Creating Embankment in Roads

Overview: Use AutoCadd Civil 3D design complete layout

- If using Civil C3D designs for creating Roads layout, make sure all alignments extend beyond cross section, upstream and downstream toes.
- All alignments beginning and ending points need Northing and Easting coordinates.

Equipment: Trimble TSC7/T10, GNSS Receiver, and Trimble Access v2022.01

# Laying out Embankment

- 1. <u>Tap</u> to open existing projects folder
- 2. Create a new <u>Job</u>
- 3. <u>Tap</u> = ... *General Survey* (select <u>Roads</u>)
- 4. <u>Tap</u>  $\equiv$  ... Define ... RXL Road ... New
- 5. You will create THREE templates
  - a. <u>Fill</u>
  - b. <u>Auxiliary Spillway</u>
  - *c.* <u>*Pipe*</u>

### <u>Fill Template</u>

- 6. Name: New
  - a. (e.g., JohnSmith\_Fill)
  - b. Station Interval-lines: 5000ift
  - c. Station Interval-Arc and Transitions: 5000ft
  - d. Horizontal alignment entry method: Length/ Coordinates
  - e. Transition type: Clothoid Spiral
  - f. Vertical alignment entry method: VPI
  - g. Vertical geometry entry method: VPI
- 7. <u>Tap</u> Accept
- 8. <u>Tap</u> Horizontal Alignment... Add
  - a. Element: **Start Point,** Start Station: **0+00**, Method: **Key in Coordinates** Northing and Easting (e.g., N:15120097.085, E:1209210.456)... Enter

- b. Element: Line, Method: End coordinates, Northing and Easting (e.g., N:15120105.066, E:1209610.376)... Enter
- c. Check the Length(grid) to confirm your alignment length matches your plans
- d. <u>Tap</u> Store... Close
- 9. <u>Tap</u> Accept
- 10. Tap Vertical Alignment...Add
  - *i.* <u>\*\*Enter all stations and elevations across the CL of the embankment,</u> <u>excluding auxiliary spillway. \*\*</u>
  - *ii. <u>\*\*You will need to create a 0+00 Station with the settled elevation</u> <i>outside of you CL Dam Profile. \*\**

#### 11. Input

- a. Element: Start Point, Station: 0+00ift, Elevation: 1251.70ift ... Store... Add
- b. Element: Point, Station: 0+15ift, Elevation: 1251.70ift... Store... Add
- c. Element: Point, Station: 0+82ift, Elevation: 1252.80ift ... Store... Add
- d. Element: Point, Station: 2+36.50ift, Elevation: 1252.80ift ... Store... Add
- e. Element: Point, Station: 3+19ift, Elevation: 1251.70ift ... Store... Add
- f. Element: Point, Station: 3+27ift, Elevation: 1251.70ift ... Store... Add
- g. Element: Point, Station: 4+00ift, Elevation: 1251.70ift... Store

### 12. <u>Tap</u> Accept

- 13. <u>Tap</u> Templates... Add
  - a. <u>Input:</u> **Downstream Toe**... *Enter*... *Add*... *New* 
    - *i.* String Name: <sup>1</sup>/<sub>2</sub> Top Width, Method: Delta Elevation and Offset, Delta Elevation: 0+00ift, Offset: <sup>1</sup>/<sub>2</sub> Top width of structure (e.g., 6ift) ... Store... New
    - *ii.* String Name: Downstream Side Slope, Method: Side Slope, Cut Slope: **3**, Fill Slope: **3**, Cut ditch width: 0.00ift... Enter... Store

### 14. Tap Accept

- 15. <u>Tap:</u> Add
  - a. <u>Input:</u> Upstream Toe... *Enter*... *Add*... *New*

- *i.* String Name: <sup>1</sup>/<sub>2</sub> Top Width, Method: Delta Elevation and Offset, Delta Elevation: 0+00ift, Offset: <sup>1</sup>/<sub>2</sub> Top width of structure (e.g., 6ift) ... Store... New
- ii. <u>\*\*Full Wave Berm Option\*\*</u>
  - a. (Settled Top Elev. minus Berm Elev. = \_\_Ift), (Delta Elev. Multiplied by Side Slope = Offset)
  - 2. String Name: Wave Berm, Method: Delta Elevation and Offset Delta Elevation: \_\_\_\_\_ift (e.g., -3.2\*\*needs to be negative), Offset: ift (e.g., 9.6ift\*\*make positive\*\*) ... Store... New
  - 3. String Name: Berm Top, Method: Delta Elevation and Offset, Delta Elevation: 0+00ift, Offset: Full Top Width (e.g., 10ift) ... Store... New
- *iii.* String Name: Upstream Side Slope, Method: Side Slope, Cut Slope: 3,Fill Slope: 3, Cut ditch width: 0.00ift ... Store

## 16. <u>Tap</u> Accept

- 17. <u>Tap</u> Template positions... Add
  - a. <u>\*\*Cross section alignment of embankment\*\*</u>
  - b. Start Station: 0+00, Left Template: Downstream Toe, Right Template: Upstream Toe... Store
  - c. Start Station: 0+15, Left Template: Downstream Toe, Right Template:
     Upstream Toe... Store
  - d. Start Station: 0+82, Left Template: Downstream Toe, Right Template: Upstream Toe... Store
  - e. Start Station: 2+36.5, Left Template: Downstream Toe, Right Template: Upstream Toe... *Store*
  - f. Start Station: **3+19.5**, Left Template: **Downstream Toe**, Right Template: **Upstream Toe**... *Store*
  - g. Start Station: 3+27.5, Left Template: Downstream Toe, Right Template: Upstream Toe... Store

h. Start Station: 4+00, Left Template: Downstream Toe, Right Template:

Upstream Toe... ... Store... Close

- 18. <u>Tap</u> Accept
- 19. <u>Select</u> *Elevation*... *Accept*... *Store*

## <u>Auxiliary Template</u>

20. <u>Tap</u> New

- a. Name: (e.g., JohnSmith\_Auxiliary Spillway)
- b. Station Interval-lines: 5000ift
- c. Station Interval-Arc and Transitions: 5000ft
- d. Horizontal alignment entry method: Length/ Coordinates
- e. Transition type: Clothoid Spiral
- f. Vertical alignment entry method: VPI
- g. Vertical geometry entry method: VPI
- 21. <u>Tap</u> Accept
- 22. <u>Tap</u> Horizontal Alignment... Add
  - i. <u>\*\*50ift Aux. Inlet radius= 78.54ift arc length\*\*</u>
  - ii. <u>\*\*Negative is always upstream no matter which side the Aux. Spillway is</u> <u>drawn into the embankment\*\*</u>
  - iii. <u>\*\*In Autocadd Civil 3D you will need to get Northing and Easting</u> <u>coordinates and Center point Northing and Easting of the arc\*\*</u>
  - iv. <u>\*\*To get Northing and Easting coordinates, you have to select the</u> <u>alignment and type "explode", you might have to explode twice. DO</u> <u>NOT SAVE THIS PART OF YOUR DESIGN\*\*</u>
  - b. Element: **Start Point**, Start Station: **-0+89.94ift**, Method: **Key in coordinates**, Northing and Easting (e.g., N:15120037.68ift, E:1209505.66ift) ... *Store*
  - c. Element: Arc, Method: End coordinates and center point, Northing and Easting (e.g., N:15120092.51ift, E:1209550.30ift), Center point north (e.g., N:15120087.415ift), Center point east (e.g., E:1209500.560ift) ... Store

- d. Element: Line, Method: End coordinates, Northing and Easting (e.g., N:15120191.99ift, E:1209540.10ift) ... Store
- e. Element: Arc, Method: End coordinates and center point, Northing and Easting (e.g., N:15120236.63ift, E:1209485.26ift), Center point north (e.g., N:15120186.89ift), Center point east (e.g., E:1209490.36ift) ... Store
- 23. <u>Tap</u> Accept



## 24. <u>Tap Vertical Alignment</u>... Add

- i. <u>\*\*Use elevation from where inlet meets original ground to get elevation</u> <u>find slope of inlet from design- Aux. data (78.54ift arc radius multiplied</u> <u>by 2%slope=1.57) \*\*</u>
- ii. <u>\*\*Level section of auxiliary spillway minus 1.57= the elevation of</u> <u>Inlet\*\*</u>
- b. Element: Start Point, Station: -0+89.94ift, Elevation: 1247.93ift
- c. Element: Point, Station: -0+11.98ift, Elevation: 1249.50ift
- d. Element: Point, Station: 0+00ift, Elevation: 1249.50ift
- e. Element: Point, Station: 0+18.60ift, Elevation: 1249.50ift
- f. Element: Point, Station: 0+88.60ift, Elevation: 1248.10ift
- g. Element: Point, Station: 1+67.14ift, Elevation: 1246.53ift
- 25. <u>Tap</u> Accept
- 26. Tap Templates... Add
  - a. <u>Input:</u> Auxiliary Dike... Enter... Add... New

- b. String name: Auxiliary Bottom, Method: Delta elevation and offset, Delta elevation: 0ift, Offset <sup>1</sup>/<sub>2</sub> bottom width: \_\_\_\_ift (e.g., 5ift) ... Store... New
- c. String name: Side Slope Dike Top, Method: Delta elevation and offset, Delta elevation: 2.2ift, Offset: ift (e.g., 6.6ift) ... Store... New
  - i. <u>\*\*Side Slope Dike Top (settled top minus auxiliary spillway level section</u> multiped by side slope)\*\*
- d. String name: Auxiliary Top Dike, Method: Delta elevation and offset, Delta elevation: 0ift, Offset: \_\_\_\_\_ift (e.g., 8ift) ... Store... New
- e. String name: Auxiliary Side
  Slope, Method: Side Slope, Cut
  Slope: 3, Fill Slope: 3, and Cut
  ditch width: 0ift ... Store



- 27. <u>Tap</u> Accept
- 28. <u>Tap</u> Add
  - a. <u>Input:</u> Auxiliary Cut... Enter... Add... New
  - b. String name: Auxiliary Bottom, Method: Delta elevation and offset, Delta elevation: 0ift, Offset <sup>1</sup>/<sub>2</sub> bottom width: \_\_\_\_ift (e.g., 5ift) ... Store... New
  - c. String name: Auxiliary Side Slope, Method: Side Slope, Cut Slope: 3, Fill Slope:
    3, and Cut ditch width: 0ift ... Store
- 29. <u>Tap</u> Accept
- 30. <u>Tap</u> Template positions... Add
  - a. Start Station: -0+89.94ift, Left Template: Auxiliary Dike, Right Template: Auxiliary Cut... *Store*
  - b. Start Station: -0.11.40ift, Left Template: Auxiliary Dike, Right Template:
     Auxiliary Cut ... Store
  - c. Start Station: 0+00ift, Left Template: Auxiliary Dike, Right Template: Auxiliary Cut ... Store
  - d. Start Station: 0+18.60ift, Left Template: Auxiliary Dike, Right Template: Auxiliary Cut ... Store

- e. Start Station: **0+88.60ift**, Left Template: **Auxiliary Dike**, Right Template: **Auxiliary Cut** ... *Store*
- f. Start Station: 1+67.14ift, Left Template: Auxiliary Dike, Right Template: Auxiliary Cut ... Store... Close
- 31. Tap Accept
- 32. <u>Select</u> *Elevation...Accept... Accept... Store*

## <u>Pipe Template</u>

- 33. <u>Tap</u> *New* 
  - a. Name: (e.g., JohnSmith\_Pipe)
  - b. Station Interval-lines: 5000ift
  - c. Station Interval-Arc and Transitions: 5000ft
  - d. Horizontal alignment entry method: Length/ Coordinates
  - e. Transition type: Clothoid Spiral
  - f. Vertical alignment entry method: VPI
  - g. Vertical geometry entry method: VPI

### 34. <u>Tap</u> Accept



- 35. Tap Horizontal Alignment... Add
  - i. <u>\*\*The pipes centerline 0+00 station must start beyond front toe and end</u> <u>beyond back toe of centerline of embankment profile\*\*</u>
  - ii. \*\*You will need Northing and Easting for each ending station of the alignment\*\*
  - b. Element: Start Point, Start Station: -1+70.4ift, Method: Key in Coordinates Northing and Easting (e.g., N:15119930.310, E:1209393.820) ... Enter

- c. Element: Line, Method: End coordinates, Northing and Easting (e.g., N:15120230.250, E:1209387.834) ... Store
- 36. <u>Tap</u> Accept
- 37. <u>Tap Vertical Alignment... Add</u>
  - a. Element: Start Point, Station: -1+70.4ift, Elevation: 1248.0ift
  - b. Element: Point, Station: -0+20.4ift, Elevation: 1248.0ift
  - c. Element: Point, Station: 0+63.4ift, Elevation: 1230.0ift
  - d. Element: Point, Station: 0+83.4ift, Elevation: 1229.0ift
  - e. Element: Point, Station: 1+29.6ift, Elevation: 1229.0ift

#### 38. <u>Tap</u> Accept

- 39. <u>Tap Templates</u>... Add
  - a. <u>Input:</u> **Pipe**... *Enter*... *Add*... *New* 
    - i. String Name: Pipe, Method: Delta Elevation and Offset, Delta Elevation: 0+00ift, Offset: 100ift... Store... Accept
  - b. <u>Tap Accept</u>
- 40. <u>Tap</u> Template positions... Add
  - a. Start Station: -1+70.4ift, Left Template: Pipe, Right Template: Pipe... Store
  - b. Start Station: 1+29.6ift, Left Template: Pipe, Right Template: Pipe... Store... Close
- 41. <u>Tap</u> Accept... Store
- 42. <u>Select</u> one of the three templates you just created.
- 43. <u>Tap</u> *Review* 
  - a. If your project is not showing on the screen,  $\underline{Tap}^{Q}$

#### 44. <u>Tap</u>

- a. A string to review
  - i. Once selected you can 3D drive your structure
- b. A station on a string to review



| Scale in Feet  | 4+00<br>N 15120105.066<br>E 1209610.376<br>STEP 88 |                                                                                       |
|----------------|----------------------------------------------------|---------------------------------------------------------------------------------------|
| Sheet 240 of 5 | GRADE STABILIZATION STRUCTURE                      | Date         Designed       11/17/2022         Drawn       11/17/2022         Checked |



| Hand tamping only.<br>Begin backfill immediately<br>after pipe has been placed.<br>C.M. Pipe<br>Cont use<br>power tamper.)<br>2" to 3"<br>CORRUGATED OR SMOOTH METAL PIPE<br>PRINCIPAL SPILLWAY<br>BACKFILL DETAL | Excavate 2 to 3 inches below pipe<br>grade. Then backfill with damp triabe<br>sit free from lumps and raked or<br>exclusion of bedding<br>is required.<br>CORRUCATED OR SMOOTH METAL PIPE<br>BEDDING DETAIL | lS<br><u>mooth</u> metal pipe with <u>Canopy</u> inlet.<br><u>rater tigh</u> t.<br><u>5 of 5</u> )<br><u>", 1/4</u> " piece.<br>", 1/4 " piece. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Sheet ≠ of 5 PM                                                                                                                                                                                                   | GRADE STABILIZATION STRUCTURE                                                                                                                                                                               | Designed       11/17/2022         Drawn       11/17/2022         Checked          Approved                                                      |

