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F or years seasonal climate forecasts had the poten-
tial to improve resource management but instead
played only a marginal role in real-world decision

making.1 A widespread perception that the quality of
the forecasts was poor presented an especially persis-
tent dilemma for climate forecasters (Changnon 1990).

In 1997–98, however, use of the forecasts turned a
corner. Water and emergency managers started pay-
ing serious attention to the forecasts during the

1997/98 El Niño event, because similar events in the
past had produced exceptional flooding and drought
(Office of Global Programs 1999; S. A. Changnon
2000; Pagano et al. 1999). As the subsequent strong
La Niña produced two consecutive dry winters in the
southern states, water managers continued to pay at-
tention to the forecasts. Wildland fire managers and
cattle ranchers also began expressing more interest in
using the seasonal forecasts.

Given these experiences, one would expect re-
source managers to pay even more attention to sea-
sonal climate forecasts as conflicts become more fre-
quent over limited water supplies, evolving timber
and grazing policies, and burgeoning energy demands.
But skepticism about using seasonal forecasts remains.

For example, interactions with decision makers
about their use of climate information during the
1997/98 El Niño event revealed well-entrenched re-
sistance to use of seasonal forecasts (Pagano et al.
2002). One agency staff member told us: “In the many
years that I’ve lived here [Arizona], I’ve learned that
unless you’re from the East Coast, you know you can’t
predict what’s going to happen out here when it
comes to mother nature.” Another time, after mak-
ing a presentation about climate variability and fore-
casts to a group of farmers and ranchers, discussion
was becoming lively about how they and their com-
petitors could possibly make use of the forecasts. But
the meeting leader cut the discussion short, saying
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that climate forecast accuracy had a long way to go
before the products would have any relevance to
people actually making decisions.

Our conversations with ranchers, water managers,
and wildland fire managers in recent years have sent
us a clear warning. Uncertainty about the accuracy of
the climate forecasts precludes users from making
more effective use of them (Conley et al. 1999; Insti-
tute for the Study of Planet Earth 2000, hereafter ISPE
2000; Pagano et al. 2000, 2001, 2002).

Scientists can work to overcome that uncertainty. In
this article we show how information can be conveyed
better if we, as scientists, look at the forecasts from a
user’s perspective. The result is more useful forecasts.

The value of assessing forecast accuracy from the
user’s perspective is readily apparent. Thorough un-
derstanding of forecast performance helps decision
makers determine when and how much to rely on the
forecasts as well as how to respond to expected cli-
mate anomalies. Evaluations of seasonal forecasts also
can help planners reduce their vulnerability to cli-
mate, because they can plan more informed, and thus
more effective, preparation.

Even though assessments reveal the uncertainty of
seasonal forecasting, uncertain forecasts can help pro-
active planning. Seasonal climate outlooks by the
National Oceanic and Atmospheric Administration’s
(NOAA’s) Climate Prediction Center (CPC) indeed
have shown greater predictive skill than forecasts that
project climatological probabilities (based on histori-
cal data)—but not in every case. Decision makers
need to know when forecasts are not reliable enough
for their purposes (Sarewitz et al. 2000). In fact, con-
sistent communication of forecast uncertainty can
increase forecast credibility (O’Grady and Shabman
1990). Without this credibility, the costly conse-
quences of bad outcomes from the use of a single fore-
cast can devastate user confidence in subsequent fore-
casts (Glantz 1982).

Forecast performance evaluations have periodi-
cally appeared in the scientific literature.2 However,
results generally do not apply directly to resource
management decisions. The studies reflect perspec-
tives of climate researchers and forecasters, not users
(the few exceptions to this include Mjelde et al. 1993;
Lehman 1987). Frequently updated evaluations, eas-
ily accessible to users, do accompany online climate

forecasts by the CPC (www.cpc.ncep.noaa.gov/prod-
ucts/predictions/90day/). But they consist of skill
scores computed for each lead time for the entire con-
terminous United States without regional break-
downs. Other skill assessments available online deal
with individual forecasting techniques but cannot
help users easily evaluate the official outlooks, which
incorporate subjective judgments that vary from fore-
cast to forecast.

PLANNERS’ PERSPECTIVES. Basically, forecast
users have two complementary questions about fore-
cast accuracy. First, what is the probability that the cli-
mate forecasts will warn the user of climate extremes?
Second, given a specific forecast predicting an in-
creased likelihood of some event, what is the prob-
ability that the event will actually occur? Administrators
of very large river systems or business managers who
must keep track of competition in other regions may
pose these questions for large regions. However, many
forecast users are interested in evaluations specific to
a relatively small base of operations. The questions
also are framed with respect to a specific time frame
or decision. Wildland fire managers, for instance, plan
their summer season resource allocations early in the
spring, so they are interested in forecasts issued in the
January–March time frame. Evaluations that take into
account forecast skill in other months may not reflect
the concerns of these users.

To serve resource managers effectively, scientists
need better-targeted evaluations of forecasts. In our
research we have attempted to measure and commu-
nicate forecast performance in ways that are mean-
ingful to potential users. Our framework for evaluat-
ing forecasts considers the climate conditions,
seasons, and lead times relevant to decision makers.
We address the diversity of users’ meteorological
savvy both with the varying levels of sophistication of
the evaluations and with our method of presenting the
evaluations: not all decision makers have ready access
to a scientist trained to interpret forecasts and evalu-
ations. The multiple levels of sophistication, with
varying trade-offs between information and under-
standing, offer opportunities for users to develop
deeper insights about climate forecasts and their cred-
ibility and the implications of these issues for
decisions.

We found that the CPC seasonal climate outlooks
clearly perform better for some users than for others.
We focused on three groups of prospective climate
forecast users in the southwest United States: water
managers, wildland fire managers, and cattle ranch-
ers. The different ways in which climate forecasts may

2 For examples of forecast evaluations, see Nicholls (1980),
Bettge et al. (1981), Priesendorfer and Mobley (1984), Barnett
and Priesendorfer (1987), Lehman (1987), O’Lenic (1990),
Livezey (1990), Murphy and Huang (1991), Mjelde et al.
(1993), and Wilks (2000).
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fail to be useful for one or another group are more
subtle than simply the level of overall accuracy one
normally sees in forecast evaluations. We are
prompted to adapt what Tolstoy wrote in Anna
Karenina: while perfect forecasts are all alike, every
imperfect forecast is imperfect in its own way. Which
aspect of forecast quality is most important to a user
depends on what decisions they must make. Forecast
quality is ultimately in the perception of the beholder,
not just in the evaluation of the forecaster.

MULTIPLE SCORES
FOR MULTIPLE
USERS. The CPC has pro-
duced climate forecasts in
basically the current format
since December 1994.
While the complete fore-
cast package consists of sev-
eral elements (Hartmann et
al. 1999, 2002), two ex-
amples are presented in Fig.
1: maps of predictions of
probability anomalies of
surface air temperature and
precipitation. The contours
indicate how likely it is that
average air temperature or
total precipitation during
the forecast period will fall
within the upper, mid-, or
lower third (tercile) of con-
ditions that occurred dur-
ing 1961–90 (1971–2000
for forecasts issued since
May 2001). A climatologi-
cal probability (i.e., an out-
look with zero probability
of an anomaly) simply
indicates that there is an
equal chance (33.3%) that
conditions will fall within
any of the historical terciles.
Overall, the forecasts con-
sist of a 1-month outlook,
issued with a 2-week lead
time, and a series of thir-
teen 3-month outlooks,
with lead times from one-
half to twelve-and-one-half
months. The CPC outlooks
are produced for the 102
regions of the U.S. shown

in Fig. 2. These regions are based on resampling the
344 climate divisions specified by NOAA’s National
Climate Data Center (NCDC). An entire suite is issued
anew near the middle of each month (see online at
www.cpc.ncep.noaa/gov/products/predictions).

Right from the appearance of these forecasts, one
can detect potential difficulties in interpretation. In
addition, one need look no further than Figs. 3–5 for
evidence of how differently seasonal forecasts have
performed in different areas, even within the South-
west. Figure 3 indicates that forecasts that depart from

FIG. 1. Example official seasonal climate outlook and legend produced by the
NOAA CPC. Outlook shown was issued Aug 2000 and covers Sep–Nov 2000.
Maps show seasonal mean surface air temperature and seasonal total pre-
cipitation probability anomalies. For example, for the temperature outlook,
the contour interval that includes Great Salt Lake, UT, shows a 5%–10% prob-
ability anomaly for warm temperatures. Adjustment of base probabilities
(33.3% for each tercile) results in a 38.3%–43.3%, 33.3%, and 28.3%–23.3%
probability, respectively, that seasonal temperatures will fall within the warm,
near-normal, or cool tercile categories defined by regional conditions dur-
ing 1961–90.
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Qualitative aspects of climate
forecast products can be as
important as any quantitative
attribute in affecting how users
interpret, apply, and ultimately
judge them (Nicholls 1999).
Resource managers possess a
range of abilities to obtain,
interpret, and use climate fore-
casts (Pagano et al. 2002). Some
resource managers employ
meteorologists or experts, others
hire consultants or rely on federal
experts (D. Changnon 2000), and
some interpret forecasts despite
having no special training. Our
discussions with users indicate
that even managers with technical
backgrounds consistently misinter-
pret CPC outlooks (Pagano et al.
2001). Forecasters should consider
user input (Stern and Easterling
1999) to create outlooks that
foster easy, accurate, and reliable
interpretation. We raise here four
presentation issues that deserve
attention.

First, although CPC outlook
maps illustrate temperature and
precipitation probability anoma-
lies, they are often interpreted as
quantities. Map contours often
form a “bull’s-eye” (e.g., the area
over southwest Arizona in Fig. 1),
identifying regions for which
stronger statements are being
made about the likelihood of
indicated conditions. However,
these contours are often inter-
preted as meaning the center
region is expected to have more
extreme conditions than the
surrounding areas. Although
lower in spatial resolution, early
versions of the experimental
climate forecasts made by the
International Research Institute
for Climate Prediction (Fig. SB1)
did not use contours, offering
more reliable interpretation.

Second, anomalies are relative
only to a limited historical period.
In using 1961–90 as the reference
climatology, recent conditions
were not referenced (the problem
will be temporarily reduced when
new 1971–2000 climatological

FORECASTS THAT COMMUNICATE
perspective, newcomers will have
little appreciation of the potential
range of climatic variability.

Third, the climatology designa-
tion is misleading in the CPC
outlooks, and sometimes it covers
the entire conterminous states.
This does not indicate that
conditions are likely to be normal
or even that forecasters actually
believe each of the three condi-
tions is equally likely. Rather,
CPC states climatology when
forecast techniques lack sufficient
skill to differentiate or when
individual forecast techniques

distributions are implemented).
But recent conditions are what is
fresh in decision makers’ minds.
For example, Changnon et al.
(1988) found that agribusiness
decision makers in the Midwest
focus on conditions over the prior
3–6 yr. Decision makers may
relate to climate forecasts better
if they are compared to recent
conditions. CPC’s experimental
probability of exceedance graphs
(Barnston et al. 2000) show recent
conditions (10 yr for temperature,
15 yr for precipitation), although
the graphs pose their own interpre-
tive difficulties.

Of course,
the opposite
problem is also
true. Some-
times the
forecasts
unduly ignore
the past. For
some parts of
the United
States, periods
separated by
nearly a
century have
more in
common than
do intervening
periods (e.g.,
Quinn 1981).
With improving
understanding
of decadal- and
centennial-scale
climate re-
gimes, it seems
ill advised to
ignore the
longer histori-
cal record. The
phenomenal
population
growth in the
southwest
United States
means that
many residents
have lived there
only a few
years. Without
historical

FIG. SB1. Seasonal climate outlooks produced by the
International Research Institute for Climate Prediction:
(a) older format, forecast produced Oct 1998 and cov-
ering Oct–Dec 1998, and (b) newer format, forecast
produced Jun 2000 and covering Jul–Sep 2000.
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both the climatological period
(1961–90) and the complete
period of record. Thus an
extended persistence forecast
(e.g., 5-yr optimal climate normal
or the 10- or 15-yr optimal
climate normals considered by
CPC in generating their fore-
casts) may be more appropriate
as a “naïve” forecast than would
a 30-yr climatology. Also, given
such clear recent trends, seasonal
temperature forecast skill may be
good enough that forecasters
should now aim for a target
smaller than terciles. The Inter-
national Research Institute for
Climate Prediction is experi-
menting with this, assigning
forecast probabilities to the
extreme 15% distribution tails if
they think sufficient information is
available.

produce conflicting guidance
that cannot be resolved through
forecaster expertise. Comparison
with observations shows that
climatology forecasts are not
unbiased predictors of uniformly
distributed conditions as some
users have thought. Considering
all regions and lead times, 52%
and 21% of the climatology
forecasts for temperature corre-
sponded to observations in the
warmest and coolest terciles,
respectively, while 42% and 28% of
climatology forecasts for precipi-
tation corresponded to observa-
tions in the wettest and driest
terciles.

We recommend that the
climatology designation be
replaced with a more explicit
statement of no forecast confi-
dence, like the phrase “indetermi-

nate,” which was used in NWS
seasonal climate outlooks prior to
mid-1982 (Bettge et al. 1981).
Given the implications for decision
making, to say “complete forecast
uncertainty” or “no forecast
confidence” would be more
appropriate than to give an equal-
probability forecast. Knowing this,
users might decide to use other
forecast approaches that have
regional merit. For example,
Lamb and Changnon (1981) found
a 5-yr normal to work best overall
in predicting seasonal precipita-
tion and temperatures in Illinois;
although when predictions were in
error, the errors were larger than
when based on 10- or 15-yr
periods.

Finally, seasonal average
temperatures have been consis-
tently within the upper terciles of

climatology have been made frequently from south-
eastern Arizona. Further, these nonclimatology fore-
casts generally turned out to be consistent with ob-
servations; that is, observations fell within the tercile
category specified to have an enhanced probability of
occurrence. Note that forecasts for a wet season can be
correct, even though only a single month within the
forecast period is actually wet (e.g., October–December
1997). On the other hand, (e.g., northeast Utah, Fig. 4)
nonclimatology forecasts were relatively uncommon for
regions in the upper Colorado River basin. Seasonal
temperature forecasts for northwest Arizona and
southern Nevada (Fig. 5) have been consistent with the
extended and extremely warm observations of 1995–
99. Tercile boundaries based on the region’s entire
historic record prior to the evaluation period (1895–
1994; not shown) are similar to those of 1961–90, in-
dicating how unusual recent temperatures have been.

Resource managers must be made aware of these
regional differences, but further targeting of forecast
evaluations is necessary: targeting by time, not just
place. The water management agencies that govern
delivery, reservoir levels, and flood control and re-
sponse in the southwest United States are a case in
point. Their responsibilities for making resource al-
location decisions are as diverse as the watersheds
they manage. We held extensive discussions with a
broad range of water management professionals

(Pagano et al. 2001; Carter et al. 2000) and identified
periods especially important to decision makers con-
cerned with seasonal water supplies originating pri-
marily as mountain snowfall (Table 1). Snow accu-
mulation in winter affects water supplies throughout
the subsequent spring and summer. In the Southwest,
the winter snow–summer flow relationship is par-
ticularly strong because in late spring and early sum-
mer there is little precipitation. Summer rains typi-
cally have little impact on useable water supplies in
larger basins, but their transient local effects can be

FIG. 2. Regions used in evaluating CPC seasonal climate
outlooks. The upper and lower Colorado River basins
are, respectively, indicated by the green and yellow
highlighted regions.
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important in irrigation districts where water manag-
ers augment rainfall with contracted water deliver-
ies or groundwater pumping.

Typically, in October, several water supply man-
agement agencies meet with National Weather Ser-
vice Colorado Basin River Forecast Center (RFC)
personnel to review potential winter and early spring
conditions that will ultimately affect seasonal water
supplies. For basins in the southwest United States,
the CPC climate outlooks relevant to this fall plan-
ning include forecasts issued in August, September,
and October, covering December–May. Only those
outlooks exclusively covering the decision period are
considered here (i.e., December–February, January–
March, February–April, March–May), to eliminate
the influence of conditions in other months; this set
of outlooks consists of 12 forecasts/ yr.

That is not all water managers in the Colorado
Basin must consider. A second set of decisions in-

volves the water supply outlooks that the RFC typi-
cally issues semimonthly, from January to May
(Hartmann et al. 1999, 2002). The temporal coverage
of the outlooks depends on basin seasonal flow char-
acteristics. For the upper Colorado River basin (re-
gions 48, 49, 83, 84, 99 in Fig. 2), water supply fore-
casts are issued from January through May and
generally cover April–September, the period reflect-
ing prolonged melting of extensive high-elevation
snowpacks. The relevant climate forecasts are those
issued December–April and covering January–
September (25 forecasts/ yr).

A third set of decisions involves water supply out-
looks for the lower Colorado River basin (regions 95–
98, 101, 102). Here, the season of highest flows is
much shorter, reflecting lower elevations, warmer
temperatures, and a shallower snowpack. The RFC
outlooks for this area involve climate forecasts issued
during December–May and covering January–May.
Only the climate forecasts issued December–February
(6 forecasts/ yr) exclusively involve this period.
Finally, a fourth decision period pertains to water
managers who rely on summer delivery of seasonal
water supplies to augment rainfall. Their perspective
on climate forecasts includes forecasts issued January–
May, covering June–September (10 forecasts/ yr).

FIG. 4. Graphical comparison of CPC seasonal precipi-
tation outlooks and observed seasonal total precipita-
tion for northeastern Utah (region 83 in Fig. 2). Legend
same as in Fig. 3.

FIG. 3. Graphical comparison of CPC seasonal precipi-
tation outlooks and observed seasonal total precipita-
tion for southeastern Arizona (region 98 in Fig. 2). (a)
Forecast probability of precipitation falling in the wet
tercile; circle size indicates forecast lead time (0.5 to
12.5 months, smallest to largest). Color indicates ob-
served category: wettest tercile (blue), middle tercile
(green), driest tercile (red). (b) Observed precipitation;
blue lines are 1961–90 precipitation tercile boundaries,
asterisks are 3-month observed total precipitation us-
ing same color scheme as (a), and “Xs” are single-
month observed precipitation.



689MAY 2002AMERICAN METEOROLOGICAL SOCIETY |

CRITERIA FOR FORECAST EVALUATIONS.
With these temporal and spatial considerations in
mind, we selected several complementary forecast
evaluations to show the range of information about
climate outlooks that water resource managers in the
southwest United States could use.

Myriad criteria exist for evaluating forecast qual-
ity (see Wilks 1995 for a detailed description of these
criteria). It is helpful to select appropriate evaluation
criteria that compare the CPC outlooks available at

the time a decision is made to the information that
decision makers would use if they had no CPC climate
outlooks. “Climatology” forecasts (equal probabilities
assigned to each tercile) are representative of what
decision makers would use without forecasts. The
relative improvement provided by the CPC outlooks,
compared to forecasting climatology, is given as a skill
score:

(1)

where scoreforecasts, scoreclimatology, and scoreperfect are val-
ues (for the actual forecasts, climatology, and perfect

FIG. 5. Graphical comparison of CPC seasonal tempera-
ture outlooks and observed seasonal average tempera-
tures for northwestern Arizona and southern Nevada
(region 95 in Fig. 2). (a) Forecast probability of tem-
peratures falling in the warm tercile; circle size indicates
forecast lead time (0.5 to 12.5 months, smallest to larg-
est). Color indicates observed category: warmest
tercile (blue), middle tercile (green), coolest tercile
(red). (b) Observed temperatures; blue lines are 1961–
90 temperature tercile boundaries, asterisks are
3-month observed average temperature anomalies us-
ing same color scheme as (a).

We analyzed 3-month outlooks issued from
December 1994 to October 1999 in a CPC dataset
of digitized historical seasonal temperature and
precipitation forecast maps. The digitization
provides spatially weighted probability anomalies
for each of 102 regions within the conterminous
United States (Fig. 2). The regions are agglomera-
tions of the 344 climate divisions used by the
NOAA/NCDC. To calculate forecast probabilities,
we added map anomalies to the climatological
probability (33.3%). The observation dataset,
covering January 1995–November 1999, consists of
monthly average temperature and monthly total
precipitation for each of the 102 regions based on
spatially weighted averages of NCDC climate
division data. Tercile boundaries are based on
Gaussian and gamma distributions fitted to the
1961–90 observations for temperature and
precipitation, respectively, with zero precipitation
treated as censored data.

There are two caveats worth remembering
about a quantitative evaluation of forecasts such as
these. First, climate outlooks concern only
average temperatures and total precipitation over
an entire forecast period, not within it. They say
nothing about daily, weekly, or even monthly
extremes within a 3-month forecast period, or
whether precipitation will occur as many small, or
a few large, events. Yet in semiarid regions,
seasonal precipitation can be the result of a single
event. For example, the 1997/98 El Niño autumn
climate was extremely wet in southwest Arizona
due to the storm track of Hurricane Nora
(Pagano et al. 1999). Second, limited sample sizes
compromise even the most mathematically
rigorous analyses. Spatial and temporal
autocorrelations reduce effective sample sizes
further, and forecast technology changes faster
than sufficient data can accumulate.

Further, acceptable trade-offs between contex-
tual specificity (e.g., region, lead time, season) and
sufficient sampling differ by users’ risk tolerance
and are not reliably determined without their
input.

DATA AND METHODS



690 MAY 2002|

forecasts, respectively) determined by appropriate
criteria.

CATEGORICAL MEASURES. In selecting the
criteria for evaluating climate outlooks, one must bear
in mind that these are not the same as typical weather
forecasts. Weather forecasts project continuous vari-
ables like temperatures or the likelihood of discrete
events like the occurrence of precipitation; the CPC
climate forecasts, by contrast, indicate probability
anomalies that are continuous variables, but organized
into discrete intervals for discrete categories (e.g.,
“wet,” “near normal,” and “dry”). A plethora of fore-
cast performance criteria use contingency tables that
reflect whether forecasts “hit” or “miss” a discrete
condition observed at verification time. These crite-
ria include the Heidke skill scores that CPC posts
online. To use these performance criteria with CPC
forecasts, the condition (e.g., wet) receiving an en-
hanced likelihood is converted into a categorical fore-
cast, having an implied 100% probability.

In this study we use instead the probability of de-
tection (POD) and false alarm rate (FAR) scores,
which address user concerns about specific climate
conditions in simple terms. For a given condition, the
probability of detection is the number of forecasts that
ultimately prove correct relative to the total number

of times the condition actually
occurs. If the forecast correctly
calls for wet conditions twice,
yet over that time wet condi-
tions occur 4 times, then the
probability of detection is 50%,
or 0.50. For a given condition,
the false alarm rate is the num-
ber of forecasts that ultimately
prove wrong, relative to the to-
tal number of times that forecast
has been made. The false alarm
rate is 0.50 if the forecasts call
for wet conditions 4 times but
are incorrect twice. The prob-
ability of detection considers all
forecasts, while the false alarm
rate considers only forecasts
for anomalous conditions (i.e.,
nonclimatology forecasts).

Figure 6 shows probabili-
ties of detection and false
alarm rates for the forecasts
relevant to the winter decision
period for lower Colorado
River managers. For example,

Fig. 6d indicates that for southeast Arizona, when wet
was forecast, then dry or normal occurred less often
than expected by chance. CPC seasonal precipitation
outlooks show skill for both wet and dry conditions
for southeast Arizona; the specific forecasts used in
the region’s computations are illustrated in Fig. 7.
However, with the exception of the false alarm rate
for the wettest tercile, performance of the CPC sea-
sonal precipitation outlooks for this decision period
is poor for much of the nation outside the Southwest.

Forecast performance criteria based on “hitting”
or “missing” associated observations (like probabili-
ties of detection) offer users conceptually easy entry
into discussions about forecast quality. Converting the
probabilistic forecasts into categorical forecasts also
highlights for users that climatology forecasts do not
say any one category is more likely than another.
Categorical measures are relatively simple to compute
and communicate and can be related to specific user
concerns. However, they unfairly penalize the CPC
forecasts by neglecting differences between weak and
strong confidence statements. Today’s CPC outlooks
are complicated by their probabilistic nature; the fore-
casts are never totally “wrong” because they never
project a 100% chance of any condition. Each of the
three terciles always shows at least a 3.3% probabil-
ity, as indicated in the legend of Fig. 1.

Water management scenario

Fall Aug–Oct Dec–May

Winter, upper Colorado Dec–Apr Jan–Sep

Winter, lower Colorado Dec–Feb Jan–May

Spring Dec–May Jun–Sep

Cattle ranching scenario

Summer Apr–May Jul–Sep

Winter Oct–Nov Dec–Mar

Fire management scenario

Spring Jan–Mar Apr–Jul

TABLE 1. Selected scenarios representing water management,
ranching, and wildland fire management decision-making situations
in the southwest United States.

When forecasts Season of interest
Decision-making situation issued (months) (months)
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BRIER SCORES. The intuitive advantages of prob-
ability of detection and false alarm rate can be
extended beyond categorical forecasts to probabilis-
tic forecasts by using the Brier score (Brier 1950;
Wilks 1995). This score is computed like the mean-
square error, with the error for a single forecast–
observation pair being the squared difference be-
tween the forecast probability for a tercile and the
observed “probability” for that category (i.e., 0 if it
did not occur and 1 if it did). Thus, if an event does
not occur, forecasts indicating low probability for the
event are not heavily penalized compared to those in-
dicating high probability. Each tercile receives its
own Brier score.

To evaluate CPC forecasts with the Brier score,
only those forecasts that shift probabilities from tercile
to tercile (nonclimatology forecasts) are included,
since a climatology forecast actually signifies the ab-
sence of a forecast; thus the Brier score is comparable
to the categorical false alarm rate. Figure 8 illustrates
forecast skill based on the Brier score for the same
lower Colorado River basin decision period as in
Figs. 6 and 7. For the southwest United States, the sea-

sonal climate outlooks are an improve-
ment over using climatological prob-
abilities for both wet and dry condi-
tions, as expected from the evaluation
with probabilities of detection and
false alarm rates. Similarity between
these scores and the Brier score results
reflects that wet forecasts (generally
limited to the winter of 1997/98) were
made with relatively high probability
and were consistent with subsequent
observations (e.g., in Fig. 7). Forecasts
for the driest tercile, however, are
shown more favorably using the Brier
score because some forecasts were
made with low probability and dry
conditions did not occur. Comparison
of Brier scores and false alarm rates
makes clear the potential for users to
be disappointed in forecast perfor-
mance. Ultimately, users attribute
lower credibility to the outlooks than
is deserved, when probabilities are
converted to categorical forecasts.

Like probabilities of detection and
false alarm rates, Brier scores allow
users to focus on specific climate con-
ditions (e.g., wet or dry). This is a
drawback for some users, however,
because the Brier score neglects the

distribution of forecast probabilities outside the cli-
mate tercile of interest. Clearly, if a forecasts shifts
most probability to the upper tercile, the user would

FIG. 7. Graphical comparison of CPC seasonal precipi-
tation outlooks and observed seasonal total precipita-
tion for southeastern Arizona (region 98 in Fig. 2) cor-
responding to outlooks issued during Dec–Feb and cov-
ering Jan–May (water management scenario—winter,
lower Colorado). Legend same as in Fig. 3a; see Fig.
3b for corresponding observations.

FIG. 6. Probability of detection (POD) and false alarm rate (FAR) for
seasonal precipitation outlooks issued during Dec–Feb and covering
Jan–May (water management scenario—winter, lower Colorado).
POD corresponding to (a) driest and (b) wettest tercile and FAR for
(c) driest and (d) wettest tercile. Blue (red) circles indicate climate
outlooks are better (worse) than chance (33.3%) forecasts; black circle
indicates absence of nonclimatology forecasts. Circle size indicates
percent difference relative to potential shown by outer circle.
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expect to see most of the rest of the probability dis-
tribution in the central tercile rather than in the lower
tercile.

RANKED PROBABILITY SCORES. The ranked
probability score allows consideration of multiple ob-
servation categories and cumulative forecast prob-

abilities, which makes it more appropriate for users
interested in the full range of conditions. Ranked
probability scores, like Brier scores, are computed like
mean-square error, but for each forecast–observation
pair they compare cumulative forecast probabilities
and multiple observation categories. Forecasts receive
increasingly worse scores for assigning probabilities
to categories increasingly distant from that observed
(Epstein 1969; Wilks 1995). For example, if a season’s
observed total precipitation falls in the wet tercile, a
forecast with probabilities of 28%, 33%, and 39% as-
signed to the dry, near-normal, and wet terciles, re-
spectively, would not score as well as a forecast with
respective probabilities of 3%, 24%, and 73%.
Probabilities for all terciles are used to compute a
single ranked probability score. As in the Brier score,
climatology forecasts are considered nonforecasts and
are excluded.

Figure 9 shows ranked probability scores com-
puted for each of three water management sce-
narios—fall, winter (in the lower Colorado River ba-
sin), and summer. Seasonal precipitation outlooks
covering the winter, made with the shortest lead
times, show ranked probability score skill for most
of the Pacific coast, Southwest, and Gulf coast regions
(Fig. 9b). Even with longer lead times (up to
6.5 months in the fall), the CPC forecasts show a skill-
ful ranked probability score for the Southwest and
Gulf coast regions (Fig. 9a). However, few regions
show any such skill for summer (Fig. 9c); some re-
gions have never had nonclimatology forecasts issued
for this period (including parts of the southwest
United States).

Ranked probability scores logically build upon
Brier score evaluations, because they are computed
similarly. The ability to separately evaluate forecasts
for specific climate conditions is lost, however. This
means that ranked probability scores are most useful
for situations where forecast consequences are simi-
lar among all climate conditions or where a decision
maker can afford to play the odds across many events
or regions. For example, energy or commodity trad-
ers would benefit from use of ranked probability
scores. But an orchard irrigator holding junior water
rights, who may be pleasantly surprised by wet con-
ditions but devastated by unforeseen dry conditions,
would benefit more from using Brier scores for dry
conditions.

CONDITIONAL DISTRIBUTION DIAGRAMS.
Conditional distributions of forecasts and observa-
tions provide the most comprehensive evaluations
available to users. In this article we use two such dia-

FIG. 8. Brier skill scores for seasonal precipitation out-
looks issued during Dec–Feb and covering Jan–May
(water management scenario—winter, lower Colo-
rado). Only nonclimatological forecasts are considered:
(a) wettest tercile, (b) driest tercile. Blue (red) circles
indicate climate outlooks are better (worse) than cli-
matological probabilities (33.3% each tercile); circle size
indicates percent difference relative to 50% change
shown by outer circle.
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grams for evaluating forecasts. The first type of con-
ditional distribution in this paper is discrimination
diagrams that plot forecast probabilities by observed
condition. In the terminology of Murphy (1993), these
distributions identify the ability of the forecast system
to “discriminate” among climate events. For example,
the distribution diagram for wet tercile conditions
shows how frequently (when such conditions oc-
curred) the forecasts specified each possible probabil-
ity of wet tercile conditions. Similarly, the dry tercile
diagram charts how often the forecasts showed each
probability when conditions turned out to be in the
dry tercile (see Murphy and Winkler 1987, 1992 for
a more complete background on conditional distri-
butions). Markedly different probability distributions
should be associated with different climate conditions.

The second type of conditional distribution is the
reliability diagram. This shows, given each forecast
probability interval, how frequently observations ac-

tually ended up in one or another
tercile. One can thus see, for instance,
whether conditions turned out to be
dry 30% of the time that forecasts in-
dicated 30% chance of dry tercile con-
ditions. In the terminology of Murphy
(1993), these distributions identify
“reliability” by showing how well fore-
cast probabilities correspond with
their associated relative frequencies of
“correct” observations. These dia-
grams address questions about the
confidence that might be attributed to
a forecast in hand, analogous to the
false alarm rate.

Murphy and Huang (1991) and
Wilks (2000) have already done com-
prehensive evaluations for CPC cli-
mate outlooks, but the two conditional
distributions selected here for evalua-
tion are those that can be related to

simpler criteria and user concerns. Figure 10 shows
discrimination diagrams for the winter management
scenarios in the upper and lower Colorado River ba-

FIG. 10. (a)–(d) Discrimination diagrams and (e), (f)
observation histograms for seasonal precipitation
outlooks relevant to water supply management:
(a), (c), (e) lower Colorado River basin, issued Dec–
Feb and covering Jan–May (water management
scenario—winter, lower Colorado); and (b), (d), (f)
upper Colorado River basin, issued Dec–Apr and
covering Jan–Sep (water management scenario—
winter, upper Colorado). Discrimination diagrams
conditioned on observations for (a), (b) wet and (c),
(d) dry terciles. Blue (red) circles show relative fre-
quency of forecasts issued with indicated probabil-
ity for wet (dry) conditions.

FIG. 9. Skill scores for ranked probability scores for seasonal precipi-
tation outlooks for water management in the Southwest. Panels
correspond to water management scenarios: (a) fall; (b) winter,
lower Colorado; and (c) summer. Rest of legend same as in Fig. 8.
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sins, along with frequency histograms of the obser-
vation categories. In Fig. 10, perfect forecasts would
show, for wet observations, that all forecasts had speci-
fied probabilities of 100% and 0% for wet and dry
conditions to occur, respectively. While far from per-
fect, with the exception of climatology forecasts, lower
Colorado River basin forecasts show complete dis-
crimination for wet observations (i.e., no forecasts
with enhanced likelihood of dry conditions have been
followed by wet observations). Dry observations show

some overlap in forecast probabilities specified for wet
and dry conditions, but not nearly so much as for the
upper Colorado River basin. There, the distributions
of forecast probabilities for wet and dry conditions
vary little between wet and dry observations, and are
dominated by climatology statements.

Figure 11 shows reliability diagrams for the win-
ter scenario in the upper and lower Colorado River
basins along with frequency histograms of the prob-
ability intervals used to forecast wet and dry condi-
tions. Perfect specification of forecast confidence
would result in perfect alignment of forecast prob-
abilities and observational frequencies (i.e., all points
in Fig. 11 falling along a 1:1 line). For the lower ba-
sin, for forecasts of both wet and dry conditions, the
frequency of wet and dry observations generally in-
creases with the forecast probability, although fore-
cast confidence has been understated, especially for
forecasts of dry conditions. In contrast, upper basin
forecasts show poor reliability, especially for the most
extreme forecast probabilities.

Conditional distributions offer the advantage of
identifying specific situations whereby forecasts per-
form particularly well or poorly. But they are sensi-
tive to small sample sizes and unfortunately the CPC
dataset included only six years of data at the time of
this study. Obtaining sufficient sample sizes for each
prospective situation is problematic, requiring prag-
matic grouping of forecast–observation pairs across
multiple regions, lead times, seasons, and distribution
categories. The diagrams are also probably too com-
plex to interpret for all but the large water manage-
ment agencies and other groups staffed with specialists.

LESSONS FOR USERS. From the perspective of
water managers in the southwest United States, win-
ter precipitation outlooks made during fall and win-
ter are better than climatology forecasts according to
all criteria. Winter and spring forecasts of summer
precipitation lack skill, and in many areas have pro-
vided no guidance at all, indicating only climatology.
The implications of forecast performance are differ-
ent for water managers of the upper versus lower
Colorado River basins. The poor skill in forecasting
the climate of the upper basin, where high-elevation
snowpacks are the main source of water, reinforces
the vital importance of high quality estimates of snow-
pack. In the lower basin, snowpack is less extensive
and less reliable; flow forecasts depend on precipita-
tion and thus are less predictable (Shafer and
Huddleston 1985). The evident climate forecast skill
in the lower basin during winter and spring offers
potential for improving streamflow predictions.

FIG. 11. (a), (b) Reliability diagrams and (c)–(f) forecast
probability histograms for seasonal precipitation out-
looks relevant to water supply management: (a), (c),
(e) lower Colorado River basin, issued Dec–Feb and
covering Jan–May (water management scenario—
winter, lower Colorado); and (b), (d), (f) upper Colo-
rado River basin, issued Dec–Apr and covering Jan–Sep
(water management scenario—winter, upper Colo-
rado). In reliability diagrams, blue (red) circles show
fraction of wet (dry) observations occurring when fore-
cast with the indicated probability. Black lines refer to
climatological forecast probability (vertical) and obser-
vation frequency (horizontal), and perfect forecast re-
liability (1:1 line). Histograms conditioned on forecasts
for (c), (d) dry and (e), (f) wet terciles, with bin widths
based on forecast probability intervals (see Fig. 1).
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Compared to the upper Colorado River basin, not
only does the lower basin benefit from greater stor-
age capacity (Harding et al. 1995), but from greater
climate predictability as well.

These techniques are by no means limited in use-
fulness to water management. A glance at cattle
ranching and wildland fire management in the south-
west United States shows similar subtleties in the use
of climate forecast evaluations (Table 1).

In the case of ranchers, vulnerability to climate
stems, in part, from dependence on rain-fed range-
lands, although specific vulnerabilities also depend on
the location and type of operations (e.g., cow-calf or
steer operations). Ranchers’ interests in climate fore-
casts primarily involve the predictability of grass pro-
duction. They may increase herd size to exploit a good
grass season, or purchase additional feed and remove
stock to prevent degradation of rangelands during
drought.

Ranches are highly diverse, making it difficult to
generalize about which climate forecasts are most
important. The specific season of interest depends on
whether rangelands are most productive during win-
ter (generally low-elevation ranges) or
summer (high-elevation ranges). We
picked two representative scenarios to
analyze, one for grasslands that peak
in summer, encompassing forecasts
made in April and May for July–Sep-
tember (2 forecasts/ yr), and a second
for grasslands that peak in winter, en-
compassing forecasts made in October
and November for December–March
conditions (8 forecasts/ yr).

Figure 12 assesses seasonal tem-
perature and precipitation outlooks
using ranked probability scores from
the perspective of cattle ranchers.
Figure 12a shows that even with the
relatively short lead times of ranchers,
CPC outlooks have provided no in-
formation about summer precipi-
tation, although summer tempera-
ture forecasts do show some skill
for portions of the southwest United
States (Fig. 12b). CPC outlooks for
winter conditions show skill for both
precipitation and temperature (Figs.
12c and 12d, respectively), with the
Southwest showing generally the best
combined performance.

Within the southwest United States,
climate forecasts perform better from

the perspective of cattle ranchers making use of win-
ter range, compared to those using summer range.
The greater climate predictability provides competi-
tive advantages, if the ranchers have financial and op-
erational flexibility to exploit them. Anything ranch-
ers can do to shift operational risks from summer to
winter would improve their competitive situation.

Not surprisingly, wildland fire managers also pay
close attention to the growth of vegetation. The spe-
cific seasons of interest to fire management agencies
depend on the climate, elevation, and land cover type
within their area of jurisdiction (ISPE 2000). For in-
stance, low-elevation grasslands can be at high risk
throughout a dry winter, while high-elevation forests
generally have later fire seasons.

Wildland fires in the southwest United States typi-
cally result from a reliably arid spring and early sum-
mer followed by lightning storms that occur prior to
the summer monsoon (Swetnam and Betancourt
1990). Increasingly, prescribed burn programs are
used to prevent catastrophic wildfires by preemp-
tively removing fuels under ideal field conditions.
Fire risk is also highly conditioned on prior climatic

FIG. 12. Skill scores for ranked probability scores for seasonal precipi-
tation and temperature outlooks for cattle ranching in the Southwest.
Panels correspond to cattle ranching scenario—summer: (a) precipi-
tation and (c) temperature, and winter: (b) precipitation and (d) tem-
perature. Rest of legend same as in Fig. 8.
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conditions, with the second dry winter after a wet
winter, and a dry summer following a dry winter,
being critical in the Southwest (Swetnam and
Betancourt 1990).

Regional fire managers from throughout the coun-
try submit their requests for seasonal resource needs
(e.g., fire crews, equipment) to national headquarters
in March, regardless of their actual fire season (ISPE
2000). To analyze forecast reliability for this spring
decision period we produced scores for forecasts
issued January–March and covering April–July
(6 forecasts/yr).

Figure 13 assesses seasonal temperature and pre-
cipitation outlooks in this period using Brier scores.
For a few areas within the Southwest, there is some
skill with regard to cool temperatures that may be
useful for planning seasonal prescribed burn oppor-
tunities. However, precipitation and temperature
forecasts covering April–July are generally poor, even
for the relatively short lead times considered.

The poor performance of climate outlooks from
the perspective of wildland fire managers suggests real
potential for misuse if the forecasts are incorporated
into decisions without extreme care. We explored
whether requiring fire managers to submit budget,
equipment, and personnel requests in March limits

the potential usefulness of the climate
outlooks. This analysis of forecasts is-
sued at other times of the year involved
combining the 102 regions of Fig. 2
into 10 regions (not shown) represent-
ing current wildland fire management
divisions (www.nifc.gov/fireinfo/
geomap.html) as well as combining
versions of these divisions to produce
more homogenous climatic zones. We
looked at forecasts for each season
made with one-half-month lead times.
Only those regions that have impor-
tant winter fire risks (e.g., southern
California) could possibly benefit from
seasonal climate outlook skill.
However, for other regions, to the ex-
tent that fire risks are affected by win-
ter conditions, forecast skill at even
longer lead times may prove useful,
but not under the current resource re-
quest schedule.

A STARTING POINT FOR
IMPROVING EVALUATIONS.
Frequently updated forecast evalua-
tions, using multiple criteria, should

be available to potential users of seasonal climate out-
looks. The evaluation framework presented here pro-
vides several criteria that accommodate variations in
users’ interpretive abilities. The framework offers
trade-offs between different levels of informativeness
and understandability, and enables users to increase
the sophistication of their understanding about cli-
mate forecasts, their credibility, and implications of
using them for decision making.

With the evaluations presented here, decision
makers and forecasters can begin to determine essen-
tial forecast attributes, requisite performance thresh-
olds, and relationships among the quality of forecasts
and their usefulness in decision making, and ulti-
mately their economic value. Graphing recent fore-
casts and observations together enables intuitive
identification of multiple performance attributes.
Products such as Figs. 3–5 represent a starting point
for determining, through interaction with users, ef-
fective formats. Forecast characteristics that stand out
graphically include the seasonality of forecast confi-
dence, tendencies to use only climatology (i.e., to not
provide a forecast), and consistency in the direction
of predicted anomalies as forecast lead times get
shorter. The extremity or normalcy of recent condi-
tions can also be clearly identified and placed in his-

FIG. 13. Skill scores for Brier score for seasonal precipitation and tem-
perature outlooks issued during Jan–Mar and covering Apr–Jul (fire man-
agement scenario—spring). Only nonclimatological forecasts are con-
sidered. Panels show precipitation: (a) wettest and (b) driest; and tem-
perature: (c) warmest and (d) coolest terciles. Legend same as Fig. 8.
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torical context. Finally, specific forecasts can be di-
rectly compared to their associated observations.
Although it is more appropriate to judge probabilis-
tic forecasts in the aggregate rather than individually,
a time series of all forecasts should help users visual-
ize aggregate performance.

The demonstrated forecast skill, or lack thereof,
provides a basis of experience for exploring the im-
plications of forecast performance. Forecast quality
can have implications for prioritizing scientific ef-
forts, realizing competitive advantages, adjusting
management processes, and changing climate fore-
casting efforts. With the evaluation framework pre-
sented here, we believe that resource managers will
more readily realize the potential of climate forecasts
from the CPC.
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