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6.1 ABSTRACT

Developing meteorological forcing data for input to hydrological models is
an essential first step in modelling and prediction, whether for gauged or
ungauged basins. The most common source of forcing data is meteorological
stations. There are different constraints on station selection depending on the
purpose of the modelling, whether the simulation is for model
experimentation and testing, estimating hydrograph changes due to
watershed or climate changes, or real-time streamflow forecasting.
Considerations in station selection include data quality, timeliness, and
spatial representativeness. Real-time forecasting poses particularly stringent
requirements of station data timeliness and quality. To use station data as
model input, they must be spatially interpolated over the watershed. One
useful technique to do this is elevationally detrended kriging, which involves
computing relationships of meteorological quantities (specifically
precipitation and temperature) with elevation to describe vertical variability,
subtracting this from the data to obtain residuals, then applying ordinary
kriging to describe horizontal variability. The interpolation produces spatial
(i.e., gridded) fields of precipitation and temperature at a daily or smaller
time step, which can then be input directly to fully distributed hydrological
models, or they can be averaged over the watershed or sub-areas thereof for
lumped or semi-distributed models. Other interpolation techniques are
usually required for other meteorological variables due to insufficient
stations being available or due to the physical characteristics of the quantity
not lending themselves to a kriging type of spatial interpolation (e.g. wind).
Although preparation of forcing data can require significant database and
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software infrastructure, especially for real-time forecasting, any hydrological
modelling exercise must begin with good forcing data. In ungauged basins,
without streamflow measurements to use as a check on simulation skill, it is
especially critical to ensure that model forcings are accurately prepared.

6.2 RÉSUMÉ

La création de données de forçage météorologique comme données d’entrée
dans les modèles hydrologiques constitue un premier pas essentiel dans la
modélisation et la prévision, que ce soit pour les bassins jaugés ou les bassins
non jaugés. Les stations météorologiques constituent la source la plus courante
de données de forçage. Il existe différentes contraintes quant au choix de la
station suivant le but de la modélisation, selon que la simulation soit faite à des
fins d’expérimentation de modèle et d’essais, d’estimation des changements
hydrographiques en raison de changements climatiques ou au niveau du bassin
ou de prévision des débits en temps réel. Les facteurs à considérer dans le choix
d’une station englobent la qualité des données, la rapidité de production des
données et la représentativité spatiale. La prévision en temps réel pose des
exigences particulièrement rigoureuses en fait de qualité et de rapidité de
production des données de la station. Pour que l’on puisse se servir des données
de la station en tant que données d’entrée du modèle, celles-ci doivent être
interpolées spatialement à l’échelle du bassin hydrographique. Un moyen utile
pour y arriver est d’employer la méthode du krigeage avec modèle de tendance,
qui suppose le calcul des relations des quantités météorologiques (en particulier
les précipitations et la température) avec recours à l’altitude pour décrire la
variabilité verticale, en soustrayant ces valeurs des données en vue d’obtenir
des données résiduelles, puis en appliquant le krigeage ordinaire pour décrire
la variabilité horizontale. L’interpolation produit des champs spatiaux (c. à-d.
sur une grille) de précipitations et de température à un intervalle de temps
quotidien ou plus petit, qui peuvent ensuite être entrés directement dans les
modèles hydrologiques entièrement distribués. Il est également possible d’en
établir la moyenne en fonction de l’ensemble du bassin ou de certaines de ses
sous-zones pour des modèles localisés ou semi-distribués. D’autres techniques
d’interpolation sont habituellement nécessaires pour d’autres variables
météorologiques en raison d’un nombre insuffisant de stations disponibles ou
du fait des caractéristiques physiques de la quantité qui ne se prêtent pas à une
interpolation spatiale par krigeage (p. ex. le vent). Bien que la préparation des
données de forçage exige parfois une infrastructure logicielle et des bases de
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données considérables, en particulier pour la prévision en temps réel, tout
exercice de modélisation hydrologique doit commencer par de bonnes données
de forçage. Dans les bassins non jaugés, sans mesures de débit à utiliser pour
la vérification des compétences liées à la simulation, il est particulièrement
essentiel de veiller à ce que les forçages de modèle soient préparés avec
exactitude.

6.3 INTRODUCTION 

An initial step of fundamental importance in hydrological prediction is
developing the meteorological forcing data to be used as model input. Even
if the stream to be modelled and predicted is ungauged, forcing data must
still be used to define the system inputs. Without good inputs, either due to
the lack of sufficient meteorological stations or due to poor processing and
utilization of the station data available, one cannot expect to achieve
accurate predictions. Good estimates of inputs, therefore, are essential to the
success and usefulness of any system simulation exercise.
In most hydrological modelling applications, forcing data are taken from
measurements at meteorological stations. While there are some examples of
the use of forcings from radar, remote sensing, or atmospheric modelling
(e.g., Mahfouf et al., 2007; Pietroniro et al., 2007), these are not yet common
and, in some regions of high spatial variability (e.g., mountainous areas), not
yet feasible. Issues relating to the use of station data in hydrological
modelling, then, are of central importance. These issues include data quality,
timeliness, spatial representativeness, and spatial interpolation.
These issues often do not receive thorough attention in hydrological model
documentation and user manuals, giving the hydrologist rather incomplete
immediately available guidance. Data quality, timeliness, and spatial
representativeness are generally not addressed explicitly, presumably assuming
that the hydrologist has already done a screening of stations based on these
considerations and knows how to do so. Regarding spatial interpolation,
sometimes models provide built-in methods for interpolating / extrapolating /
averaging station data to model spatial computational units, but these tend to be
very simple or based on certain assumptions about the station network that may
or may not be valid (e.g., Anderson, 1973; Leavesley et al., 1983). For
example, some built-in techniques either compute a weighted average or make
a one-to-one assignment of stations to the model spatial computational units
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and/or require the specification of (time-invariant) elevation lapse rates (for
either precipitation or temperature). Such a technique could be appropriate in a
given basin, or it may be excessively rigid, incomplete, or oversimplified.
Sometimes, models offer little flexibility in how the forcings are to be prepared,
requiring the selection of one of the built-in methods rather than allowing the
user to prepare forcings in any way desired external to the model in a pre-
processing step and then supplying them to the model as input. The latter, of
course, would allow the user to tailor the processing of station data into
forcings for model spatial computational units, but it does put more burden on
the user to have an appropriate technique at hand. In any case, the user should
pay very close attention to how the station data are utilized so as to be
conscious of how the forcings are prepared rather than uncritically choosing
some pre-existing technique offering simply because it is convenient.
This paper presents some thoughts, ideas, considerations, and techniques for
using station data in hydrological modelling and prediction. These topics
apply equally to gauged and ungauged basins.

6.4 DATA REQUIREMENTS FOR DIFFERENT TYPES OF
PREDICTION AND MODELS

Hydrological prediction can have different meanings. Three categories of
what might be considered “prediction” would be: (1) Simulating the
hydrograph to reproduce it as best as possible (e.g. comparing the accuracies
of different models or calibrations thereof); (2) Estimating changes in the
hydrograph due to past or anticipated watershed or climate changes; and
(3) Real-time streamflow forecasting. All of these applications require forcing
data, although there are some differences in the constraints in station usage for
each application. Note that while these types of prediction are typically made
in gauged basins (allowing model calibration and prediction verification), the
same need exists in ungauged basins for high-quality forcings, for without
this, neither of the two settings will produce successful results.
There are different types of models that can be applied for these prediction
categories. The primary distinction to be made here is between statistical
models and continuous process simulation models. Statistical (or empirical)
models are often regression-based, such as those commonly used for long-
range streamflow volume forecasts (e.g. Garen, 1992), although they could
also include, for example, neural network models, where physical
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hydrological processes are not explicitly represented in the model structure.
Process simulation models, in contrast, operate on a daily or shorter time
step and have mathematical representations of a greater or lesser level of
detail to represent the major hydrological water storages and fluxes that
affect the flow of water into and out of the watershed.
For statistical models, the station data requirements are less stringent than
for process simulation models. For the former, station data need only be
good indices of the target flow to be predicted; absolute magnitudes of
measured quantities do not have to be correct but only need to have a
consistent relationship with the target. On the other hand, for process
simulation models, the station data have to have accurate measurements in
terms of absolute amounts so that the inputs to the watershed (mass and
energy) are quantitatively correct. This is a much more demanding
requirement than just being a consistent index.
Another difference is that for statistical models, not necessarily all stations
must or even should be used. Optimization algorithms are often applied to
search for combinations of predictor stations that minimize forecast error.
Not all stations are necessarily required to minimize the error. In contrast, all
stations, except anomalous ones with unrepresentative microclimate effects
(Figure 6.1), would generally be used to define the input (e.g., precipitation,
temperature) fields for process simulation models. The example shown in
Figure 6.1 illustrates the importance of understanding the spatial variability
of precipitation and temperature, determining if the available stations are
capable of representing them, and recognizing (and perhaps excluding)
stations that are not spatially representative.
An important consideration in streamflow forecasting is the real-time
availability of station data. For research-mode studies, such as historical
simulation or impact assessment studies, real-time station data availability is
not an issue, and any stations with sufficient data can be used. This might
also include discontinued stations. For forecasting, however, a more
stringent data availability criterion must be applied. It does the forecaster no
good to use stations in the model forcing data setup that will not be available
when they are needed in forecast mode. For forecasting, then, forcing fields
and model calibrations should be based only on those stations that will
actually be available and usable in real-time. This places a limitation on the
stations that can be selected.
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Data quality and continuity is also important in all applications, although
perhaps more critically in real-time forecasting. This issue manifests itself
most commonly in missing values. It is troublesome to try to use a station in
research simulation studies that has many missing values, as these must either
be filled in with estimates, excluded from calculating forcing fields when
missing, or the station not used at all. For real-time forecasting, these issues
exist as well, but missing value detection and estimation also have to be done
in real-time via an automated process for expediency and timeliness.
In fact, automated processing for input data preparation in real-time forecasting
is a major requirement. Automated processing includes the following activities
that must be done unattended: data retrieval from sources; data quality checks;
estimation of missing data (could be optional depending on model setups); pre-
processing (such as spatial interpolation); and formatting for model input.
Human review of the results of this automated processing is also advisable. The
rapid and automated execution of these functions is a non-trivial task requiring
much database and software infrastructure.
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Sprague Basin Precipitation, Water Year 2004
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Figure 6.1 Precipitation-elevation relationship for annual total precipitation in water year 2004
at meteorological stations in the watershed of the Sprague River in southern
Oregon, USA. Deciding whether the anomalous station lying far above the
regression line should be used for spatial interpolation of precipitation fields
requires some investigation regarding the spatial representativeness of this station.



6.5 SPATIAL INTERPOLATION

The use of station data for hydrological model application leads immediately
to a spatial interpolation task of generalizing meteorological station data
collected at a point scale to the spatial domain of a watershed. There are many
ways to do this, some simple and some complex, and the technique used
depends to a large degree on the number of stations available and the
characteristics of the quantity being interpolated. Although some simple
station weighting and averaging techniques are sometimes offered in
hydrological models, more modern and complete techniques are available.
One general spatial interpolation technique that has found widespread usage
in hydrology and other fields in recent years is the geostatistical procedure
called kriging. Kriging is essentially a station weighting scheme. An estimate
of a quantity at a spatial location is a weighted sum of the measurements at
stations in its vicinity. The station weights are determined for each spatial
location (most commonly grid cells in a geographic information system) in
the domain to be interpolated via the kriging algorithm. The weights are a
function of distance and the spatial correlation structure of the variable as
represented by the semivariogram, which describes how the difference
between values of the quantity at two spatial locations increases with distance
between the locations (which is equivalent to, but the inverse of, a spatial
correlation function, which decreases with distance). The station weights are
greater for the nearest stations and smaller for the more distant stations, with
the station weights summing to 1.
There are many flavours and variations of kriging, depending on specific
characteristics of the data to be interpolated. One of the main issues is whether
the data exhibit systematic trends in space related to a geographical
characteristic, such as elevation or latitude and longitude. If this is the case,
these systematic trends must either be removed from the data before applying
the kriging algorithm, or the kriging framework must otherwise be designed
to account for this factor affecting the spatial distribution of the quantity.
Recent reviews and algorithm comparisons include Goovaerts (2000), Zhang
and Srinivasan (2009), Ly et al. (2011), Tobin et al. (2011), and Feki et al.
(2012). One such technique, elevationally detrended kriging, as applied to
precipitation and temperature data is described below. This technique is
highlighted here because it has been shown in the comparison studies to
perform well, is conceptually straightforward, and is operationally practicable.
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Garen and Marks (2005) selected this technique for use in snowpack
simulations after a review of previous literature on kriging techniques.
Elevationally detrended kriging (Garen et al., 1994) is appropriate where
elevation is the primary deterministic external factor affecting the behaviour
of a meteorological variable. This is the case for precipitation, which
generally increases with elevation due to orographic processes, and for
temperature, which decreases with elevation. Detrended kriging divides the
spatial variability of the meteorological quantity into two components:
vertical and horizontal. The vertical component is described by a linear
regression relationship of the quantity with elevation, which is subtracted
from the data. The horizontal component is described by ordinary kriging of
these detrended residuals.
The steps in the algorithm are shown in Figure 6.2. In this implementation
of detrended kriging, a simplification is made by using a linear
semivariogram. Doing so makes the kriging station weights invariant in time
because the weights are independent of the slope and intercept of the
semivariogram line. (Without this simplification, a separate semivariogram
would have to be specified for each time step, greatly increasing the
complexity and computational cost of the processing.) With the linear
semivariogram, the kriging station weight calculation is made for all grid
cells in the domain once at the beginning of the processing. From this point,
the algorithm enters a loop for each time step in the time series of data to be
interpolated. While a daily time step is common, shorter or longer time steps
can also be accommodated in the algorithm. The calculations for each time
step consist of: calculating the linear regression elevation relationship;
subtracting this from the data to obtain residuals; kriging of the residuals for
each grid cell in the domain; computing the deterministic elevational trend
at each grid cell; and, adding the deterministic trend to the kriged residual
for each grid cell to obtain the final interpolated field.
There are some implicit assumptions in this implementation. One is that the
domain to be interpolated has a relatively homogeneous precipitation and
temperature regime; for example, there are no strong orographic barriers
within the domain that would create very different elevation relationships for
different sub-areas. Another assumption is that the station density is sufficient
to give a reasonable representation of the essential vertical and horizontal
distribution of the precipitation and temperature fields. A final assumption is
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that the length and width of the spatial domain is moderate enough in size that
the spatial correlation structure is reasonably represented by a linear
semivariogram. This would imply that the domain to be interpolated should
be “mesoscale” in size, perhaps on the order of 100 to 10 000 km2.
Examples of interpolations of precipitation and temperature are given in
Figures 3 and 4. These figures show both the elevation detrending
relationship and the final interpolated field. In Figure 6.3, note that the
Silver Creek site, lying well above the detrending line, exerts a significant
influence on the interpolated precipitation in the northern part of the basin.
Its large positive detrending residual causes grid cells in its vicinity also to
have a large positive residual due to the kriging spatial interpolation,
resulting in these cells also having precipitation above that estimated for
their respective elevations by the detrending line. Similarly, the Gerber
Reservoir and Quartz Mountain sites lie well below the detrending line,
causing the kriging interpolation to calculate negative detrending residuals
for grid cells in their vicinity in the southern part of the basin, and leading
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Figure 6.2 Detrended kriging flowchart (DEM = digital elevation model).



to the final precipitation estimates being drier for their respective elevations
than estimated by the detrending line. In Figure 6.4, the detrending residuals
for temperature are smaller than for precipitation, so the influence of
positive or negative residuals are less noticeable, and the final interpolated
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Figure 6.3 Precipitation-elevation relationship and interpolated daily precipitation spatial field
for 1 January 2004, Sprague River basin, southern Oregon, USA. On the map,
values after the station names are, respectively, the elevation and the observed
precipitation amount.



temperature follows the elevation field quite closely. Nevertheless, the
residuals still have local influence, making the temperature estimates greater
or less than the estimates from the detrending line for the respective grid cell
elevations.
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The results of such interpolations, for each time step (e.g. day) in the historical
period to be simulated, can either be used directly as input to a fully distributed
hydrological simulation model (requiring grid-based inputs), or the whole
watershed or sub-areas thereof can be spatially averaged over the appropriate
grid cells and used as input for a spatially lumped or a semi-distributed model.
Note that the spatial interpolation process requires the hydrologist to consider
carefully the station representativeness and data quality issues mentioned
previously to ensure that the interpolation and the resulting model forcings are
the best that can be done with the available information.

6.6 CONCLUDING REMARKS

This discussion and these examples illustrate the major considerations in
selecting and interpolating data for the preparation of time series of
hydrological model forcings. Careful station selection, attention to data
quality, and the use of a robust and conceptually solid spatial interpolation
technique are all prerequisites for a successful hydrological modelling effort.
As demonstrated, some essential meteorological station data can be spatially
interpolated, but it must be remembered that the adequacy of the result is
strongly dependent on station density and spatial representativeness.
Precipitation and temperature are the easiest to interpolate; other
meteorological variables, such as humidity, wind, and solar radiation, do not
lend themselves as readily to the detrended kriging method due to sparse station
density and other deterministic geographical factors for these quantities, hence
other methods must be used if the model requires these additional variables
(Garen and Marks, 2005). In any case, the hydrologist must establish that the
station network can indeed support the preparation of adequate forcing data; if
not, then there is little reason to proceed with a modelling effort, as no system
can be simulated well without good estimates of the inputs.
Preparation of model forcings in a manner such as that described here gives
the hydrologist confidence in the appropriateness of the system inputs given
the station network and the terrain. The hydrologist can then trust the
forcings and look to other model components and parameters for refining
model skill. Whether in a gauged or ungauged basin, high-quality forcings
are essential. Indeed, in an ungauged basin, the forcings may take on even
greater importance than in a gauged basin, because there is no opportunity
to use streamflow observations as a check on the adequacy of the forcings.
In any case, it is evident that preparation of forcings is worth significant care
and effort as the first prerequisite for successful hydrological modelling.
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