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ABSTRACT: Official seasonal water supply outlooks for the western United States are typically produced once per
month from January through June. The Natural Resources Conservation Service has developed a new outlook
product that allows the automated production and delivery of this type of forecast year-round and with a daily
update frequency. Daily snow water equivalent and water year-to-date precipitation data from multiple SNOTEL
stations are combined using a statistical forecasting technique (‘‘Z-Score Regression’’) to predict seasonal stream-
flow volume. The skill of these forecasts vs. lead-time is comparable to the official published outlooks. The new
product matches the intra-monthly trends in the official forecasts until the target period is partly in the past, when
the official forecasts begin to use information about observed streamflows to date. Geographically, the patterns of
skill also match the official outlooks, with highest skill in Idaho and southern Colorado and lowest skill in the
Colorado Front Range, eastern New Mexico, and eastern Montana. The direct and frequent delivery of objective
guidance to users is a significant new development in the operational hydrologic seasonal forecasting community.
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INTRODUCTION

For close to 70 years, the Natural Resources Con-
servation Service (NRCS) of the United States
Department of Agriculture has published seasonal
water supply outlooks for use in natural resource
management. The NRCS National Water and Climate
Center (NWCC) produces these outlooks once per
month from January through June, in partnership
with the National Weather Service (NWS) and local

cooperating agencies. The geographic and climatic
scope of the forecasts ranges from minor creeks of the
semi arid southwestern United States (U.S.) to glaci-
ated basins of Alaska. These forecasts are utilized by
a broad spectrum of users for a variety of purposes,
including irrigated agriculture, flood control, munici-
pal water supply, endangered species protection,
power generation, and recreation.

Near the start of each forecast month, four NWCC
forecasters have approximately three to five working
days to create, analyze, adjust, coordinate, and issue
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forecasts for over 180 points apiece simultaneously,
for a total of 732 forecast points throughout the
region. Maintenance of the forecast environment and
production of the outlooks are both human-resource
intensive tasks, and this has been a limit on the more
frequent updating of the forecasts. Statistical fore-
casting techniques have also been limited to using
the data available on the first of the month [because
historically, snow water equivalent (SWE) data were
collected at manually measured snowcourses once per
month]. Nonetheless, mid-month updates to the fore-
casts are easily the most frequent request from users,
especially if a major weather event has significantly
changed the character of hydrologic conditions on the
watershed. A recent observed increase in hydrologic
variability (Pagano et al., 2004b; Pagano and Garen,
2005) has made dynamic water management all the
more critical.

The use of hydrologic simulation models has been
proposed as a method to satisfy the demand for more
frequent forecasts. These models rely on daily or sub-
daily forcing data and therefore are not tied to the
monthly schedule and can be run anytime. These
models are used extensively by the NWS (Franz
et al., 2003). The calibration of these models, how-
ever, is extremely time intensive and requires hydro-
logic modeling expertise. Real-time operation, in
practice, also involves manual inspection and adjust-
ment of model states, although some objective
‘‘hands-off’’ hydrologic forecasting systems exist (e.g.,
Wood and Lettenmaier, 2006). The NRCS has made
initial attempts to implement a simulation modeling
forecasting system, the most recent effort being the
use of the Precipitation Runoff Modeling System
within the Object Modeling System (Pagano et al.,
2005), but the large resource requirements have been
a hindrance for the small staff.

While resource ‘‘expensive’’ to run and maintain,
simulation models do not produce significantly more
accurate seasonal streamflow volume forecasts than
the existing statistical forecasting system (Franz
et al., 2003; Pagano et al., 2004a). Furthermore, sim-
ulation models have a well-known tendency to pro-
duce overconfident forecasts with narrow forecast
distributions in part because they ignore model cali-
bration and data errors (Barnston et al., 2003; Franz
et al., 2005; Wood and Schaake, 2007). Some simula-
tion models also impose extraordinary requirements
on the computers that run them (e.g., specific operat-
ing systems, powerful processors, and extensive data
storage).

This paper introduces a product that represents a
low-cost intermediate solution. These ‘‘daily update
water supply forecasts’’ are forced by daily data and
therefore can be updated daily and run year-round.
Based on a statistical regression technique, the

calibration and operation of the model is almost
entirely objective and automated. The calculations
are relatively simple, and basic computing resources
can be used to complete processes within a demand-
ing operational timeline. A series of western U.S.
basins are currently being run operationally; the fore-
casts are available at http://www.wcc.nrcs.usda.gov/
wsf/daily_forecasts.html.

MODEL DATA

The forecasting technique used to create the prod-
uct described herein involves statistical regression
relating a collection of predictors (SWE, accumulated
precipitation) to a predictand (streamflow). This sec-
tion describes the collection of and basic processing of
the data from various sources.

Predictand

The NRCS primarily forecasts seasonal streamflow
volume (e.g., April-July total flow) at specific gaging
locations or above reservoirs. Many forecast points
are regulated, in that the observed streamflow is sig-
nificantly altered by human activity upstream such
as irrigation diversions and reservoir releases. Natu-
ralization of streamflow values to remove human
influences is a difficult task, and even the best efforts
cannot completely remove human effects. In reality,
there are differences between true natural flow and
unregulated flow data (which account for a limited
number of measured reservoirs and losses). The
NRCS maintains a database of unregulated flows (at
a monthly time step) that the daily forecast program
(described below) can directly access over the
Internet. For stations without major human influ-
ences, the hydrologist also has the option of using the
program to acquire observed streamflow data from
the U.S. Geological Survey’s National Water Informa-
tion System (USGS NWIS) webpage. Acquisition and
processing is automated – the hydrologist specifies
the station number and instructs the program to
obtain the data. If an annual time series of daily val-
ues exists, the program can also forecast some aspect
of hydrograph behavior besides seasonal volume (e.g.,
peak flow amount or date). However, that data must
be obtained external to the program and entered
manually.

If forecasting flow volume, the forecaster then
chooses the target season of the predictand (e.g.,
total flow for April-July). A transformation (i.e.,
square root, cube root, or natural logarithm) to the

PAGANO, GAREN, PERKINS, AND PASTERIS

JAWRA 768 JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION



predictand can also be applied. This is useful in the
case of a nonlinear relation between predictor and
predictand or in the case of heteroscedasticity in the
error distribution. The real-time forecasts are ulti-
mately untransformed and expressed as real-world
units (e.g., m3, acre-feet).

Predictors

The NRCS SNOTEL (SNOw TELemetry) network
(http://www.wcc.nrcs.usda.gov/snow) consists of over
700 remote data sites throughout the western U.S.
Standard sensors include a snow pillow to measure
SWE on the ground, a storage precipitation gage
that measures water year-to-date (beginning October
1) accumulated precipitation, and an air tempera-
ture sensor (some enhanced sites have additional
sensors as well). Only the SWE and precipitation
data are used as predictors for the daily forecast
product.

Most SNOTEL sites are located at moderately high
elevations, averaging around 1,400 meters in Wash-
ington, 2,000 meters in Idaho, and 3,000 meters in
Colorado. Although they vary by region, exposure,
and elevation, most NRCS snow measurement sites
begin accumulating persistent snow cover by Novem-
ber 1 and reach peak accumulation by mid-April.
Approximately half of the sites are typically snow
free by the last week of May, although the melt rate
is rarely constant, and brief episodes of accumulation
during the melt season are common (Serreze et al.,
1999). The NRCS began the expansion of the SNO-
TEL network in earnest in the early 1980s, hence
most stations now have approximately 25 years of
data. The oldest sites were installed in the mid
1960s, primarily in Montana.

The hydrologist specifies the list of station identifi-
ers to be used as predictors, and the program
acquires the data via the Internet and puts it into a
conveniently usable format. The program also calcu-
lates the maximum SWE to date for each water year
for use as a possible predictor. The program automat-
ically fills small gaps in the meteorological record (no
more than eight days per year) by assuming persis-
tence in SWE or water year-to-date precipitation. If
more than eight not necessarily continuous days are
missing in a particular station-year, the entire water
year is excluded from analysis. This ensures that
shifts in the real-time forecast throughout the season
are solely due to meteorological trends and not due to
variations in the period-of-record for calibration on
different days of the year. For example, the April 1
forecast should not use data from 1981-2004 if the
April 2 forecast uses 1984-2003 data; both should use
the same record for consistency.

MODEL CALIBRATION

Predictor Selection and Censoring

The hydrologist begins predictor selection by
acquiring a list of candidate SNOTEL stations in the
region. This is a somewhat subjective process,
attempting to balance complete geographic coverage
with adequate station record length and skill in pre-
dicting streamflow. A common strategy is to reuse
the same stations that are predictors in the once-a-
month forecasting equations. The program also pro-
vides feedback about the quality of predictors
throughout the calibration process, so the hydrologist
can easily remove poor predictors and recalibrate if
necessary. Given a list of SNOTEL stations, the pro-
gram next automatically analyzes the available data
to determine the best predictors for each station for a
given day of the year based on the coefficient of deter-
mination (r2) between the predictor and predictand
(Figure 1). Two predictors are used for each SNOTEL
site, one representing SWE, the other precipitation
(real-time SNOTEL air temperature was not consid-
ered due to a lack of quality control). For SWE, possi-
ble predictors include the station’s SWE on the
current date, SWE on some date prior to the current
date, or the peak SWE to date. For precipitation, the
accumulated water year-to-date or water year to
some date earlier in the season can be used.

The predictor selection process is summarized in
Table 1. Generally, the program assumes that as time
passes, more information is learned about the charac-
ter of the season, leading to less uncertainty and
more skillful forecasts. However, late spring or sum-
mer precipitation may be less important than precipi-
tation recorded earlier in the season given the higher
evaporation rates and spatial variability of convective
warm season rainfall. Therefore, the optimal precipi-
tation predictor may end some day before the forecast
date. Likewise, SWE during summer is usually zero,
hence a poor predictor of flow, in which case, SWE on
a past date (e.g., April 4 or the peak for the season)
may be a more accurate predictor. To prevent overfit-
ting and rapid switching of variables throughout the
season, predictors at a later date are always pre-
ferred except in certain cases late in the season. The
algorithm finds the day of the year that a predictor
has its highest r2 with the predictand (e.g., April 17,
r2 = 0.88). Prior to this date, the most up-to-date data
are always used as predictors. However, for subse-
quent dates, the most up-to-date data are used for
prediction until the r2 falls below a user-specified tol-
erance (e.g., 0.03) of the maximum r2 for the season.
If the r2 falls below the tolerance (e.g., May 20,
r2 = 0.84), then the data from the last good date (e.g.,
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May 19) are chosen as the predictors instead. The
assumption of this heuristic is that early season non-
monotonic behavior of skill vs. forecast lead-time is
due to limited sampling of the historical record and
that true skill always increases vs. time. However, at
the end of the season, the loss in skill vs. time is due
to a change in the meaning of the data (e.g., mid-
April SWE is relevant to total basin moisture while
late-June is relevant to springtime temperatures and
the timing of moisture, the latter being an inferior
predictor of total seasonal runoff volume). The default
threshold value (0.03) could be changed if the fore-
caster judges differently about the risk of overfitting
vs. potential unrealized skill.

Early in the water year, snowpack may be ephem-
eral, and its correlation with streamflow may be spu-
rious or exaggerated. Likewise, anomalously wet
basin conditions early in the season can lead to fore-
casts that rapidly vary (‘‘whipsawing’’) and are well
outside the range of historical variability (extrapola-
tion). During the course of the calibration, the pro-
gram calculates the daily period-of-record average of
SWE and water year-to-date precipitation separately.
It then finds the day of the year for each element that
this daily average is at its maximum (i.e., the peak of
the average, as opposed to the average of the peak,
the interannual average of each year’s maximum
SWE). If the long-term average on a given day for a
particular variable (both during accumulation and
melt) is less than or equal to a ‘‘censor limit’’ times
the average peak, then this predictor is excluded from
the analysis. This censor limit can be set by the fore-
caster, and practice has suggested that 10% is ade-
quate for most situations. For example, suppose the
peak of the SWE average for a particular station is
50 cm occurring April 17. On October 15, the period-

of-record average SWE is <5 cm. Therefore, on Octo-
ber 15 of every year, the SWE data for this station
will be excluded during the search for candidate pre-
dictors. Thresholds are applied to both SWE and
water year-to-date precipitation and can come into
effect on different days for each element. In the case
where all predictors are censored, a forecast is not
produced. If a significant early-season moisture anom-
aly occurs during this period, water managers are still
able to acquire raw data from the SNOTEL network
and make qualitative assessments on their own.

Predictor Preparation and Filtering Using Z-Score
Regression

Water supply forecasters are faced with several
significant statistical challenges, most notably how to
address predictor collinearity and missing data. Pre-
dictor variables used in forecasting are usually highly
correlated with each other. Standard multiple regres-
sion has difficulty estimating the significance of and
coefficients for each predictor in this situation. Garen
(1992) proposed using principal components analysis
(PCA) filtering of predictors before use in regression,
and this technique has become the standard for oper-
ational seasonal streamflow forecasting in the NRCS
and elsewhere.

A collection of predictors is also likely to have a
variety of periods of record, with relatively young sta-
tions intermixed with older stations. In standard
regression, the requirement of serial completeness
forces the forecaster to discard the younger stations,
to discard the non-serially complete years of
data, or to estimate every missing data value until
completeness is achieved. Operationally, missing

FIGURE 1. Relationship of SWE and Water Year Precipitation With Seasonal Streamflow vs. Time for the Rio Grande Near Del Norte. Skill
from SWE information increases until early May after which snow begins to melt. Skill from accumulated precipitation decreases in the sum-
mer, and the program does not consider new precipitation information after late July (shown by arrow). These correlations are used to deter-
mine the relative weight of each predictor in the forecast. Some correlations are not evaluated (SWE before October 28 and after June 12
and precipitation before October 31) due to the censor limit described in the text.
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real-time data values are also a notable challenge.
For example, during March 2003-March 2008,
approximately 7.5% and 5.8% of SNOTEL snow and
precipitation data, respectively, remained invalid or
missing within 24 hours of initial data collection (the
higher frequency for snow data is likely due to inva-
lid negative values associated with sensor flutter dur-
ing snow-free conditions). Without a serially complete
real-time dataset, no forecast can be produced even if
most of the information is available. To address all
these concerns, the program uses a heuristic statisti-
cal technique (‘‘Z-Score regression’’; Pagano, 2004) to

combine predictors (Figure 2). This technique is a
modification of unit-weighted regression (Schmidt,
1971) and takes advantage of predictor collinearity to
relax the requirement for serial completeness. The
strengths and weaknesses of this technique are
described in more detail and numerical examples are
provided in NRCS (2007). Generally, in situations of
serially complete data, the regression coefficients of
PCA and Z-Score are different, but their resulting
forecasts are very similar. However, Z-Score regres-
sion was chosen for this application because it is
adroit at automatically handling a non-serially com-

TABLE 1. Pseudo-Code of Predictor Development for a Given Station.

DEFINE Elements:
P as water year (beginning October 1) to date accumulated

precipitation
S as current snow water equivalent
M as peak water year snow water equivalent to date

Determine Elements to be used as predictors on each Day:

FOR each Element
FOR each Day of water year (October 1 - September 30)

IF current Day’s 1971-2000 normal is very small (< 10%)
compared to peak of average THEN

Predictor for this Day for this Element will not be developed
ELSE

Predictor for this Day for this Element will be developed
Find day of year that Element has maximum correlation with predictand

END IF
NEXT Day

NEXT Element

Develop predictors:

FOR Elements P and S
FOR each Day of water year

IF Element is to be developed THEN
Calculate skill (r2) of Element for Day
IF Day is after day of maximum correlation with predictand

AND IF skill of Element for Day is worse than best skill
(e.g., max r2 - r2 > 0.3) THEN
Substitute Element for Day with Element for most recent
day after day with best skill that still lies above skill
difference threshold

ELSE
Retain Element for Day as predictor

END IF
END IF

NEXT Day
NEXT Element

Choose between Elements S and M as snow predictor:

FOR each Day of water year
IF both S and M are developed for Day

Choose the one with highest r2 with predictand
ELSE IF only one of S and M is developed for Day

Use the one that is available
ELSE

Do not use snow predictor for Day
END IF

NEXT Day

Perform Z-score regression for each Day using predictors available for Day
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plete set of predictors, a common operational real-
time forecasting challenge.

Briefly, each predictor is converted into a Z-Score
(a standardized anomaly, the value minus the period-
of-record mean divided by the period-of-record stan-
dard deviation). An index is created where each year
is a weighted average of all of the available stations’
Z-Scores. The weighting is based on the r2 between
the predictor and the predictand, such that better
sites are emphasized in the index, and the influence
of worse sites is reduced. Not every station is required
to have data available in every year; the weighted
average is only based on reporting stations in that
year. Although the Z-Score method can use predictors
with a negative correlation with the predictand (by
switching the algebraic sign of the predictor time ser-
ies values), these predictors were not considered for
this application given the lack of physical meaningful-
ness of the result for the types of data considered.

Individual stations are first grouped by data type
and then grouped again across data types. For exam-
ple, all SWE variables are lumped together into a sin-
gle index and all precipitation variables into another,
then the SWE and precipitation indices are them-
selves combined into a weighted average, again using
their respective r2 with streamflow. Finally, this sin-
gle composite index summarizing precipitation and
SWE information from all sites is regressed against
the predictand in standard fashion. A numerical
example of the calculations necessary to generate a
real-time forecast is included in Table 2.

The end results of model calibration are, for each
of 365 days per year:

(1) Period-of-record mean and standard deviation of
each predictor for conversion of station data into
Z-Scores.

(2) The selection, for each station and data type, of
which variable is being used as a predictor. For
SWE data, the choices are the current SWE

value, a value earlier in the season, or peak-to-
date; for water year precipitation data, the
choices are accumulation to present or accumu-
lation to a date earlier in the season.

(3) Weighting factors (r2) for each predictor and for
station groups as a whole for use in the combi-
nation of predictors during Z-Score regression.

(4) Slope and intercept of the regression of the pre-
dictand with the composite predictor index.

(5) Regression calibration skill statistics (r2, stan-
dard error).

It is standard water supply forecasting procedure
to use a regression model that is based on the best fit
with the data, with a confidence interval whose width
is based on the standard error of a jackknife (‘‘leave-
one-out’’) cross-validation. Jackknifing is currently
not used to develop the product described herein due
to its computational expense (generally at least 20
times the normal expense, possibly much more
depending on the strictness of the cross-validation).
The a posteriori nature of variable selection (as dis-
cussed in Predictor Selection and Censoring) and sta-
tion weighting (as discussed in Predictor Preparation
and Filtering Using Z-Score Regression) increases the
chance of overfitting, resulting in an inflated estimate
of forecast skill and a forecast distribution that is too
narrow (i.e., overconfident). In practice, with sufficient
years of data in the calibration dataset, the difference
between a best-fit standard error and a jackknife
standard error is commonly relatively small.

REAL-TIME FORECASTING AND PRODUCTS

At the NWCC, the forecast models are run twice
daily (early morning and mid day, to capture any
data quality edits performed by NRCS personnel) for

FIGURE 2. Flow Diagram of the Z-Score Regression Process.
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all basins (148 forecasts in 25 min on a standard per-
sonal computer of typical office-use specifications). All
of the water year-to-date precipitation and SWE data
are acquired via the Internet and processed. The
real-time predictor data are converted into Z-Scores
and combined according to the Z-Score regression
technique. If half or more of the predictor data are
missing for a basin, the forecast is not evaluated on
that date. All of the regressions to date for a forecast
point are evaluated, and the 50% chance of excee-
dance forecast is generated. A confidence interval
around this forecast is generated at the 10%, 30%,
70%, and 90% exceedance levels (similar to official
NRCS monthly water supply outlooks) by assuming a
Gaussian error distribution centered on the regres-
sion output and having a width proportional to the
calibration standard error. If a transformation was
applied to the predictand, the error distribution is
applied in transformed space before the exceedance
forecasts are untransformed into real-world units (see
NRCS, 2007 for more information).

From this information, three graphics are generated
per forecast point (Figures 3-5). The data are also
shown in map form in a variety of contexts [e.g., fore-
cast as percent of normal, change in forecast over 1-,

3-, 7-, and 14-day intervals, and the current day’s
expected skill (similar to Figure 6)]. A spreadsheet file
is also created containing all the information displayed
in the plots and maps as well as additional diagnostic
information. In these products, the automated forecast
is referred to as the ‘‘Guidance volume forecast.’’
NRCS forecasts are routinely expressed in terms of
thousands of acre feet (1 k-ac-ft = 1.23 million m3).

SKILL CHARACTERISTICS COMPARED TO
OFFICIAL FORECASTS

The products display the expected skill of the fore-
casts, that is, the explained variance (r2) of the
regression equation used at each forecast lead-time.
A skill value of 1 indicates perfect correlation
between the forecast and observed, whereas 0 indi-
cates no relation. These skill values are fixed for the
calibration set and only vary by lead-time. They are
not situation dependent and do not vary from year to
year (unless the forecast set is recalibrated using
more up-to-date data). One appealing aspect of least-

TABLE 2. Example Calculation of a Real-Time Forecast Issued April 1, 2007 for April-September Runoff
Volume (in thousands of acre-feet) for the Rio Grande Near Del Norte (USGS ID: 08220000).

ID Name r2 Average SD Current Observation Current Z Z · r2

April 1, 2007 snow water equivalent
07m30s Slumgullion 0.565 13.28 2.91 12.9 )0.132 )0.075
06m03s Upper San Juan 0.526 32.38 12.73 18.8 )1.066 )0.561
07m21s Middle Creek 0.783 18.66 5.82 16.3 )0.405 )0.317
06m23s Lily Pond 0.415 14.89 6.16 9.8 )0.826 )0.343
07m32s Beartown 0.566 23.56 7.60 14.7 )1.165 )0.660

Sum of reporting 2.855 )1.955
Water year to date (October 1-March 31) precipitation

07m30s Slumgullion 0.538 12.89 3.14 13.4 0.163 0.088
06m03s Upper San Juan 0.570 34.57 9.98 33.4 )0.117 )0.067
07m21s Middle Creek 0.730 22.49 5.72 24.1 0.282 0.205
06m23s Lily Pond 0.635 19.19 5.13 20.3 0.216 0.137
07m32s Beartown 0.623 23.49 5.22 25.3 0.346 0.216

Sum of reporting 3.096 0.579

Composite index r2 Average SD X Z Z · r2

Snow 0.723 0.102 0.980 )0.685 )0.803 )0.580
Precipitation 0.722 0.083 1.012 0.187 0.103 0.074
Sum of reporting 1.445 )0.506

SE r2 Slope Intercept X Y Y2

Regression 2.660 0.738 4.379 22.640 )0.350 21.106 445.457

Notes: In this example, the current data were used for the predictors, although this is not necessarily the case for other lead-times or basins
(see Table 1 for more information). The ‘‘X’’ entries for the composite index and final predictor are the sum of reporting Z · r2 divided by
the sum of reporting r2. If a particular station’s data are missing, then it is not included as part of these weighted averages. This nonlinear
equation utilized a square root transformation to the predictand, and therefore the regression result (Y) is squared to obtain a forecast in
real-world units.
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squares regression-based forecasts is that they are
constrained to be unbiased by construction, as
opposed to forecasts produced from a simulation
model. Therefore, in the absence of conditional or
unconditional biases, explained variance is an appro-
priate skill measure.

The daily forecasts exhibit many of the skill
characteristics of the official forecasts themselves
(Pagano et al., 2004a). Their skill vs. lead-time is
primarily related to the importance of spring precip-
itation in the annual cycle, so that forecasts for
locations where most of the water year’s moisture
comes during winter (e.g., Washington, Oregon,
Idaho) perform better earlier in the season than
those for places where the bulk of moisture
normally comes during spring and summer (e.g.,
the Missouri River basin, the Rocky Mountain
Front Range). They also perform well in regions
that are snowmelt-dominated (e.g., the highlands of
Colorado) and would not be expected to perform
well in regions with midwinter melt, high base
flows during winter, or complex subsurface geologic

processes (e.g., the west side of the Cascade
Mountains in Washington and Oregon, east of the
Cascades in central Oregon).

The most skillful April 1 forecast series calibrated
to date has been the Boise River near Boise, Idaho.
For this high elevation basin in which streamflow
during the typically dry summers is driven largely
by snowmelt, forecasts of April-July runoff have an
r2 = 0.91 with the observed and an average absolute
error of 9.3% of the 1971-2000 normal. Of the 148
points calibrated as of 2007 (Figure 6), half have
April 1 skill of r2 > 0.71, and half have skill between
0.59 and 0.80. With April 1 forecast vs. observed r2

of 0.2-0.4, the poorest performers are the Front
Range basins such as the South Platte River basin
of Colorado and the Canadian River basin of New
Mexico, as well as the Musselshell River basin in
Montana. None of the rainfall-dominated basins of
the Pacific Northwest (e.g., the Willamette River
basin) have been calibrated yet, although they are
expected to be of low skill (r2�0.4), similar to the
official forecasts.

FIGURE 3. Scatter Diagram of Historical (calibration) Forecasts Issued Using April 1 Data vs. Observed Streamflow Volume for
the Rio Grande Near Del Norte. The forecast using April 1, 2007 data is highlighted. This product was generated retrospectively
on October 30, 2007, as indicated by the time-stamp in the figure. In real-time, the forecast for the current day would be shown.
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RECEPTION AND PERFORMANCE

The daily forecast product was originally developed
in October 2005 at the request of water managers on
the Rio Grande, and early versions were also tested
on users and NRCS personnel in Montana, Idaho,
and the Upper Colorado River basin. The testing was
unstructured and informal, and the subjective
response was favorable. There was initial concern
that users might confuse this product with the official
forecasts, although the concern later proved
unfounded (especially if the official forecasts are pro-
vided on the graphs for comparison). Indeed, several
users indicated that the greatest strength of this tool
is that it indicates the relative trend in the outlook
since the last official forecast. This trend could be
used as a ‘‘forecast of the forecast,’’ a mid-month indi-
cator of how the first of month official forecasts may
change. This information is particularly useful if the
calendar of water management decisions does not
align with the release of the official outlooks. For
example, Upper Rio Grande water managers reassess
their situation and adjust deliveries every 10 days,
and some decisions are required to be made on the
first day of the month, even though the official out-
looks may not be ready until the fifth day of the
month. A common user perspective is that having

daily updates to the water supply forecasts greatly
reduces the chance of a major surprise when a new
official forecast is released. Users are particularly
concerned if a change in forecast conditions will shift
them into a different management regime, and they
appreciate the early warning of any potential
changes.

By the end of 2006, 47 basins were being cali-
brated and run, and a skill evaluation was performed
on the 39 basins with observations available. At lead-
times based on April 1, the probabilistic reliability of
the forecasts (e.g., when the product says the flow
will be below a certain level 30% of the time, and this
actually occurs 30% of the time) was excellent. At the
end of the season (September 30), the forecast reli-
ability remained good (38% of observations fell in the
40% of the distribution between the 30% and 70% ex-
ceedance values of the forecasts, and 15% fell in the
20% of the distribution above the 10% exceedance or
below the 90% exceedance). A preliminary evaluation
of 2007 (98 of 148 observed values available) suggests
stronger under-confidence (52% between 30% and
70% exceedance and 10% beyond 10% and 90% excee-
dance). There is significant spatial correlation of
errors across sites, and therefore each basin is not an
independent sample. Many years would be necessary
to obtain a true assessment of the probabilistic
aspects of the forecasts.

FIGURE 4. Daily Exceedance Guidance Forecasts for 2007 (colored lines) vs. Period-of-Record (POR) Historical Range of Variability
(dark gray background is 70-30% exceedance probability interval; light gray background is 90-10% exceedance probability interval)

and the Official Forecasts (yellow squares). Observed flow was 580 k-ac-ft. Note that the sudden rises in the forecasts during
the winter indicate the occurrence of storms, and the snow declines in the forecasts are during inter-storm periods.
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FIGURE 5. Guidance Volume Forecast for 2007 as Percent of Normal (blue line) vs. Official Forecasts (yellow
squares) and Guidance Skill (r2) From Calibration. Observed flow was 109% of normal. Notice divergence in

official and guidance forecasts in May. Also note that the sudden rises in the forecasts during the winter
indicate the occurrence of storms, and the snow declines in the forecasts are during inter-storm periods.

FIGURE 6. Historical Calibration Skill (r2) of the Forecasts Issued January 1 (a) and April 1 (b). Upward triangles
indicate relatively high skill, and downward triangles mean low skill, with plus and minus signs highlighting the extremes.

Skill on April 1 is highest in Idaho, the Colorado River basin, and parts of the Rio Grande. Skill is lowest throughout the
Missouri basin (east flowing rivers in Montana, Wyoming, Colorado) and the Canadian basin in eastern New Mexico.
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In 2007, the westwide average of the forecast error
as percent of the 1971-2000 normal was 12% on April
1. In comparison, the official forecasts had an April 1
average error of 14%, slightly worse than the objec-
tive product. The westwide median forecast error was
10% for the guidance forecasts and 11% for the offi-
cial forecasts, suggesting that the products are com-
monly comparable. The variance of the error of the
official forecasts is greater than the objective guid-
ance (i.e., where the skill is high, the official forecasts
perform best, and when the skill is low, the objective
guidance is superior).

Although it is unrealistic to judge the quality of a
system based on a single year’s performance, the
result was unexpected, given that this is a completely
automated process and uses only a subset of available
information to create the forecasts. For example, this
product does not include information about anteced-
ent streamflow or soil moisture, springtime tempera-
tures, or climate forecasts such as those based on the
El Niño ⁄ Southern Oscillation. In particular, when
part of the forecast target (e.g., April-July) is in the
past (e.g., a forecast issued May 1), hydrologists know
the observed flow to date with complete confidence,
whereas that information is not included in this guid-
ance product. This product also lacks the human
expertise associated with the official forecasts.

DISCUSSION

Although it offers many opportunities, the daily
forecast tool has faced a few challenges in reaching
operational production. First, this product is highly
automated and relatively easy to calibrate and there-
fore requires a minimum amount of human supervi-
sion or intervention. Depending on one’s perspective,
this may be an asset or a liability. The tradeoff
between automation and human intervention is a
theme that has long been discussed throughout fore-
casting enterprises. Automation allows the use of a
broader palette of tools, and objectivity protects the
forecasts from the human forecaster’s cognitive biases.
On the other hand, improper automation excludes
human expertise and gives the process a ‘‘black box’’
feel, potentially eroding the confidence in the product.

The second challenge has been the introduction of
a new forecasting and regression technique. Garen
(1992) compared the regression results for a basin in
Idaho for PCA (described in Predictor Preparation
and Filtering Using Z-Score Regression) and the
existing forecasting method of the agency at the time.
PCA displayed superior performance, and it has been
NRCS’s official regression technique for close to two

decades now. Although Pagano (2004) found promis-
ing results comparing the official historical outlooks
to the cross-validated results of Z-Score regression at
29 basins, a systematic comparison between Z-Score
and PCA does not currently exist. Therefore, conser-
vative elements within the agency resist the use of Z-
Score regression until these tests are completed and
its operational behavior is better understood. This
requirement is not uncommon; the NWS has indi-
cated that new hydrologic forecasting models must fit
within their existing infrastructure and demonstrate
improved performance in an independent operational
setting over several years (Hartmann et al., 2003).
The resources to perform such tests are generally
unavailable (to researchers or forecasting agencies),
hindering the transfer of research to operations.

The third challenge has been the delivery of raw
model guidance directly to users. Myriad climate and
weather model outputs are available on the Internet to
help users build confidence in the official outlooks or to
help them make their own judgments about what the
forecast should be. In contrast, much of the inputs into
the official water supply forecasts are not available to
users because delivering ‘‘unprocessed’’ products is
sometimes considered irresponsible and to be avoided.
Forecasters are concerned that users may confuse raw
model output with the official forecasts (Hartmann
et al., 2002). Considering that some forecasts are used
to make major hydrologic decisions affecting lives and
property, legal requirements, water rights, endan-
gered species needs, and more, caution should be exer-
cised. Although the daily update product described
herein contains a lengthy disclaimer, management
was asked to halt its release to the public while the
legal liability of such raw automated products was con-
sidered, perhaps involving review by the Office of the
General Counsel, an independent legal agency that
reports to the Secretary of Agriculture. Production
eventually resumed, in part because federal govern-
ment forecasters consistently have been shielded from
legal claims by users (Klein and Pielke, 2002).

In the early stages of development of this product
there were concerns about the role it would play in
the official forecast coordination process. With recent
technological developments, forecasting agencies have
struggled with the mandate from the early 1980s that
both agencies must coordinate and agree on the offi-
cial forecasts so as to ‘‘speak with one voice’’ to users.
Does this mean that the agencies cannot release non-
coordinated unofficial forecasts, such as raw model
output? The NWS has wrestled with this issue in the
context of displaying raw Ensemble Streamflow Pre-
diction (ESP) output of the NWS River Forecast Sys-
tem (Day, 1985) on the Internet.

An interagency NWS ⁄ NRCS policy meeting on this
topic was convened in January 2006. Ultimately it
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was determined that, as long as a tool’s output was
clearly labeled as ‘‘guidance’’ and not an official fore-
cast, it could be distributed to users. Official forecasts
issued once a month would continue to be coordinated
and issued jointly by the two agencies. The NWS has
also begun development of an interactive tool to col-
lectively display the raw output of the several inputs
into the official outlooks, including the daily update
product described herein.

These activities may allow more transparency in
the forecast production process and encourage non-
operational entities (e.g., universities) to develop and
run their own models in real-time. While the official
forecasts remain available for the conservative user
in need of an expert assessment, early adopters will
have a broader palette of guidance to draw from. The
increased diversity of tools available may accelerate
the adoption of innovative technologies by the opera-
tional agencies. By making research-grade products
available to the public, user feedback can also enter
into the process at an earlier stage of product devel-
opment, and users can encourage operational agen-
cies to invest in the most promising new tools.

SUMMARY AND CONCLUSIONS

Historically, seasonal water supply outlook produc-
tion has been a human resource intensive task, and
forecasts have been issued rarely more than once a
month and only during certain times of the year. This
paper introduces a technique to produce these sea-
sonal forecasts on a daily basis, year-round, using
SWE and accumulated precipitation data from NRCS
SNOTEL stations. The skill and character of these
forecasts is similar to the official outlooks. This prod-
uct also provides useful information about the possi-
ble relative intra-seasonal variations in the official
outlooks. The trend toward allowing direct delivery of
objective guidance to users is a significant new devel-
opment in the operational hydrologic forecasting com-
munity, and it could facilitate the increased transfer
of research (i.e., new objective methods) into practice
at operational agencies. Further steps should also be
taken to compare more comprehensively the behavior
and skill of this product to the official outlooks as
well as other tools from the research community.
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