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A B S T R A C T   

Western US water management is underpinned by spring-summer water supply forecasts (WSFs) from hydrologic 
models forced primarily by winter mountain snowpack data. The US Department of Agriculture Natural Re
sources Conservation Service (NRCS) operates the largest such system regionally. NRCS recently developed a 
next-generation WSF prototype, the multi-model machine-learning metasystem (M4). Here, we test this ensemble 
artificial intelligence (AI)-based prototype against challenging theoretical and practical criteria for accepting a 
new operational WSF model. In 20 hindcasting test-cases spanning diverse environments across the western US 
and Alaska, on average out-of-sample R2 and RPSS improved over 50% and RMSE improved 13% relative to 
current benchmarks. The M4 ensemble mean forecast also performed more consistently than any of its diverse 
constituent models and in several cases outperformed all of them. Live operational testing at a subset of sites 
during the 2020 forecast season additionally demonstrated logistical feasibility of workflows, as well as 
geophysical explainability of results in terms of known hydrologic processes, belying the black-box reputation of 
machine learning and enabling relatable forecast storylines for clients. This was accomplished using WSF-focused 
pragmatic solutions, like “popular votes” for different candidate predictors among the constituent forecast sys
tems, and graphical visualization of reduced-dimension, AI-extracted nonlinear feature-target relationships. We 
also found that certain M4 technical design elements, including autonomous machine learning (AutoML), 
hyperparameter pre-calibration, and theory-guided data science, collectively permitted automated (“over-the- 
loop”) training and operation. Overall, the analyses confirmed M4 meets requirements for NRCS operational 
adoption. This finding signals that, despite negligible operational-community uptake of machine learning so far, 
suitably purpose-designed novel AI systems have capacity to transition into large-scale practical applications 
with service-delivery organizations; it appears M4 will be the largest AI migration into operational river fore
casting to date. It may ultimately provide a broader integration platform for harnessing multiple data and model 
types.   

1. Introduction 

1.1. River runoff volume forecasting in the western US 

Water scarcity defined the history of the western US and remains one 

of its most complex and pressing public issues: economic, food, envi
ronmental, and energy security here all depend critically on river runoff 
(e.g., Rosenberg et al., 2011; Reisner, 1986). Effective water manage
ment in this region relies on operational water supply forecasts (WSFs) 
(Glantz, 1982; Kalra et al., 2013; Grantz et al., 2005; Hoekema and Ryu, 
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2013). These are predictions of spring-summer runoff volume on a river- 
by-river basis, typically issued at the start of every month with periodic 
updates, starting in early winter and continuing through late spring, 
generated by government agencies and other service-delivery organi
zations (SDOs; see Serafin et al., in preparation) having strict account
abilities around delivering timely and reliable information. Operational 
WSFs are required under treaties governing management of interna
tional rivers like the Columbia, Colorado, and Rio Grande basins; are 
stipulated in legal decisions, like Biological Opinions (BiOps) in the 
Klamath Basin; and are central input to engineering models and decision 
support systems used in optimal reservoir management for competing 
needs around flood control, agricultural and urban water supply, water- 
intensive industrial and technology-sector manufacturing, navigation, 
hydroelectric generation, and ecological flows. Operational WSFs also 
influence reservoir facility construction plans and guide choices around 
annual crop selection and amount of land left fallow, water rights 
rentals, and negotiation of forward contracts for hydropower, among 
other economic planning choices. 

WSFs can have good skill despite poor weather forecast accuracy 
over the same seasonal-scale prediction horizons because of large lags 
between the overall annual cycles of meteorological forcing and 
watershed response in western North America. For most rivers here, 
flows peak in spring and summer, coinciding with peak water demand, 
and are driven mainly by melting of mountain snowpack accumulated 
the previous winter. In WSF practice, snowpack is measured and pro
vided as a primary input to river hydrology models implemented and 
operated on a subbasin-by-subbasin basis. These models fall into two 
categories: process-simulation models that explicitly represent the un
derlying physics of watershed-scale runoff generation, and data-driven 
phenomenological models that account for the physics implicitly using 
empirical input–output mappings of predictors to predictands. A wide 
variety of specific models fall under these broad umbrellas, each with 
advantages and disadvantages (Singh and Woolhiser, 2002; Perkins 
et al., 2009; Gelfan and Motovilov, 2009; Bourdin et al., 2012; Weber 
et al., 2012; Cunderlik et al., 2013; Hrachowitz and Clark, 2017; Fleming 
and Gupta, 2020). 

Even incremental improvements in WSF skill can provide well over 
$100 million per year in additional public benefit for a single river in the 
western US (Yao and Georgakakos, 2001; Hamlet et al., 2002). WSF 
improvements are also critically needed due to narrowing margins be
tween increasing water demand under growing populations, and 
decreasing manageable water supply under climate change, which is 
reducing snowpack through warmer winter temperatures (e.g., Barnett 
et al., 2005; Clarke et al., 2015; BOR, 2016). This climate change- 
induced decline in the hydrologic role of snowpack in western US wa
tersheds also reduces the inherent seasonal predictability of river runoff 
(Harrison and Bales, 2016; Harpold et al., 2020). The implications of 
these skill losses are reminiscent of biology’s Red Queen hypothesis, 
which posits that evolutionary progress is required of a species to simply 
maintain its status relative to competitors. In effect, geophysical mod
elers are competing against climate change which, by decreasing pre
dictability of seasonal runoff, forces continual forecasting innovation to 
maintain constant skill. It follows that skill improvements require even 
more aggressive advances. Indeed, increased water management flexi
bility is a leading goal in the Bureau of Reclamation’s US West-wide 
climate change adaptation strategy, with improved hydrometeorologi
cal forecasting as a central element (BOR, 2016). 

Collectively, these considerations have led to intense ongoing in
terest in improving WSF models in western North America. Related 
research directions are diverse; some examples include Garen (1998); 
Mahabir et al. (2003); Hsieh et al. (2003); McGuire et al. (2006); Wood 
and Lettenmaier (2006); Kennedy et al. (2009); Gobena and Gan (2009); 
Gobena and Gan (2010); Rosenberg et al. (2011); Gobena et al. (2013); 
Robertson et al. (2013); Fleming and Dahlke (2014); Demargne et al. 
(2014); Pagano et al. (2009); Pagano et al. (2004); Trubilowicz et al. 
(2015); Harpold et al. (2016); Najafi and Moradkhani (2016); Beckers 

et al. (2016); Mendoza et al. (2017); Lehner et al. (2017); Fleming and 
Goodbody (2019); and Peñuela et al. (2020). 

1.2. NRCS water supply forecasting, the next-generation model, and 
machine learning 

The US Department of Agriculture Natural Resources Conservation 
Service (NRCS) has been monitoring snowpack and predicting runoff in 
the western US since the Dust Bowl of the 1930s (Perkins et al., 2009). It 
operates the SNOTEL mountain climate and snow monitoring network, 
with over 850 sites across the region. Additionally, its current opera
tional WSF platform is the largest stand-alone system regionally, and to 
our knowledge the largest data-driven system globally, with over 600 
forecast locations in the Colorado, Missouri, Columbia, Rio Grande, 
Klamath, and other basins (Fig. 1). 

NRCS uses several WSF models. The primary method is a probabi
listic form of principal component regression (PCR), implemented in the 
NRCS VIPER software platform. It was adapted to WSF by NRCS to 
facilitate linear regression under predictor multicollinearity (Garen, 
1992; James et al., 2013). PCR has since been widely adopted for 
operational WSF, and as a WSF modeling tool in hydrology, snow, and 
climate research (e.g., Moradkhani and Meier, 2010; Oubeidillah et al., 
2011; Hsieh et al., 2003; Najafi and Moradkhani, 2016; Eldaw et al., 
2003; Rosenberg et al., 2011; Gobena et al., 2013; Risley et al., 2005; 
Regonda et al., 2006a; Regonda et al., 2006b; Kennedy et al., 2009; 
Harpold et al., 2016; Lehner et al., 2017; Perkins et al., 2009; Beckers 
et al., 2016; Fleming and Goodbody, 2019; Glabau et al., 2020). Though 
successful, the technique is decades old, has known technical issues, and 
required revisiting for potential upgrades or replacement. A particular 
point of interest was potential adoption of machine learning (ML), a 
branch of artificial intelligence (AI; here we use ML and AI inter
changeably for convenience) involving algorithms that detect patterns 
in data and use those patterns to make predictions. 

However, developing an AI-based next-generation NRCS WSF model 
involved overcoming long-standing roadblocks to transitioning ML from 
research into a genuine operational river forecasting environment. AI 
was applied to streamflow prediction over 25 years ago (Hsu et al., 1995; 
Minns and Hall, 1996). Despite ongoing research demonstrating forecast 
skill improvements over statistical and process-based hydrologic 
models, migration to operational river hydrology has been limited, with 
no openly documented adoption of AI by operational WSF systems in the 
western US. Reasons include its black-box character and resulting lack of 
geophysical explainability, lack of emphasis on generating prediction 
uncertainty estimates, and concerns about overtraining (Abrahart et al., 
2012; Fleming et al., 2015). Underlying these specific issues, there may 
be two broader questions. One is fundamental: some have recently 
argued that the ongoing evolution of machine learning has yielded 
substantially new and superior approaches to physically understanding 
hydrological systems, which the hydrologic community as a whole has 
not yet acknowledged or adjusted to (Nearing et al., 2021). The other is 
practical. In particular, it has been the collective qualitative observation 
of the authors, working with both AI and operational river forecasting 
over several decades, that these two communities of practice are largely 
disconnected: operational hydrologists typically have little familiarity 
with AI and often feel uncomfortable with it, whereas researchers 
specializing in ML applications to hydrology often focus on exploring the 
latest AI innovations rather than meeting the needs of operational 
hydrologists. 

The approach taken, therefore, was to determine a holistic set of 
characteristics required of a next-generation WSF model, and work 
hand-in-hand with the operational community to craft an integrative 
solution meeting those specific requirements. Several well-proven 
techniques from AI, statistical modeling, evolutionary computing, 
ensemble modeling, and other areas were selected and combined to form 
this novel hybrid approach (Fleming and Goodbody, 2019), termed the 
multi-model machine learning metasystem (M4). 
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1.3. Study goals 

In this study, we apply M4 and evaluate its performance character
istics and suitability for widespread operational implementation. 
Despite technical vetting in the data science literature and initial dem
onstrations of hydrologic applicability (Fleming and Goodbody, 2019), 
WSF testing of M4 so far has been too limited to justify broad operational 

adoption yet. Any next-generation NRCS operational WSF method must 
demonstrate applicability and performance advantages relative to 
existing operational systems over the wide range of geophysical envi
ronments encountered across the NRCS WSF system, which spans the 
deserts of New Mexico to the icefields of Alaska, and the associated di
versity of statistical problem characteristics, data availability, and other 
practical factors. Further, a telling and necessary test of any prototype 

Fig. 1. Locations of all NRCS water supply forecast points, and selected test basins.  

S.W. Fleming et al.                                                                                                                                                                                                                             



Journal of Hydrology 602 (2021) 126782

4

prediction system is to run it “live” in the same operational environment 
it is ultimately intended to serve in. Given the aforementioned lack of 
uptake of ML by the operational community, such operational testing 
may also speak more widely (if indirectly) to overall suitability of AI for 
routine mainstream large-scale river forecasting, and in particular, 
whether the design philosophy and technical solutions used in devel
oping M4 are effective at bridging that research-applications gap. 

To address these questions about the practical capabilities of M4, we 
performed two sets of testing. First, hindcasting was completed for 20 
test cases spanning 11 locations sampling diverse hydroclimatic settings. 
Second, live operational testing was performed for a subset of 5 of these 
locations during the 2020 forecast season. 

Though accuracy improvements are vital, acceptance by operational 
forecast hydrologists additionally requires assessment of a broader set of 
performance characteristics (e.g., Weber et al., 2012; Cunderlik et al., 
2013; Whateley et al., 2015; Fleming and Goodbody, 2019; Peñuela 
et al., 2020; Fleming et al., 2021). Other questions evaluated include 
effectiveness of efforts to build high levels of robustness, flexibility, and 
automation into the new approach; logistical feasibility of associated 
workflows and computations in a time- and resource-constrained setting 
typical of agencies that run such forecast systems operationally; con
sistency of performance capabilities across a variety of watershed 
characteristics, without the need for manual case-by-case local-scale 
fine-tuning of modeling procedures; and physical plausibility of out
comes, including both generation of physically reasonable predictions, 
and amenability of the resulting forecasts to interpretation in terms of 
current seasonal climatic conditions and known hydrologic processes. 

The influence these additional considerations have on which tech
nologies are adopted into operational systems should not be under
estimated, nor is it unique to NRCS. Forecast software platforms at 
operational agencies have been recently developed or updated, like 
VIPER at NRCS (see above), the Hydrological Ensemble Forecast System 
(HEFS) at National Weather Service River Forecast Centers, and 
PyForecast at the Bureau of Reclamation (e.g., Demargne et al., 2014; 
Perkins et al., 2009; https://github.com/usbr/PyForecast). Neverthe
less, fundamental geophysical modeling concepts (Fleming and Gupta, 
2020) underlying these platforms have not seen major upgrades in de
cades (Hartmann et al., 2002; Pagano et al., 2004). HEFS uses the 1970s- 
era Sacramento Soil Moisture Accounting (SAC-SMA) and SNOW-17 
process models, and while the modular PyForecast platform has flexi
bility to easily incorporate innovative modeling techniques, both VIPER 
and current development versions of PyForecast largely focus on 1990s- 
era PCR and other linear regression variants. Moreover, model imple
mentation and operation generally remain reliant on an archaic style of 
subjective manual hydrologist intervention. Research implementing a 
so-called over-the-loop (OTL) paradigm using automated and objective 
processes has not, in general, successfully migrated to large-scale 
mainstream river forecast systems in the region (Seo et al., 2003; 
Wood et al., 2020). Persistent use of seemingly outdated but proven 
methods, which has been interpreted by some as technical stagnation (e. 
g., Hartmann et al., 2002), has occurred largely because new methods, 
whether physics-based or data-driven, have often failed to match key 
needs of the operational hydrology community (for detailed discussions 
see, e.g., Weber et al., 2012; Cunderlik et al., 2013; Whateley et al., 
2015; Fleming and Goodbody, 2019; Peñuela et al., 2020). As one 
example, benefits provided by AI are significant but accompanied by 
drawbacks restricting operationalization (see Section 1.2). 

The M4 approach, and the pragmatic testing regimen for it presented 
here, are intended to address these roadblocks to migrating OTL and AI- 
based methods into operational WSF. Accordingly, evaluations are 
completed here within the context of the existing NRCS WSF system, as 
described in detail below. Doing so leverages experiential knowledge 
and established best practices around operational WSF in the US West 
and enables meaningful comparisons to current operational techniques. 

1.4. Manuscript organization 

The manuscript is organized as follows. Section 2 summarizes the 
established overall framework for data-driven operational WSF models 
in western North America, which as noted above we adopt here to 
ensure apples-to-apples comparisons of M4 against current methods. It 
then presents specific test cases and datasets considered. Section 3 
provides a brief qualitative summary of M4, focusing on linkages to 
operational forecast community needs. This short synopsis is not 
intended to be comprehensive, and readers are referred to Fleming and 
Goodbody (2019) for detailed technical descriptions of M4. Section 4 
summarizes the results of hindcast and live operational testing. This 
includes discussion of performance metrics with comparisons to the 
existing system, geophysical interpretability of results, and other topics. 
Broader implications to acceptance of AI in operational hydrology are 
also briefly discussed. Finally, Section 5 concludes with a summary and 
outlines research and operationalization plans. Note that to our 
knowledge, after full roll-out into production systems at NRCS, M4 will 
be the largest migration of AI into a genuine operational river forecast 
environment to date. 

2. Data 

2.1. Standard WSF problem structure 

To evaluate M4 in a realistic operational WSF context, we set up the 
overall prediction problem in a manner closely resembling the existing 
NRCS forecast system, which is in turn broadly similar to most other 
statistically based operational WSF models in western North America. 
The predictand (target, in ML nomenclature) is spring-summer runoff 
volume, which is measured at a US Geological Survey streamgage with 
NRCS adjustments as needed for upstream diversions, or at some other 
hydrometric monitoring site. Predictors consist of snow water equiva
lent (SWE) and wintertime-to-date accumulated precipitation mea
surements at mountain climate monitoring stations, predominantly 
NRCS SNOTEL or similar sites. Various other datasets, like antecedent 
streamflow, are sometimes used as supplemental predictors. Note that 
WSF research has extensively tested additional data types, like remotely 
sensed SWE, gridded precipitation datasets, seasonal-scale numerical 
climate model forecasts, and other products, but so far these experi
mental predictors have experienced limited uptake into operational WSF 
systems in the western US. 

To illustrate, a typical statistically based WSF model might predict, 
on March 1, the upcoming April 1–July 31 cumulative flow volume at a 
given point on a given river, using as predictors March 1 SWE and 
October 1-February 28 total precipitation measured at SNOTEL sites 
within or near the watershed boundary upstream of the streamgage. The 
number of such sites varies widely depending on the basin, but about a 
half-dozen to two dozen is roughly typical. As part of the modeling 
process, the input datasets are usually amalgamated in some way into an 
index that serves as the regression predictor, or in the ML nomenclature, 
a feature that is presented to the supervised learning algorithm. 

2.2. Test cases 

Hindcast testing considered 20 test cases corresponding to January 1 
and April 1 forecast dates at 11 existing NRCS forecast locations (Fig. 1). 
These locations span diverse geophysical environments, including a 
glacier-fed Alaskan river, several southwestern desert rivers, a water
shed with large volcanic aquifer contributions to flow, a comparatively 
winter rain-dominated Pacific Northwest basin, a Sierra Nevada 
snowpack-fed endorheic California-Nevada watershed, Missouri sub- 
basins in both the northern and southern Rocky Mountains, Colorado 
River and Rio Grande headwaters, and so forth (see Table 1 for sum
maries). These test cases also sample diverse statistical characteristics, 
like nonlinear functional forms and heteroscedastic and non-normally 
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Table 1 
Summary of test-case forecast points drawn from the existing NRCS operational 
WSF system (see Section 2). Target was April-July volume unless otherwise 
noted in the table. For hindcasting (see Section 3.3.1 for details), forecast issue 
dates were January 1 and April 1 for each location unless otherwise specified 
below; the combination of 11 locations, and two forecast dates for all but two of 
those locations, gives a total of 20 hindcasting test cases. Five of these forecast 
points were also used for live operational testing (see Section 3.3.2 for details) in 
addition to hindcasting, and these are also identified below; for these five lo
cations, models were developed and run operationally on January 1, February 1, 
March 1, and April 1, 2020.  

Name USGS ID Description 

Truckee River at Farad 1034600 Endorheic desert watershed within the 
Great Basin, fed by abundant upstream 
spring snowmelt from California’s 
moist Sierra Nevada. It forms the outlet 
of Lake Tahoe and terminates in 
Pyramid Lake. Peak flows occur on 
average in May, following peak snow 
accumulation rates in January and 
February; there is little rainfall input. 
Downstream from this gage, the 
Truckee is the source of drinking water 
for Reno. It is additionally used for 
irrigation and hydroelectric power 
generation, and the US Fish and Wildlife 
Service uses reservoirs on Truckee 
tributaries above Farad to manage 
endangered fish species. Included in 
both hindcast and live operational 
testing. 

Yellowstone River at 
Corwin Springs 

06191500 Major tributary of the Upper Missouri 
River, forming a northwestern 
headwater basin to the larger 
Mississippi Basin. At this gage, it is a 
cold, moderately wet, partially 
mountainous basin draining parts of 
Wyoming and Montana; the continental 
divide forms its western watershed 
boundary. Upstream it is a centerpiece 
of Yellowstone National Park, and 
downstream it is used for irrigation 
water supplies; tourism and recreation 
are significant values. It experiences a 
distinct flow peak, occurring on average 
in June, driven overall by April-May 
snowmelt and a May-June peak in 
rainfall. Included in both hindcast and 
live operational testing. 

Owyhee River near Rome 13181000 Tributary to the Snake River, eventually 
contributing flows to the mid-Columbia 
Basin. At this gage, it is a semi-arid 
basin covering a mixture of 
mountainous and plateau areas in the 
inland Pacific Northwest and parts of 
the US desert southwest, spanning 
Nevada, Idaho, and Oregon. Its peak 
flows occur over a relatively wide 
freshet spanning February through 
June, peaking on average in March. The 
flow regime is largely driven by spring 
snowmelt and spring rain. The Bureau 
of Reclamation (BOR) operates a dam 
on the Owyhee to provide irrigation 
water for regional agriculture. Included 
in both hindcast and live operational 
testing. 

Rio Grande near Del 
Norte 

08220000 At this headwater location in southern 
Colorado, the Rio Grande is a 
moderately wet to semi-arid basin in the 
San Juan Mountains, driven primarily 
by spring snowmelt with relatively 
minor summer rain inputs, and peak 
flow typically occurs in May or June. 
Downstream, the Rio Grande receives 
Colorado River water through the BOR  

Table 1 (continued ) 

Name USGS ID Description 

San Juan-Chama Project, it forms much 
of the US-Mexico border, and it 
provides municipal and agricultural 
water supplies across Colorado, New 
Mexico, Texas, and northern Mexico 
before emptying into the Gulf of 
Mexico. The target period for the 
January 1 and April 1 hindcast test 
cases is April-September, reflecting 
existing NRCS practice at this location. 

Deschutes River below 
Snow Creek 

14050000 Major tributary to the middle reach of 
the Columbia River. At this headwater 
gage, it is a very wet mountain basin 
draining the summit and east side of 
Cascade Range. Its water budget is 
driven by late-spring (May-June) 
snowmelt derived from a strong winter 
precipitation peak, but its flows here are 
strongly modified by unusually strong 
groundwater-surface water interactions 
in the extremely porous volcanic 
aquifers of the Oregon Cascades, 
leading on average to a late-summer 
(July-September) discharge peak. Dams 
and diversions on the Upper Deschutes 
provide agricultural and municipal 
water supplies, and the river has 
significant recreational values. Included 
in both hindcasting and live operational 
testing. 

Gila River near Gila 094305000 Tributary to the Lower Colorado River. 
The continental divide forms its eastern 
watershed boundary. At this upstream 
location, it is a semi-arid mountain river 
draining the Mogollon, Pinos Altos, and 
Black Ranges of southwestern New 
Mexico; flows are driven by late winter- 
early spring mountain snowmelt 
normally peaking around March, and 
summer (North American Monsoon) 
rain typically peaking around July or 
August. The Upper Gila is relatively 
pristine, but downstream its flow is 
heavily diverted for agricultural and 
municipal water supplies and also 
supplemented using Colorado River 
water through the Central Arizona 
Project. Included in both hindcast and 
live operational testing. Unlike most 
other test cases, the target periods were 
January-May, February-May, March- 
May, and April-May, respectively, for 
the January 1, February 1, March 1, and 
April 1 forecast dates, reflecting 
existing NRCS operational practice at 
this location, which in turn reflects 
established local water management 
information needs. 

Beaverhead River inflow 
to Clark Canyon 
Reservoir 

06015400 A cold, moderately wet mountain 
watershed in southwestern Montana; 
the continental divide forms its western 
and southern watershed boundaries. A 
Missouri River headwater basin, its 
flows are driven primarily by spring 
snowmelt with augmentation by early 
summer rain, and on average, peak 
discharge occurs around April. BOR 
operates the Clark Canyon Dam for 
irrigation and downstream flood 
control. 

Little Susitna River near 
Palmer 

15290000 A mountainous, subarctic, maritime, 
glacier- and snow-fed river that flows 
from the Talkeetna Mountains to the 
Gulf of Alaska near Anchorage. Largely 
a wilderness river above this gage, it has 
significant fisheries and recreation 

(continued on next page) 
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distributed errors (e.g., Owyhee River), linear stationary, Gaussian be
haviors (e.g., Yellowstone River), and multiple predictive inputs corre
sponding to both wintertime hydroclimate and complex internal 
watershed dynamics (e.g., Deschutes River). 

In addition, live operational testing was undertaken during the 2020 
forecast season for a subset of 5 of these locations (Gila, Deschutes, 
Yellowstone, Owyhee, and Truckee rivers) trained at multiple consec
utive forecast issue dates (January 1, February 1, March 1, and April 1). 
This forms a total of 20 live operational test cases that partially overlap 
with the 20 hindcasting test cases. 

As noted in Section 2.1, to facilitate meaningful comparisons against 
current systems, the method was implemented in a fashion, including 
dataset selection, similar to existing statistical operational WSF models. 

For each test case, spring-summer runoff volume over the river’s 
established primary management period, usually April-July, was the 
target. A candidate pool of input variables was assembled to serve as the 
basis for feature extraction for each test case. Specific variables were 
closely consistent with existing operational NRCS models for the same 
combination of location, issue date, and target period (forecast horizon), 
and include year-to-date precipitation and current snow water equiva
lent (SWE) at the forecast date at NRCS SNOTEL or related (e.g., Cali
fornia Cooperative Snow Survey program) mountain climate monitoring 
sites, and for certain basins, antecedent streamflow. We did not capi
talize here on emerging alternative predictor types like remotely sensed 
or climate modeling products, although the method is designed in part 
with those predictors in mind as discussed below; the result therefore 
reflects a minimum estimate of potential advantages of the method. 

Again following typical procedure for statistically based operational 
WSF in the western US, we used data over a standard 30-year hydro
climatic normal period (1986–2015). This choice usually reflects a 
pragmatic attempt to balance longer datasets for better training and 
testing vs. record length limitations that could restrict the number of 
sites for which models can be developed. A common secondary moti
vation is to help mitigate impacts from various climatic and land cover 
nonstationarties on model development, by restricting the record length 
used to a recent period which is reasonably representative of current 
conditions and over which the cumulative impacts of nonstationarities 
can be reasonably presumed, at most forecast locations, to be suffi
ciently limited for developing and testing a seasonal-scale prediction 
model. 

3. Method 

3.1. General 

As noted in Section 1, this study uses the recently developed M4 

prediction analytics engine. Mathematical and computational details of 
M4 are too lengthy to be repeated here; in the interest of conciseness, 
readers are referred to Fleming and Goodbody (2019). Instead, Section 
3.2 provides a brief qualitative synopsis of the model, focusing on 
summarizing how specific operational WSF needs were identified and 
what design steps were taken in an effort to meet those requirements. 
Section 3.3 then describes application of this method to the test cases 
outlined in Section 2. 

3.2. Summary of M4 prediction engine 

3.2.1. Design process, concept, and criteria 
Preparatory steps during initial M4 development included a thorough 

inventory and assessment of needs and options before undertaking 
detailed technical design. The process began with documenting the 
existing NRCS system, which like many operational WSF systems has 
evolved organically over the decades. Its capabilities and limitations 
were then assessed, including documentation of known issues discov
ered during forecast operations over the years, and completion of 
extensive statistical diagnostics. Progress in data-driven WSF was 
reviewed with an eye to identifying the most promising potential di
rections for a next-generation NRCS model. Implications of global 
anthropogenic climate change on requirements for WSF were addi
tionally considered. Finally, an initial blueprint and preliminary scoping 
models were developed to test potential ideas. The overall conclusions 
were that a new WSF model was warranted, that AI was the best solution 
pathway for NRCS, and that for AI to be effective and useful in a prac
tical operational hydrology context, it must be deployed in a highly 
application-specific way (similar conclusions have been reached in other 
fields, e.g., Meredig, 2018). 

The resulting design concept was framed as a convergence of 
detailed hydrologic process knowledge, a mature understanding of 
potentially applicable machine learning concepts and tools, and 

Table 1 (continued ) 

Name USGS ID Description 

values, and it is the only test case to 
include major upstream glacial cover. 
Reflecting current NRCS operational 
practice in Alaska, in turn reflecting 
region-specific water management 
needs, there is no January 1 WSF 
publication date for this location. 

Boulder Creek near 
Orodell 

06727000 A tributary to the St. Vrain River, 
contributing flow in turn to the South 
Platte, Platte, Missouri, and Mississippi 
Rivers. At this gage, it is a moderately 
wet mountain basin lying within the 
Front Ranges of the Colorado Rockies; 
the continental divide forms its western 
watershed boundary. Its flows show a 
sharp peak in late spring-early summer, 
typically reaching a maximum in June 
driven by May-June snowmelt and 
summer rain events. It also contains a 
small amount of glacial ice in its 
headwaters, augmenting late summer 
flows, and it is a water supply source for 
the city of Boulder. The January 1 
publication date was not considered in 
hindcasting due to technical issues with 
the existing benchmark model (Section 
3.3.4) at this location. 

North Santiam River 
inflow to Detroit Dam 

14181500 A tributary to the Santiam River and in 
turn the Willamette River, a major 
tributary to the Columbia River at its 
confluence in Portland. It is a very wet 
mountain basin running from the west 
slope of the Cascade Range, and it is 
dominantly winter rain-fed with 
secondary spring snowmelt. Detroit 
Dam is operated by the US Army Corps 
of Engineers for a variety of uses, 
including flood control, hydroelectric 
power generation, irrigation, fisheries, 
and recreation. Downstream of the dam 
the North Santiam provides drinking 
water to a number of communities, 
including the Oregon state capitol of 
Salem. The target period is April-June. 

Green River inflow to 
Fontenelle Dam 

09211150 A major headwater tributary to the 
Upper Colorado Basin. At this gage, it 
drains the Wind River Range, Wyoming 
Range, and a large plateau area lying 
between them, which range from 
moderately wet to semi-arid. Flows at 
this location show a broad peak 
between May and July, resulting from 
spring snowmelt and rain. BOR operates 
the Fontenelle Dam as a storage 
reservoir for the Colorado River Storage 
Project and for assertion of Wyoming’s 
Colorado River water rights, for 
hydroelectric power generation, and for 
other uses.  
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practical operational water management requirements (Fig. 2, top). This 
led in turn to identification of 9 specific design criteria (Table 2). Several 
existing techniques met some of these criteria but none adequately 
satisfied all. A hybrid approach was therefore developed (Fleming and 
Goodbody, 2019) specifically to meet these design requirements (Fig. 2, 
bottom; see Section 3.2.2). 

3.2.2. Overview 
Fig. 2 sketches the main elements of M4. In summary, the metasystem 

consists of six semi-independent forecast systems, each centered around 
a different supervised learning algorithm. A pool of candidate input 
predictor variables is defined by the hydrologist for a given forecast 
problem (combination of forecast location, issue date, and target 
period), similar to current-generation statistical WSF models in western 
North America (Section 2). Principal component analysis (PCA), an 
unsupervised statistical learning technique, is used for pattern recogni
tion in the input data matrix, and the extracted features are directed to 
the supervised learning models. Supervised learners include two sub
stantially different kinds of neural network (a monotone artificial neural 
network, mANN, and a monotone composite quantile regression neural 
network, MCQRNN), linear regression (LR), quantile regression with 
adjustments to ensure non-crossing quantiles (QR), random forests (RF), 
and a support vector machine (SVM; more specifically, support vector 
regression). A genetic algorithm (GA) optimizes feature extraction and 
selection separately for each forecast system, that is, which of the input 
predictor variables in the candidate pool and corresponding PCA modes 
to retain. The GA objective function uses a penalty to ensure that mul
tiple predictors are retained, which is operationally important for 
functional redundancy in the event of sensor failures or other technical 
issues. The result of each semi-independent system is a forecast distri
bution, i.e., a probability density function for future seasonal flow vol
ume. In standard operational WSF practice in the western US, this 
uncertainty information is presented as prediction intervals, corre
sponding to 0.1, 0.3, 0.7, and 0.9 quantile (respectively, 90, 70, 30, and 
10% exceedance probability) flow volumes. M4 generates these intervals 
using either intrinsic probability models for the two quantile regression 
techniques (MCQRNN and QR) or a Box-Cox transform space-based 
heuristic for the other models; both are nonparametric methods that 
accommodate heteroscedastic and non-Gaussian error distributions. 
Results are averaged across the models to form an ensemble mean best- 
estimate with prediction intervals. Algorithmic logic is introduced at 
various points to automate various processes, including but not limited 
to hyperparameter optimization, or to ensure certain conditions are met 
by the solution, like an ensemble-pruning algorithm contributing to 
strictly nonnegative predictions. 

Fleming and Goodbody (2019) provide important methodological 
details around regularization (essentially, overtraining mitigation), 
hyperparameter selection and tuning (pre-calibration and optimization 
of high-level machine learning parameters), prediction interval gener
ation, optimal feature extraction, further information on each of the 
constituent statistical and machine learning models and how they are 
implemented within M4, and other key M4 technical elements. In the 
interest of conciseness readers are referred there for complete de
scriptions of the data science underlying the M4 prediction analytics 
engine assessed in this study. 

That said, we briefly elaborate below on two aspects that warrant 
particular attention from a more general operational hydrologic 
modeling perspective: explainable AI, and autonomous machine 
learning. These two concepts and the pragmatic approaches used to 
achieve, or at least adequately approximate, them for our purposes are 
summarized in Sections 3.2.3 and 3.2.4, respectively. Additionally, all 
the methods used to collectively form M4 were specifically chosen to 
help satisfy particular requirements outlined in Table 2; some related 
points around technique selection are briefly summarized in Section 
3.2.5. 

3.2.3. Geophysical consistency and explainability 
We borrow the term “physics-aware AI” from materials science 

(Meredig, 2018). It is a broad but useful term that refers to general in
tersections between ML applications and the underlying process physics, 
or qualitative domain-specific knowledge more broadly, of the problem 
to which ML is applied. It is a holistic concept primarily focusing on 
making AI useful to mainstream science and engineering users through 
such mechanisms as explainable machine learning, theory-guided data 
science, and a general alignment of machine learning solutions with 
existing bodies of physical knowledge of the system being modeled and 
associated practical considerations like the inherent data-sparseness of 
certain fields. Many specific technical approaches fall under this rubric; 
moreover, given the centrality of explainable machine learning to the 
future of AI, it is an extremely dynamic computer science research topic 
in which new paradigms emerge on a regular basis, though many of 
these are far from ready for use in high-stakes operational river fore
casting systems at SDOs. 

We adopted a comparatively straightforward, strongly pragmatic, 
and WSF-focused approach that concentrates on balancing two M4 

design criteria: generating forecasts that are physically reasonable and 
explainable (criterion 6 in Table 2) while using well-proven ML algo
rithms (criterion 7). Three general steps were taken. (1) Automation 
notwithstanding, features engineering in M4 remains hydrologist- 
directed through input candidate pool selection and decisions around 
the maximum number of PCA modes the genetic algorithm is permitted 
to retain. These choices reflect end-user knowledge around representa
tiveness, reliability, quirks, and capabilities of potential input variables 
or measurement sites, and geophysical interpretations of PCA modes, 
which in practice are known to usually correspond to watershed-scale 
indices of hydroclimatic forcing or aquifer-stream interactions (e.g., 
Garen, 1992; Fleming and Goodbody, 2019; see also Section 4). It is a 
key location in the AI development process for domain experts to insert 
physical hydrologic knowledge. That a hydrologist should select 
candidate predictors may seem obvious to water resource scientists and 
engineers but runs contrary to some contemporary AI directions, like 
certain data-mining and big-data applications. (2) WSF was reframed as 
a low-dimensional problem with a parsimonious solution. This is not, in 
itself, physics-aware AI. However, PCA input pre-processing and 
compact ML architectures enable direct graphical visualization of 
input–output relationships in most cases, revealing relationships the AI 
discovered, and facilitating their geophysical interpretation. Criterion 9 
therefore supports criterion 6. (3) Monotonicity and nonnegativity 
constraints are imposed at various locations within M4. This includes 
selection of specific machine learning methods allowing nonnegativity 
(MCQRNN) and monotonicity (mANN, MCQRNN) constraints; inclusion 
of nonlinear supervised learners into the multi-model ensemble that can 
track nonlinear relationships and thus further contribute to avoidance of 
negative-valued predictions (mANN, MCQRNN, RF, SVM; see Section 4 
for an example of such nonlinearities, and how M4 captures and com
municates them); conversely, inclusion of linear supervised learners as a 
small subset of the multi-model ensemble to further contribute to 
monotonicity of the final ensemble solution (QR, LR); careful and 
application-specific regularization-related hyperparameter pre- 
calibration steps (see also Section 3.2.4) that enable but place limits 
on nonlinearity; and a final ensemble-pruning algorithm to further 
enforce non-negativity, as mentioned above (see also Fig. 2). These 
functional characteristics of monotonicity and nonnegativity correspond 
to known aspects of hydroclimatic relationships – for example, that 
runoff volume cannot be negative-valued, or that a heavy snowpack 
does not, all else held equal, lead to low flow volume. Again, for details 
see Fleming and Goodbody (2019). 

Most of these steps constitute theory-guided AI, that is, a priori 
alignment of AI algorithms with known geophysical processes (see 
Karpatne et al., 2017). Doing so in turn encourages geophysical 
explainability; examples are discussed in Section 4. Additional regula
rization is an added benefit, as theory-guided a priori constraints limit 
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Fig. 2. Simplified schematic representation of M4. Operational acceptance of AI-based WSF requires a broad three-way convergence (top), giving specific design 
attributes (see Table 2). Process map (bottom) illustrates main components. PCA: principal component analysis; LR: linear regression; QR: quantile regression; 
mANN: monotone artificial neural network; RF: random forests; MCQRNN: monotone composite quantile regression neural network; SVM: support vector machine; 
BC: Box-Cox transform; GA: genetic algorithm. See text and Fleming and Goodbody (2019) for details. 
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the solution space available to the machine learning algorithm and 
therefore reduce fitting to noise (e.g., Karpatne et al., 2017; Zhang and 
Zhang, 1999). More broadly, these elements of the M4 metasystem may 
intersect with another high-level evolutionary trajectory in machine 
learning: the transition from first-wave (handcrafted knowledge), to 
second-wave (statistical learning), to now-emerging third-wave 
(contextual learning) AI (for a synopsis see Launchberry, 2021). Kratzert 
et al. (2018) and Fleming and Goodbody (2019) might be considered 
early attempts at integrating third-wave AI philosophies and capabilities 
into hydrologic prediction but approach this challenge differently. 
Kratzert et al. (2018) explore potential abilities of particular deep 
learning architectures to capture and reveal certain hydrologic processes 
with minimal or no application of a priori geophysical knowledge; that 
is, early experiments suggest this approach can learn some geophysical 
context without significant a priori guidance. M4 instead moves more 
incrementally toward third-wave approaches, by leveraging second- 
wave and certain aspects of still-relevant (Launchberry, 2021) first- 
wave AI approaches to achieve specific operational goals in practical 
water resource science that necessarily include the application of ma
chine learning within a predefined, but broad, geophysically relevant 
solution space, which is then refined by M4 on a case-by-case basis. That 
is, it learns within a broad set of theory-guided constraints (mono
tonicity, nonnegativity, etc.) and capabilities (subject matter expert- 
guided features engineering, genetic algorithm-based feature selection, 
etc.) that reflect overall geophysical context of the general problem class 
(western North American WSF), and in doing so, it refines that 
geophysical context through the hydroclimatically interpretable solu
tions it learns and communicates for each river (see Section 4.2.2 for 
examples). 

3.2.4. AutoML and pre-calibration 
Improved automation (criterion 2 of Table 2) was achieved by 

judicious and application-specific use of autonomous machine learning 
(AutoML in the data-science nomenclature, e.g., Thornton et al., 2013; 
Guyon et al., 2015) and pre-calibration. Algorithms were developed to 
automate most optimization and decision points, including setting ML 
hyperparameters. One example is automated determination of optimal 
ANN hidden-layer size on the basis of cross-validated goodness-of-fit and 
information theoretic metrics (Fleming and Goodbody, 2019). In other 
cases, hyperparameters were set to robust default pre-calibrated values 
based on extensive experimentation (Section 3.2.1) using a subset of 
WSF test cases. One example was completing, during initial prototype 
testing, hundreds of M4 training runs to locate generally usable defaults 
for the population size and number of generations in the genetic algo
rithm, and defining a user protocol for diverging from those defaults if 
desired. 

In general, this operational WSF-specific combination of AutoML 
algorithms and default hyperparameters involved establishing reason
able trade-offs. For instance, increasing the population size and the 
number of generations in the genetic algorithm improves out-of-sample 
prediction skill, but the relationship is nonlinear and quickly reaches a 
point of diminishing returns; balancing this observation against mini
mization of run times helped set default values. Similarly, in creating 
AutoML algorithms to automate optimal ANN topology selection, the 
better (up to a point) pattern recognition capabilities enabled by addi
tional hidden-layer neurons were balanced against associated training 
complications, like longer run times and greater susceptibility to both 
overtraining and, conversely, trapping in local minima in the nonlinear 
neural network cost function (e.g., Hsieh, 2009). 

AutoML is additionally facilitated in M4 by selecting methods that 
match the statistical and physical requirements of western US WSF, i.e., 
criterion 4 supports criterion 2 (Table 2). Specifically, nonlinear AI 
techniques, heteroscedastic and non-Gaussian prediction intervals, and 
enforcement of non-negativity constraints reduce the amount of manual 
hydrologist intervention (in the form of selecting and applying pre
dictand transforms, for instance) required to develop and operate WSF 

Table 2 
Design criteria. See text and Fleming and Goodbody (2019) for acronyms and 
further details. Criteria were determined through sustained dialog between 
model developers and model users at NRCS. While some of these criteria are 
specific to the NRCS operational environment or to machine learning applica
tions in hydrology, overall the requirements dovetail closely with factors that 
have previously been identified as crucial for development and operational 
adoption of new river prediction modeling technologies. Examples of such in
tersections include suitability matrix concepts, integrating multifaceted perfor
mance measurement suites around both simulation accuracy and operational 
logistics, as demonstrated for hydrologic modeling by Cunderlik et al. (2013); 
and the concepts of relative advantage, complexity, compatibility, trialability, 
and observability within the diffusion-of-innovations framework introduced by 
Rogers (2003) and adapted to seasonal hydroclimatic forecasting by Whateley 
et al. (2015).  

Criterion Explanation 

1. Improved forecast accuracy Improved WSF accuracy has deep social, 
economic, and environmental value in the 
region, particularly as population growth 
and climate change narrow margins 
between supply and demand 

2. Improved potential for automation Required for an AI-based system operated 
by non-AI experts; needed for more 
frequent WSF updating going forward; 
dovetails with objective “over-the-loop” 
hydrometeorological prediction concepts; 
aligns with democratization (Hill et al., 
2016) of ML use 

3. Relatively low cost & good ease of 
development, implementation, and 
operation 

Logistical, including computational, 
feasibility: user- or hardware-intensive 
systems present practical hurdles with 
transition to, and operation of, a new WSF 
system; reliability is a key operational 
need facilitated by relatively 
straightforward, robust designs 

4. Seamlessly address known technical 
issues 

Predictions must accommodate nonlinear 
functional forms, uncertainty intervals 
must accommodate heteroscedastic and 
non-Gaussian residuals, and predicted 
volumes must be nonnegative, without 
slow and subjective user intervention (e. 
g., transforms) 

5. Modular & expandable Crucial for avoiding obsolescence of, and 
therefore protecting investments in, any 
operational forecasting platform, 
particularly for a modeling system using 
AI, which is a rapidly evolving field 

6. Geophysical consistency & 
explainability 

Must overcome nominal black-box 
limitation of AI: forecasts and models must 
be guided by hydrologic theory and easily 
interpreted in terms of known 
hydroclimatic processes; a relatable 
hydrologic ‘storyline’ around the forecast 
is mandatory for operational WSF 

7. Balance innovation & performance 
gains vs. established building blocks 
& proven tools 

Transitioning OTL AI-based technology 
into operational WSF requires bridging 
distinct professional cultures, and 
balancing new and old; development 
process therefore adopted a MAYA (most 
advanced yet acceptable) design principle 
(e.g., Hekkert et al., 2003) 

8. Multi-model ensemble framework Address equifinality and model selection 
uncertainty present in all hydrologic 
modeling; ensemble of methods having 
substantially different properties may 
improve reliable metasystem function for 
diverse geophysical environments across 
the US West 

9. Dimensionality reduction & 
extraction of multiple independent 
input signals 

High-dimensional collinear input data 
matrices are currently common in 
operational WSF and will only grow more 
prevalent in the future, with spatially 
distributed inputs like remote sensing, 
seasonal numerical climate model, and 
snow model products  
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models (Sections 1.3 and 3.2; see also examples in Section 4). 

3.2.5. Some relationships to other AI philosophies 
As noted above, the goal of M4 is to fuse existing methods into a 

hybrid that meets the specific design criteria we defined for a next- 
generation AI-based US West-wide operational WSF model at NRCS. 
This practical, applications-focused design philosophy is not generally 
typical of AI research in water resource science and engineering (see 
again Section 1), and to help illustrate how it motivates certain meth
odological choices in M4 development, it is helpful to consider a few 
examples. 

One example is how design criterion 8 was approached. Model 
equifinality, and using multi-model ensembles to address it, are well- 
established hydrologic concepts but are usually reserved for process- 
simulation models (e.g., Beven and Binley, 1992; Bourdin et al., 
2014). Similar concepts have emerged independently in the statistical 
and AI communities but usually involve ensembles of nearly identical 
models, such as committees formed from bootstrap aggregated (bagged) 
neural networks (e.g., Breiman, 1996; Breiman, 2001; Wolpert, 1996; 
Burnham and Anderson, 2002). In contrast, strong methodological di
versity within a multi-model ensemble is desirable, reducing error cor
relation across constituent models and increasing noise suppression 
within the ensemble (e.g., Monteleoni et al., 2011). A complementary 
concept is that, at a geophysical level, we might expect certain models to 
work better in certain environments, yet the final WSF system must 
function well across a wide range of hydroclimatic settings and terres
trial hydrologic processes (Sections 1 and 2). This implies that model 
diversity within the multi-model ensemble might improve consistency of 
prediction accuracy across the NRCS system, insofar as poor perfor
mance of one or more of the models in some particular location may be 
compensated by good performance of other models in the ensemble, and 
vice versa at other locations. This is intimately related to the underlying 
reasons why multi-model ensembles are effective in geophysical 
modeling (for details see Hagedorn et al., 2005). We therefore chose 
several fundamentally different supervised AI methods to include in the 
multi-model ensemble (Fig. 2). For instance, ANNs imitate the brain’s 
biological network of neurons and synapses, RFs reflect the decision-tree 
framework of human choice, and SVMs are abstract hyperdimensional 
mathematical constructs. (As a corollary, M4 constitutes a super- 
ensemble with respect to some of its constituent AI methods that are 
in turn ensemble learners, i.e., random forests and bagged neural 
networks.) 

As another example, that a method is not currently chosen for M4 

does not imply we are critical of it, only that it is not presently judged to 
adequately satisfy the multi-faceted and operations-oriented design 
criteria (Table 2) or other basic fitness-for-purpose (see, e.g., Cunderlik 
et al., 2013) considerations in NRCS WSF. Consider, for instance, deep 
learning, sequential online learning, and transfer learning. These three 
branches of AI show substantial promise in hydrologic testing (e.g., Lima 
et al., 2017; Jiang et al., 2018; Kratzert et al., 2018). However, to our 
knowledge none has experienced even initial WSF testing (failing cri
terion 7 at this time). Additionally, deep learning is often computa
tionally expensive to the point of imposing restrictive hardware 
requirements (potentially failing criterion 3), and while deep learning 
appears to offer strong knowledge-discovery capabilities in some geo
scientific applications (e.g., Reichstein et al., 2019; Nearing et al., 2021), 
it remains unclear whether deep-learning architectures, which by defi
nition are complex, are amenable to fast and easy geophysical inter
pretation of the type needed in our operational forecasting application 
(potentially failing criterion 6; see also Section 4.2.2). Transfer learning 
is potentially advantageous to building models for many forecast sites 
and dates, but M4 can be trained rapidly due to AutoML/pre-calibration 
(Section 3.2.4) and some simple parallelization across processor cores 
on a standard personal computer (see above and Fleming and Goodbody, 
2019). Further, hydrologic experimentation so far with these three 
classes of AI has largely focused on hourly or daily flood prediction, 

which has different requirements from seasonal volume forecasting. For 
instance, deep learning was developed largely for big data, whereas 
standard operational WSF problems generally involve modestly sized 
datasets (see Section 2) that may not effectively capitalize on, or even be 
adequate for, deep learning. Similarly, online sequential learning has 
advantages in cases of rapid new data acquisition, but in WSF only one 
new sample appears per year (Section 2). 

By the same token, however, AI and its hydrologic applications are 
fast-evolving fields encompassing many existing, and emerging, tech
niques. This rapid development pace motivates design criterion 5: a 
modular, expandable structure that facilitates integrating new AI 
methods into M4 (Table 2). 

3.3. Application to test cases 

3.3.1. Retrospective analysis 
Hindcast testing was performed for each of the 20 test cases 

described in Section 2. Five metrics, described immediately below, were 
used to measure hindcast performance. Several additional, more quali
tative, evaluation criteria were also considered as discussed in Section 
3.3.3. 

Root mean square error (RMSE) and coefficient of determination (R2) 
quantify deterministic prediction accuracy. RMSE provides an intuitive 
sense of typical predictive error and is closely related to regression 
standard error, and R2 gives the proportion of target variance explained 
by the model. We also consider the ranked probability skill score (RPSS), 
a measure of the probabilistic skill of the model, framed in terms of its 
ability, relative to a naïve climatology forecast, to predict the probability 
of dry, normal, or wet years as defined by terciles of the observed flow 
volumes (e.g., Wiegel et al., 2007; Guihan, 2014; Fleming and Good
body, 2019). RMSE, R2, and RPSS were assessed using cross-validated 
predictions calculated by the general method of Garen (1992), which 
is widely used for WSF applications of PCR in the western US, except for 
RPSS in the case of the two quantile regression methods, which was 
estimated using their intrinsic probability models (see also, e.g., Pagano 
et al., 2004; Rosenberg et al., 2011; Lehner et al., 2017; Fleming and 
Goodbody, 2019). These conventional accuracy metrics do not penalize 
the negative-valued and therefore non-physical predictions made by 
standard statistical models in some cases (see criterion 4 in Table 2; 
examples are provided in Section 4) or reward the physical acceptability 
of predictions made by M4. A more comprehensive portrayal of model 
performance is therefore provided by additionally tracking binary 
metrics that flag whether or not the model-predicted best estimates, and 
the lowest of the associated prediction intervals considered in standard 
WSF applications (Section 3.2.2), meet the physicality requirement of 
being nonnegative for all available sample times. 

3.3.2. Live operations 
Live operational testing was undertaken during the 2020 forecast 

season for a subset of five locations at multiple forecast issue dates 
(Section 2). For the 1 February and 1 March forecast dates, predictor 
candidate pools were similar to those used in hindcasting; for the 1 
January and 1 April operational forecasts, the same models were used as 
in hindcasting (see Section 2). Operational testing was completed 
alongside, but separately from, the existing PCR-based NRCS forecast 
system. The primary goals of the live testing were to confirm compliance 
of M4 with two core requirements of an operational WSF system: related 
workflows must be logistically feasible in a time- and resource- 
constrained operational environment, and any given forecast must be 
readily and succinctly explainable in terms of known geophysical pro
cesses and current climatic conditions. 

3.3.3. Evaluation criteria 
The evaluation criteria approximately reflect the practical design 

criteria outlined in Section 3.2 and Table 2. For hindcast testing, 
assessment included the five quantitative metrics described in Section 
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3.3.1, and in particular, relative performance improvements for these 
metrics compared to the linear PCR benchmark of the existing NRCS 
system (see Section 3.3.4 below). Additionally, robustness, ease of use, 
and automation potential were qualitatively assessed during both 
hindcast and operational testing. This included ability to train and 
operate M4 model suites across a diverse set of test cases quickly with no 
manual tuning. We also assessed amenability of the resulting forecasts to 
interpretation, focusing on live operational tests and ability to infer a 
relatable ‘storyline’ around the current forecast. This is a requirement 
for achieving user and client buy-in for an operational WSF system but is 
conventionally regarded as a challenge for ML (Section 1). 

3.3.4. Benchmark 
Current NRCS operational PCR models as developed and imple

mented in the VIPER operational forecasting software platform (Garen, 
1992; Perkins et al., 2009; see also Sections 1.2 and 1.3) for the test cases 
(Section 2) provide a challenging and broadly relevant performance 
benchmark for M4. PCR models are the basis of NRCS and other oper
ational WSF systems, represent a general reference point as a standard 
linear Gaussian statistical regression approach, and are widely used in 
hydroclimatic research (Section 1.2). Using PCR-based WSFs as a point 
of comparison for M4 is further reinforced by studies suggesting, relative 
to extended streamflow prediction (ESP)-based process-simulation 
models currently in western North American operational use, similar 
accuracy as well as better prediction uncertainty intervals due to under- 
dispersion common in the ensemble spreads of most operational ESP 
systems (e.g., Gobena and Gan, 2010; Harpold et al., 2020). Prediction 
intervals for the benchmark model are generated using a heuristic 
typical of current operational PCR-based WSF (including NRCS) systems 
and widely employed in other regression applications, that is, error is 

assumed to follow a stationary normal distribution centered at the best- 
estimate prediction with a standard deviation equal to the regression 
standard error (e.g., Garen, 1992; Hyndman and Athanasopoulos, 
2013). Benchmark model performance was tracked using the same 
criteria and procedures described in Sections 3.3.1 and 3.3.3. 

4. Results and discussion 

4.1. Retrospective testing 

4.1.1. An introductory example: The Owyhee River 
Preliminary comparison of outcomes for the Owyhee River April 1 

publication date (Fig. 1; see Section 2.2) against conventional PCR 
techniques provides a sense of the practical benefits of M4 and a useful 
starting point for more detailed examination of test-case results. Note 
that this river is known from operational NRCS experience to be one of 
the more challenging forecast points in the western US for reasons that 
will become apparent below and is therefore an instructive litmus test. 

Fig. 3(a) gives hindcast predictions from conventional PCR as used 
by NRCS and others. For several samples, the best-estimate runoff pre
dictions are negative-valued and therefore physically impossible. 
Additionally, it does not generate required time-varying and asymmetric 
prediction bounds, which are obviously too wide in low-flow years and 
too narrow in high-flow years, further contributing to negative-valued 
prediction intervals. These issues are routinely addressed successfully 
in PCR-based WSF using predictand transforms, a common approach to 
applying classical statistical models to nonlinear, non-stationary, and 
non-Gaussian prediction problems. However, such procedures require 
manual user intervention to determine whether a transform is needed 
and if so which one. This is a slow non-OTL procedure (Sections 1 and 3); 

Fig. 3. April 1 Owyhee spring-summer volume forecasts from (a) existing PCR-based WSF system implemented in the VIPER software platform, (b) M4. Units are 
millions of cubic meters (MCM). Red dots connected by thick red line: observations; thick black line: best-estimate forecast; solid gray lines: 0.10 and 0.90 quantile 
prediction intervals, taken to be minimum and maximum reasonable estimates in operational NRCS practice; dashed gray lines: 0.30 and 0.70 quantile prediction 
intervals. Red horizontal line gives zero volume for reference. 
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depends on expert opinion, undermining objectivity, reproducibility, 
and defensibility; and does not separate distributional modifications 
from functional form modifications (see Fleming and Goodbody, 2019). 
Moreover, in operational practice at a few locations, multiple models are 
maintained in the current NRCS system, such as a non-transformed 
primary model giving the best overall performance, and a transformed 
model used on an as-needed basis to avoid negative-valued predictions 
during dry years or other complications; if done well (cf. Wood et al., 
2020 vs. Weber et al., 2012) these subjective, ad hoc, time-consuming 
model development and selection choices can improve the accuracy 
and flexibility of traditional linear models but are even further removed 
from an ideal OTL workflow. In contrast, Fig. 3(b) shows M4 generates 
strictly non-negative best-estimate forecasts and associated prediction 
intervals. The prediction bounds can, when needed, vary in width from 
year to year and be asymmetric about the best estimate. No user input or 
intervention was required, apart from specifying the input variable 
candidate pool. M4 additionally gives better forecast skill than linear 
PCR, as discussed in subsequent sections. 

4.1.2. Performance within multi-model ensemble 
The benefit of extending multi-model ensembles to a diverse set of 

supervised machine learning methods for WSF (Section 3.2.5; see also 
Fleming and Goodbody, 2019) is confirmed by comparative results on 
test sites across the western US (Table 3). Equifinality is pervasive, as 
commonly seen for hydrologic and other models (Beven and Binley, 
1992; Wolpert, 1996; Burnham and Anderson, 2002; Hagedorn et al., 
2005). Relative to other techniques within the metasystem, a certain 
individual modeling method may, for a given test case, perform best on 
one metric but worst on another; or for a given forecast date, perform 
best at one location but not at others; or for a given location, perform 
well for one forecast date but not for others (Table 3). 

Multi-model ensembles provide an established means for addressing 
such model selection uncertainty and give tangible performance im
provements (Table 3). The ensemble mean forecast distribution 
frequently (one or more performance metrics in each of nine test cases) 
beats the performance of any of its constituent ensemble members 
through mutual error cancellation, a known advantage of ensemble 
modeling. Perhaps more importantly, metasystem mean performance 
almost without exception beats, matches, or is second-best to all of its 
constituent systems. This is far more consistent performance across 
performance metrics, locations, and forecast dates than any of the six 
individual modeling techniques within the metasystem. Such consis
tency is a fundamental but occasionally overlooked advantage of multi- 
model ensemble means (Hagedorn et al., 2005) and is important for 
reliable, efficient, and effective application across a large region with 
diverse geophysical and statistical characteristics (see ensemble 
modeling discussion in Section 3.2.5). 

4.1.3. Performance relative to existing system 
Fig. 4 and Table 3 reveal the M4 ensemble mean forecast distribution 

also meets or, in most cases, beats the current NRCS WSF model for 
every quantitative performance measure. Recall from Section 3.3.4 that 
this current PCR model is a meaningful general benchmark for opera
tional WSF skill in the western US. On average, R2 and RPSS improve by 
over 50% and RMSE is reduced by 13%. These accuracy improvements 
on 20 diverse test cases appear to mainly reflect a combination of flex
ibility provided by nonlinear machine learning, robustness provided by 
methodologically diverse multi-model ensembles, and embedding of 
geophysical process constraints (Section 3.2). For rivers like the 
Deschutes where preliminary diagnostics (Section 3.2.1) suggested no 
significant departures from linear stationary Gaussian processes, im
provements were comparatively modest; in such cases, the ensemble AI 
essentially retrieves a linear stationary Gaussian model, as expected if 
regularization is properly implemented (Hsieh et al., 2003; Fleming, 
2007). By the same token, benefits relative to the existing system were 
strongest for test cases like Owyhee, Gila, Clark Canyon, and Truckee, 

which are nonlinear, non-Gaussian, or heteroscedastic and/or where the 
existing system produced occasional non-physical negative predictions. 
Note the final ensemble mean forecast distribution was always non- 
negative, a key advantage over the current statistical model, which in 
6 hindcast test cases provided a forecast distribution containing non- 
physical values in at least one year. These advantages are also qualita
tively obvious for individual cases (Section 4.1.1). 

4.2. Live operational testing 

4.2.1. General performance 
Live testing at a subset of 5 forecast locations during the 2020 

forecast season (Section 3.3) alongside the current operational system 
was undertaken primarily to evaluate certain practical aspects of actu
ally using M4 in a genuinely operational setting. The testing confirmed 
logistical feasibility of associated near-real time workflows, and M4 was 
found reliable and simple to use, with no need for manual intervention. 
This OTL approach stands in contrast to existing operational WSF 
models, which in practice often require manual subjective choices dur
ing operations around rebuilding using different predictor sets or 
transforms (statistical models) or adjustments of parameters, internal 
states, or input data values (process models) (see Sections 1 and 3). 
Further, during part of the 2020 forecast season, manual snow survey 
sites could not be monitored due to the COVID-19 pandemic and impacts 
of the associated quarantine on field surveys. It was found that M4 

modeling suites previously developed for certain forecast points and 
dates that made particularly heavy use of manual snow survey data were 
easily and quickly retrained during routine forecast operations to use 
only telemetered SNOTEL data. This example illustrates that, in practice, 
the metasystem can provide needed flexibility and convenience when an 
unexpected operational condition arises. 

Out-of-sample forecast accuracy comparisons to other methods were 
performed in the hindcasting of Section 4.1.3 and obviously were not a 
goal for live operational testing – little can be gleaned in this respect 
from a single forecast season, which effectively amounts to a sample of 
one in WSF. It is nevertheless encouraging to preliminarily note that, 
considering all 4 forecast dates at all 5 locations, mean RMSE 
improvement over the benchmark model in live operations was 10%, 
roughly comparable to improvements seen in hindcasting. Additionally, 
in operations, the range in the best-estimate 2020 spring-summer vol
ume forecast across all 4 forecast issue dates for a given river decreased 
relative to the current NRCS model (by 21%, averaged across the 5 
sites). If this apparent increase in the stability of the best-estimate pre
diction value from one forecast date to the next, for a given river during 
a given forecast season, is rigorously confirmed in further operational 
testing, it may reflect the inherent performance consistency advantages 
provided by multi-model ensemble averaging (see Section 4.1.2). Pro
vided it is not at the expense of decreased accuracy (and the opposite is 
seen here, as noted above), such steadiness in the forecast is in general 
viewed as a desirable operational characteristic by SDOs because it 
simplifies hydroclimatic interpretations and client communications. 

4.2.2. Geophysical interpretation of two live AI-based forecasts 
Ability to readily determine how model behaviors relate to physical 

hydrologic processes is necessary for meeting professional re
sponsibilities around assessing the reliability of forecasts used for high- 
impact water management decisions, and for verification diagnostics. 
Physical interpretability is also vital for communicating forecasts to 
clients, who often include the general public, such as why a river volume 
prediction increased or decreased and by how much since the last 
forecast date. Recall from Section 1 that for some western US rivers 
experiencing complex or contentious water management issues, WSFs 
are legal requirements specified by legislation, court decisions, or in
ternational treaties. Such forecasts are routinely subject to intense 
public, and even political, scrutiny. Amenability to physical explanation 
is therefore a prerequisite for operational WSF systems in the region, 

S.W. Fleming et al.                                                                                                                                                                                                                             



Journal of Hydrology 602 (2021) 126782

13

Table 3 
Metasystem performance on 20 hindcast test cases at 11 sites (see Fig. 1, Table 1, and text). Outcomes shown for constituent machine learning and statistical models, 
and final multi-model ensemble mean forecast distribution derived from them. As a benchmark, results are provided for the established official NRCS forecast model 
(VIPER) using a linear stationary Gaussian PCR approach known to generally perform at least as well as other operational WSF methods widely used in the US West, 
including ESPs (see text). Operational VIPER models in some cases included predictand transforms. Only April forecasts are considered here for Boulder Creek and the 
Little Susitna River (see Table 1 for details). Performance metrics are coefficient of determination (R2), root mean square error (RMSE), ranked probability skill score 
(RPSS), and flags for whether negative-valued best estimates (BE) or 0.10 quantile prediction bounds (PB) occurred for any sample (see Section 3.3.1 for details). RMSE 
is in millions of cubic meters (MCM). Asterisk for a given model denotes the automated negativity-check algorithm in M4 (see Fig. 2, Section 3.2, and Fleming and 
Goodbody, 2019) removed it from the ensemble. For the final ensemble mean forecast, comparative performance is summarized by superscripts on a metric-by-metric 
basis: a outperforms all retained constituent models for that metric, b matches the performance of the best-performing of its retained constituent models, c outperforms 
VIPER, d matches VIPER.    

M4 prediction analytics engine 

Metric VIPER LR QR mANN RF MCQRNN SVM Ensemble  

Truckee Apr 1 
R2 0.89 0.93 0.93 0.94 0.91 0.94 0.93 0.94b,c 

RMSE 61.4 47.6 46.9 43.5 54.5 44.2 50.2 43.3 a,c 

RPSS 0.75 0.81 0.80 0.80 0.82 0.80 0.71 0.81c 

BE < 0? N N N N N N N N b,d 

PB < 0? Y N Y N N N N N b,c 

Truckee Jan 1 
R2 0.21 0.25 0.20 0.14 0.21 0.15 0.41 0.27c 

RMSE 162 158 173 176 162 170 142 156c 

RPSS 0.05 0.05 0.23 0.02 0.10 0.13 0.27 0.17c 

BE < 0? N N N N N N N N b,d 

PB < 0? Y N Y N N N N N b,c 

Yellowstone Apr 1 
R2 0.79 0.81 0.82 0.82 0.72 0.82 0.83 0.82c 

RMSE 252 240 244 236 305 236 239 235 a,c 

RPSS 0.61 0.62 0.65 0.60 0.55 0.61 0.62 0.63c 

BE < 0? N N N N N N N N b,d 

PB < 0? N N N N N N N N b,d 

Yellowstone Jan 1 
R2 0.58 0.58 0.60 0.57 0.61 0.58 0.57 0.62 a,c 

RMSE 357 356 351 362 351 358 361 342 a,c 

RPSS 0.20 0.20 0.25 0.19 0.30 0.25 0.21 0.26c 

BE < 0? N N N N N N N N b,d 

PB < 0? N N N N N N N N b,d 

Owyhee Apr 1 
R2 0.67 0.67* 0.65* 0.70 0.85 0.64 0.81 0.83c 

RMSE 170 169* 180* 160 125 181 133 130c 

RPSS 0.49 0.53* 0.54* 0.45 0.43 0.54 0.59 0.56c 

BE < 0? Y Y* Y* N N N N N b,c 

PB < 0? Y Y* Y* N N N N N b,c 

Owyhee Jan 1 
R2 0.14 0.26 0.25* 0.50 0.28 0.17 0.49 0.43c 

RMSE 276 255 263* 207 251 280 211 225c 

RPSS 0.10 0.13 0.11* 0.03 0.05 0.21 0.09 0.14c 

BE < 0? N N N* N N N N N b,d 

PB < 0? Y Y Y* N N N N N b,c 

Clark Canyon Apr 1 
R2 0.47 0.54* 0.61* 0.57 0.56 0.59 0.44 0.60 a,c 

RMSE 59.4 55.8* 52.1* 53.8 55.7 52.6 62.0 52.7c 

RPSS 0.28 0.32* 0.39* 0.24 0.23 0.37 0.17 0.30c 

BE < 0? Y Y* Y* N N N N N b,c 

PB < 0? Y Y* Y* N N N N N b,c 

Clark Canyon Jan 1 
R2 0.18 0.21 0.27* 0.25 0.34 0.18 0.41 0.41b,c 

RMSE 74.8 72.9 70.9* 71.9 66.8 75.5 64.0 64.0b,c 

RPSS 0.06 0.06 0.25* − 0.01 0.06 0.17 0.01 0.13c 

BE < 0? N N N* N N N N N b,d 

PB < 0? Y Y Y* N N N N N b,c 

Gila Apr 1 
R2 0.62 0.69 0.71 0.80 0.73 0.71 0.74 0.76c 

RMSE 12.2 11.1 11.3 9.0 10.5 10.9 10.4 9.9c 

RPSS 0.53 0.59 0.64 0.62 0.64 0.63 0.64 0.66 a,c 

BE < 0? N N N N N N N N b,d 

PB < 0? N N Y N N N N N b,d 

Gila Jan 1 
R2 0.14 0.25 0.33 0.36 0.46 0.24 0.25 0.37c 

RMSE 70.6 64.9 62.8 60.3 56.0 65.6 66.0 60.0c 

RPSS 0.17 0.23 0.35 0.31 0.16 0.29 0.25 0.34c 

BE < 0? N N N N N N N N b,d 

PB < 0? N N N N N N N N b,d 

Boulder Apr 1 
R2 0.28 0.29 0.33 0.22 0.57 0.33 0.59 0.47c 

(continued on next page) 
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including those based on statistical and machine learning methods (e.g., 
Garen, 1992; Weber et al., 2012; Fleming and Goodbody, 2019; Fleming 
et al., 2021). As discussed in Sections 1 and 3, such relatable hydro
climatic ‘storylines’ are widely perceived to run contrary to the nomi
nally black-box nature of machine learning, in turn slowing the 
migration of AI into operational hydrology. Some successful early at
tempts notwithstanding (e.g., Cannon and McKendry, 2002; Fleming, 
2007), explainable or ‘glass-box’ AI largely remains at the cutting edge 
of geoscience (Kratzert et al., 2018; Reichstein et al., 2019; McGovern 
et al., 2019; Nearing et al., 2021). Our live operational forecasting 
provided an opportunity to test the pragmatic, WSF-specific approach to 
explainable machine learning implemented in M4 (Section 3.2.3). 

Two examples are summarized below. These were the most 
complicated interpretive scenarios encountered during live operational 
testing and, as such, illustrate ability of the M4 metasystem to extract 
geophysical process reasoning from an AI-based predictive approach. 

We first consider the February 1, 2020 operational forecast of 101% 
normal for February-May 2020 Gila River flow volume. During M4 

training, candidate predictors for this operational test case were 
forecast-date SWE and water year-to-date precipitation at a few sites in 
this remote mountain tributary to the Lower Colorado River (Table 1, 
Fig. 1), similar to the current WSF system (Section 2). In this particular 
test case, for all models in M4, the genetic algorithm retained only the 
leading PCA mode, which (given the candidate predictors used) is a de 

Table 3 (continued )   

M4 prediction analytics engine 

Metric VIPER LR QR mANN RF MCQRNN SVM Ensemble 

RMSE 14.7 14.6 14.5 15.5 11.4 14.1 11.1 12.7c 

RPSS 0.06 0.01 0.12 0.01 0.35 0.10 0.20 0.19c 

BE < 0? N N N N N N N N b,d 

PB < 0? N N N N Y N N N b,d 

Detroit Lake Apr 1 
R2 0.55 0.62 0.63 0.59 0.52 0.62 0.52 0.62c 

RMSE 118 108 106 112 122 109 123 108c 

RPSS 0.32 0.29 0.34 0.29 0.37 0.37 0.29 0.36c 

BE < 0? N N N N N N N N b,d 

PB < 0? N N N N N N N N b,d 

Detroit Lake Jan 1 
R2 0.11 0.24 0.14 0.33 0.26 0.18 0.29 0.31c 

RMSE 168 153 165 145 152 160 148 147c 

RPSS 0.12 0.11 0.11 0.23 0.17 0.21 0.19 0.21c 

BE < 0? N N N N N N N N b,d 

PB < 0? N N N N N N N N b,d 

Fontenelle Apr 1 
R2 0.62 0.73 0.72 0.70 0.70 0.72 0.75 0.75b,c 

RMSE 233 227 235 236 239 231 219 218 a,c 

RPSS 0.41 0.53 0.58 0.60 0.53 0.52 0.58 0.59c 

BE < 0? N N N N N N N N b,d 

PB < 0? Y N Y N N N N N b,c 

Fontenelle Jan 1 
R2 0.29 0.28 0.34 0.37 0.43 0.27 0.47 0.41c 

RMSE 370 370 354 347 334 373 320 335c 

RPSS 0.11 0.08 0.14 0.10 0.19 0.12 0.11 0.16c 

BE < 0? N N N N N N N N b,d 

PB < 0? N N N N N N N N b,d 

Deschutes Apr 1 
R2 0.78 0.81 0.82 0.75 0.74 0.81 0.81 0.83 a,c 

RMSE 6.7 6.3 5.9 7.0 7.4 6.2 6.3 5.9b,c 

RPSS 0.61 0.59 0.66 0.56 0.56 0.60 0.52 0.61 d 

BE < 0? N N N N N N N N b,d 

PB < 0? N N N N N N N N b,d 

Deschutes Jan 1 
R2 0.55 0.55 0.57 0.50 0.43 0.57 0.56 0.57b,c 

RMSE 9.5 9.5 9.5 10.2 10.8 9.3 10.0 9.3b,c 

RPSS 0.15 0.07 0.17 0.05 0.17 0.19 0.11 0.17c 

BE < 0? N N N N N N N N b,d 

PB < 0? N N N N N N N N b,d 

Little Susitna Apr 1 
R2 0.26 0.54 0.57 0.44 0.42 0.51 0.60 0.59c 

RMSE 24.8 19.6 20.2 21.5 22.3 20.1 18.7 18.7b,c 

RPSS 0.18 0.37 0.42 0.39 0.41 0.40 0.31 0.43 a,c 

BE < 0? N N N N N N N N b,d 

PB < 0? N N N N N N N N b,d 

Rio Grande Apr 1 
R2 0.57 0.62 0.64 0.54 0.58 0.59 0.59 0.64b,c 

RMSE 151 142 140 155 151 147 148 138 a,c 

RPSS 0.43 0.41 0.48 0.37 0.36 0.46 0.38 0.45c 

BE < 0? N N N N N N N N b,d 

PB < 0? N N N N N N N N b,d 

Rio Grande Jan 1 
R2 0.47 0.56 0.61 0.59 0.60 0.58 0.65 0.64c 

RMSE 168 153 144 147 146 149 137 138c 

RPSS 0.32 0.37 0.44 0.36 0.35 0.39 0.39 0.41c 

BE < 0? N N N N N N N N b,d 

PB < 0? N Y N N N N N N b,d  
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facto watershed-scale index of wintertime climate conditions, and in 
particular, basin water inputs. The genetic algorithm effectively casts 
votes for which geophysical drivers, among the candidates in the pool, it 
thinks most important. Thus, the resulting ‘popular vote’ across models, 
along with the PCA eigenvector, illuminate which inputs most influence 
the forecast. We see (Table 4) that some predictors (e.g., Silver Creek 
Divide SWE) were more popular than others (e.g., Signal Peak SWE), 
whereas eigenvector weights across retained predictors were roughly 
uniform for a given model in this case. 

Further, dimensionality reduction (Section 3) allows direct visuali
zation of the ensemble mean empirical input–output map detected by 
M4 (Fig. 5). In this example, such a graphical representation illustrates 
the relationship between the sole retained feature in each model (the 
leading PCA mode, which as noted previously is an index of wintertime 
precipitation inputs) and the sole target (February-May volume), aver
aged across constituent models. The relationship exhibits a shallower 
slope in dry years (Fig. 5). This decrease in the first derivative of the 
input–output map during drought conditions is a functional form that is 
known, from both M4 testing and NRCS operational experience with 
current WSF models, to be especially widespread in semi-arid rivers like 
the Gila, and capturing it in a WSF model is needed to avoid negative- 
valued predictions sometimes generated by linear models over the 
relevant state space (blue dashed line in Fig. 5; see also Section 4.1). 

This nonlinearity reflects several geophysical causes. Wet-year flow 

is closely coupled with, and therefore sensitive to, variations in winter 
precipitation and snowpack, giving a steeper curve; in contrast, during 
dry years, a higher proportion of springtime snowmelt goes to refilling 
soil moisture and aquifer storage before producing a flow response in 
this desert river. That is, the phenomenon can be viewed as an 
approximate seasonal-scale analogy to the well-known nonlinearity of 
daily or hourly rainfall-runoff relationships: infiltration limits reached 
during storms reduce the mitigating impact of soil moisture storage and 
more directly couple surface runoff to rainfall fluctuations, increasing 
surface runoff generation per unit precipitation, whereas stable baseflow 
contributions from soil, aquifer, channel, wetland, and other natural 
storage mechanisms partly flatten the rainfall-runoff relationship during 
dry spells. Additionally, wet-year runoff efficiency improves due to 
proportionately lower evapotranspiration losses, reflecting cooler tem
peratures and greater cloud cover associated with wet conditions here, 
giving a greater runoff increase per unit precipitation increase (Lukas 
and Harding, 2020). These factors may also dovetail with climate elas
ticity. If flow volume dependence on precipitation inputs follows a 
power-law for a given river, its precipitation elasticity of runoff is fixed 
and equal to the power-law exponent (Sankasubramanian et al., 2001). 
Though additional work would be required to formally tie the curve in 
Fig. 5 to climate elasticity, preliminary power-law fits to this 
input–output relationship non-parametrically estimated by M4, 
following simple linear rescaling to ensure positive-valued PC1 scores, 

Fig. 4. Percentage improvements provided by M4 ensemble mean forecast on three common performance metrics for 20 test cases, relative to existing NRCS 
operational WSF system. Average improvement across all hindcast test cases is also shown. Other key performance aspects were additionally considered in the overall 
evaluation (see text). 

Table 4 
Leading-mode eigenvector for each model, adjusted to common polarity across models, and model-voting results for each predictor in the candidate pool. Results are 
for February 1 Gila River M4 forecast models. P is Oct 1-to-Jan 31 accumulated precipitation, SWE is Feb 1 start-of-day SWE. - indicates predictor was not selected for 
retention by genetic algorithm for the corresponding model. Popular vote for each variable across models, and PCA loadings for each retained variable for a given 
model, give some indication of the relative influences of various inputs on the forecast. Current values during the February 1, 2020 operational forecast are provided for 
each candidate predictor as a percentage of its mean over the 30-year normal period used in model development.  

Candidate predictor Leading-mode PCA eigenvector entries % models voting for variable % normal 
LR QR mANN RF MCQRNN SVM 

Lookout Mountain P  –  0.55  –  0.54  –  0.51 50 107 
Lookout Mountain SWE  –  0.59  0.58  –  –  0.49 50 15 
Signal Peak P  0.71  –  0.55  –  0.71  0.51 67 117 
Signal Peak SWE  –  –  –  0.60  –  – 17 0 
Silver Creek Divide P  –  –  –  –  –  – 0 113 
Silver Creek Divide SWE  0.71  0.59  0.60  0.60  0.71  0.50 100 156  
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implies an elasticity of roughly 2 (R2 > 0.95), consistent with Colorado 
Basin elasticity estimates from standard methods (e.g., Vano et al., 
2012). That this nonlinearity is strongest in semi-arid rivers also seems 
consistent with Vano et al. (2012), who found higher elasticities in drier 
basins. All things considered, it seems clear that nonlinear relationships 
between climate forcing and watershed response, empirically detected 
by M4, are explainable in terms of known hydrological processes, con
nect data-driven WSF to broader concepts in watershed hydrology and 
climate science, and suggest specific future research directions in 
physical hydrology, collectively belying the conventional black-box 

view of machine learning. 
Moreover, with the foregoing interpretive tools and context in mind, 

the forecast of near-normal runoff issued operationally by M4 on 
February 1, 2020 is easily diagnosed to form a relatable and compact 
storyline for clients. From Table 4, precipitation overall was somewhat 
above-normal throughout the watershed. That in turn increased soil 
moisture basin-wide, as well as snowpack at Silver Creek Divide, which 
among the SNOTEL sites considered in this test case is the most north
erly, highest-elevation, on average highest-SWE, and generally most 
informative (given its selection by all six models) for spring runoff 
prediction. These factors pushed up the forecast. However, snowpack 
was very low in the south (Signal Peak) and east (Lookout Mountain), 
presumably reflecting temperature-controlled variations in winter pre
cipitation phase across this southwestern New Mexico watershed, pull
ing spring-summer runoff projections back down to near-normal. 
Additionally, in part because of nonlinear relationships between 
wintertime weather and runoff volume (Fig. 5), which occur because 
snowpack and precipitation are not the sole environmental processes 
affecting streamflow, percentages of normal match only approximately 
between observed inputs and predicted flow. 

Our second example is the January 1, 2020 operational forecast of 
71% normal for April-July 2020 Deschutes River flow volume. During 
M4 training, candidate predictors for this operational test case were 
forecast-date SWE and water year-to-date precipitation at a few sites in 
the remote mountain headwaters of this mid-Columbia River tributary 
(Table 1, Fig. 1), and antecedent streamflow. This is similar to the cur
rent WSF system (Section 2). Use of antecedent streamflow reflects the 
large known impact of volcanic aquifers in generating and stabilizing 
Deschutes River flows; surface water-groundwater interactions are un
usually pronounced here, leading to muted seasonality in flow and 
strong memory in streamflow time series (Table 1; e.g., O’Connor et al., 
2003; Risley et al., 2005). 

Resulting ‘popular votes’ (see above) and eigenvectors are given in 
Table 5. The popular vote cast by the genetic algorithm across the six 
constituent M4 models favors Irish Taylor precipitation, and in partic
ular antecedent Deschutes streamflow, the only candidate variable 
retained by all models. In this test case, the genetic algorithm selected 
only the leading mode for half the models and both the leading and 
second modes for the remainder. For models retaining only the leading 
mode (QR, RF, and SVM), two of the five candidate predictors were 

Fig. 5. Nonlinear ensemble mean relationship (thick black line) between AI- 
based Gila River volume prediction and leading-mode PCA scores time series 
(PC1), which indexes watershed-scale winter climatic inputs, illustrating partial 
flattening during dry years. For reference, blue dashed line continues linear 
relationship to low-flow conditions. 

Table 5 
As in Table 4, but for the January 1 forecast of Deschutes River April-July flow volume, and reformatted to give eigenvectors corresponding to both the leading PCA 
mode, and to the second PCA mode for constituent M4 models that retain it. Eigenvector entries for models that do not retain the second PCA mode are marked not 
applicable (n/a), and as in Table 4, – indicates predictor was not selected for retention by the genetic algorithm for the corresponding model. P is Oct 1-to-Dec 31 
accumulated precipitation, SWE is Jan 1 start-of-day SWE, and Q is antecedent (December) total flow volume.   

Candidate predictor  

Irish Taylor SWE Irish Taylor P Three Creeks 
Meadow SWE 

Three Creeks 
Meadow P 

Deschutes below 
Benham Falls Q 

PCA eigenvector entries, leading mode 
LR 0.59 0.69 – – 0.42 
QR – – – 0.71 0.71 
mANN 0.44 0.50 0.49 0.48 0.29 
RF – 0.71 – – 0.71 
MCQRNN 0.59 0.69 – – 0.42 
SVM – 0.71 – – 0.71 
PCA eigenvector entries, second mode 
LR − 0.56 − 0.03 – – 0.83 
QR n/a n/a n/a n/a n/a 
mANN − 0.51 0.06 − 0.33 0.29 0.74 
RF n/a n/a n/a n/a n/a 
MCQRNN − 0.56 − 0.03 – – 0.83 
SVM n/a n/a n/a n/a n/a 
% of models voting for candidate variable  

50 83 17 33 100 
Current % normal for candidate variable  

39 49 71 57 74  
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selected: accumulated precipitation at either Three Creeks Meadow or 
Irish Taylor, and antecedent flow. The corresponding eigenvector 
weights were equal across the two predictors for a given model. For 
models retaining both the leading and second PCA modes (LR, mANN, 
MCQRNN), the leading-mode eigenvector predominantly weighted 
snow or precipitation, whereas the second-mode loading pattern pre
dominantly weighted antecedent flow. Recall that PCA mode order is 
determined by relative ability to explain variance in the input matrix, 
not relative ability to explain variance in the target when those modes 
are used as predictive features in a supervised learner. Overall, then, 
various GA-optimized models address the combination of two distinct 
forcing mechanisms – wintertime hydroclimate, and groundwater con
ditions – in one of two ways. QR, RF, and SVM retain a single PCA mode 
which aggregates the effects of both forcing mechanisms. For LR, 
mANN, and MCQRNN, the leading PCA mode gives a watershed-scale 
index of seasonal climate to date, as in other test cases (e.g., foregoing 
Gila River example), whereas the second mode indexes groundwater 
contributions. 

For all six constituent M4 models, functional forms in this test case 
were approximately linear, as expected based on hindcast testing and 
preliminary diagnostics (see Section 4.1.3). Graphical representations 
cannot be compactly provided for the ensemble mean response as in 
Fig. 5, because different models retain different numbers of features for 
the Deschutes, but we can easily examine the input–output maps for 
each of the six models individually. A representative example is pro
vided in Fig. 6, illustrating a nearly planar response surface extracted by 
one of the artificial neural networks. Mechanisms for the apparent 
absence of substantial nonlinearity here requires further study, but 
comparisons of functional forms across several test cases from different 
hydroclimatic settings (not shown here for conciseness) strongly suggest 
that it reflects water abundance in some way. A possible explanation is 
that the aforementioned plentiful aquifer contributions to streamflow, 
plus heavy snowmelt and precipitation inputs to this very wet Pacific 
Northwest basin near the crest of the Cascades Range, are such that 
basin water balance does not become sufficiently depleted, even in 
drought years, for the form of the input–output mapping to change as a 
function of wetness as seen in the Gila and other semi-arid or arid basins, 
where flow volumes can approach zero in dry years and the functional 
form must therefore level off at low flows as in Fig. 5. 

As for the Gila River above, with these interpretive tools and context 
in mind the January 1, 2020 operational April-July volume forecast for 
the Deschutes River is easily diagnosed to form a relatable and compact 
storyline for clients. Very early-winter (January 1) SWE and accumu
lated precipitation data are typically poor indicators of the total snow
pack that will be eventually available for spring-summer melt in the 
Upper Deschutes Basin. They therefore offer limited WSF skill at this 
January publication date and are collectively given less influence on the 
ensemble forecast by M4. In contrast, the only candidate predictor 
retained in all six M4 methods is antecedent flow, consistent with the 
unique hydrogeologic characteristics of the Deschutes River, stabilizing 
its flows and generating extensive time series memory that facilitates 
forecasting in an autoregressive model-like fashion. (Note that this 
relationship between catchment storage and streamflow memory, and 
the resulting streamflow forecasting capability, can also be explicitly 
tied to a finite-difference approximation to the linear reservoir model of 
watershed hydrology; for details see Fleming (2007) and references 
therein). The 74% normal value of antecedent flow, with some addi
tional support from the 71% normal value of SWE at Three Creeks 
Meadow for the mANN model, therefore brings up the ensemble mean 
predicted volume to 71% of normal despite dry wintertime conditions to 
January 1, 2020. 

Model structures, optimized feature sets, and associated hydro
climatic explanations varied significantly across test cases, as would be 
expected given their geophysical diversity. However, it was found that 
straightforward physical interpretations of the models, and of their 
operational forecasts in light of currently observed conditions, were 
readily apparent in all cases. In general, these explanations were roughly 
similar to or simpler than those for the two operational test cases 
detailed above. 

4.3. Mainstreaming AI in hydrology: Some implications of M4 operational 
viability 

Much effort has been invested over recent decades in improving 
physics-oriented process-simulation models of river hydrology. In the
ory, these models have certain advantages over data-driven volume- 
prediction methods, such as improved physical process diagnostics, 
better suitability for nonstationary environments, and ability to 

Fig. 6. Approximately linear (near-planar) response surface for the monotone artificial neural network (mANN) relating the January 1 prediction of April-July 
Deschutes River flow volume to the leading and second PCA modes. Both modes were retained by genetic algorithm feature-optimization for this particular con
stituent model within the M4 metasystem as trained and tested for this combination of forecast date, target period, and location. 
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generate daily streamflow traces that are useful in some applications. 
Moreover, the nominally black-box nature of machine learning exacer
bates, relative even to classical statistical methods, the shortcomings of 
data-driven prediction frameworks relative to more explicitly physics- 
oriented approaches. Given these considerations, is AI a viable alter
native at all for operational WSF? The results of this study provide some 
insight into that question, which is increasingly pressing as, on the one 
hand, water scarcity and the associated need for better hydrometeoro
logical forecasts increase, and on the other hand, AI progressively per
meates science and society in what has been termed the fourth paradigm 
of science (Hey et al., 2009) and subsequently the fourth industrial 
revolution (Schwab, 2017). 

It is useful to begin by identifying some general advantages of data- 
driven models for operational WSF. Statistical volume modeling is a 
proven method that remains the backbone of most WSF systems in 
western North America, often serving as either the sole prediction 
technology or as a complement to ESPs. Some organizations currently 
running statistical WSF models include NRCS, California Department of 
Water Resources, Colorado Basin River Forecast Center, BC Hydro, Bu
reau of Reclamation and Army Corps of Engineers forecasts in the 
Columbia Basin, British Columbia River Forecast Centre, and Alberta 
Environment. Reasons for continued interest in data-driven models 
include intrinsically lower development and operation costs, similar 
forecast skill, greater amenability to new predictive data types like 
multiple climate indices, operational simplicity and robustness, and 
easier and more accurate estimates of forecast uncertainty, relative to 
ESPs (e.g., Gobena et al., 2013; Risley et al., 2005; Fleming and Dahlke, 
2014; Hsieh et al., 2003; Grantz et al., 2005; Harpold et al., 2016; 
Regonda et al., 2006a; Rosenberg et al., 2011; Pagano et al., 2014; 
Minxue et al., 2016; Mendoza et al., 2017; Robertson et al., 2013). There 
is also accumulating evidence that certain carefully implemented ma
chine learning algorithms can make accurate hydroclimatic predictions 
under conditions not sampled during a historical training period, that is, 
extrapolate successfully (Schnorbus and Cannon, 2014; Shrestha et al., 
2017; Kratzert et al., 2019), facilitating their use in a changing climate 
for instance. Conversely, some theoretical advantages of process-based 
models over data-driven approaches are incompletely realized in prac
tice. For instance, diagnosing forecast failures in complex process 
models is not always straightforward, and process-simulation stream
flow models sufficiently accurate for widespread operational use by the 
applied water resource community normally contain parameters 
requiring de facto statistical calibration to historical records, potentially 
undermining applicability to nonstationary environments. 

More fundamental considerations also motivate temporally coarse- 
grained prediction techniques like data-driven seasonal volume 
models. Temporal aggregation often simplifies the underlying statistical 
physics of any system, and the optimal level of model detail and 
complexity required to describe and predict that system therefore de
pends on problem timescale. Specifically, temporal data aggregation 
typically increases the signal-to-noise ratio of lower-frequency 
geophysical processes and can (at least partially) linearize functional 
relationships and attenuate statistical complications like autocorrelation 
(if the aggregation interval exceeds the decorrelation timescale) and 
non-Gaussian distributions (reflecting the central limit theorem). For 
details around these general principles, and some specific hydrology and 
climate examples, see, e.g., Packard et al. (1980); Finney et al. (1998); 
Daw et al. (2003); Penland (1996); Hsieh (2009); Newman (2007); 
Newman (2012); Micovic and Quick (2009); and Fleming and Barton 
(2015). Hydrologic process-simulation models usually contain strongly 
nonlinear, serially correlated, and non-Gaussian physics relevant to the 
hourly to daily timescales at which they typically operate. This is 
obviously needed for short-term flood forecasting but represents a 
multiple (2 to nearly 4) order-of-magnitude mismatch to the task of 
predicting, on an annual basis, accumulated spring-summer flow vol
ume a few months ahead based mainly on snowpack data. Most of the 
additional information generated by a process-simulation model is, 

therefore, effectively discarded when outcomes are integrated to form 
the seasonal volume predictions that are the primary basis for western 
US water management. 

Despite these advantages, and a quarter-century of research appli
cations of AI to hydrologic prediction that consistently demonstrate 
better accuracy than both process-simulation and conventional statisti
cal methods (e.g., Nearing et al., 2021), ML has largely failed to pene
trate operational hydrology in general and WSF in particular. Reasons 
were summarized in Section 1 and primarily relate to lack of alignment 
of AI-based hydrologic models with the specific practical needs of 
operational WSF, including but not limited to geophysical explain
ability. Also as briefly summarized in Sections 1 and 3, M4 was therefore 
designed to satisfy those specific practical criteria (Fleming and Good
body, 2019). Verifying whether M4 can actually accomplish that task in 
practice was a major goal of this study. 

The retrospective and live operational testing conducted here 
demonstrate that these NRCS design criteria appear to have been met by 
M4, with broader potential implications for transitioning AI into oper
ational systems. Relative to similarly configured conventional PCR- 
based NRCS WSF models, which as noted above have accuracies 
approximately typical of operational WSF systems in the western US 
including process-based ESP models (Section 3.3.4), the metasystem 
provides better forecast skill and more realistic prediction intervals, is 
more robust and automated, more consistently yields physically 
reasonable outcomes, both integrates and is interpretable in terms of 
physical hydrologic process knowledge, is applicable across strongly 
heterogeneous geophysical environments spanning the western US and 
Alaska, and functions well in a genuine operational setting. Though 
technically more complex than current-generation statistically based 
operational WSF methods, it requires fewer resources to implement and 
operate relative to many process-simulation models. Considered 
collectively, these testing results show that – with careful and 
application-specific design and implementation – AI has capacity to 
bridge the gap from research to operations in a large operational WSF 
setting at a major service-delivery organization. Given that water 
resource science, engineering, and management is ultimately a practical 
field, and that viability in applied operational settings is therefore a key 
test for the overall relevance of hydrologic modeling technologies, this 
demonstration establishes a positive general precedent, and perhaps an 
implementation template, for operational hydrologic applications of 
ML. 

That said, certain M4 characteristics may additionally suggest a path 
for combining process-based and AI-based models. For both theoretical 
and practical reasons, physics-oriented process-simulation hydrological 
models will continue playing a major role in operational WSF in the 
western US. Improvements to such physics-oriented approaches may, in 
turn, prove valuable to improving the accuracy and comprehensiveness 
of WSF-related information generated for water managers and the 
general public. The multi-model ensemble philosophy underlying M4 

may enable a means for integrating those advances with concurrent ML 
advances; this is discussed in Section 5. 

5. Conclusions 

To summarize, in a fundamental departure from legacy WSF systems 
and philosophies, we investigated an OTL approach based on a recently 
developed, multi-model ensemble prediction analytics engine, M4, that 
incorporates automated and explainable AI. In this study, M4 was tested 
in both retrospective applications and live forecast operations for a 
relatively large and hydroclimatically diverse sample of test cases drawn 
from the current NRCS forecast system. This testing suggests M4 meets 
the theoretical and practical needs that NRCS defined for its operational 
WSF environment, including geophysical interpretability, objectivity, 
efficiency, predictive performance, robustness, ease of implementation 
and use by an operational team, and other key attributes. Ability to 
generate clear hydroclimatic ‘storylines’ is particularly notable, given 
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the black-box reputation of machine learning and the need for such 
geophysical explanations in operational WSF practice. Satisfying these 
criteria is in turn a required step in M4 adoption by NRCS as the basis for 
the next generation of the largest stand-alone operational WSF system in 
the western US, which to our knowledge will be the first successful 
migration of AI into a genuinely operational large-scale river prediction 
system. The result demonstrates that past roadblocks to operationali
zation of machine learning in hydrology can be overcome with careful 
and collaborative multi-disciplinary design, and in particular by a 
development philosophy that focuses on first identifying the practical 
operational needs of SDOs and then working hand-in-hand with the 
operational community to develop suitably purpose-specific machine 
learning solutions that meet those needs. This may set a positive pre
cedent for transitioning AI from research to practice in water resource 
science, engineering, and management. 

Going forward, at least three general research and development di
rections are apparent. The first is a production software environment to 
facilitate large-scale operational deployment of M4 at NRCS by serving 
as a platform and interface for the prediction engine. The prototype 
platform, currently under development in collaboration with research 
partners, is based on a Modeling-as-a-Service (MaaS) construct imple
mented on a private cloud (David et al., 2014). Functionalities span 
database linkages, a graphical user interface, multi-user server-based 
implementation amenable to distributed and remote computing, 
straightforward prediction engine version updating, and interactive 
capabilities around graphics, mapping, data pre-processing, and forecast 
distribution post-processing. 

Second, the combination of improved accuracy from nonlinear ma
chine learning methods, a robust process for applying these AI algo
rithms in a physics-aware and operational WSF-specific way, 
dimensionality reduction, and the flexibility of a modular ensemble 
framework, may collectively engender faster and more widespread and 
successful integration of M4 with other methods and products than often 
feasible in current-generation operational river prediction platforms. 
For example, numerical climate models offer some seasonal-scale pre
diction skill, but the results require somewhat elaborate downscaling 
procedures to use as input to hydrologic process-simulation models, and 
overall, present operational process-based and statistical hydrology 
models alike do not appear to be sufficiently accurate and generalizable 
to capitalize effectively on the additional information these climate 
models may provide (Gobena and Gan, 2010; Yuan et al., 2013; Men
doza et al., 2017). In contrast, significant improvements in predictive 
capacity of the nonlinear AI metasystem relative to existing operational 
WSF technologies, together with its data compression steps and a rela
tively high level of data-agnosticism, create a platform that should in 
principle be intrinsically more amenable to quickly and effectively 
leveraging emerging high-dimensional operational WSF inputs. These 
predictors include process-based mountain snow (e.g., iSNOBAL; 
Hedrick et al., 2019) and seasonal-to-subseasonal (S2S) climate (e.g., 
CFSv2; Saha et al., 2014) model predictions, and snow remote sensing 
(e.g., MODIS; Tran et al., 2019) and data assimilation (e.g., ASO; Painter 
et al., 2016) products. This in turn provides potential opportunities for 
further WSF skill improvements. We are also collaborating with research 
partners to complement PCA with a new form of non-negative matrix 
factorization (Vesselinov et al., 2019) to further improve physical 
interpretability of forecasts (Fleming et al., 2021), and additional su
pervised learning systems may be integrated beyond the six used here. 

Third, the multi-threaded philosophy underlying this collection of 
semi-independent forecast systems can be easily extended to ingest 
forecasts from outside sources into its ensemble, including process 
simulation model-based operational WSFs. Though rare, precedent ex
ists for fusing data-driven and physics-based hydrologic predictions into 
model-agnostic ensembles (Najafi and Moradkhani, 2016). This creates 
opportunities to integrate M4 forecasts with, for example, ESPs from US 
Geological Survey PRMS process-simulation models that NRCS operates 
at selected locations (Leavesley et al., 2010), leverage innovations in 

physics-based hydrologic prediction models being developed elsewhere 
(e.g., WRF-Hydro and the NOAA National Water Model; Cohen et al., 
2018), and reinstate formal multi-agency forecast coordination between 
NRCS and National Weather Service River Forecast Centers that pre
dominantly use ESPs (Pagano et al., 2014). Doing so could improve di
versity within the multi-model ensemble and capitalize on the 
advantages of both AI-based and process-based models (see Sections 
3.2.5, 4.1.2, and 4.3). WSFs from alternative statistical models operated 
by other SDOs, like the Bureau of Reclamation and California Depart
ment of Water Resources, could similarly be included where available. 
Note that while operation of several WSF models across several gov
ernment agencies may appear inefficient, the multiple governance goals 
and technical approaches associated with that diversity is known to 
provide long-term adaptability, robustness, and much-needed opera
tional redundancy for western US water management (see extensive 
reviews by Doyle, 2012; Hrachowitz and Clark, 2017). The primary 
drawback for water managers is determining how, in practice, to use 
these multiple, sometimes partially conflicting, sources of WSF infor
mation. Blending multiple hydrologic modeling paradigms into the 
multi-model framework, as suggested above, would provide a mecha
nism for addressing this current-practices gap. Combined with afore
mentioned likely improvements in ability to use emerging predictor 
sources, this implies the metasystem has potential to grow into a 
rigorous and nimble integration platform for bringing together multiple 
data sources and prediction modeling technologies, in turn helping 
promote more accurate, robust, and usable WSFs across the American 
West. 
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