
Technical Note 
 

Statistical Techniques Used in the 
VIPER Water Supply Forecasting Software 

 
 
Purpose 
 
The purpose of this technical note is to provide users of the Visual Interactive Prediction and 
Estimation Routines (VIPER) water supply forecasting software appropriate background in the 
statistical procedures contained in the software for developing streamflow forecasting models. 
 
 
Background 
 
The NRCS Water Supply Forecasting Program, housed at the National Water and Climate Center 
(NWCC), uses statistical models to make its forecasts of seasonal streamflow volume.  Linear 
regression, in various forms, is the methodology used. 
 
Since the early 1990s, principal components regression has been the standard methodology used 
by the Program.  The specific procedure was developed by Garen (1992), who also wrote 
software to enable staff hydrologists to develop and calibrate models with this methodology 
conveniently. 
 
In 2006, a project to develop a new water supply forecasting software environment and process, 
called VIPER, was started at the NWCC.  VIPER is an Excel spreadsheet-based application with 
data retrieval, visualization, and forecast calibration and execution functions.  VIPER supports 
both principal components regression as well as another method, Z-score regression.  This 
technical note explains and compares the methodologies.  Other statistical techniques used in 
VIPER are explained as well, including searching for optimum combinations of independent 
variables, searching for optimum time periods covered by selected independent variables, and 
jackknife testing of models.  A user’s manual has also been developed and provides a thorough 
description of the mechanics of operating VIPER. 
 
 
Principal Components Regression 
 
In multiple linear regression, several independent variables (usually denoted as X) are used to 
predict a dependent variable (usually denoted as Y).  The method of minimizing the sum of 
squared errors is used to fit an equation of the form: 
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where n is the number of independent variables, and the b’s are the coefficients estimated by the 
least squares algorithm.  If the X’s are statistically unrelated to each other, that is, if they have 
minimal correlations among themselves, then a straightforward application of the multiple 
regression methodology works fine.  If, however, the X’s are related to each other, that is, if they 
have significant intercorrelations, then the X’s contain redundant information, leading to what is 
called collinearity (McCuen and Snyder, 1986, chapter 11; Kleinbaum et al., 1988, chapters 11 
and 12).  If this is the case, standard multiple regression has difficulty in estimating the 
coefficients (b’s), often leading to nonsense values, such as negative coefficients for X’s having a 
positive relationship with Y.  If a standard variable selection procedure, such as stepwise 
regression, is used under these conditions, many of the X’s will be rejected even though they 
have good relationships with Y. 
 
It is preferred, for reasons of physical completeness and model robustness, to use more than just a 
small subset of the available X’s as predictors.  To get around the problem of collinearity, two 
procedures are commonly used:  (1) pre-combine the X’s into a single composite index or several 
composite indices of like variable types (e.g., snow water equivalent, precipitation); or (2) 
principal components regression.  The Z-score methodology incorporated into VIPER (described 
in the next major section) is an example of the first method.  Principal components regression is 
described below. 
 
Principal Components Analysis 
 
Principal components regression is standard regression, but the difference is that, instead of using 
the X’s directly, new variables, called principal components, are used instead.  Principal 
components analysis is a standard multivariate statistical technique discussed in many textbooks 
and included in most statistical software packages (e.g., McCuen and Snyder, 1986, chapter 11; 
Johnson and Wichern, 1988, chapter 8). 
 
Principal components are simply linear combinations of the X’s.  Conceptually, this is similar to 
the composite index method, except that instead of creating one composite index, there are n 
principal components. 
 
Each principal component (PC) is a weighted sum of all the X’s: 
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where the e’s are weights.  The set of weights for each PC is called an eigenvector; these 
eigenvectors are derived from the solution of a matrix equation in the principal components 
algorithm.  The main input to this matrix equation is the correlation matrix of all the X’s with 
each other.  The result of the principal components analysis and the construction of PC’s is that 
each PC is statistically unrelated to all of the other PC’s.  That is, by making this transformation, 
new variables are constructed that no longer contain collinearity. 
 
This transformation is equivalent to a rotation of axes.  This is easily envisioned in two 
dimensions.  Consider as X’s the snow water equivalent for a particular time at two sites in a 
basin.  If these are plotted against each other, it is clear that they are closely related (Figure 1).  A 
principal components analysis amounts to a rotation of axes as shown in the figure.  By doing 
this, two new variables (PC’s) are created, each of which is a linear combination of the two X’s.  
In this case, most of the variance or information content of the data set is contained in PC1. 
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Figure 1.  Illustration of principal components as a rotation of axes for two variables. 
 
 
It should be noted that the weights contained in each eigenvector are based solely on the 
intercorrelations among the X’s and have no knowledge of Y.  This is in contrast to the Z-score 
method, where the weights are based on each X’s individual correlation with Y, but there is no 
knowledge of the intercorrelations among the X’s. 
 



Technical Note:  Statistical Techniques in VIPER Page 4 
______________________________________________________________________________ 
 
Principal components analysis is commonly used as a descriptive tool in situations where there 
are many intercorrelated X’s available, and the analyst wishes to summarize them into a small 
number of combination variables that relate to some identifiable characteristics.  Usually the 
eigenvector weights on the X’s within a given PC will be relatively large on certain variables and 
noticeably smaller on others.  The X’s with the higher weights tend to be of like kind.  The 
weights on a different PC will generally be higher on a different kind of X.  In this way, the PC’s 
can often be interpreted, and this can be the main purpose of the principal components analysis in 
some studies, the idea being that a large number of X’s can be reduced to a few PC’s that still 
explain most of the variance or information content in the data set. 
 
For example, in water supply forecasting, the snow water equivalent variables are often weighted 
highly on, say, the first PC, while other variable types, such as fall precipitation or streamflow, 
are weighted highly on, say, the second PC.  While this is not a completely “pure” association, 
because each PC has at least some weight on every X, these interpretations can often be made. 
 
For water supply forecasting, however, principal components analysis is not done just for 
descriptive purposes, but rather it is used to prepare new uncorrelated independent variables for 
developing regression equations.  This is described in the next section. 
 
Principal Components Regression 
 
Once the principal components analysis has been done to compute the eigenvectors, and the PC’s 
have been constructed, the data are ready for linear regression.  The issue at this point is then to 
determine how many PC’s to include in the regression model.  The specific procedure for doing 
this in VIPER is fully explained in Garen (1992) and is summarized below. 
 
Principal components can be arranged in the order of explained variance in the X data, that is, the 
first PC (PC1) explains the highest amount of the variance, the second PC (PC2) explains the 
second-highest amount of the variance, etc.  PC’s are added to the regression model one at a time, 
beginning with PC1.  The statistical significance of the regression coefficient for PC1 is tested 
with a standard t-test, using a user-selected critical t value.  If the coefficient passes the t-test, 
then PC2 will be added to the model.  The statistical significance of its regression coefficient is 
subjected to the t-test; if it passes, then PC3 will be tried, and if it fails, the regression model uses 
only PC1.  PC’s are incorporated into the model as long as their regression coefficients are 
statistically significant. 
 
Once the number of PC’s to include has been determined, the regression coefficients and the 
eigenvector weights are manipulated algebraically to transform the regression results from the 
PC’s back to the original X variables.  An additional requirement of the algorithm implemented 
in VIPER is that the algebraic sign of the coefficients for each X be the same as the sign of its 
correlation with Y.  If not, either a fewer number of PC’s are tried or the model is rejected. 
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Example 
 
Consider a set of twelve X variables to predict the Y variable.  These X variables can be 
described (generically) as follows: 
 
X1 Snow water equivalent, station 1 
X2 Snow water equivalent, station 2 
X3 Snow water equivalent, station 3 
X4 Snow water equivalent, station 4 
X5 Snow water equivalent, station 5 
X6 Water year to date precipitation, station 1 
X7 Water year to date precipitation, station 2 
X8 Water year to date precipitation, station 3 
X9 Water year to date precipitation, station 4 
X10 Water year to date precipitation, station 5 
X11 Antecedent streamflow 
X12 Climate teleconnection index 
 
Performing a principal components analysis yields the following eigenvectors (these values are 
from an actual data set): 
 
 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 
X1 0.265 0.444 0.004 -0.074 -0.104 0.378 0.074 -0.515 0.126 0.087 0.085 0.522 
X2 0.249 0.325 -0.483 -0.030 0.315 -0.207 -0.538 0.124 0.213 -0.300 0.129 -0.015 
X3 0.335 0.016 -0.178 0.149 -0.314 0.170 0.035 0.699 0.071 0.312 -0.163 0.295 
X4 0.229 0.353 0.456 -0.595 -0.009 0.025 0.003 0.225 0.158 0.145 0.122 -0.385 
X5 0.287 0.332 -0.148 0.120 0.412 -0.110 0.530 0.061 -0.530 -0.008 -0.103 -0.117 
X6 0.339 -0.168 -0.162 -0.106 -0.040 -0.135 -0.178 -0.365 0.056 0.359 -0.662 -0.254 
X7 0.308 -0.329 -0.150 -0.058 -0.015 -0.323 0.034 -0.151 -0.079 0.454 0.656 0.031
X8 0.317 -0.197 -0.114 0.027 -0.261 0.574 -0.198 -0.060 -0.387 -0.291 0.174 -0.376
X9 0.304 -0.240 0.299 -0.313 -0.103 -0.346 -0.117 0.037 -0.326 -0.420 -0.151 0.459
X10 0.330 -0.197 -0.197 0.072 -0.129 -0.088 0.528 -0.055 0.572 -0.427 0.018 -0.150
X11 0.235 -0.349 0.351 0.168 0.692 0.344 -0.113 0.074 0.186 0.075 -0.017 0.123
X12 0.232 0.262 0.473 0.675 -0.212 -0.272 -0.215 -0.081 0.000 -0.005 0.055 -0.151
% var. 62.7 15.8 7.8 3.8 3.2 2.7 1.6 1.1 0.7 0.3 0.3 0.2 
 
The “% var.” is the percent of variance in the data set explained by each PC.  Nearly two thirds of 
the variance is explained by the first PC alone, and over three fourths is explained by the first and 
second PC’s.  If one were using this analysis for a purely descriptive purpose, one could use the 
first two or three PC’s to represent the majority of the information contained in this data set, 
thereby reducing the number of variables from twelve to two or three.  The remaining PC’s would 
then be considered to be insignificant “noise.” 
 
The eigenvector weightings in PC1 are all of a similar magnitude, although the weights for the 
five snow water equivalent (SWE) variables (X1 - X5) tend to be somewhat smaller than the five 
precipitation variables (X6 - X10), and the antecedent streamflow (X11) and climate teleconnection 
(X12) variables are a bit smaller yet.  However, PC1 can be interpreted as a general water 
availability index, where all twelve variables are indicating the same basic signal.  The other PC’s 
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are more mixed in their weightings and are more difficult to interpret clearly, although PC4 is 
most strongly associated with the climate teleconnection variable (X12), and PC5 is most strongly 
associated with the antecedent streamflow variable (X11). 
 
When these PC’s are entered into a regression, one at a time sequentially, to predict Y, it is found 
that PC1 is significant, but PC2 is insignificant.  Therefore, the regression model uses only PC1 as 
its independent variable.  The regression slope and intercept are then transformed back to be in 
terms of the original X variables.  At this point, the algebraic signs of these regression 
coefficients are tested to ensure that they are the same as the algebraic signs of their correlations 
with Y.  In this case they are, as all X’s have a positive correlation with Y, all of the eigenvector 
weights for PC1 are positive, and the regression coefficient for PC1 is positive.  Had the model 
included other PC’s besides PC1, however, there would possibly be the opportunity for the model 
to fail this sign test.  If this happened, the procedure would remove PC’s one at a time in reverse 
order (largest to smallest numbered ones) until a model that passed the sign test was obtained.  If 
it is not possible to find a model that passes both the statistical significance test and the sign test, 
the software reports that no valid model is possible with this combination of X variables. 
 
 
Z-Score Regression 
 
The Z-score regression methodology is a heuristic technique for combining individual 
independent variables into a composite index that then becomes the independent variable used in 
a regression.  It relies on standardizing and weighting independent variable components to obtain 
the composite index.  In this regard, it is similar in concept to principal components.  In contrast 
to principal components, however, the weightings used in the Z-score method are based on 
correlations with the dependent variable, whereas principal component weightings have no 
knowledge of the dependent variable.  Also, the Z-score weightings have no knowledge of the 
intercorrelations among the independent variables, whereas these intercorrelations are the basis of 
the principal components weightings. 
 
The Z-score method is particularly useful when dealing with sets of independent variables that 
are not serially complete (i.e., have missing values) or have varying periods of record.  In general, 
regression methods require that the data for each independent variable be complete for the entire 
time period being analyzed.  If this is not the case, one must either make estimates for the missing 
values, remove the variables that have missing data from the regression, or restrict the time period 
used for model calibration to that in which all variables have complete data.  The Z-score method 
is an alternative way of handling missing values without having to make estimates or make these 
restrictions on variable usage or time period analyzed. 
 
The Z-score method is based on the calculation of a composite index time series using only the 
data available at each time step.  This means that each value of the composite index can be 
composed of different numbers of independent variables.  The assumption, then, is that the 
composite index so constructed is, to an acceptable degree, a homogeneous index and can be 
validly used in a regression.  Cautions about this assumption are given in a subsequent sub-
section. 
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Z-Score Methodology 
 
The computational steps for Z-score regression are illustrated in Figure 2.  The Z-score transform 
step is simply the common statistical procedure of standardization of a variable in which the 
mean is subtracted, and the result is divided by the standard deviation: 
 

stdev
meanXZ −

=  

 
This creates a variable (Z) whose mean is 0 and standard deviation is 1.  This puts all variables on 
an “equal footing.”  The means and standard deviations used in computing Z-scores are 
calculated from the data set used in calibrating the statistical model (i.e., not from other time 
periods). 
 
The component index (C) is calculated as a weighted sum of the individual Z-score variables 
normalized by the sum of the weights.  The weights are the coefficient of determination (R2) of 
each variable with the dependent variable: 
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where n is the number of variables.  The purpose of this weighting is to give more emphasis to 
those variables that are more highly correlated with the dependent variable and less emphasis to 
those variables whose correlations are lower.  Usually, to avoid confounding the index with 
irrelevant information, a minimum correlation criterion for inclusion of a variable is set by the 
user -- a common cutoff value of R2 is 0.09 (R = 0.3), which represents an approximate minimum 
correlation of reasonable statistical significance for the numbers of observations typically used in 
developing water supply forecasting models. 
 
Most variables used in water supply forecasting have a positive correlation with the dependent 
variable.  Some variables, however, such as climate teleconnection indices or spring temperature, 
can have negative correlations.  If this is the case, the algebraic sign of the time series is inverted 
(i.e., time series is multiplied by -1) to give a positive correlation, and the analysis proceeds as 
usual.  This inversion is necessary so that the weighting scheme functions properly. 
 
Notice in Figure 2 that independent variables are grouped by type of data.  Typically, these data 
types include snow water equivalent, precipitation, antecedent streamflow, and climate 
teleconnection indices, although other types are also possible.  If there is more than one type of 
data, then there are two levels of Z-score transform and component index combination -- one to 
create a composite index for each data type and one to combine the data type composite indices 
together to arrive at the final multiple component index that is used as the independent variable in 
the regression. 
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Figure 2.  Schematic of Z-score regression process involving several independent variables of 
three different data types.  The steps of Z-score transforms and component index combinations 
are shown, resulting in a final composite index that is used as the independent variable in the 
streamflow forecasting model.  The Z-score transform step shown in the dotted box and the 
resultant Component Z-index (all also denoted by asterisks) are not in the algorithm at the time of 
this writing but are planned to be added. 
 
 
After the linear regression is performed, the slope and intercept can be algebraically manipulated 
in conjunction with the component weightings and Z-score transforms to express the final 
equation in terms of the original X variables used for the calculation of each value of the 
composite index that was the independent variable in the regression. 
 
Two examples below illustrate the computational procedure. 
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Simple Example (1 data type, 2 stations) 
 
This example shows the basic calculations without the complication of more than one data type.  
Example data are given for a short series of years for easy illustration.  How missing data are 
handled is also shown in this example. 
 
Consider the following variables and data: 
 
Y = Streamflow for a series of years 
 [1975 95 
  1976 105 
  1977 83 
  1978 93 
  1979 115] 
 
X1 = SWE, station 1 
 [1975 10 
  1976 12 
  1977 11 
  1978 missing 
  1979 12] 

 
X2 = SWE, station 2 
 [1975 missing 
  1976 7 
  1977 4 
  1978 8 
  1979 9] 

 
The first step is to convert each independent variable time series into a Z-score, by subtracting the 
mean from each value and dividing the result by the standard deviation.  For these data: 
 
Mean(X1) = 11.250     Mean(X2) = 7.000 
Stdev(X1) = 0.957     Stdev(X2) = 2.160 
 
This gives the Z-scores as: 
 
Z1 = Z-score, station 1 
 [1975 -1.306 
  1976 0.783 
  1977 -0.261 
  1978 missing 
  1979 0.783] 

 
Z2 = Z-score, station 2 
 [1975 missing 
  1976 0 
  1977 -1.389 
  1978 0.463 
  1979 0.926] 

 
Next, the weights for each station are determined.  These are simply the coefficient of 
determination (R2, the square of the correlation coefficient) between the station and the 
dependent variable (Y): 
 
R2(Z1,Y) = 0.420     R2(Z2,Y) = 0.670 
[R(Z1,Y) = 0.648]     [R(Z2,Y) = 0.818] 
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Since station 2 has a higher correlation with streamflow than station 1, it receives a higher 
weighting in the composite index.  If values for both sites are available, the composite time series 
of station 1 and 2 is computed as: 
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In 1978, however, station 1 has a missing value, and in 1975, station 2 has a missing value.  For 
these years, the composite index value becomes simply Z2 and Z1, respectively.  In the more 
general case, with more than two stations, the composite index would be calculated using all 
stations with non-missing values. 
 
In this example, the composite time series therefore becomes: 
 
C = Composite index time series 
 [1975 -1.306 
  1976 0.302 
  1977 -0.954 
   1978 0.463 
  1979 0.871] 
 
This composite index is then the SWE component index for this example.  Since this is the only 
data type, there are no other component indices to calculate and combine with.  This index, then, 
is the independent variable for the regression.  The results of the regression give a slope of 9.153 
and an intercept of 99.342, with an R2 value of 0.505 (R = 0.711).  
 
Extended Example (2 data types, 2 stations apiece) 
 
Two additional stations of a different data type will now be added to the example.  The first data 
type was SWE; this second data type will be considered to be precipitation (e.g., water year 
precipitation to date).  The composite index for the snow water equivalent component will be 
used again, but the composite index for precipitation now needs to be calculated.  Note that in 
this example two stations have been used for both data types, but in general the number of 
stations can be different among data types.  Also in this example, precipitation will be considered 
to be for the same station locations as for snow water equivalent, but this is not a requirement. 
 
X3 = Precipitation, station 1 
 [1975 23 
  1976 35 
  1977 22 
  1978 missing 
  1979 40] 

 
X4 = Precipitation, station 2 
 [1975 missing 
  1976 45 
  1977 21 
  1978 30 
  1979 45] 

 
Mean(X3) = 30.000      Mean(X4) = 35.250 
Stdev(X3) = 8.907     Stdev(X4) = 11.84 
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Z3 = Z-score, station 1, data type 2 
 [1975 -0.786 
  1976 0.561 
  1977 -0.898 
  1978 missing 
  1979 1.123] 

Z4 = Z-score, station 2, data type 2 
 [1975 missing 
  1976 0.823 
  1977 -1.203 
  1978 -0.443 
  1979 0.823] 

 
R2(Z3,Y) = 0.893     R2(Z4,Y) = 0.914   
[R(Z3,Y) = 0.945]     [R(Z4,Y) = 0.956] 
 
The composite index from the previous example will be used below and will now be called C1, 
the 1 representing the SWE component.  The composite index for the second component, 
precipitation, is: 
 
C2 = Composite index time series for precipitation 
 [1975 -0.786 
  1976 0.694 
  1977 -1.052 
  1978 -0.443 
  1979 0.971] 
 
The next step is to combine the two component indices.  Before doing so, each index needs to be 
standardized itself, as the standard deviations will be somewhat less than 1 (a result of the 
summation involved in constructing the composite, related to the Central Limit Theorem of 
statistics), and the means may not necessarily be 0.  From the component index time series: 
 
Mean(C1) = -0.125      Mean(C2) = -0.123 
Stdev(C1) = 0.949     Stdev(C2) = 0.904 
 
ZC1 = Z-score of C1 
 [1975 -1.244 
  1976 0.450 
  1977 -0.874 
  1978 0.619 
  1979 1.049] 

 
ZC2 = Z-score of C2 
 [1975 -0.733 
  1976 0.904 
  1977 -1.028 
  1978 -0.354 
  1979 1.210] 

 
R2(ZC1,Y) = 0.505     R2(ZC2,Y) = 0.897  
[R(ZC1,Y) = 0.711]     [R(ZC2,Y) = 0.947] 
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The multiple component index is calculated in the same manner as for a single component index, 
that is, as a normalized weighted sum. 
 
MC = Multiple component index 
 [1975 -0.917 
  1976 0.740 
  1977 -0.972 
  1978 0.003 
  1979 1.152] 
 
The regression of MC with Y gives a slope of 11.502 and an intercept of 98.200, with an R2 value 
of 0.812 (R = 0.901). 
 
Potential Vulnerabilities of Z-Score Regression 
 
By constructing the final composite index using only the data available at each time step (year in 
these examples), Z-score regression makes provision for the use of non-serially complete data.  It 
also expands the length of the time period covered in the regression analysis to be the union of all 
of the independent variables instead of the intersection, as with standard regression.  This 
flexibility, however, is also the source of some vulnerabilities that have the potential of 
introducing inaccuracies into the analysis. 
 
A key assumption of Z-score regression is that independent variables that are combined together 
into a component index all capture the same signal, and this signal is consistently represented by 
the variables available at each time step, even though the number of variables may vary.  If two 
or more component indices are combined into a multiple component index, it also assumes that 
all of the component signals are consistently represented. 
 
In a strict sense, this assumption is not true if different numbers of variables are used to construct 
the indices.  It can, however, be considered to be true to an acceptable level of approximation if 
the number of missing variables is not great compared with the number of variables used in an 
index. 
 
What should be avoided, then, is a situation where a component index is missing many of its 
constituent variables or where an entire component is missing from a multiple component index.  
One must therefore be careful to avoid these potential pitfalls, both during model calibration and 
during real-time operations. 
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Comparison of the Two Regression Methods 
 
It may be validly asked which of the two regression methods is preferable.  As a general rule, the 
standard practice at the NWCC is to use principal components regression.  Z-score regression is 
an alternative methodology available in VIPER that can be used when there are issues with serial 
completeness (missing data) or varying periods of record of the data. 
 
Because the weighting schemes differ, there will be differences in the regression coefficients for 
each independent variable between the two methods.  Despite this, recent experience with a 
number of basins has shown that the two methods generally produce similar results in terms of 
regression R2 and standard error as well as real-time predictions. 
 
As an illustration, consider the data set given in the example in the Principal Components 
Regression section above.  The table below compares the regression coefficients for each X 
variable and the regression statistics for both principal components and Z-score models.  For the 
Z-score model, the coefficients are calculated assuming all X variables are available. 
 

Variable PC regression Z-score regression 
X1   SWE, station 1 2.914 2.367 
X2   SWE, station 2 3.337 2.528 
X3   SWE, station 3 2.436 2.384 
X4   SWE, station 4 2.273 2.374 
X5   SWE, station 5 2.502 2.375 
X6   Precipitation, station 1 3.343 2.771 
X7   Precipitation, station 2 2.691 1.961 
X8   Precipitation, station 3 2.449 1.499 
X9   Precipitation, station 4 2.974 2.666 
X10  Precipitation, station 5 2.782 2.072 
X11  Antecedent streamflow 0.546 0.981 
X12  Climate teleconnection index 2.470 7.010 
Intercept -79.776 -38.832 
R2 0.821 0.820 
R 0.906 0.905 
Standard error 62.558 62.607 
 
Note that the regression statistics are nearly identical, but the coefficients differ.  The Z-score 
model coefficients are somewhat smaller than those for the principal components model for SWE 
and precipitation, while the Z-score model coefficients are larger for antecedent streamflow and 
the climate teleconnection index.  This difference is a direct result of the weighting schemes.  The 
principal components model uses only PC1, which, as noted previously, gives more weight to the 
SWE and precipitation variables than X11 and X12.  Again as noted above, much of the weight for 
antecedent streamflow and the climate teleconnection index is associated with higher PC’s, which 
are not used in the regression, therefore these two variables receive relatively less weight than 
with the Z-score model. 
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This comparison demonstrates the inherent difference between the two methods, given that there 
is a serially complete data set.  If this were not the case, the Z-score method could proceed, but 
there would be different coefficients for the different situations of missing variables.  For the 
principal components method, the missing values would have to be estimated, a variable would 
have to be removed from the analysis, or some other adaptation to accommodate the data 
availability would have to be devised. 
 
 
Variable Combinations Search 
 
In building statistical models, it can be of assistance to employ a variable selection algorithm to 
select variables from a list of candidates to optimize model accuracy.  Garen (1992) developed 
such an algorithm, which is implemented in VIPER. 
 
This algorithm is a search procedure that tests combinations of candidate variables in a 
systematic way to identify variable combinations that result in superior model accuracy (as 
measured by the standard error).  Since testing all possible combinations of candidate variables 
can be computationally expensive, this procedure tests a subset of combinations by building up 
models in a logical progression. 
 
The algorithm begins by computing all one variable models and storing the best 30 (or all the 
models if there are fewer than 30 candidate variables) in a “keep list”.  Minimizing the standard 
error (or more correctly, the jackknife standard error; see section below) is used as the optimality 
criterion.  The number 30 was arbitrarily chosen as a compromise between keeping the 
computations at a reasonable level and giving the algorithm plenty of combinations upon which 
to build. 
 
In the next iteration of the algorithm, all possible two-variable models built from the 30 stored 
one-variable models are tested by adding variables from the candidate list to each of the stored 
models one at a time.  The standard errors from the two-variable models along with the 30 one-
variable models are sorted, and the best 30 models are retained. 
 
In the third iteration, three-variable models are built from the stored two-variable models, again 
by adding variables from the candidate list one at a time.  The best 30 one-, two-, or three-
variable models are then stored. 
 
The algorithm continues its iterations of adding one more variable to the stored models until no 
more improvements in the standard error occur.  At this point, the algorithm terminates, and the 
user is presented with the list of the best 30 models -- the variables used and the regression 
statistics. 
 
This search algorithm tends to select for parsimonious models (i.e., ones that do not contain a 
large number of variables) and does not necessarily find the absolute optimum or all 
combinations within the range of standard errors in the final list.  It does, however, do a good job 
of identifying the strongest variables and building models that perform well. 
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Since this algorithm is only a statistical optimization, it is still incumbent upon the user to review 
these results for physical meaningfulness before selecting any of these models for use.  It may be 
that the user will not want to use any of these models, instead choosing to modify them or 
choosing an entirely different variable combination, keeping in mind that there are often tradeoffs 
between statistical optimality and physical meaningfulness.  This variable search optimization, 
then, should be considered to be only a guide to assist in the selection of independent variables to 
use. 
 
 
Time Period Search 
 
Since the independent variables used in water supply forecasting have a monthly time step, it is 
necessary to identify the month or months that contain the most relevant information for 
predicting the dependent variable.  The time period search feature of VIPER is designed to assist 
with this. 
 
Some types of independent variables can be accumulated or averaged over a period of months to 
capture a signal into a single aggregated variable.  This applies particularly to precipitation, 
streamflow, and climate teleconnection indices.  Aggregating can be helpful in reducing the 
number of independent variables and in focusing the signal into a single value rather than having 
it scattered among several monthly values. 
 
The main exception to this is SWE, which is already an accumulated variable.  Under certain 
circumstances, however, it can be helpful to identify which month’s SWE is the best predictor of 
the dependent variable.  This applies especially in the spring, when sometimes the SWE from a 
previous month rather than the current month is a better predictor (e.g., May SWE used in a June 
forecasting equation).  The VIPER time period search routine can assist with identifying such 
cases. 
 
The time period search algorithm examines variables of like data type together in a group.  Each 
group is examined independently.  For all data types except SWE, the algorithm proceeds by 
computing linear regression models to predict the dependent variable for all combinations of 
contiguous months for the independent variables within the range specified by the user.  Either 
principal components or Z-score regression can be used, as desired.  The range of months tested 
in each iteration of the algorithm is the same for all variables in the group.  The algorithm 
identifies the model giving the smallest standard error and reports this optimum range of months 
for the variables in the group. 
 
For SWE, there is no accumulation of months, but the algorithm proceeds as described above, 
testing individual monthly SWE within the range of months specified by the user.  The algorithm 
reports the SWE month that gives the smallest standard error for all stations together as a group. 
 
As a note of caution, users should be aware that sometimes a monthly range can contain more 
than one signal.  For example, fall precipitation before snow accumulation begins and winter 
precipitation after snow accumulation has started are two different signals.  If a monthly range 
that spans more than one signal is specified, this should be a conscious decision by the user. 
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Another item to note is that this time period optimization does not account for interactions among 
the different data types, as each data type group is evaluated independently.  A future 
enhancement being considered will allow other specified data type groups with fixed time ranges 
to be included in the models during the time period search for a given data type group.  This will 
allow interactions among data type groups to be considered in determining the optimum time 
range. 
 
 
Jackknife Test 
 
Since these models are intended to be used in a forecasting situation, the standard error from the 
model calibration might be considered to be an overly optimistic expression of the forecast error.  
To obtain a more realistic evaluation of a model’s forecasting potential, a jackknife (also called 
cross-validation) procedure is used. 
 
The jackknife test for a given combination of independent variables is an iterative procedure of 
leaving out one observation (typically a year) from the calibration data set, computing the 
regression coefficients, then using these coefficients with the input data for the withheld 
observation to make a prediction of the dependent variable.  The withheld observation is then 
returned to the calibration data set, and the next observation is removed.  The process is repeated 
through the entire data set so that when finished, a series of predictions is obtained from models 
that did not include that observation in the calibration data set.  These jackknife predictions are 
then compared to the observed values, and a jackknife standard error is computed.  Generally, the 
jackknife standard error is a little larger than the standard error from calibration using all 
observations. 
 
The jackknife standard error is used as the optimality criterion in the variable combinations 
search algorithm, and it is used in the evaluation of models in which the user specifies the 
independent variables to be used.  The jackknife standard error is used in operational forecasting 
to compute error bounds around the median forecast. 
 
 
Nonlinear Procedures 
 
There are two situations in which a linear regression model is not appropriate.  The first is when 
there is a marked nonlinear relationship between the independent and dependent variables, and 
the second is when the errors around the median predictions from a linear model do not have a 
normal distribution. 
 
In both of these situations, nonlinear models can generally address the problem.  The standard 
practice at the NWCC, which is implemented in VIPER, is to transform the dependent variable 
and develop a linear model to predict this transformed Y.  The transforms used are square root, 
cube root, and natural logarithm.  The software handles all steps of transforming, computing the 
linear model to predict the transformed Y, and back-transforming the model results.  Note that a 
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nonlinear model built in this way will have asymmetrical error bounds, being narrower below the 
median prediction and wider above the median prediction. 
 
 
Routed Procedures 
 
A so-called “routed procedure” is a statistical model that relates one or more stream locations to 
another.  Typically, upstream points are used to predict a downstream point.  Such models are 
useful when there is a strong relationship between upstream and downstream points, and they can 
simplify the development of forecasting models by avoiding the full analysis of all of the basic 
input variables (SWE, precipitation, etc.) as is necessary for a “headwater” basin. 
 
In VIPER, routed procedures are developed in a two-step process.  The first step is to develop the 
relationship between the upstream point(s) and the downstream point using historical streamflow 
data.  If there is more than one upstream point, the streamflows are added together to give a 
single independent variable.  The reasoning behind this is that the upstream flows represent some 
fraction of the watershed of the downstream point, so the relationship is between the response of 
this watershed fraction and the entire watershed of the downstream point. 
 
The second step is to estimate the standard error of this model.  In real-time forecasting, the 
independent variable is not an observed value but rather a forecast, which contains uncertainty.  
This uncertainty needs to be propagated to the prediction at the downstream point. 
 
The standard error for a routed procedure is computed empirically by using the jackknife 
forecasts from the development of the upstream forecast models as input to the routed model and 
computing a standard error from the prediction errors at the downstream point.  The mechanics of 
doing this are explained in the VIPER user’s manual. 
 
 
Helper Variables 
 
In the case of missing values of the dependent variable, VIPER allows the user to specify a 
“helper variable” to be used to estimate the missing data.  Typically, the dependent variable is a 
streamflow volume, and there can be either scattered missing values, or the streamgage was 
discontinued for some period of time.  In this situation, it is often possible to make very good 
estimates of these missing values using data from a nearby streamgage, either upstream or 
downstream from the point of interest or in a neighboring basin.  This makes it possible to use 
more years of data in model development. 
 
The estimates are made using a simple linear regression between the helper variable and the 
dependent variable.  The estimates are then used to fill in missing values in the dependent 
variable.  The mechanics of using a helper variable are explained in the VIPER user’s manual. 
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Contact 
 
The contact for this technical note is the Branch Leader, Water and Climate Services, National 
Water and Climate Center, Portland, Oregon (www.wcc.nrcs.usda.gov). 
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