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Abstract:

This research investigates large-scale climate features affecting inter-annual hydrologic variability of streams flowing into
Upper Klamath Lake (UKL), Oregon, USA. UKL is an arid, mountainous basin located in the rain shadow east of the crest
of the Cascade Mountains in the northwestern United States. Developing accurate statistical models for predicting spring
and summer seasonal streamflow volumes for UKL is difficult because the basin has complex hydrology and a high degree
of topographic and climatologic variability. In an effort to reduce streamflow forecast uncertainty, six large-scale climate
indices—the Pacific North American Pattern, Southern Oscillation Index, Pacific Decadal Oscillation (PDO), Multivariate El
Niño-Southern Oscillation Index, Niño 3Ð4, and a revised Trans-Niño Index (TNI)—were evaluated for their ability to explain
inter-annual variation of the major hydrologic inputs into UKL.

The TNI is the only index to show significant correlations during the current warm phase of the PDO. During the warm PDO
phase (1978–present), the averaged October through December TNI is strongly correlated with the subsequent April through
September streamflow (r D 0Ð7) and 1 April snow water equivalent (r D 0Ð6). Regional analysis shows that this climate signal
is not limited to UKL but is found throughout the northwestern United States.

Incorporating the TNI variable into statistical streamflow prediction models results in standard errors of forecasts issued
on the first of February and earlier that are 7–10% smaller than those for the models without the TNI. This, coupled
with other enhancements to the statistical models, offers a significant increment of improvement in forecasts used by water
managers. Copyright  2009 John Wiley & Sons, Ltd.
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INTRODUCTION

The United States Bureau of Reclamation (USBR) oper-
ates many dams, power plants, and canal systems
throughout the western United States. One project notable
and highly publicized in recent years is the Klamath Irri-
gation Project, located in southern Oregon and northern
California, USA (Figure 1). Here, the USBR faces an
array of challenges regarding water-related management,
including recurring drought, decreasing water quality in
Upper Klamath Lake, and public and political pressure
to restore healthy populations of several threatened and
endangered fish species (Lost River Sucker, Shortnose
Sucker, and Coho Salmon; NRC, 2004). Complicating
water management issues are numerous competing water
interests that include agricultural growers, municipal util-
ities, Native American tribes, and wildlife refuge and
habitat management, both at the lake’s outlet and down-
stream at sites along the Lower Klamath River.

* Correspondence to: Adam M. Kennedy, Department of Forest Science,
Oregon State University, 201K Richardson Hall, Corvallis, Oregon
97331, USA. E-mail: akennedy@coas.oregonstate.edu
† The contribution of David C. Garen to this article was prepared as part
of his official duties as a United States Federal Government employee.

A primary water management tool in the basin is
seasonal streamflow forecasts, which are issued by the
Natural Resources Conservation Service (NRCS), an
agency of the US Department of Agriculture, in cooper-
ation with the US National Weather Service. The official
monthly forecasts begin in January preceding the sea-
sonal snowmelt and end in June. These models rely on
a principal components based regression model (Garen,
1992) to predict future streamflow relying on current
snow water equivalent (SWE), fall and spring precipi-
tation, antecedent streamflow, groundwater, and climate
indices. Existing models, however, are not as accurate
as water managers would like. Many of the reasons for
this forecast uncertainty have to do with the physical
characteristics of the basin, that is, high topographic and
climatologic variability, which makes it difficult to obtain
integrated forcings from a point observation network;
groundwater influences mute the seasonal snowmelt sig-
nal; lake dynamics such as evaporation and groundwater
interactions change the actual amount of water stored in
the lake; and there are ungauged inputs into the lake
from local drainages. The other major source of fore-
cast uncertainty is unknown future weather at the time
forecasts are issued. The former sources of uncertainty
are difficult to reduce given the existing data networks,
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Figure 1. Upper Klamath Basin including Williamson, Sprague and Upper Klamath Lake drainages and climate and streamflow stations used in this
research

although increments of improvement can be made with
careful predictor variable selection and optimization. The
latter source of forecast uncertainty has better prospects
of being addressed, and this is the focus of the present
study.

A key objective of this study, then, is to improve the
existing streamflow forecast models by including a cli-
mate teleconnection index to represent future weather
(particularly for the winter) and to evaluate the skill
of forecasts that include a climate teleconnection index
against those that do not. Other studies have looked at
the relationship between large-scale climate teleconnec-
tions and weather or hydrologic phenomena (e.g. Mantua
et al., 1997; McCabe and Dettinger, 2002; Beebee and
Manga, 2004; Gedalof et al., 2004; Grantz et al., 2005;
Tootle et al., 2005; Bonsal et al., 2006; Kingston et al.,
2006, 2007), but these have either not explicitly stud-
ied the Klamath Basin, or those that have considered
the region have not found a related teleconnection index.
In the present study, a teleconnection index related to

the hydrology of the Klamath Basin has been found
and incorporated into statistical streamflow forecasting
models.

SITE DESCRIPTION

This study focuses on Upper Klamath Basin, which is
the drainage area flowing into Upper Klamath Lake,
located just north of the California border in south cen-
tral Oregon, USA (Figure 1). It is in the rain shadow
at the base of the eastern slopes of the Cascade Range
and lies on the western fringe of the Basin and Range
physiographic province (Risley and Laenen, 1999). Its
topographic features contribute to high spatial variability
in precipitation and temperature. It is characterized by an
extensive volcanic geology, which results in a large per-
centage of precipitation, especially in the western part of
the basin, infiltrating into the regional groundwater sys-
tem, thus integrating the climate signal over a 2–3 year
period (Risley et al., 2005).

Copyright  2009 John Wiley & Sons, Ltd. Hydrol. Process. 23, 973–984 (2009)
DOI: 10.1002/hyp



CLIMATE TELECONNECTION INDICES AND UPPER KLAMATH SEASONAL STREAMFLOW 975

Including the closed basin of Crater Lake (a caldera),
Upper Klamath Basin has an area of 9772 km2. It can be
divided into three sub-basins—Williamson (3726 km2),
Sprague (4170 km2), and Upper Klamath Lake (1874
km2), the latter making up the remaining area of
Upper Klamath Basin downstream of the Williamson and
Sprague rivers. Elevation in the Upper Klamath Basin
ranges from 1257 to 2865 m with a mean elevation of
1545 m. The Williamson and the Sprague rivers com-
prise about 50% of the total inflow into Upper Klamath
Lake. The remainder is derived from precipitation over
the lake, streamflow production from the local drainage
area, and groundwater inflow.

HYDROLOGIC SENSOR NETWORK

Snow and precipitation data

The main source of data is the NRCS, which began
installing meteorological stations in the vicinity dur-
ing the early 1980s as part of their SnowTelemetry
(SNOTEL) system. Most stations measure snow depth,
SWE, precipitation, and temperature. SNOTEL provides
a near real-time network with data arriving at the NRCS
processing stations via meteor burst technology hourly
and published online soon thereafter in both daily and
monthly aggregations (http://www.wcc.nrcs.usda.gov/
snow). The SNOTEL stations used in this study are
shown in Figure 1. In addition, first-of-month SWE from
one manually measured snowcourse, Park Headquarters,
was also used as a predictor as well as precipitation from
the adjacent Crater Lake station.

Streamflow data

Streamflow data were available from the US Geo-
logical Survey (USGS) for all months beginning in
1924 for both the Sprague (USGS gauge 11501000) and
Williamson (USGS gauge 11502500) rivers. Because the
Williamson gauge is located just downstream of the con-
fluence with the Sprague, it is necessary to subtract the
Sprague discharge from the Williamson to define the
Williamson flow. This computed data series is referred
throughout this paper as the Upper Williamson.

Unimpaired streamflow data

Data from the Hydro-Climatic Data Network (HCDN),
a subset of USGS streamflow stations unaffected by
major anthropogenic influences (Slack et al., 1993), were
used for the regional analysis portion of this research.
While the HCDN data set ended in 1988, no major dams
or significant diversions have been built in the western US
since then, so the records of streams originally included
in the HCDN were updated from the USGS. The Sprague
River was included in the original HCDN data network,
while the Williamson was not even though the streamflow
is largely unimpaired by diversions or dams.

Hydrogeology information

Risley et al. (2005) have shown that groundwater
observations may be useful in characterizing large-scale

climate variability and that this may have statistical
importance in streamflow forecast models. For this study,
water levels for Oregon state well #280, located in
the eastern headwater region of the Sprague basin, and
streamflow for Fall River [Oregon Water Resources
Department (OWRD) gauge 14057500], located in the
Deschutes Basin (adjacent to the Klamath Basin to the
north), are used to quantify the observed decadal-scale
hydrogeologic variability and base flow conditions.

HYDRO-CLIMATIC CHARACTERIZATION

Streamflow characteristics

While geographically adjacent, the Sprague and Upper
Williamson basins have distinct streamflow regimes. The
Sprague is a surface water dominated basin with a
strong seasonal snowmelt signal. The Upper Williamson,
however, is characterized by a significant groundwater
component due to volcanic geology, and it has a large
mid-basin marsh, both of which smooth much of the
seasonal snowmelt streamflow. The Sprague, therefore,
shows much more temporal streamflow variability than
does the Upper Williamson, which is evident in the
monthly time series plots in Figure 2.

Climate change/Shifting hydrograph

Global warming may influence seasonal runoff timing,
with more winter precipitation falling as rain rather than
snow and snowmelt occurring earlier (Parson et al., 2000;
Regonda et al., 2005). A simple analysis of computing

Figure 2. Monthly Upper Williamson and Sprague river streamflow time
series (1924–2004)
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Figure 3. Twenty-five year moving window average monthly streamflow hydrographs for the (a) Sprague and (b) Upper Williamson rivers. Note
peak monthly flow is occurring earlier

average monthly streamflow for moving 25-year windows
shows clearly that even though total streamflow volumes
have varied significantly through time, peak seasonal
runoff has shifted from April to March in both the
Upper Williamson and Sprague rivers (Figure 3). This
trend is consistent with the findings for other rivers in
western North America (Mote et al., 2005; Stewart et al.,
2005). This shift in streamflow timing has important
implications for streamflow forecasting models (season
forecasted, calibration period) and for water management
decisions. This issue is not studied in detail here, but it
is important to keep in mind in further studies.

CLIMATE SIGNAL EVALUATION

Redmond and Koch (1991) were among the first to show
the significant relationship between the El Niño-Southern
Oscillation (ENSO) and streamflow in the western US.
El Niño (La Niña) events are typically associated with
anomalously low (high) winter precipitation totals in
the Pacific Northwest (and the opposite for the desert
Southwest). Since the work of Redmond and Koch
(1991), the Southern Oscillation Index (SOI) has been
widely used in water resource management to index
future climate conditions.

While useful as a climate teleconnection index in much
of the western US, the SOI signal is not observed in
every basin throughout the West. Most notable is the
absence of the SOI signal around the mid-latitude region
(37–43 °N) of western North America (Redmond and
Koch, 1991). This region lies between the typical storm
tracks, which take a more southerly route during El
Niño and a more northerly route during La Niña. It is

this observation that motivates looking for a large-scale
climate teleconnection index that explains hydrologic
variability in regions removed from the typical ENSO
signal.

Climate teleconnection indices

Six large-scale climate teleconnection indices—SOI,
Niño 3Ð4, Pacific Decadal Oscillation (PDO), Multivari-
ate El Niño-Southern Oscillation Index (MEI), Pacific
North American (PNA) Index, and the Trans-Niño Index
(TNI)—were investigated because they have been com-
monly used for climate monitoring in the western US
(Wallace and Gutzler, 1981; Wolter, 1987; Mantua et al.,
1997; Trenberth and Stepaniak, 2001).

The SOI is defined by the Climate Prediction Cen-
ter, part of the US National Weather Service, as the
difference between the standardized sea level atmo-
spheric pressure observed at Tahiti and that at Dar-
win, Australia divided by the monthly standard devi-
ation (http://www.cpc.ncep.noaa.gov/data/indices). Posi-
tive SOI values indicate La Niña, and negative values
indicate El Niño.

The Niño 3Ð4 Index measures the area averaged sea
surface temperature (SST) over the equatorial Pacific
Ocean (5°N–5 °S) (170–120 °W) and is an appropriate
proxy for Pacific mean equatorial SST (Trenberth and
Stepaniak, 2001). The Niño 3Ð4 is negatively correlated
with the SOI, that is, when mean Pacific SST is high, the
SOI is generally low.

The PDO refers to the time history of the leading
eigenvector of North Pacific SST (Mantua et al., 1997).
Variability observed in the PDO appears to follow a
decadal-scale pattern. That is, it is generally agreed that
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the PDO may be in either a cool phase (1945–1977)
or a warm phase (1925–1944, 1978–present). Some
suggest that the PDO changed phase during the mid
1990s (Mestas-Nuñez, 2006), but for lack of the specific
evidence, it is assumed in the present study that a phase
change did not occur.

The MEI is calculated as the first unrotated principal
component of six observed variables over the tropical
Pacific (Wolter, 1987). The variables measured include
sea level pressure, zonal and meridional surface wind,
SST, surface atmospheric temperature, and total cloudi-
ness fraction of the sky. Negative MEI values indicate
La Niña, while positive values indicate El Niño.

The PNA is based on 500-mb pressure patterns of
the Northern Hemisphere (Wallace and Gutzler, 1981).
It is strongly influenced by the ENSO, and it has been
suggested that the PNA is a major mechanism directing
storm tracks into the western US (Redmond and Koch,
1991).

The TNI is a measure of the standardized SST gradient
between region Niño 1 C 2 and Niño 4 (Trenberth and
Stepaniak, 2001). The Niño 1 C 2 region is located off
the west coast of Peru and Ecuador, near the Galapagos
Islands. The Niño 4 region spans the International Date
Line in the equatorial Pacific (Figure 4). It is a relatively
new index that was originally developed to characterize
the evolution of an El Niño event, but it may also be
useful for predictive purposes (Trenberth and Stepaniak,
2001).

Statistical design

Each climate signal was evaluated independently for
its usefulness in explaining the inter-annual hydro-
logic variability of major observed hydrologic variables
within Upper Klamath Basin. Following Koch and Fisher
(2000), the period of record for each variable was strati-
fied on the basis of PDO phase. That is, western US large-
scale climate was considered temporally homogeneous
during the cool PDO phase 1945–1977 and homogeneous
during the warm phases of 1925–1944 and 1978–present.

The time period analysed was 1951–2004, the beginning
of this period being determined by the readily available
data record for the teleconnection indices. Pearson cor-
relation coefficients were computed to determine if an
association existed between the selected climate telecon-
nection indices and major hydrologic variables within
Upper Klamath Basin. Statistical significance was defined
by values established in Helsel and Hirsh (2002). Because
the main objective of this evaluation was to identify cli-
mate teleconnection indices valuable in their predictive
ability, a lag period of up to eleven months prior to the
time of the hydrologic variable observation was used. The
teleconnection indices were analysed both at a monthly
and a three-month time step, but because there were no
significant differences between the two analyses, only the
results of the three-month aggregates are discussed here.

Results

Of the climate teleconnection indices evaluated dur-
ing this research, the TNI was the only index having
a statistically significant signal during the current warm
PDO phase (Figure 5). During the entire period of record,
the TNI shows moderate positive correlations with sea-
sonal Klamath streamflow, 1 April SWE, and Nov–Mar
precipitation. That is, when the late fall/early winter
multi-month TNI value is positive, above normal winter
precipitation and snow accumulation is expected, lead-
ing to above normal subsequent seasonal streamflow.
The reverse is true when the late fall/early winter multi-
month TNI value is negative. During the cool PDO
phase, however, these relationships are much weaker.
During the current warm PDO phase, these relation-
ships are strongest, with correlation coefficients reach-
ing a maximum during September through January prior
to the snowmelt runoff season. This lag time ranging
from 3 to 8 months prior to the seasonal runoff period
beginning in April makes the TNI useful as a predic-
tor variable in a statistical streamflow forecast model
because it is available prior to the main period of snow
accumulation.

Figure 4. Geographic scope of Niño 1 C 2 and Niño 4 regions used to compute the TNI
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Figure 5. Pearson correlation coefficients between the three-month aver-
age TNI and subsequent seasonal hydrologic variables. Q D streamflow
volume, Cr. Lk. D Crater Lake, PPT D precipitation, 95% confidence D
confidence threshold over which the r-value is statistically different than

zero

Discussion

These results suggest that during the current warm
PDO phase, 1978 through the present, the most impor-
tant measure of large-scale climate variability within the
Upper Klamath Basin is the equatorial Pacific Ocean SST
gradient. This gradient may be appropriately expressed
by using the TNI climate teleconnection. This numerical
representation of equatorial sea surface east-west temper-
ature gradient has not been previously applied directly to
model hydrologic variability, but the results presented
here suggest that there is some potential predictive abil-
ity in the TNI. An index such as the TNI could be used
to reduce the uncertainty of streamflow forecast models
by providing a variable that indexes future climate and
weather variability.

Given the potential utility of the TNI to improve
streamflow forecasts, the remainder of this study focuses
on the methods required to incorporate this climate index
into operational forecast models. Revisions are necessary
to update the TNI to convert it into an index useable in
real-time applications. These revisions are discussed in
the following section.

REVISED TRANS-NIÑO INDEX

Evaluation of the algorithm developed by Trenberth and
Stepaniak (2001) to compute the TNI identified two com-
putational issues that needed to be addressed before the
TNI would be useful in a real-time streamflow forecast

model. First, Trenberth and Stepaniak (2001) used a five-
month centered averaging (current month plus the two
previous and two future months) to smooth the monthly
Niño region temperature data prior to standardization, fol-
lowing the tradition set by the National Center for Envi-
ronmental Prediction (NCEP) monthly Climate Diagnos-
tics Bulletin (Trenberth and Stepaniak, 2001). This works
well for evaluation purposes but it is not appropriate for a
real-time model where all data must be known at the time
the forecast is published. This requires the TNI algorithm
to be adjusted so the final form does not include future
climate information.

Trenberth and Stepaniak (2001) also employed a
climatologic period of 1950–1979 to standardize the
final index. The present study requires the TNI to
represent both the past climate regime (1950–1977) and
the current climate regime (1978–present). While the
previous climate regime began around 1945, as defined
by the PDO, this research uses only the published SST
data for the regime, which began in 1950. Revising the
TNI algorithm with a climatologic period that began in
January 1950 and ended in December 2004 captures the
large-scale atmospheric circulation character leading up
to and following the 1976/1977 PDO phase shift.

Revised TNI calculation methods

The methods used to compute the revised TNI are as
follows: (1) Obtain the Niño 1 C 2 and Niño 4 area aver-
aged monthly SST time series. These data are available
online from NCEP (http://www.cpc.ncep.noaa.gov/data/
indices/sstoi.indices). NCEP publishes these monthly
data within 2 weeks after the end of each month.
(2) Compute the monthly means over the complete period
of record (January 1950 through December 2004 for this
study). (3) Subtract monthly means from monthly data
to obtain the monthly anomalies. (4) Divide monthly
anomalies by the standard deviation of anomalies (all
months considered together). (5) Subtract the standard-
ized Niño 4 from the standardized Niño 1 C 2 to obtain
monthly TNI series. This algorithm yields a revised
monthly TNI for the 1950–present period of record. This
revised TNI will from this point on be referred to as
TNIŁ.

For streamflow forecasting purposes or other environ-
mental modelling applications requiring a leading cli-
mate signal, it is useful to compute an aggregated or
seasonal TNIŁ series that reflects the seasonal charac-
ter of the Pacific Ocean SST gradient. This captures the
overall character of the ocean better than the snapshot
provided by a single month. To obtain a seasonal TNIŁ
value: (6) Perform correlations with the variables of inter-
est to identify months that contain the predictive signal.
(7) Compute a seasonal TNIŁ by averaging the months
well correlated to selected variables. (8) Finally, divide
the seasonal TNIŁ by its respective multi-month stan-
dard deviation to reach the final standardized multi-month
TNIŁ.
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Revised TNI calculation results

Once the TNI was revised and updated, the TNIŁ
was evaluated to re-check that the modifications did not
remove the predictive signal. The results of the monthly
correlation analysis confirm that the TNIŁ signal strength
during the warm PDO phase peaks during the Oct–Dec
period prior to the beginning of the peak snowmelt
season (Figure 6). From visual inspection, the most
notable signal is the correlation between the Oct–Dec
TNIŁ and the subsequent Apr–Sep streamflow volume
for the Upper Williamson (r D 0Ð73) and the Sprague
(r D 0Ð65) as well as the Apr–Sep net inflow for Upper
Klamath Lake (r D 0Ð67; not shown). Furthermore, the
Oct–Dec TNIŁ is moderately correlated with 1 Apr SWE
at the Park Headquarters (r D 0Ð51) and Summer Rim
(r D 0Ð61) snow measuring sites. These two sites are
high elevation stations located in the vicinity of Upper
Klamath Basin and are useful variables to include in
streamflow prediction models.

Because the Oct–Dec multi-month TNIŁ is identi-
fied to be the most valuable aggregation, a cursory
evaluation of its historical character is instructive. The
Oct–Dec TNIŁ appears to have a homogeneous period
prior to 1977 with low variability and a homogeneous
period beginning 1978 with high variability (Figure 7),
which coincides well with the North Pacific circulation
phase shift of 1976/1977 and other reports of increas-
ing hydrologic variability throughout the West (Stewart
et al., 2005). However, the high variability during the
current warm phase does not appear in the previous warm
phase (1925–1944), signaling that the 1977 climate shift
is related to more than just the PDO behavior and perhaps
to more far-reaching climate change, another fundamental
mechanism (Ebbesmeyer et al., 1991), or as van Olden-
borgh and Burgers (2005) suggest, variability of statistical
noise.

REGIONAL TNIŁ SIGNAL

A question of interest is whether the TNIŁ signal has
regional importance and if the regional signal behaves

Figure 6. Pearson correlation coefficients between the monthly TNIŁ and
the subsequent seasonal hydrologic variable

Figure 7. Time series plot of the original and revised TNI values. Note
increased variance following the 1976/1977 climate shift

similarly to its expression in the Klamath Basin. To
determine whether the TNIŁ signal is regionally dis-
tributed, correlation coefficients were calculated with
HCDN streamflow records and with NRCS SNOTEL
SWE data.

Methods

Initial analyses employed an online statistical model
called Climate Explorer (http://climexp.knmi.nl), devel-
oped through the Royal Netherlands Meteorological Insti-
tute (KNMI), to identify all western US streamflow sta-
tions that exhibit an association with the TNIŁ. This
helped define the areal domain in which to focus a
more in-depth evaluation. The Climate Explorer model
allows efficient data acquisition and processing of a vari-
ety of statistical procedures including lead/lag correlation
analysis (van Oldenborgh and Burgers, 2005) and stores
numerous hydrologic data sets for online processing. The
TNIŁ was uploaded into the Climate Explorer model and
correlated with Apr–Sep HCDN streamflow and 1 Apr
NRCS SWE, which are both built into the KMNI model,
for all stations in the western US during 1950–1988 and
1981–2004 respectively.

After the general signal extent was determined, 68
stream gauges taken from the preliminary analysis with
the TNIŁ were selected and updated to 2004 using historic
USGS streamflow data. Each station was then evaluated
to determine if variation in signal strength coincided
with the decadal-scale PDO phase. The records for
each station were stratified into three categories—cool
PDO era (1950–1977), warm PDO era (1978–2004),
and the entire period (1950–2004)—then were evaluated
to determine the strength of the correlation coefficient
between the Oct–Dec TNIŁ and the subsequent seasonal
Apr–Sep streamflow volume. The correlation coefficients
for each period were then plotted as points on a map
allowing a visual representation of the TNIŁ signal extent.

Results

Preliminary regional scale correlations between the
Oct–Dec TNIŁ with the subsequent Apr–Sep streamflow
and 1 Apr SWE for all stations within the geographic
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scope of this research suggests the TNIŁ signal is present
throughout the northwestern US from southern Oregon,
east into Idaho, and north into Washington (Figures 8 and
9 respectively). Final results suggest that while the overall
extent of the TNIŁ signal varies depending on which time
period is evaluated, the main signal band is located near
the border of Oregon and California east of the Cascade
Mountains, regardless of PDO phase (Figure 10).

Discussion

A thorough evaluation of the association between the
TNIŁ and both local and regional hydrologic variables

Figure 8. Preliminary Pearson correlation coefficients of Oct-Dec TNIŁ
with Apr–Sep HCDN streamflow stations. Filled circles represent a

significant correlation (p-value �0Ð1) (1951–1988)

Figure 9. Preliminary Pearson correlation coefficients of Oct—Dec TNIŁ
with 1 Apr NRCS SNOTEL/snow course stations. Filled circles represent

a significant correlation (p-value �0Ð1) (1981–2003)

Figure 10. Final Pearson correlation coefficients between the Oct–Dec
TNIŁ with Apr–Sep HCDN streamflow

surrounding Upper Klamath Basin determined that the
TNIŁ is significantly, positively associated with north-
western US hydrology. From a management perspective,
incorporating some of the underlying climate processes
should become a necessary component of a comprehen-
sive adaptive water management plan. Since the scope of
this research is mountain derived hydrology and stream-
flow forecast uncertainty, incorporating the TNIŁ into sta-
tistical seasonal streamflow prediction models becomes
a priority and is therefore considered in the following
section.

SEASONAL STREAMFLOW PREDICTION MODELS

In the western US, seasonal weather is generated to a
large degree from sea surface conditions originating in
the tropical and extratropical regions of the Pacific Ocean.
Quantifying the conditions of these regions prior to the
period of western US maximum snow accumulation,
usually occurring around March and April, may provide
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improved accuracy in statistical streamflow prediction
models.

To improve seasonal streamflow prediction models,
recent research has suggested including large-scale cli-
mate indices, particularly those derived from equato-
rial Pacific Ocean SST and atmospheric circulation pro-
cesses, in streamflow forecast models (Grantz et al.,
2005). These large-scale indices are not intended to cap-
ture the natural chaotic component of weather but have
been shown to characterize the offshore marine atmo-
sphere, which in the western US drives the seasonal
onshore weather patterns. Past research has shown that
certain large-scale climate variables have a significant
relationship to western US hydrology (Mantua et al.,
1997; McCabe and Dettinger, 2002; Beebee and Manga,
2004; Gedalof et al., 2004; Grantz et al., 2005; Tootle
et al., 2005; Bonsal et al., 2006; Kingston et al., 2006;
Kingston et al., 2007).

Past Upper Klamath streamflow forecast models have
not utilized large-scale climate teleconnection indices
because the basin is located in a region absent of the
conventional large-scale climate signals associated with
regional precipitation and streamflow. New information
resulting from this research suggests the TNIŁ can be
a useful regional index added to the suite of forecast
variables.

Model data

Streamflow forecast models that predict streamflow
volume for the upcoming spring and summer period
are regularly computed monthly beginning on 1 Jan-
uary and continuing until 1 June using those vari-
ables only available as of the prediction date. Candi-
date variables include SWE, water year precipitation
to date, temperature for previous months, streamflow
to date, groundwater levels, and climate teleconnec-
tions to date. For the models developed in this study,
SWE data were obtained from the NRCS, streamflow
data were obtained from the USGS, and groundwa-
ter level data were obtained from the OWRD. Rather
than using station data for precipitation and temper-
ature, monthly mean areal precipitation and tempera-
ture data derived from gridded fields estimated by the
spatial interpolation model PRISM (Daly et al., 1994;
http://www.ocs.orst.edu/prism) were used, as these fields
do a good job of representing the high spatial variability
of these quantities.

Large-scale climate variation was represented by the
TNIŁ. The TNIŁ is not available until around the second
week after the first of each month, which is when
the National Oceanic and Atmospheric Administration
publishes its SST data, and this is after the official first-
of-month forecasts are published. Therefore, the TNIŁ

period used in a forecast model must be lagged by
a month. For example, a 1 November forecast would
include the Jul–Sep TNIŁ, and the 1 December forecast
would include the Aug–Oct TNIŁ.

Statistical design

Climate and streamflow data were compiled from
each station in the Upper Klamath vicinity and then
pre-screened for missing or erroneous values. Missing
climate data were estimated using a linear association
between the station with missing data and a nearby
station. Pearson correlation coefficients were computed to
determine the association between each monthly climate
series and subsequent seasonal (Apr–Sep) streamflow for
the Upper Williamson and Sprague. Data from individual
climate stations, in addition to computed mean areal
precipitation and temperature data, well correlated with
seasonal streamflow were identified and included in the
final operational streamflow forecast candidate variable
set, from which the final model variables were chosen.

Forecast model equations were developed with a prin-
cipal components analysis (PCA) based regression model
(Garen, 1992). PCA is a statistically robust procedure
used to reduce the original set of variables into a smaller
set of uncorrelated components that represent most of the
information found in the original variables. By reduc-
ing the dimensionality, a few components rather than
a large number of inter-correlated variables are used in
the regression. For predictive purposes, principal compo-
nents can be used as independent variables in regression
equations (Garen, 1992).

The accuracy of each model was determined using
a cross-validation procedure, which is inspired by the
jackknife technique for statistical parameter estimation
(Garen, 1992). This technique withholds one year from
the calibration set, and coefficients from the model
calibrated without this year are used with the data for
the withheld year to predict the streamflow for that year.
The withheld year is returned to the data set, and this
process is repeated until all years have been withheld.
Then, similar to the usual regression standard error,
a cross-validation or jackknife standard error (JSE) is
calculated. The JSE is used to measure the optimality
of each model’s variable combination.

The streamflow prediction models of 1 November
through 1 May were developed for both the Sprague and
Upper Williamson rivers (1 June models were not devel-
oped in this study). The final variables selected resulted
from the use of a search algorithm (Garen, 1992) along
with judgement to include the best predictor variables
that were also physically meaningful and ensured month-
to-month consistency in variable usage.

Results

Results show that including the TNIŁ in streamflow
forecast models significantly reduces uncertainty, particu-
larly for the earlier forecasts issued up through 1 February
(Figure 11). For these early forecast months, the JSEs
for the models containing the TNIŁ are 7–10% smaller
than those for models that do not contain the TNIŁ. Final
variables for the operational forecast models are shown
in Tables I and II. Note that for the Sprague, there were
no other variables besides the TNIŁ that were of value in
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Figure 11. Sprague (upper) and Upper Williamson (lower) streamflow
prediction model accuracy results. Note: November default forecast
without the TNIŁ for the Sprague is denoted with solid triangle.

JSE D jackknife standard error; r D Pearson correlation coefficient

the 1 November model, so the default ‘forecast’ without
the TNIŁ is simply the long-term mean, and the stan-
dard error is the standard deviation of the Apr–Sep flow
volume.

To determine the statistical significance of the differ-
ence between forecast uncertainty with and without the
TNIŁ, one tailed paired-difference t-tests on the absolute
errors of each annual prediction were used to determine if
the equations that include the TNIŁ were statistically dif-
ferent from the equations that did not include the TNIŁ.
While there was an improvement in all of the models
that included the TNIŁ variable, statistically significant
(p-value �0Ð1) differences were found in the equations
for the December, January, and February forecast issue
dates (Table III). The paired-difference t-test also showed
significant differences in the April (Upper Williamson
only) and May forecasts, but because this contradicts the
perception that the TNI indexes winter precipitation and

SWE, it may be preferable not to use the TNIŁ for these
later forecasts, although it was used in this research.

SUMMARY AND CONCLUSIONS

Summary

The objective of this research was to identify a method
that could be used to index future seasonal weather in
the snowmelt-driven Upper Klamath Basin and ultimately
reduce the uncertainty of seasonal streamflow prediction
models. Because the volume of water available for
irrigation, hydropower production, fish, and other uses
is important in the Upper Klamath Basin, seasonal
streamflow prediction models, beginning 1 November,
were developed using the TNIŁ to predict the major
inputs into Upper Klamath Lake—the Upper Williamson
and Sprague rivers. Current trends in climate variability
and shifts in hydrologic processes in the western US
suggest that the inclusion of large-scale climate variables
in regression-based streamflow models improves the
accuracy and robustness of early season models during a
time when total snow accumulation is incomplete.

As a result of this research, a number of important
findings have surfaced with regard to the hydrology of
Upper Klamath Basin.

First, there appears to be a forward shift in the timing
of peak seasonal streamflow for both the Sprague and
Upper Williamson rivers. Increased winter temperatures
associated with increased winter precipitation falling as
rain are most likely responsible for this trend. A shift
to earlier peak streamflow may lead to increased spring
flooding in the event of a warm spring coupled with
high seasonal snowmelt runoff. Additionally, decreased
snow storage in the mountainous regions may reduce
the availability of water later in the season, as reservoir
storage of Upper Klamath Lake may not have the
capacity to store increased spring and early summer
runoff volumes. Because the USBR has traditionally
based most of its seasonal water-related decisions on
the 1 April forecast of the Apr–Sep streamflow volume,

Table I. Forecast variables (top row) used in the Sprague River forecast models. Prediction period is Apr–Sep except for the 1 May
model, which is May–Sep

Prediction
date

TNIŁ Quartz
Mountain

SWE

Strawberry
SWE

Taylor
Butte
SWE

Summer
Rim
SWE

Sprague
MAP

Sprague
MAT

Sprague
River
flow

1 Nov Jul–Sep — — — — — — —
1 Dec Aug–Oct Dec — — — Nov — Nov
1 Jan Sep–Nov Jan Jan Jan Jan Nov, Dec — Nov, Dec
1 Feb Oct–Dec Feb Feb Feb Feb Nov, Dec — Nov, Dec
1 Mar Oct–Jan Mar Mar Mar Mar Nov, Dec, Feb — Nov, Dec, Feb
1 Apr Oct–Jan Apr Apr Apr Apr Nov, Dec, Feb, Mar Mar Nov, Dec, Feb, Mar
1 May Oct–Jan — — — May Feb, Mar, Apr Mar, Apr Feb, Mar, Apr

SWE, snow water equivalent; MAP, mean areal precipitation; MAT, mean areal temperature.
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Table II. Forecast variables (top row) used in the Upper Williamson River forecast models. Prediction period is except for the 1 May
model, which is May–Sep

Prediction
date

TNIŁ Chemult
Alt.

SWE

Diamond
Lake
SWE

Park.
HQ

SWE

Taylor
Butte
SWE

Silver
Creek
SWE

Will.
MAP

Will.
MAT

U.Will.
River
flow

Well
#280
depth

Fall
River
flow

1 Nov Jul–Sep — — — — — Oct — Oct — Oct
1 Dec Aug–Oct Dec Dec — — — Oct, Nov — Oct, Nov — Nov
1 Jan Sep–Nov Jan Jan Jan Jan Jan Oct, Nov — Nov, Dec Seas Dec
1 Feb Oct–Dec Feb Feb Feb Feb Feb Oct, Nov — Nov, Dec Seas Jan
1 Mar Oct–Jan Mar Mar Mar Mar Mar Oct, Nov, Feb — Feb Seas Feb
1 Apr Oct–Jan Apr Apr Apr Apr Apr Oct, Nov, Feb, Mar — Feb, Mar — Mar
1 May Oct–Jan — — May — — Feb, Mar Apr Feb, Mar, Apr — Apr

Because water level observations from Well #280 are not taken on a regular basis, a seasonal index was computed from observations recorded during
October, November, and December prior to the forecast season.
HQ, headquarters, SWE, snow water equivalent; MAP, mean areal precipitation; MAT, mean areal temperature.

Table III. T-values of paired-difference test between models that
included the TNIŁ and those that did not

Month Upper Williamson River Sprague River

t-stat (t-crit D 1Ð319, df D 23, p-value <0Ð1)

Nov 0.977 1.260
Dec 2.181 1.950
Jan 2.073 1.401
Feb 1.958 1.461
Mar 1.057 0.650
Apr 1.497 0.650
May 2.036 2.198

Underlined values indicate a statistically significant difference in forecast
uncertainty.

this finding suggests that the 1 March forecast is now
equally as important and that the March streamflow
volume should also be included in the forecast period,
with all other processes required to manage the water
being shifted forward accordingly.

Second, a large-scale climate index, the TNIŁ, was
identified as being significantly associated with seasonal
streamflow and 1 April SWE within and outside of
the Upper Klamath Basin. This association with Upper
Klamath Basin hydrology is strongest during the current
warm phase of the PDO (1978–present). The climate
signal begins in June, 10 months prior to the onset of
peak seasonal streamflow discharge, and peaks during the
Oct–Dec season, which suggests including the TNIŁ in
operational streamflow prediction models may improve
early season forecasts.

Lastly, incorporating the TNIŁ into Upper Klamath
Basin seasonal streamflow prediction models reduces the
uncertainty of early season forecasts used by the USBR to
manage water volumes of Upper Klamath Lake. Results
suggest that the TNIŁ significantly reduces the early
season forecast uncertainty in the 1 December, 1 January,
and 1 February forecasts (p-value �0Ð1) for both the
Sprague and Upper Williamson rivers. An early, more
accurate streamflow prediction model should provide
the USBR with better tools to make earlier decisions
regarding water resource management in the basin.

Conclusion

While other authors have experimented with different
large-scale climate indicators, employing the TNIŁ as a
tool to characterize Pacific Ocean equatorial SST gradi-
ents and modelling its association with western hydrology
are unique. Recent research has associated the TNI with
the Niño 3Ð4 climate index (Trenberth and Stepaniak,
2001) so that, while the mechanism for the observed
response in the Klamath was not identified here, there has
been a recent evidence that suggests onshore atmospheric
conditions are driven largely by the sea surface condi-
tions (Trenberth et al., 2002a,b). Furthermore, the raw
SST data used in the TNIŁ algorithm have been linked
to La Niña and El Niño conditions (Hanley et al., 2002).
These studies suggest that a physical mechanism exists
and with further research may be identified.

Water management in the Klamath will always be
challenging, largely because there is insufficient water
for all competing uses, especially during dry years.
Streamflow forecasts are key tools in helping to manage
the water. The ability to produce a more accurate and
robust streamflow forecast earlier in the season, which
includes a large-scale climate feature, enhances the ability
to manage the scarce resource. Together with basin-wide
range management, crop selection, and land and water
conservation methods, improved forecast tools and local
climate understanding may greatly enhance the likelihood
of agricultural sustainability in the basin.
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