Feature Measure: Acre

Scenario Unit: Acres

Scenario Typical Size: 6.00
Scenario Total Cost: $\$ 9,908.23$
Scenario Cost/Unit: \$1,651.37
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Auger, Post driver attachment	934	Auger or post driver attachment to a tractor or skidsteer. Does not include power unit. Labor not included.	Hours	\$9.74	5	\$48.70
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	13	\$324.87
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	4	\$26.52
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	2	\$40.26
Tractor, agricultural, 60 HP	963	Agricultural tractor with horsepower range of 50 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$35.80	5	\$179.00
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	8	\$142.88
Trailer, enclosed, small	1503	Small enclosed trailer (typically less than 30' in length) pulled by a pickup to transport materials and equipment. Truck not included.	Hours	\$14.56	8	\$116.48
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	8	\$100.08

Foregone Income
FI, Corn Dryland

FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	Acres	\$251.94	0.72	\$181.40
FI, Wheat Dryland	1963	Dryland Wheat is Primary Crop	Acres	\$98.94	0.46	\$45.51

Labor

General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	81	\$2,199.96
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	5	\$138.80
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	8	\$380.88
Materials						
Wire, Barbed, Galvanized, 12.5 Gauge, 1,320' roll	1	Galvanized 12.5 gauge, 1,320' roll. Includes materials and shipping only.	Each	\$122.84	4	\$491.36
Post, Wood, CCA treated, 3-4 in. x 7 ft .	9	Wood Post, Line 3-4 inch dia. X 7 ft., CCA Treated. Includes materials and shipping only.	Each	\$11.12	20	\$222.40
Post, Wood, CCA treated, 6 in. $x 8$ ft .	12	Wood Post, End 6 inch dia. X 8 ft., CCA Treated. Includes materials and shipping only.	Each	\$24.69	8	\$197.52
Post, Steel T, $1.33 \mathrm{lbs}, 6 \mathrm{ft}$.	15	Steel Post, Studded 6 ft - 1.33 lb . Includes materials and shipping only.	Each	\$7.08	90	\$637.20
Fence, Wire Assembly, Barbed Wire	30	Brace pins, battens, clips, staples. Includes materials and shipping only.	Feet	\$0.20	1320	\$264.00

Herbicide, Imazapyr	336	Pre and post-emergent, non-selective herbicide for control of undesirable vegetation in non-crop areas. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$42.89	4	\$171.56
Gate, Pipe, 12 ft .	1057	6 rail tube gate, 16 gauge. Includes materials and shipping only.	Each	\$234.46	2	\$468.92
Shrub, Potted, Small	1524	Potted shrub seedling, 1 quart to 1 gallon. Includes materials and shipping only.	Each	\$7.79	65	\$506.35
Tree, Hardwood, Potted, Small	1529	Potted hardwood seedling, 1 quart to 1 gallon. Includes materials and shipping only.	Each	\$7.66	65	\$497.90
Tree, Conifer, Potted, Small	1534	Potted conifer seedling, 1 quart to 1 gallon. Includes materials and shipping only.	Each	\$7.16	65	\$465.40
Tree shelter, mesh tree tube, 48 in.	1556	48 inch tall vexar or other open weave tubular tree shelter to protect from animal damage. Materials only.	Each	\$1.54	65	\$100.10
Tree shelter, solid tube type, 4 in. $\times 24$ in.	1563	4 inch $\times 24$ inch tree tube for protection from animal damage. Materials and shipping only.	Each	\$2.52	65	\$163.80
Tree shelter, solid tube type, 4 in. $x 48$ in.	1566	4 inch $x 48$ inch tree tube for protection from animal damage. Materials and shipping only.	Each	\$5.29	65	\$343.85
Stakes, wood, 1 in. x 1 in. $\times 48$ in.	1578	$1 \mathrm{in} . \times 1 \mathrm{in} . x 48 \mathrm{in}$. wood stakes to fasten items in place. Includes materials only.	Each	\$2.16	195	\$421.20
Native Perennial Grasses, Legumes and/or Forbs, Medium Density	2754	A mix of native perennial grasses, legumes, and/or forbs, Grasses typically greater than 50% of the mix, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at medium to higher density (41-60 pure live seeds/sq ft). Species typically easy to purchase. Includes material and shipping.	Acres	\$272.59	2	\$545.18
Mobilization						
Mobilization, small equipment	1138	Equipment <70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: B000GRZ4-Grazing Bundle 4 - Range and Pasture
Scenario: \#13-Grazing Bundle 4 - Range and Pasture

Scenario Description:

This bundle addresses water quality degradation, fish and wildlife inadequate habitat, and soil erosion resource concerns through adoption of enhancements E472A, E391C, and E580A.

Before Situation:
Resources are protected at the minimum level of the conservation practice standard(s) applied as part of the enhancement.
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level of the conservation practice standard(s) applied.

Feature Measure: Acre

Scenario Unit: Acres

Scenario Typical Size: 4.00
Scenario Total Cost: $\$ 12,805.80$

Scenario Cost/Unit: $\$ 3,201.45$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Auger, Post driver attachment	934	Auger or post driver attachment to a tractor or skidsteer. Does not include power unit. Labor not included.	Hours	\$9.74	5	\$48.70
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	29	\$724.71
Mower, Bush Hog	940	Equipment and power unit costs. Labor not included.	Hours	\$31.13	2	\$62.26
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	2	\$13.26
Tractor, agricultural, 60 HP	963	Agricultural tractor with horsepower range of 50 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$35.80	9	\$322.20
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	8	\$142.88
Trailer, enclosed, small	1503	Small enclosed trailer (typically less than 30' in length) pulled by a pickup to transport materials and equipment. Truck not included.	Hours	\$14.56	8	\$116.48
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	24	\$300.24
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	0.82	\$186.69
FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	Acres	\$251.94	0.72	\$181.40
FI, Wheat Dryland	1963	Dryland Wheat is Primary Crop	Acres	\$98.94	0.46	\$45.51

Labor

General Labo
231 Labor performed using basic tools such as power tool, shovels, and

| Hours | $\$ 27.16 \quad 99$ | $\$ 2,688.84$ |
| :--- | :--- | :--- | :--- | other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.

Equipment Operators, Light
232 Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers

Hours	$\$ 27.76$	9	$\$ 249.84$
Hours	$\$ 47.61$	12	$\$ 571.32$

Supervisor or Manager
234 supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.

Materials

Wire, Barbed, Galvanized, 12.5 Gauge, 1,320' roll	1	Galvanized 12.5 gauge, 1,320' roll. Includes materials and shipping only.	Each	\$122.84	4	\$491.36
Post, Wood, CCA treated, 3-4 in. x 7 ft .	9	Wood Post, Line 3-4 inch dia. X 7 ft ., CCA Treated. Includes materials and shipping only.	Each	\$11.12	20	\$222.40
Post, Wood, CCA treated, 6 in. x 8 ft.	12	Wood Post, End 6 inch dia. X 8 ft., CCA Treated. Includes materials and shipping only.	Each	\$24.69	8	\$197.52
Post, Steel T, 1.33 lbs, 6 ft .	15	Steel Post, Studded 6 ft . -1.33 lb. Includes materials and shipping only.	Each	\$7.08	90	\$637.20
Fence, Wire Assembly, Barbed	30	Brace pins, battens, clips, staples. Includes materials and shipping only.	Feet	\$0.20	1320	\$264.00

Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	1	\$12.66
Herbicide, Sulfometuron \& metsulfuron	344	A residual sulfonylurea herbicide that kills broadleaf weeds and some annual grasses. It is a systemic compound with foliar and soil activity. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$11.34	1	\$11.34
Gate, Pipe, 12 ft .	1057	6 rail tube gate, 16 gauge. Includes materials and shipping only.	Each	\$234.46	2	\$468.92
Herbicide, Surfactant	1095	Surfactants reduce the surface tension of water to produce more uniform coverage and penetration of herbicides, and weed killers. Paraffin Based Petroleum Surfactant. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$1.61	1	\$1.61
Tree, Hardwood, Seedling, Medium	1510	Bare root hardwood seedlings 18 to 36 inches tall; includes tropical containerized seedlings of 10 to 20 cubic inches. Includes materials and shipping only.	Each	\$1.72	872	\$1,499.84
Shrub, Potted, Small	1524	Potted shrub seedling, 1 quart to 1 gallon. Includes materials and shipping only.	Each	\$7.79	65	\$506.35
Tree, Conifer, Potted, Small	1534	Potted conifer seedling, 1 quart to 1 gallon. Includes materials and shipping only.	Each	\$7.16	65	\$465.40
Tree shelter, mesh tree tube, 48 in.	1556	48 inch tall vexar or other open weave tubular tree shelter to protect from animal damage. Materials only.	Each	\$1.54	65	\$100.10
Tree shelter, solid tube type, 4 in. $\times 24$ in.	1563	4 inch $\times 24$ inch tree tube for protection from animal damage. Materials and shipping only.	Each	\$2.52	65	\$163.80
Tree shelter, solid tube type, 4 in. $\times 48$ in.	1566	4 inch $x 48$ inch tree tube for protection from animal damage. Materials and shipping only.	Each	\$5.29	165	\$872.85
Stakes, wood, 1 in. x 1 in. x 48 in.	1578	1 in. x 1 in. x 48 in. wood stakes to fasten items in place. Includes materials only.	Each	\$2.16	295	\$637.20
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	2	\$598.92

Practice: B000GRZ5-Grazing Bundle 5 - Range and Pasture
Scenario: \#13-Grazing Bundle 5 - Range and Pasture

Scenario Description:

This bundle addresses livestock production limitation, degraded plant condition, and fish and wildlife inadequate habitat resource concerns through adoption of enhancements E528A, E315A, and E645A.

Before Situation:
Resources are protected at the minimum level of the conservation practice standard(s) applied as part of the enhancement.
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level of the conservation practice standard(s) applied.

Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 1,050.00
Scenario Total Cost: $\$ 6,440.54$
Scenario Cost/Unit: \$6.13
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	28	\$699.72
Chemical, spot treatment, single stem application	964	Ground applied chemical to individual plants or group of plants, e.g., backpack sprayer treatment. Equipment and labor cost included.	Hours	\$80.61	2	\$161.22
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	12	\$214.32
Trailer, enclosed, small	1503	Small enclosed trailer (typically less than 30' in length) pulled by a pickup to transport materials and equipment. Truck not included.	Hours	\$14.56	24	\$349.44

Foregone Income

FI, Grazing AUMs	2079	Grazing is the Primary Land Use	Animal Unit Month	\$11.70	36	\$421.20
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	65	\$1,765.40
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	12	\$1,574.40

Materials

Wire, Polywire	8	Wire, Polywire for electric fence - 1,300 ft. Includes materials and shipping only.	Each	\$46.53	1	\$46.53
Electric, Energizer, Solar	27	Electric, Energizer, Solar for electric fence. Includes materials and shipping only.	Each	\$356.01	1	\$356.01
Tank, Polyethylene, 300 gallon	291	Portable heavy duty rubber stock tank.	Each	\$341.23	1	\$341.23
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: B000LLP1 - Longleaf Pine Bundle\#1
Scenario: \#1 - Longleaf Pine Bundle\#1

Scenario Description:

?lmproves conifer forest health through prescribed burning and grazing management. Addresses water quality degredation, degraded plant condition, and fish/wildlife inadequate habitat.

Before Situation:
Resources are protected at the minimum level of the conservation practice standard(s) applied as part of the enhancement.
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level of the conservation practice standard(s) applied

Feature Measure: Acre

Scenario Unit: Acres

Scenario Typical Size: 110.00
Scenario Total Cost:
$\$ 12,700.94$
Scenario Cost/Unit: \$115.46
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Auger, Post driver attachment	934	Auger or post driver attachment to a tractor or skidsteer. Does not include power unit. Labor not included.	Hours	\$9.74	5	\$48.70
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	7	\$43.47
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	24	\$599.76
Mower, Bush Hog	940	Equipment and power unit costs. Labor not included.	Hours	\$31.13	2	\$62.26
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	2	\$13.26
Tractor, agricultural, 60 HP	963	Agricultural tractor with horsepower range of 50 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$35.80	9	\$322.20
Chemical, spot treatment, single stem application	964	Ground applied chemical to individual plants or group of plants, e.g., backpack sprayer treatment. Equipment and labor cost included.	Hours	\$80.61	3	\$241.83
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	2	\$35.72
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	16	\$200.16
Water tank, portable	1602	Portable water tank transported in a pick up truck. Typically with 200 gallon capacity includes tank with pump, hose and sprayer. Does not include the pickup truck. Equipment only.	Hours	\$12.65	2	\$25.30

Foregone Income

FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	0.82	\$186.69
FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	Acres	\$251.94	0.72	\$181.40
FI, Wheat Dryland	1963	Dryland Wheat is Primary Crop	Acres	\$98.94	0.46	\$45.51
FI, Grazing AUMs	2079	Grazing is the Primary Land Use	Animal Unit Month	\$11.70	12	\$140.40
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	55	\$1,862.85
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	53	\$1,439.48
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	9	\$249.84
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	14	\$666.54

235 Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.

Materials

Wire, Barbed, Galvanized, 12.5 Gauge, 1,320' roll	1	Galvanized 12.5 gauge, 1,320' roll. Includes materials and shipping only.	Each	\$122.84	4	\$491.36
Post, Wood, CCA treated, 3-4 in. x 7 ft .	9	Wood Post, Line 3-4 inch dia. X 7 ft., CCA Treated. Includes materials and shipping only.	Each	\$11.12	20	\$222.40
Post, Wood, CCA treated, 6 in. x 8 ft .	12	Wood Post, End 6 inch dia. X 8 ft., CCA Treated. Includes materials and shipping only.	Each	\$24.69	8	\$197.52
Post, Steel T, 1.33 lbs, 6 ft .	15	Steel Post, Studded 6 ft - -1.33 lb. Includes materials and shipping only.	Each	\$7.08	90	\$637.20
Fence, Wire Assembly, Barbed Wire	30	Brace pins, battens, clips, staples. Includes materials and shipping only.	Feet	\$0.20	1320	\$264.00
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	1	\$12.66
Herbicide, Picloram	337	Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$19.28	1	\$19.28
Herbicide, Sulfometuron \& metsulfuron	344	A residual sulfonylurea herbicide that kills broadleaf weeds and some annual grasses. It is a systemic compound with foliar and soil activity. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$11.34	1	\$11.34
Gate, Pipe, 12 ft .	1057	6 rail tube gate, 16 gauge. Includes materials and shipping only.	Each	\$234.46	2	\$468.92
Herbicide, Surfactant	1095	Surfactants reduce the surface tension of water to produce more uniform coverage and penetration of herbicides, and weed killers. Paraffin Based Petroleum Surfactant. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$1.61	1	\$1.61
Tree, Hardwood, Seedling, Medium	1510	Bare root hardwood seedlings 18 to 36 inches tall; includes tropical containerized seedlings of 10 to 20 cubic inches. Includes materials and shipping only.	Each	\$1.72	872	\$1,499.84
Tree shelter, solid tube type, 4 in. x 48 in .	1566	4 inch $x 48$ inch tree tube for protection from animal damage. Materials and shipping only.	Each	\$5.29	100	\$529.00
Stakes, wood, 1 in. x 1 in. $\times 48$ in.	1578	1 in . x 1 in. x 48 in. wood stakes to fasten items in place. Includes materials only.	Each	\$2.16	100	\$216.00
Fuel, ignition fuel mixture	1596	Mixture of gasoline and diesel for ignition of prescribed burns. Materials only.	Gallons	\$3.71	5	\$18.55
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	2	\$598.92
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: B000LLP2 - Longleaf Pine Bundle\#2
Scenario: \#1 - Longleaf Pine Bundle\#2

Scenario Description:

Improves conifer forest health through prescribed burning and forest stand management. Addresses air quality impacts, degraded plant condition, and fish/wildlife inadequate habitat.

Before Situation:
Resources are protected at the minimum level of the conservation practice standard(s) applied as part of the enhancement.
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level of the conservation practice standard(s) applied

Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 50.00
Scenario Total Cost: \$18,965.24

Scenario Cost/Unit: \$379.30

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	67	\$416.07
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	42	\$1,049.58
Mechanical cutter, chopper	943	Forestry mulcher, flail shredder, hydro axe, brush cutter, etc. Equipment and power unit costs. Labor not included.	Hours	\$115.16	16	\$1,842.56
Chemical, spot treatment, single stem application	964	Ground applied chemical to individual plants or group of plants, e.g., backpack sprayer treatment. Equipment and labor cost included.	Hours	\$80.61	19	\$1,531.59
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	2	\$35.72
Trailer, enclosed, small	1503	Small enclosed trailer (typically less than 30' in length) pulled by a pickup to transport materials and equipment. Truck not included.	Hours	\$14.56	24	\$349.44
Water tank, portable	1602	Portable water tank transported in a pick up truck. Typically with 200 gallon capacity includes tank with pump, hose and sprayer. Does not include the pickup truck. Equipment only.	Hours	\$12.65	2	\$25.30

Labor

Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	83	\$2,811.21
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	50	\$1,358.00
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	16	\$444.16
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	44	\$5,772.80
Materials						
Tree Marking Paint	313	Trees to be cut through tree marking are physically identified through the application of paint on the tree. Typically one quart of paint is used to mark one acre of trees. Includes materials and shipping only.	Acres	\$12.39	5	\$61.95
Herbicide, Imazapyr	336	Pre and post-emergent, non-selective herbicide for control of undesirable vegetation in non-crop areas. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$42.89	20	\$857.80
Herbicide, Picloram	337	Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$19.28	1	\$19.28
Fuel, ignition fuel mixture	1596	Mixture of gasoline and diesel for ignition of prescribed burns. Materials only.	Gallons	\$3.71	5	\$18.55

Native Perennial Grasses, Legumes and/or Forb Mix for Targeted Wildlife/Pollinator Habitat or Ecological Restoration, moderate commercial availability Mobilization

2619 Diverse mix of native perennial grasses, legumes and forbs, less than 50% grasses, may include biennials and a small percentage of annual

Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46
Mobilization, medium equipment	1139	Equipment with $70-150 \mathrm{HP}$ or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

species for establishment purposes and/or if allowed by the CPS. This is a mix composed of species required to meet specific wildlife/pollinator habitat or ecological requirements. Seed is moderately easy to purchase commercially. Includes materials and shipping.

Practice: B000LLP4 - Longleaf Pine Bundle \#4
Scenario: \#13 - Longleaf Pine Bundle \#4

Scenario Description:

Improves forest health and wildlife habitat through conversion of forest stands that are not predominantly longleaf pine. Addresses degraded plant condition, fish/wildlife inadequate food and habitat, and water quality.

Before Situation:
Resources are protected at the minimum level of the conservation practice standards applied as part of the enhancement.
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level of the conservation practice standards applied.

Feature Measure: Acres

Scenario Unit: Acres

Scenario Typical Size: 50.00
Scenario Total Cost: \$20,748.22

Scenario Cost/Unit: \$414.96

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	157	\$974.97
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	18	\$449.82
Mechanical cutter, chopper	943	Forestry mulcher, flail shredder, hydro axe, brush cutter, etc. Equipment and power unit costs. Labor not included.	Hours	\$115.16	20	\$2,303.20
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	10	\$66.30
Chemical, spot treatment, single stem application	964	Ground applied chemical to individual plants or group of plants, e.g., backpack sprayer treatment. Equipment and labor cost included.	Hours	\$80.61	23	\$1,854.03
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	2	\$35.72
Water tank, portable	1602	Portable water tank transported in a pick up truck. Typically with 200 gallon capacity includes tank with pump, hose and sprayer. Does not include the pickup truck. Equipment only.	Hours	\$12.65	2	\$25.30

Labor

Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	173	\$5,859.51
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	2	\$54.32
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	20	\$555.20
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	44	\$5,772.80
Materials						
Herbicide, Imazapyr	336	Pre and post-emergent, non-selective herbicide for control of undesirable vegetation in non-crop areas. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$42.89	20	\$857.80
Herbicide, Picloram	337	Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$19.28	1	\$19.28
Fuel, ignition fuel mixture	1596	Mixture of gasoline and diesel for ignition of prescribed burns. Materials only.	Gallons	\$3.71	5	\$18.55
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: B000PST5 - Pasture Bundle 5
Scenario: \#13 - Pasture Bundle \#5
Scenario Description:
Implementation of site specific strategies applied to range or pasture land uses through adoption of the following CSP enhancements: E528J, E315A, and E645A.

Before Situation:

Resources are protected at the minimum level of the conservation practice standard(s) applied as part of the enhancement.

After Situation:

Adoption of these bundled enhancements provides a combined benefit for resource protection that exceeds the minimum level for the associated practice standards in order to address the resource concerns Soil Erosion or Water Quality Degradation, Degraded Plant Condition, and Fish and Wildlife Inadequate Habitat.

Feature Measure: Acre

Scenario Unit: Acres

Scenario Typical Size: 60.00
Scenario Total Cost: $\$ 3,903.71$

Scenario Cost/Unit: \$65.06

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	24	\$599.76
Chemical, spot treatment, single stem application	964	Ground applied chemical to individual plants or group of plants, e.g., backpack sprayer treatment. Equipment and labor cost included.	Hours	\$80.61	2	\$161.22
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	6	\$107.16
Trailer, enclosed, small	1503	Small enclosed trailer (typically less than 30' in length) pulled by a pickup to transport materials and equipment. Truck not included.	Hours	\$14.56	24	\$349.44

Foregone Income

FI, Grazing AUMs	2079	Grazing is the Primary Land Use	Animal Unit Month	\$11.70	6	\$70.20
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	56	\$1,520.96
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22
Materials						
Wire, Polywire	8	Wire, Polywire for electric fence - 1,300 ft. Includes materials and shipping only.	Each	\$46.53	4	\$186.12
Electric, Energizer, Solar	27	Electric, Energizer, Solar for electric fence. Includes materials and shipping only.	Each	\$356.01	1	\$356.01
Tank, Polyethylene, 300 gallon	291	Portable heavy duty rubber stock tank.	Each	\$341.23	1	\$341.23

Practice: B000PSTX - Pasture Bundle \#6 - Pasture
Scenario: \#15 - Pasture Bundle \#6
Scenario Description:
Managing the harvest of vegetation with grazing and/or browsing animals for the purposes of maintaining desired pasture composition/plant vigor and improving/maintaining quantity and quality of forage for the animals' health and productivity following the recommendations of a qualifying professional, as detailed in the documentation and implementation requirements. Establishing adapted and/or compatible species, varieties, or cultivars of perennial, herbaceous species that can provide the structure and composition needed to enhance livestock and wildlife habitat, particularly when targeted forage supply and quality, cover, and shelter are not available in other pastures.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 528 - Prescribed Grazing. Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 512 - Pasture and Hay Planting. Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 315Herbaceous Weed Treatment

After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 528 - Prescribed Grazing. The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 512 - Pasture and Hay Planting. The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 315Herbaceous Weed Treatment.

Feature Measure: Acres
Scenario Unit: Acres

Scenario Typical Size: 100.00
Scenario Total Cost: \$9,316.15
Scenario Cost/Unit: \$93.16
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	25	\$624.75
Chemical, spot treatment, single stem application	964	Ground applied chemical to individual plants or group of plants, e.g., backpack sprayer treatment. Equipment and labor cost included.	Hours	\$80.61	2	\$161.22
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	12	\$214.32
Trailer, enclosed, small	1503	Small enclosed trailer (typically less than 30' in length) pulled by a pickup to transport materials and equipment. Truck not included.	Hours	\$14.56	4	\$58.24
Foregone Income						
FI, Grazing AUMs	2079	Grazing is the Primary Land Use	Animal Unit Month	\$11.70	36	\$421.20
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	5	\$135.80
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	12	\$1,574.40
Materials						
Wire, Polywire	8	Wire, Polywire for electric fence - 1,300 ft. Includes materials and shipping only.	Each	\$46.53	4	\$186.12
Electric, Energizer, Solar	27	Electric, Energizer, Solar for electric fence. Includes materials and shipping only.	Each	\$356.01	1	\$356.01
Tank, Polyethylene, 300 gallon	291	Portable heavy duty rubber stock tank.	Each	\$341.23	1	\$341.23
Nutritional Balance Analyzer, fecal sample analysis only	1127	NIRS fecal analysis, animal performance report. Includes materials and shipping only.	Each	\$46.07	6	\$276.42
Introduced Perennial Grasses, Legumes and/or Forbs, Low Density	2747	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$47.76	100	\$4,776.00

Practice: BO00RNG4 - Range Bundle 4
Scenario: \#13 - Range Bundle \#4

Scenario Description:

Implementation of site specific strategies applied to range through adoption of the following CSP enhancements: E528N, E315A, and E645A.

Before Situation:

Resources are protected at the minimum level of the conservation practice standard(s) applied as part of the enhancement.
After Situation:
Adoption of these bundled enhancements provides a combined benefit for resource protection that exceeds the minimum level for the associated practice standards in order to address the resource concerns Soil Erosion, Degraded Plant Condition, and Fish and Wildlife Inadequate Habitat.

Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 50.00
Scenario Total Cost: $\$ 4,709.81$
Scenario Cost/Unit: $\$ 94.20$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	24	\$599.76
Chemical, spot treatment, single stem application	964	Ground applied chemical to individual plants or group of plants, e.g., backpack sprayer treatment. Equipment and labor cost included.	Hours	\$80.61	2	\$161.22
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	8	\$142.88
Trailer, enclosed, small	1503	Small enclosed trailer (typically less than 30' in length) pulled by a pickup to transport materials and equipment. Truck not included.	Hours	\$14.56	24	\$349.44
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	58	\$1,575.28
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	12	\$1,574.40

Practice: E199A - Comprehensive Conservation Plan

Scenario: \#13-Single Enterprise-Low

Scenario Description:

Conservation plan developed by a Technical Service Provider (TSP) for a participant enrolled in a contract through the Conservation Stewardship Program (CSP). NRCS will use the Conservation Assessment and Ranking Tool (CART) to identify all State priority resource concern categories (PRCCs) that the TSP must include in the CSP CCP. TSP develops a minimum of one conservation system alternative for one land use by each land management system included in the producer???s operation. This typical scenario involves one agricultural enterprise and a.) 1 Land use with less than or equal to 4 priority resource concerns, OR b.) 2-3 Land Uses with less than or equal to two priority resource concern categories per land use.

Before Situation:
NRCS has identified priority resource concern categories that have not met stewardship thresholds. State priority resource concern categories need to be evaluated for one land use and each land management system.

After Situation:

TSP conducts an on-site inventory of all land uses and land management systems in the producer???s operation. Assessment for each priority resource concern is completed by land use. Conservation practices, enhancements or bundles are identified. Develops a minimum of one conservation system alternative for each land use that meet the producer's objectives. Plan document follows the requirements ofE199A Guide sheet and meets Conservation Plan CPA 199 or applicable conservation activities CPA 102 CNMP or CPA 106 Forestry Plan.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$7,088.06
Scenario Cost/Unit: \$7,088.06

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding, physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.	Hours	\$108.51	10	\$1,085.10
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	8	\$853.76
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	60	\$5,149.20

Practice: E199A - Comprehensive Conservation Plan

Scenario: \#29-Single Enterprise-Medium

Scenario Description:

Conservation plan developed by a Technical Service Provider (TSP) for a participant enrolled in a contract through the Conservation Stewardship Program (CSP). NRCS will use the Conservation Assessment and Ranking Tool (CART) to identify all State priority resource concern categories (PRCCs) that the TSP must include in the CSP CCP. TSP develops a minimum of one conservation system alternative for one land use by each land management system included in the producer???s operation. This typical scenario involves one agricultural enterprise and a.) 1 Land Use with greater than 4 priority resource concerns, OR b.) 2-3 Land Use with 3 to 4 priority resource concern categories per land use, OR c.) 4 or more Land Use with less than or equal to 2 priority resource concerns.

Before Situation:

NRCS has identified priority resource concern categories that have not met stewardship thresholds. State priority resource concern categories need to be evaluated for one land use and each land management system.

After Situation:

TSP conducts an on-site inventory of all land uses and land management systems in the producer???s operation. Assessment for each priority resource concern is completed by land use. Conservation practices, enhancements or bundles are identified. Develops a minimum of one conservation system alternative for each land use that meet the producer's objectives. Plan document follows the requirements ofE199A Guide sheet and meets Conservation Plan CPA 199 or applicable conservation activities CPA 102 CNMP or CPA 106 Forestry Plan.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$9,231.34

Scenario Cost/Unit: \$9,231.34

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding, physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.	Hours	\$108.51	10	\$1,085.10
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	12	\$1,280.64
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	80	\$6,865.60

Practice: E199A - Comprehensive Conservation Plan

Scenario: \#45-Single Enterprise-High

Scenario Description:

Conservation plan developed by a Technical Service Provider (TSP) for a participant enrolled in a contract through the Conservation Stewardship Program (CSP). NRCS will use the Conservation Assessment and Ranking Tool (CART) to identify all State priority resource concern categories (PRCCs) that the TSP must include in the CSP CCP. TSP develops a minimum of one conservation system alternative for one land use by each land management system included in the producer???s operation. This typical scenario involves one agricultural enterprise and a.) 2-3 Land Use with 4 or more priority resource concern categories per land use, OR b.) 4 or more Land Use with 3 to 4 priority resource concerns.

Before Situation:
NRCS has identified priority resource concern categories that have not met stewardship thresholds. State priority resource concern categories need to be evaluated for one land use and each land management system.

After Situation:

TSP conducts an on-site inventory of all land uses and land management systems in the producer???s operation. Assessment for each priority resource concern is completed by land use. Conservation practices, enhancements or bundles are identified. Develops a minimum of one conservation system alternative for each land use that meet the producer's objectives. Plan document follows the requirements ofE199A Guidesheet and meets Conservation Plan CPA 199 or applicable conservation activities CPA 102 CNMP or CPA 106 Forestry Plan.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 11,401.54$
Scenario Cost/Unit: \$11,401.54

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding, physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.	Hours	\$108.51	30	\$3,255.30
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	12	\$1,280.64
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	80	\$6,865.60

Practice: E199A - Comprehensive Conservation Plan

Scenario: \#61-Multiple Enterprise-Medium

Scenario Description:

Conservation plan developed by a Technical Service Provider (TSP) for a participant enrolled in a contract through the Conservation Stewardship Program (CSP). NRCS will use the Conservation Assessment and Ranking Tool (CART) to identify all State priority resource concern categories (PRCCs) that the TSP must include in the CSP CCP. TSP develops a minimum of one conservation system alternative for one land use by each land management system included in the producer???s operation. This typical scenario involves two or more agricultural enterprises and a.) 1 Land Use with up to 4 priority resource concerns, OR b.) 2-3 Land Use with 1 to 2 priority resource concern categories per land use.

Before Situation:

NRCS has identified priority resource concern categories that have not met stewardship thresholds. State priority resource concern categories need to be evaluated for one land use and each land management system.

After Situation:

TSP conducts an on-site inventory of all land uses and land management systems in the producer???s operation. Assessment for each priority resource concern is completed by land use. Conservation practices, enhancements or bundles are identified. Develops a minimum of one conservation system alternative for each land use that meet the producer's objectives. Plan document follows the requirements ofE199A Guide sheet and meets Conservation Plan CPA 199 or applicable conservation activities CPA 102 CNMP or CPA 106 Forestry Plan.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 12,686.62$
Scenario Cost/Unit: $\$ 12,686.62$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding, physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.	Hours	\$108.51	30	\$3,255.30
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	16	\$1,707.52
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	90	\$7,723.80

Practice: E199A - Comprehensive Conservation Plan

Scenario: \#77-Multiple Enterprise-High

Scenario Description:

Conservation plan developed by a Technical Service Provider (TSP) for a participant enrolled in a contract through the Conservation Stewardship Program (CSP). NRCS will use the Conservation Assessment and Ranking Tool (CART) to identify all State priority resource concern categories (PRCCs) that the TSP must include in the CSP CCP. TSP develops a minimum of one conservation system alternative for one land use by each land management system included in the producer???s operation. This typical scenario involves two or more agricultural enterprises and a.) 2-3 Land Use with 3 to 4 priority resource concern categories per land use, OR b.) 2-3 Land Use with 4 or more priority resource concerns, OR c.) 4 or more Land Use with any amount of priority resource concerns

Before Situation:

NRCS has identified priority resource concern categories that have not met stewardship thresholds. State priority resource concern categories need to be evaluated for one land use and each land management system.

After Situation:

TSP conducts an on-site inventory of all land uses and land management systems in the producer???s operation. Assessment for each priority resource concern is completed by land use. Conservation practices, enhancements or bundles are identified. Develops a minimum of one conservation system alternative for each land use that meet the producer's objectives. Plan document follows the requirements ofE199A Guide sheet and meets Conservation Plan CPA 199 or applicable conservation activities CPA 102 CNMP or CPA 106 Forestry Plan.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$14,629.92
Scenario Cost/Unit: \$14,629.92

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, agronomist	1295	Conservation Activity Plan labor to conduct research in breeding, physiology, production, yield, and management of crops and agricultural plants or trees, shrubs, and nursery stock, their growth in soils, and control of pests; or study the chemical, physical, biological, and mineralogical composition of soils as they relate to plant or crop growth. May classify and map soils and investigate effects of alternative practices on soil and crop productivity. May provide on-site consulting services to help growers troubleshoot nutrient and pest problems, establish appropriate agronomic sampling programs and implement management recommendations in a cost-effective and environmentally sound manner.	Hours	\$108.51	40	\$4,340.40
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	16	\$1,707.52
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect	Hours	\$85.82	100	\$8,582.00

Practice: E199A - Comprehensive Conservation Plan
Scenario: \#93 - Comprehensive Conservation Plan for Operation with > 2 land uses and 2 or more resource concerns

Scenario Description:

Conservation plan developed by a Technical Service Provider (TSP) for a participant enrolled in a contract through the Conservation Stewardship Program (CSP). NRCS will use the Conservation Assessment and Ranking Tool (CART) to identify all State priority resource concern categories (PRCCs) that the TSP must include in the CSP CCP. TSP develops a minimum of one conservation system alternative for the identified land uses by each land management system included in each of the producer???s operations. Does not include livestock waste storage planning or evaluation of existing components.

Before Situation:
NRCS has identified priority resource concern categories that have not met stewardship thresholds. State priority resource concern categories need to be evaluated for all land uses and each land management system for each enterprise or farm operation.

After Situation:
Planner conducts an on-site inventory of all land uses and land management systems in the producer???s operation. Assessment for each priority resource concern is completed by land use. Conservation practices, enhancements or bundles are identified. Develops a minimum of one conservation system alternative for each land use that meet the producer's objectives. Plan document follows the requirements of E199A Guidesheet.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$3,857.46
Scenario Cost/Unit: \$3,857.46

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	8	\$853.76
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	35	\$3,003.70

United States Department of Agriculture

Practice: E199A - Comprehensive Conservation Plan
Scenario: \#109-Comprehensive Conservation Plan on 2 or more Land Use

Scenario Description:

Conservation plan developed by a Technical Service Provider (TSP) for a participant enrolled in a contract through the Conservation Stewardship Program (CSP). NRCS will use the Conservation Assessment and Ranking Tool (CART) to identify all State priority resource concern categories (PRCCs) that the TSP must include in the CSP CCP. TSP develops a minimum of one conservation system alternative for the identified land uses by each land management system included in the producer???s operation. Does not include livestock waste storage planning or evaluation of existing components.

Before Situation:
NRCS has identified priority resource concern categories that have not met stewardship thresholds. State priority resource concern categories need to be evaluated for 2 land uses and each land management system for each enterprise or farm operation.

After Situation:
Planner conducts an on-site inventory of all land uses and land management systems in the producer???s operation. Assessment for each priority resource concern is completed by land use. Conservation practices, enhancements or bundles are identified. Develops a minimum of one conservation system alternative for each land use that meet the producer's objectives. Plan document follows the requirements of E199A Guidesheet.

Feature Measure: Number

Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$3,428.36
Scenario Cost/Unit: \$3,428.36

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	8	\$853.76
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	30	\$2,574.60

Practice: E199A - Comprehensive Conservation Plan
Scenario: \#125-Basic Comprehensive Conservation Plan-One Land Use

Scenario Description:

Conservation plan developed by a Technical Service Provider (TSP) for a participant enrolled in a contract through the Conservation Stewardship Program (CSP). NRCS will use the Conservation Assessment and Ranking Tool (CART) to identify all State priority resource concern categories (PRCCs) that the TSP must include in the CSP CCP. TSP develops a minimum of one conservation system alternative for one land use by each land management system included in the producer???s operation. Does not include livestock waste storage planning or evaluation of existing components.

Before Situation:
NRCS has identified priority resource concern categories that have not met stewardship thresholds. State priority resource concern categories need to be evaluated for one land use and each land management system.

After Situation:
Planner conducts an on-site inventory of all land uses and land management systems in the producer???s operation. Assessment for each priority resource concern is completed by land use. Conservation practices, enhancements or bundles are identified. Develops a minimum of one conservation system alternative for each land use that meet the producer's objectives. Plan document follows the requirements ofE199A Guidesheet.

Feature Measure: Number

Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$2,570.16
Scenario Cost/Unit: \$2,570.16
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
CAP Labor, professional engineer	1297	Conservation Activity Plan labor to apply knowledge of engineering technology and biological science to agricultural problems concerned with power and machinery, electrification, structures, soil and water conservation, and processing of agricultural products. Cost associated with this component includes overhead and benefits (market price).	Hours	\$106.72	8	\$853.76
Cap Labor, conservation scientist	1300	Conservation Activity Plan labor to manage, improve, and protect natural resources to maximize their use without damaging the environment. Interprets resource information and assess resource conditions to provide conservation practice alternatives to producers to make decisions on the treatment of their soil, water, air, plant, animal, and energy resources. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.	Hours	\$85.82	20	\$1,716.40

Practice: E314A - Brush management to improve wildlife habitat
Scenario: \#1-Brush management to improve wildlife habitat

Scenario Description:

Brush management is employed to create a desired plant community, consistent with the related ecological site steady state, which will maintain or enhance the wildlife habitat desired for the identified wildlife species. It will be designed to provide plant structure, density and diversity needed to meet those habitat objectives. This enhancement does not apply to removal of woody vegetation by prescribed fire or removal of woody vegetation to facilitate a land use change.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 314 - Brush Management

After Situation:

The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 314 - Brush Management

Feature Measure: Acre

Scenario Unit: Acres

Scenario Typical Size: 100.00
Scenario Total Cost: \$1,721.51
Scenario Cost/Unit: \$17.22

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Foregone Income						
FI, Grazing AUMs	2079	Grazing is the Primary Land Use	Animal Unit Month	\$11.70	12	\$140.40
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	32	\$1,083.84
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	8	\$380.88

United States Department of Agriculture
Practice: E315A - Herbaceous weed treatment to create plant communities consistent with the ecological site
Scenario: \#1-Herbaceous weed treatment to create plant communities consistent with the ecological site
Scenario Description:
Mechanical, chemical, or biological, herbaceous weed treatment will be employed to control targeted, herbaceous weeds so as to create, release, or restore desired plantcommunities that are consistent with achievable, ecological site, steady state descriptions.
Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 315 - Herbaceous Weed Control
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 315 - Herbaceous WeedControl
Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 10.00
Scenario Total Cost: \$161.22
Scenario Cost/Unit: \$16.12
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chemical, spot treatment, single stem application	964	Ground applied chemical to individual plants or group of plants, e.g., backpack sprayer treatment. Equipment and labor cost included.	Hours	\$80.61	2	\$161.22

USDA United States Department of Agriculture

Practice: E327A - Conservation cover for pollinators and beneficial insects
Scenario: \#14-Conservation cover for pollinators and beneficial insects

Scenario Description:

Seed or plug nectar and pollen producing plants in non-cropped areas such as field borders, vegetative barriers, contour buffer strips, grassed waterways, shelterbelts, hedgerows, windbreaks, conservation cover, and riparian forest and herbaceous buffers.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 327 Conservation Cover.
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 327 Conservation Cover.

Feature Measure: acre planted
Scenario Unit: Acres
Scenario Typical Size: 50.00
Scenario Total Cost: $\$ 27,128.71$
Scenario Cost/Unit: \$542.57

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	11	\$274.89
Mower, Bush Hog	940	Equipment and power unit costs. Labor not included.	Hours	\$31.13	8	\$249.04
Tillage, Primary	946	Includes heavy disking (offset) or chisel plow. Includes equipment, power unit and labor costs.	Acres	\$20.44	50	\$1,022.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	26	\$706.16
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	6	\$787.20

Materials

Native Perennial Grasses, Legumes and/or Forb Mix for Targeted Wildlife/Pollinator Habitat or Ecological Restoration, moderate commercial availability

2619 Diverse mix of native perennial grasses, legumes and forbs, less than 50% grasses, may include biennials and a small percentage of annual species for establishment purposes and/or if allowed by the CPS. This is a mix composed of species required to meet specific wildlife/pollinator habitat or ecological requirements. Seed is moderately easy to purchase commercially. Includes materials and shipping.

Mobilization

Mobilization, small equipment

1138 Equipment <70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.

Practice: E327B-Establish Monarch butterfly habitat						
Scenario: \#1-Establish Monarch butterfly habitat						
Scenario Description:						
Seed or plug milkweed (Asclepias spp.), and high-value monarch butterfly nectar plants on marginal cropland, field borders, contour buffer strips, and similar areas.						
Before Situation:						
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 327 - Conservation Cover						
After Situation:						
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 327 - Conservation Cover						
Feature Measure: Acre						
Scenario Unit: Acres						
Scenario Typical Size: 1.00						
Scenario Total Cost:	\$898.61					
Scenario Cost/Unit:		8.61				
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Mower, Bush Hog	940	Equipment and power unit costs. Labor not included.	Hours	\$31.13	1	\$31.13
Chemical, spot treatment, single stem application	964	Ground applied chemical to individual plants or group of plants, e.g., backpack sprayer treatment. Equipment and labor cost included.	Hours	\$80.61	2	\$161.22
Cultipacking	1100	Includes equipment, power unit and labor costs.	Acres	\$10.03	1	\$10.03
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	1	\$131.20
Materials						
Native Perennial Grasses, Legumes and/or Forb Mix for Targeted Wildlife/Pollinator Habitat or Ecological Restoration, moderate commercial availability	2619	Diverse mix of native perennial grasses, legumes and forbs, less than 50% grasses, may include biennials and a small percentage of annual species for establishment purposes and/or if allowed by the CPS. This is a mix composed of species required to meet specific wildlife/pollinator habitat or ecological requirements. Seed is moderately easy to purchase commercially. Includes materials and shipping.	Acres	\$469.81	1	\$469.81

United States Department of Agriculture
Practice: E328A - Resource conserving crop rotation
Scenario: \#1-Resource conserving crop rotation
Scenario Description:
Establish a Resource Conserving Crop Rotation. Rotation must include AT LEAST one resource conserving crop as determined by the State Conservationist in a minimumthree year crop rotation. The crop rotation will reduce soil erosion (water and wind), improve soil health, improve soil moisture efficiency, and reduce plant pest pressures.
Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 328 - Conservation Crop Rotation
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 328 - Conservation CropRotation
Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$1,836.80
Scenario Cost/Unit: \$18.37
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	14	\$1,836.80

United States Department of Agriculture Natural Resources Conservation Service							Texas
					Scenar	- Fis	2024
Practice: E328C - Conservation crop rotation on recently converted CRP grass/legume cover							
Scenario: \#1 - Conservation crop rotation on recently converted CRP grass/legume cover for water erosion							
Scenario Description:							
Implement a crop rotation management system on crop land acres that have recently converted from CRP grass/legume conservation cover to annual planted crops. Crop rotation minimizes disturbance resulting in a Soil Tillage Intensity Rating (STIR) less than 10 and reduces soil erosion from water or wind to below soil tolerance (T) level. The current NRCS wind and water erosion prediction technologies must be used to document the rotation, soil erosion estimate, and STIR calculations. *This enhancement is limited to acres where the conversion event took place not more than 2 years prior. Enhancement not applicable on hayland.							
Before Situation:							
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 328 - Conservation Crop Rotation							
After Situation:							
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 328 - Conservation Crop Rotation							
Feature Measure: Acre							
Scenario Unit: Acres							
Scenario Typical Size: 100.00							
Scenario Total Cost:	\$393.60						
Scenario Cost/Unit:	\$3.94						
Cost Details:							
Component Name	ID		Description	Unit	Cost	QTY	Total
Labor							
Specialist Labor	235	Labor requiring Biologists, etc. planning and im TSP services.	skill set: Includ ditional technic of the practic	Hours	\$131.20	3	\$393.60

Practice: E328D - Leave standing grain crops unharvested to benefit wildlife
Scenario: \#1-Leave standing grain crops unharvested to benefit wildlife
Scenario Description:
Implement a crop rotation which allows a portion of grain crops to be left in fields un-harvested to provide food and cover for wildlife during winter months.
Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 328 - Conservation Crop Rotation
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 328 - Conservation Crop Rotation

Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: \$145.96

Scenario Cost/Unit: \$3.65
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	0.17	\$38.70
FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	Acres	\$251.94	0.17	\$42.83
FI, Wheat Dryland	1963	Dryland Wheat is Primary Crop	Acres	\$98.94	0.17	\$16.82
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	1	\$47.61

Practice: E328E - Soil health crop rotation
Scenario: \#1-Soil health crop rotation
Scenario Description:
Implement a crop rotation which addresses all four principle components of soil health: increases diversity of the cropping system; maintains residue throughout the year; keeps a living root; and minimizes soil chemical, physical and biological disturbance. The rotation will include at least 4 different crop and/or cover crop types (crop types include cool season grass, warm season grass, cool season broadleaf, warm season broadleaf) grown in a sequence that will produce a positive trend in the Organic Matter (OM) sub factor value over the life of the rotation, as determined by the Soil Conditioning Index (SCI). The current NRCS wind and water erosion prediction technologies must be used to document the rotation and SCl calculations.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 328 - Conservation Crop Rotation
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 328 - Conservation Crop Rotation

Feature Measure: Acre

Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: $\$ 656.00$

Scenario Cost/Unit: \$6.56
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters,	Hours	\$131.20	5	\$656.00

Practice: E328F - Modifications to improve soil health and increase soil organic matter
Scenario: \#1 - Modifications to improve soil health and increase soil organic matter

Scenario Description:

Use of soil health assessment to evaluate impact of current conservation crop rotation in addressing soil organic matter depletion (primary assessment made in Year 1). Modifications to the crop rotation and/or crop management will be made as a result of the assessment results (adding a new crop and/or cover crop to the rotation; making changes to planting and/or tillage system, harvest timing of crops, or termination timing of cover crops). During Year 3 a follow up assessment will be completed to allow time for the modifications to show increased soil organic matter. Modified system must produce a positive trend in the Organic Matter (OM) sub factor value over the life of the rotation, as determined by the Soil Conditioning Index (SCI). The current NRCS wind and water erosion prediction technologies must be used to document the rotation and SCl calculations.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 328 - Conservation Crop Rotation
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 328 - Conservation Crop Rotation

Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$257.35
Scenario Cost/Unit: \$2.57
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	1	\$131.20
Materials						
Test, Soil Health, Basic Package	2734	Basic soil health laboratory assessment for soil organic carbon, aggregation, bioavailable nitrogen, respiration, and active carbon according to technical note 450-03. Includes shipping and handling.	Number	\$126.15	1	\$126.15

United States Department of Agriculture
Practice: E328G - Crop rotation on recently converted CRP grass/legume cover for soil organic matter improvement
Scenario: \#1 - Crop rotation on recently converted CRP grass/legume cover for soil organic matter improvement
Scenario Description:
Crop rotation on acres converted, no more than 2 years prior, from CRP grass/legume cover to annual crops. Diverse rotation with living roots and residue coverthroughout year and minimal disturbance. Enhancement not applicable on hayland.
Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 328 - Conservation Crop Rotation
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 328 - Conservation Crop
Rotation
Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$656.00
Scenario Cost/Unit: \$6.56
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	5	\$656.00

United States Department of Agriculture Natural Resources Conservation Service							Texas
					Scenar	- Fis	ar 2024
Practice: E328H - Conservation crop rotation to reduce the concentration of salts							
Scenario: \#1-Conservation crop rotation to reduce the concentration of salts							
Scenario Description:							
Implement a crop rotation to reduce the concentration of salts and other chemicals from saline seeps. The rotation should include at least 3 crops and/or cover crops grown in a sequence in the recharge areas of saline seeps that have rooting depths and water requirements adequate to fully utilize all available soil water. Do not use summer fallow. Use an approved water balance procedure to determine crop selection and sequence. Select crops with a tolerance to salinity levels that match the salinity of the discharge area. (See state lists)							
Before Situation:							
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 328 - Conservation Crop Rotation							
After Situation:							
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 328 - Conservation Crop Rotation							
Feature Measure: Acre							
Scenario Unit: Acres							
Scenario Typical Size: 100.00							
Scenario Total Cost:	\$524.80						
Scenario Cost/Unit:	\$5.25						
Cost Details:							
Component Name	ID		Description	Unit	Cost	QTY	Total
Labor							
Specialist Labor	235	Labor requiring Biologists, etc. planning and im TSP services.	skill set: Inclu ditional techni of the practi	Hours	\$131.20	4	\$524.80

Practice: E328I - Forage harvest to reduce water quality impacts by utilization of excess soil nutrients
Scenario: \#1 - Forage harvest to reduce water quality impacts by utilization of excess soil nutrients
Scenario Description:
Establish a forage crop (single species or mix) following a primary annual crop to take up excess soil nutrients. Select forage known to effectively utilize and scavenge nutrients. Forage shall be harvested for forage, but not be grazed or burned.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 328 - Conservation Crop Rotation
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 328 - Conservation Crop Rotation

Feature Measure: Acres of Cropland with New Crop R
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$595.95
Scenario Cost/Unit: \$5.96
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	4	\$524.80
Materials						
Test, Soil Test, Standard	299	Includes materials, shiping, labor, and equipment costs.	Each	\$14.23	5	\$71.15

United States Department of Agriculture
Practice: E328K - Multiple crop types to benefit wildlife
Scenario: \#13 - Multiple crop types to benefit wildlife
Scenario Description:
Alternating crops in a systematic arrangement of strips across a field to provide diverse rotations of crops that provide wildlife food. At least two crops will be planted inadjacent strips a minimum of 0.5 acres in size.
Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard 328 - Conservation Crop Rotation.
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard 328 - Conservation Crop
Rotation.
Feature Measure: Acres
Scenario Unit: Acres
Scenario Typical Size: 20.00
Scenario Total Cost: \$131.20
Scenario Cost/Unit: \$6.56
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	1	\$131.20

USDA United States Department of Agriculture Natural Resources Conservation Service				Texas			
				Practice Scenarios - Fiscal Year 2024			
Practice: E328L - Leaving tall crop residue for wildlife							
Scenario: \#13-Leaving tall crop residue for wildlife							
Scenario Description:							
Fields may be harvested but must leave crop residue standing a minimum of 14 inches. Residue will be left through winter and into spring, providing valuable winter cover and forage for wildlife spanning late summer and through the following winter.							
Before Situation:							
Resources are protected th the minimum level of the Conservation Practice Standard (CPS) 328 - Conservation Crop Rotation.							
After Situation:							
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 328 - Conservation Crop Rotation.							
Feature Measure: acres with small grain stubble/resid							
Scenario Unit: Acres							
Scenario Typical Size: 40.00							
Scenario Total Cost:	\$524.80						
Scenario Cost/Unit:	\$13.12						
Cost Details:							
Component Name	ID		Description	Unit	Cost	QTY	Total
Labor							
Specialist Labor	235	Labo Biolog plann TSP s	skill set: Inclu ditional techni of the practi	Hours	\$131.20	4	\$524.80

United States Department of Agriculture
Practice: E328M - Diversify crop rotation with canola or sunflower to provide benefits to pollinators
Scenario: \#29 - Diversify crop rotation with canola or sunflower to provide benefits to pollinators
Scenario Description:
Diversify the existing crop rotation by adding canola or sunflower into the rotation. Canola or sunflower must be planted on a minimum of 5% of cropland acres. Pesticide use is limited to pre-bloom or bloom and in accordance with IPM and industry best management practices.
Before Situation:
Resources are protected at the minimum level for the Conservation Practice Standard (CPS) 328-Conservation Crop Rotation.

After Situation:

The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 328-Conservation Crop Rotation
Feature Measure: Acres planned
Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: \$524.80
Scenario Cost/Unit: \$13.12
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	4	\$524.80

Practice: E3280-Perennial Grain Conservation Crop Rotation

Scenario: \#13-Perennial Grain Rotation

Scenario Description:

This practice payment is provided to the producer for the time needed to plan and implement the logistics of changing the rotation to effectively implement a conservation crop rotation on a cropland farm by adding a perennial grain as the third crop to their cropping system. The crop is intended to be a harvested and must be grown for at least 2 years after planting. No foregone income. Cost represents typical situations for conventional and organic producers. In this region this practice may be part of a conservation management system on both organic and non-organic operations that: (1) Reduces erosion; (2) Improves soil fertility and tilth; (3) Interrupts pest cycles; and (4) Builds soil organic matter. In applicable areas, reduces depletion of soil moisture or otherwise reduces the need for irrigation.

Before Situation:

Resources are protected at the minimum level for the Conservation Practice Standard (CPS) 328-Conservation Crop Rotation.
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 328 -Conservation Crop Rotation.

Feature Measure: Area Planted

Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: $\$ 6,769.17$
Scenario Cost/Unit: \$169.23

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	3	\$349.17
Equipment Installation						
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	40	\$805.20
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	40	\$1,086.40
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	40	\$1,904.40
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	20	\$2,624.00

Practice: E328P - Low Nitrogen Requirement Annual Crop Rotation
Scenario: \#13-Low Nitrogen Requirement Annual Crop Rotation
Scenario Description:
Design an annual crop rotation which less than the average annual nitrogen fertilizer requirement compared to the current (benchmark) crop rotation.
Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 328 - Conservation Crop Rotation.
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 328 - Conservation Crop Rotation.

Feature Measure: Acres
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: $\$ 3,250.04$
Scenario Cost/Unit: \$32.50

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	10	\$271.60
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	5	\$238.05
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	20	\$2,624.00

United States Department of Agriculture Natural Resources Conservation Service							Texas
					Scenar	- Fis	ar 2024
Practice: E329C - No till to increase plant-available moisture							
Scenario: \#1-No till to increase plant-available moisture							
Scenario Description:							
Establish a no till system to increase plant-available moisture. Each crop in the crop rotation shall have a Soil Tillage Intensity Rating (STIR) of no greater than 20. The current NRCS wind and water erosion prediction technologies must be used to document STIR calculations. Maintain a minimum 60 percent surface residue cover throughout the year to reduce evaporation from the soil surface.							
Before Situation:							
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 329 - Residue and Tillage Management - No-Till/ Strip Till/ Direct Seed							
After Situation:							
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 329 - Residue and Tillage Management - No-Till/ Strip Till/ Direct Seed							
Feature Measure: Acre							
Scenario Unit: Acres							
Scenario Typical Size: 100.00							
Scenario Total Cost:	\$393.60						
Scenario Cost/Unit:		3.94					
Cost Details:							
Component Name	ID		Description	Unit	Cost	QTY	Total
Labor							
Specialist Labor	235	Labor requiring Biologists, etc. planning and im TSP services.	skill set: Inclu ditional techni of the practi	Hours	\$131.20	3	\$393.60

Practice: E329F - No-till into green cover crop to improve soil organic matter quantity and quality
Scenario: \#13 - Residue and Tillage Management, No-Till - Planting Green

Scenario Description:

This scenario applies to cropland where residue and tillage management prepares the field for ???planting green??? techniques where cash crops are planted into living cover crop residues. This practice is based on economic and social data obtained from the North Jersey RC\&D On-Farm Trials Soil Health Demo CIG Project results. This scenario involves the site preparation and management of live cover crop residues during no-till planting events. The practice will be used to drastically reduce soil erosion, reduce CO2 losses from the field, maximize the four principles of soil health and related resource concerns, mitigate pesticide usage and amplify the benefits of supporting practices. The typical scenario size is 100 acres.

Before Situation:

Row crops or small grains are grown and harvested. Cover crop and/or crop residues that are present are too fragile or not in a quantity to adequately address soil, water, and air resource concerns. Residues are dead at the time of planting, leaving soils with lowered microbial activity. If cover crops are planted in the fall, they are terminated through tillage or chemical means early in the spring, providing little environmental benefit and the ground is left tilled or fallow between cover crop termination and cash crop planting, allowing for soil erosion, the release of greenhouse gases, and nutrient losses to groundwater and surface waters. The soils are not functioning properly and are heavily supplemented with chemical inputs. Current tillage operations are not able to address resource concerns. No-till if utilized is limited due to residue quantity or quality.

After Situation:

Live residues are maintained for extended periods of time in the spring, providing soil coverage that is adequate to control erosion and runoff and sedimentation. Soils are no-tilled and cover crop residues accumulate carbon providing carbon sequestration benefits as well as increasing soil microbial activity which further increase the function of the soil. Chemical inputs are generally reduced due to increased soil function and protection from live residues. Producers gain knowledge through workshops and working with crop consultants to maintain the success and long-term adoption of the practice. All cover crop residues are to be maintained on the surface until planting. The cover crop must be terminated before crop emergence. See complete ???NRCS Cover Crop Termination Guidelines??? for more information.

Feature Measure: acres

Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$6,574.79
Scenario Cost/Unit: \$65.75
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	100	\$663.00
Mechanical weed control, Vegetation termination	957	Mechanical operations, Includes: Roller/crimper, mower, shredder, etc. Includes equipment, power unit and labor costs.	Acres	\$26.67	100	\$2,667.00
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	6	\$203.22
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	8	\$1,049.60
Materials						
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	100	\$1,266.00
Test, Soil Health, Basic Package	2734	Basic soil health laboratory assessment for soil organic carbon, aggregation, bioavailable nitrogen, respiration, and active carbon according to technical note 450-03. Includes shipping and handling.	Number	\$126.15	5	\$630.75

Practice: E334A - Controlled traffic farming to reduce compaction
Scenario: \#1 - Controlled traffic farming to reduce compaction
Scenario Description:
Establish a controlled traffic system where no more than 25% of the surface is tracked with heavy axel loads to minimize soil compaction. For row crops (e.g. corn in $30-$inch rows) no tire should run on a row except for flotation tires on combines and/or fertilizer and lime spreading trucks. If wide flotation tires are used, they must be bigenough that the inflation pressure will be below 18 psi to minimize compaction on trafficked rows.
Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 334 - Controlled Traffic Farming
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 334 - Controlled TrafficFarming
Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: $\$ 927.60$
Scenario Cost/Unit: $\$ 9.28$
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	10	\$271.60
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	5	\$656.00

Practice: E338A - Strategically planned, patch burning for grazing distribution and wildlife habitat
Scenario: \#1 - Strategically planned, patch burning for grazing distribution and wildlife habitat

Scenario Description:

Patch burn grazing is the application of prescribed fires on portions of an identified grazing unit at different times of the year. Patch burn grazing allows grazing animals to select where they want to graze creating a mosaic of vegetation structures and diversity that will maintain or enhance the wildlife habitat desired for the identified wildlife species and maintain livestock production.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 338 - Prescribed Burning
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 338 - Prescribed Burning
Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$740.92
Scenario Cost/Unit: \$7.41
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Equipment Installation						
Dozer, 140 HP	927	Track mounted Dozer with horsepower range of 125 to 160. Equipment and power unit costs. Labor not included.	Hours	\$98.78	4	\$395.12
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	2	\$54.32
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	4	\$127.48
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	1	\$47.61

Practice: E338B - Short-interval burns to promote a healthy herbaceous plant community
Scenario: \#1-Short-interval burns to promote a healthy herbaceous plant community

Scenario Description:

The controlled use of fire is applied in a forest to restore fire-adapted plants while improving wildlife habitat, wildlife food supply, and reducing the risk of damage from intense, severe wildfires. The ideal interval between prescribed burns is not often achieved. To improve the effectiveness of prescribed burning, the frequency of prescribed burning is increased appropriately, for a specified time period, to help restore ecological conditions in forests and woodlands. Short return interval prescribed burning is used to regenerate desirable tree species, improve the condition of fire-adapted plants and native herbaceous vegetation, improve wildlife food supply, create wildlife habitat (snags and den/cavity trees), limit encroachment of competing vegetation including non-native species, and reduce the future risk of damage from intense, severe wildfires.

Before Situation:

The site has a mixture of woody sprouts and some herbaceous vegetation in the forest understory.

After Situation:

The site has a mixture of warm season perennial vegetation and cool-season annual forages. Grazing is occurring to manage the herbaceous vegetation and keep undesirable woody vegetation from occupying the forest understory.

Feature Measure: Acre

Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: \$4,675.13
Scenario Cost/Unit: \$116.88
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 80 HP	929	Track mounted Dozer with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$77.14	8	\$617.12
Truck, water	1448	Water tanker truck. Equipment only. Labor not included.	Hours	\$186.52	8	\$1,492.16
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	24	\$651.84
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	8	\$254.96
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	8	\$380.88
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	4	\$524.80

Mobilization

Practice: E338C-Sequential patch burning						
Scenario: \#1-Sequential patch burning						
Scenario Description:						
Conduct prescribed under burning beneath a forest canopy (ground fire), burning a portion of the area each year to create a mosaic of vegetation in several stages of development, to provide a more diverse understory and contribute to wildlife habitat. The health of conifer and oak-conifer forests, particularly longleaf pine with a characteristic herbaceous understory, is dependent on fire or another means of controlling encroaching woody vegetation. A healthy longleaf or shortleaf pine, or pineoak forest, can support a wide array of wildlife including pollinators and several endangered or threatened species.						
Before Situation:						
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 338 - Prescribed Burning						
After Situation:						
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 338 - Prescribed Burning						
Feature Measure: Acre						
Scenario Unit: Acres						
Scenario Typical Size: 10.00						
Scenario Total Cost:	\$2,721.35					
Scenario Cost/Unit:	\$272.14					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	2	\$35.72
Water tank, portable	1602	Portable water tank transported in a pick up truck. Typically with 200 gallon capacity includes tank with pump, hose and sprayer. Does not include the pickup truck. Equipment only.	Hours	\$12.65	2	\$25.30
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	16	\$541.92
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	2	\$54.32
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	3	\$393.60
Materials						
Fuel, ignition fuel mixture	1596	Mixture of gasoline and diesel for ignition of prescribed burns. Materials only.	Gallons	\$3.71	5	\$18.55
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: E340A - Cover crop to reduce soil erosi Scenario: \#1 - Cover crop to reduce soil erosion							
Scenario Description:							
Cover crop added to current crop rotation to reduce soil erosion from water and wind to below soil tolerance (T) level. Cover crops grown during critical erosion period(s). Species are selected that will have physical characteristics to provide adequate erosion protection.							
Before Situation:							
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 340 - Cover Crop							
After Situation:							
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 340 - Cover Crop							
Feature Measure: Acre							
Scenario Unit: Acres							
Scenario Typical Size: 100.00							
Scenario Total Cost:	\$849.67						
Scenario Cost/Unit:	\$8.50						
Cost Details:							
Component Name	ID		Description	Unit	Cost	QTY	Total
Labor							
Skilled Labor	230	Labo elec mon	kill set: Includ fessionals inv eping, etc.	Hours	\$33.87	1	\$33.87
Materials							
Annual Grasses	2730		species, most cover or cover	Acres	\$40.79	20	\$815.80

Practice: E340B - Intensive cover cropping to increase soil health and soil organic matter content
Scenario: \#1 - Intensive cover cropping to increase soil health and soil organic matter content

Scenario Description:

Implementation of cover crop mix to provide soil coverage during ALL non-crop production periods in an annual crop rotation. Cover crop shall not be harvested or burned. Planned crop rotation including cover crops and associated management activities must achieve a soil conditioning index (SCI) of zero or higher. The current NRCS wind and water erosion prediction technologies must be used to document SCI calculations.

Before Situation:

Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 340 - Cover Crop

After Situation:

The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 340 - Cover Crop
Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$1,489.60
Scenario Cost/Unit: \$14.90
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	2	\$262.40
Materials						
Annual Grasses, Legumes or Forbs	2732	A mix of annual grasses, legumes and/or forbs, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$61.36	20	\$1,227.20

USDA United States Department of Agriculture Natural Resources Conservation Service			Texas			
			Practice Scenarios - Fiscal Year 2024			
Practice: E340C - Use of multi-species cover crops to improve soil health and increase soil organic matter						
Scenario: \#1 - Use of multi-species cover crops to improve soil health and increase soil organic matter						
Scenario Description:						
Implement a multi-species cover crop to add diversity and increase biomass production to improve soil health and increase soil organic matter. Cover crop mix must include a minimum of 4 different species. The cover crop mix will increase diversity of the crop rotation by including crop types currently missing, e.g. Cool Season Grass (CSG), Cool Season Broadleaves (CSB), Warm Season Grasses (WSG), Warm Season Broadleaves (WSB).						
Before Situation:						
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 340 - Cover Crop						
After Situation:						
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 340 - Cover Crop						
Feature Measure: Acre						
Scenario Unit: Acres						
Scenario Typical Size: 100.00						
Scenario Total Cost: \$1,294.94						
Scenario Cost/Unit: \$12.95						
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	2	\$67.74
Materials						
Annual Grasses, Legumes or Forbs	2732	A mix of annual grasses, legumes and/or forbs, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$61.36	20	\$1,227.20

Practice: E340D - Intensive orchard/vineyard floor cover cropping to increase soil health
Scenario: \#1 - Intensive orchard/vineyard floor cover cropping to increase soil health

Scenario Description:

Implement orchard or vineyard floor cover crops. Cover crop shall not be harvested, grazed, or burned. Must achieve a soil conditioning index of zero or higher and produce a positive trend in the Organic Matter subfactor over the life of the rotation.
Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 340 - Cover Crop
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 340 - Cover Crop
Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$1,294.94
Scenario Cost/Unit: \$12.95
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	2	\$67.74
Materials						
Annual Grasses, Legumes or Forbs	2732	A mix of annual grasses, legumes and/or forbs, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$61.36	20	\$1,227.20

Practice: E340E - Use of soil health assessment to assist with development of cover crop mix to improve soil health
Scenario: \#1- Use of soil health assessment to assist with development of cover crop mix to improve soil health
Scenario Description:
Soil health assessment (year 1) to evaluate current crop rotation in addressing soil organic matter depletion. Results are utilized to select a multi-species cover crop mix to add to the current crop rotation. Follow up assessment completed (year 3).

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 340 - Cover Crop
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 340 - Cover Crop

Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$352.58

Scenario Cost/Unit: \$3.53
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	1	\$33.87
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	1	\$131.20
Materials						
Annual Grasses, Legumes or Forbs	2732	A mix of annual grasses, legumes and/or forbs, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$61.36	1	\$61.36
Test, Soil Health, Basic Package	2734	Basic soil health laboratory assessment for soil organic carbon, aggregation, bioavailable nitrogen, respiration, and active carbon according to technical note 450-03. Includes shipping and handling.	Number	\$126.15	1	\$126.15

Practice: E340F - Cover crop to minimize soil compaction						
Scenario: \#1-Cover crop to minimize soil compaction						
Scenario Description:						
Establish a cover crop mix that includes plants with both fibrous root and deep rooted systems. Fibrous to treat and prevent both near surface (0-4???) and deep (>4???) soil compaction and deep rooted to break up deep compacted soils. Cover crop shall not be harvested, grazed, or burned.						
Before Situation:						
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 340 - Cover Crop						
After Situation:						
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 340 - Cover Crop						
Feature Measure: Acre						
Scenario Unit: Acres						
Scenario Typical Size: 100.00						
Scenario Total Cost:	\$1,261.07					
Scenario Cost/Unit:		2.61				
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	1	\$33.87
Materials						
Annual Grasses, Legumes or Forbs	2732	A mix of annual grasses, legumes and/or forbs, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$61.36	20	\$1,227.20

Practice: E340G - Cover crop to reduce water quality degradation by utilizing excess soil nutrients
Scenario: \#1-Cover crop to reduce water quality degradation by utilizing excess soil nutrients

Scenario Description:

Establish a cover crop mix to take up excess soil nutrients. Select cover crop species for their ability to effectively utilize nutrients. Terminate the cover crop as late as practical to maximize plant biomass production and nutrient uptake. Cover crop shall not be harvested, grazed, or burned.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 340 - Cover Crop
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 340 - Cover Crop
Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$1,261.07
Scenario Cost/Unit: \$12.61
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	1	\$33.87
Materials						
Annual Grasses, Legumes or Forbs	2732	A mix of annual grasses, legumes and/or forbs, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$61.36	20	\$1,227.20

USDA United States Department of Agriculture Natural Resources Conservation Service			Texas			
			Practice Scenarios - Fiscal Year 2024			
Practice: E340H - Cover crop to suppress excessive weed pressures and break pest cycles						
Scenario: \#1 - Cover crop to suppress excessive weed pressures and break pest cycles						
Scenario Description:						
Establish a cover crop mix to suppress excessive weed pressures and break pest cycles. Select cover crop species for their life cycles, growth habits, and other biological, chemical and/or physical characteristics. Select cover crop species that do not harbor pests or diseases of subsequent crops in the rotation. Cover crop shall not be harvested, grazed, or burned.						
Before Situation:						
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 340 - Cover Crop						
After Situation:						
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 340 - Cover Crop						
Feature Measure: Acre						
Scenario Unit: Acres						
Scenario Typical Size: 100.00						
Scenario Total Cost: \$1,294.94						
Scenario Cost/Unit: \$12.95						
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	2	\$67.74
Materials						
Annual Grasses, Legumes or Forbs	2732	A mix of annual grasses, legumes and/or forbs, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$61.36	20	\$1,227.20

Practice: E340I- Using cover crops for biological strip till						
Scenario Description:						
Establish alternating strips of cover crops in which one strip acts as a biological strip-tiller and the adjacent strip promotes soil health with high residue cover crops. This will facilitate planting of the subsequent cash crop into the biologically strip-tilled row without the need for mechanical disturbance.						
Before Situation:						
Resources are protected at the minimum level of the Conservation Practice Standard 340-Cover Crop.						
After Situation:						
The adoption of this enhancement will provide protection above the minimum level as described in Conservation Practice Standard 340-Cover Crop.						
Feature Measure: Acres						
Scenario Unit: Acres						
Scenario Typical Size: 100.00						
Scenario Total Cost:	\$1,396.55					
Scenario Cost/Unit:		13.97				
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	5	\$169.35
Materials						
Annual Grasses, Legumes or Forbs	2732	A mix of annual grasses, legumes and/or forbs, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$61.36	20	\$1,227.20

Practice: E340J - Cover crop to improve moisture use efficiency and reduce salts
Scenario: \#13 - Cover crop to improve soil moisture use efficiency and reduce salt levels
Scenario Description:
Cover crop used in a crop rotation to reduce damaging levels of salt from parent materials and or ground water. A salt tolerant cover crop species will be planted in the salt affected zone and a buffer zone extending into the commodity crop base acres.

Before Situation:
Resources are protected at the minimum level of CPS 340 Cover Crop
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in CPS 340 Cover Crop.
Feature Measure: acres treated
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$4,473.02

Scenario Cost/Unit: \$44.73
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	15	\$301.95
Labor						
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	12	\$1,574.40

Materials

Test, Soil Test, Standard	299	Includes materials, shiping, labor, and equipment costs.	Each	\$14.23	24	\$341.52
Testing, soil sampling and EC analysis, bore hole	2055	Collecting and testing 5 soil samples per 60 inch bore hole. Inclueds EC measurements. Includes equipment and labor.	Hours	\$266.95	5	\$1,334.75
Annual Grasses, Legumes or Forbs	2732	A mix of annual grasses, legumes and/or forbs, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$61.36	15	\$920.40

Practice: E372A - Switch to Renewable Power Source

Scenario: \#8 - Repower with Renewable Energy Source

Scenario Description:

Existing internal combustion system ($5-30 \mathrm{HP}$) used for water pumping and or movement. The repower provides the pump and drive unit replacement and the conversion to renewable energy power source, typically solar. The repowered system will function at the same capacity as the original system. Addresses Air Quality Emissions of Particulate Matter, Ozone Precursors, and Nitrous oxides.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard 372 Combustion System Improvement.

After Situation:

The adoption of this enhancement will provide resource protection above the minimum level as described in the Conservation Practice Standard 372 Combustion System Improvement.

Feature Measure: per unit switched to renewable ene
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\$ 63,186.01$
Scenario Cost/Unit: $\$ 63,186.01$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	4	\$99.96
Labor						
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	16	\$2,099.20
Materials						
Pump, > 5 HP to 30 HP, pump and motor, fixed cost portion	1011	Fixed cost portion of a pump between 5 and 30 HP , including the pump and motor. This portion is a base cost for the pump and is not dependent on horsepower. The total cost will include this fixed cost plus a variable cost portion. Includes material and shipping only.	Each	\$3,727.95	1	\$3,727.95
Solar Panels, fixed cost portion	1031	Fixed cost portion of the Solar Panels. This portion is a base cost for all Solar Panels and is not dependent on Kilowatt. The total cost of any Solar Panels will include this fixed cost plus a variable cost portion. The completed Solar Panels will include all materials (electrical, controllers, service drops and etc.).	Each	\$859.26	1	\$859.26
Solar Panels, variable cost portion	1135	Variable cost portion of the Solar Panels. This portion IS dependent on the total Kilowatt for the Solar Panels. The total cost of Solar Panels will include this variable cost plus the fixed cost portion. The completed Solar Panels will include all materials (electrical, controllers, service drop, etc.). Includes materials only.	Kilowatt	\$2,563.62	22	\$56,399.64

Practice: E372B - Renewable Energy Source for Large Internal Combustion Engines

Scenario: \#8 - Renewable Energy Power Source for Large IC Engines

Scenario Description:

Replace an existing pump motor with a drive unit that is powered by a renewable source such as wind, solar, geothermal, etc. that can adequately maintain the existing operating conditions, flow rates and pressures. The replacement, repower, or retrofit combustion system and related components or devices must serve the same function and perform similar type of work as the original equipment. Applies to existing, in-use agricultural combustion systems, including stationary, portable, and selfpropelled mobile units. Addresses Resource Concerns for Air Quality- Particulate Matter Emissions, Ozone Precursors and Airborne Reactive Nitrogen emissions. Inefficient energy may be addressed when the IC engine is repowered with a more efficient drive unit.

Before Situation:
Resources are protected at the minimum level of Conservation Practice Standard 372 Combustion System Improvement.
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level of Conservation Practice Standard 372 Combustion System Improvement.
Feature Measure: each IC system repowered
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$48,946.37
Scenario Cost/Unit: \$48,946.37
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	4	\$99.96
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	16	\$541.92
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	8	\$1,049.60
Materials						
Pump, > 30 HP, pump and motor, fixed cost portion	1013	Fixed cost portion of a pump greater than 30 HP , including the pump and motor. This portion is a base cost for the pump and is not dependent on horsepower. The total cost will include this fixed cost plus a variable cost portion. Includes material and shipping only.	Each	\$6,467.67	1	\$6,467.67
Pump, >30 HP, Pump and motor, variable cost portion	1014	Variable cost portion of a pump greater than 30 HP , including the pump and motor. This portion is dependent on the total horsepower for the pump. The total cost will include this variable cost plus a fixed cost portion. Includes material and shipping only.	Horsepower	\$258.92	75	\$19,419.00
Solar Panels, fixed cost portion	1031	Fixed cost portion of the Solar Panels. This portion is a base cost for all Solar Panels and is not dependent on Kilowatt. The total cost of any Solar Panels will include this fixed cost plus a variable cost portion. The completed Solar Panels will include all materials (electrical, controllers, service drops and etc.).	Each	\$859.26	1	\$859.26
Solar Panels, variable cost portion	1135	Variable cost portion of the Solar Panels. This portion IS dependent on the total Kilowatt for the Solar Panels. The total cost of Solar Panels will include this variable cost plus the fixed cost portion. The completed Solar Panels will include all materials (electrical, controllers, service drop, etc.). Includes materials only.	Kilowatt	\$2,563.62	8	\$20,508.96

Practice: E373A - Dust suppressant re-application for stabilization
Scenario: \#29-Dust Suppressant Re-application, Once per Year

Scenario Description:

Limit dust emissions by maintaining the surfaces of unpaved roads and areas in a stabilized condition. The periodic re-application of dust suppressants to unpaved surface areas will limit dust generation from vehicle and machinery activities or wind action.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 373 - Dust Control on Unpaved Roads and Surfaces.
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 373 - Dust Control on Unpaved Roads and Surfaces.

Feature Measure: Square Feet
Scenario Unit: Square Feet
Scenario Typical Size: 15,840.00
Scenario Total Cost: \$4,431.71
Scenario Cost/Unit: \$0.28
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	0.36	\$2.39
Motor Grader, 200 HP	1782	Motor Grader or Maintainer, 200 hp . Typical of equipment with HP in range of 170-225. Equipment cost, does not include labor.	Hours	\$163.57	3	\$490.71
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	3	\$95.61

Materials

Chemical, dust control, road oil, petroleum-based

1339 Petroleum-based road oil, such as SC-250 or SC-800. Includes materials Gallons and shipping only.

Practice: E381A - Silvopasture to improve wildlife habitat						
Scenario Description:						
Establishing a combination of trees or shrubs and compatible forages on the same acreage, providing forage, shade, and/or shelter for livestock that include a purpose of enhancing wildlife cover and shelter.						
Before Situation:						
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 381 - Silvopasture						
After Situation:						
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 381 - Silvopasture						
Feature Measure: Acre						
Scenario Unit: Acres						
Scenario Typical Size: 100.00						
Scenario Total Cost:	\$6,929.98					
Scenario Cost/Unit:	\$69.30					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	20	\$132.60
Foregone Income						
FI, Grazing AUMs	2079	Grazing is the Primary Land Use	Animal Unit Month	\$11.70	200	\$2,340.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22
Materials						
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	20	\$253.20
Shrub, Seedling, Large	1508	Bare root shrub seedling, 36 to 60 inches tall; includes containerized seedlings larger than 20 cubic inches. Includes materials and shipping only.	Each	\$4.01	200	\$802.00
Tree, Conifer, Seedling, Large	1515	Containerized conifer seedlings, 15 or 20 cubic inches; or bare root conifer seedlings $2+1$ (three-year old seedlings that grew two years in the original seedbed and another year in a transplant bed) or bare root seedlings 3+0 and older (three-year or older seedlings grown in their original seedbed, or transplanted seedlings). Includes materials and shipping only.	Each	\$1.73	100	\$173.00
Native Perennial Grasses, Low Density	2750	Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$134.97	20	\$2,699.40

USDA United States	ent	of Agriculture				Texas
\square Natural Resourd	serv	tion Service		Scenar	- Fisc	r 2024
Practice: E382A - Incorpor	ife fri	dly" fencing for connectivity of wildlife food resources				
Scenario: \#1-Incorporatin	fien	" fencing for connectivity of wildlife food resources				
Scenario Description:						
Retrofitting or constructing	pro	a means to control movement of animals, people, and vehicles, but	es wi	ovemen	acts.	
Before Situation:						
Resources are protected at	mlev	l of the Conservation Practice Standard (CPS) 382 - Fence				
After Situation:						
The adoption of this enhanc	provi	e resource protection above the minimum level as described in Conse	Practic	dard (CPS	82 - Fen	
Feature Measure: Acre						
Scenario Unit: Feet						
Scenario Typical Size: 1,00						
Scenario Total Cost:	\$2	7.86				
Scenario Cost/Unit:		\$0.24				
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	1	\$17.86
Materials						
Vinyl Undersill Strips	241	Marking material using the undersill strips of vinyl siding. Priced per foot of fence per each wire. Materials only.	Feet	\$0.11	2000	\$220.00

Practice: E382B - Installing electrical fence offsets and wire for cross-fencing to improve grazing management
Scenario: \#13 - Installing electrical fence offsets and wire for cross-fencing to improve grazing management

Scenario Description:

Retrofitting conventional fences such as barb wire, with new electrical offsets and electrical wire to facilitate cross-fencing for improved grazing management.
Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard 382 - Fence
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard 382 - Fence
Feature Measure: Feet
Scenario Unit: Feet
Scenario Typical Size: 2,640.00
Scenario Total Cost: \$1,373.75

Scenario Cost/Unit: \$0.52
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	16	\$541.92

Materials						
Wire, High Tensile, 12.5 Gauge, 4,000' roll	2	High Tensile 12.5 gauge, 4,000' roll. Includes materials and shipping only.	Each	\$154.95	1	\$154.95
Electric, Ground Rods	20	Electric, Ground Rod for electric fence. Includes materials and shipping only.	Each	\$17.37	3	\$52.11
Electric, Insulated cable	23	Electric, Insulated cable for electric fence. Typically in spools of 100 to 200 feet. Includes materials and shipping only.	Each	\$41.07	2	\$82.14
Electric, Power Surge Protector	24	Electric, Power Surge Protector for electric fence. Includes materials and shipping only.	Each	\$15.15	1	\$15.15
Electric, Cutoff Switch	25	Electric, Cutoff Switch for electric fence. Includes materials and shipping only.	Each	\$10.93	1	\$10.93
Electric, Tester	26	Electric, Tester for electric fence. Includes materials and shipping only.	Each	\$45.17	1	\$45.17
Electric, Energizer, 6 joule	29	Electric, Energizer, 6 joule for electric fence. Includes materials and shipping only.	Each	\$418.58	1	\$418.58
Fence, Wire Assembly, High Tensile, Electric, 1 Strand	32	Brace pins, springs, strainers, battens, clips, crimp sleeves, staples, insulators, wrap around sleeves. Includes materials and shipping only.	Feet	\$0.02	2640	\$52.80

Practice: E383A - Grazing-maintained fuel break to reduce the risk of fire
Scenario: \#1-Grazing-maintained fuel break to reduce the risk of fire

Scenario Description:

The area has existing fuel break(s) of 30 to 60 feet in width, supporting a mixture of woody sprouts and some herbaceous vegetation. Warm-season perennial vegetation will be established on the fuel breaks, and will be over-seeded with cool-season annual forages in the fall. Grazing will be managed on the fuel breaks to remove or modify the fine fuel vegetation, thus reducing the risk of fire spread from ground fires. Ground cover will be maintained to control soil erosion and facilitate prescribed burning.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 383 - Fuel Break
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 383 - Fuel Break
Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 10.00
Scenario Total Cost: \$2,968.80

Scenario Cost/Unit: \$296.88

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Fertilizer, ground application, dry bulk	950	Dry bulk fertilizer application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$7.50	10	\$75.00
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	10	\$201.30
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	24	\$651.84
Materials						
Nitrogen (N), Urea	71	Price per pound of N supplied by Urea. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.65	1000	\$650.00
Annual Grasses, Legumes or Forbs	2732	A mix of annual grasses, legumes and/or forbs, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$61.36	10	\$613.60
Introduced Perennial Grasses, Legumes and/or Forbs, Low Density	2747	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$47.76	10	\$477.60
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: E384A - Biochar production from woody residue
Scenario: \#14-Biochar production from woody residue

Scenario Description:

The adoption of this enhancement will go above the minimum level of woody residue treatment by creating a product that improves air quality by storing carbon, decreases fuel loads and fire hazard, and can improves soil quality. It will utilize woody debris remaining after a silvicultural practice or natural disturbance to create biochar. Biochar stores carbon and is a useful soil amendment that improves SOM and water-holding capacity.

Before Situation:

Area has woody residue that is unmerchantable and available for creation of quality biochar. Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 384 - Woody Residue Treatment

After Situation:
Woody debri has been coverted to biochar.
Feature Measure: Acre

Scenario Unit: Acres

Scenario Typical Size: 2.50
Scenario Total Cost: $\$ 12,838.85$
Scenario Cost/Unit: \$5,135.54
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Hydraulic Excavator, . 5 CY	930	Track mounted hydraulic excavator with bucket capacity range of 0.3 to 0.8 CY . Equipment and power unit costs. Labor not included.	Hours	\$99.69	40	\$3,987.60
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	40	\$248.40
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	15	\$374.85
Water tank, portable	1602	Portable water tank transported in a pick up truck. Typically with 200 gallon capacity includes tank with pump, hose and sprayer. Does not include the pickup truck. Equipment only.	Hours	\$12.65	80	\$1,012.00
Biochar Kiln, open fire	2681	Open fire kiln or metal container used to produce biochar/charcoal production. Daily rental rate. Includes all material and equipment	Hours	\$9.61	200	\$1,922.00
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	40	\$1,354.80
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	80	\$2,172.80
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	40	\$1,110.40
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	5	\$656.00

Practice: E386A - Enhanced field borders to reduce soil erosion along the edge(s) of a field
Scenario: \#1 - Enhanced field borders to reduce soil erosion along the edge(s) of a field
Scenario Description:
Enhance existing field borders to a width of at least 30 feet and establish a single species or mixture of species that provide a dense ground cover along the edge(s) of the field.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 386 - Field Border
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 386 - Field Border
Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$1,078.64

Scenario Cost/Unit: \$1,078.64
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	1	\$13.45
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	1	\$6.63
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13
Cultipacking	1100	Includes equipment, power unit and labor costs.	Acres	\$10.03	1	\$10.03

Foregone Income

FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	0.41
FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	Acres	$\$ 251.94$	0.36
FI, Wheat Dryland	1963	Dryland Wheat is Primary Crop	Acres	$\$ 98.94$	0.23

Materials

Introduced Perennial Grasses,	2748	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at medium to higher density (41-60 pure	Acres	$\$ \mathbf{\$ 6 8 . 2 3}$	1	$\$ 68.23$
live seeds/sq ft). Includes material and shipping.						

Practice: E386B - Enhanced field borders to increase carbon storage along the edge(s) of the field
Scenario: \#1 - Enhanced field borders to increase carbon storage along the edge(s) of the field

Scenario Description:

Enhance existing field borders to a width of at least 30 feet and establish a single species or mixture of species that provide a dense ground cover and dense rooting system along the edge(s) of the field.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 386 - Field Border
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 386 - Field Border

Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$1,164.20
Scenario Cost/Unit: \$1,164.20

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	1	\$13.45
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	1	\$6.63
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13
Cultipacking	1100	Includes equipment, power unit and labor costs.	Acres	\$10.03	1	\$10.03

Foregone Income

FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	0.41
FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	Acres	$\$ 251.94$	0.36
FI, Wheat Dryland	1963	Dryland Wheat is Primary Crop	Acres	$\$ 98.94$	0.23

Materials

Native and Introduced Perennial Grasses, Legumes and/or Forbs, Medium Density

Mobilization

Practice: E386C - Enhanced field borders to decrease particulate emissions along the edge(s) of the field
Scenario: \#1 - Enhanced field borders to decrease particulate emissions along the edge(s) of the field

Scenario Description:

Enhance existing field borders to a width of at least 40 feet and establish a mixture of species that decrease the particulate emissions along the edge(s) of the field.
Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 386 - Field Border
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 386 - Field Border
Feature Measure: Acre

Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$1,099.11
Scenario Cost/Unit: \$1,099.11
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	1	\$13.45
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	1	\$6.63
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13
Cultipacking	1100	Includes equipment, power unit and labor costs.	Acres	\$10.03	1	\$10.03
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	0.41	\$93.34
FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	Acres	\$251.94	0.36	\$90.70
FI, Wheat Dryland	1963	Dryland Wheat is Primary Crop	Acres	\$98.94	0.23	\$22.76
Materials						
Introduced Perennial Grasses, Legumes and/or Forbs, High Density	2749	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at high density (greater than 60 pure live seeds/sq ft). Includes material and shipping.	Acres	\$88.70	1	\$88.70
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: E386D - Enhanced field borders to increase food for pollinators along the edge(s) of a field
Scenario: \#1 - Enhanced field borders to increase food for pollinators along the edge(s) of a field

Scenario Description:

Enhance existing field borders to a width of at least 40 feet and establish a mixture of species that provide food for pollinators along the edge(s) of the field.
Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 386 - Field Border
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 386 - Field Border
Feature Measure: Acre

Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$1,164.20
Scenario Cost/Unit: \$1,164.20
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	1	\$13.45
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	1	\$6.63
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13
Cultipacking	1100	Includes equipment, power unit and labor costs.	Acres	\$10.03	1	\$10.03
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	0.41	\$93.34
FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	Acres	\$251.94	0.36	\$90.70
FI, Wheat Dryland	1963	Dryland Wheat is Primary Crop	Acres	\$98.94	0.23	\$22.76
Materials						
Native and Introduced Perennial Grasses, Legumes and/or Forbs, Medium Density	2756	A mix of native and introduced perennial grasses, legumes, and/or forbs, grasses typically greater than 50% of the mix, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at medium to high density (41-60 pure live seeds/sq ft). Includes material and shipping.	Acres	\$153.79	1	\$153.79

Mobilization

| Mobilization, medium equipment | 1139 | Equipment with $70-150 \mathrm{HP}$ or typical weights between 14,000 and | Each $\$ 753.37 \quad 1 \quad \$ 753.37$ |
| :--- | :--- | :--- | :--- | :--- | 30,000 pounds.

Practice: E386E - Enhanced field borders to increase wildlife food and habitat along the edge(s) of a field
Scenario: \#1 - Enhanced field borders to increase wildlife food and habitat along the edge(s) of a field

Scenario Description:

Enhance existing field borders to a width of at least 40 feet and establish a mixture of species that provide wildlife food and habitat along the edge(s) of the field. The extended field border will also provide enhanced wildlife habitat continuity.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 386 - Field Border
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 386 - Field Border
Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$1,164.20
Scenario Cost/Unit: \$1,164.20

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	1	\$13.45
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	1	\$6.63
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13
Cultipacking	1100	Includes equipment, power unit and labor costs.	Acres	\$10.03	1	\$10.03

Foregone Income

FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	0.41
FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	Acres	$\$ 251.94$	0.36
FI, Wheat Dryland	1963	Dryland Wheat is Primary Crop	Acres	$\$ 98.94$	0.23

Materials

Native and Introduced Perennial Grasses, Legumes and/or Forbs, Medium Density

Mobilization

Practice: E390A - Increase riparian herbaceous cover width for sediment and nutrient reduction
Scenario: \#1-Increase riparian herbaceous cover width for sediment and nutrient reduction

Scenario Description:

Where an existing herbaceous riparian buffer is located along a river, stream, pond, lake, or other waterbody, increase the width of the buffer in order to allow a greater percentage of sediment and nutrient removal from surface and subsurface flows.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 390 - Riparian Herbaceous Cover
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 390 - Riparian Herbaceous Cover

Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 2.00
Scenario Total Cost: \$938.52
Scenario Cost/Unit: \$469.26
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	2	\$13.26
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	2	\$40.26
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	0.82	\$186.69
FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	Acres	\$251.94	0.72	\$181.40
FI, Wheat Dryland	1963	Dryland Wheat is Primary Crop	Acres	\$98.94	0.46	\$45.51
Materials						
Herbicide, Imazapyr	336	Pre and post-emergent, non-selective herbicide for control of undesirable vegetation in non-crop areas. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$42.89	2	\$85.78
Native Perennial Grasses, Medium Density	2751	Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at medium to higher density (41-60 pure live seeds/sq ft). Includes material and shipping.	Acres	\$192.81	2	\$385.62

USDA United States Department of Agriculture

Practice: E390B - Increase riparian herbaceous cover width to enhance wildlife habitat
Scenario: \#1 - Increase riparian herbaceous cover width to enhance wildlife habitat

Scenario Description:

Where an existing herbaceous riparian buffer is located along a river, stream, pond, lake, or other waterbody, increase the diversity of native species, control invasive species, install fencing and relocate equipment operations, trails, and livestock, and increase the width of the buffer.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 390 - Riparian Herbaceous Cover
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 390 - Riparian Herbaceous Cover

Feature Measure: Acre
Scenario Unit: Acres

Scenario Typical Size: 4.00
Scenario Total Cost: \$1,308.64
Scenario Cost/Unit: \$327.16
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	4	\$26.52
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	2	\$40.26
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	1	\$227.67
FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	Acres	\$251.94	1	\$251.94
FI, Wheat Dryland	1963	Dryland Wheat is Primary Crop	Acres	\$98.94	0.46	\$45.51
Materials						
Herbicide, Imazapyr	336	Pre and post-emergent, non-selective herbicide for control of undesirable vegetation in non-crop areas. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$42.89	4	\$171.56
Native Perennial Grasses, Legumes and/or Forbs, Medium Density	2754	A mix of native perennial grasses, legumes, and/or forbs, Grasses typically greater than 50% of the mix, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at medium to higher density (41-60 pure live seeds/sq ft). Species typically easy to purchase. Includes material and shipping.	Acres	\$272.59	2	\$545.18

Practice: E391A - Increase riparian forest buffer width for sediment and nutrient reduction
Scenario: \#1 - Increase riparian forest buffer width for sediment and nutrient reduction
Scenario Description:
Where an existing forested riparian area is located along a river, stream, pond, lake, or other waterbody, increase the width of the buffer in order to allow a greater percentage of sediment and nutrient removal from surface and subsurface flows.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 391 - Riparian Forest Buffer
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 391 - Riparian Forest Buffer

Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 2.00
Scenario Total Cost: \$4,538.27

Scenario Cost/Unit: \$2,269.13

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	16	\$399.84
Mower, Bush Hog	940	Equipment and power unit costs. Labor not included.	Hours	\$31.13	2	\$62.26
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	2	\$13.26
Tractor, agricultural, 60 HP	963	Agricultural tractor with horsepower range of 50 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$35.80	4	\$143.20
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	16	\$200.16
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	0.82	\$186.69
FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	Acres	\$251.94	0.72	\$181.40
FI, Wheat Dryland	1963	Dryland Wheat is Primary Crop	Acres	\$98.94	0.46	\$45.51
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	4	\$111.04
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44
Materials						
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	1	\$12.66
Herbicide, Sulfometuron \& metsulfuron	344	A residual sulfonylurea herbicide that kills broadleaf weeds and some annual grasses. It is a systemic compound with foliar and soil activity. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$11.34	1	\$11.34
Herbicide, Surfactant	1095	Surfactants reduce the surface tension of water to produce more uniform coverage and penetration of herbicides, and weed killers. Paraffin Based Petroleum Surfactant. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$1.61	1	\$1.61
Tree, Hardwood, Seedling, Medium	1510	Bare root hardwood seedlings 18 to 36 inches tall; includes tropical containerized seedlings of 10 to 20 cubic inches. Includes materials and shipping only.	Each	\$1.72	872	\$1,499.84

Tree shelter, solid tube type, 4 in. x 48 in.	1566	4 inch $x 48$ inch tree tube for protection from animal damage. Materials and shipping only.	Each	\$5.29	100	\$529.00
Stakes, wood, 1 in. x 1 in. x 48 in.	1578	1 in. x 1 in. x 48 in. wood stakes to fasten items in place. Includes materials only.	Each	\$2.16	100	\$216.00
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: E391B - Increase stream shading for stream temperature reduction
Scenario: \#1 - Increase stream shading for stream temperature reduction
Scenario Description:
Riparian area tree canopy cover density is increased and the extent of the forested riparian area is increased to provide greater stream shading.
Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 391 - Riparian Forest Buffer

After Situation:

The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 391 - Riparian Forest Buffer

Feature Measure: Acre

Scenario Unit: Acres

Scenario Typical Size: 2.00
Scenario Total Cost: \$4,592.59
Scenario Cost/Unit: \$2,296.29
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	16	\$399.84
Mower, Bush Hog	940	Equipment and power unit costs. Labor not included.	Hours	\$31.13	2	\$62.26
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	2	\$13.26
Tractor, agricultural, 60 HP	963	Agricultural tractor with horsepower range of 50 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$35.80	4	\$143.20
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	16	\$200.16
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	0.82	\$186.69
FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	Acres	\$251.94	0.72	\$181.40
FI, Wheat Dryland	1963	Dryland Wheat is Primary Crop	Acres	\$98.94	0.46	\$45.51

Labor

General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	18	\$488.88
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	4	\$111.04
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44
Materials						
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	1	\$12.66
Herbicide, Sulfometuron \& metsulfuron	344	A residual sulfonylurea herbicide that kills broadleaf weeds and some annual grasses. It is a systemic compound with foliar and soil activity. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$11.34	1	\$11.34
Herbicide, Surfactant	1095	Surfactants reduce the surface tension of water to produce more uniform coverage and penetration of herbicides, and weed killers. Paraffin Based Petroleum Surfactant. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$1.61	1	\$1.61
Tree, Hardwood, Seedling, Medium	1510	Bare root hardwood seedlings 18 to 36 inches tall; includes tropical containerized seedlings of 10 to 20 cubic inches. Includes materials and shipping only.	Each	\$1.72	872	\$1,499.84
Tree shelter, solid tube type, 4 in. $\times 48$ in.	1566	4 inch $x 48$ inch tree tube for protection from animal damage. Materials and shipping only.	Each	\$5.29	100	\$529.00

Stakes, wood, 1 in. x 1 in. x 48 in.

$15781 \mathrm{in} . \times 1 \mathrm{in} . \times 48 \mathrm{in}$. wood stakes to fasten items in place. Includes
Each materials only.

Mobilization

Mobilization, small equipment
1138 Equipment < 70 HP but can't be transported by a pick-up truck or with

Practice: E391C - Increase riparian forest buffer width to enhance wildlife habitat
Scenario: \#1 - Increase riparian forest buffer width to enhance wildlife habitat
Scenario Description:
Where an existing riparian forest buffer is located along a river, stream, pond, lake, or other waterbody, increase the diversity of native species, control invasive species, install fencing and relocate equipment operations, trails, and livestock to increase the functional width of the buffer.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 391 - Riparian Forest Buffer
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 391 - Riparian Forest Buffer

Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 2.00
Scenario Total Cost: \$4,592.59

Scenario Cost/Unit: \$2,296.29

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	16	\$399.84
Mower, Bush Hog	940	Equipment and power unit costs. Labor not included.	Hours	\$31.13	2	\$62.26
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	2	\$13.26
Tractor, agricultural, 60 HP	963	Agricultural tractor with horsepower range of 50 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$35.80	4	\$143.20
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	16	\$200.16
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	0.82	\$186.69
FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	Acres	\$251.94	0.72	\$181.40
FI, Wheat Dryland	1963	Dryland Wheat is Primary Crop	Acres	\$98.94	0.46	\$45.51
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	18	\$488.88
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	4	\$111.04
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44
Materials						
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	1	\$12.66
Herbicide, Sulfometuron \& metsulfuron	344	A residual sulfonylurea herbicide that kills broadleaf weeds and some annual grasses. It is a systemic compound with foliar and soil activity. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$11.34	1	\$11.34
Herbicide, Surfactant	1095	Surfactants reduce the surface tension of water to produce more uniform coverage and penetration of herbicides, and weed killers. Paraffin Based Petroleum Surfactant. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$1.61	1	\$1.61
Tree, Hardwood, Seedling, Medium	1510	Bare root hardwood seedlings 18 to 36 inches tall; includes tropical containerized seedlings of 10 to 20 cubic inches. Includes materials and shipping only.	Each	\$1.72	872	\$1,499.84

Tree shelter, solid tube type, 4 in. x 48 in.	1566	4 inch $x 48$ inch tree tube for protection from animal damage. Materials and shipping only.	Each	\$5.29	100	\$529.00
Stakes, wood, 1 in. x 1 in. x 48 in.	1578	1 in. x 1 in. x 48 in. wood stakes to fasten items in place. Includes materials only.	Each	\$2.16	100	\$216.00
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: E393A - Extend existing filter strip to reduce water quality impacts
Scenario: \#1 - Extend existing filter strip to reduce water quality impacts

Scenario Description:

Extend existing filter strips for water quality protection. Extend the existing buffer for a total of 60 feet or more to enhance water quality functions. The extended buffers must be composed of at least 5 species of non-noxious, wildlife friendly grasses and/or perennial forbs best suited to site conditions. Include species that provide pollinator food and habitat where possible.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 393 - Filter Strip
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 393 - Filter Strip
Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$1,426.60
Scenario Cost/Unit: \$1,426.60
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	1	\$13.45
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	1	\$6.63
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13
Cultipacking	1100	Includes equipment, power unit and labor costs.	Acres	\$10.03	1	\$10.03
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	0.41	\$93.34
FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	Acres	\$251.94	0.36	\$90.70
FI, Wheat Dryland	1963	Dryland Wheat is Primary Crop	Acres	\$98.94	0.23	\$22.76
Labor						
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	2	\$262.40
Materials						
Native and Introduced Perennial Grasses, Legumes and/or Forbs, Medium Density	2756	A mix of native and introduced perennial grasses, legumes, and/or forbs, grasses typically greater than 50% of the mix, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at medium to high density (41-60 pure live seeds/sq ft). Includes material and shipping.	Acres	\$153.79	1	\$153.79

Mobilization

Practice: E395A - Stream habitat improvement through placement of woody biomass
Scenario: \#1 - Stream habitat improvement through placement of woody biomass
Scenario Description:
Flexible placement of wood (unanchored/unpinned) in small, 1st and 2nd order streams to improve stream habitat conditions for aquatic species and natural stream processes.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 395 - Stream Habitat Improvement and Management
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 395 - Stream Habitat Improvement and Management

Feature Measure: Bankfull width X Length
Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$21,039.70
Scenario Cost/Unit: \$21,039.70
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Hydraulic Excavator, 2 CY	932	Track mounted hydraulic excavator with bucket capacity range of 1.5 to 2.5 CY. Equipment and power unit costs. Labor not included.	Hours	\$142.87	16	\$2,285.92
Truck, dump, 12 CY	1215	Dump truck for moving bulk material. Typically capacity is 16 ton or 12 cubic yards. Includes equipment only.	Hours	\$103.14	8	\$825.12
Labor						
Equipment Operators, Heavy	233	Includes: Cranes, Hydraulic Excavators >=50 HP, Dozers, Paving Machines, Rock Trenchers, Trenchers >=12 in., Dump Trucks, Ag Equipment >=150 HP, Scrapers, Water Wagons.	Hours	\$31.87	24	\$764.88
Materials						
Aggregate, Sand, Graded, Washed	45	Sand, typical ASTM C33 gradation. Includes materials, and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$42.64	20	\$852.80
Aggregate, Gravel, Graded	46	Gravel. includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Cubic Yards	\$44.85	30	\$1,345.50
Compost	265	A mixture of decaying organic matter, as from leaves and manure, used to improve soil structure and provide nutrients.	Ton	\$52.20	1	\$52.20
Tree \& Shrub, Woody, Cuttings, Large	1309	Woody pole cuttings or posts 2 to 6 inches in diameter and 6 ft . long. Includes materials and shipping only.	Each	\$11.13	300	\$3,339.00
Boulder	1761	Rock boulders (approximately 5 ft dia. 6.67 Tons). Includes materials and delivery (up to 100 miles) only. Placement costs are not included.	Ton	\$92.54	40	\$3,701.60
Steel, rebar	1832	Steel rebar, grade 60. Materials only.	Pound	\$0.76	50	\$38.00
Aggregate, river rock	1834	Well graded, rounded mineral substrates derived from local riverine settings. Includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Ton	\$37.70	15	\$565.50
Log, un-anchored	2035	Price of log picked up at the Mill. Includes material only.	Ton	\$176.38	30	\$5,291.40
Root Wad	2045	Tree stump buried into the streambank with the roots left exposed. Includes material only.	Ton	\$7.93	20	\$158.60
Mobilization						
Mobilization, large equipment	1140	Equipment $>150 \mathrm{HP}$ or typical weights greater than 30,000 pounds or loads requiring over width or over length permits.	Each	\$909.59	2	\$1,819.18

Practice: E399A - Fishpond management for native aquatic and terrestrial species
Scenario: \#1 - Fishpond management for native aquatic and terrestrial species

Scenario Description:

Pond rehabilitation, buffer, and watershed management actions are taken to improve habitat for native species of fish, amphibians, and shorebirds.
Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 399 - Fishpond Management

After Situation:

The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 399 - Fishpond Management

Feature Measure: Pond area + buffer area
Scenario Unit: Acres
Scenario Typical Size: 2.00
Scenario Total Cost: $\$ 3,040.94$
Scenario Cost/Unit: \$1,520.47

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	4	\$99.96
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	1	\$6.63
Seeding Operation, No Till/Grass Drill	960	No Till drill or grass drill for seeding. Includes equipment, power unit and labor costs.	Acres	\$20.13	1	\$20.13
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	3	\$101.61
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	32	\$869.12

Materials

Herbicide, Imazapyr	336	Pre and post-emergent, non-selective herbicide for control of undesirable vegetation in non-crop areas. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$42.89	1	\$42.89
Herbicide, Diquat dibromide	1820	Aquatic herbicide and plant growth regulator. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Gallons	\$108.55	1	\$108.55
Native Aquatic Plants, Emergent or Submerged	2336	Native aquatic emergent or submerged. All required materials for establishing vegetation. Includes material and shipping.	Each	\$1.22	1000	\$1,220.00
Native Perennial Grasses, Legumes and/or Forbs, Medium Density	2754	A mix of native perennial grasses, legumes, and/or forbs, Grasses typically greater than 50% of the mix, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at medium to higher density (41-60 pure live seeds/sq ft). Species typically easy to purchase. Includes material and shipping.	Acres	\$272.59	1	\$272.59
Mobilization						
Mobilization, small equipment	1138	Equipment <70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: E412A - Enhance a grassed waterway
Scenario: \#13-Waterway, reshape/extend/widen

Scenario Description:

Typical practice is 1500 ' long, 12 ' bottom, $8: 1$ side slopes, 1.1 ' depth. A grass waterway that is a shaped or graded channel and is established with suitable vegetation to carry surface water at a non-erosive velocity to a stable outlet. This practice addresses Concentrated Flow Erosion (Classic Gully \& Ephemeral Erosion) and Excessive Sediment in surface waters. Waterway area measured from top of bank to top of bank. Seeding will be completed under the Critical Area Planting (342) Practice Standard with seeding area up to 20% greater than waterway area to account for buffer area along the waterway. Costs include excavation and associated work to construct the overall shape and grade of the waterway. This scenario would apply to Grassed Waterways without erosion control blanket or rock checks.

Before Situation:

The field has a grassed waterway, but a gully cutting upstream, downstream, or adjacent to the existing grassed waterway has formed as time goes on, so the new gully needs to be stopped or controlled. The new gully has formed in field as a result of a change in runoff amounts from the original design from subsurface drainage outlets, change in cropping techniques, change in land use, etc.

After Situation:

An installed grassed waterway has been installed that is possibly wider or longer than the original grassed waterway that wasn't functioning properly anymore. The new installed grassed waterway is 1500 ' long, 12 ' bottom, $8: 1$ side slopes, 1.1' depth. The practice is installed using a dozer and/or scraper, with final grading with motor grader. Use Critical Area Planting (342) for establishment of waterway vegetation. If erosion control blankets or mulching for seedbed establishment/protection are needed, use conservation practice Mulching (484). Drainage tile, if needed, will be installed accoring to Subsurface Drain (606).

Feature Measure: Acres of Waterway reshaped, exten

Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$3,676.84
Scenario Cost/Unit: \$3,676.84
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Stripping and stockpiling, topsoil	1199	Stripping and stockpiling of topsoil adjacent to stripping area. Includes equipment and labor.	Cubic Yards	\$0.79	411	\$324.69
Excavation, common earth, large equipment, 150 ft	1223	Bulk excavation of common earth including sand and gravel with dozer $>100 \mathrm{HP}$ with average push distance of 150 feet. Includes equipment and labor.	Cubic Yards	\$3.35	954	\$3,195.90
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	4	\$108.64
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	1	\$47.61

Practice: E420A - Establish pollinator habitat

Scenario: \#13-Establish Pollinator Habitat

Scenario Description:

Seed or plug nectar and pollen producing plants in non-cropped areas such as field borders, vegetative barriers, contour buffer strips, shelterbelts, hedgerows, windbreaks, conservation cover, and riparian forest and herbaceous buffers.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 420 - Wildlife Habitat Planting
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 420 - Wildlife Habitat Planting

Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$524.13
Scenario Cost/Unit: \$524.13
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	2	\$54.32
Materials						
Native Perennial Grasses, Legumes and/or Forb Mix for Targeted Wildlife/Pollinator Habitat or Ecological Restoration, moderate commercial availability	2619	Diverse mix of native perennial grasses, legumes and forbs, less than 50% grasses, may include biennials and a small percentage of annual species for establishment purposes and/or if allowed by the CPS. This is a mix composed of species required to meet specific wildlife/pollinator habitat or ecological requirements. Seed is moderately easy to purchase commercially. Includes materials and shipping.	Acres	\$469.81	1	\$469.81

Practice: E420B - Establish monarch butterfly Scenario: \#13-Establish Monarch Habitat						
Scenario Description:						
Seed or plug milkweed (Asclepias spp.) and high-value monarch butterfly nectar plants on marginal cropland, field borders, contour buffer strips and similar areas.						
Before Situation:						
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 420 - Wildlife Habitat Planting.						
After Situation:						
Adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 420 - Wildlife Habitat Planting.						
Feature Measure: Acre						
Scenario Unit: Acres						
Scenario Typical Size: 1.00						
Scenario Total Cost:	\$898.61					
Scenario Cost/Unit:	\$898.61					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Mower, Bush Hog	940	Equipment and power unit costs. Labor not included.	Hours	\$31.13	1	\$31.13
Chemical, spot treatment, single stem application	964	Ground applied chemical to individual plants or group of plants, e.g., backpack sprayer treatment. Equipment and labor cost included.	Hours	\$80.61	2	\$161.22
Cultipacking	1100	Includes equipment, power unit and labor costs.	Acres	\$10.03	1	\$10.03
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	1	\$131.20
Materials						
Native Perennial Grasses, Legumes and/or Forb Mix for Targeted Wildlife/Pollinator Habitat or Ecological Restoration, moderate commercial availability	2619	Diverse mix of native perennial grasses, legumes and forbs, less than 50% grasses, may include biennials and a small percentage of annual species for establishment purposes and/or if allowed by the CPS. This is a mix composed of species required to meet specific wildlife/pollinator habitat or ecological requirements. Seed is moderately easy to purchase commercially. Includes materials and shipping.	Acres	\$469.81	1	\$469.81

Practice: E447A - Advanced Tailwater Recovery

Scenario: \#13-Advanced Tailwater Recovery

Scenario Description:

This enhancement is for a recovery system that capture 100% of excess irrigation and drainage runoff water from the contiguous land where the activity is implemented. Runoff water is conveyed through properly designed recovery ditches to a storage structure. Each recovery ditch and storage structure have adequate capacity to store excess irrigation water and reasonable runoff water. The system is designed to incorporate the collected water back into the delivery system so that excess water is reused. The system is fully automated to operate the recovery pumps, valves, and collection system. Key elements in the system are sensors that can evaluate data and operate devices through the system in opening/closing or on /off based on scientifically determined parameters.

Before Situation:

Resources are protected at the minimum level of the Conservation Practice Standard 447 - Irrigation System, Tailwater Recovery
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard 447 - Irrigation System, Tailwater Recovery.

Feature Measure: Acres

Scenario Unit: Acres
Scenario Typical Size: 200.00
Scenario Total Cost: $\$ 1,661.28$
Scenario Cost/Unit: \$8.31

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	8	\$199.92
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	24	\$428.64
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	24	\$651.84
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	8	\$380.88

Practice: E449A - Complete pumping plant evaluation for water savings
Scenario: \#1 - Complete pumping plant evaluation for water savings
Scenario Description:
The performance of pump tests and evaluations of all pumping plants to determine the potential to rehabilitate/replace/reconfigure pump performance to improve water delivery efficiency 10% or more. Develop and provide a written report with recordkeeping documents and list of adjustments and calculations of the reduction of water use based on before and after conditions.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 449 ??? Irrigation Water Management

After Situation:

The adoption of this enhancement will provide resource protection above the minimum level as described in the Conservation Practice Standard, (CPS) 449 ??? Irrigation Water Management.

Feature Measure: Each pump evaluated

Scenario Unit: Number

Scenario Typical Size: 1.00
Scenario Total Cost: \$4,648.76
Scenario Cost/Unit: \$4,648.76

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	8	\$270.96
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	32	\$4,198.40
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40

USDA United States Department of Agriculture

Practice: E449B - Alternated Wetting and Drying (AWD) of rice fields
Scenario: \#1 - Alternated Wetting and Drying (AWD) of rice fields
Scenario Description:
Rice fields are drained and allowed to ???dry down??? to a saturated soil condition prior to re-flooding the field. System is installed in year 1 with Scenario E449144Z8 and this scenario used in years 2-5.

Before Situation:
Resources are protected at the minimum level of the conservation Practice Standard (CPS) 449 ??? Irrigation Water Management.
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in the Conservation Practice Standard (CPS) 449 ??? Irrigation Water Management.

Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: \$1,372.06
Scenario Cost/Unit: \$34.30
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	40	\$1,086.40
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	6	\$285.66

United States Department of Agriculture Natural Resources Conservation Service			Texas			
			Practice Scenarios - Fiscal Year 2024			
Practice: E449C-Advanced Automated IWM - Year 2-5, soil moisture monitoring						
Scenario: \#1 - Advanced Automated IWM ??? Year 2-5, soil moisture monitoring						
Scenario Description:						
Advanced automated irrigation water management using soil moisture or water level monitoring (installed as per IWM plan) with data loggers.						
Before Situation:						
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 449 ??? Irrigation Water Management						
After Situation:						
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 449 - Irrigation Water Management						
Feature Measure: Acre						
Scenario Unit: Acres						
Scenario Typical Size: 125.00						
Scenario Total Cost:	\$2,497.44					
Scenario Cost/Unit:		9.98				
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	40	\$1,354.80
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	24	\$1,142.64

Practice: E449D - Advanced Automated IWM - Year 1, Equipment and soil moisture or water level monitoring						
Scenario Description:						
Installing and monitoring soil moisture or water leveling equipment for advanced automated irrigation water management						
Before Situation:						
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 449 - Irrigation Water Management						
After Situation:						
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 449 - Irrigation Water Management						
Feature Measure: Acre						
Scenario Unit: Acres						
Scenario Typical Size: 120.00						
Scenario Total Cost:	\$6,884.32					
Scenario Cost/Unit:	\$57.37					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	30	\$749.70
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	8	\$270.96
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	16	\$761.76
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	4	\$524.80
Materials						
Switches and Controls, temp sensors	1192	Temperature and soil moisture sensors installed as part of an electronic monitoring (with or without wireless telecommunications) commonly used to control pumps and irrigation systems	Each	\$646.73	3	\$1,940.19
Data Logger with Telemetry System	1454	Data Logger W/Graphic Output for water management and telemetry data communication device with power supply in a weather proof enclosure. Equipment only.	Each	\$1,663.47	1	\$1,663.47
Weather Station, Advanced	2550	Advance Weather Station which collects and records recording rainfall, humidity, barometric pressure, wind speed, temperature, and solar radiation from a solar powered self-standing tripod to an advance weather recording console. Used for both 449 advance irrigation water management and for Activity 202 water quality monitoring .	Each	\$973.44	1	\$973.44

Practice: E449E - Convert from Cascade to Furrow Irrigated Rice Production - reduce irrigation water consumption
Scenario: \#13 - Convert from Cascade to Furrow Irrigated Rice Production - reduce irrigation water consumption
Scenario Description:
Field currently flooded through a cascade levee system will be converted to furrow irrigation.
Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard 449 - Irrigation Water Management.

After Situation:

The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard 449 - Irrigation Water Management.

Feature Measure: Acres
Scenario Unit: Acres
Scenario Typical Size: 80.00
Scenario Total Cost: \$4,558.88
Scenario Cost/Unit: \$56.99

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tillage, Light	945	Includes light disking (tandem) or field cultivator. Includes equipment, power unit and labor costs.	Acres	\$13.45	80	\$1,076.00

Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	32	\$1,523.52
Materials						
Flow Meter, with mechanical Index	1450	10 inch, Turbine Type Flow Meter with Mechanical Index, permanently installed. Includes materials and shipping only.	Each	\$1,742.08	1	\$1,742.08

Practice: E449F - Intermediate IWM - Year 1, Equipment with Soil or Water Level monitoring
Scenario: \#13-Intermediate IWM - Year 1, Equipment with Soil moisture or Water Level monitoring

Scenario Description:

This activity involves monitoring soil moisture or water levels within a irrigated field for intermediate irrigation water management include installation of equipment year 1.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 449 - Irrigation Water Management
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 449 - Irrigation Water Management.

Feature Measure: Acres
Scenario Unit: Acres

Scenario Typical Size: 160.00
Scenario Total Cost: \$7,572.17

Scenario Cost/Unit: \$47.33

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	4	\$99.96
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	4	\$135.48
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44
Materials						
Switches and Controls, temp sensors	1192	Temperature and soil moisture sensors installed as part of an electronic monitoring (with or without wireless telecommunications) commonly used to control pumps and irrigation systems	Each	\$646.73	1	\$646.73
Flow Meter, with mechanical Index	1450	10 inch, Turbine Type Flow Meter with Mechanical Index, permanently installed. Includes materials and shipping only.	Each	\$1,742.08	1	\$1,742.08
Data Logger	1453	Data Logger W/Graphic Output for water management. Materials only.	Each	\$720.50	4	\$2,882.00
Soil Moisture Sensor	1456	Soil moisture resistance sensor with 10 foot cables. Equipment only.	Each	\$75.17	12	\$902.04
Weather Station, Advanced	2550	Advance Weather Station which collects and records recording rainfall, humidity, barometric pressure, wind speed, temperature, and solar radiation from a solar powered self-standing tripod to an advance weather recording console. Used for both 449 advance irrigation water management and for Activity 202 water quality monitoring .	Each	\$973.44	1	\$973.44

Practice: E449G - Intermediate IWM - Years 2-5, Soil or Water Level monitoring
Scenario: \#13 - Intermediate IWM - Years 2-5, Soil Moisture or Water Level monitoring

Scenario Description:

Intermediate irrigation water management involves monitoring soil moisture or water levels within an irrigated field by utilizing technological equipment to gather field specific data concerning weather, soil moisture or water levels throughout the irrigation season. The equipment was bought in year one and is utilized to log data through the season to be retrieved periodically so irrigation decisions can be made based on scientific data. Maximum time between data retrieval is weekly.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 449 - Irrigation Water Management

After Situation:

The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 449 - Irrigation Water Management.

Feature Measure: Acres

Scenario Unit: Acres

Scenario Typical Size: 160.00
Scenario Total Cost: $\$ 1,460.25$
Scenario Cost/Unit: $\$ 9.13$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	15	\$508.05
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	20	\$952.20

Practice: E449I-Sprinkler Irrigation Equipment Retrofit

Scenario: \#29-IWM - Year 1, Retrofit Equipment with Speed Control on Sprinkler Irrigation

Scenario Description:

This activity involves installing speed control equipment to a sprinkler irrigated field for irrigation water management. The installation of the equipment is in year one. It is applicable to sprinkler irrigation systems that do not already have the functionality and are able to integrate the speed control technology.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 449 - Irrigation Water Management
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 449 - Irrigation Water Management.

Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$1,816.53
Scenario Cost/Unit: \$1,816.53
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	8	\$270.96
Materials						
Center Pivot VRI, Speed Control	2727	Center pivot irrigation system using variable rate irrigation using speed control technology. Includes controller, sensors, and GPS unit.	Number	\$1,545.57	1	\$1,545.57

Practice: E449J - Intermediate IWM - 20\% Reducing Water Usage
Scenario: \#13 - Intermediate IWM - 20\% Reduced Water Usage

Scenario Description:

Intermediate irrigation water management involves monitoring soil moisture or water levels within an irrigated field by utilizing technological equipment to gather field specific data concerning weather, soil moisture or water levels throughout the irrigation season. The equipment will be utilized to log data through the season to be retrieved periodically so irrigation decisions can be made based on scientific data. Maximum time between data retrieval is weekly.Monitoring will be for the entire irrigation season and data gathered will be used to make sound decisions on irrigation water use.Supplimental Water usage will be reduced by 20% from previous years use and remain at that level for the remainder of the contract.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 449 ??? Irrigation Water Management.
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in the Conservation Practice Standard (CPS) 449 ??? Irrigation Water Management.

Feature Measure: Irrigated Acres

Scenario Unit: Acres
Scenario Typical Size: 125.00

Scenario Total Cost:	$\$ 5,270.03$
Scenario Cost/Unit:	$\$ 42.16$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	8	\$270.96
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	32	\$4,198.40
Materials						
Soil Moisture Meter	1455	Soil Moisture Sensor Reader. Equipment only.	Each	\$245.42	1	\$245.42
Soil Moisture Sensor	1456	Soil moisture resistance sensor with 10 foot cables. Equipment only.	Each	\$75.17	5	\$375.85
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40

Practice: E472A - Manage livestock access to waterbodies to reduce nutrients or pathogens to surface water
Scenario: \#1 - Manage livestock access to waterbodies to reduce nutrients or pathogens to surface water

Scenario Description:

Installation of structures and implementation of grazing management actions that restrict livestock access to streams, ditches, and other waterbodies in order to reduce nutrient loading or reduce the introduction of pathogens from manure, bio-solids or compost to surface waters.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 472 - Access Control
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 472 - Access Control

Feature Measure: (Stream length protected * 2) + ((C
Scenario Unit: Feet
Scenario Typical Size: 1,320.00
Scenario Total Cost: $\$ 3,968.59$
Scenario Cost/Unit: \$3.01
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Auger, Post driver attachment	934	Auger or post driver attachment to a tractor or skidsteer. Does not include power unit. Labor not included.	Hours	\$9.74	5	\$48.70
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	5	\$124.95
Tractor, agricultural, 60 HP	963	Agricultural tractor with horsepower range of 50 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$35.80	5	\$179.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	33	\$896.28
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	5	\$138.80

Materials

Wire, Barbed, Galvanized, 12.5 Gauge, 1,320' roll	1	Galvanized 12.5 gauge, 1,320' roll. Includes materials and shipping only.	Each	\$122.84	4	\$491.36
Post, Wood, CCA treated, 3-4 in. x 7 ft .	9	Wood Post, Line 3-4 inch dia. X 7 ft ., CCA Treated. Includes materials and shipping only.	Each	\$11.12	20	\$222.40
Post, Wood, CCA treated, 6 in. x 8 ft .	12	Wood Post, End 6 inch dia. X 8 ft., CCA Treated. Includes materials and shipping only.	Each	\$24.69	8	\$197.52
Post, Steel T, $1.33 \mathrm{lbs}, 6 \mathrm{ft}$.	15	Steel Post, Studded 6 ft - 1.33 lb . Includes materials and shipping only.	Each	\$7.08	90	\$637.20
Fence, Wire Assembly, Barbed Wire	30	Brace pins, battens, clips, staples. Includes materials and shipping only.	Feet	\$0.20	1320	\$264.00
Gate, Pipe, 12 ft .	1057	6 rail tube gate, 16 gauge. Includes materials and shipping only.	Each	\$234.46	2	\$468.92
Mobilization						
Mobilization, small equipment	1138	Equipment <70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

United States Department of Agriculture				Texas			
Natural Resources Conservation Service				Practice Scenarios - Fiscal Year 2024			
Practice: E484A - Mulching to improve soil health							
Scenario: \#1-Mulching to improve soil health							
Scenario Description:							
Implement a crop rotation which utilizes mulch and addresses all four principle components of soil health: increases diversity of the cropping system; maintains residue throughout the year; keeps a living root; and minimizes soil chemical, physical and biological disturbance. Plant-based mulching materials will be applied at least once during the rotation. The rotation will include at least 4 different crops and/or cover crops grown in a sequence that will produce a positive trend in the Organic Matter (OM) subfactor value over the life of the rotation, as determined by the Soil Conditioning Index (SCI). The current NRCS wind and water erosion prediction technologies must be used to document the rotation and SCl calculations.							
Before Situation:							
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 484 - Mulching							
After Situation:							
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 484 - Mulching							
Feature Measure: Acre							
Scenario Unit: Acres							
Scenario Typical Size: 100.00							
Scenario Total Cost:	\$262.40						
Scenario Cost/Unit:	\$2.62						
Cost Details:							
Component Name	ID		Description	Unit	Cost	QTY	Total
Labor							
Specialist Labor	235	Labo Biolo plann TSP	skill set: Inclu ditional technic of the practic	Hours	\$131.20	2	\$262.40

Practice: E484C - Mulching with natural materials in specialty crops for weed control
Scenario: \#13-Mulching with natural materials in specialty crops for weed control
Scenario Description:
Application of straw mulch or other state approved natural material (such as wood chips, compost, green chop, dry hay or sawdust) for weed control in specialty crops.
Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard 484 - Mulching
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard 484 - Mulching
Feature Measure: Acres
Scenario Unit: Acres
Scenario Typical Size: 10.00
Scenario Total Cost: $\$ 628.98$

Scenario Cost/Unit: \$62.90
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tractor, agricultural, 60 HP	963	Agricultural tractor with horsepower range of 50 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$35.80	2	\$71.60
Mulcher, straw blower	1305	Straw bale mulcher/blower to mechanically spread small or large straw bales. Labor not included.	Hours	\$82.58	2	\$165.16
Labor						
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	2	\$55.52
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	1	\$131.20
Materials						
Straw	1237	Small grain straw (non organic and certified organic). Includes materials only.	Ton	\$137.00	1.5	\$205.50

Practice: E484D - Lowbush Blueberry Field Mulching for Moisture Management
Scenario: \#13-Lowbush blueberry field mulching

Scenario Description:

Full-field application of state-approved natural material such as wood chips for moisture retention to enhance resilience in low bush blueberries (aka wild blueberries).

Before Situation:

Resources are protected at the minimum level of CPS 484 Mulching. 484 Mulching is typically used to fill bare spots on wild blueberry fields, which encourages 'blueberry sod' to migrate into de-vegetated areas, stabilizing the soil. Blueberry field (barrens) are typically situated in excessively drained soils in locations where irrigation is not generally feasible. Increasing incidence of drought each year is stressing plants and negatively impacting yields.

After Situation:
Wood chips are applied to a depth of 2 inches field-wide using typical dry manure spreading equipment. Wood chips hold precipitation in the root zone, preventing moisture loss in excessively-drained soils, and add organic matter into the system, improving soil quality over time.

Feature Measure: acres
Scenario Unit: Acres
Scenario Typical Size: 10.00
Scenario Total Cost: \$144,375.21

Scenario Cost/Unit: \$14,437.52
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Manure, compost, application	955	Loading, hauling and spreading manure/compost by ground equipment. Includes equipment, power unit and labor costs.	Hours	\$135.28	45	\$6,087.60
Aggregate, Wood Chips	1098	Includes materials, equipment and labor to transport and place.	Cubic Yards	\$51.20	2700	\$138,240.00
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	1	\$47.61

Practice: E511A - Harvest of crops (hay or small grains) using measures that allow desired species to flush or escape
Scenario: \#1 - Harvest of crops (hay or small grains) using measures that allow desired species to flush or escape
Scenario Description:
Harvest of crops (hay or small grains) using conservation measures that allow desired species to flush or escape. (For species list see State Wildlife Action Plan) Conservation measures include timing of harvest, idling land during the nesting or fawning period, and applying harvest techniques that reduce mortality to wildlife.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 511 - Forage Harvest Management
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 511 - Forage Harvest Management

Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 50.00
Scenario Total Cost: \$204.19
Scenario Cost/Unit: \$4.08
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Foregone Income						
FI, Hay, General Grass	2122	General Grass Hay is Primary Land Use	Ton	\$49.18	1.67	\$82.13
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	2	\$67.74
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	2	\$54.32

United States Department of Agriculture Natural Resources Conservation Service			Texas			
			Practice Scenarios - Fiscal Year 2024			
Practice: E511B - Forage harvest management that helps maintain wildlife habitat cover, shelter or continuity						
Scenario: \#1 - Forage harvest management that helps maintain wildlife habitat cover, shelter or continuity						
Scenario Description:						
The timely cutting and removal of forages from the field as hay, green-chop, or ensilage in such a way, and in time frames, to optimize both forage yield/quality and wildlife cover and shelter and/or continuity between otherwise disconnected habitats.						
Before Situation:						
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 511 - Forage Harvest Management						
After Situation:						
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 511 - Forage Harvest Management						
Feature Measure: Acre						
Scenario Unit: Acres						
Scenario Typical Size: 100.00						
Scenario Total Cost: \$340.11						
Scenario Cost/Unit: \$3.40						
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Foregone Income						
FI, Grazing AUMs	2079	Grazing is the Primary Land Use	Animal Unit Month	\$11.70	25	\$292.50
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	1	\$47.61

Practice: E511C - Forage testing for improved harvesting methods and hay quality
Scenario: \#13-Hay quality record keepoing for livestock producers

Scenario Description:

This enhancement results in participants obtaining hay samples and submitting them to a land grant university or other accredited lab for quality analysis. The participant will record data for multiple harvests and use the data to make future decisions. The participant will discuss the results with NRCS or with their cooperative extensions service. Technical recommendations are made to the participant based upon the test results.

Before Situation:

The participant has hay that doesn't have quality analysis or doesn't know the quality of previous hay harvests. The hay will be fed when needed.

After Situation:

The participant has hay with hay quality analysis. The participant records data based upon the results to reference and make future decisions. The participant has a better understanding on the quality of hay so that adjustments in feeding or supplementation can be made.

Feature Measure: Each

Scenario Unit: Number

Scenario Typical Size: 2.00

Scenario Total Cost: \$294.75
Scenario Cost/Unit: \$147.38

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	2	\$54.32
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	1	\$47.61
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	1	\$131.20
Materials						
Test, Feed Analysis	1989	Representative sample of feed. Includes materials and shipping only.	Each	\$30.81	2	\$61.62

Practice: E511D - Forage Harvest Management to Improve Terrestrial Habitat for Wildlife during Over-Winter Periods
Scenario: \#13 - Forage Harvest Management Overwinter

Scenario Description:

Eliminate or forgo the last fall cutting of hay or haylage to optimize wildlife cover and shelter during critical over-winter periods and lengthen late season bloom period for invertebrates. Allowing late season stand maturity increases stand life and reduces risks of frost and winter damage while providing valuable wildlife habitat and an extended bloom periods.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 511-Forage Harvest Management
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in CPS - 511
Feature Measure: Acres
Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: \$1,102.65
Scenario Cost/Unit: \$27.57
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Equipment Installation						
Tractor, agricultural, 120 HP	962	Agricultural tractor with horsepower range of 90 to 140 . Equipment and power unit costs. Labor not included.	Hours	\$74.02	3	\$222.06
Foregone Income						
FI, Hay, Alfalfa	2121	Alfalfa Hay is Primary Crop	Ton	\$103.89	3	\$311.67
Labor						
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	3	\$83.28
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	5	\$238.05
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	1	\$131.20

Practice: E512A - Cropland conversion to grass-based agriculture to reduce soil erosion Scenario: \#1 - Cropland conversion to grass-based agriculture to reduce soil erosion						
Scenario Description:						
Conversion of cropped land to grass-based agriculture to reduce soil erosion. Mixtures of perennial grasses, forbs, and legume species are established on cropland where annually-seeded cash crops have been grown.						
Before Situation:						
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 512 - Forage and Biomass Planting						
After Situation:						
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 512 - Forage and Biomass Planting						
Feature Measure: Acre						
Scenario Unit: Acres						
Scenario Typical Size: 100.00						
Scenario Total Cost:	\$1,050.42					
Scenario Cost/Unit:	\$10.50					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22
Materials						
Introduced Perennial Grasses, Legumes and/or Forbs, Low Density	2747	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$47.76	20	\$955.20

Practice: E512B - Forage and biomass planting to reduce soil erosion or increase organic matter to build soil health
Scenario: \#1 - Forage and biomass planting to reduce soil erosion or increase organic matter to build soil health
Scenario Description:
Establishing adapted and/or compatible species, varieties, or cultivars of herbaceous species suitable for pasture, hay, or biomass production that can provide for reduced soil erosion, improving soil health.
Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 512 - Forage and Biomass Planting
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 512 - Forage and Biomass Planting

Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$2,794.62
Scenario Cost/Unit: \$27.95
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22
Materials						
Native Perennial Grasses, Low Density	2750	Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$134.97	20	\$2,699.40

Practice: E512C - Cropland conversion to grass for soil organic matter improvement
Scenario: \#1 - Cropland conversion to grass for soil organic matter improvement

Scenario Description:

Conversion of cropped land to grass-based agriculture. Mixtures of perennial grasses, forbs, and/or legume species are established on cropland where annually-seeded cash crops have been grown.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 512 - Forage and Biomass Planting
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 512 - Forage and Biomass Planting

Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$1,534.32

Scenario Cost/Unit: \$15.34

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	2	\$54.32
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	4	\$524.80
Materials						
Introduced Perennial Grasses, Legumes and/or Forbs, Low Density	2747	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$47.76	20	\$955.20

Practice: E512D - Forage plantings that help increase organic matter in depleted soils

Scenario: \#1 - Forage plantings that help increase organic matter in depleted soils

Scenario Description:

Establishing adapted and/or compatible species, varieties, or cultivars of herbaceous species suitable for pasture, hay, or biomass production that can help improve soil quality of depleted sites through increase or conservation of the organic matter in the soil.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 512 - Forage and Biomass Planting
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 512 - Forage and Biomass Planting

Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$1,342.92
Scenario Cost/Unit: \$13.43
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Foregone Income						
FI, Grazing AUMs	2079	Grazing is the Primary Land Use	Animal Unit Month	\$11.70	25	\$292.50
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22
Materials						
Introduced Perennial Grasses, Legumes and/or Forbs, Low Density	2747	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$47.76	20	\$955.20

Practice: E512J - Establish wildlife corridors to provide habitat continuity or access to water
Scenario: \#1 - Establish wildlife corridors to provide habitat continuity or access to water

Scenario Description:

Establishing adapted and/or compatible species, varieties, or cultivars of perennial, herbaceous species that can provide cover needed for wildlife species of concern to move from food/cover/water sources to other food/cover/water sources as needed for their life cycles, and/or to enhance the utility of underused wildlife habitat areas.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 512 - Forage and Biomass Planting
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 512 - Forage and Biomass Planting

Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$1,737.42
Scenario Cost/Unit: \$17.37
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Foregone Income						
FI, Grazing AUMs	2079	Grazing is the Primary Land Use	Animal Unit Month	\$11.70	25	\$292.50
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22
Materials						
Native Perennial Grasses, Low Density	2750	Native perennial grasses, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$134.97	10	\$1,349.70

Practice: E512L - Diversifying Forage Base with Interseeding Forbs and Legumes to Increase Pasture Quality
Scenario: \#13 - Diversifying forage base with interseeding forbs and legumes to increase pasture quality.
Scenario Description:
Establishing adapted and/or compatible species, varieties, or cultivars of perennial, herbaceous species that increases the diversity to enhance livestock, forage supply and quality, not available in other pastures

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 512 Pasture and Hay Planting
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in the Conservation Practice Standard (CPS) 512 Pasture and Hay Planting

Feature Measure: acres treated
Scenario Unit: Acres

Scenario Typical Size: 50.00
Scenario Total Cost: \$4,202.36

Scenario Cost/Unit: \$84.05

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Mower, Bush Hog	940	Equipment and power unit costs. Labor not included.	Hours	\$31.13	8	\$249.04
Seeding Operation, Broadcast, Ground	959	Broadcast seed via ground operation. May require post tillage operation to incorporate seed. Includes equipment, power unit and labor costs.	Acres	\$13.81	50	\$690.50
Foregone Income						
FI, Grazing AUMs	2079	Grazing is the Primary Land Use	Animal Unit Month	\$11.70	50	\$585.00
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	2	\$67.74
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	8	\$222.08
Materials						
Introduced Perennial Grasses, Legumes and/or Forbs, Low Density	2747	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Includes material and shipping.	Acres	\$47.76	50	\$2,388.00

Practice: E512M - Forage Plantings that Improve Wildlife Habitat Cover and Shelter or Structure and Composition
Scenario: \#13 - Forage plantings that improve wildlife habitat cover and shelter or structure and composition

Scenario Description:

Establishing native adapted and/or compatible species, varieties, or cultivars of herbaceous species for pasture, hay, or biomass production that provide cover and shelter or structure and composition for wilddlife.
Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 512 Pasture and Hay Planting
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in the Conservation Practice Standard (CPS) 512 Pasture and Hay Planting

Feature Measure: Acres
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$5,792.04
Scenario Cost/Unit: \$57.92
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	2	\$67.74
Materials						
Native Perennial Grasses, Legumes and/or Forbs, Low Density	2753	A mix of native perennial grasses, legumes, and/or forbs, grasses typically greater than 50% of the mix, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Species typically easy to purchase. Includes material and shipping.	Acres	\$190.81	30	\$5,724.30

Practice: E528A - Maintaining quantity and quality of forage for animal health and productivity
Scenario: \#1 - Maintaining quantity and quality of forage for animal health and productivity

Scenario Description:

Managing the harvest of vegetation with grazing and/or browsing animals for the purposes of maintaining desired pasture composition/plant vigor and improving/maintaining quantity and quality of forage for the animals' health and productivity following the recommendations of a qualifying professional, as detailed in the documentation and implementation requirements.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 528 - Prescribed Grazing
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 528 - Prescribed Grazing
Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 1,000.00
Scenario Total Cost: \$4,003.40
Scenario Cost/Unit: $\$ 4.00$
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	4	\$99.96
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	12	\$214.32
Foregone Income						
FI, Grazing AUMs	2079	Grazing is the Primary Land Use	Animal Unit Month	\$11.70	36	\$421.20
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	17	\$461.72
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	12	\$1,574.40
Materials						
Wire, Polywire	8	Wire, Polywire for electric fence - 1,300 ft. Includes materials and shipping only.	Each	\$46.53	1	\$46.53
Electric, Energizer, Solar	27	Electric, Energizer, Solar for electric fence. Includes materials and shipping only.	Each	\$356.01	1	\$356.01
Tank, Polyethylene, 300 gallon	291	Portable heavy duty rubber stock tank.	Each	\$341.23	1	\$341.23
Nutritional Balance Analyzer, fecal sample analysis only	1127	NIRS fecal analysis, animal performance report. Includes materials and shipping only.	Each	\$46.07	6	\$276.42

Practice: E528B - Grazing management that improves monarch butterfly habitat
Scenario: \#1-Grazing management that improves monarch butterfly habitat

Scenario Description:

Implement a grazing management plan that will increase the abundance and diversity of monarch nectar-producing perennial forbs, including milkweed, while maintaining ecosystem benefits for other wildlife and livestock.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 528 - Prescribed Grazing
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 528 - Prescribed Grazing
Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$978.96

Scenario Cost/Unit: \$9.79
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Foregone Income						
FI, Grazing AUMs	2079	Grazing is the Primary Land Use	Animal Unit Month	\$11.70	2.5	\$29.25
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	1	\$27.16
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	1	\$47.61
Materials						
Wire, Polywire	8	Wire, Polywire for electric fence - 1,300 ft. Includes materials and shipping only.	Each	\$46.53	1	\$46.53
Electric, Energizer, Solar	27	Electric, Energizer, Solar for electric fence. Includes materials and shipping only.	Each	\$356.01	2	\$712.02

Practice: E528C - Incorporating wildlife refuge areas in contingency plans for wildlife.
Scenario: \#1 - Incorporating wildlife refuge areas in contingency plans for wildlife.
Scenario Description:
A prescribed grazing plan that includes 12 month (or longer) rest (non-grazing period equal or greater than one year) of a grazing unit that consists of native grasses and/or legumes and/or perennial forbs for the purpose of meeting the needs for drought/disaster contingency plans that will also provide wildlife habitat or wildlife access to water for a period of time.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 528 - Prescribed Grazing
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 528 - Prescribed Grazing
Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$1,644.89
Scenario Cost/Unit: \$16.45
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	6	\$107.16
Foregone Income						
FI, Grazing AUMs	2079	Grazing is the Primary Land Use	Animal Unit Month	\$11.70	15	\$175.50
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22
Materials						
Wire, Polywire	8	Wire, Polywire for electric fence - 1,300 ft. Includes materials and shipping only.	Each	\$46.53	4	\$186.12
Electric, Energizer, Solar	27	Electric, Energizer, Solar for electric fence. Includes materials and shipping only.	Each	\$356.01	1	\$356.01
Tank, Polyethylene, 300 gallon	291	Portable heavy duty rubber stock tank.	Each	\$341.23	1	\$341.23

Practice: E528D - Grazing management for improving quantity and quality of food or cover and shelter for wildlife
Scenario: \#1 - Grazing management for improving quantity and quality of food or cover and shelter for wildlife

Scenario Description:

Grazing management employed will provide the plant structure, density and diversity needed for improving the quantity and quality of cover, shelter and food for the desired wildlife species of concern.
Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 528 - Prescribed Grazing
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 528 - Prescribed Grazing
Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 1,000.00
Scenario Total Cost: \$592.49
Scenario Cost/Unit: \$0.59
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	10	\$476.10

United States Department of Agriculture Natural Resources Conservation Service			Texas			
			Practice Scenarios - Fiscal Year 2024			
Practice: E528E - Improved grazing management for enhanced plant structure and composition for wildlife						
Scenario: \#1 - Improved grazing management for enhanced plant structure and composition for wildlife						
Scenario Description:						
Managing the harvest of vegetation with grazing and/or browsing animals for the purpose of improving the quantity and quality of the structure and composition of the plant community that is available for wildlife.						
Before Situation:						
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 528 - Prescribed Grazing						
After Situation:						
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 528 - Prescribed Grazing						
Feature Measure: Acre						
Scenario Unit: Acres						
Scenario Typical Size: 100.00						
Scenario Total Cost: \$223.11						
Scenario Cost/Unit: \$2.23						
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Foregone Income						
FI, Grazing AUMs	2079	Grazing is the Primary Land Use	Animal Unit Month	\$11.70	15	\$175.50
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	1	\$47.61

Practice: E528F - Stockpiling cool season forage to improve structure and composition or plant productivity and health
Scenario: \#1 - Stockpiling cool season forage to improve structure and composition or plant productivity and health

Scenario Description:

Grazing management employed to stop grazing events of selected paddock(s) to allow pasture forages to grow to maximum vegetative biomass accumulation before the end of the growing season.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 528 - Prescribed Grazing
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 528 - Prescribed Grazing

Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: $\$ 2,789.49$

Scenario Cost/Unit: \$27.89
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	6	\$107.16

Foregone Income

FI, Grazing AUMs	2079	Grazing is the Primary Land Use	Animal Unit Month	\$11.70	10	\$117.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22

Materials

Wire, Polywire	8	Wire, Polywire for electric fence - 1,300 ft. Includes materials and shipping only.	Each	\$46.53	1	\$46.53
Electric, Energizer, Solar	27	Electric, Energizer, Solar for electric fence. Includes materials and shipping only.	Each	\$356.01	1	\$356.01
Nitrogen (N), Urea	71	Price per pound of N supplied by Urea. Price is not per pound of total product applied, no conversion is needed.	Pound	\$0.65	2000	\$1,300.00
Tank, Polyethylene, 300 gallon	291	Portable heavy duty rubber stock tank.	Each	\$341.23	1	\$341.23
Test, Soil Test, Standard	299	Includes materials, shiping, labor, and equipment costs.	Each	\$14.23	3	\$42.69

Practice: E528G - Improved grazing management on pasture for plant productivity and health with monitoring activities
Scenario: \#1 - Improved grazing management on pasture for plant productivity and health with monitoring activities
Scenario Description:
Managing the harvest of vegetation with grazing and/or browsing animals as adjusted when following recommendations of a qualifying professional, as detailed in the enhancement criteria, generated through pasture condition scoring (PCS).

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 528 - Prescribed Grazing
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 528 - Prescribed Grazing
Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$890.03
Scenario Cost/Unit: \$8.90
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Foregone Income						
FI, Grazing AUMs	2079	Grazing is the Primary Land Use	Animal Unit Month	\$11.70	30	\$351.00
Labor						
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	4	\$524.80

Materials

Practice: E528H - Prescribed grazing to improve/maintain riparian and watershed function-elevated water temperature
Scenario: \#1 - Prescribed grazing to improve/maintain riparian and watershed function-elevated water temperature

Scenario Description:

Grazing management employed will provide cover and density needed in the watershed in order to reduce runoff, improve infiltration, provide for above ground water filtration and sustain applicable fish and wildlife species habitat.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 528 - Prescribed Grazing
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 528 - Prescribed Grazing
Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 1,000.00
Scenario Total Cost: \$1,731.38

Scenario Cost/Unit: \$1.73
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	4	\$99.96
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	12	\$214.32
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	17	\$461.72
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22

Materials

Wire, Polywire	8	Wire, Polywire for electric fence-1,300 ft. Includes materials and shipping only.	Each	\$46.53	1	\$46.53
Electric, Energizer, Solar	27	Electric, Energizer, Solar for electric fence. Includes materials and shipping only.	Each	\$356.01	1	\$356.01
Tank, Polyethylene, 300 gallon	291	Portable heavy duty rubber stock tank.	Each	\$341.23	1	\$341.23

Practice: E528I - Grazing management that protects sensitive areas -surface or ground water from nutrients
Scenario: \#1-Grazing management that protects sensitive areas -surface or ground water from nutrients

Scenario Description:

Grazing management employed will provide cover and density needed in the watershed in order to protect sensitive areas such as sinkholes, streams, highly erodible areas, or locations with plants that cannot tolerate defoliation.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 528 - Prescribed Grazing
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 528 - Prescribed Grazing

Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 1,000.00
Scenario Total Cost: \$1,946.05

Scenario Cost/Unit: \$1.95
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	4	\$99.96
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	12	\$214.32
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	17	\$461.72
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22

Materials

Wire, Polytape	7	Wire, Polytape for electric fence. Rolls of 655' to 825'. Includes materials and shipping only.	Each	\$65.30	4	\$261.20
Electric, Energizer, Solar	27	Electric, Energizer, Solar for electric fence. Includes materials and shipping only.	Each	\$356.01	1	\$356.01
Tank, Polyethylene, 300 gallon	291	Portable heavy duty rubber stock tank.	Each	\$341.23	1	\$341.23

Practice: E528J - Prescribed grazing on pastureland that improves riparian and watershed function
Scenario: \#1 - Prescribed grazing on pastureland that improves riparian and watershed function

Scenario Description:

Grazing management employed will provide cover and density needed in the watershed in order to reduce runoff, improve infiltration, provide for above ground water filtration and sustain applicable fish and wildlife species habitat.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 528 - Prescribed Grazing
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 528 - Prescribed Grazing

Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$1,586.39

Scenario Cost/Unit: \$15.86
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	6	\$107.16

Foregone Income

FI, Grazing AUMs	2079	Grazing is the Primary Land Use	Animal Unit Month	\$11.70	10	\$117.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22
Materials						
Wire, Polywire	8	Wire, Polywire for electric fence - 1,300 ft. Includes materials and shipping only.	Each	\$46.53	4	\$186.12
Electric, Energizer, Solar	27	Electric, Energizer, Solar for electric fence. Includes materials and shipping only.	Each	\$356.01	1	\$356.01
Tank, Polyethylene, 300 gallon	291	Portable heavy duty rubber stock tank.	Each	\$341.23	1	\$341.23

Practice: E528L - Prescribed grazing that improves or maintains riparian and watershed function-erosion
Scenario: \#1 - Prescribed grazing that improves or maintains riparian and watershed function-erosion

Scenario Description:

Grazing management employed will provide cover and density needed in the watershed in order to reduce runoff, improve infiltration, provide for above ground water filtration and sustain applicable fish and wildlife species habitat.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 528 - Prescribed Grazing
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 528 - Prescribed Grazing
Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$1,002.75

Scenario Cost/Unit: \$10.03
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Foregone Income						
FI, Grazing AUMs	2079	Grazing is the Primary Land Use	Animal Unit Month	\$11.70	10	\$117.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	10	\$271.60
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22
Materials						
Wire, Polywire	8	Wire, Polywire for electric fence - 1,300 ft. Includes materials and shipping only.	Each	\$46.53	1	\$46.53
Electric, Energizer, Solar	27	Electric, Energizer, Solar for electric fence. Includes materials and shipping only.	Each	\$356.01	1	\$356.01

Practice: E528M - Grazing management that protects sensitive areas from gully erosion
Scenario: \#1-Grazing management that protects sensitive areas from gully erosion

Scenario Description:

Grazing management employed will provide vegetative cover and density needed in the watershed in order to protect sensitive areas such as sinkholes, streams, highly erodible areas, or locations that cannot tolerate plant defoliation.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 528 - Prescribed Grazing
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 528 - Prescribed Grazing

Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 1,000.00
Scenario Total Cost: $\$ 1,750.15$

Scenario Cost/Unit: \$1.75
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	4	\$99.96
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	12	\$214.32
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	17	\$461.72
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22
Materials						
Wire, Polytape	7	Wire, Polytape for electric fence. Rolls of 655' to 825'. Includes materials and shipping only.	Each	\$65.30	1	\$65.30
Electric, Energizer, Solar	27	Electric, Energizer, Solar for electric fence. Includes materials and shipping only.	Each	\$356.01	1	\$356.01
Tank, Polyethylene, 300 gallon	291	Portable heavy duty rubber stock tank.	Each	\$341.23	1	\$341.23

Practice: E528N - Improved grazing management through monitoring activities
Scenario: \#1 - Improved grazing management through monitoring activities
Scenario Description:
Three predominant key grazing areas are evaluated utilizing the Rangeland Health Assessment (where reference material is developed) or Describing Indicators of Rangeland Health protocols (where reference material is not developed) to determine how well the ecological processes of the site(s) are functioning. Utilizing knowledge learned from this as a part of the ranch resource assessment, a qualifying professional, as detailed in the enhancement criteria, will provide recommendations or follow-up evaluations toward mitigating some of the degradation risks that are initially identified.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 528 - Prescribed Grazing
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 528 - Prescribed Grazing

Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 1,000.00

Scenario Total Cost:	\$2,295.71					
Scenario Cost/Unit:		2.30				
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Equipment Installation						
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	8	\$142.88
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	10	\$271.60
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	12	\$1,574.40

Practice: E5280-Clipping mature forages to set back vegetative growth for improved forage quality
Scenario: \#13-Clipping mature forages to set back vegetative growth for improved forage quality

Scenario Description:

Timely clipping of mature forages through mowing, swathing or some other mechanical cutting will occur to increase forage palatability by setting plants back to a vegetative state for improved grazing management and forage quality.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard 528 - Prescribed Grazing
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard 528 - Prescribed Grazing
Feature Measure: Acres
Scenario Unit: Acres
Scenario Typical Size: 80.00
Scenario Total Cost: $\$ 3,617.86$

Scenario Cost/Unit: \$45.22
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Mechanical cutter, chopper	943	Forestry mulcher, flail shredder, hydro axe, brush cutter, etc. Equipment and power unit costs. Labor not included.	Hours	\$115.16	20	\$2,303.20
Rangeland/grassland field monitoring kit	967	Miscellaneous tools needed to complete rangeland/grassland monitoring. Materials may include camera, clippers, plot frame, scale, tape measure, etc. Includes materials and shipping only.	Each	\$49.50	1	\$49.50
Labor						
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	24	\$666.24

Mobilization

Mobilization, small equipment
1138 Equipment < 70 HP but can't be transported by a pick-up truck or with
Each
\$299.46
2

Practice: E528P - Implementing Bale or Swath Grazing to increase organic matter and reduce nutrients in surface water
Scenario: \#13-Implementing bale or swath grazing to increase organic matter or reduce nutrients in surface water

Scenario Description:

Bale or swath grazing to improve organic matter, aggregate stability or soil organism habitat or to reduce nutrient risks to surface water by leaving field harvested forages on site or supplementing with off-field forages. Grazing forages in this manner, will help reduce nutrient concentrations from confined animal lots while incorporating organic matter, feeding and diversifying the microbiome, building better soil aggregation and increasing soil health.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard 528 - Prescribed Grazing
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard 528 - Prescribed Grazing
Feature Measure: Acres
Scenario Unit: Acres
Scenario Typical Size: 20.00
Scenario Total Cost: \$3,440.23
Scenario Cost/Unit: \$172.01
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	20	\$499.80
Tractor, agricultural, 120 HP	962	Agricultural tractor with horsepower range of 90 to 140 . Equipment and power unit costs. Labor not included.	Hours	\$74.02	20	\$1,480.40
Trailer, flatbed, small	1505	Small flatbed trailer (typically less than 30^{\prime} in length) pulled by a pickup to transport materials and equipment. Truck not included.	Hours	\$10.21	20	\$204.20
Labor						
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	40	\$1,110.40
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	1	\$131.20
Materials						
Test, Soil Test, Standard	299	Includes materials, shiping, labor, and equipment costs.	Each	\$14.23	1	\$14.23

Practice: E528Q - Use of body condition scoring for livestock on a monthly basis to keep track of herd health
Scenario: \#13-Use of body condition scoring for livestock on a monthly basis to keep track of herd health

Scenario Description:

Body condition scoring (BCS) serves as a useful management tool to monitor livestock performance with respect to current and recent feeding or grazing programs. Body condition scoring is a numeric scoring system, producers can use to consistently evaluate animals??? estimated body energy reserves through degree of fatness. This information can be used to adjust nutritional strategies to reach optimal BCS. Since body condition is closely associated with reproductive performance as well as feed efficiency, monitoring body condition can help producers reach production goals and increase the operation???s bottom line. Knowledge and understanding of BCS will assist producers to adjust a supplemental feeding program to maintain animal health and nutrition on a-monthly-basis.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard 528 - Prescribed Grazing
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard 528 - Prescribed Grazing
Feature Measure: Acres
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$183.75
Scenario Cost/Unit: \$1.84
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Equipment Installation						
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	1	\$17.86
Rangeland/grassland field monitoring kit	967	Miscellaneous tools needed to complete rangeland/grassland monitoring. Materials may include camera, clippers, plot frame, scale, tape measure, etc. Includes materials and shipping only.	Each	\$49.50	1	\$49.50

Practice: E528R - Management Intensive Rotational Grazing
Scenario: \#13 - Management Intensive Rotational Grazing

Scenario Description:

Management intensive, multi-paddock grazing system where livestock are regularly and systematically moved to fresh forage to optimize quantity and quality of forage growth, improve manure distribution, improve wildlife cover, and improve soil health.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard 528 - Prescribed Grazing
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard 528 - Prescribed Grazing

Feature Measure: Acres
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$4,518.94
Scenario Cost/Unit: \$45.19
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	10	\$178.60
Rangeland/grassland field monitoring kit	967	Miscellaneous tools needed to complete rangeland/grassland monitoring. Materials may include camera, clippers, plot frame, scale,	Each	\$49.50	1	\$49.50

Labor

General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	15	\$407.40
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	6	\$787.20
Materials						
Wire, Polywire	8	Wire, Polywire for electric fence - 1,300 ft. Includes materials and shipping only.	Each	\$46.53	2	\$93.06
Electric, Ground Rods	20	Electric, Ground Rod for electric fence. Includes materials and shipping only.	Each	\$17.37	3	\$52.11
Electric, Ground Rod Clamps	21	Electric, Ground Rod Clamps for electric fence. Includes materials and shipping only.	Each	\$2.48	3	\$7.44
Electric, Tester	26	Electric, Tester for electric fence. Includes materials and shipping only.	Each	\$45.17	1	\$45.17
Electric, Energizer, Solar	27	Electric, Energizer, Solar for electric fence. Includes materials and shipping only.	Each	\$356.01	1	\$356.01
Tank, Polyethylene, 300 gallon	291	Portable heavy duty rubber stock tank.	Each	\$341.23	2	\$682.46
Pipe, HDPE, smooth wall, weight	1379	High Density Polyethylene (HDPE) compound manufactured into	Pound	\$4.32	370	\$1,598.40

Practice: E528S - Soil Health Improvements on Pasture

Scenario: \#13-Soil health improvements on pasture

Scenario Description:

Use of soil health assessment to evaluate impact of current grazing system in addressing soil organic matter depletion, soil aggregate instability and soil organism habitat loss or degradation (primary assessment made in Year 1). Modifications to the grazing system will be made after the laboratory analysis. Modifications can be improvements to the grazing plan or changes to the forage composition. During year 4, a follow-up assessment will be completed to allow time for the modifications to show improvements to the soil health resource concerns. The follow-up sample will be taken in the same soil type, closely matched to time of year and with similar amounts of regrowth since previous grazing.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 528 - Prescribed Grazing

After Situation:						
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (PCS) 528 - Prescribed Grazing						
Feature Measure: Acres						
Scenario Unit: Acres						
Scenario Typical Size: 100.00						
Scenario Total Cost:	\$957.94					
Scenario Cost/Unit:		9.58				
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Equipment Installation						
Rangeland/grassland field monitoring kit	967	Miscellaneous tools needed to complete rangeland/grassland monitoring. Materials may include camera, clippers, plot frame, scale, tape measure, etc. Includes materials and shipping only.	Each	\$49.50	1	\$49.50
Foregone Income						
FI, Grazing AUMs	2079	Grazing is the Primary Land Use	Animal Unit Month	\$11.70	12	\$140.40
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	4	\$108.64
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	6	\$285.66
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	1	\$131.20
Materials						
Test, Soil Health, Basic Package	2734	Basic soil health laboratory assessment for soil organic carbon, aggregation, bioavailable nitrogen, respiration, and active carbon according to technical note 450-03. Includes shipping and handling.	Number	\$126.15	1	\$126.15

United States Department of Agriculture Natural Resources Conservation Service			Texas			
			Practice Scenarios - Fiscal Year 2024			
Practice: E528T-Grazing to Reduce Wildfire Risk on Forests						
Scenario: \#13-Improved grazing management for reduction of wildfire risks on Western forests						
Scenario Description:						
Managing the harvest of vegetation with grazing and/or browsing animals for the purpose of balancing forage with maintaining/improving ecological site condition and while reducing the risk of wildfire hazard on forested ecological sites.						
Before Situation:						
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 666 - Forest Stand Improvement						
After Situation:						
The adoption of this enhancement will provide resource protection above the minimum level with the addition of CPS 528 - Prescribed Grazing						
Feature Measure: acres						
Scenario Unit: Acres						
Scenario Typical Size: 100.00						
Scenario Total Cost:	\$115.35					
Scenario Cost/Unit:		1.15				
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	2	\$67.74
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	1	\$47.61

Practice: E528U - Contingency Planning for Resiliency						
Scenario: \#13-Contingency Planning for Resiliency						
Scenario Description:						
Manage grazing throughout the year to mitigate impacts from drought and improve resiliency by incorporating recovery periods, utilizing non-traditional grazing resources, and creating a drought plan.						
Before Situation:						
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 528 - Prescribed Grazing.						
After Situation:						
The adoption of this enhancement will provide resource protection above the minimum level as described in CPS - 528.						
Feature Measure: acres						
Scenario Unit: Acres						
Scenario Typical Size: 1,000.00						
Scenario Total Cost:	\$8,010.78					
Scenario Cost/Unit:		\$8.01				
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	2	\$232.78
Equipment Installation						
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	20	\$357.20
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	80	\$2,172.80
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	40	\$5,248.00

Practice: E533A - Advanced Pumping Plant Automation
Scenario: \#13-Advanced Pumping Plant Automation

Scenario Description:

This enhancement consists of installing a control device to a pump station that allows the user to remotely monitor and operate the pump station based on field measured data. Pumping stations may have either a combustible or electric power unit that are compatible with the control device or sensor. These devices/sensors collect fieldmeasured data and provide this data in real time to the landowner to make irrigation decisions and adjustments to the pump operation.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard 533 - Pumping Plant.
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard 533 - Pumping Plant.
Feature Measure: Number
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$6,782.56
Scenario Cost/Unit: \$6,782.56
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	4	\$99.96
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	4	\$135.48
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	4	\$108.64
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	4	\$524.80
Materials						
Solar Panels, fixed cost portion	1031	Fixed cost portion of the Solar Panels. This portion is a base cost for all Solar Panels and is not dependent on Kilowatt. The total cost of any Solar Panels will include this fixed cost plus a variable cost portion. The completed Solar Panels will include all materials (electrical, controllers, service drops and etc.).	Each	\$859.26	1	\$859.26
Solar Panels, variable cost portion	1135	Variable cost portion of the Solar Panels. This portion IS dependent on the total Kilowatt for the Solar Panels. The total cost of Solar Panels will include this variable cost plus the fixed cost portion. The completed Solar Panels will include all materials (electrical, controllers, service drop, etc.). Includes materials only.	Kilowatt	\$2,563.62	0.1	\$256.36
Switches and Controls, temp sensors	1192	Temperature and soil moisture sensors installed as part of an electronic monitoring (with or without wireless telecommunications) commonly used to control pumps and irrigation systems	Each	\$646.73	1	\$646.73
Switches and Controls, programmable controller	1193	Programmable logic controller (with or without wireless telecommunications) commonly used to control pumps and irrigation systems	Each	\$623.08	1	\$623.08
Switches and Controls, Wi-Fi system and software	1194	Software with built-in cellular or Wi-Fi communication commonly used to control pumps and irrigation systems	Each	\$786.92	1	\$786.92
Switches and Controls, radio system	1195	Output radio, field transmitter, and receiver commonly used to control pumps and irrigation systems	Each	\$789.40	1	\$789.40
Data Logger with Telemetry System	1454	Data Logger W/Graphic Output for water management and telemetry data communication device with power supply in a weather proof enclosure. Equipment only.	Each	\$1,663.47	1	\$1,663.47
Safety Camera on Automated Pump	2474	Waterproof outdoor wireless IP Network security camera with housing. Includes materials only.	Each	\$218.03	1	\$218.03
Engine/Fuel Tank Sensor	2487	Transducer and sensors to monitor the oil pressure, oil and water	Each	\$70.43	1	\$70.43

Practice: E533B - Complete pumping plant evaluation for energy savings
Scenario: \#1-Complete pumping plant evaluation for energy savings
Scenario Description:
The performance of pump tests and evaluations of all pumping plants to determine the potential to rehabilitate/replace/reconfigure pump performance to reduce energy use. Evaluate to determine if a Variable Frequency Drive motor controller(s) will reduce energy use and is feasible. Develop and provide a written report with list of adjustments and calculations of the reduction of energy use based on before and after conditions.

Before Situation:

Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 533 - Pumping Plant

After Situation:

The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 533 - Pumping Plant
Feature Measure: Each pump evaluated
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: \$4,648.76
Scenario Cost/Unit: \$4,648.76
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	8	\$270.96
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	32	\$4,198.40
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40

Practice: E533C - Install VFDs on pumping plants
Scenario: \#15 - Install variable frequency drive on pump
Scenario Description:
Install Variable Frequency Drive(s) (VFD) on Pumping Plant with the correct sensors, on all pumps as indicated in the evaluation.
Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 533 ??? Pumping Plant.

After Situation:

The adoption of this enhancement will provide resource protection above the minimum level as described in the Conservation Practice Standard, (CPS) 533 ??? Pumping Plant.

Feature Measure: Each pump modified
Scenario Unit: Number
Scenario Typical Size: 1.00
Scenario Total Cost: $\quad \$ 7,071.30$
Scenario Cost/Unit: \$7,071.30

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	4	\$99.96
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	12	\$406.44
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	2	\$262.40
Materials						
Variable Speed Drive, 50 HP	1288	Variable speed drive for 50 Horsepower electric motor. Does not include motor. Materials only.	Horsepower	\$126.05	50	\$6,302.50

Practice: E533D - Switch fuel source for pumps		
Scenario: \#15-Switch fuel source for pumps		
Scenario Description:		
Switch the fuel source for pump motor(s) to an on-farm renewable source (wind, solar, geothermal, etc.)		
Before Situation:		
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 533 ??? Pumping Plant.		
After Situation:		
The adoption of this enhancement will provide resource protection above the minimum level as described in the Conservation Practice Standard, (CPS) 533 ??? Pumping Plant.		
Feature Measure: Each pump modified		
Scenario Unit: Number		
Scenario Typical Size: 1.00		
Scenario Total Cost:	\$18,344.68	
Scenario Cost/Unit:	\$18,344.68	
Cost Details:		
Component Name	ID	
Equipment Installation		
Truck, Pickup	939	
Labor		
Skilled Labor	230	
Specialist Labor	235	
Materials		
Pump, <= 5 HP, pump and motor, fixed cost portion	1009	
Pump, <= 5 HP, pump and motor, variable cost portion	1010	
Solar Panels, fixed cost portion	1031	
Solar Panels, variable cost portion	1135	

Practice: E550A - Range planting for increasing/maintaining organic matter
Scenario: \#1 - Range planting for increasing/maintaining organic matter
Scenario Description:
Establishment of adapted perennial or self-sustaining vegetation such as grasses, forbs, legumes, shrubs and trees for the purpose of increasing or maintaining organic matter levels in the soil.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 550 - Range Planting
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 550 - Range Planting
Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: $\$ 4,359.57$

Scenario Cost/Unit: \$43.60
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Foregone Income						
FI, Grazing AUMs	2079	Grazing is the Primary Land Use	Animal Unit Month	\$11.70	15	\$175.50
Labor						
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22

Materials

Native Perennial Grasses, Legumes and/or Forbs, Medium Density

2754 A mix of native perennial grasses, legumes, and/or forbs, Grasses typically greater than 50% of the mix, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at medium to higher density (41-60 pure live seeds/sq ft). Species typically easy to purchase. Includes material and shipping.

Practice: E550B - Range planting for improving forage, browse, or cover for wildlife
Scenario: \#1 - Range planting for improving forage, browse, or cover for wildlife

Scenario Description:

Establishment of adapted perennial or self-sustaining vegetation such as grasses, forbs, legumes, shrubs and trees for the purpose of improving forage, browse, or cover for wildlife on areas that have been degraded beyond recovery via ecological principles, or old crop fields and pastures devoid of desirable, native rangeland species that fit within an ecological site description steady state.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 550 - Range Planting

After Situation:

The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 550 - Range Planting
Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$2,170.50
Scenario Cost/Unit: \$21.71
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	2	\$262.40
Materials						
Native Perennial Grasses, Legumes and/or Forbs, Low Density	2753	A mix of native perennial grasses, legumes, and/or forbs, grasses typically greater than 50% of the mix, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at lower to medium density (40 pure live seeds/sq ft and less). Species typically easy to purchase. Includes material and shipping.	Acres	\$190.81	10	\$1,908.10

Practice: E570A - Enhanced rain garden for wildlife						
Scenario: \#13-Enhanced rain garden for wildlife						
Scenario Description:						
Seed or plug nectar and pollen producing plants into rain gardens to provide wildlife habitat.						
Before Situation:						
Resources are protected at the minimum level of the Conservation Practice Standard 570-Stormwater Runoff Control						
After Situation:						
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard 570 - Stormwater Runoff Control						
Feature Measure: Square Feet						
Scenario Unit: Square Feet						
Scenario Typical Size: 1,080.00						
Scenario Total Cost:	\$231.90					
Scenario Cost/Unit:		\$0.21				
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	1	\$24.99
Site Preparation, Mechanical	944	Aerator, rolling drum chopper, etc. Includes equipment, power unit and labor costs.	Acres	\$88.05	0.1	\$8.81
Seeding Operation, Broadcast, Ground	959	Broadcast seed via ground operation. May require post tillage operation to incorporate seed. Includes equipment, power unit and labor costs.	Acres	\$13.81	0.1	\$1.38
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	4	\$108.64
Materials						
Straw	1237	Small grain straw (non organic and certified organic). Includes materials only.	Ton	\$137.00	0.3	\$41.10
Native Perennial Grasses, Legumes and/or Forb Mix for Targeted Wildlife/Pollinator Habitat or Ecological Restoration, moderate commercial availability	2619	Diverse mix of native perennial grasses, legumes and forbs, less than 50% grasses, may include biennials and a small percentage of annual species for establishment purposes and/or if allowed by the CPS. This is a mix composed of species required to meet specific wildlife/pollinator habitat or ecological requirements. Seed is moderately easy to purchase commercially. Includes materials and shipping.	Acres	\$469.81	0.1	\$46.98

Practice: E578A - Stream crossing elimination
Scenario: \#1-Stream crossing elimination
Scenario Description:
Existing stream crossings on an operation are consolidated into fewer crossings in order to reduce impacts to stream habitat.
Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 578 - Stream Crossing
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 578 - Stream Crossing
Feature Measure: Typical feature is 0.09 acres
Scenario Unit: Each

Scenario Typical Size: 1.00
Scenario Total Cost: \$10,184.91
Scenario Cost/Unit: \$10,184.91
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Dozer, 80 HP	929	Track mounted Dozer with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$77.14	16	\$1,234.24
Hydraulic Excavator, 1 CY	931	Track mounted hydraulic excavator with bucket capacity range of 0.8 to 1.5 CY. Equipment and power unit costs. Labor not included.	Hours	\$128.59	8	\$1,028.72
Seeding Operation, Broadcast, Ground	959	Broadcast seed via ground operation. May require post tillage operation to incorporate seed. Includes equipment, power unit and labor costs.	Acres	\$13.81	0.1	\$1.38
Truck, dump, 12 CY	1215	Dump truck for moving bulk material. Typically capacity is 16 ton or 12 cubic yards. Includes equipment only.	Hours	\$103.14	16	\$1,650.24
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	32	\$869.12
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	32	\$888.32
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	16	\$761.76

Materials

Erosion Control Blanket, biodegradable	1213	Biodegradable erosion control blanket, typically a composite of natural fibers with reinforcing polymer netting. Materials and shipping only.	Square Yard	\$1.67	300	\$501.00
Tree \& Shrub, Woody, Cuttings, Medium	1308	Woody cuttings, live stakes or whips typically $1 / 4$ to 1 inch diameter and 24 to 48 inches long. Includes materials and shipping only.	Each	\$2.01	300	\$603.00
Aggregate, river rock	1834	Well graded, rounded mineral substrates derived from local riverine settings. Includes materials and local delivery within 20 miles of quarry or pit. Placement costs are not included.	Ton	\$37.70	42	\$1,583.40
Annual Grasses	2730	Annual grasses, one or more species, mostly introduced but may be native. Used for temporary cover or cover crops. Includes material and shipping.	Acres	\$40.79	0.1	\$4.08
Introduced Perennial Grasses, Legumes and/or Forbs, Medium Density	2748	Introduced perennial grasses, legumes, and/or forbs, may include a small percentage of annual species for establishment purposes and/or if allowed by the CPS. Planted at medium to higher density (41-60 pure live seeds/sq ft). Includes material and shipping.	Acres	\$68.23	0.1	\$6.82
Mobilization						
Mobilization, small equipment	1138	Equipment $<70 \mathrm{HP}$ but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: E580A - Stream corridor bank stability improvement
Scenario: \#1 - Stream corridor bank stability improvement
Scenario Description:
Stream corridor bank vegetation components are established to provide additional streambank stability.
Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 580 - Streambank and Shoreline Protection

After Situation:

The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 580 - Streambank and Shoreline Protection

Feature Measure: Area planted

Scenario Unit: Acres

Scenario Typical Size: 2.00
Scenario Total Cost: \$4,742.52
Scenario Cost/Unit: \$2,371.26

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	8	\$199.92
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	8	\$142.88
Trailer, enclosed, small	1503	Small enclosed trailer (typically less than 30' in length) pulled by a pickup to transport materials and equipment. Truck not included.	Hours	\$14.56	8	\$116.48
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	8	\$100.08

Labor

General Labor

 herder,234 Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.

Materials

Shrub, Potted, Small	1524	Potted shrub seedling, 1 quart to 1 gallon. Includes materials and shipping only.	Each	\$7.79	65	\$506.35
Tree, Hardwood, Potted, Small	1529	Potted hardwood seedling, 1 quart to 1 gallon. Includes materials and shipping only.	Each	\$7.66	65	\$497.90
Tree, Conifer, Potted, Small	1534	Potted conifer seedling, 1 quart to 1 gallon. Includes materials and shipping only.	Each	\$7.16	65	\$465.40
Tree shelter, mesh tree tube, 48 in.	1556	48 inch tall vexar or other open weave tubular tree shelter to protect from animal damage. Materials only.	Each	\$1.54	65	\$100.10
Tree shelter, solid tube type, 4 in. x 24 in .	1563	4 inch $\times 24$ inch tree tube for protection from animal damage. Materials and shipping only.	Each	\$2.52	65	\$163.80
Tree shelter, solid tube type, 4 in. $x 48$ in.	1566	4 inch $x 48$ inch tree tube for protection from animal damage. Materials and shipping only.	Each	\$5.29	65	\$343.85
Stakes, wood, 1 in. x 1 in. x 48 in.	1578	1 in. x 1 in. x 48 in. wood stakes to fasten items in place. Includes materials only.	Each	\$2.16	195	\$421.20

Practice: E580B - Stream corridor bank vegetation improvement

Scenario: \#1-Stream corridor bank vegetation improvement

Scenario Description:

Stream corridor bank vegetation components are established to improve ecosystem functioning and stability.
Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 580 - Streambank and Shoreline Protection

After Situation:

The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 580 - Streambank and Shoreline Protection

Feature Measure: Area planted
Scenario Unit: Acres
Scenario Typical Size: 2.00
Scenario Total Cost: $\$ 4,742.52$

Scenario Cost/Unit: \$2,371.26
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	8	\$199.92
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	8	\$142.88
Trailer, enclosed, small	1503	Small enclosed trailer (typically less than 30' in length) pulled by a pickup to transport materials and equipment. Truck not included.	Hours	\$14.56	8	\$116.48
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	8	\$100.08

Labor

General Labor

 herder,234 Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.

Materials

Shrub, Potted, Small	1524	Potted shrub seedling, 1 quart to 1 gallon. Includes materials and shipping only.	Each	\$7.79	65	\$506.35
Tree, Hardwood, Potted, Small	1529	Potted hardwood seedling, 1 quart to 1 gallon. Includes materials and shipping only.	Each	\$7.66	65	\$497.90
Tree, Conifer, Potted, Small	1534	Potted conifer seedling, 1 quart to 1 gallon. Includes materials and shipping only.	Each	\$7.16	65	\$465.40
Tree shelter, mesh tree tube, 48 in.	1556	48 inch tall vexar or other open weave tubular tree shelter to protect from animal damage. Materials only.	Each	\$1.54	65	\$100.10
Tree shelter, solid tube type, 4 in. x 24 in .	1563	4 inch $\times 24$ inch tree tube for protection from animal damage. Materials and shipping only.	Each	\$2.52	65	\$163.80
Tree shelter, solid tube type, 4 in. $x 48$ in.	1566	4 inch $x 48$ inch tree tube for protection from animal damage. Materials and shipping only.	Each	\$5.29	65	\$343.85
Stakes, wood, 1 in. x 1 in. x 48 in.	1578	1 in. x 1 in. x 48 in. wood stakes to fasten items in place. Includes materials only.	Each	\$2.16	195	\$421.20

Practice: E590A - Improving nutrient uptake efficiency and reducing risk of nutrient losses
Scenario: \#1-Improving nutrient uptake efficiency and reducing risk of nutrient losses

Scenario Description:

Nutrient management encompasses managing the amount, source, placement, and timing of the application of plant nutrients and soil amendments. Nutrients are currently being applied on the farm based on the 4 R nutrient stewardship principles. Enhanced nutrient use efficiency strategies or technologies are utilized to improve nutrient use efficiency and reduce risk of nutrient losses to surface and groundwater and reduce risks to air quality by reducing emissions of greenhouse gases (GHGs).

Before Situation:

Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 590 - Nutrient Management

After Situation:

The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 590 - Nutrient Management

Feature Measure: Acre

Scenario Unit: Acres

Scenario Typical Size: 100.00
Scenario Total Cost: $\$ 1,435.55$

Scenario Cost/Unit: \$14.36
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	2	\$262.40
Materials						
Nitrogen-Urease inhibitor	260	Nitrogen-Urease inhibitor	Acres	\$11.13	100	\$1,113.00
Test, Soil Nitrogen Testing	311	Pre-Side Dress/Deep Soil Testing. Includes materials and shipping only.	Each	\$12.03	5	\$60.15

Practice: E590B - Reduce risks of nutrient loss to surface water by utilizing precision agriculture technologies
Scenario: \#1-Reduce risks of nutrient loss to surface water by utilizing precision agriculture technologies

Scenario Description:

Precision application technology and techniques are utilized to plan and apply nutrients to improve nutrient use efficiency and reduce risk of nutrient losses.
Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 590 - Nutrient Management

After Situation:

The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 590 - Nutrient Management

Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: $\$ 1,663.45$

Scenario Cost/Unit: \$16.63
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Fertilizer, precision application	952	Fertilizer application performed by light bar/GPS navigation system. Includes equipment, power unit and labor costs.	Acres	\$9.03	100	\$903.00
Labor						
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	2	\$262.40

Materials

Practice: E590C - Improving nutrient uptake efficiency and reducing risk of nutrient losses on pasture
Scenario: \#13-Improving nutrient uptake efficiency and reducing risk of nutrient losses on pasture
Scenario Description:
Nutrient management encompasses managing the amount, source, placement, and timing of the application of plant nutrients and soil amendments. Nutrients are currently being applied on the farm based on the 4R nutrient stewardship principles. Enhanced nutrient use efficiency strategies or technologies are utilized to improve nutrient use efficiency and reduce risk of nutrient losses on pasture.

Before Situation:

Resources are protected at the minimum level of the Conservation Practice Standard 590 - Nutrient Management

After Situation:

The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard 590 - Nutrient Management
Feature Measure: Acres
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$1,997.00
Scenario Cost/Unit: \$19.97
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Fertilizer, precision application	952	Fertilizer application performed by light bar/GPS navigation system. Includes equipment, power unit and labor costs.	Acres	\$9.03	100	\$903.00
Labor						
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	4	\$524.80

Materials

| Test, Soil Test, Standard 299 | Includes materials, shiping, labor, and equipment costs. | Each 20.23 |
| :--- | :--- | :--- | :--- |

Practice: E590D - Reduce nutrient loss by increasing setback awareness via precision technology for water quality
Scenario: \#13-Reduce risks of nutrient losses to surface and groundwater by increasing setback awareness via precision technology

Scenario Description:

Precision technology and techniques are used to increase Soil/Groundwater Setbacks \& Associated Application Rate Restrictions (SGS\&AARR) implementation during nutrient application by providing precise, real-time location information (geo-located) in the field to the equipment operator. While operating nutrient application equipment, the operator???s location is continually updated and displayed on an add-on GPS-enabled device visible to the operator at all times to reduce the risk of nutrient application in setback and/or sensitive areas. Resource concerns addressed are Water Quality, Field sediment, nutrient and pathogen loss: Nutrients transported to groundwater and surface water and Pathogens and chemicals from manure, biosolids or compost applications transported to groundwater and surface water.

Before Situation:

Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 590 - Nutrient Management
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 590 - Nutrient Management.

Feature Measure: Acres with setback for nutrient app

Scenario Unit: Acres
Scenario Typical Size: 300.00
Scenario Total Cost: \$4,193.46
Scenario Cost/Unit: \$13.98

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	2	\$232.78
Equipment Installation						
Fertilizer, precision application	952	Fertilizer application performed by light bar/GPS navigation system. Includes equipment, power unit and labor costs.	Acres	\$9.03	300	\$2,709.00
Aerial Imagery	966	Aerial imagery. RBG (color), infrared or NDVI single image.	Acres	\$1.77	260	\$460.20
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	4	\$135.48
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	5	\$656.00

USDA United States Department of Agriculture Natural Resources Conservation Service			Texas			
			Practice Scenarios - Fiscal Year 2024			
Practice: E595A - Reduce risk of pesticides in surface water by utilizing precision pesticide application techniques						
Scenario: \#1-Reduce risk of pesticides in surface water by utilizing precision pesticide application techniques						
Scenario Description:						
Utilize precision application techniques to reduce risk of pesticides in surface water by reducing total amount of chemical applied and reducing the potential for delivery of chemicals into water bodies.						
Before Situation:						
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 595 - Integrated Pest Management						
After Situation:						
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 595 - Integrated Pest Management						
Feature Measure: Acre						
Scenario Unit: Acres						
Scenario Typical Size: 100.00						
Scenario Total Cost:	\$1,254.60					
Scenario Cost/Unit:	\$12.55					
Cost Details:						
Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chemical, precision application	949	Chemical application performed by light bar/GPS navigation system. Includes equipment, power unit and labor costs.	Acres	\$8.61	100	\$861.00
Labor						
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	3	\$393.60

Practice: E595B - Reduce risk of pesticides in water and air by utilizing IPM PAMS techniques
Scenario: \#1 - Reduce risk of pesticides in water and air by utilizing IPM PAMS techniques
Scenario Description:
Utilize integrated pest management (IPM) prevent, avoidance, monitoring, and suppression (PAMS) techniques to reduce risk of pesticides in water and air. Reduce the potential for delivery of chemicals into water or ozone precursor emissions.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 595 - Integrated Pest Management
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 595 - Integrated Pest Management

Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$732.30

Scenario Cost/Unit: \$7.32

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	10	\$338.70
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	3	\$393.60

Practice: E595D - Increase the size requirement of refuges planted to slow pest resistance to Bt crops
Scenario: \#1 - Increase the size requirement of refuges planted to slow pest resistance to Bt crops

Scenario Description:

Bacillus thuringiensis (Bt) plant incorporated protectants are plants that have been genetically altered to produce proteins that are harmful to certain insect pests. Widespread implementation of Bt crops has decreased insecticide use and increased crop yields, but it must be used as part of an integrated pest management (IPM) approach to protect the crop from pest species that are not susceptible to the Bt toxin and to manage pest resistance. Crop rotation, scouting and resistance management strategies, such as planting and creating refuges of non-Bt crops, are essential when farming Bt crops. Insects have developed resistance to Bt proteins. To mitigate the development of further resistance, growers are required to plant refuges of non-transgenic crops. These refuges produce numbers of susceptible insects that will help sustain populations of non-resistant insects. The size of Refuge requirement depends on the environment, pest and strain of the crop. Size of refuge is determined by resistance risk. Most $B t$ corn requires that 20% of the total $B t$ crop planted be non-Bt. Cotton can require 50% of the crop be planted to non-Bt. A recent study published in the Journal of Integrated Pest Management revealed, compliance has been a challenge. Nearly 40% of growers surveyed did not plant the required refuge (Reisig 2017). They credit non-compliance, in part, to lack of understanding by small-scale farmers about the need for refuges.

Before Situation:
Minimal or no refuges were planted as required for Bt crops.
After Situation:
Optimum sized and located refuges are planted for Bt crops.
Feature Measure: Ac
Scenario Unit: Acres
Scenario Typical Size: 40.00
Scenario Total Cost: \$601.10
Scenario Cost/Unit: \$15.03
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	10	\$338.70
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	2	\$262.40

Practice: E595E - Eliminate use of chemical treatments to control pests and to increase the presence of dung beetles
Scenario: \#1 - Eliminate use of chemical treatments to control pests and to increase the presence of dung beetles

Scenario Description:

Pests and parasites can have a significant impact on the economic viability of livestock operations, by affecting the performance and health of animals. The use of broadspectrum insecticides, pour-ons and avermectins have been shown to have a detrimental effect on dung beetle populations. Having a healthy population of dung beetles facilitates the recycling of nutrients and promotes soil and grassland health. By eliminating the application of broad-spectrum insecticides, pour-ons, and avermectins, including injectable avermectins, for pest control in and on livestock along with rotational grazing and higher stock densities has shown to increase the dung beetle population. Use of natural or alternative methods of pest control over multiple years is encouraged.

Before Situation:
Pests and parasites can have a significant impact on the economic viability of livestock operations, by affecting the performance and health of animals. The use of broadspectrum insecticides, pour-ons and avermectins have been shown to have a detrimental

After Situation:
Having a healthy population of dung beetles facilitates the recycling of nutrients and promotes soil and grassland health. By eliminating the application of broad-spectrum insecticides, pour-ons, and avermectins, including injectable avermectins, for pest

Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 500.00
Scenario Total Cost: \$3,291.05
Scenario Cost/Unit: \$6.58
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Equipment Installation						
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	26	\$464.36
Rangeland/grassland field monitoring kit	967	Miscellaneous tools needed to complete rangeland/grassland monitoring. Materials may include camera, clippers, plot frame, scale, tape measure, etc. Includes materials and shipping only.	Each	\$49.50	1	\$49.50
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	10	\$338.70
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	10	\$271.60
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	10	\$476.10
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	12	\$1,574.40

Practice: E595G - Reduced resistance risk by utilizing PAMS techniques

Scenario: \#13-Reduced resistance risk by utilizing PAMS techniques
Scenario Description:
Design and implementation of an integrated pest management plan that will Utilize integrated pest management (IPM) prevention, avoidance, monitoring, and suppression (PAMS) techniques to reduce pesticide resistance and address plant pest pressure. Increased resistance leads to increased use of more toxic pesticides and increased risk of delivery of chemicals to water or ozone precursor emissions.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 595 ??? Pest Management Conservation Systems

After Situation:

The adoption of this enhancement will provide resource protection above the minimum level described in Conservation practice Standard (CPS) 595 Pest Management Conservation System.

Feature Measure: Acres

Scenario Unit: Acres
Scenario Typical Size: 100.00
Scenario Total Cost: \$1,699.47
Scenario Cost/Unit: \$16.99

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Acquisition of Technical Knowledge						
Training, Workshops	294	Educational seminar or series of meetings emphasizing interaction and exchange of information among a usually small number of participants.	Each	\$116.39	1	\$116.39
Equipment Installation						
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	4	\$71.44
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	10	\$271.60
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	8	\$1,049.60

Practice: E612B - Planting for high carbon sequestration rate
Scenario: \#14-Planting for high carbon storage rate

Scenario Description:

Plant tree species and use stocking levels for higher growth to increase the rate of carbon sequestration (capture). Use species with a longer life span as well as relatively fast growth, and species suitable for durable manufactured products. Increase stocking levels in forests that are not fully stocked. Implement afforestation on appropriate open lands.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 612 - Tree/Shrub Establishment
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 612 - Tree/Shrub Establishment

Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 5.00
Scenario Total Cost: $\$ 13,236.23$
Scenario Cost/Unit: \$2,647.25
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	9	\$224.91
Chemical, spot treatment, single stem application	964	Ground applied chemical to individual plants or group of plants, e.g., backpack sprayer treatment. Equipment and labor cost included.	Hours	\$80.61	5	\$403.05
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	54	\$675.54

Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	54	\$1,466.64
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	9	\$428.49
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	4	\$524.80
Materials						
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	5	\$63.30
Herbicide, Sulfometuron \& metsulfuron	344	A residual sulfonylurea herbicide that kills broadleaf weeds and some annual grasses. It is a systemic compound with foliar and soil activity. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$11.34	5	\$56.70
Herbicide, Surfactant	1095	Surfactants reduce the surface tension of water to produce more uniform coverage and penetration of herbicides, and weed killers. Paraffin Based Petroleum Surfactant. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$1.61	5	\$8.05
Tree, Hardwood, Seedling, Small	1509	Bare root hardwood seedlings 6 to 18 inches tall; includes tropical containerized seedlings of 8 cubic inches or smaller. Includes materials and shipping only.	Each	\$0.84	1075	\$903.00
Tree shelter, solid tube type, 4 in . x 60 in.	1567	4 inch x 60 inch tree tube for protection from animal damage. Materials and shipping only.	Each	\$6.67	1075	\$7,170.25
Cable ties, plastic	1575	Plastic cable ties (typ. 8-12 in.) to assist in securing items. Materials only.	Each	\$0.07	3225	\$225.75
Stakes, wood, 1 in. x 1 in. x 36 in.	1577	1 in. x 1 in. x 36 in. wood stakes to fasten items in place. Includes materials only.	Each	\$1.01	1075	\$1,085.75

Practice: E612C - Establishing tree/shrub species to restore native plant communities
Scenario: \#1-Establishing tree/shrub species to restore native plant communities

Scenario Description:

Establish trees and/or shrubs to restore elements of plant diversity that have been lost through past diseases or improper management. For example, disease-resistant varieties of elm and chestnut can be established to restore the ecological functions of American elm and American chestnut. At the stand level, past forest management may have eliminated certain native tree species. Restoring stand-level diversity and function addresses a wide array of resource concerns and strengthens ongoing management activities. This enhancement improves a forest that is already in good condition by increasing plant diversity, and improving health and vigor through adding plants with resistance to disease, pests, or other local hazards. Additional benefits include contributing to carbon storage, and providing diversity in wildlife habitat and food sources.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 612 - Tree/Shrub Establishment
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 612 - Tree/Shrub Establishment

Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 5.00
Scenario Total Cost: $\$ 5,449.82$

Scenario Cost/Unit: \$1,089.96
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	12	\$150.12

Labor

General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	12	\$325.92
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	4	\$524.80

Materials

Shrub, Potted, Small	1524	Potted shrub seedling, 1 quart to 1 gallon. Includes materials and shipping only.	Each	\$7.79	50	\$389.50
Tree, Hardwood, Potted, Medium	1532	Potted hardwood seedling, 2 gallons or larger. Includes materials and shipping only.	Each	\$15.29	100	\$1,529.00
Tree, Conifer, Potted, Medium	1537	Potted conifer seedling, 2 gallons or larger. Includes materials and shipping only.	Each	\$14.80	100	\$1,480.00
Tree shelter, solid tube type, 4 in. $x 60$ in.	1567	4 inch x 60 inch tree tube for protection from animal damage. Materials and shipping only.	Each	\$6.67	150	\$1,000.50

Practice: E612D - Adding food-producing trees and shrubs to existing plantings
Scenario: \#1 - Adding food-producing trees and shrubs to existing plantings

Scenario Description:

Plant food-producing trees and shrubs for wildlife within windbreaks, alley cropping, multi-story cropping, silvopasture systems, and/or riparian forest buffers.
Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 612 - Tree/Shrub Establishment

After Situation:

The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 612 - Tree/Shrub Establishment

Feature Measure: Acres

Scenario Unit: Acres

Scenario Typical Size: 10.00
Scenario Total Cost: \$2,382.84

Scenario Cost/Unit: \$238.28
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	1	\$6.63
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	10	\$178.60
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	10	\$125.10

Foregone Income

FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	0.41
FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	Acres	$\$ 251.94$	0.36
FI, Wheat Dryland	1963	Dryland Wheat is Primary Crop	Acres	$\$ 98.94$	0.23

Labor

General Labor
231 Labor performed using basic tools such as power tool, shovels, and
Hours $\quad \$ 27.16 \quad 10 \quad \$ 271.60$ other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.

Materials

Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	1	\$12.66
Herbicide, Sulfometuron \& metsulfuron	344	A residual sulfonylurea herbicide that kills broadleaf weeds and some annual grasses. It is a systemic compound with foliar and soil activity. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$11.34	1	\$11.34
Herbicide, Surfactant	1095	Surfactants reduce the surface tension of water to produce more uniform coverage and penetration of herbicides, and weed killers. Paraffin Based Petroleum Surfactant. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$1.61	1	\$1.61
Shrub, Seedling, Medium	1507	Bare root shrub seedling, 18 to 36 inches tall; includes tropical containerized seedlings 10 to 20 cubic inches. Includes materials and shipping only.	Each	\$1.86	341	\$634.26
Tree, Hardwood, Seedling, Medium	1510	Bare root hardwood seedlings 18 to 36 inches tall; includes tropical containerized seedlings of 10 to 20 cubic inches. Includes materials and shipping only.	Each	\$1.72	340	\$584.80
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: E612E - Cultural plantings
Scenario: \#1-Cultural plantings

Scenario Description:

Plant trees and shrubs that are of cultural significance, such as those species utilized by Tribes in traditional practices, medicinal plants, species used in basket-making, etc. (e.g., paper birch, slippery elm, witch hazel).

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 612 - Tree/Shrub Establishment
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 612 - Tree/Shrub Establishment

Feature Measure: Acre
Scenario Unit: Acres

Scenario Typical Size: 1.00
Scenario Total Cost: \$2,156.50
Scenario Cost/Unit: \$2,156.50
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	1	\$6.63
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	10	\$125.10
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	0.41	\$93.34
FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	Acres	\$251.94	0.36	\$90.70
FI, Wheat Dryland	1963	Dryland Wheat is Primary Crop	Acres	\$98.94	0.23	\$22.76

Labor

General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	10	\$271.60
Materials						
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	1	\$12.66
Herbicide, Sulfometuron \& metsulfuron	344	A residual sulfonylurea herbicide that kills broadleaf weeds and some annual grasses. It is a systemic compound with foliar and soil activity. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$11.34	1	\$11.34
Herbicide, Surfactant	1095	Surfactants reduce the surface tension of water to produce more uniform coverage and penetration of herbicides, and weed killers. Paraffin Based Petroleum Surfactant. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$1.61	1	\$1.61
Tree, Hardwood, Seedling, Medium	1510	Bare root hardwood seedlings 18 to 36 inches tall; includes tropical containerized seedlings of 10 to 20 cubic inches. Includes materials and shipping only.	Each	\$1.72	681	\$1,171.32
Mobilization						
Mobilization, small equipment	1138	Equipment <70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: E612F - Sugarbush management
Scenario: \#1-Sugarbush management

Scenario Description:

Establish or maintain species diversity in a sugarbush to enhance pollinator and wildlife needs. Maintain at least 20\% of basal area in species other than sugar maple (Acer saccharum) to provide species diversity. Half of the trees that are not sugar maples (10\%) will be mast producing species (hard or soft mass). Use maple tree tapping guidelines that minimize tree damage.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 612 - Tree/Shrub Establishment
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 612 - Tree/Shrub Establishment

Feature Measure: Acres
Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$937.96

Scenario Cost/Unit: \$937.96

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	2	\$12.42
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Chemical, spot treatment, single stem application	964	Ground applied chemical to individual plants or group of plants, e.g., backpack sprayer treatment. Equipment and labor cost included.	Hours	\$80.61	1	\$80.61
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	2	\$25.02

Labor

General Labor
231 Labor performed using basic tools such as power tool, shovels, and Hours $\quad \$ 27.16 \quad 10$ \$271.60 other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.

Materials

Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	0.5	\$6.33
Tree, Hardwood, Potted, Medium	1532	Potted hardwood seedling, 2 gallons or larger. Includes materials and shipping only.	Each	\$15.29	20	\$305.80
Tree shelter, solid tube type, 4 in. x 60 in.	1567	4 inch x 60 inch tree tube for protection from animal damage. Materials and shipping only.	Each	\$6.67	20	\$133.40
Cable ties, plastic	1575	Plastic cable ties (typ. 8-12 in.) to assist in securing items. Materials only.	Each	\$0.07	60	\$4.20
Stakes, wood, $3 / 4$ in. x 3/4 in. x 60 in.	1583	$3 / 4$ in. x $3 / 4$ in. x 60 in. wood stakes to fasten items in place. Includes materials only.	Each	\$2.43	20	\$48.60

Practice: E612G - Tree/shrub planting for wildlife food
Scenario: \#1-Tree/shrub planting for wildlife food

Scenario Description:

Tree or shrub planting to enhance habitat for native wildlife. A minimum of five tree or shrub species will be used; they will be species that provide food and/or cover for identified wildlife species.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 612 - Tree/Shrub Establishment
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 612 - Tree/Shrub Establishment

Feature Measure: Acre
Scenario Unit: Acres

Scenario Typical Size: 1.00
Scenario Total Cost: \$2,225.65
Scenario Cost/Unit: \$2,225.65
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Chemical, ground application	948	Chemical application performed by ground equipment. Includes equipment, power unit and labor costs.	Acres	\$6.63	1	\$6.63
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	11	\$137.61
Foregone Income						
FI, Corn Dryland	1959	Dryland Corn is Primary Crop	Acres	\$227.67	0.41	\$93.34
FI, Soybeans Dryland	1961	Dryland Soybeans is Primary Crop	Acres	\$251.94	0.36	\$90.70
FI, Wheat Dryland	1963	Dryland Wheat is Primary Crop	Acres	\$98.94	0.23	\$22.76

Labor

General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	11	\$298.76
Materials						
Herbicide, Glyphosate	334	A broad-spectrum, non-selective systemic herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$12.66	1	\$12.66
Herbicide, Sulfometuron \& metsulfuron	344	A residual sulfonylurea herbicide that kills broadleaf weeds and some annual grasses. It is a systemic compound with foliar and soil activity. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$11.34	1	\$11.34
Herbicide, Surfactant	1095	Surfactants reduce the surface tension of water to produce more uniform coverage and penetration of herbicides, and weed killers. Paraffin Based Petroleum Surfactant. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$1.61	1	\$1.61
Shrub, Seedling, Medium	1507	Bare root shrub seedling, 18 to 36 inches tall; includes tropical containerized seedlings 10 to 20 cubic inches. Includes materials and shipping only.	Each	\$1.86	605	\$1,125.30
Tree, Hardwood, Seedling, Medium	1510	Bare root hardwood seedlings 18 to 36 inches tall; includes tropical containerized seedlings of 10 to 20 cubic inches. Includes materials and shipping only.	Each	\$1.72	218	\$374.96

Practice: E643A - Restoration of sensitive coastal vegetative communities
Scenario: \#1 - Restoration of sensitive coastal vegetative communities

Scenario Description:

Enhance the level of restoration in unique and diminishing coastal ecosystems by establishing native herbaceous and woody plants. Protect established vegetation, and manage to maintain floristic quality and the provision of environmental services. This enhancement is applied on unique areas with rare and declining habitat conditions, where vegetation has been detrimentally altered by human or natural events. Targeted sites are those that formerly supported vegetative communities that are now declining and/or becoming rare. The sites will vary across the continent. The enhancement will expand and elevate the process of restoring these unique areas, increasing their ecological value and benefits to wildlife. It re-establishes a select group of trees and/or shrubs that are key components in this ecosystem.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 643-Restoration and Management of Rare and Declining Habitats
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 643 - Restoration and Management of Rare and Declining Habitats

Feature Measure: Each
Scenario Unit: Each
Scenario Typical Size: 25.00
Scenario Total Cost: $\$ 3,922.54$
Scenario Cost/Unit: \$156.90

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Skidsteer, 80 HP	933	Skidsteer loader with horsepower range of 60 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$56.04	8	\$448.32
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	8	\$100.08
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	8	\$222.08
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	2	\$95.22
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	7	\$918.40

Materials

Post, Steel T, $1.33 \mathrm{lbs}, 6 \mathrm{ft}$.	15	Steel Post, Studded 6 ft - 1.33 lb . Includes materials and shipping only.	Each	\$7.08	50	\$354.00
Tree Marking Paint	313	Trees to be cut through tree marking are physically identified through the application of paint on the tree. Typically one quart of paint is used to mark one acre of trees. Includes materials and shipping only.	Acres	\$12.39	5	\$61.95
Cattle Panel	1409	Welded wire cattle panel typically $1 / 4$ inch galvanized steel rods, 50 in . high $x 16 \mathrm{ft}$. long. Materials only.	Each	\$32.94	25	\$823.50
Tree, Hardwood, Potted, Medium	1532	Potted hardwood seedling, 2 gallons or larger. Includes materials and shipping only.	Each	\$15.29	25	\$382.25
Mobilization						
Mobilization, small equipment	1138	Equipment <70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: E643B - Restoration and management of rare or declining habitat
Scenario: \#1 - Restoration and management of rare or declining habitat

Scenario Description:

Provide protection from adverse environmental conditions to create refugia for documented occurrences of sensitive plant communities.
Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 643 - Restoration and Management of Rare and Declining Habitats

After Situation:

The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 643 - Restoration and Management of Rare and Declining Habitats

Feature Measure: Feet of Fence
Scenario Unit: Feet
Scenario Typical Size: 440.00
Scenario Total Cost: \$4,520.97

Scenario Cost/Unit: \$10.27
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Auger, Post driver attachment	934	Auger or post driver attachment to a tractor or skidsteer. Does not include power unit. Labor not included.	Hours	\$9.74	8	\$77.92
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	2	\$12.42
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	8	\$199.92
Tractor, agricultural, 60 HP	963	Agricultural tractor with horsepower range of 50 to 90 . Equipment and power unit costs. Labor not included.	Hours	\$35.80	8	\$286.40
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	2	\$262.40

Materials

Wire, Woven, Galvanized, 12.5 Gauge, 48 inch	4	Galvanized 12.5 gauge, 48 in. - 330 ' roll. Includes materials and shipping only.	Each	\$327.32	3	\$981.96
Post, Wood, CCA treated, 6 in. x 12-14 ft.	13	Wood Post, Line/End 6 inch dia. X 12-14 ft., CCA Treated. Includes materials and shipping only.	Each	\$38.12	38	\$1,448.56
Fence, Wire Assembly, Woven Wire	35	Brace pins, twist sticks, staples. Includes materials and shipping only.	Feet	\$0.15	1648	\$247.20
Gate, Game, 8 ft . High X 4 ft . Wide	1082	4 Foot wide game gate (8 feet tall). Includes materials and shipping only.	Each	\$270.17	1	\$270.17
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: E643C - Restore glade habitat to benefit threatened and endangered species and state species of concern
Scenario: \#13-Restore glade habitat to benefit threatened and endangered species and state species of concern
Scenario Description:
Restore Glade natural communities as shown by the Ecological Site Description to conserve biodiversity. Enhancement requires reducing woody canopy cover and applying at least one prescribed fire to treated acres. Restoration of glade communities provide habitat for rare and declining species. Sites that previously or currently support the rare and declining habitat will be targeted for restoration.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard 643 - Restoration of Rare or Declining Habitat.
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard 643 - Restoration of Rare or Declining Habitat.

Feature Measure: Acres

Scenario Unit: Acres

Scenario Typical Size: 5.00
Scenario Total Cost: \$6,477.65

Scenario Cost/Unit: \$1,295.53

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Skidsteer, 80 HP	933	Skidsteer loader with horsepower range of 60 to 90. Equipment and power unit costs. Labor not included.	Hours	\$56.04	2	\$112.08
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	80	\$496.80
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2.5	\$62.48
Chemical, spot treatment, single stem application	964	Ground applied chemical to individual plants or group of plants, e.g., backpack sprayer treatment. Equipment and labor cost included.	Hours	\$80.61	1.5	\$120.92
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	22	\$392.92
Water tank, portable	1602	Portable water tank transported in a pick up truck. Typically with 200 gallon capacity includes tank with pump, hose and sprayer. Does not include the pickup truck. Equipment only.	Hours	\$12.65	2	\$25.30

Labor

Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	116	\$3,928.92
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	4	\$190.44

Materials

Herbicide, Triclopyor	338	Refer to WIN-PST for product names and active ingredients. Materials and shipping	Acres	\$34.16	0.5	\$17.08
Fuel, ignition fuel mixture	1596	Mixture of gasoline and diesel for ignition of prescribed burns. Materials only.	Gallons	\$3.71	5	\$18.55
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	2	\$358.80
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	1	\$753.37

Practice: E643D - Low-tech process-based restoration to enhance floodplain connectivity
Scenario: \#10-Low-tech process-based restoration to enhance floodplain connectivity

Scenario Description:

This enhancement is intended to kick-start natural ecological, geomorphic and hydrologic processes required for improvement and maintenance of healthy and functioning streams and associated floodplains in situations where planning criteria has already been met but restoration or enhancement is desired to improve floodplain connectivity, riparian condition and move towards Stage 0 stream conditions. Beaver Dam Analogues (BDAs) and/or Post-Assisted Log Structures (PALS) are low-tech structures used to facilitate process-based restoration of rare and declining 'Stage 0' stream conditions by mimicking, promoting, and sustaining the natural processes of beaver dam activity and wood accumulation that lead to more fully connected floodplains. BDAs and PALS are hand-built with a mixture of woody debris and on-site soils and vegetation.

Before Situation:
State approved evaluation tool identifies that stream reaches meet planning criteria.
After Situation:
Wetted area associated with stream reach has expanded due to increase in floodplain connectivity, improvement of riparian condition and movement towards State 0 stream conditions

Feature Measure: Linear feet
Scenario Unit: Linear Feet
Scenario Typical Size: 400.00
Scenario Total Cost: \$17,714.40

Scenario Cost/Unit: \$44.29
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	24	\$149.04
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	12	\$299.88
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	18	\$321.48
Hand tools, tree planting	1590	Various hand tools for digging holes and planting trees such as augers, dibble bars, planting shovel, hoe-dad. Equipment only. Labor not included.	Hours	\$12.51	48	\$600.48
Portable Post Driver	2722	Gas or Hydraulic Powered Post Driver, Portable, <300 Ibs, labor not included	Hours	\$17.49	48	\$839.52

Labor

Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	60	\$2,032.20
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	120	\$3,259.20
Supervisor or Manager	234	Labor involving supervision or management activities. Includes crew supervisors, foremen and farm/ranch managers time required for adopting new technology, etc.	Hours	\$47.61	60	\$2,856.60
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	30	\$3,936.00
Materials						
Post, Wood, Untreated, 3-4 in. x 7 ft.	2721	Round Post, Wood, Untreated, 3-4 inch diameter x 7 feet	Each	\$8.55	400	\$3,420.00

Practice: E644A - Managing Flood-Irrigated Landscapes for Wildlife
Scenario: \#1 - Managing Flood-Irrigated Landscapes for Wildlife

Scenario Description:

Developing and implementing a conservation plan that supports maintenance of flood-irrigation in key landscapes to provide important foraging habitat for local breeding and migratory waterfowl and waterbirds.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 644 ??? Wetland Wildlife Habitat Management
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 644 ??? Wetland Wildlife Habitat Management

Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 50.00
Scenario Total Cost: \$1,478.43
Scenario Cost/Unit: \$29.57
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	9	\$224.91
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	22	\$597.52
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	5	\$656.00

Practice: E645A - Reduction of attractants to human-subsidized predators in sensitive wildlife species habitat
Scenario: \#1 - Reduction of attractants to human-subsidized predators in sensitive wildlife species habitat

Scenario Description:

Reduction of artificial perching sites, nest sites, food, and water available to subsidized predators in areas where human-subsidized predators are a threat to sensitive wildlife species. Human-subsidized predators may include ravens, crows, magpies, coyotes, foxes, skunks, raccoons, and other species. Activities under this enhancement may include removal of non- native or invasive trees; removal of unused power poles, corrals, windmills, buildings, and other vertical structures; and/or removal or management of watering facilities, dead livestock, road kill, garbage, animal feed, dumps, and other non-natural food sources.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 645 - Upland Wildlife Habitat Management

After Situation:

The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 645 - Upland Wildlife Habitat Management

Feature Measure: Acre
Scenario Unit: Number
Scenario Typical Size: 40.00
Scenario Total Cost: \$2,252.88
Scenario Cost/Unit: \$56.32
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	24	\$599.76
Trailer, enclosed, small	1503	Small enclosed trailer (typically less than 30' in length) pulled by a pickup to transport materials and equipment. Truck not included.	Hours	\$14.56	24	\$349.44
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	48	\$1,303.68

Practice: E645B - Manage existing shrub thickets to provide adequate shelter for wildlife
Scenario: \#13 - Manage existing shrub thickets to provide adequate shelter for wildlife

Scenario Description:

Existing shrub thickets provide an instant and important cover for wildlife. Various wildlife species may use shrubs as winter/thermal cover, summer shade, roosting, or as escape cover from predators. Proper management ensures that these shrubs will continue to provide the desired benefits for the local wildlife. A combination of herbicide treatments, cutting and trimming branches, and removal of other competing vegetation will occur. An eligible existing shrub thicket needs to have a canopy cover of 750 square feet, with an end goal of expanding to 1500 square feet. Any existing shrub thicket (not hand planted within the last 5 years) are eligible for this enhancement. Shrub thickets found within fence rows may now be very wide, but still meet the 750 square feet, are eligible.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard 645 - Upland Wildlife Habitat Management
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard 645 - Upland Wildlife Habitat Management

Feature Measure: Acres

Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$417.32
Scenario Cost/Unit: \$417.32

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	2	\$12.42
Pruning tools, hand tools	1318	Pruning tools, hand tools, shears, loppers, pole saw, handsaw. Material costs only. Labor not included.	Hours	\$2.31	2	\$4.62
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	2	\$67.74
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	4	\$108.64
Materials						
Herbicide, Imazapyr	336	Pre and post-emergent, non-selective herbicide for control of undesirable vegetation in non-crop areas. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$42.89	1	\$42.89
Herbicide, Surfactant	1095	Surfactants reduce the surface tension of water to produce more uniform coverage and penetration of herbicides, and weed killers. Paraffin Based Petroleum Surfactant. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$1.61	1	\$1.61
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40

Practice: E645C - Edge feathering for wild life cover
Scenario: \#13 - Edge feathering for wildlife cover

Scenario Description:

Selected trees are cut and brush clipped along the border between a wooded area and a grassland, cropland, or idle land, creating a dense woody cover of interlocking branches at ground level. The feathered edge will be an average of 30 feet wide and a minimum of 50 feet long, resulting in an area of 1500 square feet. The width of the strip will vary to follow topographic features and to create a wavy border; the design will also consider aesthetics. Vegetative composition and cover will vary within the edge, ranging from areas with no trees and shrubs to areas with scattered trees and extensive shrub cover. The variation in vegetation structure along with variable width of the edge will create feathering. The edge may include shrub plantings for wildlife food and aesthetics.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard 645 - Upland Wildlife Habitat Management
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard 645 - Upland Wildlife Habitat Management

Feature Measure: Acres

Scenario Unit: Acres
Scenario Typical Size: 1.00
Scenario Total Cost: \$967.02

Scenario Cost/Unit: \$967.02
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	8	\$49.68
Chemical, spot treatment, single stem application	964	Ground applied chemical to individual plants or group of plants, e.g., backpack sprayer treatment. Equipment and labor cost included.	Hours	\$80.61	2	\$161.22
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	8	\$270.96
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	2	\$54.32
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Materials						
Herbicide, Triclopyor	338	Refer to WIN-PST for product names and active ingredients. Materials and shipping	Acres	\$34.16	1	\$34.16
Mobilization						
Mobilization, very small equipment	1137	Equipment that is small enough to be transported by a pick-up truck with typical weights less than 3,500 pounds. Can be multiple pieces of equipment if all hauled simultaneously.	Each	\$179.40	1	\$179.40

Practice: E645D - Wildlife Habitat Management Plan for Upland Landscapes
Scenario: \#14-Wildlife Habitat Management Plan for Upland Landscapes

Scenario Description:

Develop and implement a wildlife habitat management plan that removes or significantly reduces the impact of existing land management activities occurring within agricultural landscapes (on any land use) causing chronic disturbance to wildlife during breeding, rearing, migration and over- wintering periods. Site monitoring may be necessary to identify and document sources of disturbance to wildlife. Examples of adjustments to existing management activities that can reduce disturbance to a tolerable level include: use of integrated pest management; capping of open vertical pipes; provision of wildlife-friendly water access and egress; and reduction of noise or movement within key migratory, nesting, rearing, loafing or hiding locations.

Before Situation:
The inadequate terrestrial wildlife habitat concern has been addressed under Conservation Practice Standard 645 and minimum planning criteria for the terrestrial wildlife habitat resource concern has been met. However, disturbance related impacts tied to the agricultural operation are negatively impacting wildlife.

After Situation:
Land management activities occurring within the agricultural landscape (on any land use) have been adjusted to avoid causing chronic disturbance to wildlife during breeding, rearing, migration and over- wintering periods has been addressed. Planning criteria for the terrestrial wildlife habitat resource concern exceeds minimum planning criteria.

Feature Measure: Acres of Improved Habitat

Scenario Unit: Acres

Scenario Typical Size: 40.00
Scenario Total Cost: \$396.07

Scenario Cost/Unit: \$9.90
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	3	\$74.97
Rangeland/grassland field monitoring kit	967	Miscellaneous tools needed to complete rangeland/grassland monitoring. Materials may include camera, clippers, plot frame, scale, tape measure, etc. Includes materials and shipping only.	Each	\$49.50	1	\$49.50
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	10	\$271.60

Practice: E646A - Close structures to capture and retain rainfall for waterfowl and wading bird winter habitat
Scenario: \#1-Close structures to capture and retain rainfall for waterfowl and wading bird winter habitat

Scenario Description:

When flooded to shallow depths during fall and winter, agricultural fields provide ideal foraging habitat for myriad species of waterfowl and wading birds . In addition, flooded conditions promote establishment of aquatic invertebrate populations, thus providing protein-rich food sources for shorebirds as well as waterfowl and wading birds.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 646 - Shallow Water Development and Management

After Situation:

The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 646 - Shallow Water Development and Management

Feature Measure: acre

Scenario Unit: Acres

Scenario Typical Size: 50.00

Scenario Total Cost: \$1,556.26
Scenario Cost/Unit: \$31.13

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	9	\$224.91
Mower, Bush Hog	940	Equipment and power unit costs. Labor not included.	Hours	\$31.13	2.5	\$77.83
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	22	\$597.52
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	5	\$656.00

Practice: E646B - Extend retention of captured rainfall for migratory waterfowl and wading bird late winter habitat
Scenario: \#1 - Extend retention of captured rainfall for migratory waterfowl and wading bird late winter habitat

Scenario Description:

When flooded to shallow depths during fall and winter, agricultural fields provide ideal foraging habitat for myriad species of waterfowl and wading birds. Harvested and idled agricultural lands, notably those occurring within rice rotations, contain high densities of residual (i.e., waste) grain and natural seeds following harvest. In addition, flooded conditions promote establishment of aquatic invertebrate populations, thus providing protein-rich food sources for shorebirds as well as waterfowl and wading birds. Benefits may become greatest during late winter and early spring as birds are assimilating nutrient and fat reserves in preparation for northward migration. However, agricultural fields flooded during fall-winter are typically drained during late January or February in advance of spring planting. This often results in a rapid reduction in available habitat, and may constrain ability of migratory birds to adequately prepare for migration, with greatest impacts likely occurring during years of low winter precipitation. Retention of water on agricultural lands into early spring will produce maximum benefits to migratory waterfowl and shorebirds by providing high quality habitat during a time when habitat may otherwise be in low abundance.

Before Situation:

Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 646 - Shallow Water Development and Management

After Situation:

The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 646 - Shallow Water Development and Management

Feature Measure: acre
Scenario Unit: Acres
Scenario Typical Size: 50.00
Scenario Total Cost: $\$ 1,846.08$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	11	\$274.89
Mower, Bush Hog	940	Equipment and power unit costs. Labor not included.	Hours	\$31.13	2.5	\$77.83
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	26	\$706.16
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	6	\$787.20

Practice: E646C - Manipulate vegetation and maintain closed structures for shorebirds mid-summer habitat
Scenario: \#1 - Manipulate vegetation and maintain closed structures for shorebirds mid-summer habitat

Scenario Description:

Suitable shorebird habitat is limited during the summer and fall as birds migrate south post-breeding and providing shallow water and mud flat habitat will benefit a variety of shorebird species. Optimal conditions are created when water levels are slowly reduced through evaporation, which allows for propagation of invertebrates (typically insect larvae) used as food by shorebirds. Manipulation of vegetation, preferably through rolling, creates open conditions required by this suite of birds as a means to detect and avoid predators, and provides nutrient inputs for invertebrate production.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 646 - Shallow Water Development and Management
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 646 - Shallow Water Development and Management

Feature Measure: acre
Scenario Unit: Acres
Scenario Typical Size: 50.00
Scenario Total Cost: \$3,239.44
Scenario Cost/Unit: \$64.79
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	9	\$224.91
Mower, Bush Hog	940	Equipment and power unit costs. Labor not included.	Hours	\$31.13	4.5	\$140.09
Tillage, Primary	946	Includes heavy disking (offset) or chisel plow. Includes equipment, power unit and labor costs.	Acres	\$20.44	50	\$1,022.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	22	\$597.52
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	5	\$656.00
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	2	\$598.92

Practice: E646D - Manipulate vegetation and maintain closed structures for shorebird late summer habitat
Scenario: \#1 - Manipulate vegetation and maintain closed structures for shorebird late summer habitat

Scenario Description:

Suitable shorebird habitat is limited during the summer and fall as birds migrate south post-breeding. Providing shallow water and mud flat habitat will benefit a variety of shorebird species. Optimal conditions are created when water levels are slowly reduced through evaporation, which allows for propagation of invertebrates (typically insect larvae) used as food by shorebirds. Manipulation of vegetation, preferably through rolling, creates open conditions required by this suite of birds as a means to detect and avoid predators, and provides nutrient inputs for invertebrate production.

Before Situation:

Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 646 - Shallow Water Development and Management
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 646 - Shallow Water Development and Management

Feature Measure: acre
Scenario Unit: Acres
Scenario Typical Size: 50.00
Scenario Total Cost: \$3,560.39
Scenario Cost/Unit: \$71.21
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	11	\$274.89
Mower, Bush Hog	940	Equipment and power unit costs. Labor not included.	Hours	\$31.13	5.5	\$171.22
Tillage, Primary	946	Includes heavy disking (offset) or chisel plow. Includes equipment, power unit and labor costs.	Acres	\$20.44	50	\$1,022.00
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	26	\$706.16
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	6	\$787.20
Mobilization						
Mobilization, small equipment	1138	Equipment <70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	2	\$598.92

Practice: E647A - Manipulate vegetation on fields with captured rainfall for waterfowl \& wading bird winter habitat
Scenario: \#1 - Manipulate vegetation on fields with captured rainfall for waterfowl \& wading bird winter habitat

Scenario Description:

Harvested and idled agricultural lands, notably those occurring within rice rotations, contain high densities of residual (i.e., waste) grain and natural seeds following harvest. Seed densities in harvested rice fields may rival those documented in intensively managed moist-soil units, especially in the Gulf Coast and Central Valley of California. When flooded to shallow depths during fall and winter, these agricultural fields provide ideal foraging habitat for myriad species of waterfowl and wading birds. In addition, flooded conditions promote establishment of aquatic invertebrate populations, thus providing protein-rich food sources for shorebirds as well as waterfowl and wading birds. In many cases, light manipulation of dense vegetation is needed to improve the accessibility of food resources to waterfowl, wading birds, and shorebirds.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 647 - Early Successional Habitat Development and Management
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 647 - Early Successional Habitat Development and Management

Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 50.00
Scenario Total Cost: \$2,320.98

Scenario Cost/Unit: \$46.42
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tractor, agricultural, 120 HP	962	Agricultural tractor with horsepower range of 90 to 140 . Equipment and power unit costs. Labor not included.	Hours	\$74.02	8	\$592.16
Labor						
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	8	\$222.08
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: E647B - Provide early successional shorebird habitat between first crop and ratoon crop
Scenario: \#1 - Provide early successional shorebird habitat between first crop and ratoon crop

Scenario Description:

Many declining suites of wildlife species rely on early successional habitats for at least part of their life cycle needs. Migratory shorebird species in particular rely on open, moist soil or shallowly flooded conditions for foraging and security. Rice farms support many migratory and resident water bird species. The first rice crop harvest often coincides with the arrival of early migrating shorebirds. This time of year is also the highest rainfall months. If standing rice stubble from the first crop is rolled to push above-ground stalks level with the soil surface, the first component of this type of habitat is met. When moisture is added to this situation, short-term habitat is available until the ratoon crop initiates growth to a height beyond that which would provide benefit to the early successional species.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 647 - Early Successional Habitat Development and Management
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 647 - Early Successional Habitat Development and Management

Feature Measure: Acre

Scenario Unit: Acres
Scenario Typical Size: 50.00

Scenario Total Cost:	$\$ 2,320.98$
Scenario Cost/Unit:	$\$ 46.42$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Tractor, agricultural, 120 HP	962	Agricultural tractor with horsepower range of 90 to 140 . Equipment and power unit costs. Labor not included.	Hours	\$74.02	8	\$592.16
Labor						
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	8	\$222.08
Mobilization						
Mobilization, medium equipment	1139	Equipment with 70-150 HP or typical weights between 14,000 and 30,000 pounds.	Each	\$753.37	2	\$1,506.74

Practice: E647C - Maintain most soil vegetation on cropland edges to enhance waterfowl and shorebird habitat
Scenario: \#1 - Maintain most soil vegetation on cropland edges to enhance waterfowl and shorebird habitat

Scenario Description:

The wetter or more water saturated portions of cropland fields such as areas adjacent to field drains, have the potential to produce a significant amount of moist soil plants which are a tremendously valuable source of forage and cover for many waterfowl, shorebird and wading bird species, especially during a period of time when such plants may be limited. Under normal cropland production, the native vegetation is restricted on these sites through mechanical and/or chemical control. These maintained moist soil plants also will provide filtering and improve water quality.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 647 - Early Successional Habitat Development and Management
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 647 - Early Successional Habitat Development and Management

Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 50.00
Scenario Total Cost: \$775.59
Scenario Cost/Unit: \$15.51
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Mower, Bush Hog	940	Equipment and power unit costs. Labor not included.	Hours	\$31.13	3	\$93.39
Labor						
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	3	\$83.28
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	2	\$598.92

Practice: E647D - Establish and maintain early successional habitat in ditches and bank borders
Scenario: \#1-Establish and maintain early successional habitat in ditches and bank borders

Scenario Description:

This enhancement is to encourage the establishment of early successional, naturally occurring vegetation in ditches, side slope and bank borders to provide cover, critical nesting and brood rearing habitat as well as filtering overland flow and improving water quality. Ditches perform the critical function of removing water from agricultural lands. Allowing naturally occurring vegetation to develop along ditches, including side slopes, banks and borders, will help provide food and cover for wildlife while enhancing aquatic habitat and improving water quality. Ditches and ditch borders provide a foundation that supports a diverse wildlife community including Northern Bobwhite (Colinus virginianus) and other birds preferring early successional cover. Rabbits, furbearers, amphibians and many other species that inhabit agriculture areas will use this vegetative cover. These areas can also provide critical nesting habitat for the Mottled Duck (Anas fulvigula).

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 647 - Early Successional Habitat Development and Management
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 647 - Early Successional Habitat Development and Management

Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 50.00
Scenario Total Cost: \$775.59

Scenario Cost/Unit: \$15.51
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Mower, Bush Hog	940	Equipment and power unit costs. Labor not included.	Hours	\$31.13	3	\$93.39
Labor						
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	3	\$83.28
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	2	\$598.92

Practice: E666A - Maintaining and improving forest soil quality
Scenario: \#1-Maintaining and improving forest soil quality

Scenario Description:

Adopts guidelines for maintaining and improving soil quality on sites where forest management activities are practiced. These guidelines will increase soil organic matter content, improve nutrient cycling, and increase infiltration and retention of precipitation. Avoiding soil compaction will allow for greater root development and tree growth, limit windthrow, and reduce drought stress. Increasing carbon storage on site will maintain the soil microbial community and provide wildlife benefits.

Before Situation:

Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 666 - Forest Stand Improvement

After Situation:

The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 666 - Forest Stand Improvement

Feature Measure: Acre

Scenario Unit: Acres

Scenario Typical Size: 50.00

Scenario Total Cost: \$2,501.57

Scenario Cost/Unit: \$50.03

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	4	\$24.84
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	4	\$71.44

Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	13	\$1,705.60
Materials						
Test, Soil Test, Standard	299	Includes materials, shiping, labor, and equipment costs.	Each	\$14.23	10	\$142.30
Tree Marking Paint	313	Trees to be cut through tree marking are physically identified through the application of paint on the tree. Typically one quart of paint is used to mark one acre of trees. Includes materials and shipping only.	Acres	\$12.39	5	\$61.95
Certified Organic, Annual Grasses, Legumes and/or Forbs	2343	Annual grasses, mostly introduced but may be native. Used for temporary cover or cover crops. Certified organic. Includes material and shipping only.	Acres	\$76.06	3	\$228.18

Practice: E666D - Forest management to enhance understory vegetation
Scenario: \#1 - Forest management to enhance understory vegetation

Scenario Description:

This enhancement provides for management of the understory vegetation in a forested area by mechanical, chemical, and/or manual methods to improve the plant species mix and the health of the residual vegetation. Managing the understory vegetation increases available water to the plants, minimizes runoff and erosion, and improves water quality. An adequately stocked forest provides inputs of leaves, needles, and woody twigs and stems to the forest floor, adding to soil organic matter and contributing to forest soil health. Desirable tree species and understory vegetation, with spacing that allows ground cover to develop, will allow moisture to infiltrate and be stored in the soil, releasing moisture over longer periods of time.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 666 - Forest Stand Improvement
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 666 - Forest Stand Improvement

Feature Measure: Acre

Scenario Unit: Acres
Scenario Typical Size: 20.00

Scenario Total Cost:	$\$ 6,176.94$
Scenario Cost/Unit:	$\$ 308.85$

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Mechanical cutter, chopper	943	Forestry mulcher, flail shredder, hydro axe, brush cutter, etc. Equipment and power unit costs. Labor not included.	Hours	\$115.16	16	\$1,842.56
Chemical, spot treatment, single stem application	964	Ground applied chemical to individual plants or group of plants, e.g., backpack sprayer treatment. Equipment and labor cost included.	Hours	\$80.61	16	\$1,289.76
Labor						
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	16	\$444.16
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	11	\$1,443.20
Materials						
Herbicide, Imazapyr	336	Pre and post-emergent, non-selective herbicide for control of undesirable vegetation in non-crop areas. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$42.89	20	\$857.80
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: E666E - Reduce height of the forest understory to limit wildfire risk
Scenario: \#1 - Reduce height of the forest understory to limit wildfire risk

Scenario Description:

Forest stand improvement that manages forest structure to reduce the risk of wildfire, and creates conditions that facilitate prescribed burning. The fire risk reduction is accomplished by reducing the height of the woody understory and midstory, creating space between the ground cover and the tree canopy. This enhancement provides for management of the understory vegetation in a forested area, using mechanical, chemical or manual methods to improve the plant species mix and the health of the residual vegetation, and reduce the risk of wildfire. In appropriate stands, the treatment creates conditions that favor prescribed burning. Forest stand improvement (FSI) activities are used to remove trees of undesirable species, form, quality, condition, or growth rate. The quantity and quality of forest for wildlife and/or timber production will be increased by manipulating stand density and structure. These treatments can also reduce wildfire hazards, improve forest health, restore natural plant communities, and achieve or maintain a desired native understory plant community for soil health, wildlife, grazing, and/or browsing.

Before Situation:

Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 666 - Forest Stand Improvement

After Situation:

The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 666 - Forest Stand Improvement

Feature Measure: Acre

Scenario Unit: Acres

Scenario Typical Size: 20.00
Scenario Total Cost: $\$ 6,176.94$
Scenario Cost/Unit: \$308.85

Cost Details:

Equipment Installation

Mechanical cutter, chopper	943	Forestry mulcher, flail shredder, hydro axe, brush cutter, etc. Equipment and power unit costs. Labor not included.	Hours	\$115.16	16	\$1,842.56
Chemical, spot treatment, single stem application	964	Ground applied chemical to individual plants or group of plants, e.g., backpack sprayer treatment. Equipment and labor cost included.	Hours	\$80.61	16	\$1,289.76
Labor						
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	16	\$444.16
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	11	\$1,443.20
Materials						
Herbicide, Imazapyr	336	Pre and post-emergent, non-selective herbicide for control of undesirable vegetation in non-crop areas. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$42.89	20	\$857.80
Mobilization						
Mobilization, small equipment	1138	Equipment <70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: E666F - Reduce forest stand density to create open stand structure
Scenario: \#1 - Reduce forest stand density to create open stand structure

Scenario Description:

Reducing forest stand density creates open forest conditions with a low basal area which promotes the health and vigor of the residual trees. The open stand structure allows a significant amount of sunlight to reach the forest floor and stimulates the growth of understory vegetation. Understory vegetation management, along with the wide spacing between trees or clumps of trees, provides visual appeal, lowers the risk of wildfire, and provides habitat for many at-risk and listed wildlife species. The enhancement creates conditions that facilitate a follow-up treatment with prescribed burning.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 666 - Forest Stand Improvement
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 666 - Forest Stand Improvement

Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 20.00
Scenario Total Cost: \$7,071.06

Scenario Cost/Unit: \$353.55
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Mechanical cutter, chopper	943	Forestry mulcher, flail shredder, hydro axe, brush cutter, etc. Equipment and power unit costs. Labor not included.	Hours	\$115.16	20	\$2,303.20
Chemical, spot treatment, single stem application	964	Ground applied chemical to individual plants or group of plants, e.g., backpack sprayer treatment. Equipment and labor cost included.	Hours	\$80.61	20	\$1,612.20
Labor						
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	20	\$555.20
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	11	\$1,443.20
Materials						
Herbicide, Imazapyr	336	Pre and post-emergent, non-selective herbicide for control of undesirable vegetation in non-crop areas. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$42.89	20	\$857.80
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: E666G - Reduce forest density and manage understory along roads to limit wildfire risk and improve habitat
Scenario: \#1 - Reduce forest density and manage understory along roads to limit wildfire risk and improve habitat

Scenario Description:

Opening the tree canopy along roads ('daylighting'), and providing space between ground vegetation and tree crowns minimizes the spread of wildfires that often start along roads, and improves wildlife habitat and food sources for many species. Some trees near a forest road are removed through harvesting, cutting, mulching, or another option available at the site, with the objective of creating a partially open forest canopy bordering the road. A semi-open canopy allows more sunlight to reach the forest floor to promote herbaceous understory plants, and reduces maintenance needs by allowing moisture to evaporate from roads. The reduced canopy and herbaceous understory limit woodland fuel buildup and reduce fire intensity.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 666 - Forest Stand Improvement
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 666 - Forest Stand Improvement

Feature Measure: Acre

Scenario Unit: Acres
Scenario Typical Size: 10.00
Scenario Total Cost: $\$ 3,533.70$

Scenario Cost/Unit: \$353.37
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	8	\$49.68
Mechanical cutter, chopper	943	Forestry mulcher, flail shredder, hydro axe, brush cutter, etc. Equipment and power unit costs. Labor not included.	Hours	\$115.16	8	\$921.28
Chemical, spot treatment, single stem application	964	Ground applied chemical to individual plants or group of plants, e.g., backpack sprayer treatment. Equipment and labor cost included.	Hours	\$80.61	8	\$644.88
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	8	\$217.28
Equipment Operators, Light	232	Includes: Skid Steer Loaders, Hydraulic Excavators <50 HP, Trenchers <12 in., Ag Equipment <150 HP, Pickup Trucks, Forklifts, Mulchers	Hours	\$27.76	8	\$222.08
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	8	\$1,049.60
Materials						
Herbicide, Imazapyr	336	Pre and post-emergent, non-selective herbicide for control of undesirable vegetation in non-crop areas. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$42.89	10	\$428.90

Practice: E6661-Crop tree management for mast production
Scenario: \#1 - Crop tree management for mast production
Scenario Description:
Forest stand improvement using crop tree management techniques to increase mast production
Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 666 - Forest Stand Improvement
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 666 - Forest Stand Improvement

Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 10.00
Scenario Total Cost: $\$ 4,365.74$

Scenario Cost/Unit: \$436.57
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	25	\$155.25
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	6	\$149.94
Chemical, spot treatment, single stem application	964	Ground applied chemical to individual plants or group of plants, e.g., backpack sprayer treatment. Equipment and labor cost included.	Hours	\$80.61	25	\$2,015.25
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	25	\$679.00
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	8	\$1,049.60
Materials						
Tree Marking Paint	313	Trees to be cut through tree marking are physically identified through the application of paint on the tree. Typically one quart of paint is used to mark one acre of trees. Includes materials and shipping only.	Acres	\$12.39	10	\$123.90
Herbicide, Picloram	337	Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$19.28	10	\$192.80

Practice: E666J - Facilitating oak forest regeneration
Scenario: \#1 - Facilitating oak forest regeneration

Scenario Description:

Facilitate oak regeneration following a forest stand improvement treatment for natural oak regeneration (i.e., a regeneration cut). After a regeneration cut, oaks in the seedling and sapling stages are often out-competed by invasive brush and undesirable tree and shrub species. This enhancement will release seedling and sapling oaks from competing invasive plants and other undesirable species, and thin stump sprouts. A forester will monitor site conditions, treat competition, protect seedlings, and recommend additional follow-up treatments as needed. The enhancement protects investments in oak regeneration by providing for follow-up activities that require the expertise of a professional forester.

Before Situation:

Naturally regenerated oak seedlings and/or saplings are threatened by competition from undesirable vegetation.

After Situation:

Oaks in the forest stand are free from competition and have adequate space and light to allow them to grow into the forest canopy.
Feature Measure: Acres
Scenario Unit: Acres
Scenario Typical Size: 25.00
Scenario Total Cost: \$17,068.98
Scenario Cost/Unit: \$682.76
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	6	\$37.26
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	16	\$399.84
Chemical, spot treatment, single stem application	964	Ground applied chemical to individual plants or group of plants, e.g., backpack sprayer treatment. Equipment and labor cost included.	Hours	\$80.61	10	\$806.10
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	6	\$203.22
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	56	\$1,520.96
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	34	\$4,460.80

Materials

Tree Marking Paint

Herbicide, Triclopyor

Herbicide, Surfactant
Acres to mark one acre of trees. Includes materials and shipping only.

338 Refer to WIN-PST for product names and active ingredients. Materials and shipping
1095 Surfactants reduce the surface tension of water to produce more uniform coverage and penetration of herbicides, and weed killers. Paraffin Based Petroleum Surfactant. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.

Tree shelter, solid tube type, 4 in. $x 48$ in.	1566	4 inch $x 48$ inch tree tube for protection from animal damage. Materials and shipping only.	Each	\$5.29	1250	\$6,612.50
Cable ties, plastic	1575	Plastic cable ties (typ. 8-12 in.) to assist in securing items. Materials only.	Each	\$0.07	2500	\$175.00
Stakes, wood, 3/4 in. x 3/4 in. x 48 in.	1582	$3 / 4$ in. x $3 / 4$ in. x 48 in. wood stakes to fasten items in place. Includes materials only.	Each	\$2.09	1250	\$2,612.50

Practice: E666K - Creating structural diversity with patch openings

Scenario: \#1-Creating structural diversity with patch openings

Scenario Description:

Forest stand improvement that creates patch openings. Size, shape, and arrangement of patches will be based on natural features, and emulate patches that would result from natural disturbance regimes of wind or fire, varying geographically and by forest type, and by tree species desired from natural regeneration. The treatment will create diversity in stand composition and structure, increase pest resistance, and enhance wildlife food availability. Openings may provide regeneration sites and restore natural plant communities, and achieve or maintain a desired understory plant community for wildlife habitat.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 666 - Forest Stand Improvement
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 666 - Forest Stand Improvement

Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 15.00
Scenario Total Cost: \$9,316.35
Scenario Cost/Unit: \$621.09
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	150	\$931.50
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	15	\$374.85
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	150	\$4,074.00
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	30	\$3,936.00

Practice: E666L - Forest Stand Improvement to rehabilitate degraded hardwood stands
Scenario: \#1 - Forest Stand Improvement to rehabilitate degraded hardwood stands

Scenario Description:

Hardwood forestland has been subject to poor logging practices ("high-grading") for decades. Without professional forestry assistance the best species and individual trees are removed, often before maturity ("diameter-limit cutting"), leaving the poorest species and individual trees to regenerate the stand. Reversing this process requires cutting or killing poor quality trees while retaining any desirable species that might still be present. A combination of 3 silvicultural methods are applied: crop tree release, group selection (all trees removed from an area 0.25 to 1.0 acre in size) and small clear-cuts (all trees removed from an area 1-3 acres in size).

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 666 - Forest Stand Improvement
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 666 - Forest Stand Improvement

Feature Measure: Acres treated
Scenario Unit: Acres
Scenario Typical Size: 10.00
Scenario Total Cost: \$6,235.32
Scenario Cost/Unit: \$623.53
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	16	\$99.36
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	2	\$49.98
Chemical, spot treatment, single stem application	964	Ground applied chemical to individual plants or group of plants, e.g., backpack sprayer treatment. Equipment and labor cost included.	Hours	\$80.61	40	\$3,224.40
All terrain vehicles, ATV	965	Includes equipment, power unit and labor costs.	Hours	\$17.86	16	\$285.76
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	16	\$434.56
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	8	\$1,049.60
Materials						
Tree Marking Paint	313	Trees to be cut through tree marking are physically identified through the application of paint on the tree. Typically one quart of paint is used to mark one acre of trees. Includes materials and shipping only.	Acres	\$12.39	10	\$123.90
Herbicide, Triazine	1321	Broad spectrum herbicide. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$66.83	10	\$668.30
Mobilization						
Mobilization, small equipment	1138	Equipment < 70 HP but can't be transported by a pick-up truck or with typical weights between 3,500 to 14,000 pounds.	Each	\$299.46	1	\$299.46

Practice: E6660-Snags, den trees, and coarse woody debris for wildlife habitat
Scenario: \#1-Snags, den trees, and coarse woody debris for wildlife habitat

Scenario Description:

Improve wildlife habitat through creation and retention of snags, den trees, forest stand structural diversity, and coarse woody debris on the forest floor, to provide cover/shelter for native wildlife species.

Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 666 - Forest Stand Improvement
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 666 - Forest Stand Improvement

Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 10.00
Scenario Total Cost: \$566.66
Scenario Cost/Unit: \$56.67
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	7	\$43.47
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	1	\$24.99
Chemical, spot treatment, single stem application	964	Ground applied chemical to individual plants or group of plants, e.g., backpack sprayer treatment. Equipment and labor cost included.	Hours	\$80.61	3	\$241.83
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	7	\$237.09
Materials						
Herbicide, Picloram	337	Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$19.28	1	\$19.28

Practice: E666P - Summer roosting habitat for native forest-dwelling bat species
Scenario: \#1-Summer roosting habitat for native forest-dwelling bat species
Scenario Description:
Create new potential roost trees within upland and riparian forests to achieve desired summer habitat for forest-dwelling bat species.
Before Situation:
Resources are protected at the minimum level of the Conservation Practice Standard (CPS) 666 - Forest Stand Improvement
After Situation:
The adoption of this enhancement will provide resource protection above the minimum level as described in Conservation Practice Standard (CPS) 666 - Forest Stand Improvement

Feature Measure: Acre
Scenario Unit: Acres
Scenario Typical Size: 10.00
Scenario Total Cost: $\$ 2,473.18$
Scenario Cost/Unit: \$247.32

Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	13	\$80.73
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	6	\$149.94
Chemical, spot treatment, single stem application	964	Ground applied chemical to individual plants or group of plants, e.g., backpack sprayer treatment. Equipment and labor cost included.	Hours	\$80.61	13	\$1,047.93
Labor						
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	13	\$353.08
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	4	\$524.80
Materials						
Tree Marking Paint	313	Trees to be cut through tree marking are physically identified through the application of paint on the tree. Typically one quart of paint is used to mark one acre of trees. Includes materials and shipping only.	Acres	\$12.39	10	\$123.90
Herbicide, Picloram	337	Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.	Acres	\$19.28	10	\$192.80

Practice: E666R - Forest songbird habitat preservation
Scenario: \#1 - Forest songbird habitat preservation

Scenario Description:

Adopts guidelines and methods developed by the Forest Bird Initiative of the Vermont Audubon Society, to preserve habitat features following a forest stand improvement treatment designed to create habitat for a suite of forest-dwelling neotropical migratory songbirds. It includes developing or updating a forest management plan, inspecting and tending forest habitat, and monitoring bird populations. It protects investments in habitat creation by providing for follow-up activities that require the expertise of a professional forester or biologist. This enhancement is appropriate for states in the Atlantic Flyway and the Upper Midwest.

Before Situation:

The bird habitat of a forest stand is threatened by undesirable vegetation, including noxious and invasive plants, and tree regeneration of species not favorable to birds. Harmful insects and tree diseases may also be present, and storms may have damaged

After Situation:
The forest stand has retained its habitat features and is utilized by a diversity of neotropical migratory songbirds.
Feature Measure: Acres
Scenario Unit: Acres
Scenario Typical Size: 25.00
Scenario Total Cost: \$5,994.76
Scenario Cost/Unit: \$239.79
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	4	\$24.84
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	10	\$249.90
Chemical, spot treatment, single stem application	964	Ground applied chemical to individual plants or group of plants, e.g., backpack sprayer treatment. Equipment and labor cost included.	Hours	\$80.61	4	\$322.44
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	4	\$135.48
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	4	\$108.64
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	38	\$4,985.60

Materials

Tree Marking Paint

Herbicide, Triclopyor

Herbicide, Surfactant

313 Trees to be cut through tree marking are physically identified through the application of paint on the tree. Typically one quart of paint is used to mark one acre of trees. Includes materials and shipping only.

338 Refer to WIN-PST for product names and active ingredients. Materials and shipping
1095 Surfactants reduce the surface tension of water to produce more uniform coverage and penetration of herbicides, and weed killers. Paraffin Based Petroleum Surfactant. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.

Practice: E666S - Facilitating longleaf pine establishment
Scenario: \#3 - Facilitating longleaf pine regeneration and establishment

Scenario Description:

This enhancement facilitates longleaf pine regeneration and establishment following a forest stand improvement treatment for natural regeneration (e.g., a regeneration cut), or where longleaf has been previously planted. After a regeneration cut or a planting, competition from invasive brush and undesirable tree and shrub species often suppresses successful establishment of longleaf pine. This enhancement will release seedling and sapling longleaf from competing invasive plants and other undesirable species. A forester inspects the stand periodically for resource concerns that clients do not have the skills to recognize and assess, conducts regeneration surveys, and makes recommendations for corrective actions (typically at one year following initial treatment, and then at intervals of 2-4 years). Undesirable plants competing with longleaf pine are mechanically cut and/or receive herbicide spot treatments and/or cut stem treatments, as needed. The herbicides listed in the component section of this scenario are for deriving a cost estimate only. Resource concerns include Plant Productivity and Health, and Plant Structure and Composition.
Before Situation:
Naturally regenerated or planted longleaf pine seedlings and/or saplings are threatened by competition from undesirable vegetation.

After Situation:

Longleaf pines in the forest stand are free from competition and have adequate space and light to allow them to grow into the forest canopy.

Feature Measure: Acres

Scenario Unit: Acres
Scenario Typical Size: 25.00
Scenario Total Cost: $\$ 6,700.42$

Scenario Cost/Unit: \$268.02
Cost Details:

Component Name	ID	Description	Unit	Cost	QTY	Total
Equipment Installation						
Chainsaw	937	Equipment and power unit costs. Labor not included.	Hours	\$6.21	6	\$37.26
Truck, Pickup	939	Equipment and power unit costs. Labor not included.	Hours	\$24.99	16	\$399.84
Chemical, spot treatment, single stem application	964	Ground applied chemical to individual plants or group of plants, e.g., backpack sprayer treatment. Equipment and labor cost included.	Hours	\$80.61	10	\$806.10
Labor						
Skilled Labor	230	Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.	Hours	\$33.87	6	\$203.22
General Labor	231	Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.	Hours	\$27.16	30	\$814.80
Specialist Labor	235	Labor requiring a specialized skill set: Includes Agronomists, Foresters, Biologists, etc. to provide additional technical information during the planning and implementation of the practice. Does not include NRCS or TSP services.	Hours	\$131.20	32	\$4,198.40

Materials

Tree Marking Paint

Herbicide, Triclopyor

Herbicide, Surfactant

313 Trees to be cut through tree marking are physically identified through the application of paint on the tree. Typically one quart of paint is used to mark one acre of trees. Includes materials and shipping only.
338 Refer to WIN-PST for product names and active ingredients. Materials and shipping
1095 Surfactants reduce the surface tension of water to produce more uniform coverage and penetration of herbicides, and weed killers. Paraffin Based Petroleum Surfactant. Refer to WIN-PST for product names and active ingredients. Includes materials and shipping only.

[^0]: loads requiring over width or over length permits.

