Appendix D

Investigation and Analysis Report

Prepared For:

USDA

United States Department of Agriculture Natural Resources Conservation Service Warner Draw Watershed and Flood Operations Project

Warner Draw Watershed Washington County, Utah

Appendix D

Investigation and Analysis Report

Final

Prepared By:

December 2021

This page intentionally left blank.

Table of Contents

1.0	Introd	uction	.1
	1.1	Project Location	. 1
2.0	Site 1	Main Street Debris Basins	.3
	2.1	Project Location and Existing Conditions	. 3
	2.2	Hydrologic and Hydraulic Analyses	.4
	2.2.1	Hydrologic Analysis	.4
	2.2.2	Existing Hydraulic Analysis	. 6
	2.3	Alternative Evaluation	. 8
	2.3.1	Debris Basins Alternative (Alternative 1)	. 8
	2.3.2	Mill Creek Flood Channel (Alternative 2)	17
	2.3.3	No Action Alternative	22
3.0	Site 2	Seegmiller Marsh	23
	3.1	Project Location and Existing Conditions	23
	3.2	Water Quality and Quantity Concerns	24
	3.3	Flood Control and Erosion Protection	25
	3.4	Wetland and Wildlife Habitat	25
	3.5	Nature Park and Pedestrian Trails	26
	3.6	Alternative Evaluation	26
	3.6.1	Minimal Habitat Disturbance (Alternative 1)	27
	3.6.2	Landowner Options (Alternative 2)	29
	3.6.3	No Action Alternative	31
4.0	Site 3	Y-Drain	32
	4.1	Project Location and Existing Conditions	32
	4.2	Hydrologic and Hydraulic Analyses	33
	4.2.1	Hydrologic Analysis	33
	4.2.2	Hydraulic Analysis	33
	4.3	Alternative Evaluation	35
	4.3.1	Pipe Y-Drain Alternative (Alternative 1)	35
	4.3.2	Line Y-Drain Alternative (Alternative 2)	37
	4.3.3	No Action Alternative	39
5.0	Site 4	Warner Valley Disposal System	40
	5.1	Project Location and Existing Conditions	40

	5.2	Hydrologic and Hydraulic Analyses	. 42
	5.2.1	Hydrology Analysis	. 42
	5.2.2	Hydraulic Analysis	. 45
	5.3	Alternative Evaluation	. 45
	5.3.1	Additional Detention (Alternative 1)	. 46
	5.3.2	Parallel Pipeline (Alternative 2)	. 52
	5.3.3	No Action Alternative	. 55
6.0	Site 5	Hurricane Irrigation Efficiency	. 57
	6.1	Project Location and Existing Conditions	. 57
	6.2	System Water Supply	. 59
	6.3	Existing Annual Irrigation Demands	. 59
	6.3.1	Total Existing Annual Demand	. 59
	6.3.2	Irrigation Application Rate per Irrigated Acre	. 60
	6.4	Peak System Demand Estimates	. 60
	6.4.1	Existing Peak Day Demand	. 60
	6.4.2	Future Peak Day Demand	. 61
	6.4.3	Irrigation Efficiency	. 62
	6.4.4	Peaking Factors	. 62
	6.5	Estimating Storage and Pump Station Size	. 63
	6.5.1	Storage Pond Sizing	. 63
	6.5.2	Pump Station Sizing	. 64
	6.6	Hydraulic Modeling	. 65
	6.6.1	Data Source and Model Development	. 65
	6.7	Alternative Evaluation	. 66
	6.7.1	Expanding Existing Irrigation Facilities (Alternative 1)	. 66
	6.7.2	Higher Reservoir and New Pump Station (Alternative 2)	. 68
	6.7.3	Lower Reservoir and New Pump Station (Alternative 3)	. 69
	6.7.4	No Action Alternative	. 72
7.0	Econo	omic Evaluation	. 73
	7.1	Benefits	. 73
	7.1.1	Flood Damage Reduction Benefits	. 73
	7.1.2	Water Efficiency Benefits	. 75
	7.1.3	Recreation Benefits	. 76
	7.1.4	Total Project Benefits	. 78
	7.2	Benefits Cost Ratio	. 78

8.0	Environmental Evaluation	79
9.0	References	80

List of Tables

Table 1-1. Project List and Location	1
Table 2-1. Summary of Subbasin Hydrologic Parameters	4
Table 2-2. Existing Conditions Model Peak Discharge Summary	6
Table 2-3. Summary of Proposed Mitigation Measures – Alternative 1	11
Table 2-4. Summary of Debris Basin Design	12
Table 2-5. Principal Spillway Design Criteria	13
Table 2-6. Auxiliary Spillway Design Criteria	14
Table 2-7. Alternative 1 Estimated Construction Cost – Main Street Debris Basin	16
Table 2-8. Alternative 1 Estimated Construction Cost – Buena Vista Debris Basin	17
Table 2-9. Alternative 2 Estimated Construction Cost – Mill Creek Flood Channel	22
Table 3-1. Alternative 1 Estimated Construction Cost – Minimal Habitat Disturbance	28
Table 3-2. Alternative 2 Estimated Construction Cost – Landowner Option	30
Table 3-3. No Action Alternative Costs	31
Table 4-1. Alternative 1 Estimated Construction Cost – Pipe Y-Drain	36
Table 4-2. Alternative 2 Estimated Construction Cost – Lining the Y-Drain	38
Table 5-1. Hydrologic Design Data	44
Table 5-2. Summary of Existing Conditions Peak Design Storm Discharges	44
Table 5-3. Summary of Proposed Warner Draw Disposal System Detention Basins	48
Table 5-4. Warner Draw Disposal System Summary of Recommendations	49
Table 5-5. Estimated Construction Cost – Alternative 1	51
Table 5-6. Alternative 2 Estimated Construction Cost – Parallel Pipelines	55
Table 5-7. No Action Alternative Costs	56
Table 6-1. Annual Irrigation System Water Usage Summary	60
Table 6-2. 2016 Annual Existing irrigation System water Usage/Rate Summary	60
Table 6-3. 2016 Estimated Peak Day Demand Multiplier for the Irrigation System	61
Table 6-4. Peak Day and Peak Hour Demand Summary	63
Table 6-5. Existing and Future Buildout Storage Sizing Requirements	64

5
7
9
1
4
4
5
5
6
В
9

List of Figures

Figure 1-1. Warner Draw Watershed and Project Sites2
Figure 2-1. Main Street Debris Basin, Three Drainage Paths
Figure 2-2. Hydrology Model Main Street Subbasins5
Figure 2-3. Existing Condition Flood Map7
Figure 2-4. Existing and Proposed Storm Drain Capacity (Alternative 1)9
Figure 2-5. Proposed 100-Year Flood Extents (Alternative 1)10
Figure 2-6. NRCS Practice Standard 378 – Ponds, Table 2 14
Figure 2-7. Mill Creek Flood Channel (Alternative 2)19
Figure 2-8. Alternative 2 Mill Creek Flood Channel Flood Map 20
Figure 3-1. Seegmiller Marsh Location Map23
Figure 3-2. Seegmiller Marsh Floodplain and Erosion Hazard Boundaries
Figure 4-1. Y-Drain Location Map
Figure 4-2. Shallow Flood along the Y-Drain
Figure 5-1. Warner Valley Disposal System Location Map41
Figure 5-2. Disposal System Subbasins 43
Figure 5-3. Warner Valley Disposal System Recommendations50
Figure 5-4. Parallel Pipeline Alternative53
Figure 6-1. Project Location and Irrigated Acreage

Attachments

Attachment 1 - Main Street Debris Basin - Preferred Alternative Concept Design Drawings

- Attachment 2 Seegmiller Marsh Preferred Alternative Concept Design Drawings
- Attachment 3 Y-Drain Preferred Alternative Concept Design Drawings
- Attachment 4 Warner Valley Disposal System Preferred Alternative Concept Design Drawings
- Attachment 5 Hurricane Water Efficiency Preferred Alternative Concept Design Drawings
- Attachment 6 CPA 52 Environmental Evaluation

1.0 Introduction

The purpose of this Investigation and Analysis (I&A) Report is to present information that supports the formulation, evaluation, and conclusions of the Supplemental Watershed Plan No. 8 and Environmental Assessment (Plan-EA) for the Warner Draw Watershed (the project). The report is required and must be included as an appendix to the Plan-EA.

The procedures, techniques, assumptions, scope, and intensity of the investigations for each subject are described in sufficient detail so that a reader not familiar with the project areas or their issues can form an opinion on the adequacy of the Plan-EA. This report supplements information contained in the Plan-EA and is not intended to replace or duplicate information contained therein.

The planning studies presented in this I&A Report are based on standard methods and procedures used and approved for use by the United States Department of Agriculture Natural Resources Conservation Service (NRCS). The following information summarizes the investigation and analysis for the key planning studies conducted in the preparation of the Plan-EA. Additional information relevant to each section provided in this report is available upon request as part of the administrative record for the project. Requests for additional information can be submitted to the following address:

USDA-NRCS Wallace F. Bennett Federal Building 125 S State St., Room 4010 Salt Lake City, UT 84138-1100

1.1 **Project Location**

The Warner Draw Watershed (Watershed) includes approximately 298 square miles located within Washington County, Utah, and drains to the Virgin River. This Plan-EA includes five individual project sites for proposed improvement within the Watershed, as noted in Table 1-1 (see Figure 1-1).

Feature	Description (Latitude / Longitude [WGS84])	City
Site 1 (Main Street Debris Basins)	37.146280°/ -113.506273°	Washington City
Site 2 (Seegmiller Marsh)	37.093151° / -113.534903°	St. George City
Site 3 (Y-Drain)	37.097142° / -113.521195°	Washington City
Site 4 (Warner Valley Disposal System)	37.163421° / -113.300941°	St. George City
Site 5 (Hurricane Water Efficiency)	37.061653° / -113.518921°	Hurricane City

Table 1-1. Project List and Location

Detailed descriptions of each project site as well as the procedures, techniques, and assumptions of analysis completed are provided in the following sections.

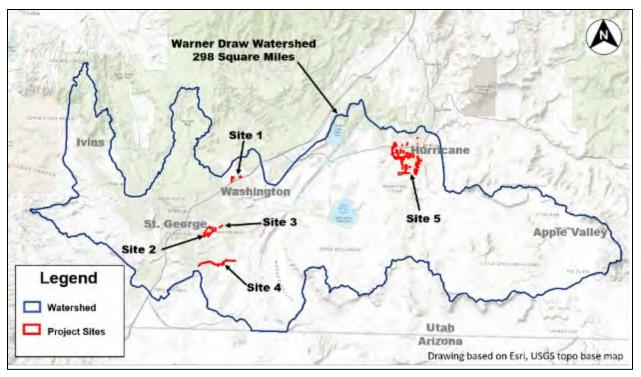


Figure 1-1. Warner Draw Watershed and Project Sites

2.0 Site 1 Main Street Debris Basins

2.1 **Project Location and Existing Conditions**

Main Street is a minor arterial road that passes under Interstate 15 (I-15) and connects the downtown area of Washington City with the northern part of the city. There is a large tributary drainage area that drains to the Main Street/I-15 overpass, as shown in Figure 2-1.

The Main Street drainage basin is approximately 844 acres (1.3 square miles) in area and contains portions of undeveloped desert landscape, rock outcrops, and residential development. Drainage from this area follows three main flow paths from the foothills north of I-15 (Brio Drainage, Main Street Drainage, and Buena Vista Drainage): south through the Brio Development, south along Main Street, and southwest along Buena Vista Boulevard, where large flood events continue south along Main Street and under I-15 (Figure 2-1). Significant flooding has occurred in Washington City below the Main Street drainage basin, necessitating development of a project to reduce and mitigate damaging flood flows.

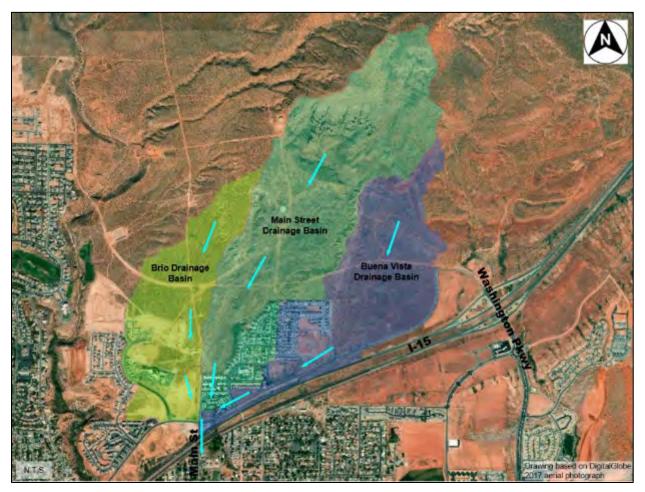


Figure 2-1. Main Street Debris Basin, Three Drainage Paths

A technical analysis was completed for the Main Street Debris Basin site by Bowen Collins & Associates (BC&A) and documented in a Technical Memorandum (TM)-01 (BC&A 2019a). The following paragraphs summarize the findings from TM-01.

2.2 Hydrologic and Hydraulic Analyses

This section summarizes the hydrologic and hydraulic analyses conducted for the Main Street Debris Basin project site.

2.2.1 Hydrologic Analysis

A hydrologic analysis was completed by BC&A. The three major drainage basins were further divided into 13 subbasins (Figure 2-2). The hydrologic parameters are provided in Table 2-1.

Basin ID	Drainage Area		Composite Curve	Time of Concentration (Tc) or Lag	Time of Conc. (Tc)		Lag Time	
	Acre	Sq. mi.	Number	Time Calculation Method	Hrs	Min	Hrs	Min
Brio D	48	0.075	82.2	TR-55 Method	0.21	12	0.12	7
Brio E	135	0.210	74.8	SCS Lag Method	0.85	51	0.51	30
Center	376	0.587	87.2	SCS Lag Method	0.59	35	0.35	21
East 1A	26	0.040	89.2	SCS Lag Method	0.39	23	0.23	14
East 1B	10	0.016	88.7	SCS Lag Method	0.17	10	0.10	6
East 1C	67	0.104	88.5	SCS Lag Method	0.50	30	0.30	18
East 2	9	0.013	88.6	SCS Lag Method	0.23	14	0.14	8
East 3	100	0.157	90.0	SCS Lag Method	0.42	25	0.25	15
GraceVillas	3	0.005	92.0	TR-55 Method	0.13	8	0.08	5
NewWarmSprings5	27	0.041	92.0	TR-55 Method	0.19	11	0.11	7
NewWarmSprings6	16	0.025	92.0	TR-55 Method	0.15	9	0.09	5
WarmSpringsA	17	0.026	89.6	TR-55 Method	0.19	11	0.11	7
WarmSpringsB	23	0.036	92.0	TR-55 Method	0.16	10	0.10	6

 Table 2-1. Summary of Subbasin Hydrologic Parameters

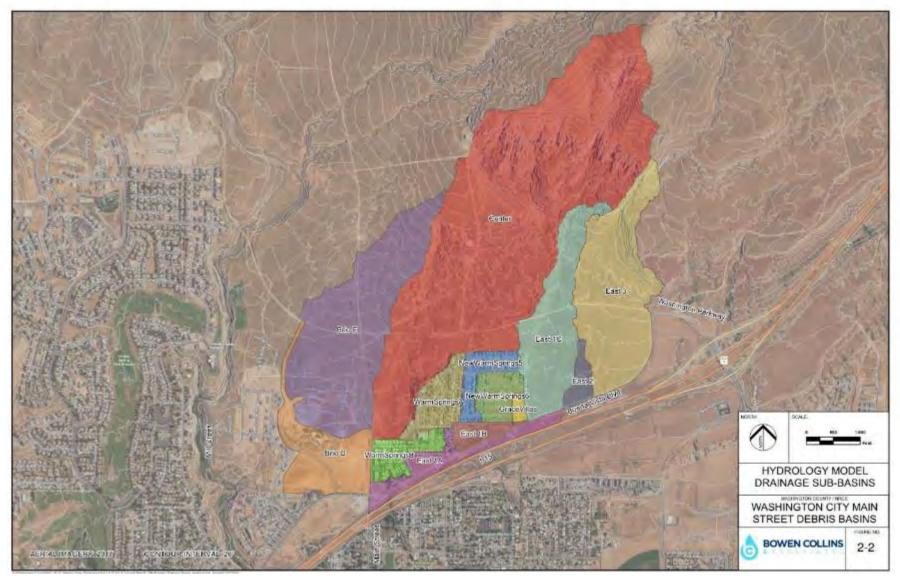


Figure 2-2. Hydrology Model Main Street Subbasins

Three temporal rainfall distributions were considered for the study: the 3-hour Farmer-Fletcher, 24-hour SCS type II, and 24-hour WinTR-20 storms. Among the three distributions, the WinTR-20 distribution typically produced the largest peak runoffs and was therefore selected for use as part of the design. The peak flows for various return periods for each modeled subbasin are summarized in Table 2-2.

Sub-basin ID	Area (Ac)	CN	Lag Time (min)	Peak Discharge (cfs)							
				Q2	Q5	Q10	Q25	Q50	Q100	Q200	Q500
Brio D	48	82.2	7	10	23	35	56	75	98	125	168
Brio E	135	74.8	30	2	9	17	34	50	71	95	135
Center	376	87.2	21	92	164	231	341	440	556	688	891
East 1A	26	89.2	14	10	17	24	34	43	54	66	84
East 1B	10	88.7	6	6	10	13	19	25	31	38	49
East 1C	67	88.5	18	21	36	50	73	93	116	143	184
East 2	8	88.6	8	4	7	10	14	18	23	28	36
East 3	100	90.0	15	42	69	94	133	169	209	256	327
GraceVillas	3	92.0	5	3	4	5	7	9	11	14	17
NewWarmSprings5	27	92.0	7	20	32	42	58	72	88	107	136
NewWarmSprings6	16	92.0	5	14	22	29	40	50	61	74	93
WarmSpringsA	17	89.6	7	10	16	22	32	40	50	61	78
WarmSpringsB	23	92.0	6	19	29	38	53	66	82	99	125

cfs = cubic feet per second

2.2.2 Existing Hydraulic Analysis

Stormwater in this area is collected and conveyed to the west to discharge into Mill Creek, which is a tributary of the Virgin River. The existing storm drain system was designed for a 10-year recurrence event, and during larger events, stormwater overwhelms the storm drain system and generally flows to the south and southwest, as shown on Figure 2-3.

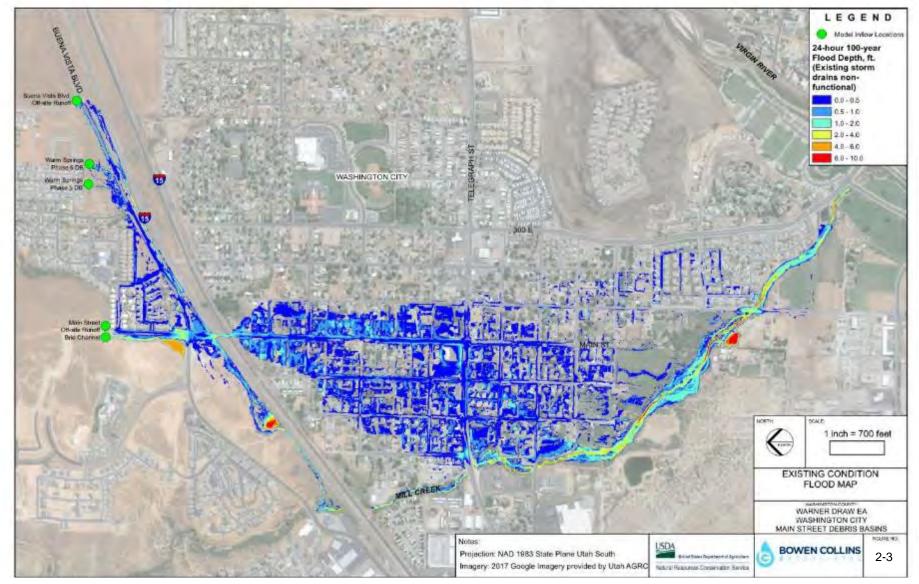


Figure 2-3. Existing Condition Flood Map

2.3 Alternative Evaluation

The process of formulating alternatives for mitigating flooding in the Main Street area followed procedures outlined in the National Watershed Program Manual (NWPM) (NRCS 2015a); National Watershed Program Handbook (NWPH) (NRCS 2014); Economic and Environmental Principles and Guidelines for Water Related Land Resources Implementation Studies (P&G) (U.S. Water Resources Council [USWRC] 1983); and other NRCS watershed planning policy.

The following alternatives were evaluated to help mitigate flooding:

- 1. Debris Basins Alternative (Alternative 1) Construct new debris basins adjacent to Main Street and near the intersection of Tortoise Rock Drive and Buena Vista Boulevard to detain expected flood flows to a point where they can be conveyed by the existing storm drain facilities.
- 2. Mill Creek Flood Channel Alternative (Alternative 2) Construct a new flood channel that collects all the stormwater runoff from the intersection of Main Street and Buena Vista Boulevard and convey it to the Mill Creek channel.
- 3. No Action Alternative Most likely future condition if none of the federally-assisted action alternatives are selected.

The Debris Basins Alternative was chosen as the preferred alternative for the project. Concept Design Drawings for this alternative are included in Attachment 1.

2.3.1 Debris Basins Alternative (Alternative 1)

Alternative 1 includes construction of debris basins on the drainages upstream of Main Street and at the intersection of Buena Vista Boulevard and Tortoise Rock Drive, as shown on Figure 2-4. The purpose of these debris basins is to detain and attenuate expected flood flows and mitigate debris to a point where flows can be conveyed by the existing storm drain facilities, eliminating downstream flooding during the 100-year design event. The inundation area downstream of the proposed debris basins is shown in Figure 2-5.

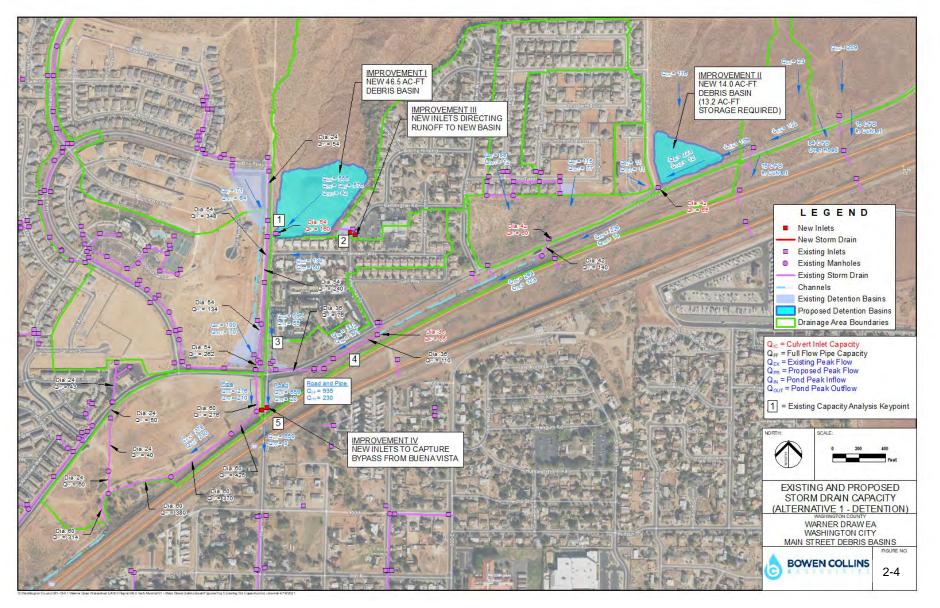


Figure 2-4. Existing and Proposed Storm Drain Capacity (Alternative 1)

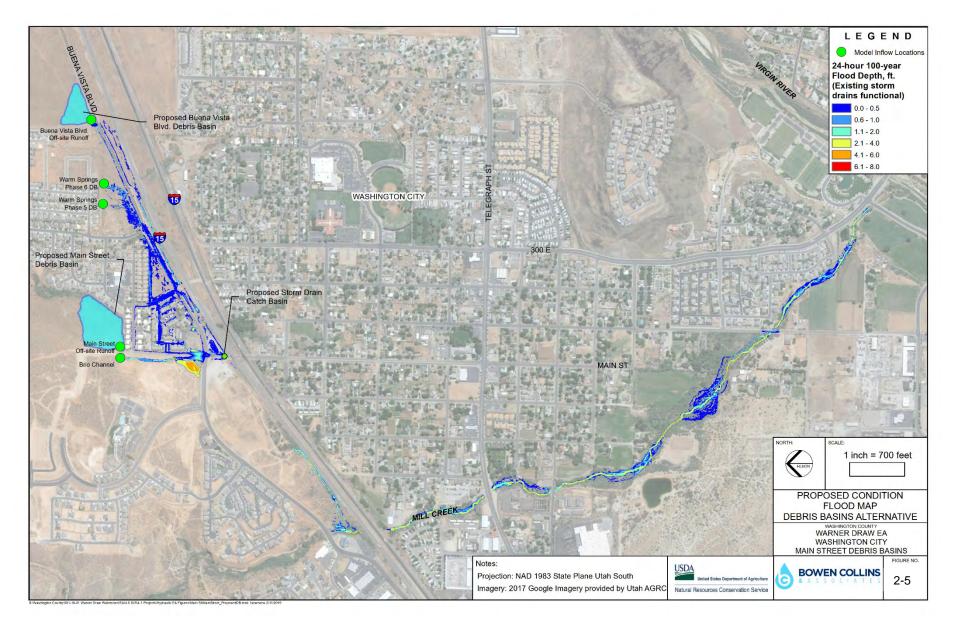


Figure 2-5. Proposed 100-Year Flood Extents (Alternative 1)

The recommended improvements associated with Alternative 1 are summarized in Table 2-3.

No.	Description of Improvement	Result		
I	Construct a 46.5 acre-foot (ac-ft) debris basin (Main Street Debris Basin) upstream of the 54- inch-diameter culvert, immediately east of Main Street and north of the Warm Springs Subdivision.	Reduce the combined "WarmSpringsA" and "Center" subbasin peak runoff from 576 cubic feet per second (cfs) to 42 cfs.		
II	Construct a new 14.0 ac-ft debris basin (Buena Vista Debris Basin) at the intersection of Buena Vista Blvd and Tortoise Rock Drive. Storage capacity of this basin is 14.0 ac-ft, however, 13.2 ac-ft are required for the combined 100-year flood (7.8 ac-ft) and 50-year sediment (5.4 ac-ft) storage volumes.	Reduce the peak runoff from Buena Vista Blvd to Main Street from 332 cfs to 171 cfs.		
111	Construct additional street catch basins upstream of the intersection of Arrowweed Way and Caddington Road to capture and direct runoff from the "Warm Springs B" subbasin through the new Main Street Debris Basin.	Reduce peak runoff from Warm Springs to Main Street from 130 cfs to 50 cfs.		
IV	Construct a new catch basin on the east side of Main Street and replace the existing blocked catch basin on the west side of Main Street just upstream of the I-15 overpass.	Capture remaining bypass runoff from Buena Vista Blvd before it flows under I-15 to the south.		

Table 2-3. Summar	v of Pron	ocod Mitiga	tion Moscuros	Altornativo 1
Table 2-3. Summa	y υι Γιυμ	oseu miliya	illon measures	- Allemative I

In addition to the overall reduction of peak runoff and elimination of runoff bypass to Main Street south of I-15, the proposed debris basins provide the following benefits:

- Reduces overall flooding on road surfaces north of I-15.
- Holding and controlling the release of runoff within the basins allows suspended sediment and debris to settle out in the basin.
- Sediment is accumulated in a centralized location, significantly reducing cleanup costs after a flood event.
- Provides the best overall protection to Main Street from flooding originating north of I-15.

2.3.1.1 Debris Basin Design Criteria

Based on the dam breach analysis, the breach inundation area for the Main Street Debris Basin is predominantly limited to the surface streets and estimated breach depths are less than 6-inches. The majority of the active storage is below adjacent native ground elevation. The structure would be classified as a low-hazard potential dam meeting the NRCS pond standard. Per Utah State Code 73-5a-106 and R655-10-5A

the structure would be considered low-hazard dam. The Buena Vista Debris Basin would also be classified as a low-hazard potential dam meeting the NRCS pond standard; however, it would not be considered a dam per Utah State Code because the entire storage volume is below the adjacent native ground elevation. The two proposed debris basins are both excavated basins. The Main Street Debris Basin has a small embankment, and the Buena Vista Debris Basin does not have an embankment and will not impound water above the natural ground. A summary of various properties of the proposed basins design is provided in Table 2-4.

Parameter	Main Street Debris Basin Value	Buena Vista Debris Basin Value
Active Storage Volume (Ac-ft) ¹	46.5	14
Storage Below Native Ground Elevation	27.2	14
Storage Above Native Ground Elevation	19.3	0
Sediment Storage Volume (Ac-ft) ²	12.3	5.4
Q ₁₀₀ Storage Volume (Ac-ft) ³	46.5	13.2
Tributary Drainage Area (Ac)	393	134
Grading Area (Ac)	5.3	2.7
Overall Height (ft) ⁴	8.2	0
Effective Height (ft) ⁵	5.2 (<35')	0
Crest Width (ft)	12	NA
Upstream Slope	3H:1V	3H:1V
Effective Height x Storage	241.3 (<3,000)	0 (<3,000)

Table 2-4.	Summary	of Debris	Basin	Design
------------	---------	-----------	-------	--------

Notes:

1. Active Volume is the volume from the auxiliary spillway crest to the invert of the outlet pipe (principal spillway).

2. Sediment storage volume is the capacity for sediment from the bottom of the basin to the invert of outlet #2.

3. Storage volume required to attenuate the 100-year flood event assuming a 50-year sediment volume.

4. Overall Height is the difference in elevation between the top of the dam and the lowest elevation at the downstream toe.

5. Effective Height is the difference in elevation between the lowest open channel auxiliary spillway crest and the lowest point in the original cross-section on the centerline of the dam.

6. Below ground storage is calculated assuming no sediment accumulation. Above ground storage volumes are independent of sediment accumulation.

As shown in Table 2-4, the proposed Buena Vista Debris Basin is below grade and has no overall or effective height. The Main Street Debris Basin has a small embankment, but the effective height is less than 35 feet and the effective height times storage volume is less the 3,000. Based on the NRCS classification criteria referenced above, the two debris basins would be classified as low-hazard potential dams meeting the pond standard and shall be designed in accordance with NRCS Practice Standard 378 – Ponds (Practice Standard 378).

2.3.1.2 Principal Spillway Evaluation

Practice Standard 378 does not provide a specific design capacity requirement for the principal spillway of a pond constructed per the standard. Because these ponds will be utilized for flood detention, the Washington City design standards were used to determine the design event for principal spillway hydrograph routing. Section 13.3.2 of the Washington City Grading Manual (Alliance Consulting 2006)

states: "All detention facilities are to be designed for the 10- and 100-year recurrence interval flood." Section 13.4.3 states "The minimum required freeboard for open space detention facilities is 1.0 feet above the computed 100-year water surface elevation." Based on these criteria, the principal spillway outlet structures for both the Main Street and Buena Vista debris basins were sized to route all flood events less than or equal to the 100-year, 24-hour flood event while providing 1.0 foot of freeboard.

Section 3.4.2 of the Washington City Grading Manual specifies that the 100-year, 3-hour rainfall should be used for major system design of residential, commercial, and industrial land use. The 100-year, 3-hour rainfall distribution was considered and analyzed for sizing the principal spillway of both debris basins, however, the 100-yr, 24-hr distribution resulted in higher runoff volumes and more conservative requirements for basin storage and principal spillway design, therefore, the 100-yr, 24-hr distribution was used as the basis for design.

The principal spillway structures will be constructed as upright, concrete riser structures with staged orifice outlets. The first outlet is sized to convey frequent, low intensity storm events. The second outlet is designed to convey less-frequent, higher intensity events. The invert elevation of the second outlet is elevated to the anticipated 50-year sediment pool elevation. Each pond will route the design event through the principal spillway with or without the presence of the anticipated sediment storage volume within the pond. The top of the principal spillway structure will include a grated opening. This opening will be elevated above the design event water surface elevation to act as an anti-vortex measure. Design criteria for the principal spillways are provided in Table 2-5.

Parameter	Main Street Debris Basin	Buena Vista Debris Basin
Design Event	100-year, 24-hr	100-yr, 24-hr
Outlet #1 size	10" Square	6" Square
Outlet #1 elevation	2,891.00	2,984.00
Outlet #2 size	19" Square	15.5" Square
Outlet #2 elevation	2,897.10	2,989.15
Peak Inflow (cfs)	576	223
Peak Discharge, sediment pool empty (cfs)	42	12
Peak Water surface elevation, sediment pool empty	2903.70	2,990.90
Peak Discharge, sediment pool full (cfs)	38	16
Peak Water surface elevation, sediment pool full	2,907.00	2,993.60

2.3.1.3 Auxiliary Spillway Evaluation

Practice Standard 378 requires that "the minimum capacity of a natural or constructed auxiliary spillway shall be that required to pass the peak flow expected from a design storm of the frequency and duration shown in Table 2, less any reduction creditable to conduit discharge and detention storage." Table 2 of

Practice Standard 378 is provided as Figure 2-6 for reference. Based on the debris basin design criteria listed in Table 2-4, the required design event for the auxiliary spillways is the 25-year, 24-hour storm.

			Minimum storm ²	design	
Drainage area (Ac.)	Effective height of dam ¹ (Ft.)	Storage (Ac-Ft)	Frequency (Years)	Minimum duration (Hours)	
20 or less	20 or less	< than 50	10	24	
20 or less	> than 20	< than 50	25	24	
> than 20	1.11	< than 50	25	24	
All others			50	24	

Table 2.	Minimum	auxiliar	v spillwa	v capacity
laule 2.	IVIII III III GUIT	auxilial	y spillwa	y capacity

As defined under "Conditions where Practice Applies".

2. Select rain distribution based on climatological region.

Figure 2-6. NRCS Practice Standard 378 – Ponds, Table 2

Based on the criteria for auxiliary spillways from Practice Standard 378 – Ponds, "An auxiliary spillway must be provided for each dam, unless the principal spillway is large enough to pass the peak discharge from the routed design hydrograph and the trash that comes to it without overtopping the dam."

Both the Main Street and Buena Vista debris basins have been designed so that the 100-year, 24-hour hydrograph is contained within the basin, assuming that the basin has accumulated 50 years of sediment. Though not needed per Practice Standard 378, an auxiliary spillway has been provided at both debris basins to meet the design criteria listed in Table 2-6.

Parameter	Main Street Debris Basin	Buena Vista Debris Basin
25-year, 24-hour Peak Inflow (cfs)	354	98
Spillway Crest Elevation	2907.0	2994.0
Width (ft)	30	30
Depth (ft)	3	3
Side Slope (H:V)	3:1	3:1
Slope (ft/ft)	0.067	0.048
Peak Weir Flow (cfs) ^{1,4}	488	488
Open Channel Lining	Riprap ('n' = 0.045)	Riprap ('n' = 0.045)
Open Channel Flow Depth (ft) ²	1.43	1.58
Open Channel Velocity (fps) ³	10.0	8.92

Table 2-6. Auxiliary Spillway	Design Criteria
-------------------------------	-----------------

Parameter	Main Street Debris Basin	Buena Vista Debris Basin	
Aux. Spillway Freeboard (ft)	1.57	1.42	

Notes:

- 1. Peak weir flow assumes no freeboard between the design water surface elevation and the pond crest. Also, weir flow was calculated based upon a Cipolletti Weir with 4:1 side slopes. The peak flow was then reduced by 93% to account for the reduced area associated with the actual side slopes of 3:1.
- 2. Open channel flow depths calculated in the channel based on peak weir flow through the auxiliary spillway.
- 3. Auxiliary spillway channel will be lined with riprap adequately sized to protect the channel against erosion.
- 4. The auxiliary spillway for the Buena Visit DB is oversized for the design flood event used, in flood events greater than the 100yr, 24-hr design event, the auxiliary spillway discharges to the same roadway and drainage system as the existing drainage condition. Therefore, for events larger than the design event, the risk of downstream flooding is not greater in the proposed condition than in the existing condition.

As shown on Table 2-6, the auxiliary spillways for both the Main Street and Buena Vista debris basins have more than adequate capacity to pass the design event, less any reduction creditable to conduit discharge and detention storage, per Practice Standard 378. In addition, the elevation of each auxiliary spillway crest is equal to or above the peak 100-year, 24-hour water surface elevations shown in Table 2-4.

2.3.1.4 Sedimentation

Practice Code 378 does not provide specific criteria for sedimentation design for a pond, but notes that "The drainage area above the pond must be protected against erosion to the extent that expected sedimentation will not shorten the planned effective life of the structure." The National Engineering Handbook (NEH) Section 3 Sedimentation notes: "The design life of a reservoir is the period required for the reservoir to fulfill its intended purpose. Structures designed by the SCS in the watershed protection and flood prevention programs usually are designed for a life of 50 or 100 years. Provision must be made to ensure the full design storage capacity for the planned design life. This may mean cleaning out deposited sediment at predetermined intervals during the design life or, as is generally the situation, providing enough capacity to store all the accumulated sediment for the reservoir's design life without diminishing the design water storage." The design sedimentation rate to be used for the proposed debris basins was calculated based upon the following assumptions:

- The unit weight of sediment for the debris basin watershed was estimated to be 85 lbs/ft^3 based on Table 8-1 from the NEH Section 3 Sedimentation manual for aerated or submerged sand mixture.
- Trap efficiency was estimated based on basin and watershed characteristics and according to Figure 8-2 of NEH Section 3 Sedimentation. The estimated trap efficiency for the Main Street and Buena Vista debris basins is 96% and 93%, respectively.
- Three methods for calculating sedimentation yield rates were evaluated. These include the U.S. Department of Agriculture mapped sedimentation rates for the State of Utah; Rangeland Hydrology and Erosion model Web Tool; and comparison to other previously published estimates. The design sediment yield for the two debris basins was estimated to be 0.44 ac-ft per square-mile per year.

The sediment storage volumes for the 50- and 100-year events were further evaluated based upon the estimated trap efficiencies calculated above (i.e., sediment volume x trap efficiency). The design sedimentation volumes for the Main Street and Buena Vista debris basins are as follows:

Main Street Debris Basin 50-year Volume	12.3 ac-ft
Main Street Debris Basin 100-year Volume	24.7 ac-ft
Buena Vista Debris Basin 50-year Volume	5.4 ac-ft
Buena Vista Debris Basin 100-year Volume	10.9 ac-ft

2.3.1.5 Estimated Construction Cost – Alternative 1

The combined estimated construction cost for Alternative 1 – Debris Basins Alternative is approximately \$2,659,000 as shown in Tables 2-7 and 2-8. Operation and maintenance (O&M) would consist of pipeline cleaning performed every 5 years at a cost of \$40,000 per cleaning and weed control at a cost of approximately \$6,000 annually. O&M cost over the 50-year project life would be approximately \$700,000.

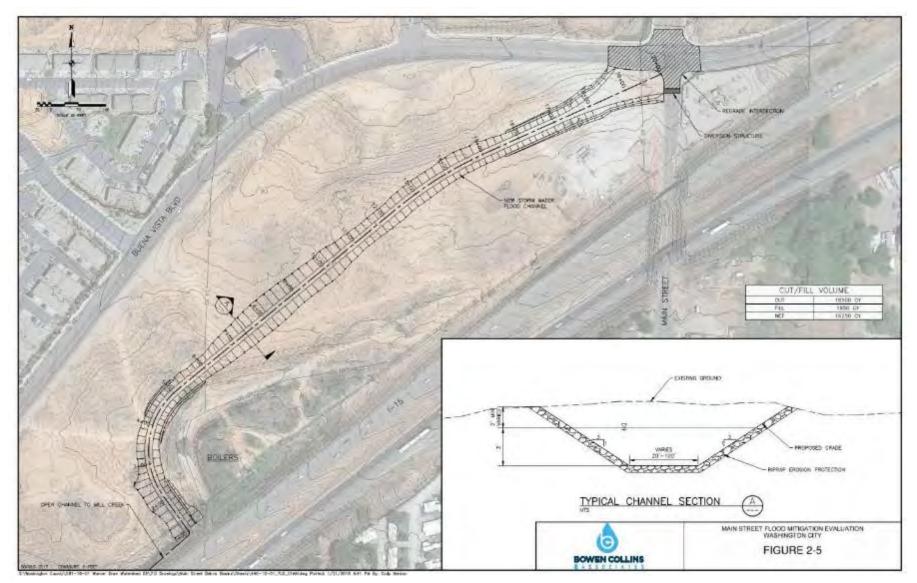
No.	Item	Quantity	Units	Unit Cost	Cost
1	Mobilization/Demobilization	1	LS	\$123,100	\$123,100
2	Traffic Control	1	LS	\$12,000	\$12,000
3	Survey	1	LS	\$20,000	\$20,000
4	Stormwater Pollution Prevention Plan (SWPPP)	1	LS	\$60,000	\$60,000
5	Clear and Grub	7	AC	\$600	\$4,200
6	Excavation and Haul Off	132,850	CY	\$7	\$929,950
7	Embankment Construction	1,460	CY	\$14	\$20,440
8	Emergency Spillway	1	LS	\$46,700	\$46,700
9	Outlet Structure	1	LS	\$45,000	\$45,000
10	Inlet Channel Erosion Protection	1	LS	\$34,250	\$34,250
11	Restoration/Reseeding	7	AC	\$950	\$6,650
12	42-inch reinforced concrete pipe (RCP) Storm Drain	250	LF	\$185	\$46,250
13	6-ft Diameter Storm Drain Manhole	1	EA	\$5,500	\$5,500
14	Double Catch Basin	4	EA	\$8,500	\$34,000
15	24-inch RCP Storm Drain	210	LF	\$165	\$34,650
Subtotal ¹					\$1,423,000
Contingency (30%) ¹					\$427,000
	Total ¹				\$1,850,000

Table 2-7. Alternative 1 Estimated Construction Cost – Main Street Debris Basin

1 - Costs have been rounded to the nearest thousand dollars.

No.	Item	Quantity	Units	Unit Cost	Cost
1	Mobilization/Demobilization	1	LS	\$56,500	\$56,500
2	Traffic Control	1	LS	\$15,000	\$15,000
3	Survey	1	LS	\$20,000	\$20,000
4	SWPPP	1	LS	\$45,000	\$45,000
5	Clear and Grub	4.00	AC	\$600	\$2,400
6	Excavation and Haul Off	47,160	CY	\$7.00	\$330,120
7	Embankment Construction	160	CY	\$14.00	\$2,240
8	Emergency Spillway	1	LS	\$10,375	\$10,375
9	Outlet Structure	1	LS	\$40,000	\$40,000
10	Inlet Channel Erosion Protection	1	LS	\$25,950.00	\$25,950
11	Restoration/Reseeding	4.00	AC	\$950.00	\$3,800
12	36-inch RCP Storm Drain	280	LF	\$165.00	\$46,200
13	Remove and Dispose of 42-inch Storm Drain	150	LF	\$50.00	\$7,500
14	6-ft Diameter Storm Drain Manhole	3	EA	\$5,500.00	\$16,500
Subtotal ¹					\$622,000
Contingency (30%) ¹					\$187,000
Total ¹				\$809,000	

Table 2-8. Alternative 1 Estimated Construction Cost – Buena Vista Debris Basin


1 - Costs have been rounded to the nearest thousand dollars.

2.3.2 Mill Creek Flood Channel (Alternative 2)

As shown in the existing condition hydrologic analysis, the intersection of Main Street and Buena Vista Boulevard is the concentration point of the Main Street drainage basin. As water collects at this intersection, it currently flows to the south along Main Street and floods residential properties and businesses. The purpose of the Mill Creek flood channel would be to collect all of the flood water that cannot be conveyed in the existing storm drain system north of I-15 and convey it to where it can be discharged into Mill Creek just north of I-15 as shown on Figure 2-7 and Figure 2-8.

It is recommended that major drainage facilities be designed for the 100-year event. Based on the hydrologic analysis completed previously, the governing or most conservative design event would be the 100-year, 24-hour design event of 935 cfs. It was also assumed that the storm drain facilities in and around Main Street and Buena Vista Boulevard were plugged and non-operational due to upstream debris and sediment flows. To mitigate the expected flooding before it flows down Main Street, the following recommendations would need to be implemented:

- 1. A new approximately 1,900-foot-long flood channel would need to be constructed from the Main Street and Buena Vista Boulevard intersection to Mill Creek, as shown on Figure 2-6. It should be noted that the new channel connects to an existing channel that continues another approximately 1,200 feet to Mill Creek.
- 2. The intersection of Main Street and Buena Vista Boulevard would need to be re-graded and lowered to direct runoff to the west before it flows south under I-15.
- 3. A flood-activated diversion/deflector would need to be permanently installed just south of the intersection or temporary barriers would need to be stored along the road that could quickly be placed in Main Street to divert any flood water in Main Street to the new flood channel.

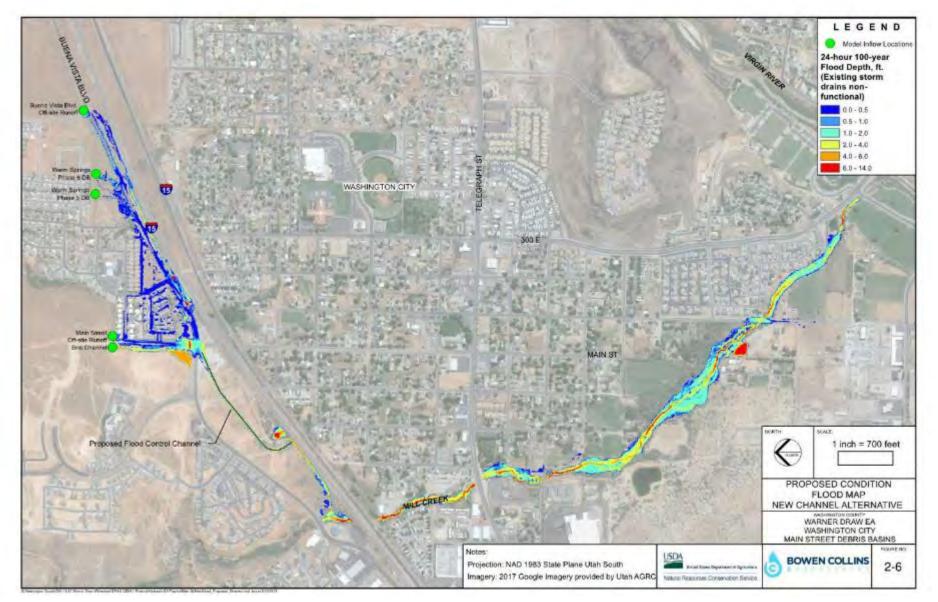


Figure 2-8. Alternative 2 Mill Creek Flood Channel Flood Map

2.3.2.1 Mill Creek Flood Channel Advantages and Disadvantages

The advantages of Alternative 2 include the following:

- The project is located entirely on property owned by Washington City, so no easements or property would need to be purchased for the project.
- Floodwaters could be safely routed to the Mill Creek channel, which has capacity to safely convey the flood through the city.

The disadvantages of this Alternative 2 include the following:

- The re-grading of the Main Street and Buena Vista Boulevard intersection could cause additional sags and crests in the road.
- Road re-grading or diversion structure installation will impact existing utilities under Main Street and Buena Vista Boulevard.
- The diversion/deflector or temporary barrier wall could be a safety hazard for drivers in the area when activated or placed in the roadway.
- The diversion/deflector or temporary barrier wall would be a long-term maintenance issue for the City.
- The potential flood flows across Main Street and Buena Vista Boulevard would be a potential hazard to vehicles trying to cross during flooding.
- The flood channel would need to be routed through the middle of the existing City parcel to ensure a proper grade on the channel, decreasing the value of the property.
- Flood flows/volumes are not reduced, they are only routed another direction.

2.3.2.2 Estimated Construction Cost – Alternative 2

The estimated construction cost for Alternative 2 is approximately \$3,068,000 (Table 2-9).

No.	Item	Quantity	Units	Unit Cost	Cost
1	Mobilization/Demobilization	1	LS	\$214,500	\$214,500
2	Traffic Control	1	LS	\$15,000	\$15,000
3	Survey	1	LS	\$20,000	\$20,000
4	SWPPP	1	LS	\$45,000	\$45,000
5	Clear and Grub	2.00	AC	\$600	\$1,200
6	Excavation and Haul Off	18,100	CY	\$8.00	\$144,800
7	Backfill	2,040	CY	\$15.00	\$30,600
8	Riprap Erosion Protection	26,190	CY	\$50.00	\$1,309,500
9	Geotextile Fabric	19,640	SY	\$3.00	\$58,920
10	Restoration/Reseeding	2	AC	\$950.00	\$1,900
11	Diversion Structure/Regrading Intersection	1	LS	\$250,000.00	\$250,000
12	10" Water Utility Relocation	630	LF	\$90.00	\$56,700
13	16" Water Utility Relocation	680	LF	\$120.00	\$81,600
14	Power and Gas Utility Relocation	1	LF	\$130,000.00	\$130,000
	\$2,360,000				
	\$708,000				
	\$3,068,000				

Table 2-9. Alternative 2 Estimated Construction Cost – Mill Creek Flood Channel

1 - Costs have been rounded to the nearest thousand dollars.

2.3.3 No Action Alternative

The No Action Alternative, also known as the Future-Without-Project Plan, projects the changes in resource concerns from the current condition to the condition that would exist in the future if no NRCS action were taken (NRCS 2015a). The No Action Alternative for this site would take one of the following courses:

- The Sponsoring Local Organization (SLO) decides to construct similar flood control projects without meeting NRCS standards, which may be more or less stringent.
- The SLO chooses to leave the Main Street basin "as-is" with no future improvements.

The Sponsor's most likely course for the No Action Alternative would be to leave the drainage basins "asis" with no improvements. O&M activities would be required to maintain the existing basins over the 50year project life. This would consist of storm drain maintenance and removal of sediment from the basins. Storm drain maintenance and cleaning was estimated at a cost of \$40,000 every 5 years or \$400,000 over the 50-year life of the project. In its current condition, the debris basin only has storage for a 10-year recurrence event, so sediment will need to be removed annually. Approximately 611 cubic yards (cy) of sediment (419 cy from Main Street and 192 cy from Buena Vista) would also need to be removed from the basins annually. Sediment excavation and disposal costs are estimated at \$7 per cubic yard. The cost to perform one round of sediment excavation, including 10% mobilization and 30% contingency, would equate to approximately \$6,000 annually, and these installation and O&M costs would be paid by the Sponsor.

3.0 Site 2 Seegmiller Marsh

3.1 **Project Location and Existing Conditions**

Seegmiller Marsh is located in an abandoned river channel meander and includes multiple depressions with wetlands, open water, and upland areas with a mixture of native cottonwood, willow, phragmites, cattail, and dense stands of tamarisk in wet areas, and mesquite, Russian olive, Russian thistle, and rabbitbrush in the drier areas. It provides valuable habitat for a multitude of wildlife species including good nesting habitat for the southwest willow flycatcher (SWFL), and habitat for the Virgin River chub; both are federally listed endangered species. The area appears to have been originally created by the Virgin River but has been modified with the construction of ditches and other low structures to control the flow of water. Seegmiller Marsh is located on the eastern boundary of the City of St. George near the Virgin River and south of the Mall Drive Bridge, as shown on Figure 3-1.

Figure 3-1. Seegmiller Marsh Location Map

The marsh currently receives water from three different open channels: 1) Mall Drive Channel (Washington Fields Drain), 2) Middle Drain, and 3) Seegmiller Drain, and is a unique resource within the city of St. George. Community leaders and natural resource managers with the Virgin River Program and Utah Division of Wildlife Resources (UDWR) have expressed the desire to protect and enhance the Seegmiller Marsh for future generations. A number of factors threaten the function and existence of the marsh area in the short- and long-term that should be addressed to meet these goals:

• The marsh is primarily located on privately-owned property, although the City of St. George owns a small parcel of land within the marsh. Public access to the marsh is limited and difficult. Trash and construction debris are being dumped into the marsh.

- The marsh hydrology is currently dependent on return flows from irrigation on adjacent agricultural fields as well as on precipitation runoff from developed areas and roadways east of the marsh. As the area converts to more urban uses, the quality, quantity, and timing of water inflows will change.
- Invasive non-native tamarisk is the dominant tree in the marsh, causing a lack of biodiversity and structure of native riparian vegetation and impacting wildlife habitat.
- The marsh is located within the Federal Emergency Management Agency (FEMA) Special Flood Hazard Area and the Virgin River Erosion Hazard Zone administered by the City of St. George, and is at risk from flooding and erosion damage during major flood events.
- The marsh is located adjacent to a City of St. George master planned community park and public trails.
- The marsh is home to several endangered species including the SWFL. Existing areas within the marsh include documented breeding habitat for the flycatcher and breeding habitat should be avoided.
- Active restoration of native riparian woodlands in watersheds close to where flycatchers currently nest (primarily in tamarisk) is urgently needed to provide flycatchers with alternate nesting sites.

A technical analysis was completed for the Seegmiller Marsh site by Rosenburg Associates (RA) and is documented in TM-02 (RA 2019a). The following paragraphs summarize the findings from TM-02.

3.2 Water Quality and Quantity Concerns

In 2006, Natural Channel Design and Applied Ecological Services prepared a Concept Plan Report for the Seegmiller Marsh for the Virgin River Program. This document described the following immediate and long-term water quality and quantity concerns related to the marsh:

- Water Quality Agricultural return flows can contribute sediments and a variety of pollutants to the marsh. The concentration and/or impacts to the marsh from these flows has not been identified or quantified. High salt levels are common in the area and, when concentrated in the soils, reduces the potential diversity of native vegetation. Stormwater pollutants are expected to become an increasing problem. Seegmiller Marsh can play an important role in the treatment process. However, the wetland represents the culmination of a natural treatment process and should not be expected to provide all treatment functions. The direct input of stormwater pollutants will simply degrade the wetland function. An integrated pre-treatment strategy, designed and implemented during development, is recommended.
- Water Quantity The marsh and wetland area are dependent on outside sources of water. Existing inflows are contributed by excess agricultural irrigation. The inflows are relatively continuous and occur during the hot, growing season when marsh requirements are greatest. Groundwater inputs may increase in importance as surface flows become more unpredictable. However, urbanization generally results in an increase in impermeable surfaces and a decrease in infiltration, a reduction in the groundwater aquifer, and negatively impacts the marsh. Wetland needs and projected quantities and timing of future stormwater flows and groundwater recharge should be assessed in the project design.

3.3 Flood Control and Erosion Protection

Seegmiller Marsh is at risk from flooding and erosion damage during major flood events. The marsh is located within the FEMA regulated floodplain and within the City of St. George Erosion Hazard Zone, as shown in Figure 3-2.

The marsh has been impacted by lateral migration of the river historically, and to maintain this unique habitat it may be necessary to stabilize portions of the Virgin River's banks to prevent the river from reclaiming its old channel. In 2006, Washington County, in conjunction with the NRCS, installed rock riprap erosion protection along the west boundary of the marsh as part of the Middle Virgin River Emergency Watershed Protection Project to protect the marsh from future erosion events. The rock riprap erosion protection is intended to keep lateral movement of the river channel away from the marsh while allowing the marsh to be inundated by major flood events in the river.

However, the west bank of the Virgin River has sustained significant damage during the recent floods, including washing out portions of the Virgin River Trail. Lateral erosion during flood events continues to be problematic for the property owners and the City along the west bank of the river, resulting in multiple discussions regarding options to protect property and infrastructure from future erosion damage. However, to-date only minor streambank and trail repair actions have been completed.

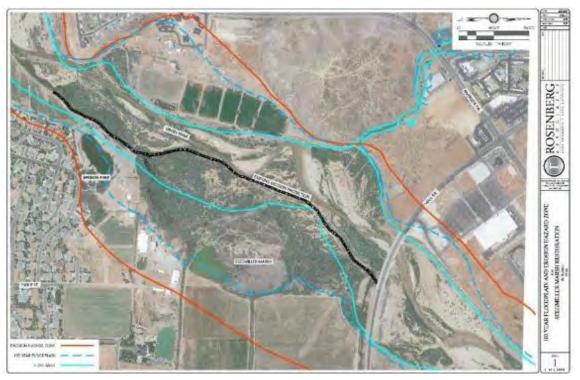


Figure 3-2. Seegmiller Marsh Floodplain and Erosion Hazard Boundaries

3.4 Wetland and Wildlife Habitat

Seegmiller Marsh represents a unique functioning wetlands and marsh system along the Virgin River. Typical vegetation includes phragmites stands, tamarisk, cattail and willows in wet areas, and varied upland shrubs and trees including rabbitbrush, cottonwood, Russian olive, and mesquite in the dry areas. Opinions stated in the 2006 Seegmiller Marsh Concept Plan Report remain relevant, including "Dense growths of invasive tamarisk are present with sparse but conspicuous scattered cottonwood and occasional willow dominate around the pool areas in the marsh. Good quality wildlife habitat requires structural diversity, large biomass, high biodiversity, connectivity (large patches), and nearness to water. The present vegetation community has few of these characteristics." In addition, "The ponded areas and emergent wetlands areas of the marsh can be utilized by waterfowl and shorebirds. However, much of the habitat, particularly the monotypic stands of tamarisk and Phragmites growths are not believed to provide substantial wildlife habitat for foraging, breeding or nesting." Without protections, it is anticipated that the Seegmiller Marsh wetlands and wildlife habitat will continue to degrade from its current condition.

Seegmiller Marsh is home to several endangered species including the SWFL. Recent monitoring completed by the Utah Division of Wildlife Resources Washington County Field Office indicates existing habitat in the south end of the marsh is being successfully used by nesting SWFL pairs. Biologists recommend that new habitat restoration projects be located as close as possible to existing SWFL populations.

3.5 Nature Park and Pedestrian Trails

The City of St. George Park Planning Department has identified the Seegmiller Marsh as a future nature park. The City is also obtaining property from the adjacent residential development east of the marsh to facilitate construction of a new community park. The City has planned a multi-use asphalt bicycle and pedestrian trail extending the existing Virgin River Trail along the east boundary of the marsh, connecting Springs Park to the Mall Drive Trail. When complete, this trail will provide a loop around the Virgin River from the River Road Bridge to the Mall Drive Bridge on both sides of the river. The City Trail System follows the Virgin River from the Sun River community on the west side of St. George to the Washington City boundary and beyond.

The proposed nature park is intended to provide new education and recreation access to the marsh to promote awareness and appreciation of the Virgin River's ecology and natural history, particularly the riparian environment. Improvements have been proposed to preserve the valuable natural resources by incorporating educational programs to provide an interpretative experience for residents of the community and visitors during their recreation leisure time. Unpaved pedestrian trails and a designated bird viewing station are proposed to allow limited public access within the marsh and wetlands.

3.6 Alternative Evaluation

The process of formulating alternatives for mitigating flooding and providing suitable habitat within the Seegmiller Marsh area followed procedures outlined in the NWPM (NRCS 2015a), NWPH (NRCS 2014), P&G (USWRC 1983), and other NRCS watershed planning policy.

The following alternatives were evaluated.

- 1. Minimal Habitat Disturbance Alternative (Alternative 1) Improvements within Seegmiller Marsh but avoiding any disturbance to existing sensitive species and habitat.
- 2. Landowner Alternative (Alternative 2) Improvements within Seegmiller Marsh, similar to Alternative 1, but with a series of flood control improvements.
- 3. No Action Alternative Most likely future condition if none of the federally-assisted action alternatives are selected.

The Minimal Habitat Disturbance Alternative was chosen as the preferred alternative for the project. Concept Design Drawings for this alternative are included in Attachment 2.

3.6.1 Minimal Habitat Disturbance (Alternative 1)

Alternative 1 includes construction of a series of enhancement improvements within the Seegmiller Marsh study area, avoiding any disturbance to existing sensitive SWFL nesting sites and habitat identified by the Utah Division of Wildlife Resources and Virgin River Program. The project components are described as follows:

- Remove sediment from the upland adjoining the Virgin River, within the 100-year flood extents to improve flood capacities and reduce lateral erosion risk to the adjacent streambanks and public infrastructure. Recontour the streambank and vegetate the disturbed area with native cottonwood and willow species.
- Construct rock riprap erosion protection on the west bank of the Virgin River floodplain to protect adjacent properties from lateral bank erosion and allow the acquisition of 60 acres of Virgin River floodplain channel and wetlands within the Seegmiller Marsh.
- Remove flood sediment from and recontour the higher elevation areas of the Seegmiller Marsh to
 allow for expansion of emergent marsh and open water wetland areas, and restore native vegetation,
 providing a phased conversion from the tamarisk monoculture to native trees and shrub species
 with limited tamarisk (30%) to enhance fish and wildlife habitat.
- Construct water conveyance pipelines and diversions to convey water from the Mall Drive Channel to the expanded areas within the Seegmiller Marsh, including limited pretreatment of irrigation return flows and stormwater runoff from the agricultural areas and urban runoff within the watershed.
- Construct a new public improved trail to expand the St. George Trail System and provide new recreation opportunities from Springs Park, south of the Seegmiller Marsh to the existing trails near Mall Drive, including a pedestrian bridge across the Mall Drive Channel.
- Construct a new unimproved loop trail and pedestrian bridge through a portion of the Seegmiller Marsh interior, creating a recreational nature trail with bird viewing stations and unique educational opportunities for residents and visitors to the community with direct access to improved public trails and a planned neighborhood park.
- Construct fencing and gates to limit public / utility vehicle (UTV) / all-terrain vehicle (ATV) access
 to sensitive areas of the marsh, but allow Utah Division of Wildlife Resources and other regulatory
 personnel access to monitor endangered species recovery efforts and complete vegetation
 maintenance activities.

This alternative requires the Sponsor to obtain permanent easements or property rights from eight different private property owners, covering approximately 80 acres within the Seegmiller Marsh or Virgin River floodplain at a cost of approximately \$830,000. The construction cost for this alternative is approximately \$4,899,000. O&M would consist of removal of sediment from the sediment trap at \$180,000 every 10 years, pipeline cleaning at \$20,000 every 5 years, weed control at \$30,000 for the first 5 years, and trail maintenance at \$14,040 annually. The total O&M cost over the 50-year project life would be approximately \$1,952,000.

3.6.1.1 Estimated Construction Cost – Alternative 1

The estimated construction cost for Alternative 1 is provided in Table 3-1.

ltem No.	Classification of Unit Price Work	Quantity	Unit	Unit Price	Amount	
1	Mobilization/Demobilization	1	LS	\$279,00 0	\$279,000	
2	Field Survey and Staking	1	LS	\$25,000	\$25,000	
3	Traffic Control	1	LS	\$10,000	\$10,000	
4	QAQC (Onsite Observation)	1	LS	\$30,240	\$30,240	
5	Clear & Grub	35	AC	\$1,000	\$35,000	
6	Rock Riprap (d50 = 24")	22,310	CY	\$40	\$892,400	
7	Sediment Removal (Excavate & Haul Offsite)	157,883	CY	\$9	\$1,420,947	
8	Marsh Finished Grading	60,000	CY	\$3	\$180,000	
9	Debris Removal (Excavate & Haul Offsite)	7,600	CY	\$12	\$91,200	
10	Asphalt - 2 & 1/2" Depth (w/ Base) - Trail	40,000	SF	\$3	\$120,000	
11	3/4" Roadbase - 6" Depth (Access Road)	49,200	SF	\$1.50	\$73,800	
12	3/4" Roadbase - 6" Depth (Unpaved Trail)	24,000	SF	\$1.50	\$36,000	
13	Earthwork - Onsite Materials (Paved and Unpaved Trail Construction, Access Roads)	13,500	CY	\$4.50	\$60,750	
14	Bridge Viewing Station (w Benches and Signs)	3	LS	\$3,000	\$9,000	
15	Pedestrian Bridges (70' Span, Includes Abutments)	2	LS	\$80,000	\$160,000	
16	16' Steel Livestock Gate	3	EAC H	\$1,000	\$3,000	
17	Beam & Cable Barrier	600	LF	\$30	\$18,000	
18	Concrete Flow Control Boxes w/ Gates	3	LS	\$10,000	\$30,000	
19	Concrete Fish Barrier Structure	1	LS	\$5,000	\$5,000	
20	Concrete Sediment Trap Structure	1	LS	\$12,000	\$12,000	
21	1/4" Steel Trash Rack	1	LS	\$7,500	\$7,500	
22	Rock Riprap Outfall Structures	2	LS	\$2,000	\$4,000	
23	18" Poly Storm Drain	1,050	LF	\$50	\$52,500	
24	Trail Culvert Crossings	2	LS	\$10,000	\$20,000	
25	Restore Native Riparian Vegetation	30	AC	\$5,000	\$150,000	
26	Weed Control	30	AC	\$1,000	\$30,000	
27	Supplemental Irrigation	4	AC	\$3,000	\$12,000	
Subtotal ¹						
Contingency (30%) ¹						
Total ¹						

Table 3-1. Alternative 1 Estimated Construction Cost – Minimal Habitat Disturbance

1 - Costs have been rounded to the nearest thousand dollars.

3.6.2 Landowner Options (Alternative 2)

Alternative 2 includes construction of a similar series of enhancement improvements within the Seegmiller Marsh study area, which are preferred by the majority landowners impacted by the project. The project components are the same as described in Alternative 1 with the following distinct differences:

- The rock riprap erosion protection proposed on the west bank of the Virgin River floodplain to
 protect adjacent properties from lateral bank erosion would be constructed along the existing trail
 and streambank where possible, thus minimizing the disturbance to the existing cultivated areas
 west of the river and reducing the land acquisition needs.
- A portion of the existing rock riprap erosion protection on the east side of the river would be
 relocated away from the river into the adjacent higher elevation areas of the marsh to remove the
 existing constriction and maintain a Virgin River central channel width as recommended by the
 Virgin River Master Plan (WCWCD 2007), thus improving flood capacity and reducing erosion
 risks to the adjacent properties.
- Sediment removal areas would be modified to remove more sediment from the central channel of the Virgin River between the erosion protection, and less sediment from the marsh areas, reducing the expansion of emergent marsh and open water wetland areas. Native vegetation would still be restored, providing a phased conversion from the tamarisk monoculture to native trees and shrub species with limited tamarisk (30%) to enhance fish and wildlife habitat, but on a slightly smaller scale.
- The other components of Alternative 1 would still be constructed including the trails, recreation and educational opportunities, water conveyance improvements, access gates, and fencing.
- This alternative requires the Sponsor to obtain permanent easements or property rights from eight different private property owners covering approximately 74 acres within the Seegmiller Marsh or Virgin River floodplain. This option has the most impact to areas recently used as breeding habitat by the SWFL and presents additional challenges to work through.

3.6.2.1 Estimated Construction Cost – Alternative 2

The estimated construction cost for Alternative 2 is provided in Table 3-2.

ltem No.	Classification of Unit Price Work	Quantity	Unit	Unit Price	Amount
1	Mobilization/Demobilization	1	LS	\$351,000	\$351,000
2	Field Survey and Staking	1	LS	\$40,000	\$40,000
3	Traffic Control	1	LS	\$15,000	\$15,000
4	QAQC (Onsite Observation)	1	LS	\$45,000	\$45,000
5	Clear & Grub	40	AC	\$1,000	\$40,000
6	Rock Riprap (d50 = 24")	22,220	CY	\$40	\$888,800
7	Remove and Relocate Rock Riprap (d50 = 24")	22,310	CY	\$30	\$669,300
8	Clay Liner for Relocated Rock Wall	2,000	CY	\$15	\$30,000
9	Sediment Removal (Excavate & Haul Offsite)	182,000	CY	\$9	\$1,638,000
10	Marsh Finished Grading	33,000	CY	\$3	\$99,000
11	Debris Removal (Excavate & Haul Offsite)	7,600	CY	\$12	\$91,200
12	Asphalt - 2 & 1/2" Depth (w/ Base) - Trail	40,000	SF	\$3	\$120,000
13	3/4" Roadbase - 6" Depth (Access Road)	49,200	SF	\$1.50	\$73,800
14	3/4" Roadbase - 6" Depth (Unpaved Trail)	24,000	SF	\$1.50	\$36,000
15	Earthwork - Onsite Materials (Paved and Unpaved Trail Construction, Access Roads)	13,500	CY	\$4.50	\$60,750
16	Bridge Viewing Station (w Benches and Signs)	3	LS	\$3,000	\$9,000
17	Pedestrian Bridges (70' Span, Includes Abutments)	2	LS	\$80,000	\$160,000
18	16' Steel Livestock Gate	3	EACH	\$1,000	\$3,000
19	Beam & Cable Barrier	600	LF	\$30	\$18,000
20	Concrete Flow Control Boxes w/ Gates	3	LS	\$10,000	\$30,000
21	Concrete Fish Barrier Structure	1	LS	\$5,000	\$5,000
22	Concrete Sediment Trap Structure	1	LS	\$12,000	\$12,000
23	1/4" Steel Trash Rack	1	LS	\$7,500	\$7,500
24	Rock Riprap Outfall Structures	2	LS	\$2,000	\$4,000
25	18" Poly Storm Drain	1,050	LF	\$50	\$52,500
26	Trail Culvert Crossings	2	LS	\$10,000	\$20,000
27	Restore Native Riparian Vegetation	35	AC	\$5,000	\$175,000
28	Weed Control	30	AC	\$1,000	\$30,000
29	Supplemental Irrigation	4	AC	\$3,000	\$12,000
				Subtotal ¹	\$4,736,000
Contingency (30%) ¹					\$1421,000
				Total ¹	\$6,157,000

Table 3-2. Alternative 2 Estimated Construction Cost – Landowner Option

1 - Costs have been rounded to the nearest thousand dollars.

3.6.3 No Action Alternative

The No Action Alternative, also known as the Future-Without-Project Plan, projects the changes in resource concerns from the current condition to the condition that would exist in the future if no NRCS action were taken (NRCS 2015a). The No Action Alternative for this site would take one of the following courses:

- The SLO decides to construct similar enhancement and flood control projects without meeting NRCS standards, which may be more or less stringent.
- The SLO chooses to leave the Main Street drainage basin "as-is" with no future improvements.

Based on coordination with the Sponsor and the project stakeholders, the most likely course of action for the No Action Alternative would be to construct a new public trail as described for Alternative 1. The Sponsor would also purchase approximately 80 acres of land at approximately \$\$830,000 to protect and conserve the existing floodplain. The total construction cost was estimated at \$621,000 (Table 3-3).

ltem No.	Classification of Unit Price Work	Quantity	Unit	Unit Price	Amount
	Construe	ction Cost			
1	Mobilization/Demobilization	1	LS	\$43,455	\$43,455
2	Asphalt - 2 & 1/2" Depth (w/ Base) - Trail	40,000	SF	\$3	\$120,000
3	3/4" Roadbase – 6" Depth (Access Road)	49,200	SF	\$1.50	\$73,800
4	Earthwork - Onsite Materials (Paved and Unpaved Trail Construction)	13,500	CY	\$4.50	\$60,750
5	Pedestrian Bridges (70' Span, Includes Abutments)	2	LS	\$80,000	\$160,000
6	Trail Culvert Crossings	2	LS	\$10,000	\$20,000
				Subtotal ¹	\$478,000
			Conting	ency (30%) ¹	\$143,000
	Construction Total ¹				\$621,000
Flood	plain Land Acquisition	80	Acre	\$10,375	\$830,000
		<u> </u>	•	Total Cost	\$1,451,000

Table 3	3-3 No	Action	Alternative	Costs
I able .	J-J. INU	ACTION	AILEI HALIVE	CUSIS

1 - Costs have been rounded to the nearest thousand dollars.

Estimated O&M costs for the trail would be \$70,200 every 5 years with an estimated annual cost of \$14,040. Installation and O&M costs would be paid by the Sponsor.

4.0 Site 3 Y-Drain

4.1 **Project Location and Existing Conditions**

The Y-Drain is located in Washington City near the St. George city limits, north and east of the intersection of Sandia Drive and Mall Drive, as shown in Figure 4-1.

Figure 4-1. Y-Drain Location Map

Historically, the Y-Drain ditch has conveyed irrigation and rainfall runoff from agricultural lands in the Washington Fields area via open ditches and canals to the Seegmiller Marsh and eventually to the Virgin River. As residential development has occurred in the Washington Fields in recent years, irrigation runoff has been reduced and rainfall runoff discharges to the ditches and canals have increased. Many of the irrigation ditches have been replaced over time with underground storm drains. Portions of the Y-Drain ditch upstream and downstream of this project area have been replaced with underground storm drains. The existing Y-Drain ditch is an open, unlined earthen ditch with dense vegetation on the north bank and limited vegetation on the south bank. Storm drains from adjacent streets and developed areas enter the ditch.

The Y-Drain ditch is considered a public safety hazard because of its location between a residential neighborhood and an elementary school. The ditch is easily accessible to small children crossing between the neighborhood and the school. Also, an existing pedestrian/bicycle trail ends at the upstream end of the Y-Drain ditch. Washington City would like to connect a new pedestrian/bicycle trail to the pedestrian sidewalk on Sandia Road at the downstream end of the Y-Drain ditch. The proposed trail would also provide the opportunity to connect the existing trails within the Riverside Elementary School to the new trail and reduce pedestrian traffic on Merrill Road and Sandia Road.

It was also determined that flows from the Y-Drain are critical to maintain the emergent wetlands and endangered bird and fish habitat in and near the Seegmiller Marsh, which is approximately 2,200 linear feet downstream of the end of the Y-Drain ditch. Water efficiency (flow) to and water quality in Seegmiller Marsh could be improved by reducing erosion, sedimentation, and vegetation issues in the existing Y-Drain ditch.

A technical analysis was completed for the Seegmiller Marsh site by RA and documented in TM-03 (RA 2019b). The following paragraphs summarize the findings from TM-03.

4.2 Hydrologic and Hydraulic Analyses

This section summarizes the hydrologic and hydraulic analyses conducted for the Y-Drain project site.

4.2.1 Hydrologic Analysis

Multiple hydrologic studies have been performed on the Y-Drain drainage area. The hydrology for this project site references a study performed by BC&A for St. George City, dated August 2013. The BC&A study examined the Y-Drain as part of a larger master plan hydrologic analysis covering the Washington Fields watershed area that impacts both Washington City and St. George City. The 100-year design storm peak discharge from the study was 137 cfs.

4.2.2 Hydraulic Analysis

A hydraulic model was developed using the U.S. Army Corps of Engineer (USACE) HEC-RAS modeling software to calculate water surface profiles within the Y-Drain based on the existing conditions. The results indicate that a 100-year recurrence event is expected to cause shallow flood damage to nine residential homes and properties along the ditch, as shown in Figure 4-2.

The higher water surface elevations are due primarily to the pipe inlet and capacity deficiencies at the Sandia Road culvert. The backwater is projected to cause the existing Y-Drain ditch to back-up and overflow into the residential area north of the ditch and overtop Sandia Road, continuing south and west along Mall Drive toward the Virgin River.

Figure 4-2. Shallow Flood along the Y-Drain

4.3 Alternative Evaluation

The process of formulating alternatives to mitigate flooding and erosion along the Y-Drain area followed procedures outlined in the NWPM (NRCS 2015a), NWPH (NRCS 2014), P&G (USWRC 1983), and other NRCS watershed planning policy.

The following alternatives were evaluated to help mitigate flooding:

- 1. Pipe Y-Drain Alternative (Alternative 1) Remove an existing 36-inch culvert which restricts flow at 3000 East and replace with a new 54-inch-diameter reinforced concrete pipe (RCP) storm drain and manholes to replace the existing pipe crossing Sandia Road, and enclose the existing open ditch section of the Y-Drain, including connections to the existing storm drains adjacent to the new pipeline. This recommendation could also include construction of a new 10-foot-wide asphalt pedestrian/bicycle trail parallel to the pipeline to connect the existing trail to Sandia Road.
- 2. Line Y-Drain Alternative (Alternative 2) Construct the same new 54-inch-diameter RCP storm drain and manholes to replace the existing pipe crossing Sandia Road and the new 10-foot-wide asphalt paved pedestrian/bicycle trail as described in Alternative 1, but construct a new concrete-lined trapezoidal channel to replace the existing open ditch section of the Y-Drain. This alternative would also require a new 6-foot-high chain link fence between the trail and the open channel and a pedestrian bridge to cross the channel and connect the trail system.
- 3. No Action Alternative Most likely future condition if none of the federally-assisted action alternatives are selected.

The Pipe Y-Drain Alternative (Alternative 1) was chosen as the preferred alternative for the project. Concept Design Drawings for this alternative are included in Attachment 3.

4.3.1 Pipe Y-Drain Alternative (Alternative 1)

Alternative 1 includes constructing a new storm drain to connect the existing storm drain above the Y-Drain with the existing storm drains downstream of Sandia Road to convey the 100-year design storm, and extending a new public trail from the existing trail near the east end of the Y-Drain to Sandia Road. The new storm drain and trail would reduce the flooding risk, eliminate the public safety hazard that the open ditch presents, provide additional recreation opportunities and pedestrian access along the trail, eliminate transpiration losses to problematic vegetation, and provide a conduit for groundwater flows downstream, improving water efficiency. The proposed hydraulic design criteria for this alternative are provided as follows:

Model Software	Bentley FlowMaster
Pipe Inside Diameter	54-inch
Manning's 'n' roughness coefficient	0.013 for concrete pipe
Channel Slope	0.43-percent
Design Flow	110 cfs

Based on this analysis, the full-flow capacity for the 54-inch-diameter pipe is 129 cfs, which exceeds the required 100-year design flow of 110 cfs.

It is proposed that the trail be constructed on an alignment parallel to the new storm drain and consist of a 10-foot-wide asphalt paved surface with 2.5-foot-wide gravel shoulders on each side. The trail will also provide a maintenance access for the new storm drain.

4.3.1.1 Estimated Construction Cost – Alternative 1

The estimated construction cost for Alternative 1 is \$1,137,000 (Table 4-1).

ltem No.	Classification of Unit Price Work	Quantity	Unit	Unit Price	Amount
1	Mobilization/Demobilization	1	LS	\$65,000	\$65,000
2	Field Survey and Staking	1	LS	\$15,000	\$15,000
3	Traffic Control	1	LS	\$15,000	\$15,000
4	QAQC (Onsite Observation)	1	LS	\$15,000	\$15,000
5	Clear & Grub	1	LS	\$3,500.	\$3,500
6	Remove & Replace Sandia Rd Asphalt & Base Course	7,000	SF	\$3.75	\$26,250
7	Remove and Replace Sandia Rd Curb & Gutter	300	LF	\$27	\$8,100
8	Remove and Replace Sandia Rd Sidewalk	1,500	SF	\$6	\$9,000
9	Remove Existing 60" Storm Drain Manhole	1	LS	\$2,500	\$2,500
10	Remove Existing 54" Storm Drain	1	LS	\$1,500	\$1,500
11	Remove & Replace to Grade 18" CMP Storm Drain	25	LF	\$105	\$2,625
12	Remove & Replace to Grade 12" PVC Storm Drain	25	LF	\$95	\$2,375
13	Remove & Replace Curb Inlet Catch Basin & Curb - Riverside Elementary	1	LS	\$7,200	\$7,200
14	Replace Curb Inlet Catch Basin & Connect 12 " Poly Storm Drain to Manhole - Sandia Rd	1	LS	\$5,000	\$5,000
15	Modify 20" Waterline in Sandia Rd to Accommodate 60" RCP Storm Drain1LS\$50,000		\$50,000		
16	Modify/Relocate Gas, Fiberoptic, and Other Utilities in Sandia Rd	1	LS	\$25,000	\$25,000
17	54" Reinforced Concrete Pipe w/ Bedding & Underdrain	1,250	LF	\$275	\$343,750
18	96" Storm Drain Manhole	5	EA	\$10,000	\$50,000
19	Asphalt - 2 & 1/2" Depth (w/ Base) - Trail	12,200	SF	\$3	\$36,600
20	Earthwork - Onsite Materials	12,000	CY	\$4.50	\$54,000
21	Earthwork - Import Fill	10,000	CY	\$8.50	\$85,000
22	6' Chain-link Fencing w/ Gates	1,100	LF	\$15	\$16,500
23	Remove Existing Fence & Encroachments	1	Lump	\$25,000	\$25,000
24	Landscaping	10,000	SF	\$1	\$10,000
Subtotal ¹					\$874,000
Contingency (30%) ¹					\$263,000
				Total ¹	\$1,137,000

Table 4-1. Alternative 1 Estimated Construction Cost – Pipe Y-Drain

1 - Costs have been rounded to the nearest thousand dollars.

O&M costs would consist of pipeline cleaning at \$20,000 every 5 years and trail maintenance at \$6,500 annually. Total O&M costs over the 50-year project life would be approximately \$525,000.

4.3.2 Line Y-Drain Alternative (Alternative 2)

Alternative 2 includes constructing a new concrete-lined open trapezoidal channel in lieu of the 54-inchdiameter pipe. Alternative 2 would require the same 54-inch-diameter pipe and manhole improvements to cross Sandia Road, then transition to an open concrete-lined channel from Sandia Road to the existing storm drain above the Y-Drain, and would also extend a new public trail from the existing trail near the east end of the Y-Drain to Sandia Road. The new channel and trail would reduce the flooding risk, provide additional recreation opportunities and pedestrian access along the trail, eliminate problematic vegetation, and provide a conduit for flows to continue downstream, improving water efficiency. The proposed hydraulic design criteria for this alternative are provided as follows:

Model Software	Bentley FlowMaster
Channel Bottom Width	2-feet
Side Slopes	1.5H:1V
Flow Depth	4-feet
Manning's 'n' roughness coefficient	0.013 for concrete
Channel Slope	0.43-percent
Design Flow	110 cfs

Based on this analysis, the full-flow capacity for the concrete lined ditch is 374 cfs, which exceeds the required 100-year design flow of 110 cfs.

It is proposed to construct the trail on an alignment parallel to the new concrete channel, which would have the same dimensions as discussed for Alternative 1. A new security fence for safety would need to be installed between the trail and the open ditch.

4.3.2.1 Estimated Construction Cost – Alternative 2

The estimated construction cost for Alternative 1 is approximately \$1,326,000, as shown in Table 4-2.

ltem No.	Classification of Unit Price Work	Quantity	Unit	Unit Price	Amount
1	Mobilization/Demobilization	1	LS	\$76,000	\$76,000
2	Field Survey and Staking	1	LS	\$15,000	\$15,000
3	Traffic Control	1	LS	\$15,000	\$15,000
4	QAQC (Onsite Observation)	1	LS	\$15,000	\$15,000
5	Clear & Grub	1	LS	\$3,500	\$3,500
6	Remove & Replace Sandia Rd Asphalt & Base Course	7,000	SF	\$3.75	\$26,250
7	Remove and Replace Sandia Rd Curb & Gutter	300	LF	\$27	\$8,100
8	Remove and Replace Sandia Rd Sidewalk	1,500	SF	\$6	\$9,000
9	Remove Existing 60" Storm Drain Manhole	1	LS	\$2,500	\$2,500
10	Remove Existing 54" Storm Drain	1	LS	\$1,500	\$1,500
11	Remove & Replace to Grade 18" CMP Storm Drain	25	LF	\$105	\$2,625
12	Remove & Replace to Grade 12" PVC Storm Drain	25	LF	\$95	\$2,375
13	Remove & Replace Curb Inlet Catch Basin & Curb - Riverside Elementary	1	LS	\$7,200	\$7,200
14	Replace Curb Inlet Catch Basin & Connect 12 " Poly Storm Drain to Manhole - Sandia Rd	1	LS	\$5,000	\$5,000
15	Modify 20" Waterline in Sandia Rd to Accommodate 60" RCP Storm Drain	1	LS	\$50,000	\$50,000
16	Modify/Relocate Gas, Fiberoptic, and Other Utilities in Sandia Rd	1	LS	\$25,000	\$25,000
17	54" Reinforced Concrete Pipe w/ Bedding & Underdrain	100	LF	\$275	\$27,500
18	96" Storm Drain Manhole	2	EA	\$10,000	\$20,000
19	5" Reinforced Concrete Flatwork w/ Base Course (Hand Formed)	18,300	SF	\$15	\$274,500
20	Concrete Headwall	1	EA	\$18,500	\$18,500
21	4" Stabilization Rock 2' Depth w/ Underdrain	700	CY	\$30	\$21,000
22	Pedestrian Bridge w/ Concrete Abutments	1	EA	\$50,000	\$50,000
23	Asphalt - 2 & 1/2" Depth (w/ Base) - Trail	12,200	SF	\$3	\$36,600
24	Earthwork - Onsite Materials	12,000	CY	\$4.50	\$54,000
25	Earthwork - Import Fill	5,000	CY	\$8.50	\$42,500
26	Gabion Basket Slope Reinforcement	1,000	CY	\$150	\$150,000
27	6' Chain-link Fencing w/ Gates	2,200	LF	\$15	\$33,000
28	Remove Existing Fence & Encroachments	1	Lump	\$25,000	\$25,000
29	Landscaping	3,000	SF	\$1.00	\$3,000
				Subtotal ¹	\$1,020,000
Contingency (30%) ¹				\$306,000	
				Total ¹	\$1,326,000

Table 4-2. Alternative 2 Estimated Construction Cost – Lining the Y-Drain

1 - Costs have been rounded to the nearest thousand dollars.

4.3.3 No Action Alternative

The No Action Alternative, also known as the Future-Without-Project Plan, projects the changes in resource concerns from the current condition to the condition that would exist in the future if no NRCS action were taken (NRCS 2015a). The No Action Alternative for this site would take one of the following courses:

- The SLO decides to construct similar flood control projects without meeting NRCS standards, which may be more or less stringent.
- The SLO chooses to leave the Y-Drain "as-is" with no future improvements.

Based on coordination with the Sponsor and Washington City, the most likely course of action for the No Action Alternative would be to fence the open ditch at a construction cost of \$21,500. This includes installation of approximately 1,100 linear feet of fence at \$15/foot and also includes a contingency of 30%. O&M would consist of sediment removal at \$60,000 every 10 years and weed control and fence maintenance at \$6,500 annually. The O&M costs over the 50-year project life would be approximately \$625,000.

5.0 Site 4 Warner Valley Disposal System

5.1 **Project Location and Existing Conditions**

The Warner Valley Disposal System (Disposal System) consists of over 3.4 miles of open channel ditch and concrete storm drain (from 42 inches to 72 inches in diameter) starting near River Road and the Fort Pierce Wash confluence and ending near Washington Fields Road. The Disposal System collects and conveys runoff discharge from three existing NRCS-constructed debris basins (Washington Fields Debris Basins) in the Washington Fields area of Washington County. These three basins include the Gypsum Debris Basin, the Warner Draw Debris Basin, and the Stucki Debris Basin. NRCS is currently funding design and construction projects that will bring these three debris basins up to current design standards and replace the section of the Disposal System between approximately 3870 East and approximately Washington Fields Road (NRCS 2016, 2017a, & 2017b). Prior to construction of the Disposal System, stormwater released from the three Washington Fields debris basins was discharged into the Washington Fields Canal. The canal conveyed the runoff westward to a point where it discharged into the Fort Pearce Wash. In 2007, the Washington County Water Conservancy District (WCWCD) constructed a project to convert the Washington Fields Canal into a pressurized pipeline. As part of that project, the WCWCD worked with the City of St. George to construct the Disposal System, which includes 66- and 72-inchdiameter reinforced concrete pipe between 3870 East and 2110 East, an open channel between 2110 East and River Road, and a combination of 66-inch-diameter RCP and 7'x3' reinforced concrete box (RCB) from River Road to the discharge point into Fort Pearce Wash. The location of the Warner Valley Disposal System, including the three NRCS debris basins and the Disposal System, is shown in Figure 5-1.

The City of St. George is experiencing significant development throughout the City, particularly in the southeast region, the Washington Fields area near the Disposal System. Stormwater runoff from this part of the city currently discharges into the Disposal System. Storm Drain Master Plans from the City of St. George also identify plans to utilize the Disposal System as a major storm drain outfall that will receive runoff from future development in this area.

This project documents the existing hydrology design flows expected in the Disposal System, summarizes the hydraulic analyses used to estimate the existing conveyance capacity, identifies capacity deficiencies along the disposal pipeline, and identifies alternatives and recommendations to mitigate those deficiencies. The project also identifies and recommends potential recreational opportunities including a proposed multi-use and equestrian trail along the Disposal Pipeline alignment.

A technical analysis was completed for the Warner Valley Disposal System site by BC&A and documented in TM-04 (BC&A 2019b). The following paragraphs summarize the findings from TM-04.

5.2 Hydrologic and Hydraulic Analyses

This section summarizes the existing hydrologic and hydraulic analyses conducted for the Warner Valley Disposal System site.

5.2.1 Hydrology Analysis

The USACE Hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS) software was used to develop a model using the Soil Conservation Service (SCS) Curve Number (CN) methodology to estimate runoff for each of the subbasins that drain to the Disposal System. This analysis requires a transform method, CN values, percent impervious, and area for each subbasin as hydrologic input parameters. The hydrologic parameters for the subbasins upstream of the three NRCS debris basins (Gypsum Wash, Warner Draw, and Stucki) were provided by NRCS.

A description of the methodology used to develop the hydrologic parameters downstream of the NRCS debris basins is included below.

- Sixteen subbasin boundaries were delineated based on existing topography, aerial photography, and existing storm drain infrastructure as shown in Figure 5-2.
- The SCS Unit Hydrograph method was used to convert rainfall to runoff. Time of Concentration (T_c) was calculated based on Worksheet 3 in TR-55 manual (USDA SCS 1986). Lag time was assumed to be (0.6)x(T_c).
- Curve numbers were estimated for each subbasin based on soil type and vegetation cover. Soil types were obtained from the NRCS Soil Survey Geographic (SSURGO) dataset.
- The amount of directly-connected impervious area for existing development conditions was estimated for each subbasin using recent aerial photography.
- Two design storms were analyzed for this study and include the Farmer-Fletcher storm and the SCS Type II storm.
- Precipitation depths for the synthetic design storms were derived from the NOAA Atlas 14 manual (NOAA 2006). These two events.
- Hydrologic calculations were provided for both the 100-year and 10-year recurrence events.

Table 5-1 summarizes the HEC-HMS hydrologic model parameters for each subbasin. Table 5-2 provides the results of the hydrologic analysis for existing development conditions.

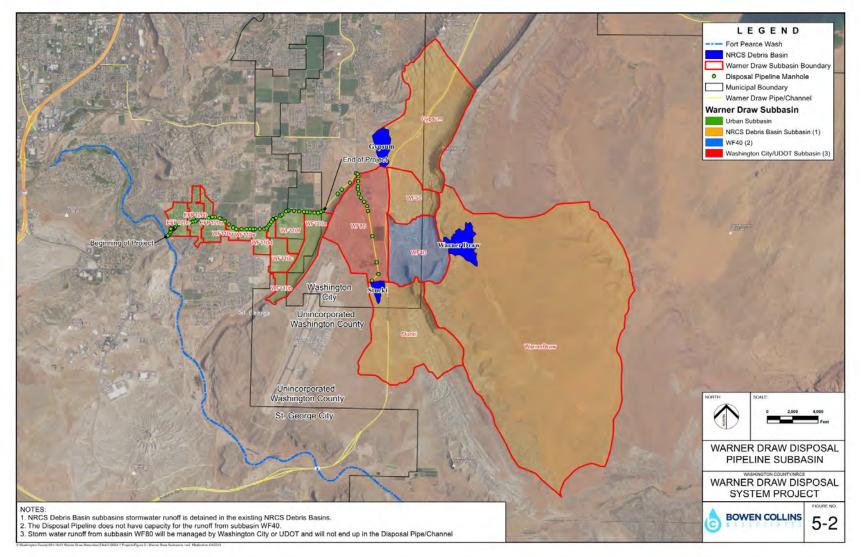


Figure 5-2. Disposal System Subbasins

Subbasin ID	Area (Ac)	Curve Number	Lag Time (min)	Percent Directly- Connected Impervious
Warner Draw ¹	5,888	81.5	68	0
Stucki ¹	1,344	77.7	29	0
Gypsum ¹	1,472	81.5	43	0
WF40	501	80	27	0
WF110a	205	82	22	0
WF110b	59	86	14	10
WF110c	120	71	23	20
WF110d	61	74	19	20
WF110e	22	86	9	0
WF110f	137	85	23	0
WF110g	21	86	9	0
EFP120a	110	67	13	20
EFP120b	98	69	21	20
EFP120c	88	68	21	20

Tabla	5_1	Hydro	logic	Docian	Data
Iaple	5-1.	пушо	logic	Design	Dala

Table 5-2. Summary of Existing Conditions Peak Design Storm Discharges

Subbasin ID	Design Storm Recurrence Interval Associated with the Design of Existing Downstream Facilities	SCS Type II Storm Estimated Runoff (cfs)	Farmer-Fletcher Estimated Runoff (cfs)
Warner Draw ¹	100-year	1,616	1,286
Stucki ¹	100-year	479	363
Gypsum ¹	100-year	557	452
WF40	10-year	228	179
WF110a	10-year	48	18
WF110b ¹	100-year	58	61
WF110c ¹	100-year	52	59
WF110d ¹	100-year	33	36
WF110e	10-year	11	5
WF110f	10-year	44	20
WF110g	10-year	10	5
EFP120a	10-year	25	36
EFP120b	10-year	20	25
EFP120c	10-year	18	23

5.2.2 Hydraulic Analysis

The existing Disposal System conveys stormwater discharged from the three Washington Fields Debris Basins in Washington City and the County, and stormwater generated from urban development within the city of St. George in the Washington Fields area. The section of the existing Disposal System included in this study is approximately 2.6 miles long, extending from 3870 E Street to Fort Pierce Wash (Figure 5-1), and includes approximately:

- 2,122 linear feet of 72-inch-diameter Reinforced Concrete Pipe (RCP)
- 395 linear feet of 7'x3' Reinforced Concrete Box (RCB)
- 9,594 linear feet of 66-inch-diameter RCP
- 1,443 linear feet of open channel

A hydraulic computer model was developed using the Innovyze InfoSWMM modeling software to evaluate the capacity of the existing Disposal System components. This modeling software uses the Storm Water Management Model (SWMM) modeling engine with a Geographic Information System (GIS) interface and has the ability to model both closed conduit and open channel flows. For the purposes of developing the computer model, a Manning's 'n' hydraulic roughness of 0.013 was selected for the RCP/RCB sections and 0.035 for the open channel. Minor loss coefficients associated with bends and changes in grade were assigned to manholes based on the U.S. Department of Transportation Federal Highway Administration (US DOT FHA) HEC-22 Urban Drainage Design Manual (US DOT FHA 2009).

Through the existing field survey completed with the analysis and the hydraulic modeling, the following deficiencies were identified along the Disposal Pipeline:

- The section of the Disposal Pipeline near the Fort Pearce Wash outfall was partially full of sediment due to backwater and surcharging of the pipeline during high flood stages of the Fort Pearce Wash.
- A section of the Disposal Pipeline just downstream of the connection to the existing 42-inchdiameter section of the pipeline was installed at an adverse grade.
- The 66-inch-diameter Disposal Pipeline has a minimum capacity of approximately 130 cfs and there would be flooding at four locations along the pipeline alignment during the design event.

5.3 Alternative Evaluation

The process of formulating alternatives to mitigate flooding along the Warner Disposal System area followed procedures outlined in the NWPM (NRCS 2015a), NWPH (NRCS 2014), P&G (USWRC 1983), and other NRCS watershed planning policy.

The following alternatives were evaluated to help mitigate flooding:

1. Additional Detention Alternative (Alternative 1) – Provide additional detention in the urban areas of the city of St. George to attenuate peak runoff values before the flows are discharged into the Disposal Pipeline.

- 2. Parallel Pipeline Alternative (Alternative 2) Construct a new storm drain pipeline, parallel to the existing Disposal Pipeline, at the location where water exits surcharged manholes, and enclose the open channel section of the Disposal Pipeline system.
- 3. No Action Alternative Most likely future condition if none of the federally-assisted action alternatives are selected.

The Additional Detention Alternative (Alternative 1) was chosen as the preferred alternative for the project. Concept Design Drawings for this alternative are included in Attachment 4.

5.3.1 Additional Detention (Alternative 1)

Alternative 1 includes constructing additional detention within the urban drainage areas of the city of St. George to attenuate peak flows before discharging into the Disposal System. The majority of the stormwater collected and conveyed by the Disposal System is from the urban/developed subbasins within the city of St. George. The upstream collection facilities were designed to collect and convey runoff from the 100-year recurrence event. To evaluate this alternative, a proposed-conditions hydrologic model was developed for the purpose of analyzing potential detention improvements that would mitigate the capacity deficiencies of the Disposal System. The proposed-conditions model was developed by copying the existing conditions model and making the following modifications:

- Increase the directly connected impervious area The directly connected impervious area percentage was increased to 20% in subbasins that have potential for development. The City of St. George City general plan indicates that those areas will develop as Low Density Residential.
- Additional Detention Basins Potential detention basins were added to the urban subbasins to attenuate the peak discharges prior to discharging into the Disposal System.

Two protentional detention basins within existing developed area were identified, as shown on Figure 5-3.

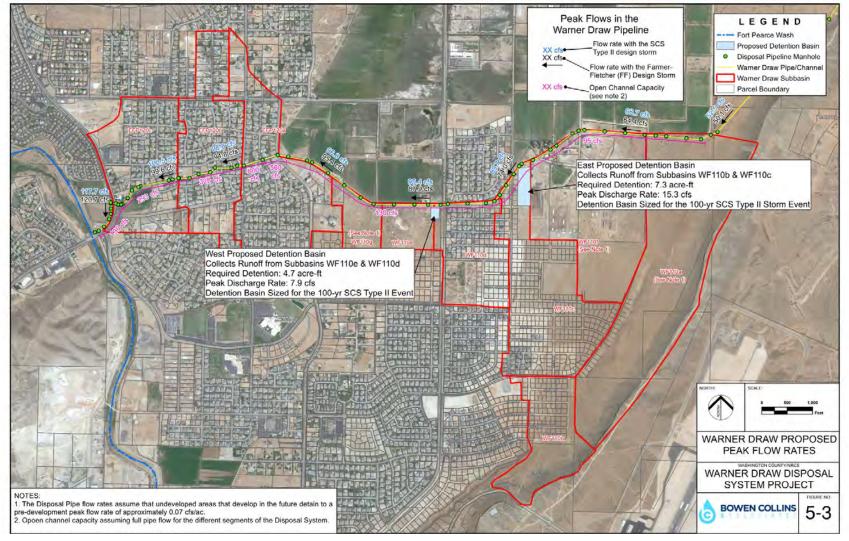


Figure 5-3. Proposed Detention Basins

These two detention basins can be excavated below grade and will not impound water above the natural ground. The preliminary design characteristics for the two detention basins are summarized in Table 5-3.

Parameter	DB-1	DB-2
Active Storage (Ac-ft) ¹	4.7	7.3
Grading Area (Ac) ²	1.6	2.7
Overall Height (ft) ³	0 (0'<35')	0 <i>(0'<35')</i>
Effective Height (ft) ⁴	0	0
Crest Width (ft)	NA	NA
Upstream Slope	3H:1V	3H:1V
Effective Height x Storage	0 (0<3,000)	0 (0<3,000)
Peak Discharge Rate (cfs)	7.9 cfs	15.3 cfs
Basin Design Event	100-year; 24-hour SCS Type II	100-year; 24-hour SCS Type II

 Table 5-3. Summary of Proposed Warner Draw Disposal System Detention Basins

Notes:

1. Active Volume is the volume from the auxiliary spillway crest to the invert of the outlet pipe (principal spillway).

2. Area disturbed by grading.

3. Overall Height is the difference in elevation between the top of the dam and the lowest elevation at the downstream toe.

4. Effective Height is the difference in elevation between the lowest open channel auxiliary spillway crest and the lowest point in the original cross section on the centerline of the dam.

The St. George City Drainage manual requires the 100-year, 3-hour or 24-hour rainfall distribution be used for the design of detention facilities. The Washington City Grading manual specifies that the 100-year, 3-hour rainfall should be used for major system design of residential, commercial, and industrial land use. The 100-year, 3-hour rainfall distribution was considered and analyzed for sizing both detention basins. However, the 100-yr, 24-hr distribution resulted in higher runoff volumes and more conservative requirements for basin storage and principal spillway design, therefore, the 100-yr, 24-hr distribution was used as the basis for design.

As shown in Table 5-3, the proposed detention basins are below grade and have no overall or effective height. Based on the NRCS classification criteria, the two detention basins would be classified as low-hazard potential dams meeting the pond standard and will be designed in accordance with NRCS Code 378 and local ordinance.

5.3.1.1 Additional Measures and Recommendations

Along with the previously discussed flood control detention basins, a number of other repairs and improvements are recommended to mitigate potential flooding, provide reduced maintenance, and provide recreational facilities along the Disposal System alignment. A summary of the recommendations is provided in Table 5-4 and shown on Figure 5-3.

ID	Recommendations
DP-01	Install new headwall on 66-inch RCP with flap gate or Tideflex valve
DP-02	Install new flap gate or Tideflex valve on outlet pipe from storm drain inlet to prevent backwater from flooding roadway sag
DP-03	Remove sediment from pipeline between River Road Crossing and Fort Pearce Wash
DP-04	Enclose existing open channel using 72-inch RCP
DP-05	Construct proposed 4.7 Acre-ft detention basin (West DB)
DP-06	Construct proposed 7.3 Acre-ft detention basin (East DB)
DP-07	Require future developments to detain to pre-development conditions
DP-08	Remove existing 66-inch RCP constructed to create a belly in the pipeline and install new 66-inch RCP with constant downstream slope
DP-09	Install new multi-use asphalt and equestrian trail from River Road to 2350 East
DP-10	Install new multi-use asphalt and equestrian trail from Little Valley Road to 3000 East
DP-11	Install new multi-use asphalt and equestrian trail from 3210 East to 3870 East

Table 5-4. Warner Draw Disposal S	System Summary of Recommendations

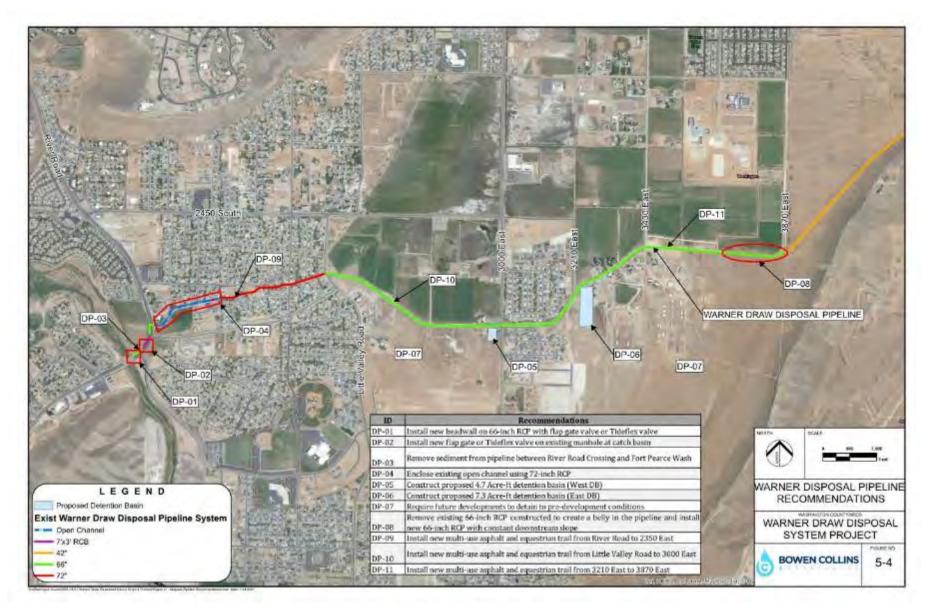


Figure 5-3. Warner Valley Disposal System Recommendations

5.3.1.2 Estimated Construction Cost – Alternative 1

The estimated construction cost for two detention basins and the other improvements in Alternative 1 is \$5,341,000 (Table 5-5). O&M would consist of pipeline cleaning at \$79,000 every 5 years, landscape maintenance at \$31,160 annually, and trail maintenance at 20,560 annually. The total O&M cost over the 50-year project life is approximately \$3,376,000.

ltem No.	Classification of Unit Price Work	Quantity	Unit	Unit Price	Amount
1	Mobilization/Demobilization	1	LS	\$304,300	\$304,300
2	Field Survey and Staking	1	LS	\$24,000	\$24,000
3	Traffic Control	1	LS	\$30,000	\$30,000
4	QAQC	1	LS	\$20,000	\$20,000
5	Provide and Install 72-inch RCP	1,344	LF	\$330.00	\$443,520
6	Remove Existing 66-inch RCP	1,112	LF	\$30	\$33,360
7	Provide and Install 66-inch RCP	1,112	LF	\$280	\$311,360
8	Provide and Install 48-inch RCP	440	LF	\$200	\$88,000
9	Provide and Install 24-inch RCP	145	LF	\$165	\$23,925
10	Provide and Install 18-inch RCP	270	LF	\$70	\$18,900
11	96-inch Diameter Manholes	9	EA	\$10,000	\$90,000
12	84-inch Diameter Manholes	7	EA	\$9,500	\$66,500
13	60-inch Diameter Manholes	2	EA	\$5,500	\$11,000
14	Raise Existing Manholes	6	EA	\$4,000	\$24,000
15	Single Catch Basins	4	EA	\$4,500	\$18,000
16	Double Catch Basin	4	EA	\$8,500	\$34,000
17	2-Winged Inlet Assembly with 6-foot Diameter Manhole	4	EA	\$13,000	\$52,000
18	Concrete Headwall with Flap Gate	1	LS	\$34,800	\$34,800
19	Flap Gate at Manhole/Catch Basin	1	LS	\$4,200	\$4,200
20	Detention Basin - West	1	LS	\$ 493,000	\$493,000
21	Detention Basin - East	1	LS	\$ 567,000	\$567,000
22	Pedestrian and Equestrian Trail Surface	11,800	LF	\$35	\$413,000
23	Trail Excavation	7,485	CY	\$7	\$52,395
24	Trail Fill	50,963	CY	\$15	\$764,445
25	Landscaping	53,100	SF	\$3.50	\$185,850
Subtotal ¹					\$4,108,000
			Conti	ngency (30%) ¹	\$1,233,000
				Total ¹	\$5,341,000

1. Costs have been rounded to the nearest thousand dollars.

5.3.2 Parallel Pipeline (Alternative 2)

As shown in the existing conditions hydrologic and hydraulic analyses, the Disposal System does not have capacity to convey the expected hydrologic flows in two pipe segments—between 3870 East and east of Little Valley Road and between approximately 2110 East and Fort Pearce Wash. For Alternative 2, the potential construction of parallel pipelines in these two areas that have capacity issues was evaluated as well as piping the existing open channel ditch, as shown on Figure 5-4.

Figure 5-4. Parallel Pipeline Alternative

To mitigate any flooding along the Disposal System, the following segments of parallel pipeline will be required as well as enclosing of existing open channels:

- Approximately 900 linear feet of 48-inch-diameter pipeline to parallel the existing 66-inchdiameter pipeline and 7'x3' box culvert from the Fort Pearce Wash outfall to the River Road crossing.
- Approximately 1,445 linear feet of 84-inch-diameter pipeline to enclose the open channel between the River Road crossing and 2110 East.
- Approximately 6,900 linear feet of 42-inch-diameter pipeline to parallel the existing 66-inchdiameter pipeline from the approximately Little Valley Road to 3870 East.

It is noted that construction of this potential parallel pipelines would more than likely require relocation and/or reconstruction of existing irrigation ditch that runs along the east side of the irrigated fields and/or relocations of existing street lights, traffic lights, and underground power conduits that provide lighting for River Road. The new parallel pipeline would also require additional maintenance. This maintenance would include cleaning sediment from a second pipeline—the sediment could be deposited during high flood events in the Fort Pearce Wash. Construction would also take place in narrow rights-of-way near large existing utilities.

5.3.2.1 Additional Measures and Recommendations

Along with the measures for the parallel pipeline discussed in Section 5.3.1.1, the following measures will be required for Alternative 2:

- DP-01 Install new headwall on 66-inch RCP with flap gate or Tideflex valve
- DP-02 Install new flap gate or Tideflex valve on outlet pipe from storm drain inlet
- DP-08 Remove existing 66-inch RCP constructed to create a belly in the pipeline and install new 66-inch RCP with constant downstream slope
- DP-09 Install new multi-use asphalt and equestrian trail from River Road to 2350 East
- DP-10 Install new multi-use asphalt and equestrian trail from Little Valley Road to 3000 East
- DP-11 Install new multi-use asphalt and equestrian trail from 3210 East to 3870 East

5.3.2.2 Estimated Construction Cost – Alternative 2

The estimated construction cost for the Alternative 2 parallel pipelines and additional measures and recommendations is approximately \$5,809,000 (Table 5-6).

Item	Quantity	Unit	Unit Price	Amount	
Mobilization/Demobilization	1	LS	\$337,100	\$337,100	
Field Survey and Staking	1	LS	\$24,000	\$24,000	
Traffic Control	1	LS	\$30,000	\$30,000	
QAQC	1	LS	\$20,000	\$20,000	
Provide and Install 84-inch RCP	1,445	LF	\$450	\$650,250	
Remove Existing 66-inch RCP	1,112	LF	\$30.00	\$33,360	
Provide and Install 66-inch RCP	1,112	LF	\$280.00	\$311,360	
Provide and Install 48-inch RCP	900	LF	\$200.00	\$180,000	
Provide and Install 42-inch RCP	6,900	LF	\$185.00	\$1,276,500	
96-inch Diameter Manholes	4	EA	\$10,000.00	\$40,000	
72-inch Diameter Manholes	3	EA	\$9,500.00	\$28,500	
60-inch Diameter Manholes	16	EA	\$5,500.00	\$88,000	
Concrete Headwall with Flap Gate	1	LS	\$34,800.00	\$34,800	
Flap Gate at Manhole/Catch Basin	1	LS	\$4,200.00	\$4,200	
Pedestrian and Equestrian Trail Surface	11,800	LF	\$35.00	\$413,000	
Trail Excavation	7,485	CY	\$7.00	\$52,395	
Trail Fill	50,963	CY	\$15.00	\$764,445	
Landscaping	53,100	SF	\$3.50	\$185,850	
	\$4,468,000				
	\$1,341,000				
1. Costs have been rounded to the percent they and do	Total ¹				

 Table 5-6. Alternative 2 Estimated Construction Cost – Parallel Pipelines

1 - Costs have been rounded to the nearest thousand dollars.

5.3.3 No Action Alternative

The No Action Alternative, also known as the Future-Without-Project Plan, projects the changes in resource concerns from the current condition to the condition that would exist in the future if no NRCS action were taken (NRCS 2015a). The No Action Alternative for this site would take one of the following courses:

- The SLO decides to construct similar flood control projects without meeting NRCS standards, which may be more or less stringent.
- The SLO chooses to leave the Warner Draw Disposal System "as-is" with no future improvements.

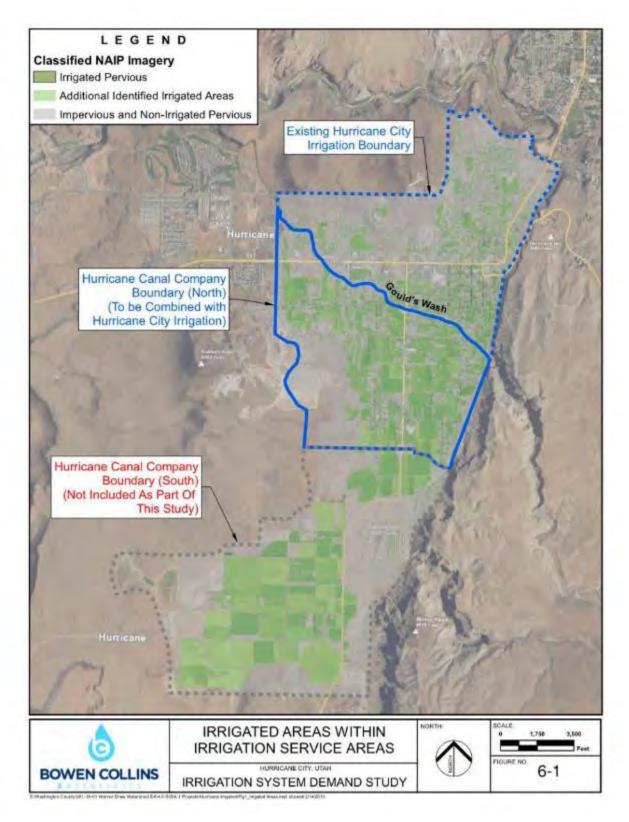
Based on coordination with the Sponsors, the most likely course of action would be to construct a trail along the Disposal System alignment. The cost to construct this mixed-use trail is \$1,976,000. Land acquisition of 10.35 acres would also be required for construction of the trail at a cost of \$1,242,000. Table 5-7 includes the construction and land acquisition costs for this alternative.

ltem No.	Classification of Unit Price Work	Quantity	Unit	Unit Price	Amount	
	Construction Cost					
1	Mobilization/Demobilization	1	LS	\$104,400	\$104,400	
2	Pedestrian and Equestrian Trail Surface	11,800	SF	\$35.00	\$413,000	
3	Trail Excavation	7,485	SF	\$7.00	\$52,395	
4	Trail Fill	50,963	CY	\$15.00	\$764,445	
5	Landscaping	53,100	LS	\$3.50	\$185,850	
				Subtotal ¹	\$1,520,000	
			Continge	ncy (30%) ¹	\$456,000	
Construction Total ¹					\$1,976,000	
Resid	lential Land Acquisition	10.35	LS	\$120,000	\$1,242,000	
Total Cost					\$3,218,000	

Table 5-7. No Action Alternative Costs

1 - Costs have been rounded to the nearest thousand dollars.

O&M would consist of annual trail maintenance (\$20,560) and landscape maintenance (\$31,160). Pipeline cleaning would also be performed at \$79,000 every 5 years and sediment removal would take place every 10 years at \$100,000 per removal. The adverse sloped disposal pipe would eventually need to be replaced at a cost of approximately \$494,000. O&M cost over the 50-year project life is estimated at \$4,370,000.


6.0 Site 5 Hurricane Irrigation Efficiency

6.1 **Project Location and Existing Conditions**

Hurricane City currently has a pressurized irrigation system on the north side of the city from approximately Gould Wash north. The Hurricane Canal Company operates the irrigation system south of Gould Wash to about 3000 South as shown on Figure 6-1. The company would like to convert the system to pressurized irrigation and turn it over to the City.

The purpose of pressurizing the Hurricane Canal Company system and merging it with the City irrigation system is to increase irrigation efficiency. The proposed project would convert approximately 710 acres of flood-irrigated land to pressurized, sprinkler-irrigated land. Water losses associated with flood irrigation—such as excess runoff, infiltration, canal leakage, and evapotranspiration—would be reduced by converting to a pressurized, sprinklered system. The goal and purpose of the project would be to increase irrigation efficiency so that the limited water resources available are used to the maximum extent possible by Hurricane City residents.

A technical analysis was completed for the Hurricane Irrigation Efficiency site by BC&A and documented in TM-05 (BC&A 2019c). The following paragraphs summarize the findings from TM-05.

6.2 System Water Supply

Currently, both the City and Hurricane Canal Company receive irrigation water from the Washington County Water Conservancy District (WCWCD). The volume and flow rate of water available are defined by an Agreement between the Hurricane Canal Company and WCWCD. The Agreement defines the availability, volume, and flow rate of water as follows:

... the District agrees to deliver Hurricane its water as follows:

- (a) 15,000 acre feet annually at a rate not to exceed 45 cubic feet per second (cfs) of water any year when the flow of the Virgin River is average or above average, provided that during the months of July and August of each year, Hurricane must coordinate the delivery of water in excess of 32 cfs with the District in order to avoid any adverse impacts on power generation from the District's hydrogenating facilities;
- (b) 12,000 acre feet annually at a rate not to exceed 45 cfs of water during any year when the flow of the Virgin River is below average, provided that during the months of July and August of each year, Hurricane must coordinate the delivery of water in excess of 32 cfs with District in order to avoid any adverse impacts on power generation from the District's hydrogenating facilities;
- (c) The determination of the percent of average flow of the Virgin River to serve as the basis upon which to make the deliveries provided for above shall be made each year and shall be determined as of May 1 each year by reference to the water supply forecast for the Virgin River near Hurricane as determined by the United States Soil Conservation Service (SCS) or other National Weather Service – whichever service or successor provides the current water supply forecast for the Virgin River;

6.3 Existing Annual Irrigation Demands

The historical irrigation usage data was utilized to determine an average annual demand for a given acreage. The average annual demands in the system were combined with GIS data to distribute the demands throughout the irrigation service area.

6.3.1 Total Existing Annual Demand

To determine the existing annual demand, historical monthly water usage records were obtained from the distribution pipeline meters that feed the respective systems. A summary of recent annual water usage for the two irrigation systems is found in Table 6-1.

	Annual Water Usage (ac-ft/yr)				
Year	Hurricane City Irrigation	Hurricane Canal Company	Total		
2013	1,287.0	8,411.0	9,698.0		
2014	1,362.4	8,808.0	10,170.4		
2015	1,364.0	9,856.3	11,220.3		
2016	1,405.7	9,701.0	11,106.7		
2017	1,403.0	9,997.8	11,400.8		
Average	1,364.4	9,354.8	10,719.2		

Table 6-1.	Annual Irrigation	System Water	Usage Summary
	/	• , • • • • • • • • • • • • • •	eeuge eunnury

NOTE: DATA OBTAINED FROM WCWCD

Table 6-1 indicates that annual usage from both irrigation systems increased slightly over the period from 2013 to 2017. The average annual water usage for both irrigation systems is approximately 10,719 acrefeet.

6.3.2 Irrigation Application Rate per Irrigated Acre

GIS data and tools were used to determine the total existing irrigated area within the service area. Irrigated areas were developed separately as either residential or agricultural to quantify demands using the specific irrigation application rate. Based on this analysis, the total irrigated area within the City and Company service areas in 2016 was approximately 1,735 acres. Using the 2016 irrigation area and the 2016 irrigation system water usage rate, the irrigation application rate per irrigated acre was calculated for both the City and Company service areas. These 2016 irrigation application rates are considered the baseline demands for this study and are provided in Table 6-2.

 Table 6-2. 2016 Annual Existing irrigation System water Usage/Rate Summary

Service Area	Annual Water Usage (ac-ft)	Irrigated Area (acres)	Annual Average Irrigation Rate (ac-ft/yr/irrigated acre)
Hurricane City Irrigation	1,405.7	340.2	4.1
Hurricane Canal Company	9701.0	1,394.8	7.0
Total	11,106.7	1,735.0	-

6.4 Peak System Demand Estimates

6.4.1 Existing Peak Day Demand

Peak day demand (PDD) refers to the volume of water consumed during the highest usage day over the course of the year. In order to estimate the existing PDD for irrigation water use, historical flow data was evaluated. Table 6-3 provides the historical monthly water usage in 2016. Also shown in the table is the ratio of peak month flow to average month flow known as the Peak Month Factor.

Manth	Monthly Measured	Water Usage (ac-ft)*
Month	Hurricane City Irrigation	Hurricane Canal Company
January	12.5	3.0
February	19.5	64.0
March	104.5	804.0
April	93.6	853.0
Мау	145.5	1224.0
June	236.4	1403.0
July	228.4	1523.0
August	188.6	1234.0
September	147.6	1125.0
October	141.4	1241.0
November	64.1	221.0
December	23.6	6.0
Average Monthly Outdoor Demand	117.1	808.4
Peak Month Demand Factor	2.02	1.88
Peak Day Demand Factor (1.15 x Peak Month Factor)	2.32	2.16

Table 6-3. 2016 Estimated Peak Day Demand Multiplier for the Irrigation System

* Data obtained from WCWCD

PDD factor was estimated by multiplying the Peak Month Demand Factor by 1.15 as shown in Table 6-3. The PDD per irrigated acre was estimated by converting the average annual application rate per irrigated acre from acre-feet/year to gallons per minute (gpm) and multiplying the value by the PDD factor. The estimated PDD per irrigated acre for Hurricane City and the Canal Company was calculated to be 5.90 gpm and 9.36 gpm, respectably.

In addition to the peak day demands estimated above for the project service area, the passthrough flow to the Bench Lake area must also be included in the total peak day demand evaluation. The Bench Lake area is located south of the project area and is identified as the Hurricane Canal Company Boundary (South) on Figure 6-1. The Hurricane Canal Company delivers up to 20 cfs through a 36" pipeline for use in the Bench Lake area.

6.4.2 Future Peak Day Demand

The future residential irrigation rate is assumed to be equal to the existing residential irrigation rate as residential areas are already utilizing pressurized sprinkler irrigation. However, one goal of the Hurricane Irrigation System Efficiency Project is to convert the existing flood irrigation system for agriculture areas with pressurized, sprinkler irrigation. To determine the future irrigation rate and PDD for agricultural areas, the water requirement for a representative crop (alfalfa) was calculated. Two methods were used to estimate

the PDD for a sprinkler irrigation system: the Blaney-Criddle Formula and the method outlined in the NRCS Irrigation Guide, which are provided as follows:

Blaney-Criddle Formula = 8.50 gpm/acre

NRCS Irrigation Guide = 8.48 gpm/acre

As shown, both methods provide similar estimates for calculating the PDD for agricultural areas, so a PDD of 8.50 gpm/acre was utilized in the hydraulic evaluation.

6.4.3 Irrigation Efficiency

Flood irrigation systems are typically less efficient than sprinkler systems because of losses at the point of application, evaporation, and operational losses. Typical application efficiencies for furrow surface irrigation systems are reported as 35-60%, while a sprinkler irrigation system is reported to have 60-75% efficiency (for a stationary lateral system) (Neibling, 1997). The proposed project will convert these flood irrigated areas to sprinkler irrigated areas.

Based on typical average system efficiencies referenced above, pressurized sprinkler irrigation is up to 40% more efficient than flood irrigation. The Hurricane Canal Company irrigation system currently utilizes some pressurized pipelines to convey water through its system. These pipelines do not have the evaporation or leakage losses that are associated with a typical ditch conveyance system. For this reason, the existing Company system is likely slightly more efficient than the average flood irrigation system. Therefore, it is assumed that the proposed pressurized sprinkler irrigation system is approximately 20% to 30% more efficient than the existing Company flood irrigation system. The agricultural lands within the combined service area use approximately 4,000 ac-ft of water per year, based on recent measured water usage. Applying the estimated efficiency savings to this value equates to approximately 800 to 1,200 ac-ft per year of water savings, and up to 1,050 to 1,600 ac-ft per year in a wet year, if the proposed combined system completely converts to sprinkler irrigation.

6.4.4 Peaking Factors

As noted in Section 6.4.1, PDD refers to the average daily flow during the day in which total demand is the highest of the year. In practice, irrigation demand does not occur at a constant rate throughout the day, but at concentrated peak times, typically in the mornings or evenings. These peak hour times result in flow rates higher than the peak day demand. These peak flows can be accounted for in the hydraulic modeling by applying peaking factors.

To account for the higher flows during peak hour times, it was assumed that residential areas were irrigated for 12 hours per day (only watering at low evaporation times of the day as required by local ordinances). This assumption equates to a peaking factor of 2.0, which is typical for residential irrigation applications.

For agricultural areas, irrigation demands can typically occur throughout the day and night. The amount of water required for a field within a given time period is based on the type of crop being cultivated. For alfalfa, NRCS-Utah has determined that the peak daily water requirement is 0.29 inches per day for the Southern Utah region. For this study, it was assumed that irrigation occurs for 22 hours per day to allow an hour per day for operation and maintenance of the irrigation system. This assumption is reflected in the NRCS-Utah net irrigation required table. The PDD for agriculture areas accounts for crop net irrigation required, system efficiency, and application time. A peaking factor of 10% was then applied to the

calculated PDD to account for system operational inefficiencies, which is typical for agricultural irrigation applications. A summary of the peak day and peak hour demands for residential and agricultural irrigation is found in Table 6-4.

Land Use Type	Acreage ² Peak Day D		Demand	Peak Hour Demand	
Land Ose Type	Acreage	gpm/acre	gpm ¹	gpm/acre	gpm ¹
Residential/Commercial	465	5.90	2,744	11.80	5,487
Agricultural	584	8.50	4,964	9.27	5,414
SUBTOTAL	1,049	-	7,708	-	10,901
Bench Lake Area Passthrough Flow	N/A	-	8,975	-	8,975
TOTAL DEMANDS		-	16,683	-	20,681

Table 6-4. Peak Day and Peak Hour Demand Summary

1. Based on the total residential or agricultural irrigated acreage times the demand/area

2. Acreage includes the combined Hurricane City service area (irrigated area north of 1500 South), but does not include irrigated area in Bench Lake area

The relatively small difference between the peak day and the peak hour demands for agricultural areas is due to scheduling water use on a turn-based system. A turn-based system delivers consistent irrigation flows by controlling when and where irrigation occurs. An on-demand system for agricultural irrigation would require a 2.0 peaking factor, similar to residential areas, and would require higher capacity infrastructure to accommodate. It is anticipated that agricultural irrigation will continue to be delivered on a turn basis.

6.5 Estimating Storage and Pump Station Size

Irrigation system storage ponds and pump stations are sized based on the peak day and peak hour demands for a given service area. The following sections discuss pond and pump station sizing.

6.5.1 Storage Pond Sizing

Irrigation system storage ponds are sized to provide the necessary water to supply the system for periods when peak hour demand exceeds the peak day supply. This type of storage is commonly referred to as equalization storage. Typical recommended equalization storage is 50% of the PDD for residential irrigation, and 12.5% of the PDD for agriculture irrigation. This includes sufficient storage to provide for expected fluctuations in storage during system operation, as well as additional storage for unexpected fluctuations in demand, emergencies, variable supply, and for general operational flexibility. It is important to remember that equalization storage is used daily during the summer; therefore, the equalization storage needs to have a water supply that can at least meet the total PDD.

As the service area develops and agriculture land is converted to residential and/or commercial land, the demand for storage will increase. The overall PDD will decrease over time as land use changes from agricultural to residential, but the recommended equalization storage as a percentage of that PDD will increase. A comparison of the storage requirements for the existing conditions scenario and a future buildout scenario is provided in Table 6-5. To estimate future buildout, it was assumed that residential areas would develop throughout the entire combined service area at a similar density to the residential areas in the current Hurricane City Irrigation service area. The ratio of irrigated area to total service area was

determined for the City system and then applied to the total combined service area to determine the total future residential/commercial irrigated area at buildout.

	Irrigated Ar	ea (acres)	Required St	orage (MG)
Land Use	Existing* Buildout		Existing	Buildout
Residential/Commercial	465	1195	1.98	5.08
Agricultural	1653	0	2.53	0.00
Total	465	1195	4.50	5.08

Table 6-5. Existing and Future Buildout Storage Sizing Requirements

* Existing acreage for the entire potential service area, including the Bench Lake area

A detailed growth projection analysis was not performed as part of this irrigation efficiency study. The future buildout scenario was evaluated to compare required storage of existing use (which consists of both residential and agriculture irrigation), and future buildout (assuming all agriculture land use is converted to residential/commercial, as described above). Table 6-5 indicates that the future storage required is 5.08 MG, or approximately 13% higher than the storage required assuming existing land use.

For the purposes of this evaluation, 6 million gallons (MGs) of additional storage is recommended to meet the existing storage demands and to provide operational flexibility, sediment storage, and equalization storage. This storage volume is also sufficient to meet future buildout storage demands.

6.5.2 Pump Station Sizing

The size of a proposed irrigation pump station is estimated based on the peak day demands, peak hour demands, and pond storage volume of the irrigation system. The proposed alternatives evaluated in this study each include a pump station. Depending on the alternative, the proposed pump station must be able to deliver the total PDD volume if pumping to the storage ponds, or the maximum peak hour flow rate if pumping directly into the delivery system. The operations of the proposed pump stations for each of the alternatives are as follows:

- Expanding Existing Irrigation Facilities (Alternative 1): Additional capacity at existing pump station to deliver higher flows to the expanded storage pond. Includes an additional pump station sized to deliver the peak hour demand (pumped into the distribution system on the south end of the service area).
- Higher Reservoir and New Pump Station (Alternative 2): Includes a pump station to deliver the PDD to a pond at a higher elevation. The pond is located farther away (compared to the pond location for Alternative 3) at a higher elevation point and requires additional piping to connect the pump station to the storage pond. The gravity outflow from the pond can deliver peak hour demand directly to the distribution system.
- Lower Reservoir and New Pump Station (Alternative 3): Includes a storage pond at a lower elevation (compared to the pond location for Alternative 2). The pump station is sized to deliver the full peak hour demand (pumped out of the pond into the distribution system), but requires less piping.

The pump station flow rates and horsepower were calculated using the irrigation system hydraulic model with PDD and peak hour demands as inputs. A summary of the sizing of the pump stations is provided in Table 6-6.

Scenarios	Nominal Flowrate (gpm)	Head (ft)	Calculated Horsepower (hp)	Additional Piping
Alternative #1 (Expand Existing)	6,100	120	385	900 LF of 20" pipe
Alternative #1 (New Southern PS)	7,100	130	486	None
Alternative #2	5,300	120	335	6,000 LF of 30" pipe
Alternative #3	7,100	130	486	None

Table 6-6. Summary of Pump Station Sizing

6.6 Hydraulic Modeling

Hydraulic models were developed to evaluate the hydraulic performance of the existing irrigation system and the proposed irrigation system alternatives. The Hurricane City Water Department provided pipeline size and location data throughout the City and Company service areas. Demands were distributed throughout the service area in the model using GIS software and data, based on the results of the irrigation demand study described in Section 6.4.

The hydraulic model was used to determine if each of the proposed alternatives is hydraulically capable of meeting the irrigation system demands, while complying with the requirements outlined in the NRCS Conservation Practice Standard for Irrigation Pipelines (NRCS 1997). The model was also utilized to verify the capacity and horsepower of the pump stations for each alternative.

6.6.1 Data Source and Model Development

Data and assumptions used to develop the hydraulic model are listed below:

 Existing pipeline location 	tions and size	Hurricane City GIS
 Surface elevation data 	L	2017 1-meter LiDAR from Utah AGRC
 Residential area applie 	cation rate	5.60 gpm per irrigated area
 Agricultural area appli 	ication rate	8.50 gpm per irrigated area
 Hazen Williams Roug 	hness Coefficient	110

The purpose of the hydraulic evaluation is to determine whether the proposed alternative improvements to the City irrigation system are hydraulically capable of meeting irrigation demands within the design criteria established. As stated in the NRCS Irrigation Pipeline Standards, the working pressure within each pipe should not exceed 72% of the pipe rating and maximum velocities through the irrigation system are not to exceed 5 feet per second (fps).

6.7 Alternative Evaluation

The process of formulating alternatives to provide irrigation water within Hurricane City area followed procedures outlined in the NWPM (NRCS 2015a), NWPH (NRCS 2014), P&G (USWRC 1983), and other NRCS watershed planning policy.

The following alternatives were evaluated for the proposed irrigation system.

- 1. Expanding Existing Irrigation Facilities (Alternative 1): Additional 6 MG of storage is added adjacent to the existing 3 MG storage pond at elevation 3,480 feet. The existing booster pump station to the pond would be enlarged from approximately 4,500 gpm to 10,600 gpm. An additional 7,100 gpm booster pump station is required at the south end of the service area to provide sufficient pressure south of Gould Wash.
- 2. Higher Reservoir and New Pump Station (Alternative 2): Additional storage is provided through the new 6 MG of active storage on the south end of the irrigation system at elevation 3,435 feet. This alternative requires a 5,300-gpm pump station to pump water from the irrigation system to the new storage pond.
- 3. Lower Reservoir and New Pump Station (Alternative 3): Similar to Alternative 2, however the additional 6 MG of active storage is lower in elevation than that of the current pond, at 3,330 feet. This alternative requires a 7,100-gpm pump station to pump water back into the irrigation system from the storage pond.
- 4. No Action Alternative Most likely future condition if none of the federally-assisted action alternatives are selected.

The Lower Reservoir and New Pump Station Alternative (Alternative 3) was chosen as the preferred alternative for the project. Concept Design Drawings for this alternative are included in Attachment 5.

6.7.1 Expanding Existing Irrigation Facilities (Alternative 1)

This alternative consists of expanding storage by providing additional storage ponds near the existing 3-MG storage ponds at the north end of the service area. The existing pump station feeding the storage pond is expanded to deliver higher flows to the enlarged storage facilities. The Company and City irrigation systems are combined, as discussed previously, and the flood irrigation infrastructure is converted to pressurized sprinkler irrigation.

The cost and non-cost factors associated with this alternative are as follows:

- Anticipated highest capital and operation cost of the proposed alternatives due to higher pump station and additional pipeline costs when compared to the other alternatives.
- Operational flexibility is improved due to additional storage volume.
- Less dependent on river flow rate fluctuations due to additional storage volume.
- More efficient system due to conversion from flood irrigation to pressurized sprinkler irrigation.
- Proposed additional storage ponds are located within current tortoise habitat, which will require a significant permitting effort, potentially raising costs and significantly delaying the project schedule.

• High potential environmental impact due to construction activity in sensitive habitats.

6.7.1.1 Estimated Construction Cost – Alternative 1

The estimated construction cost for Alternative 1 is 12,891,000 (Table 6-7).

Table 6-7. Alternative	1 Estimated Construction	Cost – Expanding E	xisting Irrigation Facilities
------------------------	---------------------------------	--------------------	-------------------------------

ltem No.	Classification of Unit Price Work	Quantity	Unit	Unit Price	Amount		
1	Mobilization	1	LS	\$472,210	\$472,210		
2	6" C-900 PVC Pipe	36,500	LF	\$35	\$1,277,500		
3	8" C-900 PVC Pipe	1,800	LF	\$40	\$72,000		
4	12" C-900 PVC Pipe	3,900	LF	\$50	\$195,000		
5	Replace Concrete Pipe w/ 15" C-900 PVC Pipe	6,600	LF	\$66	\$435,600		
6	16" C-900 PVC Pipe	100	LF	\$70	\$7,000		
7	20" C-900 PVC Pip	900	LF	\$85	\$76,500		
8	24" C-900 PVC Pipe	1,400	LF	\$99	\$138,600		
9	30" C-900 PVC Pipe	6,800	LF	\$115	\$782,000		
10	Concrete Turnout removal and 15" PVC Pipe repair	7	EA	\$5,000	\$35,000		
11	Additional Interconnections	2	EA	\$15,000	\$30,000		
12	Service Connection	700	EA	\$1,300	\$910,000		
13	3.0 MG Settling Pond	2	EA	\$750,000	\$1,500,000		
14	1.3 MG Sludge Pond	1	EA	\$350,000	\$350,000		
15	7,100 gpm Pump Station	1	LS	\$1,215,000	\$1,215,000		
16	6,100 gpm Pump Station (Expand existing)	1	LS	\$920,000	920,000		
17	7 Flow Control Valve 1		LS	\$100,000	\$100,000		
18	Asphalt Replacement (3" Asphalt over 6" Roadbase)	\$1,400,000					
	Subtotal ¹						
		\$2,975,000					
	have been rounded to the pearset theuse			Total ¹	\$12,891,000		

1 - Costs have been rounded to the nearest thousand dollars.

6.7.2 Higher Reservoir and New Pump Station (Alternative 2)

Alternative 2 consists of expanding storage by providing additional storage ponds near the southwest end of the service area. The proposed ponds are located at 3,435 feet elevation, enough to provide pressure to the south service area. A pump station is required to boost water from the irrigation system to the proposed new storage ponds. The Company and City irrigation systems are combined and the flood irrigation infrastructure is converted to pressurized sprinkler irrigation.

The cost and non-cost factors associated with this alternative are as follows:

- Operational flexibility is improved due to additional storage volume and by having storage facilities at each end of the service area.
- Less dependent on river flow rate fluctuations due to additional storage volume.
- More efficient due to conversion to pressurized sprinkler irrigation.
- High capital cost due to the additional pipeline length required to locate the proposed storage ponds at a higher elevation.
- Larger potential environmental impact during construction (compared to Alternative 3) due to longer pipeline to the storage ponds, but no tortoise habitat encroachment.
- New pump station would pump water prior to de-silting, resulting in considerable pump maintenance.
- Operational benefit: Water delivery from storage pond to distribution system is based on gravity flow, and not dependent on powered pumps.

6.7.2.1 Estimated Construction Cost – Alternative 2

The estimated construction cost for Alternative 2 is \$11,961,000 (Table 6-8).

ltem No.	Classification of Unit Price Work	Quantity	Unit	Unit Price	Amount	
1	Mobilization	1	LS	\$438,135	\$438,135	
2	6" C-900 PVC Pipe	36,500	LF	\$35	\$1,277,500	
3	8" C-900 PVC Pipe	1,800	LF	\$40	\$72,000	
4	12" C-900 PVC Pipe	3,900	LF	\$50	\$195,000	
5	Replace Concrete Pipe w/ 15" C- 900 PVC Pipe	6,600	LF	\$66	\$435,600	
6	16" C-900 PVC Pipe	100	LF	\$70	\$7,000	
7	24" C-900 PVC Pipe	1,400	LF	\$99	\$138,600	
8	30" C-900 PVC Pipe	12,800	LF	\$115	\$1,472,000	
9	Concrete Turnout removal and 15" PVC Pipe repair	7	EA	\$5,000	\$35,000	
10	Additional Interconnections	2	EA	\$15,000	\$30,000	
11	Service Connection	700	EA	\$1,300	\$910,000	
12	3.0 MG Settling Pond	2	EA	\$750,000	\$1,500,000	
13	1.3 MG Sludge Pond	1	EA	\$350,000	\$350,000	
14	5,300 gpm Pump Station	1	LS	\$840,000	\$840,000	
15	Flow Control Valve	1	LS	\$100,000	\$100,000	
16	Asphalt Replacement (3" Asphalt over 6" Roadbase)	350,000	SF	\$4	\$1,400,000	
	\$9,201,000					
	Contingency (30%) ¹					
	Total ¹					

Table 6-8. Alternative 2 Estimated Construction Cost – Higher Reservoir and New Pump Station

1 - Costs have been rounded to the nearest thousand dollars.

6.7.3 Lower Reservoir and New Pump Station (Alternative 3)

Alternative 3 consists of expanding storage by providing additional storage ponds near the south end of the service area. The proposed ponds are located at a lower elevation (3,435 feet) than the existing 3-MG storage pond. A pump station is required to boost water from the proposed storage ponds back to the irrigation system to provide pressure. The Company and City irrigation systems are combined and the flood irrigation infrastructure is converted to pressurized sprinkler irrigation.

The cost and non-cost factors associated with this alternative are as follows:

• Operational flexibility is improved due to additional storage volume and by having storage facilities at each end of the service area.

- Less dependent on river flow rate fluctuations due to additional storage volume.
- More efficient due to conversion to pressurized sprinkler irrigation.
- Lowest capital cost of the alternatives considered. This alternative has \$1.22 million in pump station cost with no additional pipeline cost (to storage), compared with Alternative 2.
- Lowest environmental impact of the three proposed alternatives.
- Water delivery from storage ponds is pumped, increasing operation costs, and is more susceptible to power outage or mechanical failures than Alternative 2.

6.7.3.1 Estimated Construction Cost – Alternative 3

The estimated construction cost for Alternative 3 is \$11,531,000 (Table 6-9). O&M for this alternative would consist of irrigation system repairs and maintenance at \$26,000 annually, or \$1,300,000 over the 50-year project life.

ltem No.	Classification of Unit Price Work	Quantity	Unit	Unit Price	Amount
1	Mobilization	1	LS	\$422,385	\$422,385
2	6" C-900 PVC Pipe	36,500	LF	\$35	\$1,277,500
3	8" C-900 PVC Pipe	1,800	LF	\$40	\$72,000
4	12" C-900 PVC Pipe	3,900	LF	\$50	\$195,000
5	Replace Concrete Pipe w/ 15" C- 900 PVC Pipe	6,600	LF	\$66	\$435,600
6	16" C-900 PVC Pipe	100	LF	\$70	\$7,000
7	24" C-900 PVC Pipe	1,400	LF	\$99	\$138,600
8	30" C-900 PVC Pipe	6,800	LF	\$115	\$782,000
9	Concrete Turnout removal and 15" PVC Pipe repair	7	EA	\$5,000	\$35,000
10	Additional Interconnections	2	EA	\$15,000	\$30,000
11	Service Connection	700	EA	\$1,300	\$910,000
12	3.0 MG Settling Pond	2	EA	\$750,000	\$1,500,000
13	1.3 MG Sludge Pond	1	EA	\$350,000	\$350,000
14	7,100 gpm Pump Station	1	LS	\$1,215,000	\$1,215,000
15	Flow Control Valve	1	LS	\$100,000	\$100,000
16	Asphalt Replacement (3" Asphalt over 6" Roadbase)	\$1,400,000			
		\$8,870,000			
		\$2,661,000			
				Total ¹	\$11,531,000

Table 6-9. Alternative 3 Estimated Construction Cost – Lower Reservoir and New Pump Station

1 - Costs have been rounded to the nearest thousand dollars.

6.7.4 No Action Alternative

The No Action Alternative, also known as the Future-Without-Project Plan, projects the changes in resource concerns from the current condition to the condition that would exist in the future if no federal action were taken (NRCS 2015a). The No Action Alternative for this site would take one of the following courses:

- The SLO decides to construct similar irrigation projects without meeting NRCS standards, which may be more or less stringent.
- The SLO chooses to leave the irrigation system "as-is" with no future improvements.

Based on coordination with the Sponsors, the most likely course of action would be to leave the irrigation system "as-is" with no future improvements.

The O&M cost of the No Action Alternative has been provided by the City based on its current operation of the existing flood irrigation system. This includes an annual cost of \$26,000, which includes repairs to the existing system, maintenance of the pipelines and structures (i.e., diversions and turnout), and operational personnel time. The Sponsors would be responsible for O&M costs associated with operation of the existing irrigation system. The cost to operate the system over the 50-year life of the project is \$1,300,000.

7.0 Economic Evaluation

The NWPM (NRCS 2015a) was used as a reference for the economic analysis along with the Economic and Environmental Principles and Guidelines for Water and Related Land Resources Implementation Studies (P&G) (U.S. Water Resources Council 1983). P&G was developed to define a consistent set of project formulation and evaluation instructions for federal agencies that carry out water and related land resource implementation studies. The basic objective of P&G is to determine whether benefits from proposed actions exceed project costs for federally funded projects. P&G also requires that the "National Economic Development" or NED Alternative, which maximizes monetary net benefits, be selected for implementation unless there is an overriding reason for selecting another alternative based on federal, state, local, or international concerns related to the social and environmental accounts.

7.1 Benefits

Damage reduction benefits were calculated for flooding and watershed protection. Benefits were assessed based on the equivalent annual damage reduction expected through implementation of the With Project Alternative (Action Alternative) as compared with the Without Project Alternative (No Action Alternative) baseline. Assumptions and calculation of flood and watershed protection damage reduction benefits are provided below.

7.1.1 Flood Damage Reduction Benefits

The Without Project Alternative does not include flood protection measures, although it does incur installation and O&M costs. The With Project Alternative includes modifications at three sites to reduce flood damages as described below.

- Site 1 (Main Street Debris Basins) Constructs two debris basins capable of attenuating flood flows from the upstream drainage areas for floods up to and including a 100-year flood. Modifications result in no flooding to lands, buildings, or transportation infrastructure because all flows are attenuated and conveyed through underground stormwater systems.
- Site 3 (Y-Drain) Pipes and open channel section of the drain eliminating flooding for up to and including a 100-year flood.
- Site 4 (Warner Valley Disposal System) Adds additional detention to help attenuate flood flows and pipes and open channel section to eliminate flooding for up to and including a 100-year flood.

The period of analysis for all alternatives is 52 years, accounting for a 50-year project life, and a 2-year installation period. All costs and benefits were discounted to a net present value, then annualized over the 50-year period of analysis using the FY2020 Federal Water Resources Discount Rate of 2.75%.

Average annual flood damages were calculated using the cumulative probability method as specified in the URB1 manual (SCS 1990). The 2-, 5-, 10-, 25-, 50-, 100-, and 500-year storm events, where applicable, for each alternative were modeled using HEC-RAS. Mapping of the flood extents, and inundation to structures, transportation infrastructure, and lands were calculated through GIS analysis.

Inundated structures and roads were classified into one of three categories: inundated less than 1 foot, inundated 1 to 3 feet, or inundated greater than 3 feet, for each storm event. Depth-damage functions were

collected from the U.S. Army Corps of Engineers (USACE 1985 and 1992) to use for each type of structure. These types included mobile homes, permanent homes, commercial buildings, and other (which in this case included a church). Most of the structures damaged were homes.

Most of the homes in the damage area are one-story with no basement, so this damage function was used as a proxy for all permanent homes inundated. For the mobile homes, a separate damage function was used, as for the commercial buildings, and the other category. Commercial properties included offices, service stations, and restaurants. A composite depth-damage function was used for these.

Median replacement values for structures were calculated from data collected from realtor data, property tax records, or if not available, by estimating the construction cost based on the square footage (Table 7-4).

Туре	Estimated Replacement Value	Source of Estimate
Mobile Homes	\$86,800	80% of market value from realtor data
Homes	\$156,600	tax records
Commercial	\$389,200	tax records
Other (church)	\$885,000	square footage cost estimate

 Table 7-1. Structure Value Estimates

The values in Table 7-1 were applied to the numbers of each type of structure from Table 7-2 and Table 7-3 below. Contents value was assumed 50 percent of property (replacement) value for mobile homes, homes, and the church. Contents value for commercial properties was assumed 100 percent.

Tables 7-2 and 7-3 provide the count of each type of building flooded, an approximate depth, and the estimated value of the damage.

Storm	Mobile Homes	Hon	nes	Commercial	Other	Property and	Average Annual
	<1 ft	<1 ft	1-3 ft	<1 ft	<1 ft	Contents Damage	Damage
2-YR	-	1	-	-	-	\$17,618	\$13,213
5-YR	-	4	-	-	-	\$70,470	\$13,213
10-YR	-	11	-	-	-	\$193,793	\$64,055
25-YR	-	87	-	5	-	\$1,941,383	\$49,894
50-YR	-	130	-	9	1	\$3,047,988	\$39,162
100-YR	2	182	4	16	1	\$4,784,482	\$25,983
200-YR	4	206	5	20	1	\$5,608,664	\$17,986
500-YR	5	227	9	22	1	\$6,382,110	\$12,764
				Total			\$236,271

 Table 7-2. Existing Condition Flooding

Storm	Mobile Homes	Hor	nes	Commercial	Other	Property and	Average Annual
	<1 ft	<1 ft	1-3 ft	<1 ft	<1 ft	Contents Damage	Damage
2-YR	-	1	-	-	-	\$17,618	\$m7,928
5-YR	-	2	-	-	-	\$35,235	\$5,285
10-YR	-	4	-	-	-	\$70,470	\$5,285
25-YR	-	6	-	-	-	\$105,705	\$2,114
50-YR	-	6	-	-	-	\$105,705	\$1,145
100-YR	-	7	-	-	-	\$123,323	\$7,337
200-YR	1	122	-	8	-	\$2,811,437	\$9,311
500-YR	1	140	-	11	1	\$3,395,873	\$6,792
	Total						\$45,197

Table 7-3.	Preferred	Alternative	Floodina
1 4 9 1 9 1		/	

The project measures as modeled reduce average annual flood damage from \$236,271 to \$45,197, a \$191,074 reduction. It should be noted that there is minor flood control from the Y-drain and Warner disposal sites, amounting to almost \$10,000 annually, protecting twelve structures from the 100-year event. The control for all measures will start in year three after installation is complete, so the benefits were discounted to an NPV, then amortized over the evaluation period of 50 years.

Table 7-4 provides floodwater damage reduction benefits calculated for the With Project and Without Project Alternatives, and the resulting damage reduction.

li e ue	Estimated Average Annual Damage Reduction Benefits ¹						
ltem	With Project	Without Project	Damage Reduction				
Residential	\$185,000	\$37,300	\$147,700				
Commercial	\$47,400	\$5,300	\$42,100				
Other	\$600	\$100	\$500				
Total	\$233,000	\$42,700	\$190,300				

 Table 7-4. Floodwater Damage Reduction Benefits

1-Price base 2019. Calculated using FY 2020 Water Resources Discount Rate (2.75%), annualized over 50-year evaluation period, and 52-year period of analysis.

7.1.2 Water Efficiency Benefits

The Hurricane City Water Efficiency site (Site 5) Preferred Alternative decreases water loss from infiltration, leakage, and evapotranspiration along ditch systems. It also provides more efficient irrigation water delivery that saves approximately 800 to 1,200 ac-ft of water per year, or 1,050 to 1,600 ac-ft of water per year in a wet year.

According to P&G (U.S. Water Resources Council 1983):

(b) Goods and services: General measurement standard. The general measurement standard of the value of goods and services is defined as the willingness of users to pay for each increment of output from a plan. Such a value would be obtained if the "seller" of the output were able to apply a variable unit price and charge each user an individual price to capture the full value of the output to the user. Since it is not possible in most instances for the planner to measure the actual demand situation, four alternative techniques can be used to obtain an estimate of the total value of the output of a plan: Willingness to pay based on actual or simulated market price; change in net income; cost of the most likely alternative; and administratively established values.

Since it is not possible to measure the actual demand situation in this case, and assuming the sponsors of the project are willing to contribute toward the completion of the project and maintain it, with public support, the following from P&G was used (U.S. Water Resources Council 1983):

(1) Actual or simulated market price. If the additional output from a plan is too small to have a significant effect on price, actual or simulated market price will closely approximate the total value of the output and may be used to estimate willingness to pay. If the additional output is expected to have a significant effect on market price and if the price cannot be estimated for each increment of the change in output, a price midway between the price expected with and without the plan may be used to estimate the total value.

For purposes of analysis, the low estimate of 800 ac-ft per year savings was assumed. The price to purchase water rights in the area ranges between \$2,500 and \$6,000 per acre-foot (confirmed with local sources). For this project, it is assumed an average cost of water rights is \$2,500 per acre-foot. The price of water rights was used as a proxy for estimating the actual market price of the saved water. Table 7-5 displays the estimates of saved water and value of the water saved.

Water Savings Estimates	Water Savings Ac-ft /yr	Estimated Value of Savings \$/yr (@\$4,000/ac-ft)	Estimated Value of Savings \$/yr (@\$2,500/ac-ft)
normal year low estimate	800	\$3,200,000	\$2,000,000
normal year high estimate	1,200	\$4,800,000	\$3,000,000
wet year low estimate	1,050	\$4,200,000	\$2,625,000
wet year high estimate	1,600	\$6,400,000	\$4,000,000
average all	1,163	\$4,650,000	\$2,906,250
average normal	1,000	\$4,000,000	\$2,500,000

Table 7-5. Estimated Value of Water Savings Using Actual Market Prices

For this project, it is assumed an average cost of water rights is \$2,500 per acre-foot. This amounts to \$2,000,000 per year in water efficiency savings due to reduction in leakage, infiltration, and evapotranspiration. After discounting and annualizing over 50 years with a 52-year period of analysis this equates to approximately \$1,894,400 annually.

7.1.3 Recreation Benefits

Total average annual recreation benefits were estimated at \$914,500. Assumptions and methods for calculation of recreation benefits are described below.

7.1.3.1 Seegmiller Marsh (Site 2)

There are anticipated economic benefits due to increased recreation use from measures to be installed at Seegmiller Marsh (Site 2). The Preferred Alternative constructs 4,000 LF of paved public trail to connect to the existing trail system. It will also construct 2,000 LF of gravel pedestrian trail, with 3 wildlife viewing stations and educational signage. An annual recreation benefit of \$369,700 was estimated for Site 2 based on the assumptions below, and after discounting and annualizing over 50 years with a 52-year period of analysis.

On-site data on current recreation usage was collected for weekday and weekend usage by city employees. The survey included walkers, runners, and bikers. Over a two-day period including Friday and Saturday, nearly 4,400 visitors were observed. Accounting for weekday and weekend day usage, and accounting for droppage in the winter months, an estimate of 500,000 visitors per year was made. Once this current visitation was estimated for existing facilities to create a baseline, an increased usage due to project measures was estimated at 2 percent. The estimates may be conservative because the count was performed during the onset of the COVID-19 outbreak, and during the month of April, when usage may still be lighter.

The U.S. Fish and Wildlife Service (USFWS 2016) estimated the economic value of wildlife watching to state residents in Utah at \$33 per day in 2011 dollars. This was converted to 2020 dollars (\$39) and multiplied with the 2 percent increase (10,000) estimated. It should be noted there are annual local bird watching events that were not considered that would likely increase estimates. A degree of uncertainty arises from how much these measures will simply shift birdwatching to the project site from existing sites, but due to the connectivity of the trail system and the viewing stations as well as educational signage, there is expected to be new additional users.

Aside from recreation, there will be a reduction of sediment into the Virgin River. Approximately 900 cubic yards of sediment would be collected in a sediment trap system annually and would not reach the Virgin River. A dredging cost of \$10 per cubic yard was used to estimate this benefit, which results in \$9,000 per year, or \$8,500 after discounted and annualized over 50 years with a 52-year period of analysis. The total combined annual recreation and sediment reduction benefit for Site 2 was calculated at approximately \$378,200.

7.1.3.2 Y-Drain (Site 3)

The Y-Drain measures include an asphalt multipurpose trail that provides connection to the Seegmiller Trail system. The length is approximately 1,150 feet, and adjacent to a community of approximately 20 homes. A 2002 survey of home buyers (National Association of Realtors and National Association of Home Builders 2002) revealed that out of 18 local amenities, trails ranked second. Research has found that homes in the vicinity of walking or biking trails tend to sell up to 9% higher than homes of similar type and sell faster (Rails to Trails Conservancy 2003).

In this particular case a more conservative estimate of 3% was chosen because the Seegmiller Marsh is in the vicinity, and to account for uncertainty. Using the property value data collected for flooding analysis, the median property value for the area (\$156,600) was multiplied by 3%, then by 20, to arrive at an annual benefit of \$93,960. This amount was discounted and annualized over 50 years with a 52-year period of analysis for an annual benefit value of approximately \$89,000. Trail usage was not estimated and therefore not valued.

7.1.3.3 Warner Valley Disposal System (Site 4)

The Warner Disposal measures include an asphalt multipurpose trail and a rock chat equestrian trail sideby-side. The length is approximately 11,800 feet, and is adjacent to a community of approximately 100 homes as well as farmland, primarily pasture. Using the approach for the Y-Drain site, 3% was multiplied by the median home value of \$156,600 and then by 100 to arrive at an annual benefit of \$469,800, or \$447,300 after discounted and annualized over 50 years with a 52-year period of analysis.. Trail usage was not estimated and therefore not valued.

7.1.4 Total Project Benefits

The total benefits calculated from flood, water efficiency, and recreation for the Preferred Alternative are included in Table 7-6.

	Estimated Average Annual Benefits ¹							
Site	Flood	Water Efficiency	Recreation	Total				
Site 1 Main Street	\$181,000	-	-	\$181,000				
Site 2 Seegmiller Marsh	-	-	\$378,200	\$378,200				
Site 3 Y-Drain	\$6,900	-	\$89,000*	\$95,900				
Site 4 Warner Valley Disposal System	\$2,300	-	\$447,300	\$449,600				
Site 5 Hurricane Water Efficiency	-	\$1,894,400	-	\$1,894,400				
Total	\$190,200	\$1,894,400	\$914,500	\$2,999,100				

Table 7-6. Summary of Total Annual Project Benefits

1 – Price base 2019. Calculated using FY 2020 Water Resources Discount Rate (2.75%), annualized over 50 years, and 52-year period of analysis.

* – Includes \$369,700 for recreation benefit and \$8,500 for sediment reduction benefit.

7.2 Benefits Cost Ratio

The annual project costs were calculated and compared to the annual project benefits (shown in Section 7.1.4) in order to calculate a benefit cost ratio. Table 7-7 includes the calculated benefit cost ratio and net annual economic benefits for the project.

Site	Total Annual Benefits	Total Annual Costs ²	Benefit Cost Ratio	Net Annual Economic Benefit	
Site 1 – Main Street	\$181,000	\$123,100	1.5	\$57,900	
Site 2 – Seegmiller Marsh	\$378,200	\$268,000	1.4	\$110,200	
Site 3 – Y-Drain	\$95,900	\$56,800	1.7	\$39,100	
Site 4 – Warner Valley Disposal System	\$449,600	\$326,800	1.4	\$122,800	
Site 5 – Hurricane Water Efficiency	\$1,894,400	\$680,400	2.8	\$1,214,000	
Total	\$2,999,100	\$1,455,100	2.1	\$1,544,000	

Table 7-7. Alternative Benefit Cost Ratios ¹

1 – Price base 2019. Calculated using FY 2020 Water Resources Discount Rate (2.75%), annualized over 50 years with a 52-year period of analysis.

8.0 Environmental Evaluation

The Environmental Evaluation (EE) is an NRCS planning process as described in the NRCS National Planning Procedures Handbook (NRCS 2015b). The EE identifies and analyzes the economic, environmental, and social concerns for a project. This planning process is then summarized on the CPA-52 Environmental Evaluation form for Conservation Planning. This EE planning process started with the identification of problems and opportunities and continues through the application and evaluation of the project. A CPA-52 Environmental Evaluation is provided in Attachment 6.

9.0 References

- Alliance Consulting. 2006. Washington City Grading Manual. Adopted October 11, 2006, Ordinance 2006-30.
- BC&A (Bowen Collins & Associates). 2019a. Technical Memorandum 01 for the Warner Draw Watershed Plan-EA Main Street Debris Basin. Dated February 11, 2019.

____. 2019b. Technical Memorandum 04 for the Warner Draw Watershed Plan-EA Warner Valley Disposal System. Dated April 15, 2019.

____. 2019c. Technical Memorandum for the Warner Draw Watershed Plan-EA Hurricane Irrigation Efficiency. Dated April 15, 2019, revised May 2021.

Chow, V. T. 1959. Open-channel hydraulics. McGraw-Hill Book Co., Inc., New York, N.Y

City of St. George. 2013. 3000 East Storm Drain Outfall Project Hydrology Study, Bowen Collins & Associates, August 2013.

____. 2002. General Plan, Department of Community Development. Website: <u>https://www.sgcity.org/planningzoningdevelopment/generalplan</u>

_____. 2009. Storm Drain Master Plan Update, prepared by Bowen Collins & Associates, July 2009.

- Farmer, E.E., and J.E. Fletcher. 1972. Rainfall Intensity-Duration-Frequency Relations for the Wasatch Mountains of Northern Utah, Water Resources Research, Vol.8, No. 1. February 1972.
- FEMA (Federal Emergency Management Agency). 2009. Flood Insurance Study, Washington County, Utah and Incorporated Areas, Community Number 490177, August 2009.
- National Association of Realtors and National Association of Home Builders. 2002. Consumer Survey on Smart Choices for Home Buyers.
- NOAA (National Oceanic and Atmospheric Administration). 2006. NOAA Atlas 14, Precipitation-Frequency Atlas of the United States, Volume I, Version 4, Semiarid Southwest.
- Neibling, H. 1997. Irrigation Systems for Idaho Agriculture (Rep.). Retrieved January 10, 2019, from http://www.extension.uidaho.edu/publishing/pdf/CIS/CIS1055.pdf.
- NRCS (Natural Resources Conservation Service). 1993. National Engineering Handbook. Part 623: Chapter 2, United States Department of Agriculture.

_____. 1997. National Engineering Handbook. Irrigation Guide: Chapter 2, United States Department of Agriculture.

- _____. Conservation Practice Standard Pond, Code 378.
- _____. 2014. National Watershed Program Handbook, 2nd Edition, April 2014, Parts 600 through 606.
- _____. 2015a. National Watershed Program Manual. Parts 500 through 506. Prepared under the direction of Chief Dave White.
- _____. 2015b. Title 180: National Planning Procedures Handbook.

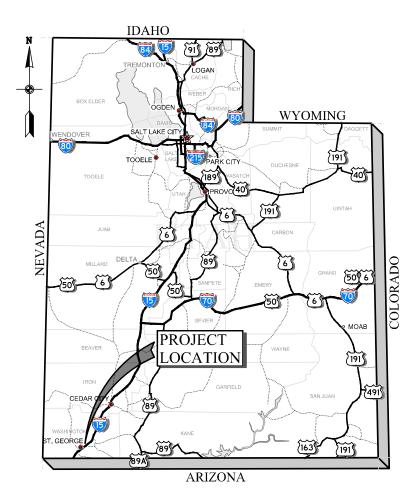
- ____. 2016. Final Supplemental Watershed Plan No. 4 and Environmental Assessment for the Rehabilitation of Gypsum Wash Debris Basin, January 2016, NRCS/Washington County Flood Control Authority
- ____. 2017a. Final Supplemental Watershed Plan No. 6 and Environmental Assessment for the Warner Draw Debris Basin Rehabilitation, July 2017, NRCS/Washington County Flood Control Authority
- ____. 2017b. Final Supplemental Watershed Plan No. 7 and Environmental Assessment for the Stucki Debris Basin Rehabilitation, July 2017, NRCS/Washington County Flood Control Authority
- Rails to Trails Conservancy. 2003. Economic Benefits of Trails and Greenways.
- RA (Rosenberg Associates). 2019a. Technical Memorandum No. 2 for the Warner Draw Watershed Plan EA Seegmiller Marsh. Dated April 19, 2019.
- _____. 2019b. Technical Memorandum No. 5 for the Warner Draw Watershed Plan EA Y-Drain. Dated April 19, 2019, revised August 2021.
- USACE (U.S. Army Corps of Engineers). 1985. Business Depth Damage Analaysis Procedures. Dated September 1985.
- _____. 1992. Catalog of Residential Depth Damage Functions. Dated May 1992.
- USDA-SCS (U.S. Department of Agriculture, Soil Conservation Service). 1986. Urban Hydrology for Small Watersheds, Technical Release 55. June 1986.

_____. 1990. Urban Floodwater Damage Economic Evaluation: URB1. Documentation for Computer Program.

- US DOT FHA (U.S. Department of Transportation Federal Highway Administration). 2009. HEC No. 22 Urban Drainage Design Manual. September 2009.
- USFWS (U.S. Fish and Wildlife Service). 2016. Net Economic Values for Wildlife-Related Recreation in 2011. Addendum to the 2011 National Survey of Fishing, Hunting, and Wildlife-Associated Recreation. Report 2011-8.
- UDWR (Utah Division of Wildlife Resources). 2018. Washington County Field Office Field Report, Southwestern Willow Flycatcher Monitoring. April-August 2018.
- USWRC (United States Water Resources Council). 1983. Economic and Environmental Principles and Guidelines for Water and Related Land Resources Implementation Studies.
- Virgin River Program. 2006. Seegmiller Marsh Concept Plan Report, Natural Channel Design & Applied Ecological Services. Revised October 2006.
- WCWCD (Washington County Water Conservancy District). 2007. Virgin River Master Plan, Natural Channel Design. October 2007.

Attachment 1

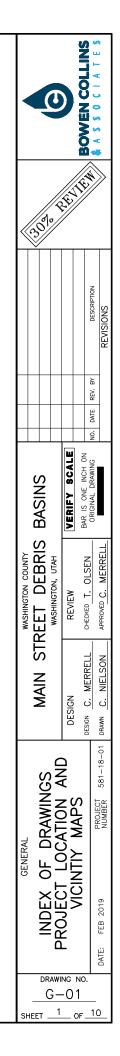
Main Street Debris Basin

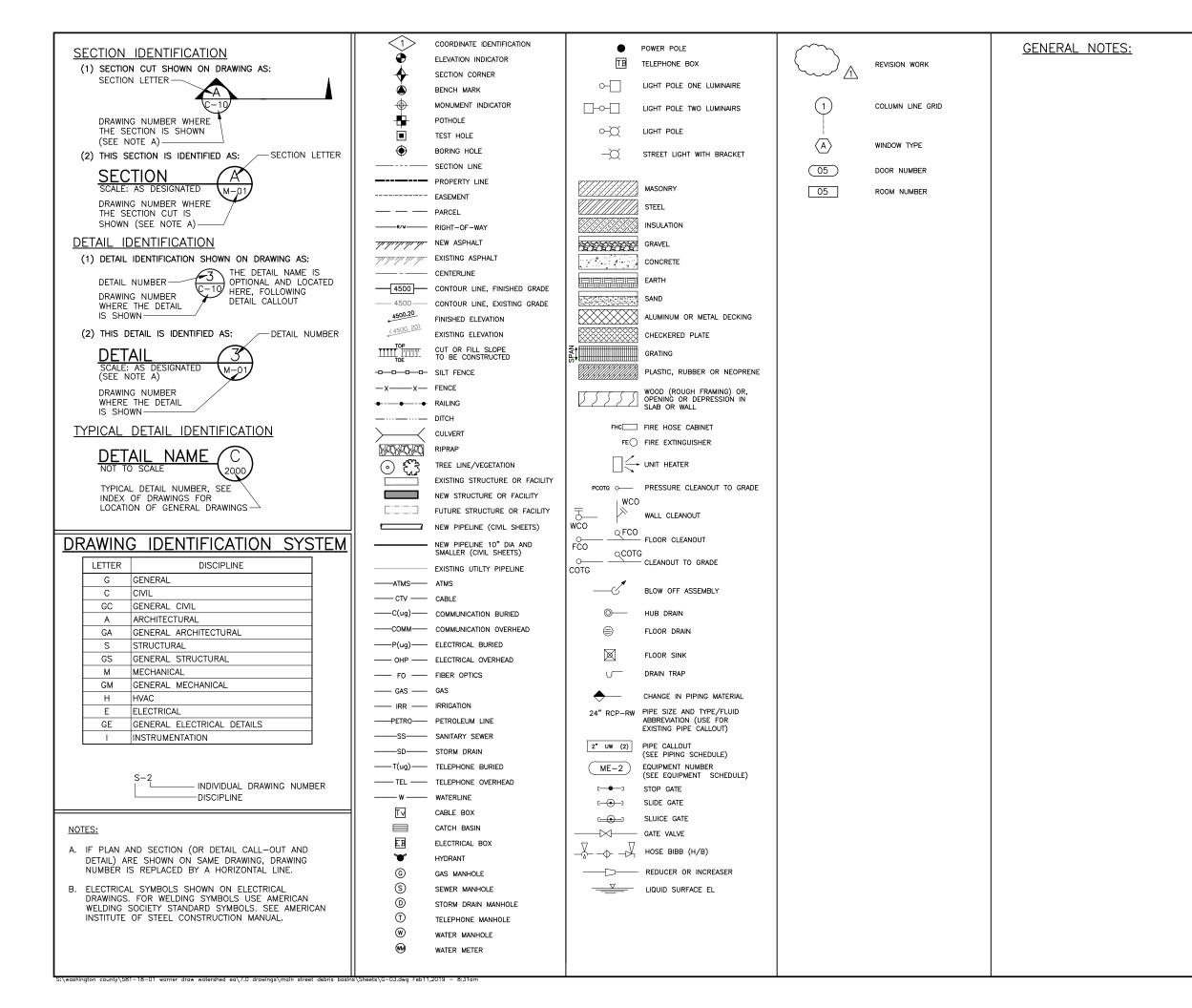

Preferred Alternative Concept Design Drawings

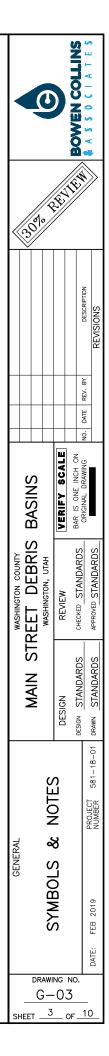
DRAWINGS FOR CONSTRUCTION OF THE MAIN STREET DEBRIS BASINS PROJECT WASHINGTON COUNTY

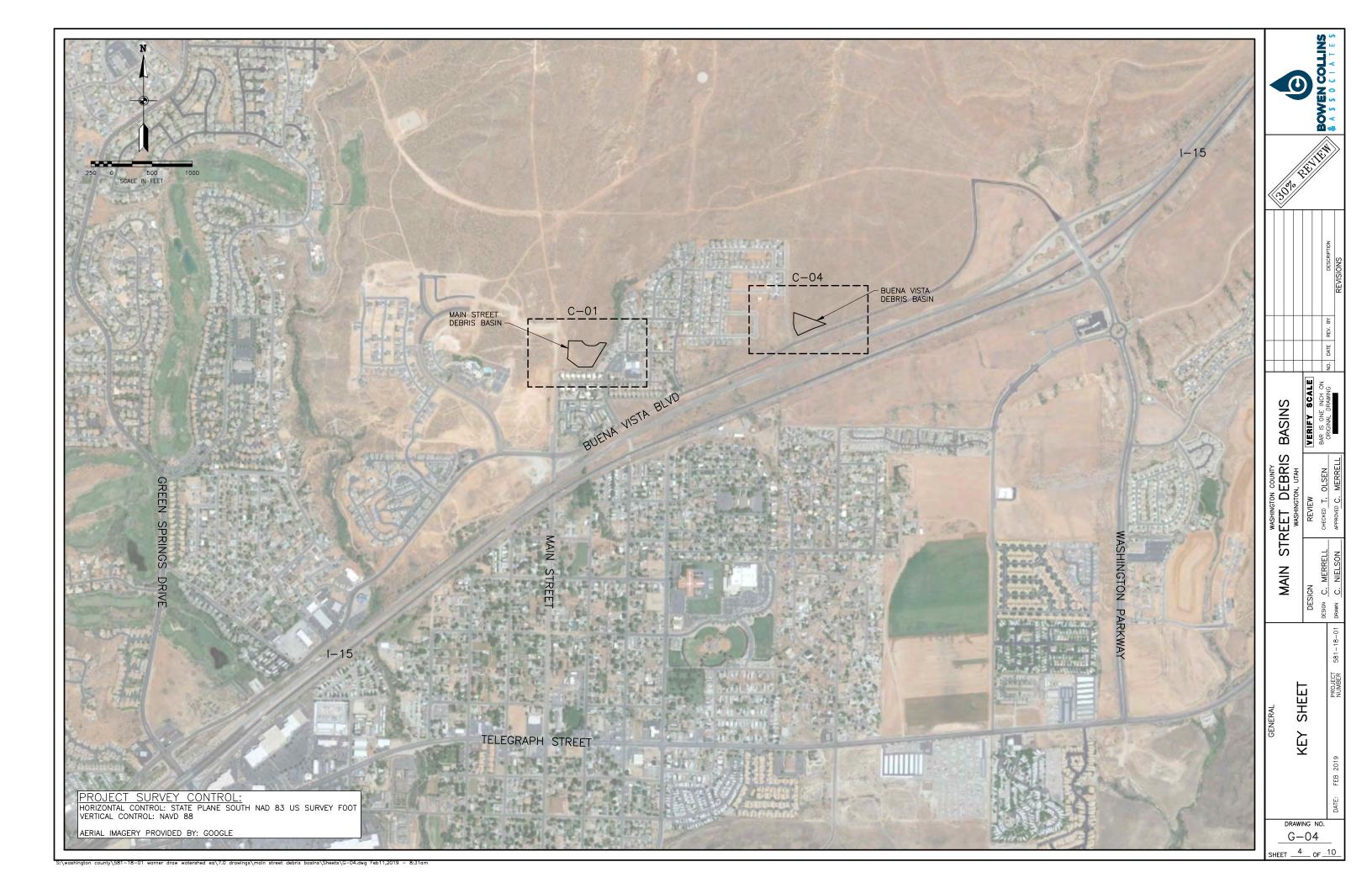
USDA

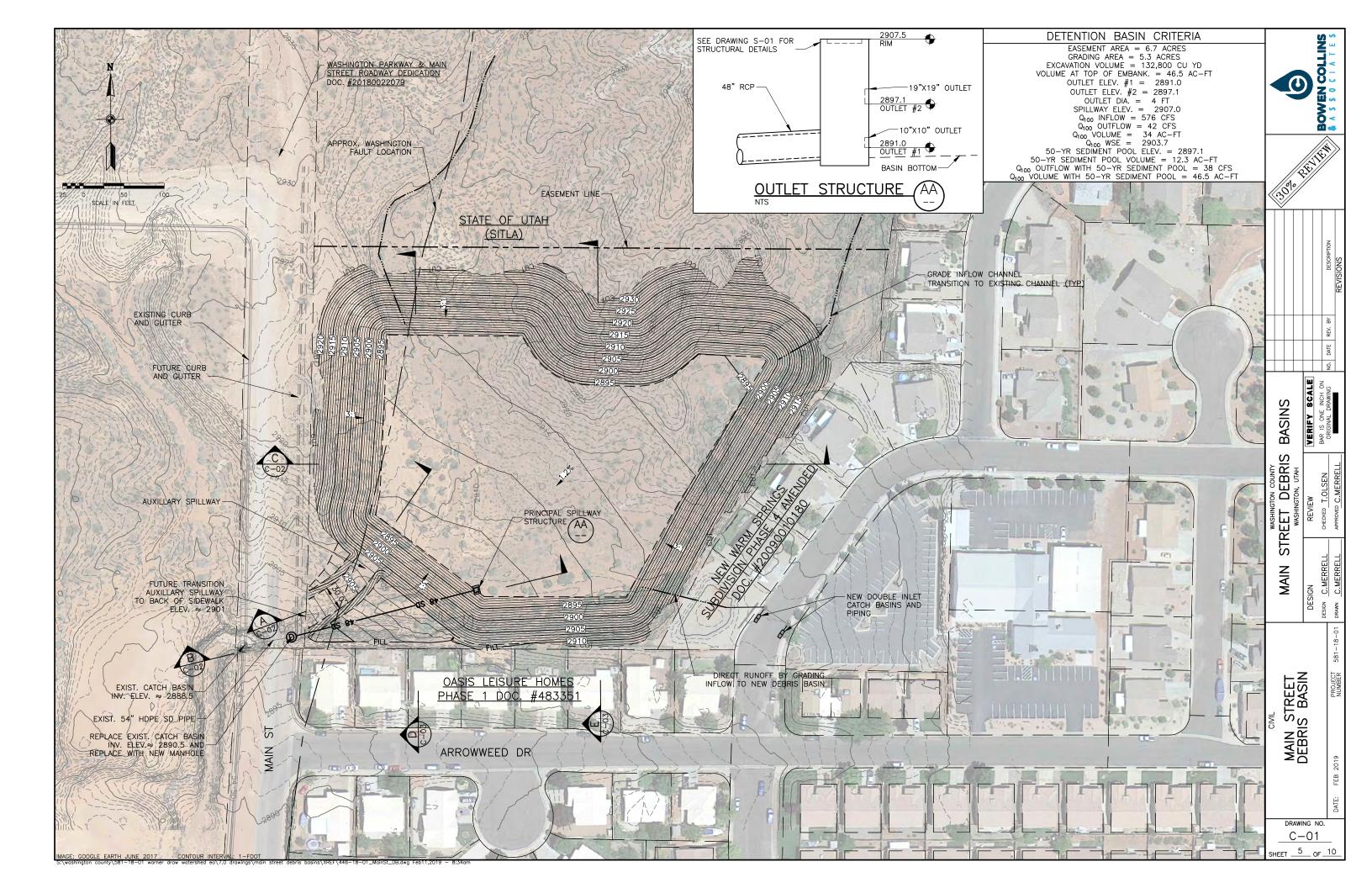
United States Department of Agriculture

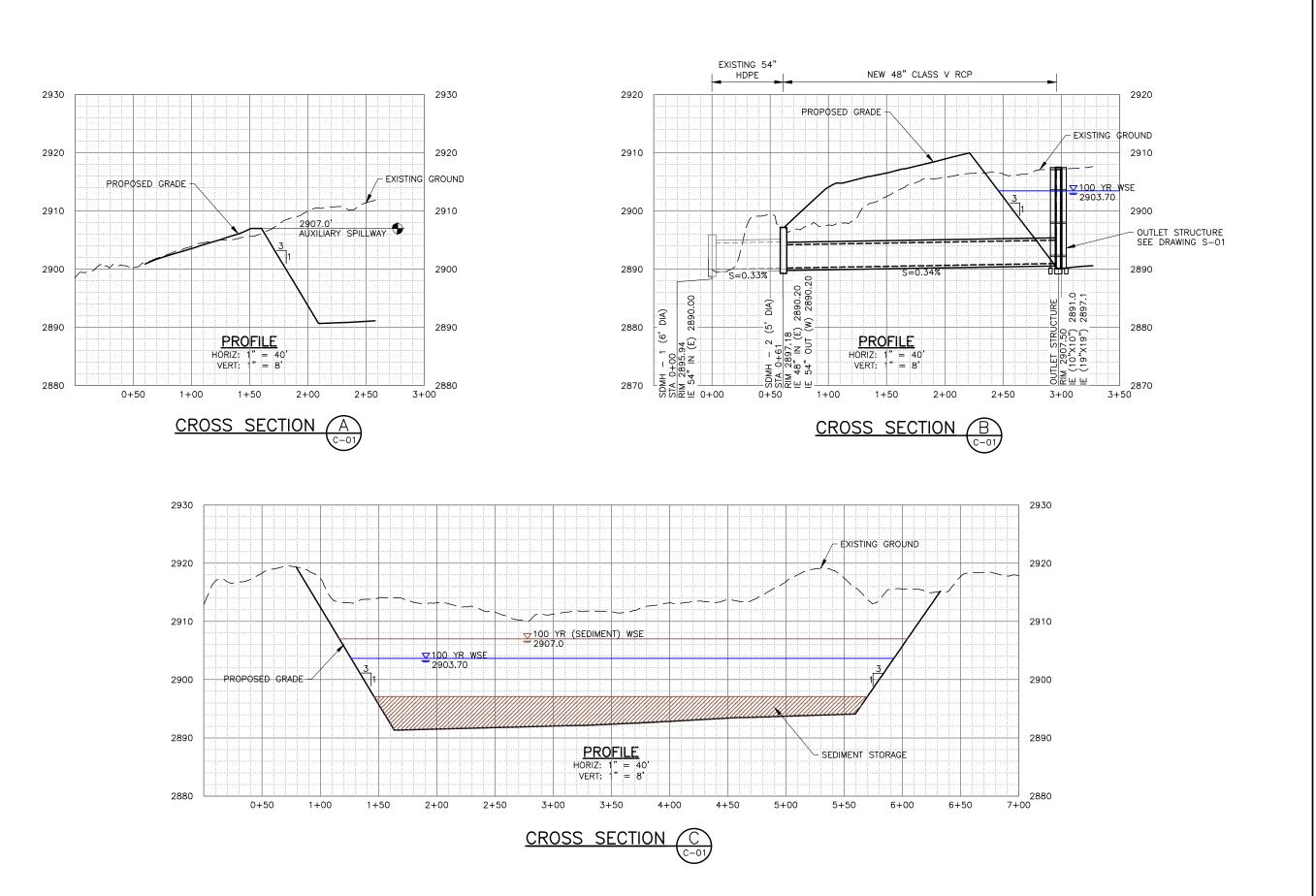

Natural Resources Conservation Service

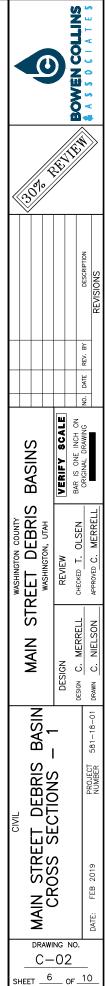

			INDEX OF DRAWINGS							
SHT NO. DWG NO. DESCRIPTION										
GENERAL										
	1	G-01	G-01 GENERAL							
2	2	G-02	ABBREVIATIONS							
3	3	G-03	SYMBOLS & NOTES							
4	1	G-04	KEY SHEET							
CIVIL										
5 C-01 MAIN STREET DEBRIS BASIN										
6	5	C-02	MAIN STREET DEBRIS BASIN CROSS SECTIONS -							
7	7	C-03	MAIN STREET DEBRIS BASIN CROSS SECTIONS -							
8	3	C-04	BUENA VISTA BLVD DEBRIS BASIN							
5	9	C-05 BUENA VISTA BLVD DEBRIS BASIN CROSS SECTIONS								
			STRUCTURAL							

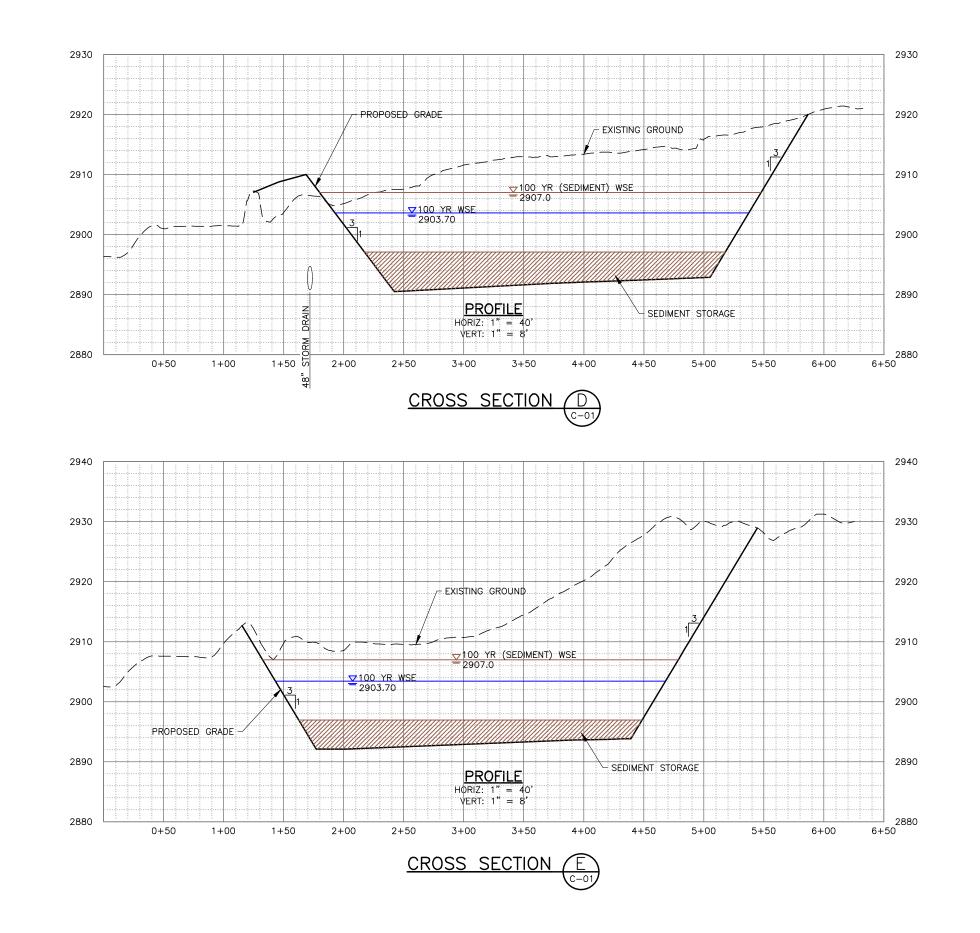


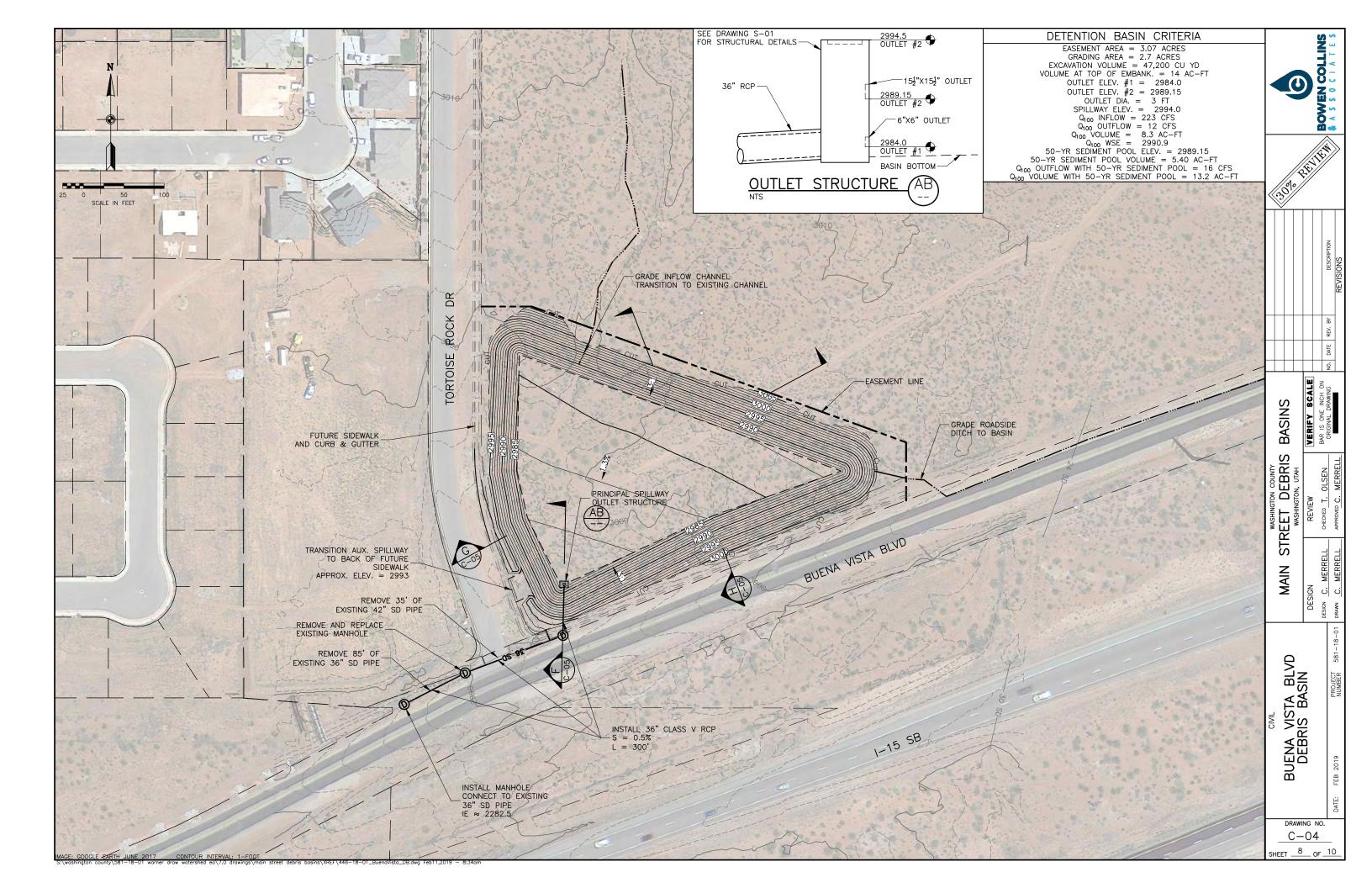

PROJECT LOCATION MAP

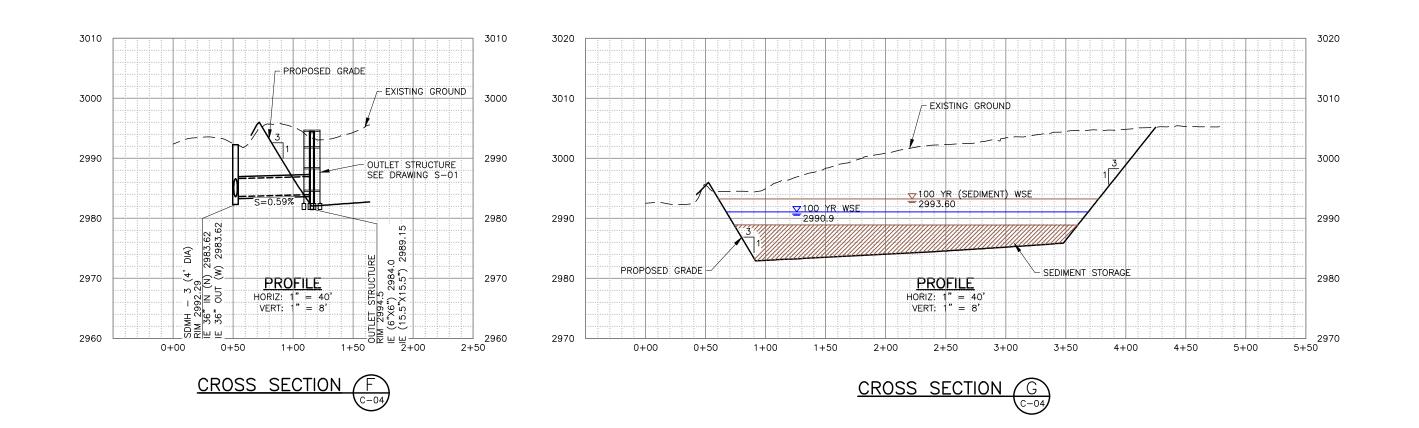


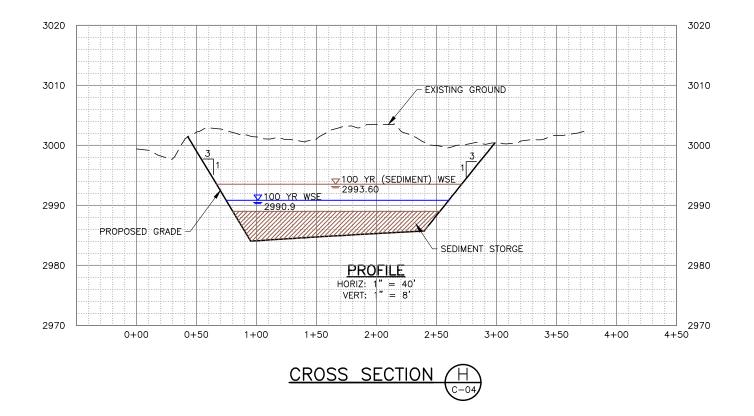

	0	AT			FOUR	EQUIPMENT			NIW	NORTHWEST	SPEC		-ii
	@ AASHTO	AMERICAN ASSOCIATION OF STATE	CLR CLST	CLEAR, CLEARANCE CEMENT LINED STEEL PIPE	EQUIP ETC		IE	INSIDE DIAMETER INVERT ELEVATION	INW	NORTHWEST	SPEC SPECS	SPECIFIED, SPECIFICATION SPECIFICATIONS	<u>v v</u>
		HIGHWAY TRANSPORTATION OFFICIALS					IF						Z "
	AB			CENTIMETER			IN		о то о	OUT TO OUT			
				CEMENT MORTAR LINED AND COATED		END VERTICAL CURVE ELEVATION		INCH-POUND		ON CENTER, OVER-CROSSING	SPLY	SUPPLY	
						END VERTICAL CURVE STATION					SPRT	SUPPORT	
	AC											SQUARE	
	ACI												
Mar	ACP	ASPHALTIC CONCRETE PAVEMENT											5 0
	ADDL	ADDITIONAL											
	ADJ						IKK	IRRIGATION					Ma l
				•		EXTERIOR, EXTENSION, EXTERNAL							
				•			JA	JORDAN AQUEDUCT					
					F	FAHRENHEIT. FACE	JT						
	/		CONT	CONTINUED, CONTINUOUS, CONTINUATION	F TO F	FACE TO FACE	JTS	JOINTS	02	001102			
					FAB		JVWTP						/24/
	AIGO							PLANT	PC	PORTLAND CEMENT, POINT OF CURVE			///
	AL										SYM	SYMBOL	
	ALTN						K	KELVIN KILO OR THOUSAND POLINDS				SYMMETRICAL	<u>````</u>
	ANOD						KG				SYS	SYSTEM	
	ANSI								PE				
	APPROX								PG				
										TRESSORE GAUGE	T		
	ARCH								pН	HYDROGEN ION CONCENTRATION			NOL
	ARV						1		PI				
	ASME						L	LEFT OR LITER					
		ENGINEERS			FH								
	ASTM									· - · · - , · · · · · · · · · - · - , · - · -			
	ASSY												
	AUX		CWO	CHAIN WHEEL OPERATOR									
	AVAR		CYL	CYLINDER									<u>ک</u>
	AWS												
	AWWA												
			d								то		
													<u>à</u>
	B & S												ý
	BC				F WR	FINISH WATER RESERVUIR							
	BF												
	BFG				G	GAS			1		TYP	TYPICAL	
													S S S S S S S S S S S S S S S S S S S
	BFV		DET							POUNDS PER SQUARE FOOT			Z
				DUCTILE IRON, DROP INLET			1						
							1						
Ling Ling <thling< th=""> Ling Ling <thl< td=""><td></td><td></td><td></td><td>DIAGONAL</td><td>GFI</td><td></td><td>м</td><td></td><td></td><td></td><td></td><td></td><td></td></thl<></thling<>				DIAGONAL	GFI		м						
					GI								
Bit Diff. D	BLKG				GIS								S Internet
	BM												
	BO		511										
	BOT								PW	POTABLE WATER			ŏ ਜ਼ ; 뮏뮌
	BPS								1		V	VALVE, VENT, VOLT, VACUUM	
	BPV	BACK PRESSURE VALVE							1	2.2.10	VAR		N NG 161
UND WITH STORM TO LUMIT UMPER OWNER OWNE	BRK												
NM EXAMPL BURGE DN DOW, DECAT PL/LIT WHILID (ALLINS) (ALLING) (ALLINS) PD/LIT WHILID (ALLINS) (ALLING) (ALLINS) PD/LIT WHILID (ALLINS) PD/LIT WHILID (ALLINS) PD/LIT <td>BTU</td> <td>BRITISH THERMAL UNIT</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.0</td> <td></td> <td></td> <td></td> <td> ¥ <u>↓_</u> ¥ <u>↓</u> [</td>	BTU	BRITISH THERMAL UNIT							1.0				¥ <u>↓_</u> ¥ <u>↓</u> [
Bits Bits Mail Dirac Dirac <thdirac< th=""> <thdirac< th=""> <thdirac< th=""> <thdir< td=""><td>BTWN</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thdir<></thdirac<></thdirac<></thdirac<>	BTWN												
Bits Bits Mail Dirac Dirac <thdirac< th=""> <thdirac< th=""> <thdirac< th=""> <thdir< td=""><td>BUR</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thdir<></thdirac<></thdirac<></thdirac<>	BUR												
Bits Bits Mail Dirac Dirac <thdirac< th=""> <thdirac< th=""> <thdirac< th=""> <thdir< td=""><td>BVC</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thdir<></thdirac<></thdirac<></thdirac<>	BVC												
AND EXCH VEHICLE LOWE STATION OF OPERATING THE STATIONS OF OPERATING THE STATIONS <	BVCE												
C CHINGRADE OF CLEAUS MSC				DRENCH SHOWER & EYE WASH,									
C CHINGRADE OF CLEAUS MSC	BW	DAUK WASH, FILIEK BAUKWASH											I ≤ ∃ ∃
C CHINGRADE OF CLEAUS MSC						-					VIR	VENI INKUUGH KUUF	\$ _Z ≦ ≦
Comment Comment Comment Comment Comment Comment Perform	C		DWL	DOWEL									
CAP R	CAB						MJ	MECHANICAL JOINT			w	WEST WASTE WIDE ELANCE (DEAN)	MN N
CARV COMBINITION AR RELEASE VALVE CONTROL (VARIANCIAL) HB HD HOSE BIBB MPT HOUR WILLS PER HOUR ROUND AR RELEASE VALVE CONTROL (VARIANCIAL) HB HD HD BEAM TPOLIETHYLENE MIT WILLS PER HOUR REPORT ROUNDS PER MUNITE W/O WILL CLEARLY RP RADIUS PORT WILL CLEARLY RV WC WILL CLEARLY RV WV WC WC WC RV RV WC	CAP		F(110)								w/		DES
CB CATCH BAIN EVENT EVENT EVENT EVENT EVENT MOR MORE MOR MORE RPM REQUISITIONS PER MNUTE WC WATER FORCING WATER FORCEST WC WC WATER FORCEST WC WC WATER FORCEST WC WC WATER FORCEST WC WC WC WATER FORCEST WC	CARV										,		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	СВ												9
CCP CUNCRETE CYUNDER PIPE DC CELLING DFFUSEE CHEWCAL DEVINA AND CC C ECCENTRIC CC ECCENTRIC EL ELEVANION EL E	CC	CENTER TO CENTER	FA										18
CD CELLING UPTISER CHEMICAL DRAIN AND CONVENCE THE PER HOUR CELONATION AND CONVENCE THE PER HOUR CECONTROL CHEMICAL DRAIN AND CONVENCE CECONTROL HOW PROVIDED STRUCTURE CECONTROL HERE CECONTROL SCHEME CECONTROL HERE CECONTROL SCHEME CECONTROL SCHE	CCP												<u></u>
CER CCC ECCCURTENC HOR HARDER RT RECULATING TANK, RADIOGRAPHIC, RUEHT WS WATER STOP, WATER SURFACE WS WATER STOP, WATER SURFACE CH CUBIC FEET PER MINUTE EFF EFF LUENT HORZ HORZ HORZ N NORTH N NORTH RV ROUT RV ROUT WS WATER STOP, WATER SURFACE WS WATER STOP WATER STOP <td< td=""><td>CD</td><td></td><td></td><td></td><td></td><td></td><td>MWS</td><td>MAXIMUM WATER SURFACE</td><td></td><td></td><td></td><td></td><td>52</td></td<>	CD						MWS	MAXIMUM WATER SURFACE					52
CDB/C CDB/C EF EACH FACE, EXAMUST FAN HM HOLLOW METAL N NORTH MORTH WSP WEDED STELE PIPE CMB/C EG EXISTING GRADE EF EACH FACE, EXAMUST FAN HM HORZ HORZONTAL N/N NORTH NORTH N/N NORTH N/N NORTH NORTH N/N NORTH NORTH N/N NORTH N/N NORTH N/N NORTH N/N NORTH N/N NORTH N/N N	CER	VENI					1			,			S Iter
CHBD CHAUGOARD ELC ELECTRICAL, ELECTRONIC HSS HOLLOW STRUCTURAL SECTION NEMA NATIONAL ELECTRICAL MANUFACTURES S SOUTH, SECOND XMFR TRANSFORMER 0							N	NORTH	1	RIGHT	WSP		
CHBD CHAUGOARD ELC ELECTRICAL, ELECTRONIC HSS HOLLOW STRUCTURAL SECTION NEMA NATIONAL ELECTRICAL MANUFACTURES S SOUTH, SECOND XMFR TRANSFORMER 0	CFH						NAVD				WSTP	WATER STOP	
CHBD CHAUGOARD ELC ELECTRICAL, ELECTRONIC HSS HOLLOW STRUCTURAL SECTION NEMA NATIONAL ELECTRICAL MANUFACTURES S SOUTH, SECOND XMFR TRANSFORMER 0	CFM												
CHBD CHAUGOARD ELC ELECTRICAL, ELECTRONIC HSS HOLLOW STRUCTURAL SECTION NEMA NATIONAL ELECTRICAL MANUFACTURES S SOUTH, SECOND XMFR TRANSFORMER 0	CFS					PUMP, HIGH POINT			RW	RAW WATER	WWM	WELDED WIRE MESH	
CHBD CHAUGOARD ELC ELECTRICAL, ELECTRONIC HSS HOLLOW STRUCTURAL SECTION NEMA NATIONAL ELECTRICAL MANUFACTURES S SOUTH, SECOND XMFR TRANSFORMER 0	CG								1				
CHBD CHAUGOARD ELC ELECTRICAL, ELECTRONIC HSS HOLLOW STRUCTURAL SECTION NEMA NATIONAL ELECTRICAL MANUFACTURES S SOUTH, SECOND XMFR TRANSFORMER 0	CGB									001511 050015			L L
CHEM CHEMICAL EMB EMBEDMENT HTG HEATING ASSOCIATION AS	CHBD			•				NATIONAL ELECTRICAL MANUFACTURES	S				° ~
CHKD PL CHECKERED PLATE CL CAST IRON CL CAST IRON PIPE CL CAST IRON PIPE CL CAST IRON PIPE CL CAST IRON PIPE CL CONSTRUCTION JOINT CL CONSTRUCTION JOINT CL CHLORINATOR, CHAIN LINK, CENTERLINE OR CHLORINE CL CHLORI	CHEM												
CHARD PL CONTROL	CHG										V2	EATRA STRUNG	
CI CAST IRON INC NOC	CHKD PL												I ≺ [ṍ]
CIP CAST IRON PIPE ENOR ENOR </td <td>CI</td> <td></td> <td></td> <td></td> <td>HVAC</td> <td></td> <td>NIC</td> <td></td> <td></td> <td></td> <td>YD</td> <td>YARD</td> <td>0</td>	CI				HVAC		NIC				YD	YARD	0
CISP CAST IRON SOIL PIPE CJ CONSTRUCTION JOINT CJ CONSTRUCTION JOINT CJ COMPLETE JOINT PENETRATION CL CHLORINE CL CHLORINE CL SP EQUALLY SPACED CHLORINE CL SP CHLORINE CL SP SPACING, STATIC PRESSURE SPA SPACED SPA SPACED CHLORINE CL SP CL SP CL SPACED CHLORINE CL SP CL	CIP				HWL								Ë
CJ CONSTRUCTION JOINT ENDERTATION CJP COMPLETE JOINT PENETRATION CL CHLORINATOR, CHAIN LINK, CENTERLINE CL CHLORINATOR, CHAIN LINK, CENTERLINE CL SP EQUALLY SPACED CHLORINE CL SP EQUALLY SPACED CF SP SPACING, STATIC PRESSURE SPA SPACED CHLORINE CL SP SLOPE SPA SPACED CHLORINE CL SP SLOPE SPA SPACED CHLORINE CL SP EQUALLY SPACED CF SPACED SPA SPACED	CISP							NOMINAL					
CL CHLORINATOR, CHAIN LINK, CENTERLINE OR CHLORINE OR CHLORINE EQL SP EQUALLY SPACED ICFM INLET CUBIC FEET PER MINUTE ICFM INLET CUBIC FEET					HYD	HYDRANT, HYDRAULIC						····	JE:
DR CHLORINE LINK, CENTERLINE EQL SP EQUALLY SPACED ICFM INLET CUBIC FEET PER MINUTE INFO MATIONAL SCIENCE FOUNDATION NS NOT TO SCALE SPACED ICFM INLET CUBIC FEET PER MINUTE INFO MATIONAL SCIENCE FOUNDATION SPACED ICFM INLET CUBIC FEET PER MINUTE INFO MATIONAL SCIENCE FOUNDATION SPACED ICFM INLET CUBIC FEET PER MINUTE INFO MATIONAL SCIENCE FOUNDATION SPACED ICFM INTO MATIONAL SCIENCE ICFM INTO MATIONAL SCIENCE ICFM INTO MATIONAL SCIENCE FOUNDATION ICFM INTO MATIONAL SCIENCE IC													D
ICFM INLET CUBIC FEET PER MINUTE NTS NOT TO SCALE	CL								01				DRAWING NO
					ICFM	INLET CUBIC FEET PER MINUTE	NTS	NOT TO SCALE					
							1		1				<u> </u>
							1		1				outet 2 10
	Nugshington of	inty\581-18-01 worner draw waterehod oo\7.0 drawterehod	noin street debrie	hasins\Sheets\G=02 dwa_Feb11 2010 = 8:31am					1				SHEEL - OF - 10
			atreet depris	5555 (506663 (5 62.0mg reb11,2013 = 6:5100									

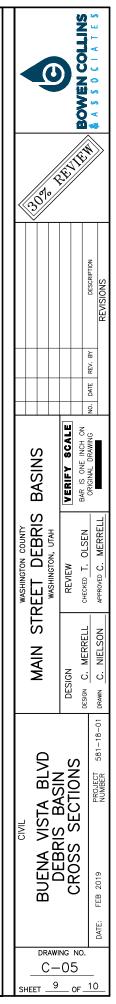


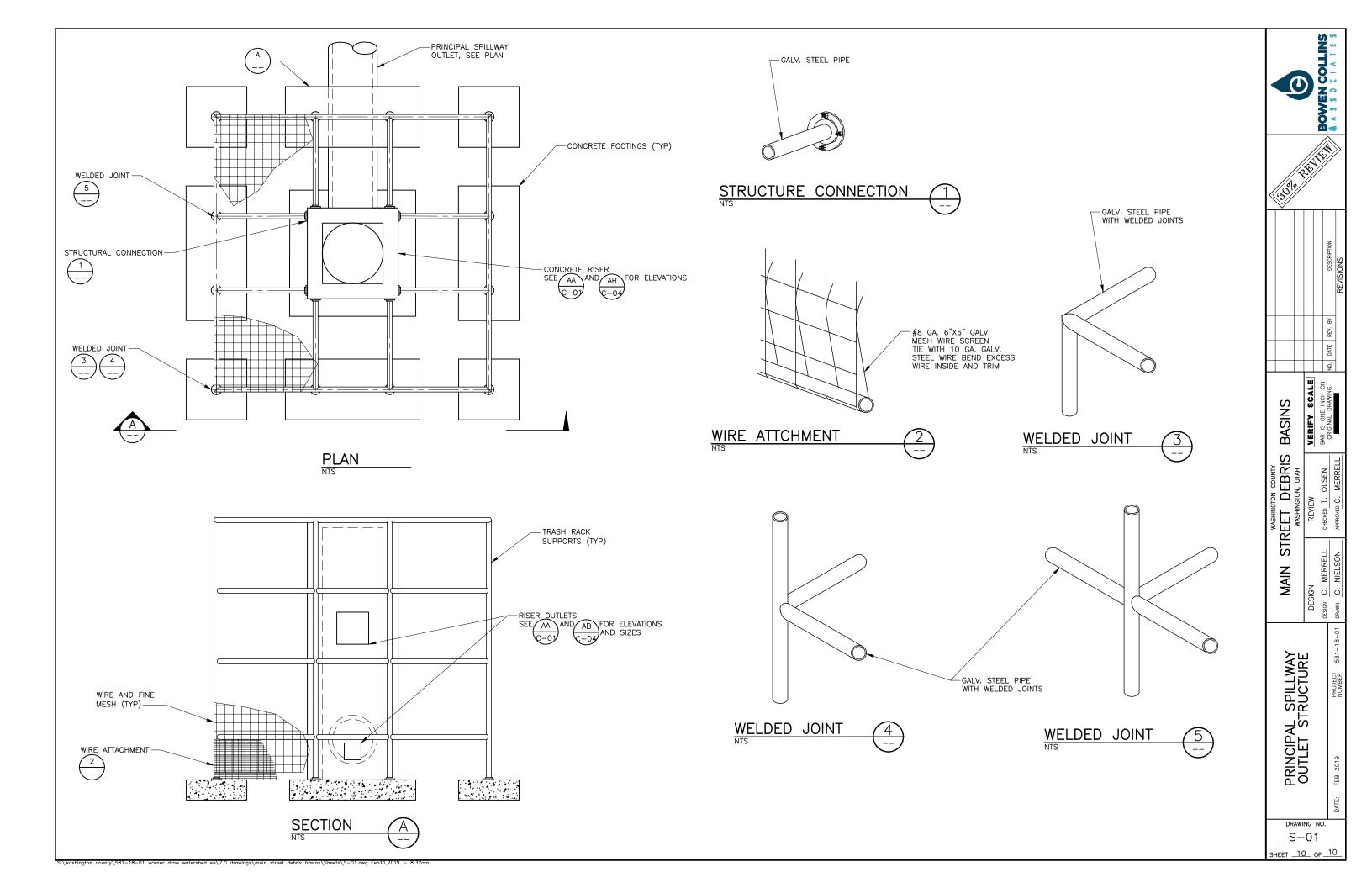


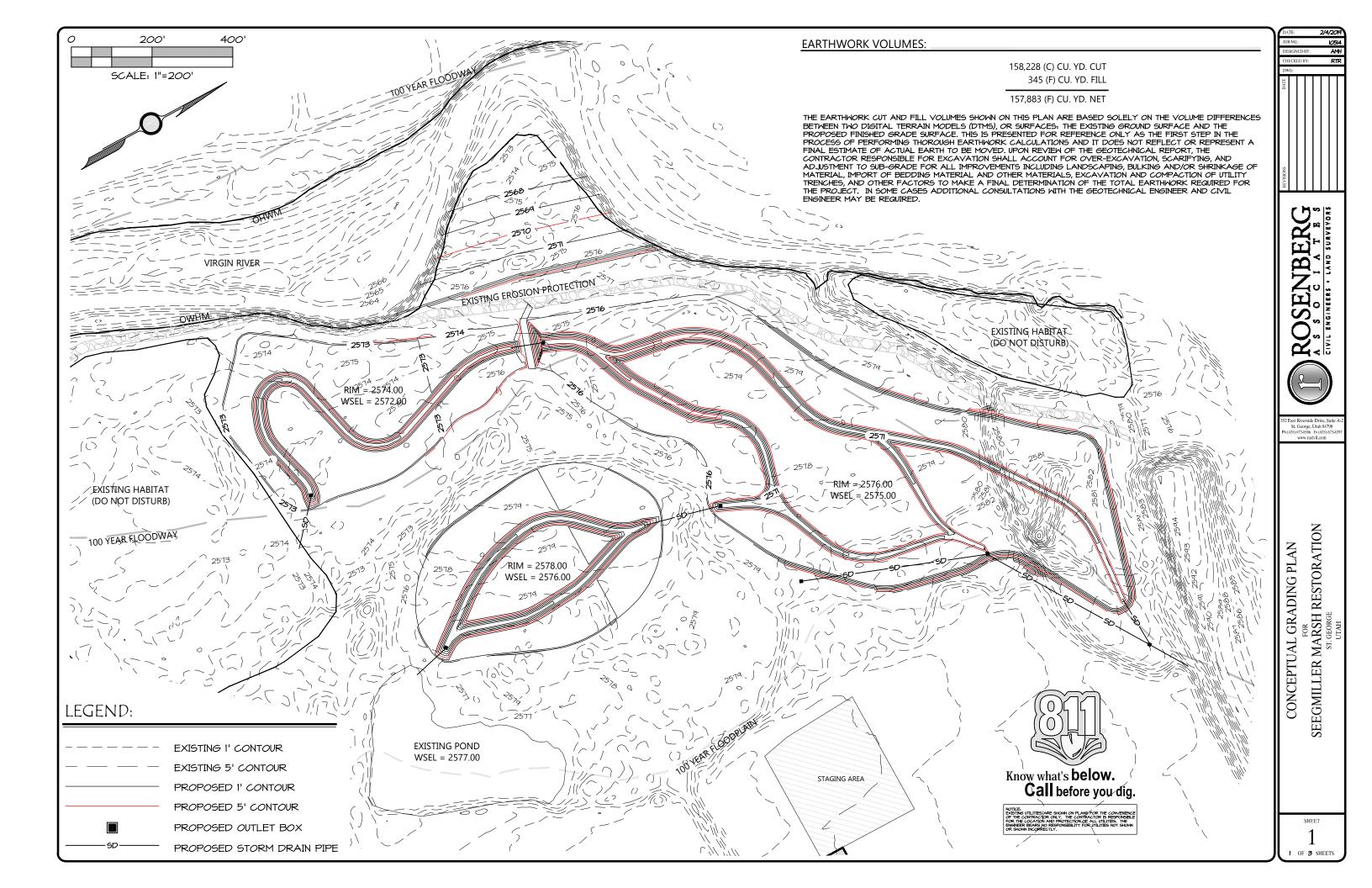

warner draw watershed ea\7.0 drawings\main street debris basins\Sheets\0

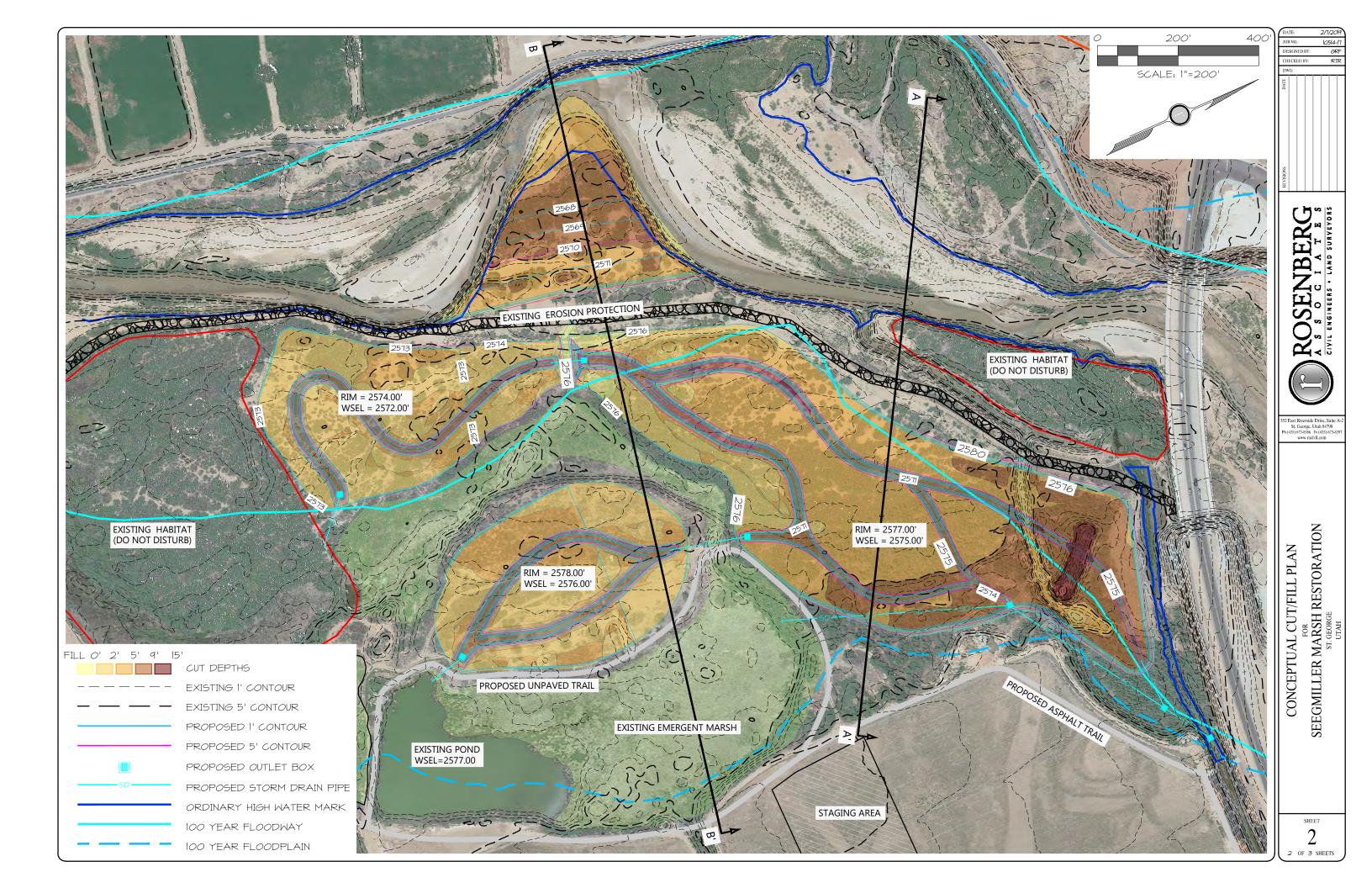


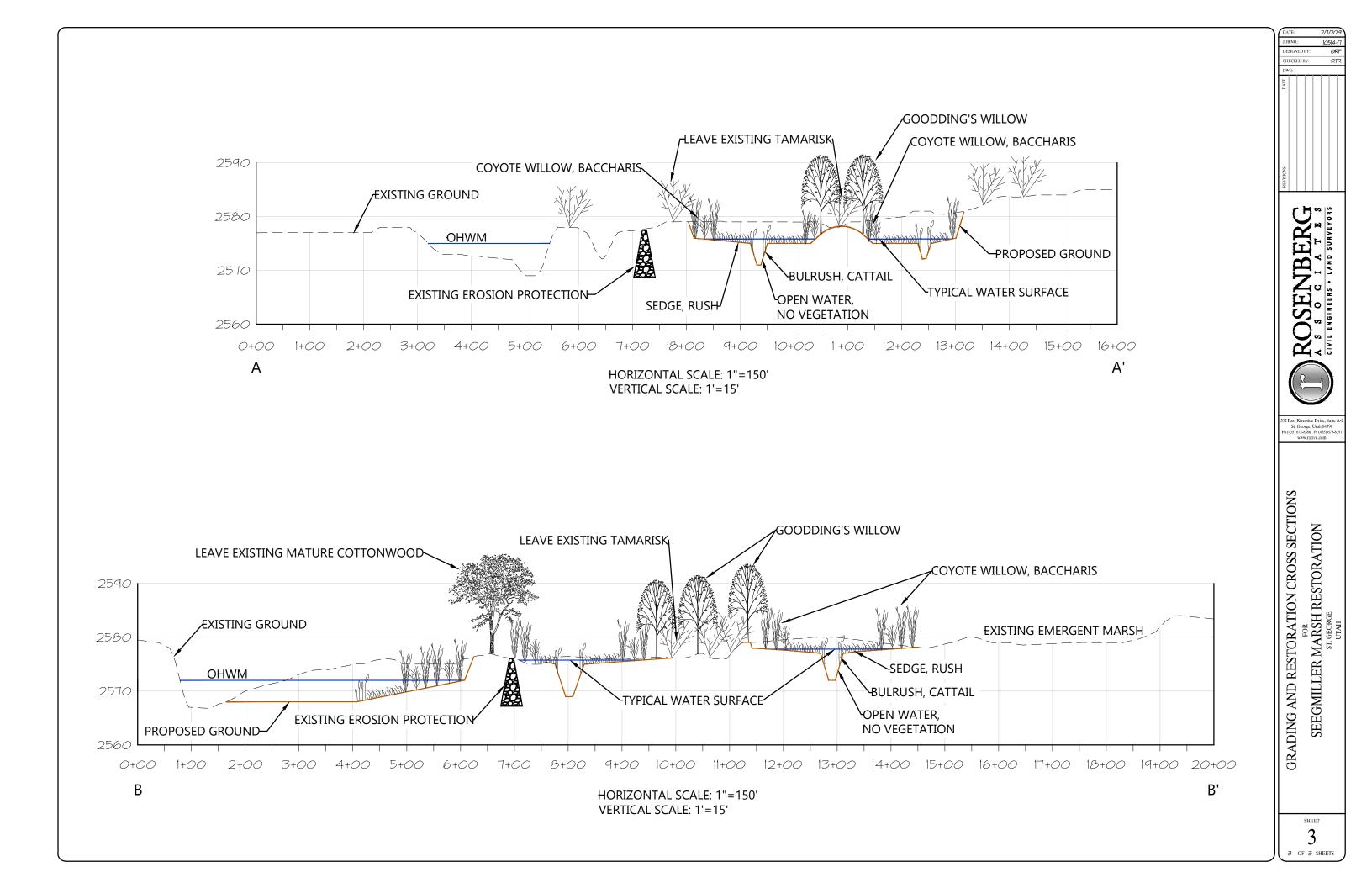


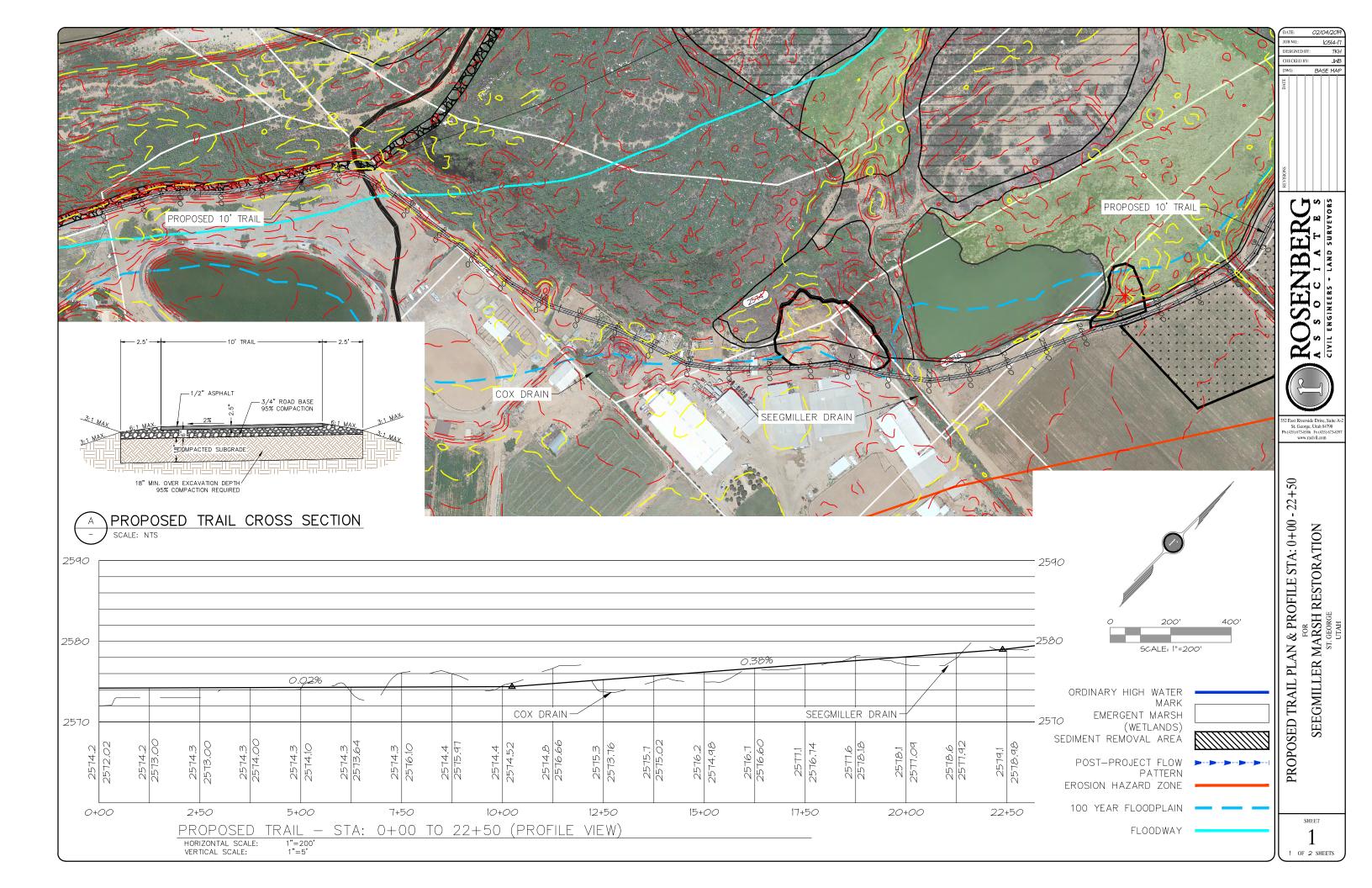

warner draw watershed eg/70 drawings/main street debris basins/Sheets/

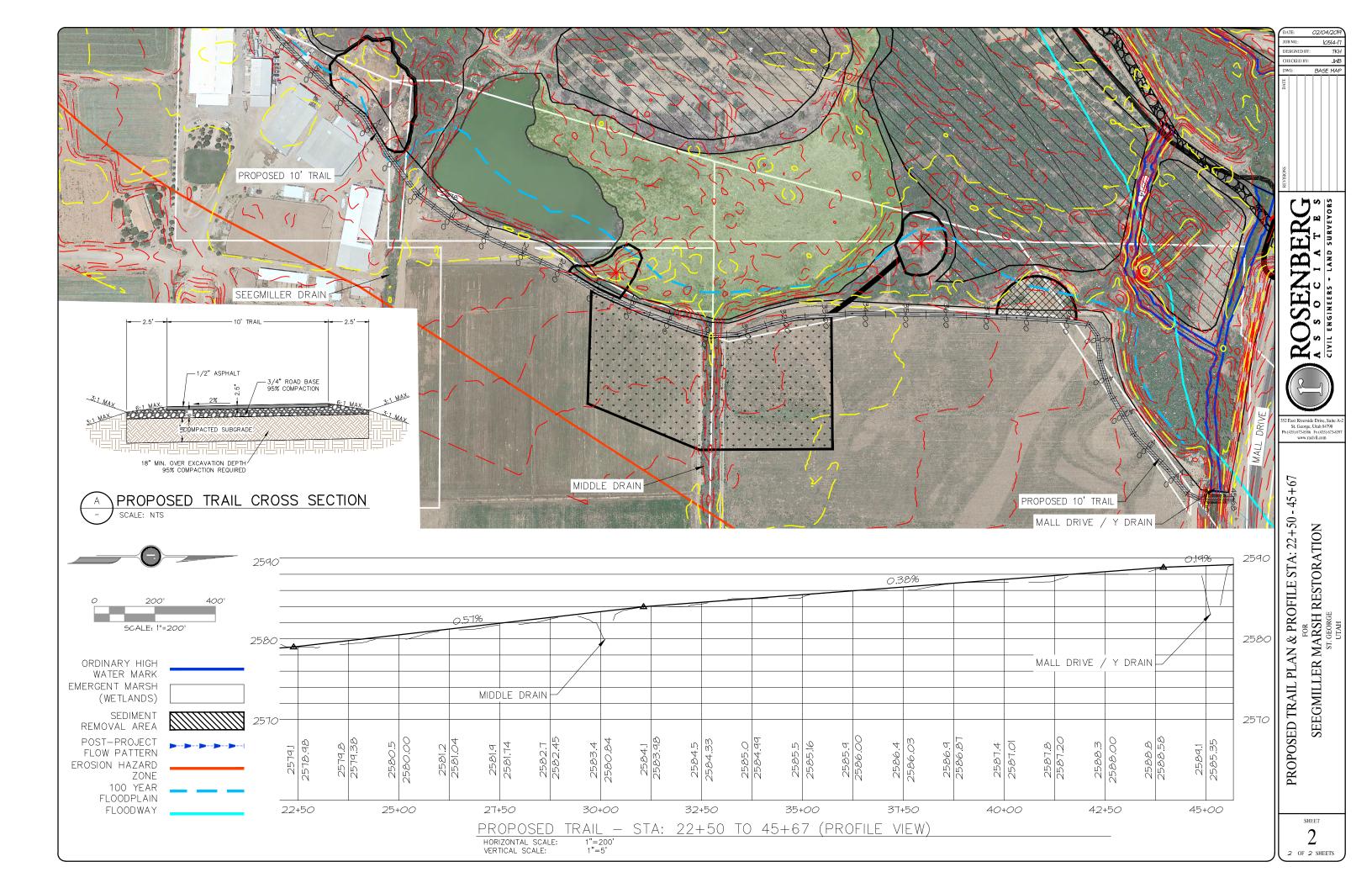


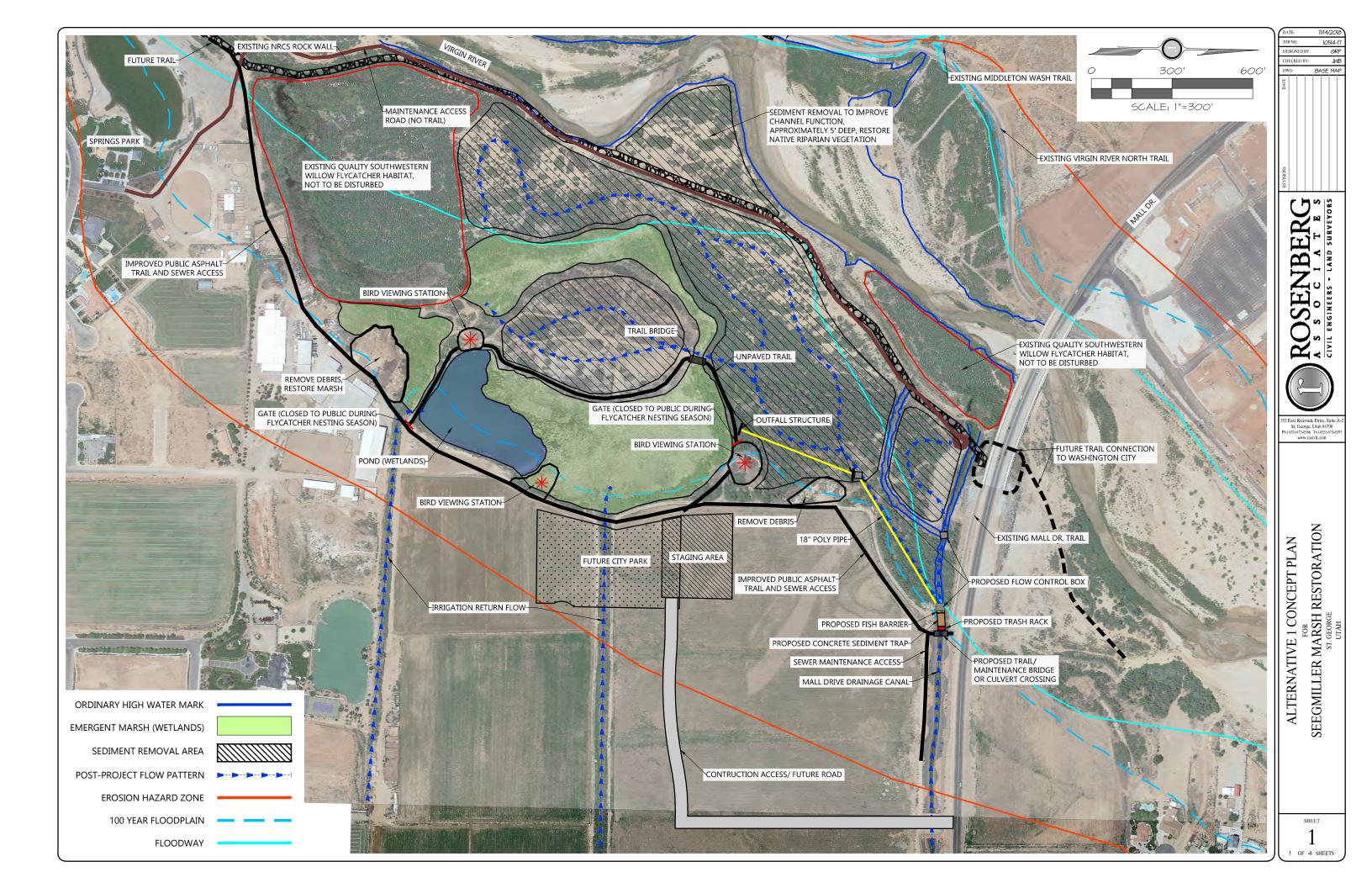


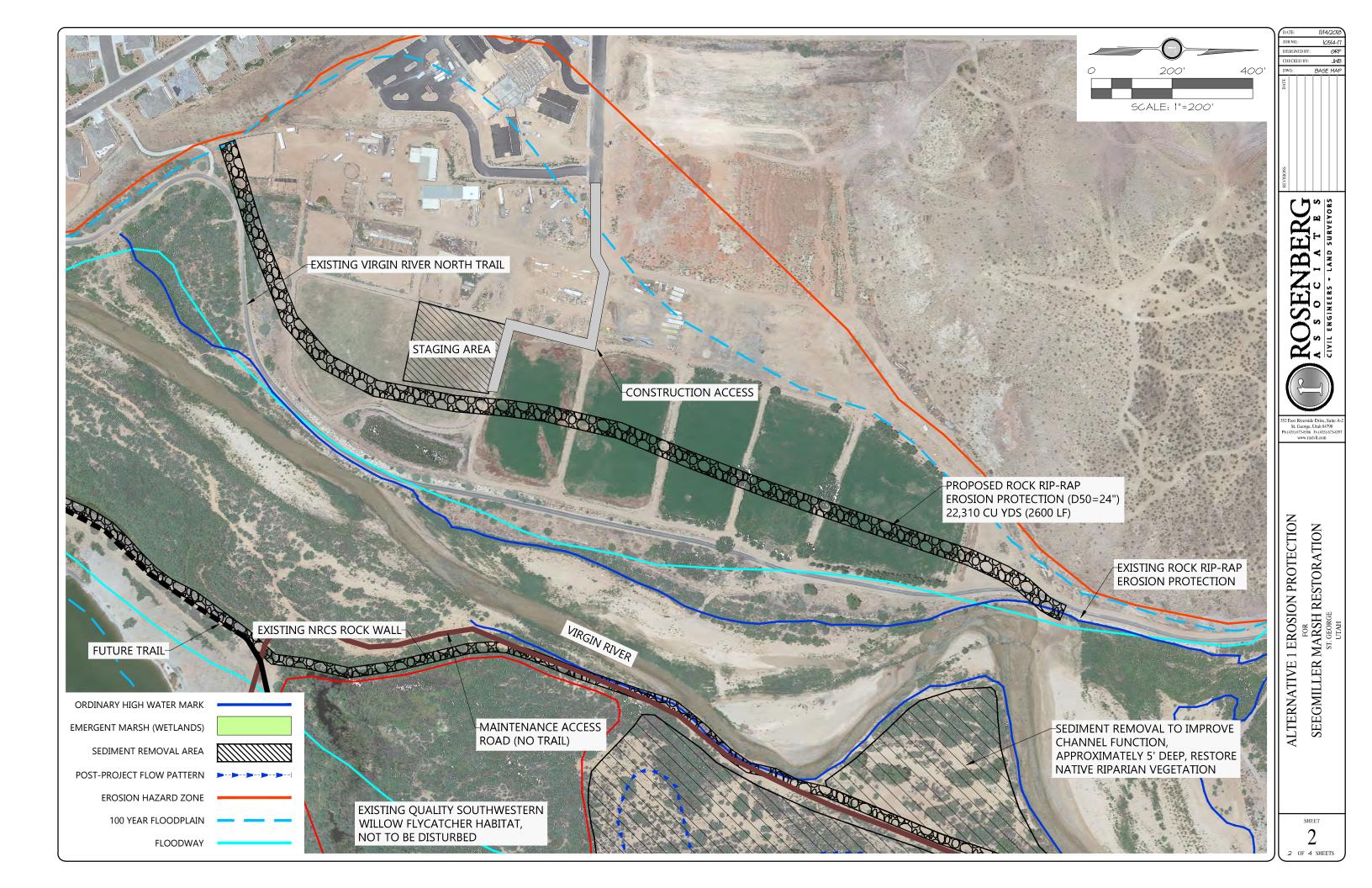


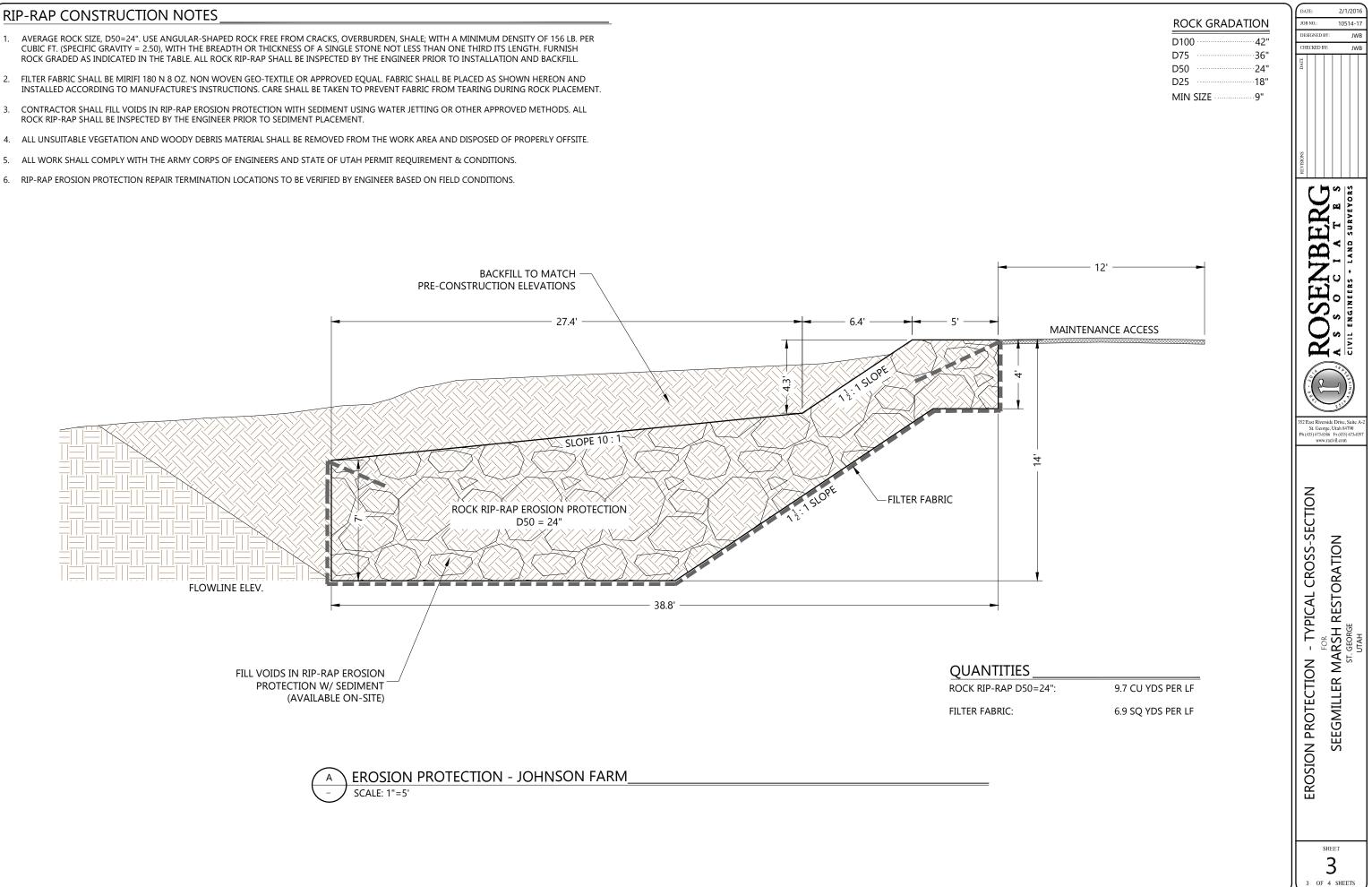

Attachment 2


Seegmiller Marsh

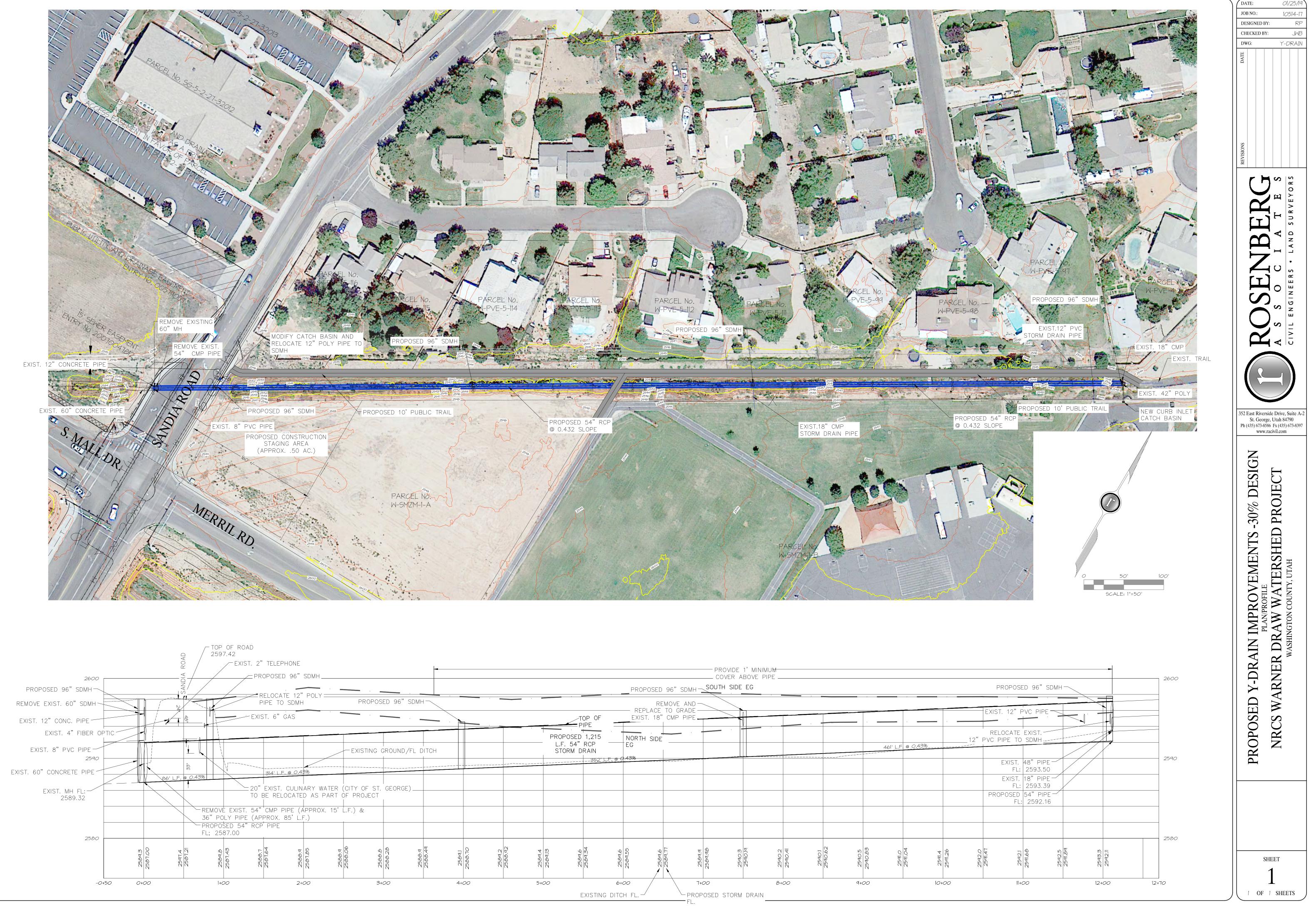

Preferred Alternative Concept Design Drawings







RIP-RAP CONSTRUCTION NOTES


- INSTALLED ACCORDING TO MANUFACTURE'S INSTRUCTIONS. CARE SHALL BE TAKEN TO PREVENT FABRIC FROM TEARING DURING ROCK PLACEMENT.
- CONTRACTOR SHALL FILL VOIDS IN RIP-RAP EROSION PROTECTION WITH SEDIMENT USING WATER JETTING OR OTHER APPROVED METHODS. ALL 3. ROCK RIP-RAP SHALL BE INSPECTED BY THE ENGINEER PRIOR TO SEDIMENT PLACEMENT.
- 4
- 5. ALL WORK SHALL COMPLY WITH THE ARMY CORPS OF ENGINEERS AND STATE OF UTAH PERMIT REQUIREMENT & CONDITIONS.
- 6. RIP-RAP EROSION PROTECTION REPAIR TERMINATION LOCATIONS TO BE VERIFIED BY ENGINEER BASED ON FIELD CONDITIONS.

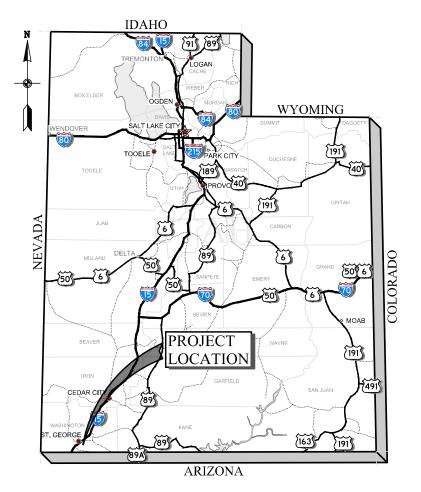
Attachment 3

Y-Drain

Preferred Alternative Concept Design Drawings

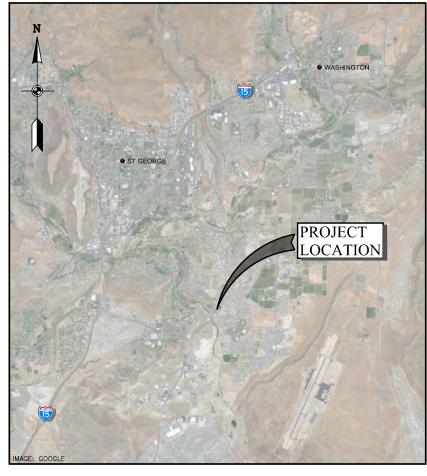
	PROVIDE 1' MINIMU M COVER ABOVE PIPE DRODOSED OG" SDMU SOUTH SIDE EG												
6" SDMH				TOP OF PIPE	PROPOSED 96" SDMH SIDE EG REMOVE AND REPLACE TO GRADE EXIST. 18" CMP PIPE								
ND/FL DITCH			L.F	POSED 1,215 54" RCP ORM DRAIN	NORTH EG F. @ 0.43%	SIDE							
RGE)													
2588.4 2588.49	2589.I 2588.TO	2589.2 2588.92 2588.92	2589.4 2589.13 2589.13	2589.6 2589.34 2589.34	2589.6 2589.55 2589.55	×2589.6 ×2589.11	2589.9 2589.98 2589.98	2590.3 2590.19 2590.19	2540.2 2540.41	2590.l 2590.62	2540.5 2540.83		
	4+00		5+00	EXISTING	6+00 DITCH FL/		7+00 PROPOSED FL.	STORM DRAIN	8+00		9+ <i>00</i>		

Attachment 4

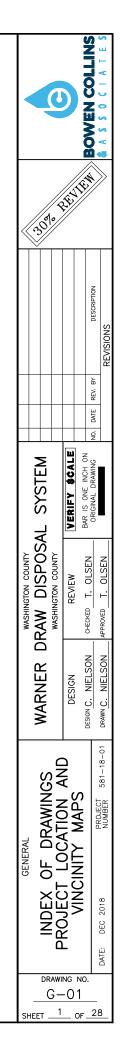

Warner Valley Disposal System

Preferred Alternative Concept Design Drawings

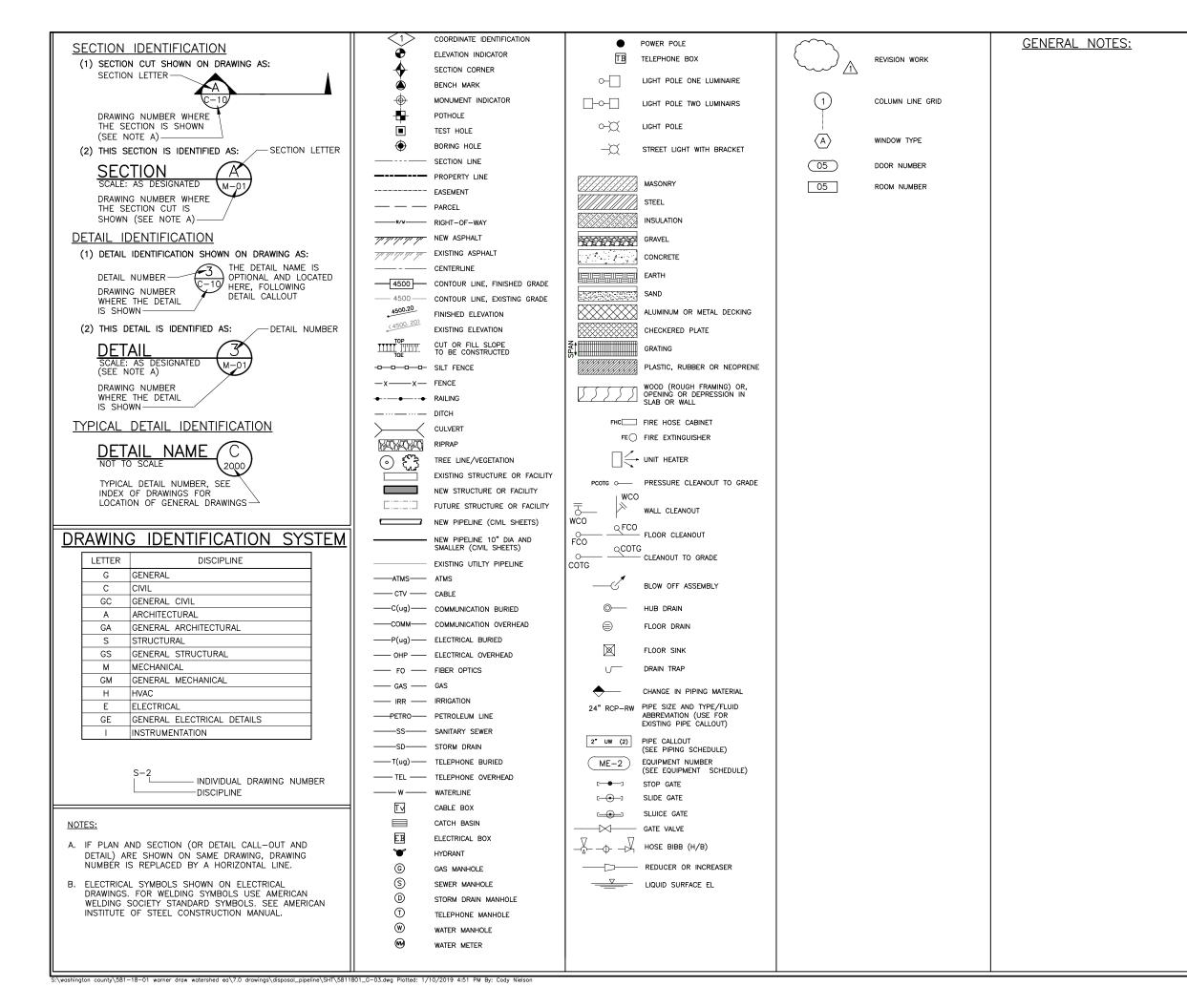
DRAWINGS FOR CONSTRUCTION OF THE WARNER DRAW DISPOSAL SYSTEM PROJECT WASHINGTON COUNTY

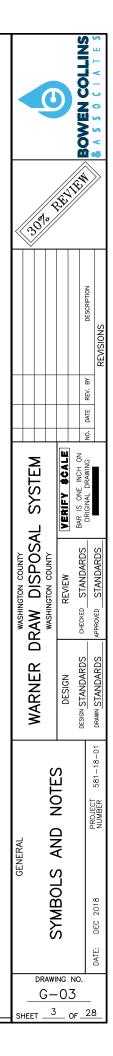


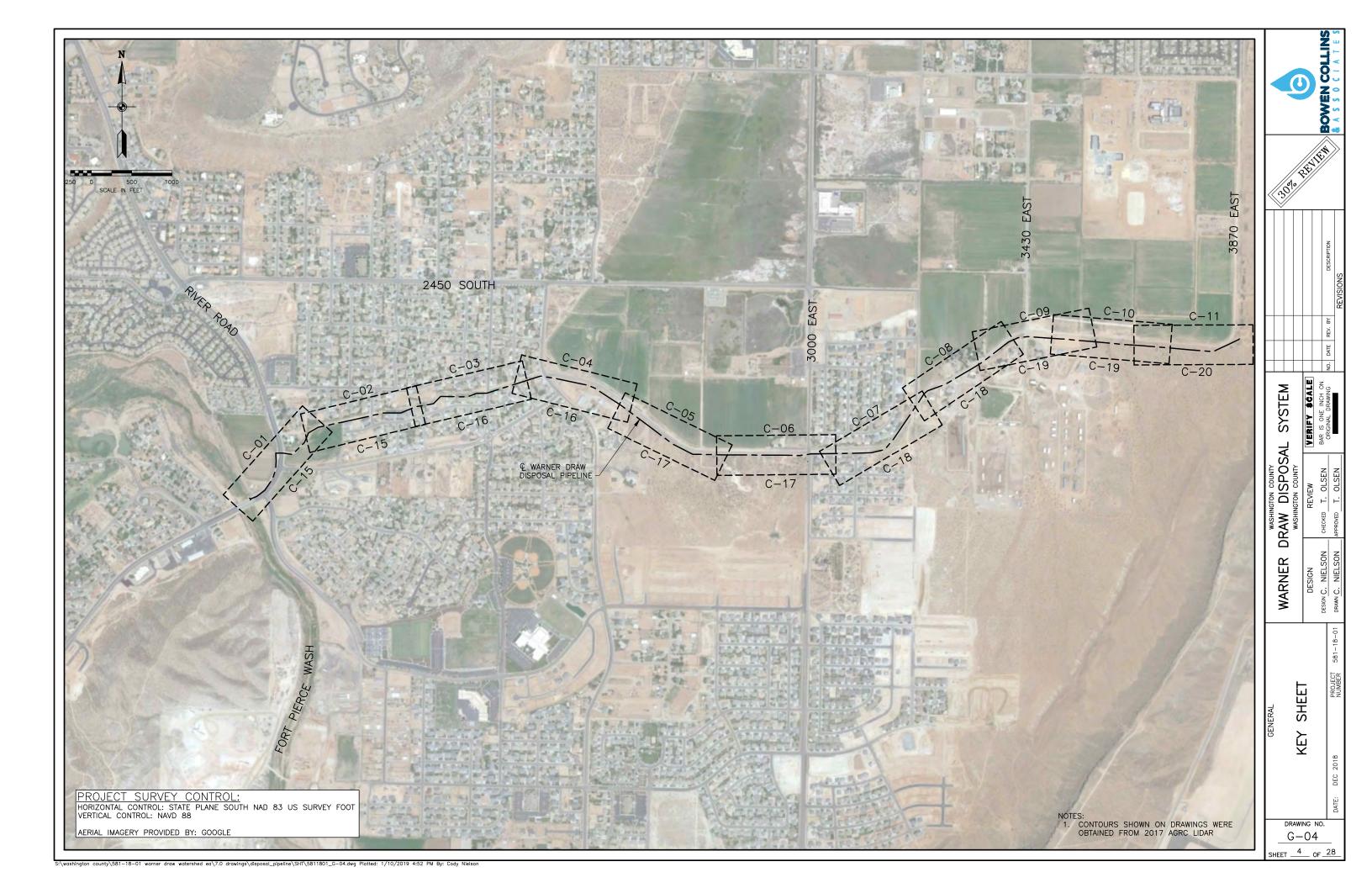
Natural Resources Conservation Service

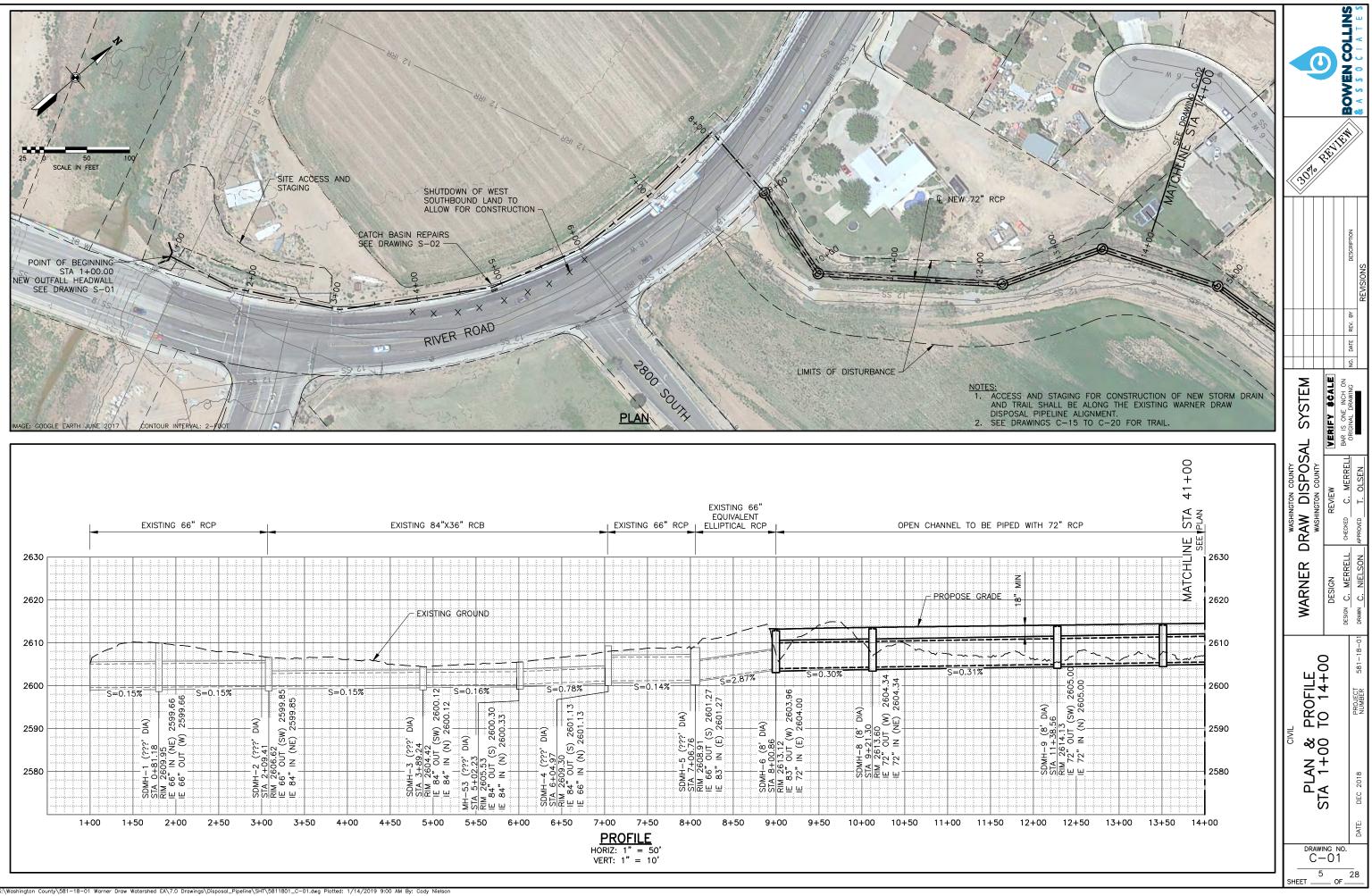


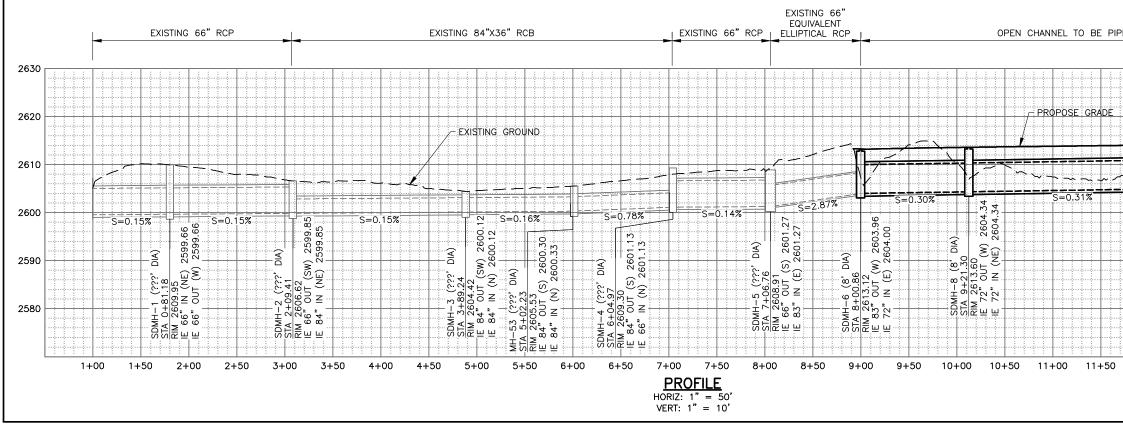
PROJECT LOCATION MAP

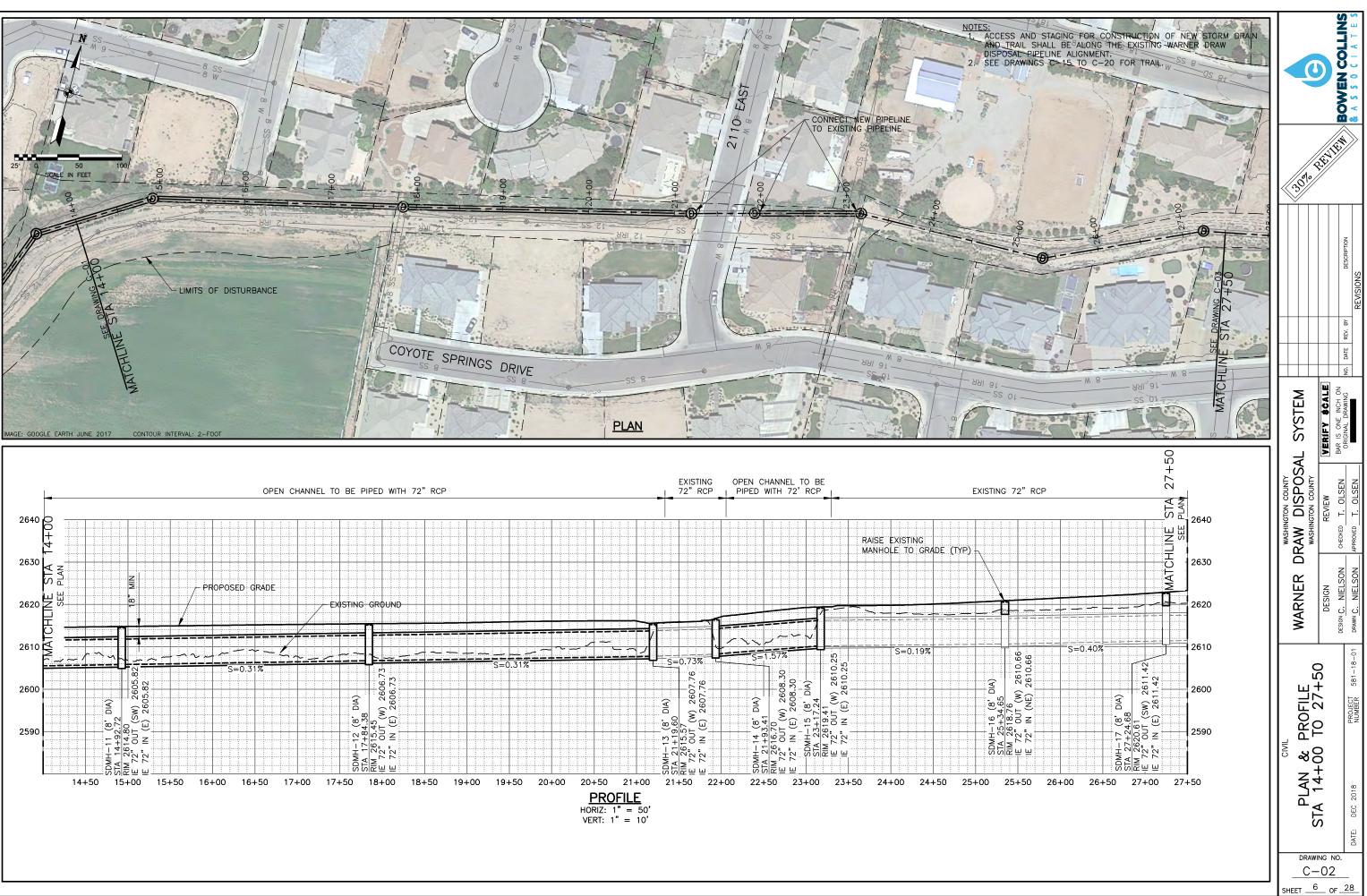

		INDEX OF DRAWINGS								
SHT NO.	DWG NO.	DESCRIPTION								
GENERAL										
1	G-01	INDEX OF DRAWINGS, PROJECT LOCATION AND VICINITY MAPS								
2	G-02	ABBREVIATIONS								
3	G-03	SYMBOLS AND NOTES								
4	G-04	KEY SHEET								
CIVIL										
5	C-01	PLAN & PROFILE STA 1+00 TO 14+00								
6	C-02	PLAN & PROFILE STA 14+00 TO 27+50								
7	C-03	PLAN & PROFILE STA 27+50 TO 41+50								
8	C-04	PLAN & PROFILE STA 41+50 TO 55+00								
9	C-05	PLAN & PROFILE STA 55+50 TO 69+00								
10	C-06	PLAN & PROFILE STA 69+00 TO 82+50								
11	C-07	PLAN & PROFILE STA 82+50 TO 95+00								
12	C-08	PLAN & PROFILE STA 95+00 TO 108+00								
13	C-09	PLAN & PROFILE STA 108+00 TO 118+00								
14	C-10	PLAN & PROFILE STA 118+00 TO 128+00								
15	C-11	PALN & PROFILE STA 128+00 TO 138+00								
16	C-12	BASIN SITE – 1								
17	C-13	BASIN SITE – 2								
18	C-14	DETENTION BASIN CROSS SECTIONS								
19	C-15	TRAIL PLAN STA 200+00 TO 223+50								
20	C-16	TRAIL PLAN STA 223+50 TO 234+00								
21	C-17	TRAIL PLAN STA 234+00 TO 256+50								
22	C-18	TRAIL PLAN STA 256+50 TO 282+00								
23	C-19	TRAIL PLAN STA 282+00 TO 307+00								
24	C-20	TRAIL PLAN STA 307+00 TO 312+87								
25	C-21	TYPICAL TRAIL CROSS SECTION								
STRUCTURAL										
26	S-01	CATCH BASIN FLOODING REPAIRS								
27	S-02	WARNER DISPOSAL PIPELINE OUTFALL HEADWALL								
28	S-03	OUTLET STRUCTURE								

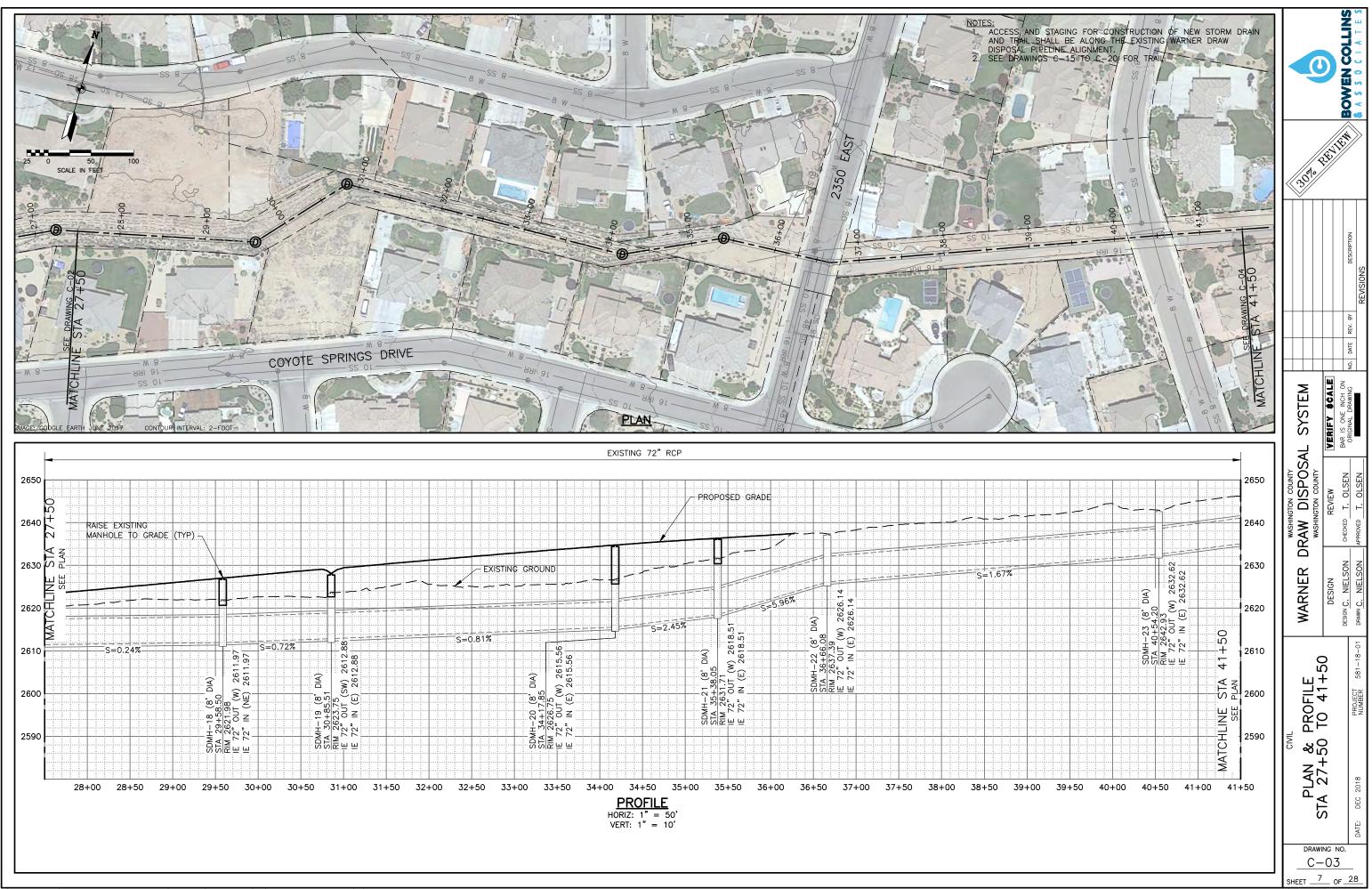


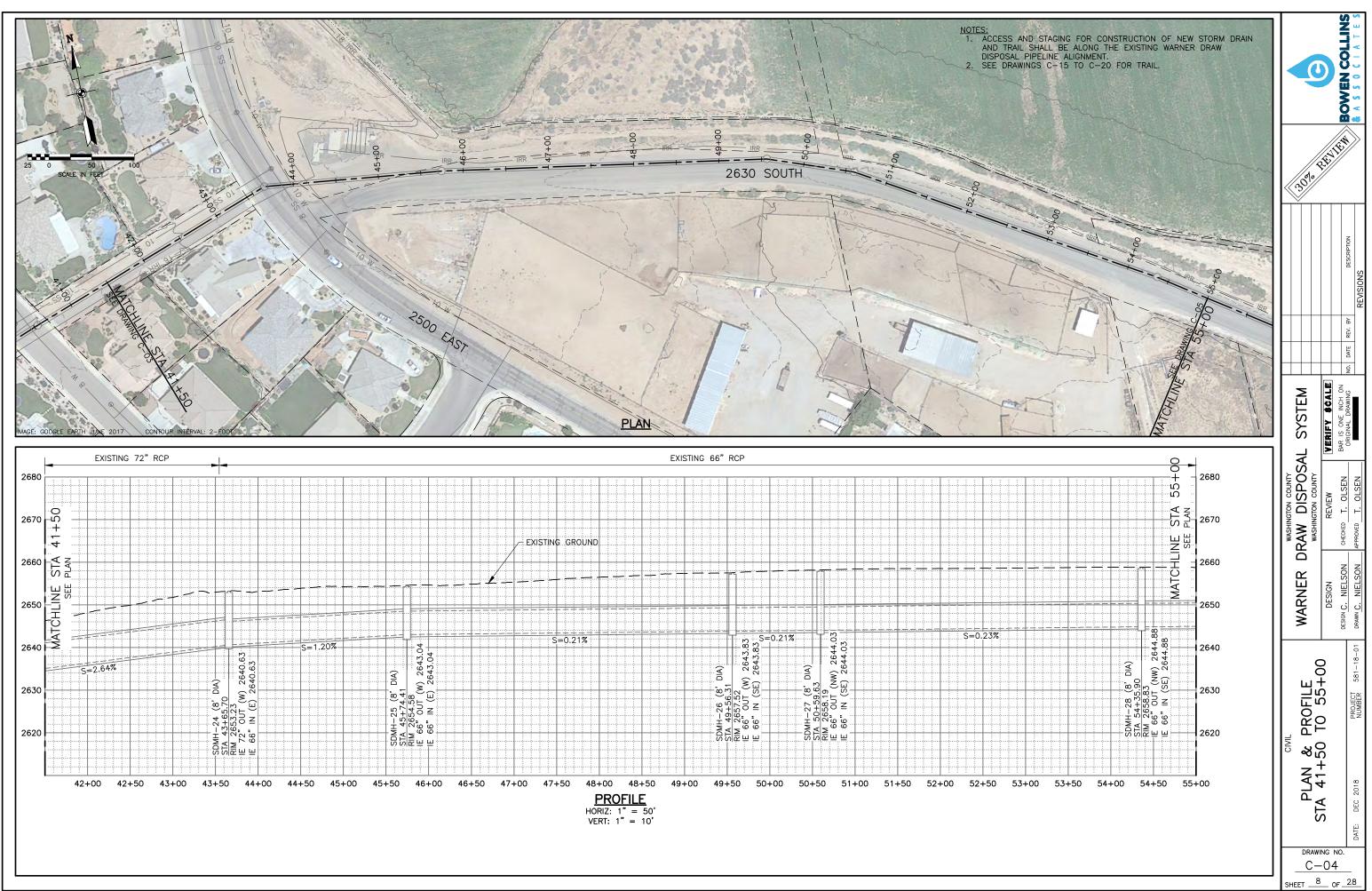

PROJECT VICINITY MAP

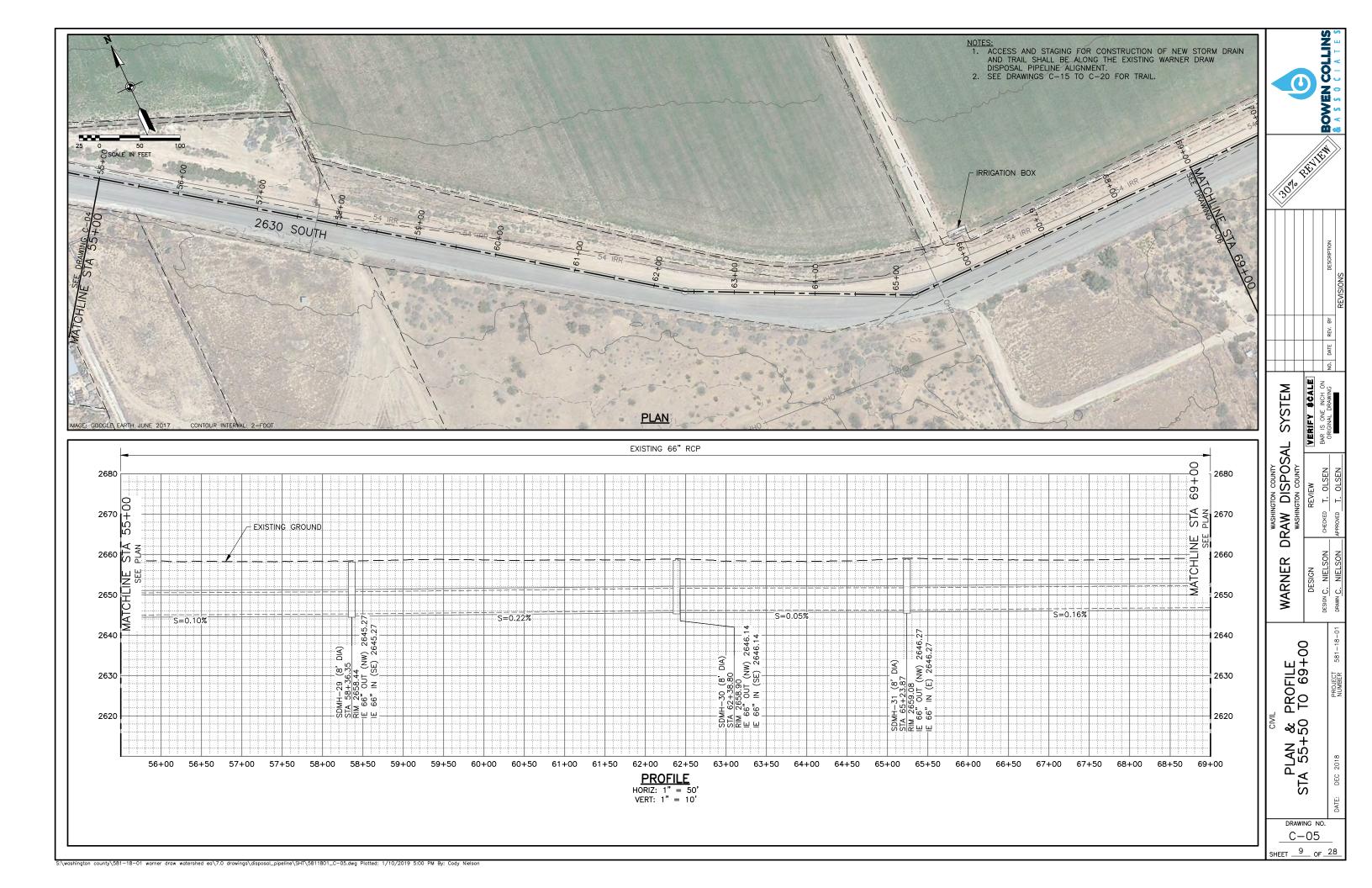


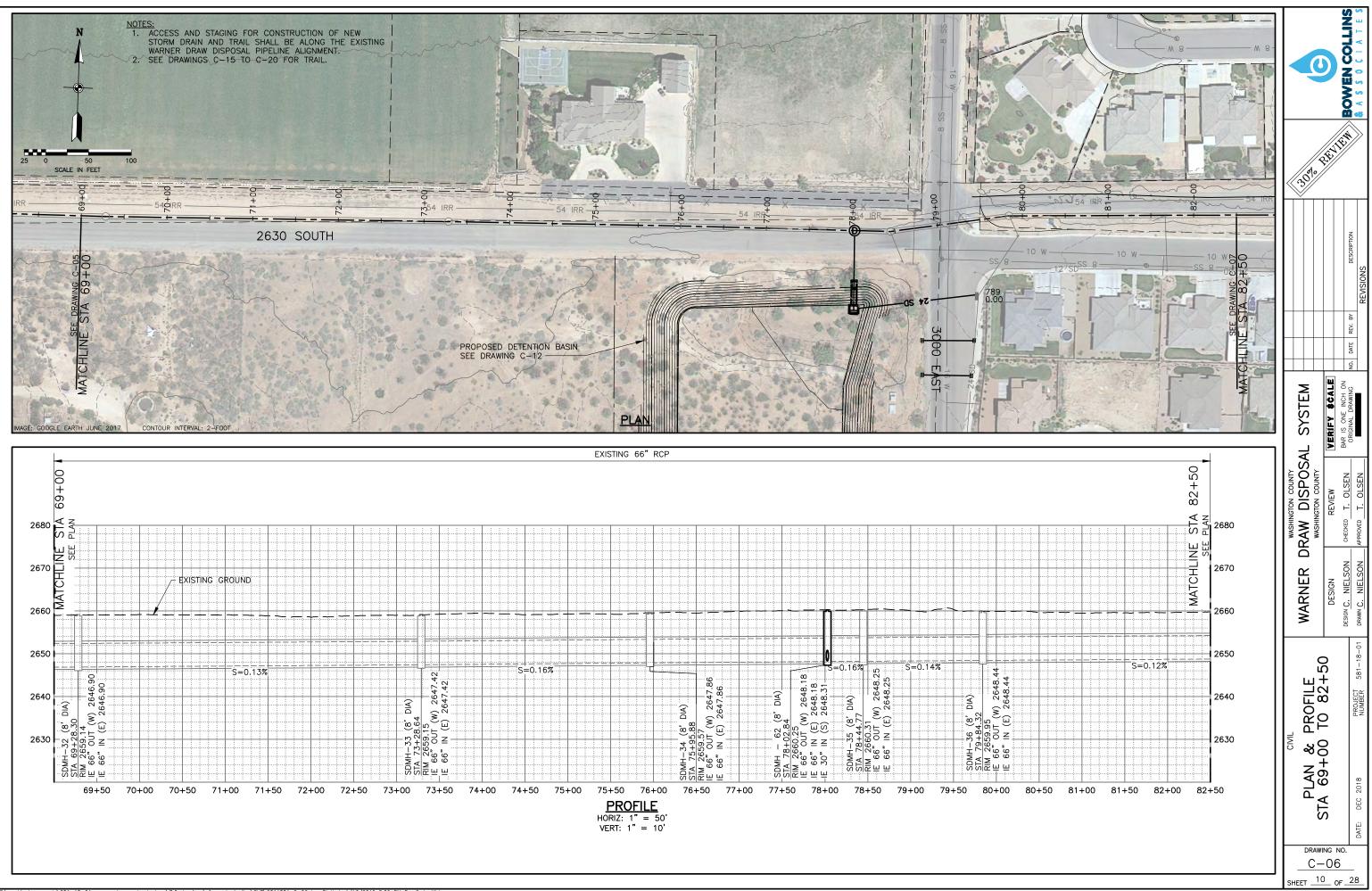

	47			501110				L 1047	NODTUNEOT	0050		1
@ AASHTO	AT AMERICAN ASSOCIATION OF STATE	CLR CLST	CLEAR, CLEARANCE CEMENT LINED STEEL PIPE	EQUIP	EQUIPMENT	ID IE	INSIDE DIAMETER INVERT ELEVATION	NW	NORTHWEST	SPEC SPECS	SPECIFIED, SPECIFICATION SPECIFICATIONS	S S
AASHIU	HIGHWAY TRANSPORTATION OF STATE	CLST	CONTROLLED LOW STRENGTH MATERIAL	ETC EVAP	ETCETERA EVAPORATOR	IF	INVERT ELEVATION INSIDE FACE			SPECS	SPECIFICATIONS	
AB	ANCHOR BOLT	CM	CENTIMETER	EVC	END VERTICAL CURVE	in	INCH	отоо	OUT TO OUT	SPKR	SPEAKER	
ABBR	ABBREVIATION	CML & C	CEMENT MORTAR LINED AND COATED	EVCE	END VERTICAL CURVE ELEVATION	IN LB	INCH-POUND	oc	ON CENTER, OVER-CROSSING	SPLY	SUPPLY	
ABS	ACRYLONITRILE-BUTADIENE-STYRENE	CMP	CORRUGATED METAL PIPE	EVCS	END VERTICAL CURVE STATION	INFL	INFLUENT	OD	OUTSIDE DIAMETER, OVERALL DIMENSION	SPRT	SUPPORT	l a d.
AC	ASPHALTIC CONCRETE OR ALTERNATING	CMU	CONCRETE MASONRY UNIT	EW	EACH WAY, EYE WASH	INSUL	INSULATING	OF	OUTSIDE FACE, OVERFLOW	SQ	SQUARE	
ACI	CURRENT OR ACTIVATED CARBON AMERICAN CONCRETE INSTITUTE	CO	CLEANOUT	EXH	EXHAUST	INVT	INVERT	OFS	OVERFLOW STRUCTURE	SQ FT	SQUARE FOOT	
ACP	ASPHALTIC CONCRETE PAVEMENT	COL	COLUMN	EXIST	EXISTING	IOB	INLET OUTLET BYPASS	он	OVERHEAD	SR	SUPPLY REGISTER	
ADDL	ADDITIONAL	СОММ	COMMUNICATION	EXP ANR	EXPANSION BOLT, ANCHOR	IPS	IRON PIPE SIZE	OPER	OPERATOR, OPERATING	SS	SANITARY SEWER, SERVICE SINK	∑ ″
ADJ	ADJACENT OR ADJUSTABLE	COMB	COMBINED	EXP JT	EXPANSION JOINT	IRR	IRRIGATION	OPNG	OPENING	SST	STAINLESS STEEL	<u>Q</u> <
AER	AERATION	CONC	CONCRETE, CONCENTRIC	EXT	EXTERIOR, EXTENSION, EXTERNAL			OPP	OPPOSITE	STA	STATION	<u> </u>
AFF	ABOVE FINISH FLOOR	COND CONN	CONDENSER, CONDENSATE CONNECTION			1.4	JORDAN AQUEDUCT	ORIG	ORIGINAL	STD	STANDARD	
AGGR	AGGREGATE	CONST	CONSTRUCTION, CONSTRUCT	-	FAHRENHEIT, FACE	JT	JOINT	OVHD OZ	OVERHEAD	STIFF	STIFFENER	25 TEM
AH	AIR HANDLER	CONT	CONTINUED, CONTINUOUS, CONTINUATION	F TO F	FACE TO FACE	JTS	JOINTS	02	OUNCE	STL	STEEL	//.58//
AIR CONT	AIR CONDITIONING	COORD	COORDINATE	FAB	FABRICATION, FABRICATE, OR	JVWTP	JORDAN VALLEY WATER TREATMENT			STRL SUC	STRUCTURAL STRUCTURAL UNDERDRAIN COLLECTOR	//25//
AISC	AMERICAN INSTITUTE OF STEEL	COP	COPPER	170	FABRICATED	••••	PLANT	PC	PORTLAND CEMENT. POINT OF CURVE	SWA	SOUTHWEST AQUEDUCT	1/2 5//
AI	CONSTRUCTION ALUMINUM, ALUM	COTG	CLEAN-OUT TO GRADE	FB	FLAT BAR			FC	OR PRIMARY CLARIFIER	SYM	SYMBOL	30%
ALTN	ALTERNATIVE, ALTERNATE	CPLG	COUPLING	FC	FLEXIBLE COUPLING			PCC	PORTLAND CEMENT CONCRETE	SYMM	SYMMETRICAL	×·5″
ANOD	ANODIZED	CPS	CULINARY PUMP STATION	FCA	FLANGE COUPLING ADAPTER	К	KELVIN, KILO OR THOUSAND POUNDS	PCF	POUNDS PER CUBIC FOOT	SYS	SYSTEM	
ANSI	AMERICAN NATIONAL STANDARDS	CPVC	CHLORINATED POLYVINYL CHLORIDE	FCO	FLOOR CLEANOUT	KG	KILOGRAM	PE	PLAIN END, POLYELECTROLYTE POLYMER,		01012	
	INSTITUTE	CS	CAST STEEL OR CAUSTIC SODA	FD	FLOOR DRAIN	KV	KILOVOLT		POLYETHYLENE			
APPROX	APPROXIMATE	CTRD	CENTERED	FDN FDR	FOUNDATION	KW KWH	KILOWATT KILOWATT HOUR	PG	PRESSURE GAUGE	Т	THICKNESS, TOP, TOILET	
APVD ARCH	APPROVED ARCHITECTURAL	CTR	CENTER	FEXT	FEEDER FIRE EXTINGUISHER		RILOWATT HOOK	ρΗ	HYDROGEN ION CONCENTRATION	T&B	TOP AND BOTTOM	No N
ARV	ARCHITECTORAL AIR RELEASE VALVE	CTSK	COUNTERSUNK	FE	FLAT FACE, FAR FACE, FINISH FLOOR			PI	PLANT INFLUENT, POINT OF	T&G	TONGUE AND GROOVE	
ARV	AIR RELEASE VALVE AMERICAN SOCIETY OF MECHANICAL	CU FT	CUBIC FOOT	FG	FINISH GRADE, FLOW GLASS	IL.	LEFT OR LITER	l	INTERSECTION	TAN	TANGENT	
	ENGINEERS	CU IN CU YD	CUBIC INCH CUBIC YARD	FH	FIRE HYDRANT	LAB	LABORATORY	PJF	PREMOLDED JOINT FILLER	TBC	TOP BACK OF CURB	
ASTM	AMERICAN SOCIETY FOR TESTING AND		CUBIC YARD CULVERT	FLR	FLOOR	LAV	LAVATORY	PL	PLATE, PROPERTY LINE, PLACE	TBM	TEMPORARY BENCH MARK	
4001	MATERIAL	CULV	CULVERT CHECK VALVE	FL	FLOW LINE	LB	POUND	PLYWD	PLYWOOD	TDH	TOTAL DYNAMIC HEAD	
ASSY	ASSEMBLY	CW	COLD WATER	FLEX	FLEXIBLE	LC	LENGTH OF CURVE	PM	PUMP, PROPELLER METER	TECH		
AUTO AUX	AUTOMATIC AUXILIARY	CWO	CHAIN WHEEL OPERATOR	FLG	FLANGE	LF	LINEAR FEET	POB	POINT OF BEGINNING	TEL TEMP	TELEPHONE TEMPERATURE, TEMPORARY	
AUX AVAR	AUXILIARY AIR VACUUM AND AIR RELEASE VALVE	CYL	CYLINDER	FM	FORCE MAIN (SANITARY SEWER)	LG	LENGTH OR LONG	PP	POTASSIUM PERMANGANATE	THK	THICK	
AVAR AWS	AIR VACUUM AND AIR RELEASE VALVE AMERICAN WELDING SOCIETY			FND	FOUND	LH	LEFT HAND	PPD	POUNDS PER DAY	THR'D	THICK	
AWS	AMERICAN WATER WORKS ASSOCIATION			FNSH	FINISH	LIP	LIP OF GUTTER	PPH	POUNDS PER HOUR	TK	TANK	
	AMERICAN WATER WORKS ASSOCIATION	d	PENNY	FO	FIBER OPTIC	LL	LIVE LOAD	PPM PR	PARTS PER MILLION	TO	TOP OF	
		DBA	DEFORMED ANCHOR	FRP	FIBERGLASS REINFORCED PLASTIC	LLV	LONG LEG VERTICAL		PAIR	тос	TOP OF CONCRETE	D
B & S	BELL & SPIGOT	DBL	DOUBLE	FW	FINISH WATER	LOL	LENGTH OF LINE	PRC	POINT OF REVERSE CURVE	TOG	TOP OF GRADE	ģ
BC	BEGIN CURVE, BOLT CIRCLE	DC	DIRECT CURRENT	FWR	FINISH WATER RESERVOIR	LP	LOW POINT	PREFAB	PREFABRICATED	TP	TELEPHONE POLE, TURNING POINT	
BF	BLIND FLANGE, BUTTERFLY VALVE	DEG	DEGREE			LR LT	LONG RADIUS LIGHT. LEFT	PRI	PRIMARY	TW	TOP OF WALL	– – – <i>– – – – – – – – – –</i>
BFG	BELOW FINISH GRADE	DEMO	DEMOLITION, DEMOLISH		010	LVL	LEVEL	PRV	PRESSURE REGULATING/REDUCING VALVE	TYP	TYPICAL	
BFP	BACK FLOW PREVENTER	DEQ	DEPARTMENT OF ENVIRONMENTAL	G	GAS GAGE. GAUGE	LWL	LOW WATER LEVEL	PS	PRESSURE SWITCH, PUMP STATION			
BFV	BUTTERFLY VALVE	DET	QUALITY DETAIL	GA GAL	GAGE, GAUGE GALLON	LWR	LOWER	PSF	POUNDS PER SQUARE FOOT			S S
BHD	BULKHEAD	DL	DUCTILE IRON, DROP INLET	GALV	GALLON GALVANIZED	Link		PSI	POUNDS PER SQUARE INCH	UBC	UNIFORM BUILDING CODE	
BHP	BRAKE HORSEPOWER	DIA	DIAMETER	GEN	GENERATOR			PSIG	POUNDS PER SQUARE INCH GAUGE	UD	UNDERDRAIN	S S S S S S S S S S S S S S S S S S S
BLDG	BUILDING	DIAG	DIAGONAL	GFI	GROUND FAULT INTERRUPTER	м	METER, MALE (PIPE THREAD)	PT	POINT OF TANGENT, PRESSURE TREATED	UG	UNDERGROUND	. 🚆 🖁
BLK	BLACK OR BLOCK	DIAPH	DIAPHRAGM	GI	GALVANIZED IRON	MACH	MACHINE	PTDF	PRESSURE TREATED DOUGLAS FIR	UH		
BLKG	BLOCKING	DIFF	DIFFUSER	GIS	GEOGRAPHIC INFORMATION SYSTEM	MAN	MAGNETIC, MANUAL	PV	PAVEMENT	UL	UNDERWRITERS LABORATORIES	
BLT BM	BOLT BEAM. BENCH MARK	DIM	DIMENSION	GL	GLASS	MATL	MATERIAL	PVC	POLYVINYL CHLORIDE	UNO USBR	UNLESS OTHERWISE NOTED	
BM BO	BLOW-OFF ASSEMBLY, BLOW-OFF	DIP	DUCTILE IRON PIPE	GLAZ	GLAZING	MAX	MAXIMUM	PVI	POINT OF VERTICAL INTERSECTION	USBR	U.S. BUREAU OF RECLAMATION	
BOT	BOTTOM	DIR	DIRECTION	GLV	GLOBE VALVE	MB	MACHINE BOLT	PW	POTABLE WATER			
BPS	BOOSTER PUMPING STATION	DISCH	DISCHARGE	GND	GROUND	мсс	MOTOR CONTROL CENTER	1		v	VALVE, VENT, VOLT, VACUUM	TON EVIE STAL
BPV	BACK PRESSURE VALVE	DIST	DISTANCE	GPD	GALLONS PER DAY	MECH	MECHANICAL, MECHANISM	1		VAR	VARIES, OR VARIABLE	
BRK	BRICK	DIV	DIVISION	GPH	GALLONS PER HOUR	MEMB	MEMBRANE	RAD	RADIUS	VC	VERTICAL CURVE	
BTU	BRITISH THERMAL UNIT	D-LOAD	LOADING CONDITION FOR RCP	GPM	GALLONS PER MINUTE	MET	METAL	RC	REINFORCED CONCRETE	VCP	VITRIFIED CLAY PIPE	
BTWN	BETWEEN		DAMPER DOWN. DECANT	GR	GRADE	MFR	MANUFACTURER	RCP	REINFORCED CONCRETE PIPE	VERT	VERTICAL	
BUR	BUILT-UP ROOFING	DN DOT	DOWN, DECANI DEPARTMENT OF TRANSPORTATION	GR BRK	GRADE BREAK, GRADE CHANGE	MG MGD	MILLION GALLONS MILLION GALLONS PER DAY	RD	ROOF DRAIN OR ROAD	VIC	VICTAULIC COUPLING	
BVC	BEGIN VERTICAL CURVE	DOT	DAMP PROOFING	GRTG	GRATING	MGD MH	MILLION GALLONS PER DAY MANHOLE, MONORAIL HOIST	RDCR	REDUCER, REDUCING	VOL	VOLUME	
BVCE	BEGIN VERTICAL CURVE ELEVATION	DR	DOOR. DRAIN	GRV GSP	GROOVED GALVANIZED STEEL PIPE	MI	MALLEABLE IRON	RECIRC	RECIRCULATION	VPI	VERTICAL POINT OF INFLECTION	
BVCS	BEGIN VERTICAL CURVE STATION	DS	DRENCH SHOWER & EYE WASH.	GSP GV	GALVANIZED STEEL PIPE GATE VALVE	MID	MIDDLE	RED	REDUCING	VSS	VOLATILE SUSPENDED SOLIDS	ARNEF Design Standari
BW	BACK WASH, FILTER BACKWASH		DOWNSPOUT	GYP	GATE VALVE GYPSUM BOARD	MIL	1/1,000 INCH	REF	REFERENCE, REFER	VTC	VENT THROUGH CEILING	
		DWG	DRAWING			MIN	MINIMUM OR MINUTE	REG	REGULATING, REGISTER	VTR	VENT THROUGH ROOF	
		DWL	DOWEL			MISC	MINIMUM OR MINUTE	REINF	REINFORCE, REINFORCED	1		
	CENTIGRADE OR CELSIUS			н	HEIGHT	MJ	MISCELLANEOUS MECHANICAL JOINT	REQD	REQUIRED			WARNEF
CAB CAP	CABINET CAPACITY	-4		HAS	HEADED ANCHOR STUD	MO	MASONRY OPENING	REV RF	REVISION	W (WEST, WASTE, WIDE FLANGE (BEAM)	
CAP CARV	COMBINATION AIR RELEASE VALVE	E(UG)	ELECTRICAL (UNDERGROUND)	нв	HOSE BIBB	MPH	MILES PER HOUR	RF RND	ROOF, RAISED FACE	W/	WITH	
CB	COMBINATION AIR RELEASE VALVE	E(OH)	ELECTRICAL (OVERHEAD POWER)	HD	HUB DRAIN	MTG	MOUNTING	RPM	ROUND REVOLUTIONS PER MINUTE	W/0	WITHOUT	0-
CC	CENTER TO CENTER		EAST	HDPE	HIGH DENSITY POLYETHYLENE	MTL	METAL OR MATERIAL	RPM	REVOLUTIONS PER MINUTE RADIUS POINT	WC WCO	WATER COLUMN OR WATER CLOSET WALL CLEANOUT	18
CCP	CONCRETE CYLINDER PIPE	EA	EACH	HDR	HEADER	MTR	MOTOR	RS	RADIUS POINT RAW SEWAGE	WCO WD	WALL CLEANOUT WOOD	
CD	CEILING DIFFUSER CHEMICAL DRAIN AND	EB EC	EXPANSION BOLT	HDW	HARDWARE	MWS	MAXIMUM WATER SURFACE	RST	REINFORCING STEEL, RESET	WH	WATER HEATER	28
	VENT	EC ECC	END CURVE ECCENTRIC	HEX	HEXAGONAL			RT	REGULATING TANK. RADIOGRAPHIC.	WH WS	WATER STOP. WATER SURFACE	S In
CER	CERAMIC	FF	ECCENTRIC EACH FACE, EXHAUST FAN	HGR	HANGER	1	NORTH		RIGHT	WSP	WATER STOP, WATER SURFACE WELDED STEEL PIPE	
CFH	CUBIC FEET PER HOUR	EFF	EACH FACE, EXHAUST FAN EFFLUENT	HM HORIZ	HOLLOW METAL HORIZONTAL	N		RV	ROOF VENT	WSTP	WATER STOP	
CFM CFR	CUBIC FEET PER MINUTE CODE OF FEDERAL REGULATIONS	EG	EXISTING GRADE	HORIZ	HORIZONTAL HORSEPOWER, HIGH PRESSURE,HEAT	NAVD NBS	NORTH AMERICAN VERTICAL DATUM NATIONAL BUREAU OF STANDARDS	R/W	RIGHT OF WAY	WT	WEIGHT	
CFR CFS	CODE OF FEDERAL REGULATIONS CUBIC FEET PER SECOND	EL	ELEVATION	l '"	PUMP, HIGH POINT	NBS NC	NATIONAL BUREAU OF STANDARDS NORMALLY CLOSED	RW	RAW WATER	WWM	WELDED WIRE MESH	I ∢ ' ∢ ∣
CFS CG	CUBIC FEET PER SECOND CHLORINE GAS	ELB	ELBOW	HR	HEATING RETURN, HOUR, HOSE RACK	NC	NORMALLY CLOSED	1		1		
CGB	CORD GRIP BUSHING	ELEV	ELEVATION	HS	HIGH STRENGTH	NEC	NATIONAL ELECTRIC CODE	1		1		EVIATION
CHBD	CHALKBOARD	ELEC	ELECTRICAL, ELECTRONIC	HSS	HOLLOW STRUCTURAL SECTION	NEMA	NATIONAL ELECTRICAL MANUFACTURES	S	SOUTH, SECOND	XMFR	TRANSFORMER	
CHEM	CHEMICAL	ЕМВ	EMBEDMENT	HTG	HEATING		ASSOCIATION	SA	SAMPLE, SAMPLE LINE	XMTR	TRANSMITTER	
CHG	CHANGE	EMER	EMERGENCY	HTR	HEATER	NF	NEAR FACE	SCFM	STANDARD CUBIC FEET PER MINUTE	XS	EXTRA STRONG	
CHKD PL	CHECKERED PLATE	ENCL	ENCLOSURE	HV	HOSE VALVE	NFPA	NATIONAL FIRE PROTECTION	SCH	SCHEDULE	1		< 5
CI	CAST IRON	ENG	ENGINE	HVAC	HEATING, VENTILATING AND AIR	NIC	ASSOCIATION NOT IN CONTRACT	SD	STORM DRAIN	VD	YAPD	0
CIP	CAST IRON PIPE	ENGR		HWL	CONDITIONING HIGH WATER LEVEL	NO	NUMBER OR NORMALLY OPEN	SECT	SECTION	YD YP	YARD YARD PIPING	DEC
CISP	CAST IRON SOIL PIPE	EP EPDM	EDGE OF PAVEMENT	HWO	HIGH WATER LEVEL HANDWHEEL OPERATED	NOM	NOMINAL	SHT	SHEET	YP YR	YARD PIPING YEAR	
CJ	CONSTRUCTION JOINT	EPDM EPS	ETHYL PROPYLENE DIENE MONOMER EXPANDED POLYSTYRENE	HYD	HYDRANT, HYDRAULIC	NPT	NATIONAL PIPE THREAD	SIM	SIMILAR			Ц Ц
CJP	COMPLETE JOINT PENETRATION		EQUAL		,	NS	NEAR SIDE	SLP SP	SLOPE	1		DA
CL	CHLORINATOR, CHAIN LINK, CENTERLINE	EQ EQL SP	EQUAL EQUALLY SPACED			NSF	NATIONAL SCIENCE FOUNDATION	SP SPA	SPACING, STATIC PRESSURE	1		DRAWING NO.
	OR CHLORINE	LULUT		ICFM	INLET CUBIC FEET PER MINUTE	NTS	NOT TO SCALE	SPA	SPACED	1		
										1		G-02
										1		SHEET OF28
-				I								SHEET OF
s:∖washington cou	unty\581—18—01 warner draw watershed ea\7.0 drawings\dis	posal_pipeline\SH1	ו/סטוואטז_G-U2.dwg Plotted: 1/10/2019 4:51 PM By: Cody	y Nielson								

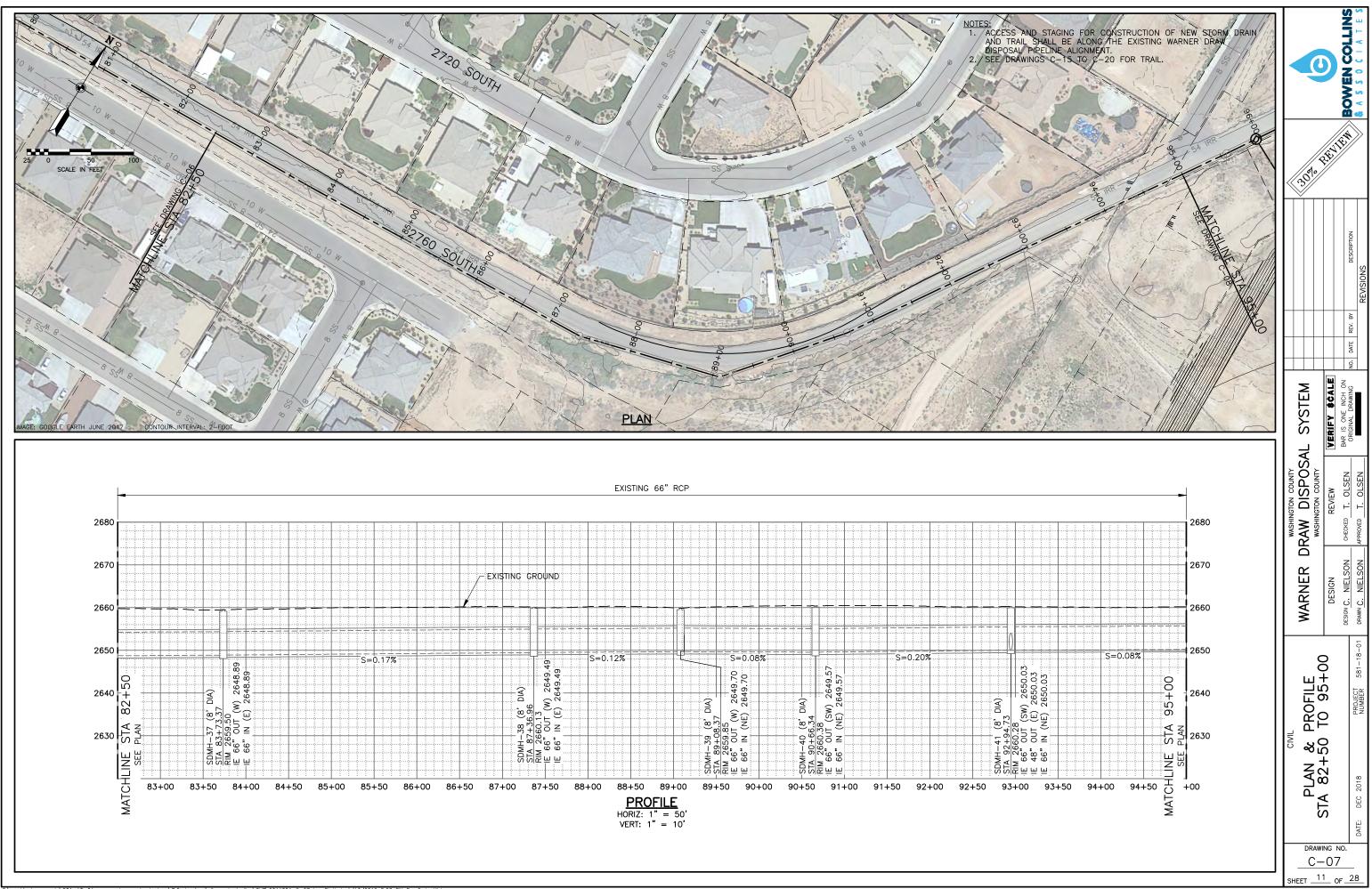


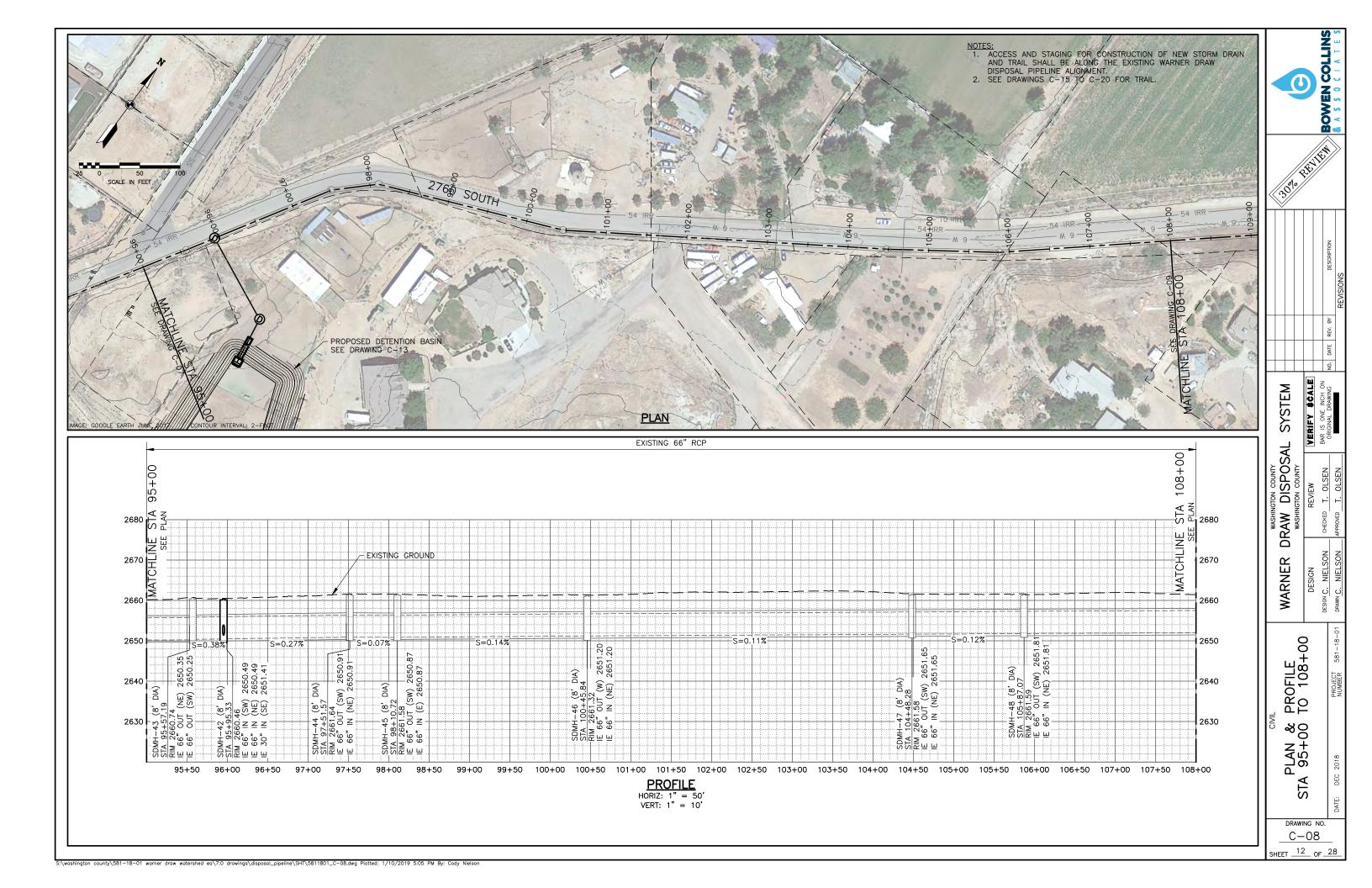


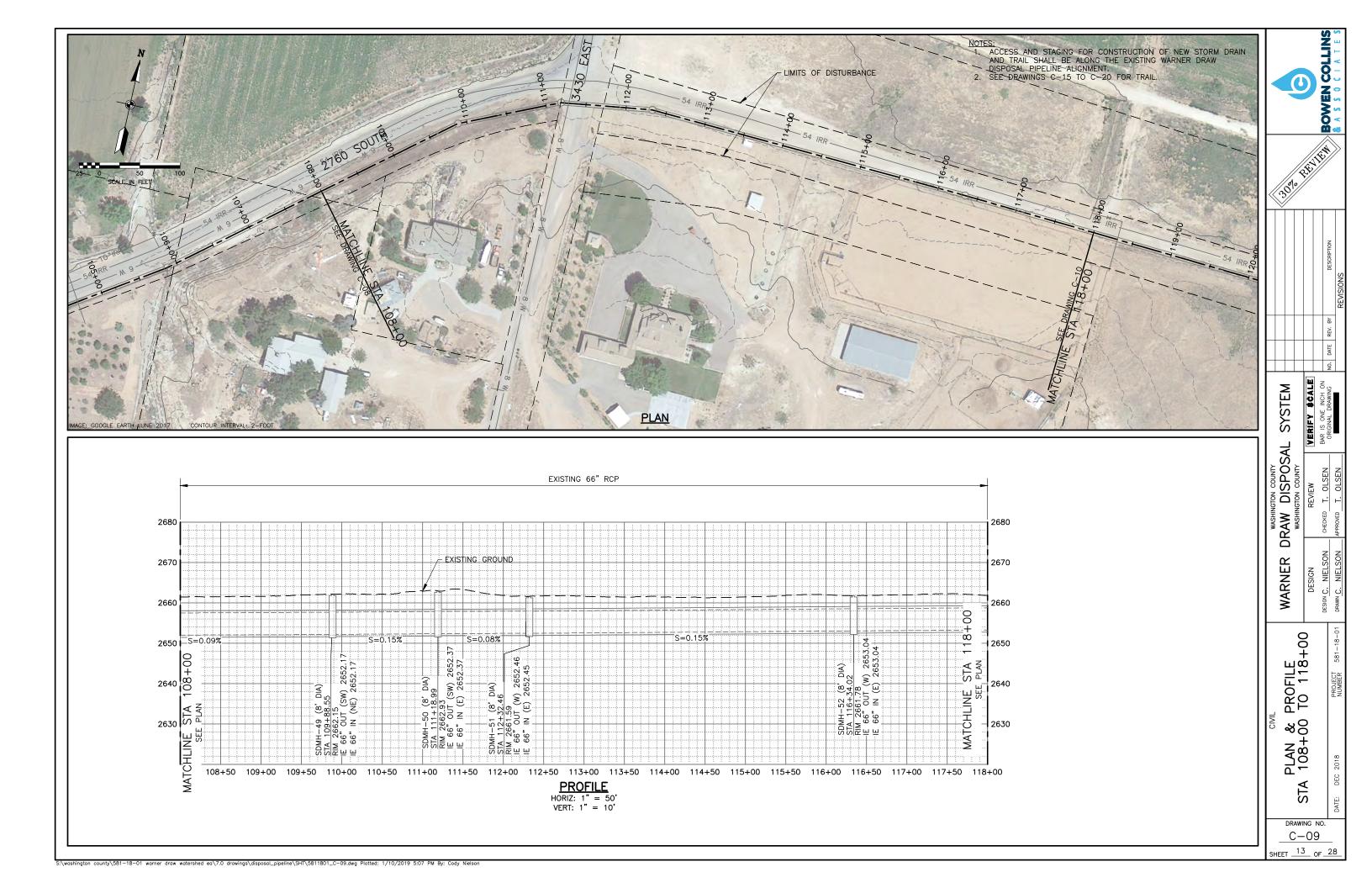


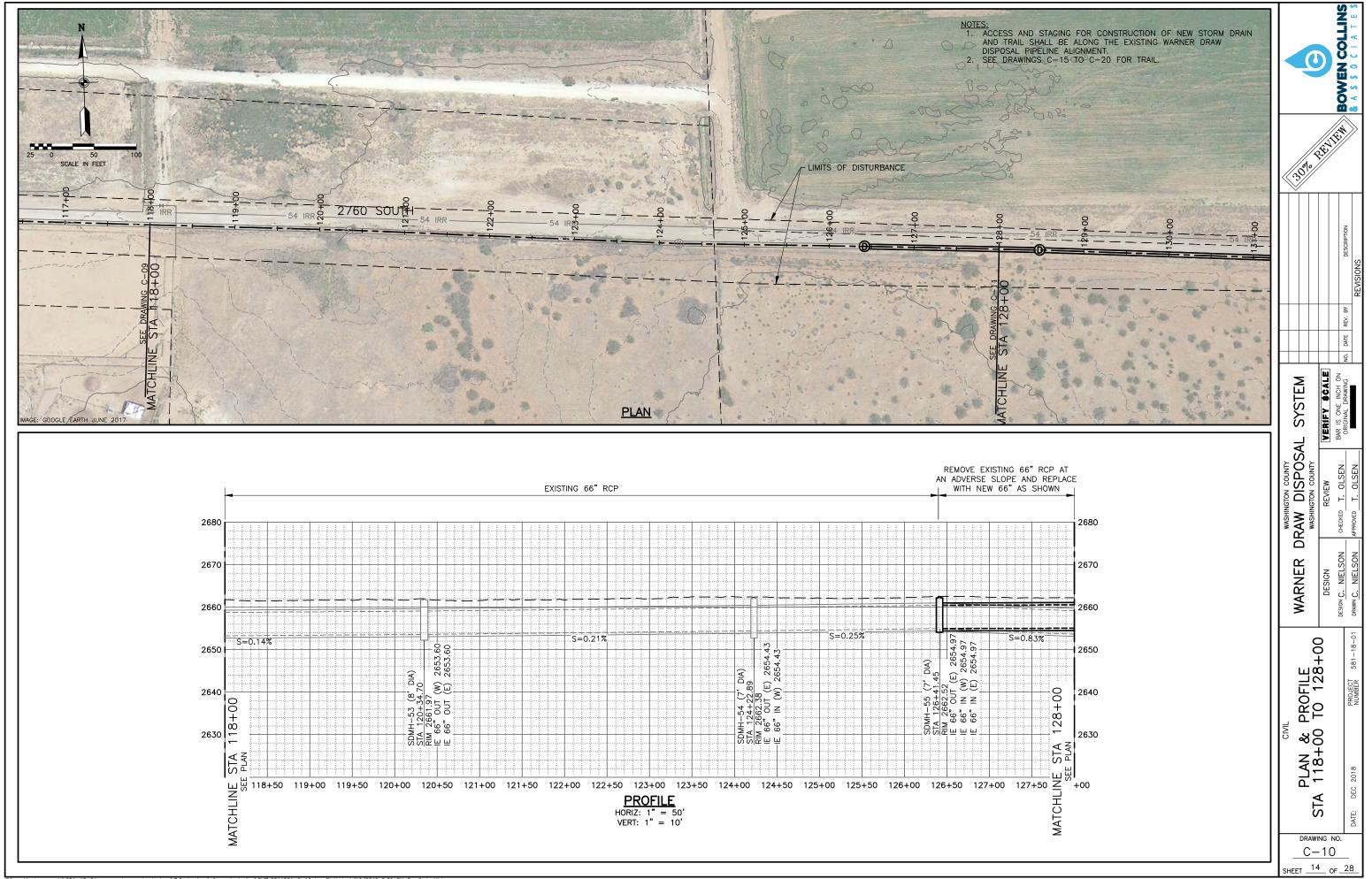


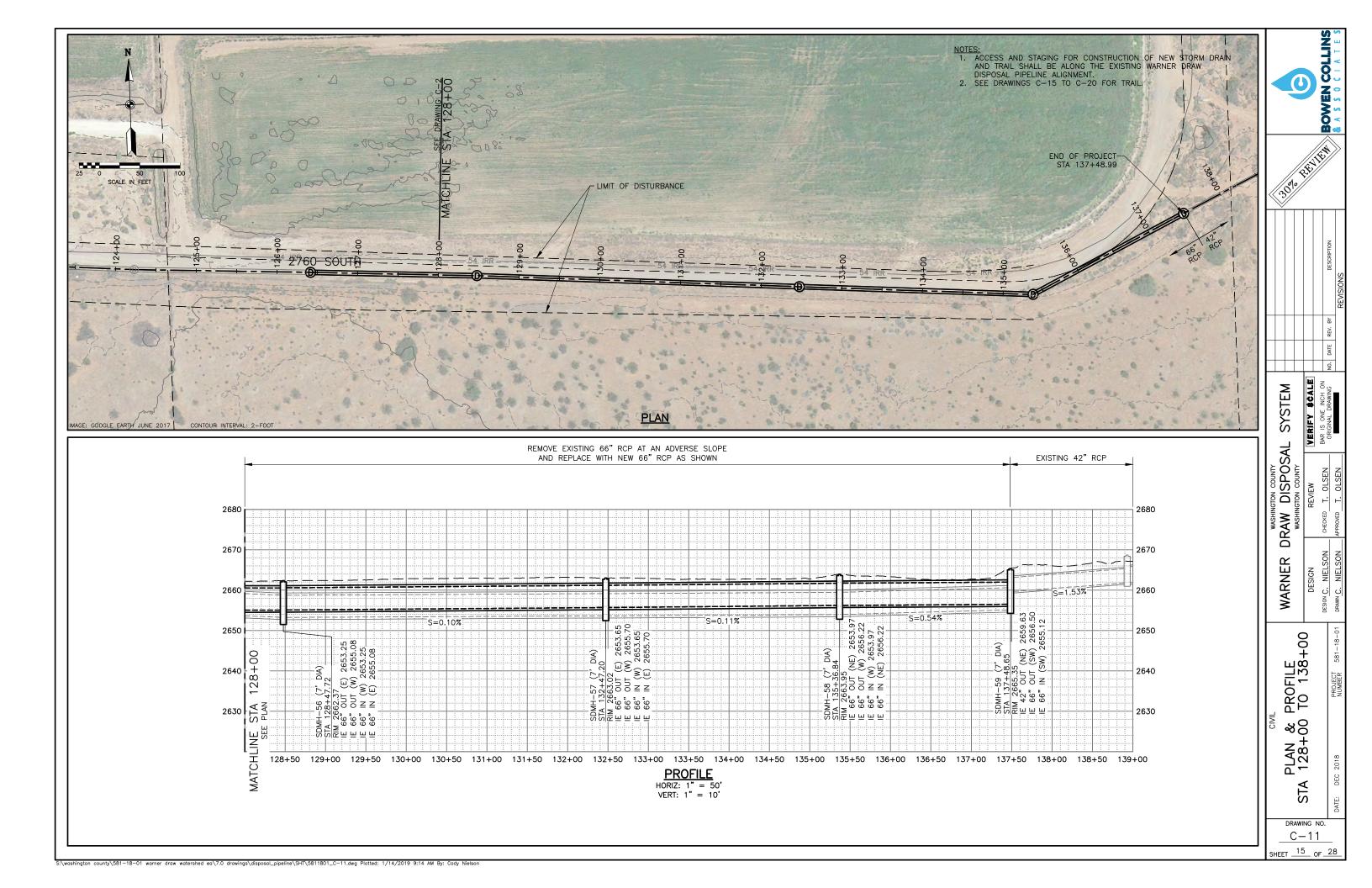


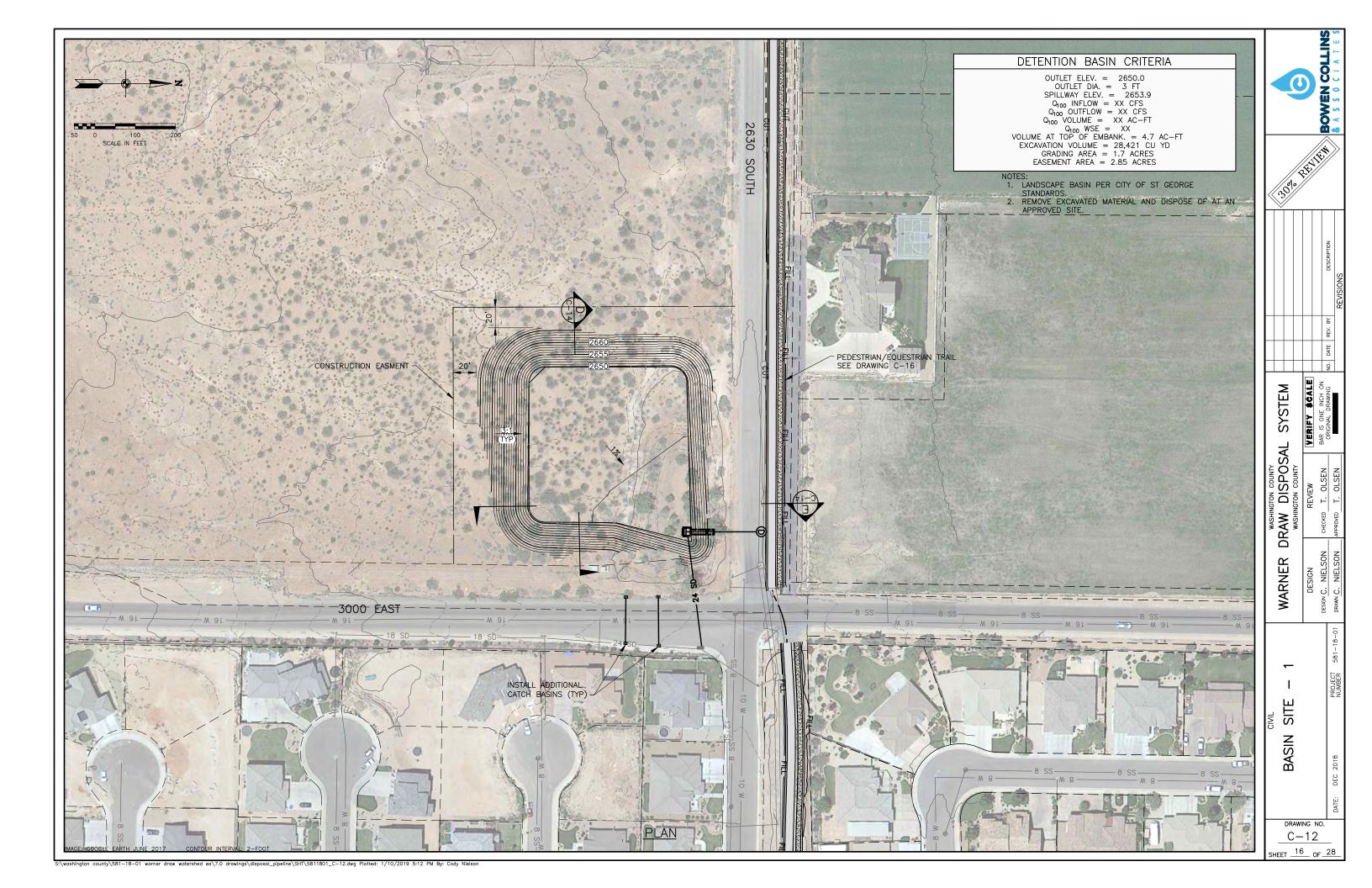


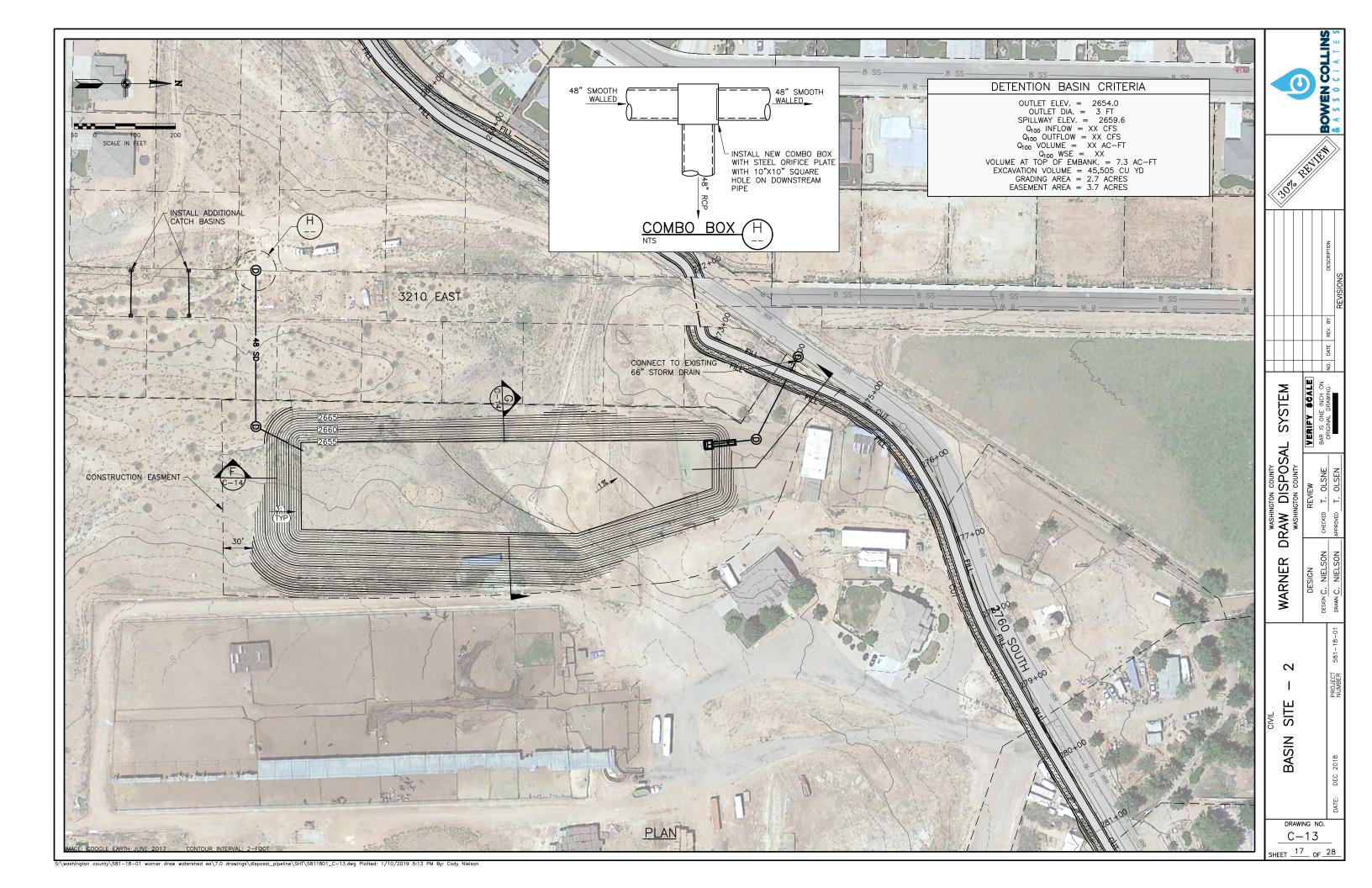


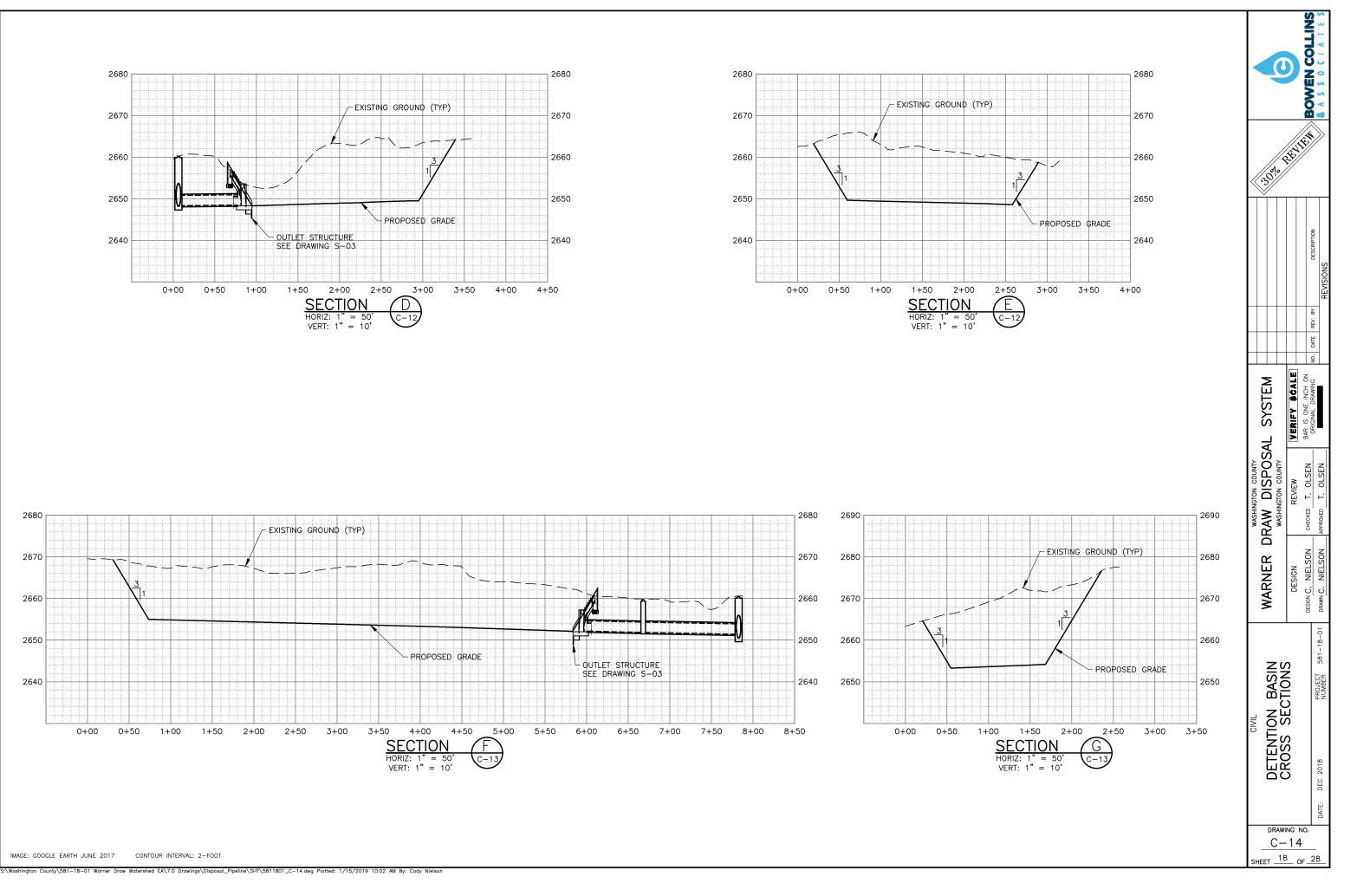


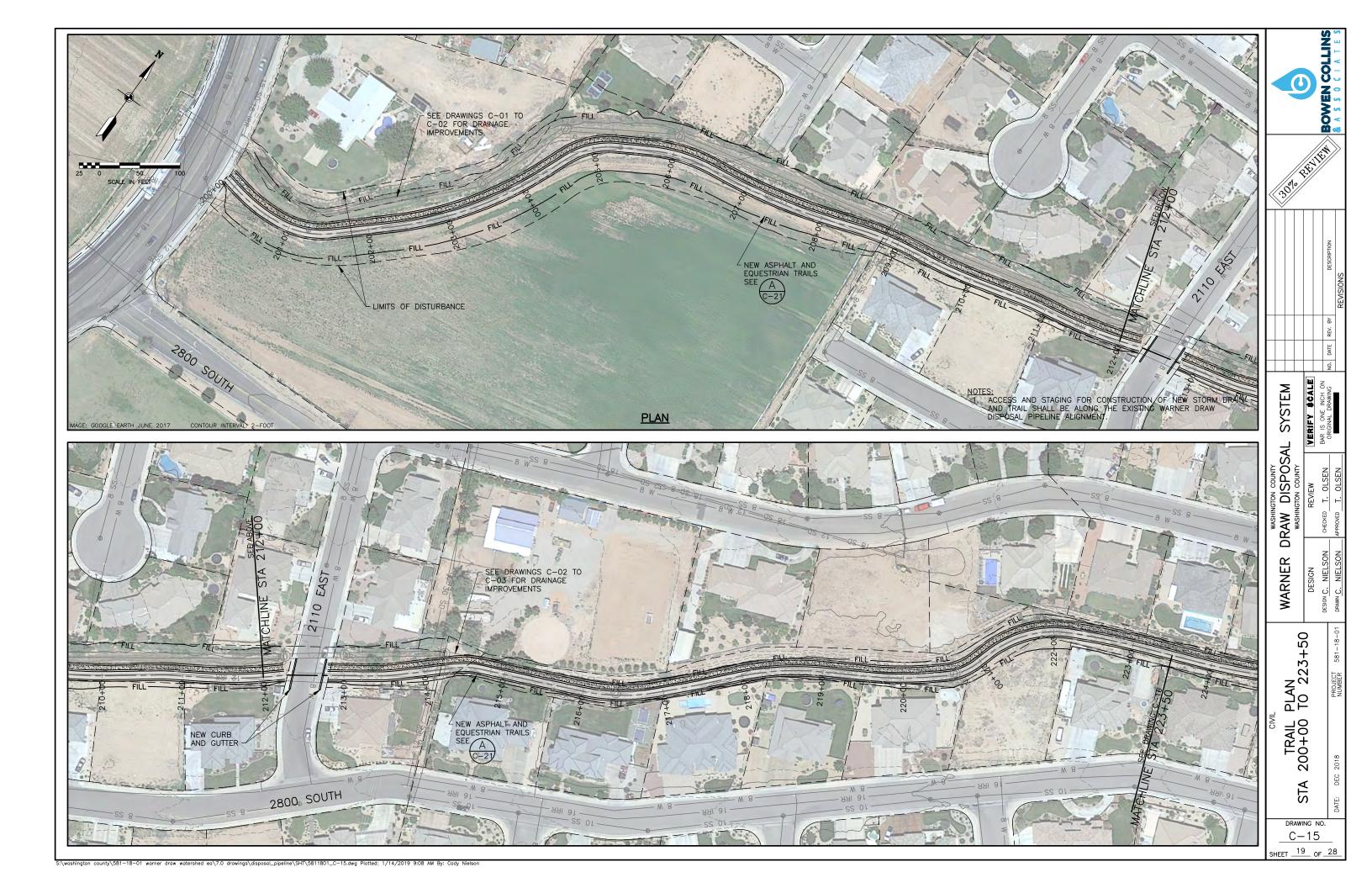


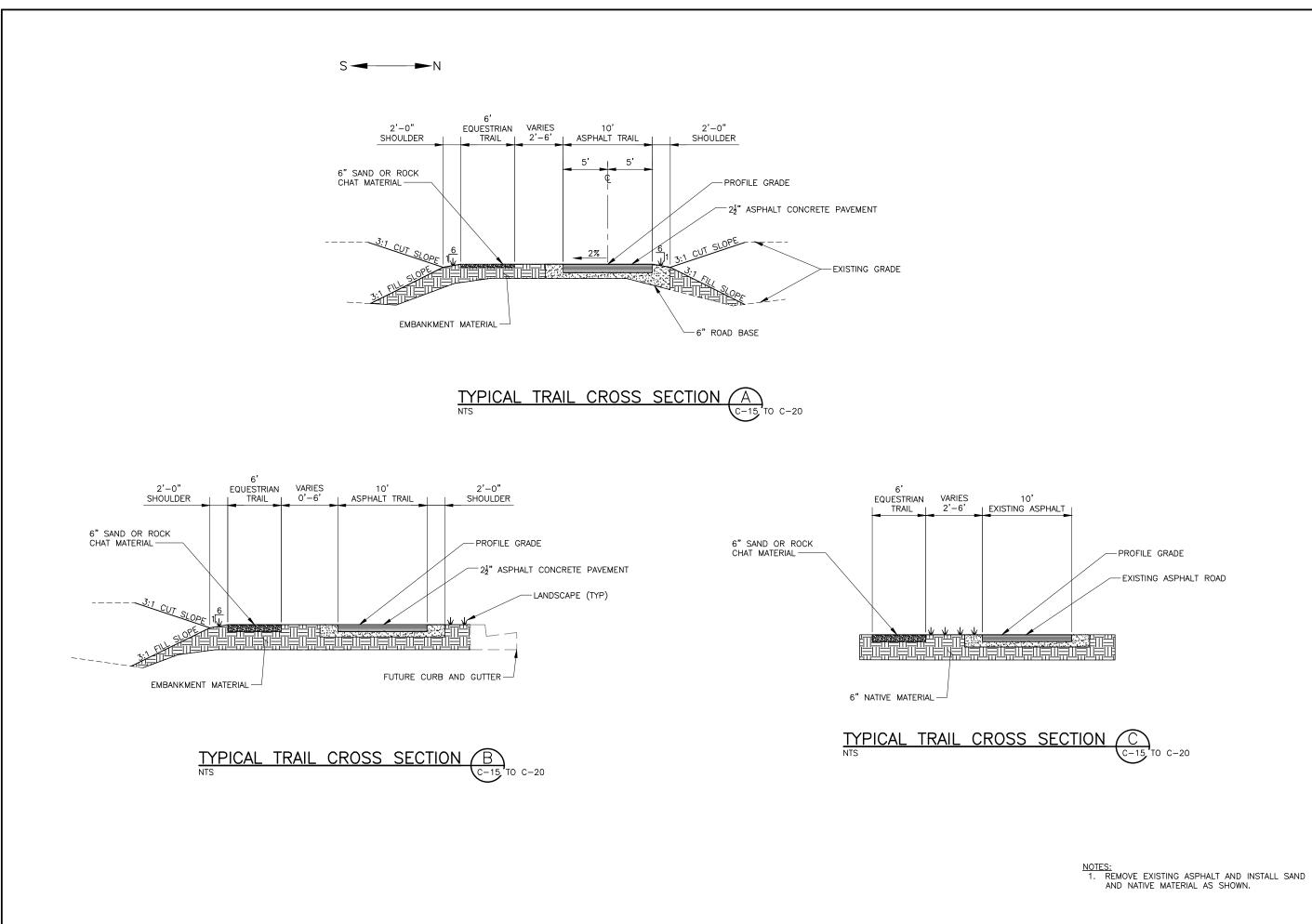

\washington county\581-18-01 warner draw watershed ea\7.0 drawings\disposal_pipeline\SHT\5811801_C-07.dwg Plotted: 1/10/2019 5:03 PM By: Cody Nielso



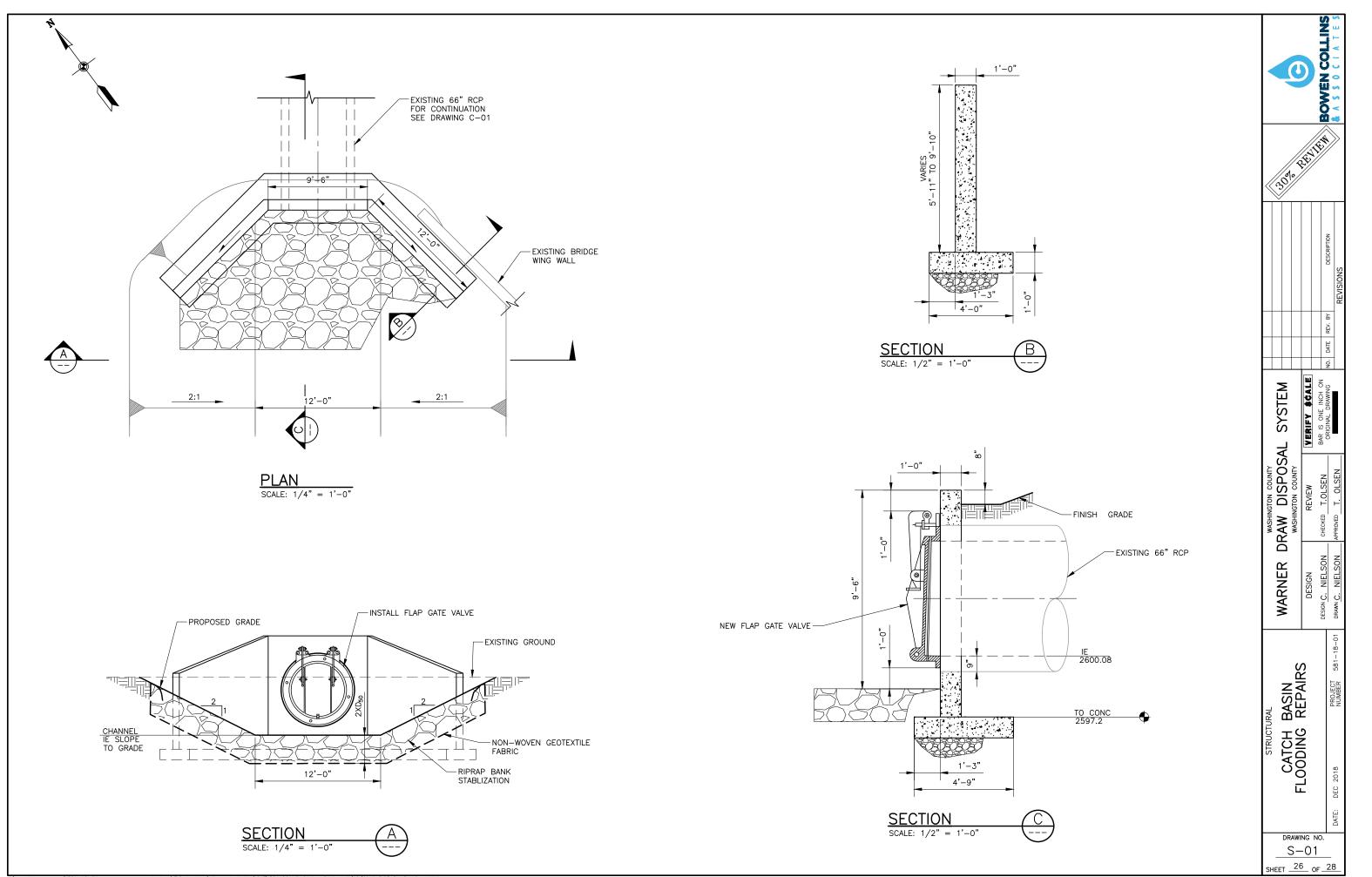


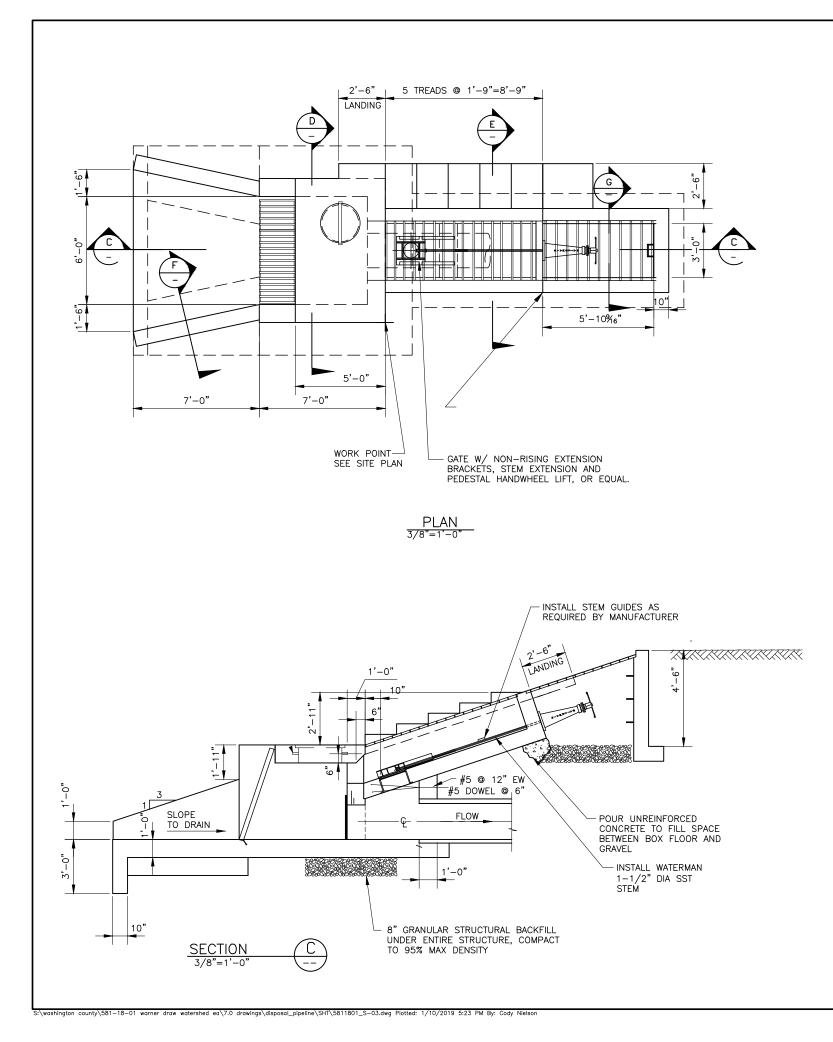


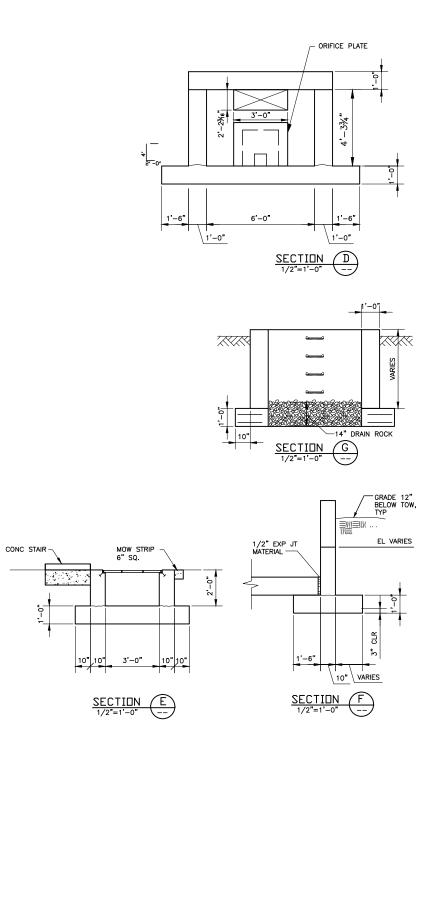

:\washington county\581-18-01 warner draw watershed ea\7.0 drawings\disposal_pipeline\SHT\5811801_C-10.dwg Plotted: 1/10/2019 5:39 PM By: Cody Nie

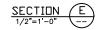


S:\washington county\581-18-01 warner draw watershed ea\7.0 drawings\disposal_pipeline\SHT\5811801_C-17.dwg Plotted: 1/10/2019 5:18 PM By: Cody Niels:

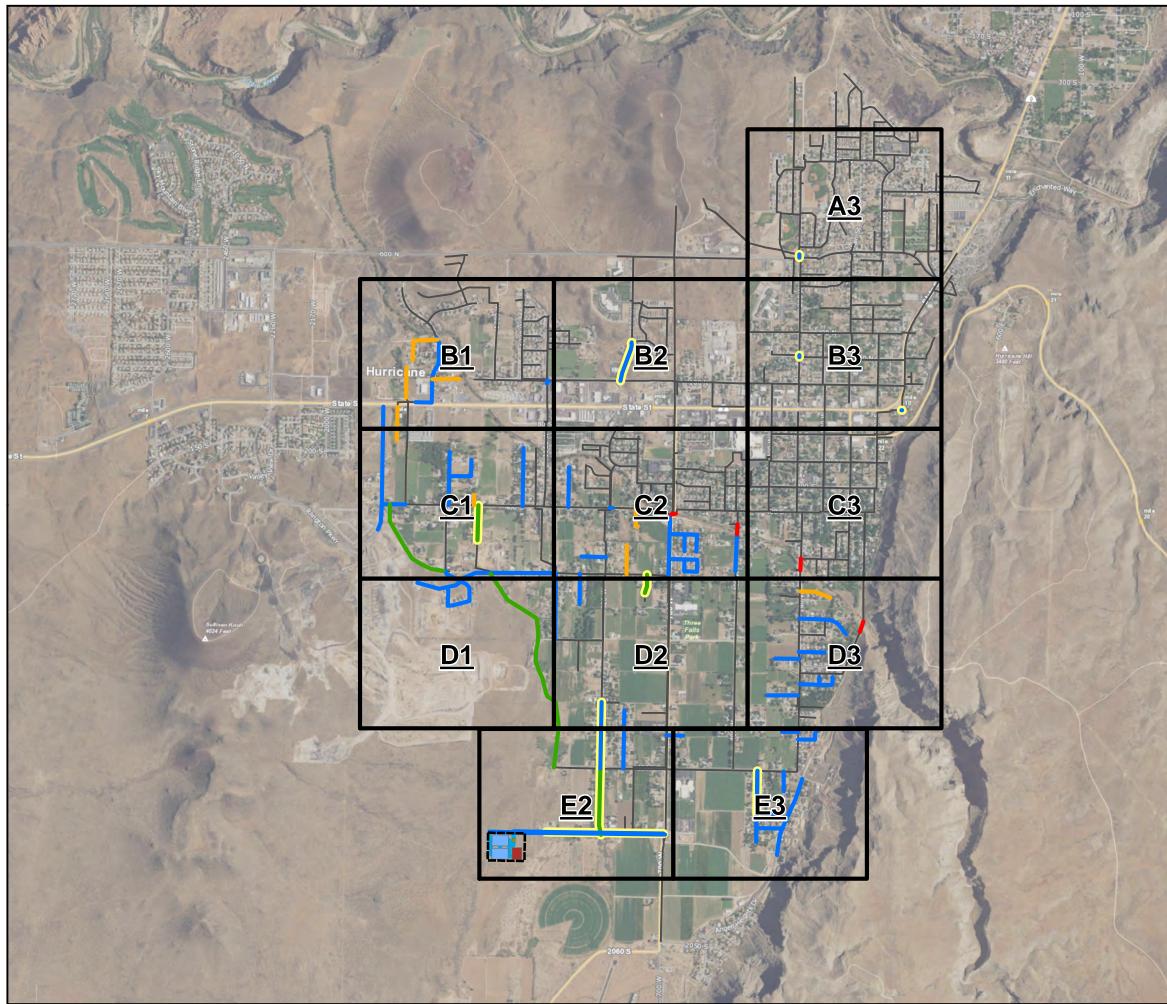


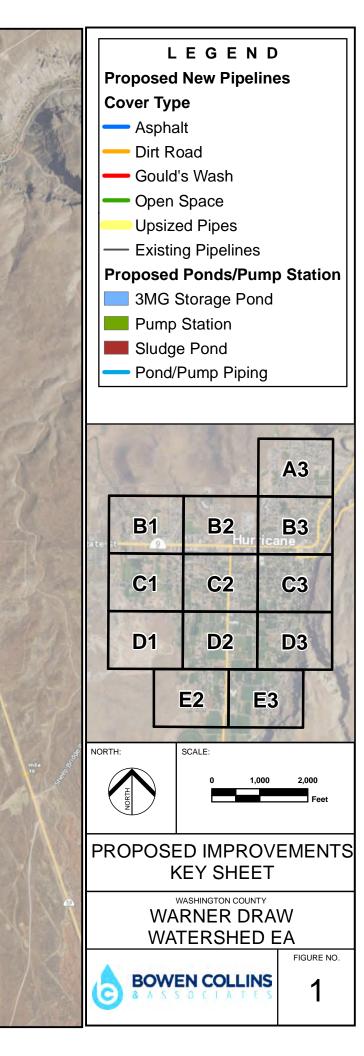






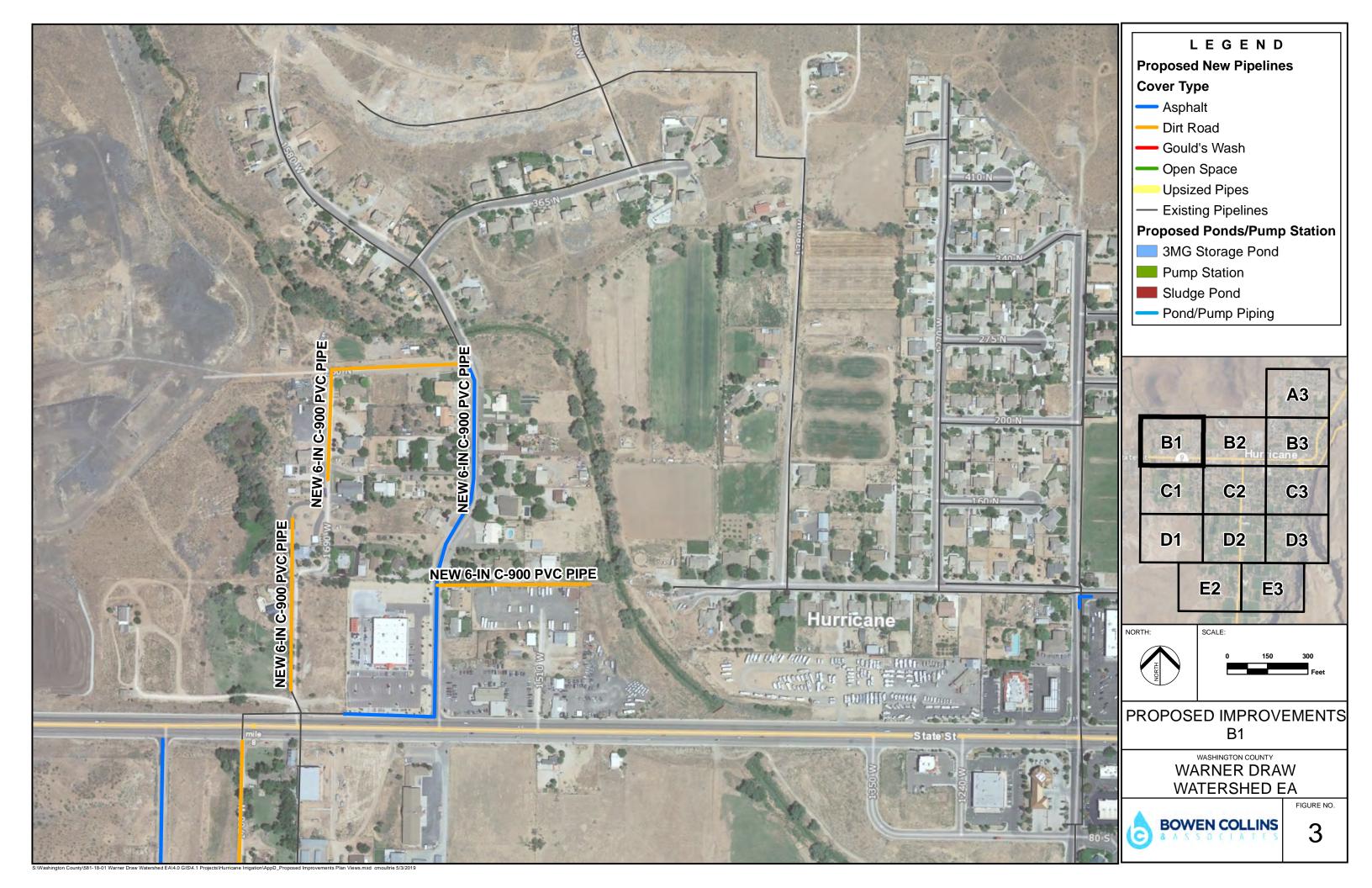
ington county\581-18-01 warner draw watershed ea\7.0 drawings\disposal_pipeline\SHT\5811801_S-01.dwg Plotted: 1/10/2019 5:23 PM By: Cody Niels

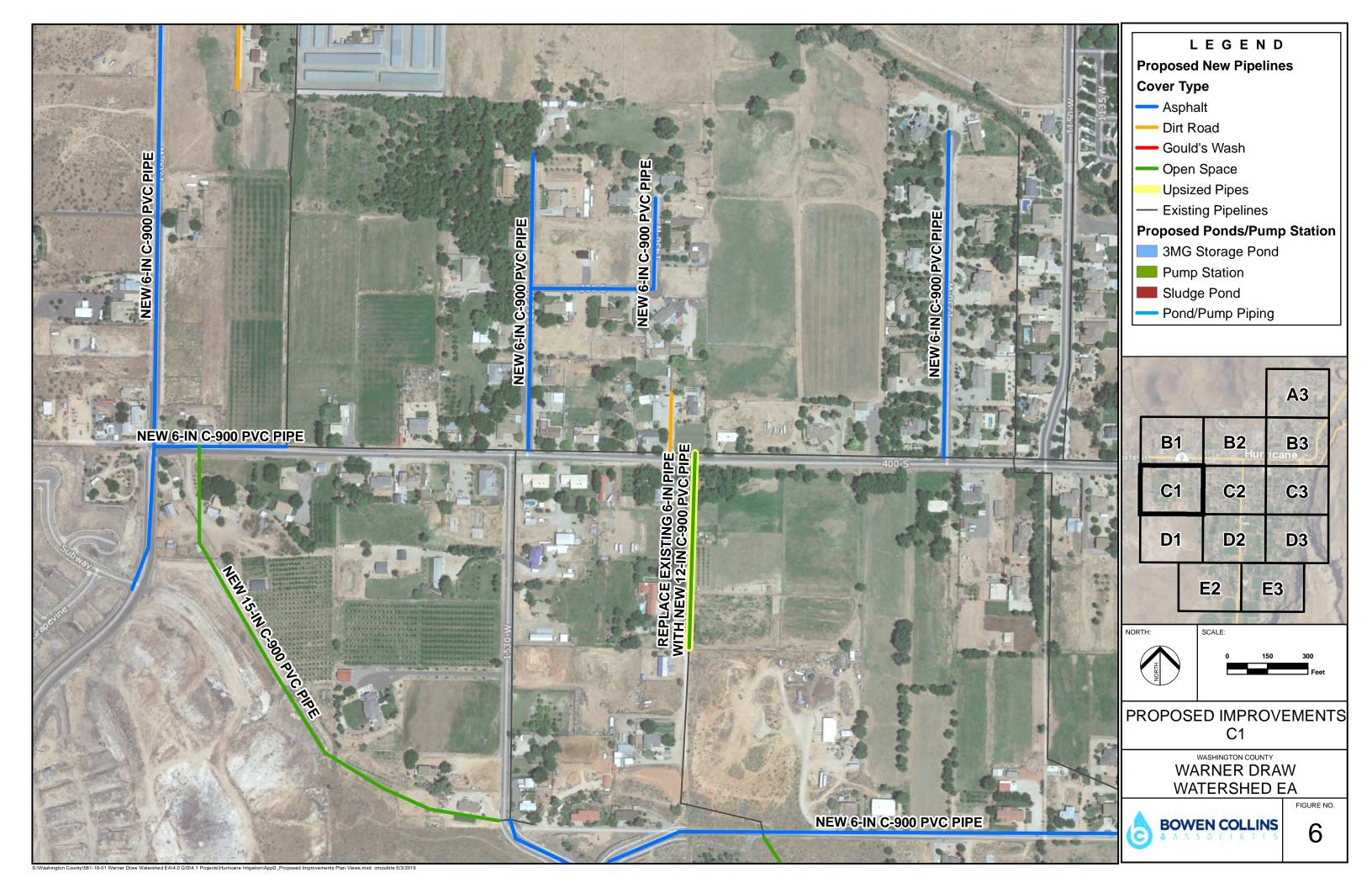


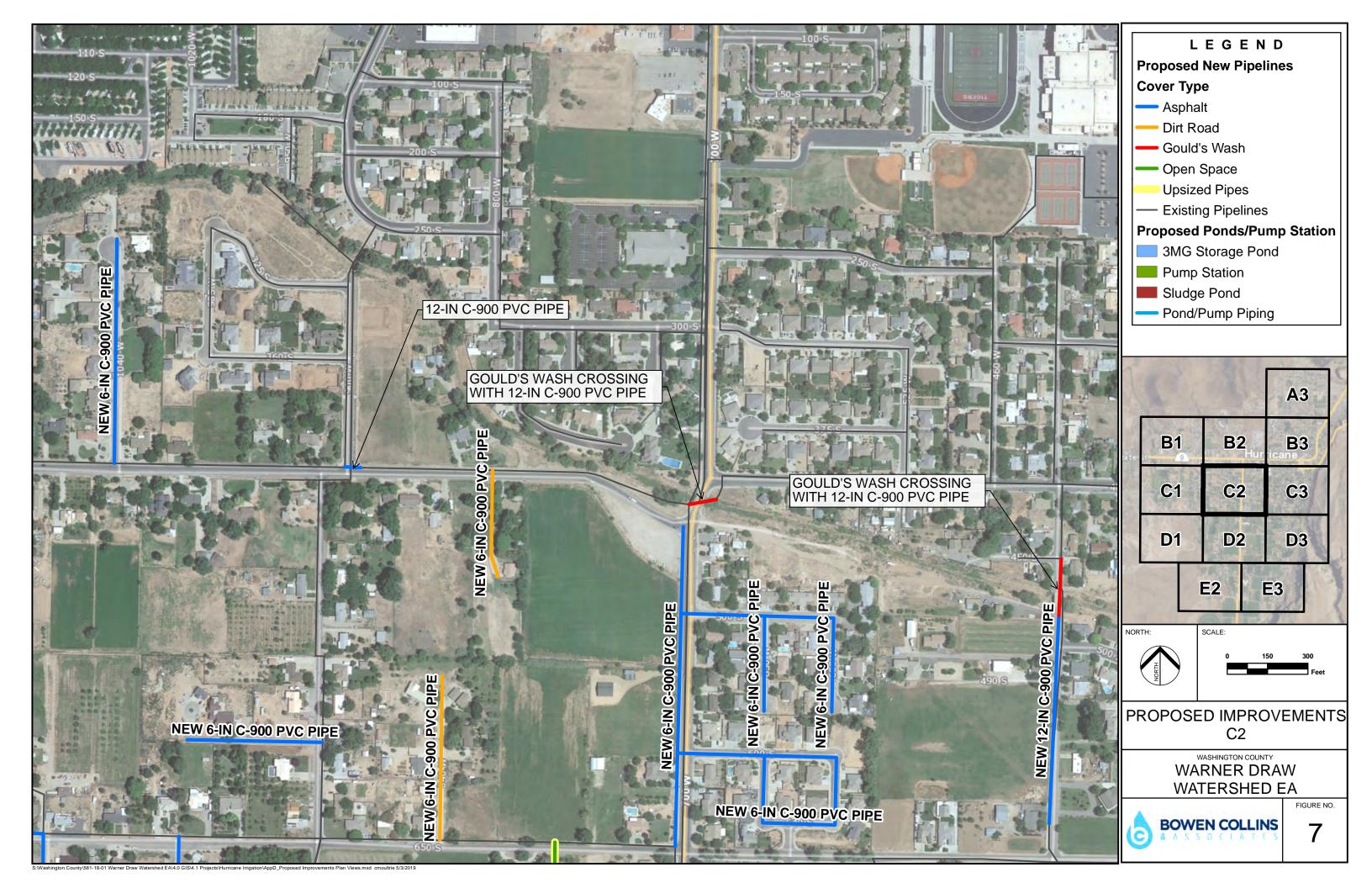


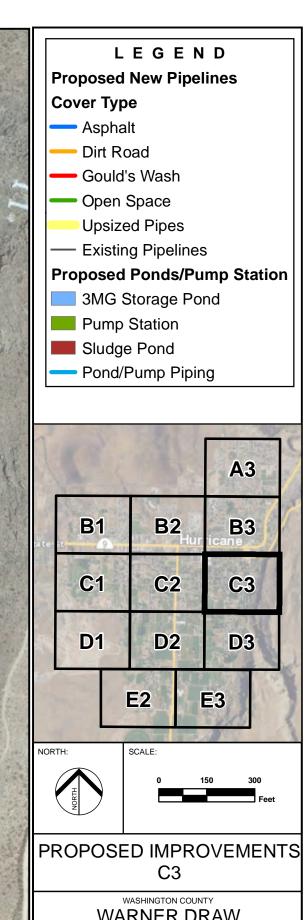
Attachment 5

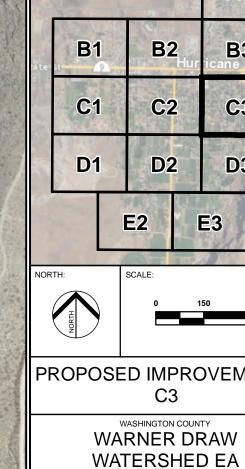
Hurricane Water Efficiency


Preferred Alternative Concept Design Drawings

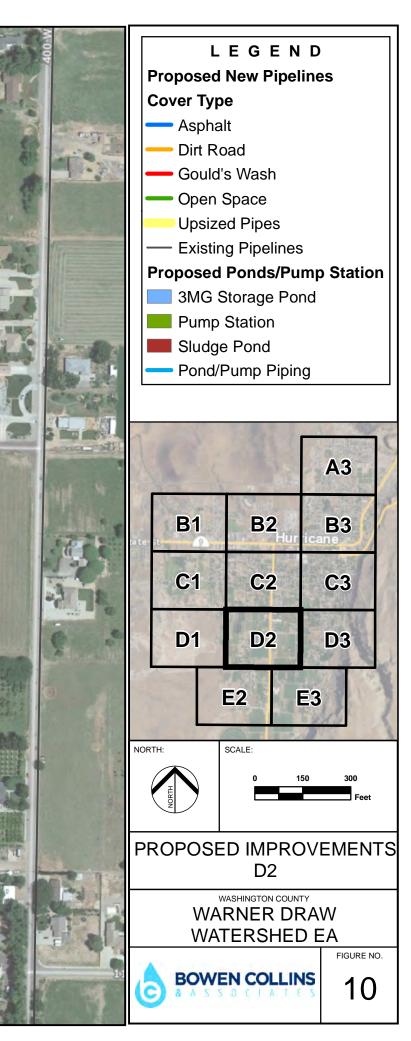

Nashington County\581-18-01 Warner Draw Watershed EA\4.0 GIS\4.1 Projects\Hurricane Irrigation\AppD_Proposed Improvements Plan Views.mxd cmo

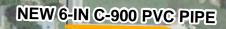





::Washington County\581-18-01 Warner Draw Watershed EA\4.0 GIS\4.1 Projects\Hurricane Irrigation\AppD_Proposed Improvements Plan Views.mxd cmoultrie 5/3

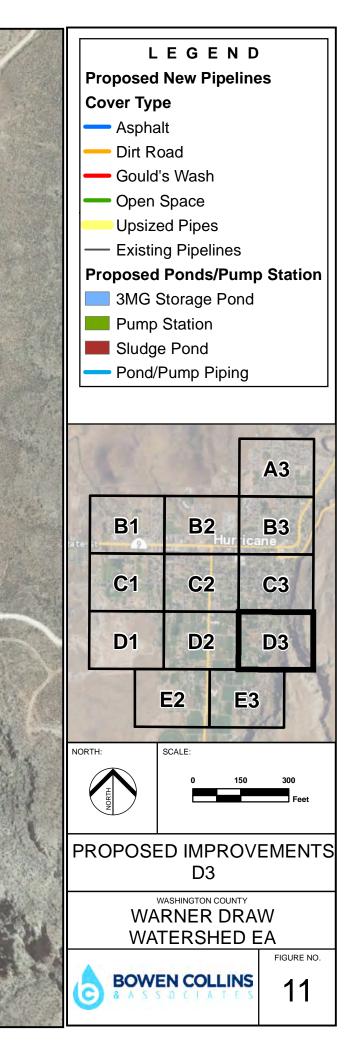
BOWEN COLLINS

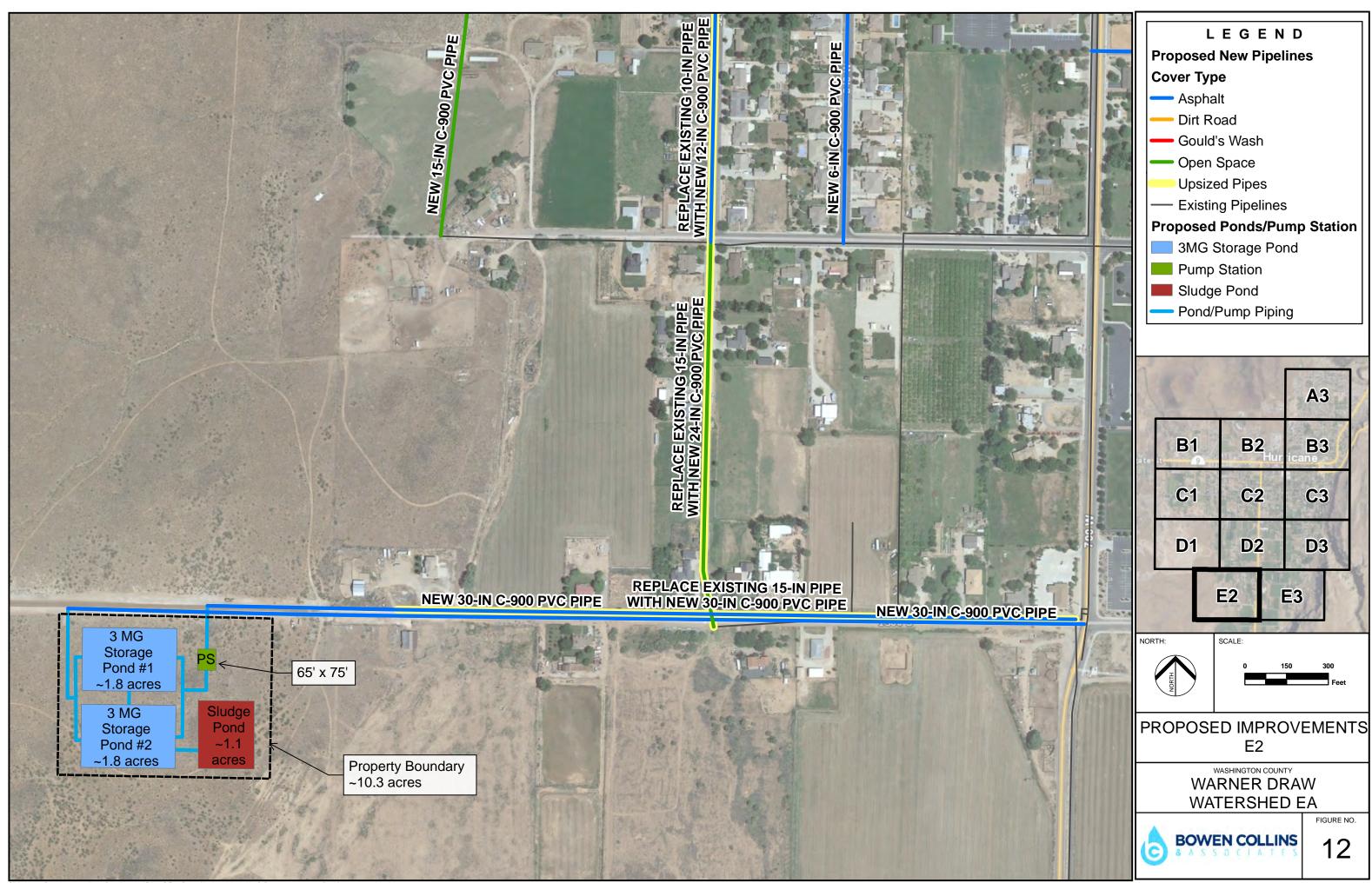

(0


FIGURE NO.

8

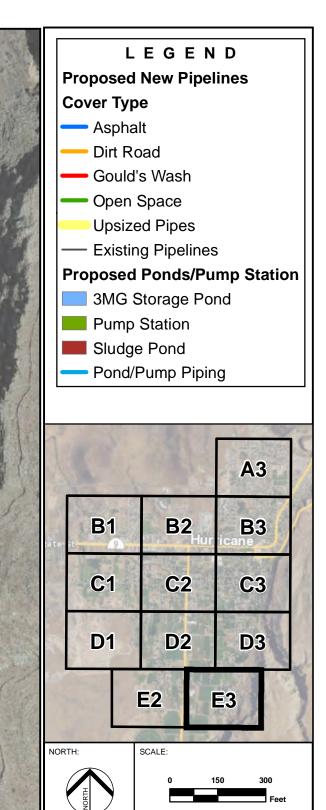
NEW 6-IN C-900 PVC PIPE

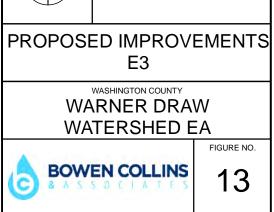

Int stan

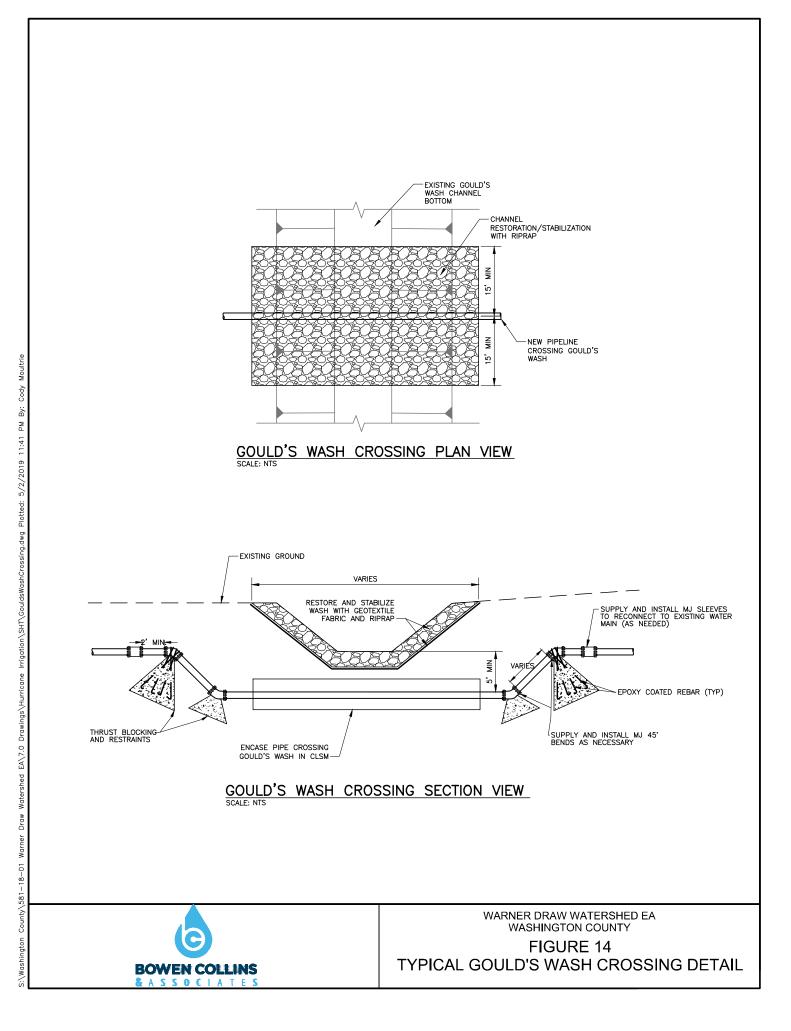

NEW 6-IN C-900 PVC PIPE

GOULD'S WASH CROSSING WITH 12-IN C-900 PVC PIPE

NEW 12-IN C-900 PVC PIPE


81-18-01 Warner Draw Watershed EA\4.0 GIS\4.1 Projects\Hurricane Irrication\AcoD Proposed Improvements Plan Views.mxd cmoultri





Washington County\581-18-01 Warner Draw Watershed EA\4.0 GIS\4.1 Projects\Hurricane Irrigation\AppD_Proposed Improvements Plan Views.mxd cmoultrie 5/3

Attachment 6

CPA 52 Environmental Evaluation

U.S. Department of Agriculture Natural Resources Conservation Ser			A. Client Name:	WCWC Conse	D, Wa		• ·
ENVIRONMENTAL E	VALUATION WORKSHE	ET	B. Conservation Plan Program Author	•		cable):	
The purpose of the project is to improve flood prevention, watershed		Program Authority (optional): C. Identification # (farm, tract, field #, etc. as required): Warner Draw Watershed and Flood Operations Project Washington County, Utah					
E. Need for Action:	H. Alternatives						
agricultural areas of St. George and Washington City; to improve irrigation water delivery efficiency for the existing flood irrigation systems in Hurricane that would also benefit Virgin River water quantities; to expand trail systems for recreation, education, and public safety; and to improve Virgin River ecosystems.	No Action √ if RMS A new public trail would be construct Site 2 (Seegmiller Marsh), a fence in around the Y-Drain at Site 3, and a pedestrian and equestrian trail cons along the Warner Valley Disposal S at Site 4.	ted at nstalled truted ystem	Site 1 (Main Street Debri Construct 2 debris basins Main Street in Washingtor flood prevention to the dow community. Site 2 (Seegmiller Marsh upland adjoining the Virgir Seegmiller Marsh by regra wetlands and conveyance replanting with native eme shrubs, and trees. Extend South trail system by cons additional 4,000 ft long pu educational signage. Prote riparian corridor/marsh eci purchasing a conservation Site 3 (Y-Drain): Pipe the channel section of the Y-E water conveyance and wa provide flood prevention, a safety hazards. Extend the system along the newly pi Site 4 (Warner Valley Dis Improve and increase the the existing disposal syste approximately 13,650-foot flood prevention, improve reduce safety hazards. Co pedestrian and equestrian disposal system alignmen Site 5: Convert portions o from flood irrigation to pre- irrigation to improve water conservation, and delivery	upstream a City to pi wnstream b): Enhance a River ne ading to ac channels rgent plar the Virgin structing a blic trail we ext the ser osystem b a easemer 1,125-foc brain to im ter quality and reducy a existing i ped section sposal Sy capacity of m along a lenth to pi conveyan onstruct a trail along t. f Hurrican ssurized supply,	: of rovide ce the ar dd , and hts, i River n kith nsitive y nt. of open prove ; e trail on. stem): of the an or ovide ce, and g the e City		√ if RMS ∟
	ironmental Concerns: E J. Impacts to Special Enviro			xecutiv	ve Or	ders, policies, et	C.
G. Special Environmental Concerns	No Action	Jimen	Alternativ	e 1		Alternativ	/e 2
(Document existing/ benchmark conditions)	Document all impacts (Attach Guide Sheets as applicable)	√if needs further action	Document all impa (Attach Guide Shee applicable)	acts	√if needs further action	Document all imp (Attach Guide Shee applicable)	acts ^{√ if}
Clean Air Act	No Effect Construction activities are not expected to violate air quality standards, due to the implementation of BMPs and the short duration of construction.		No Effect Construction activities are expected to violate air qua standards, due to the implementation of BMPs a short duration of construct	llity and the			

G. Special Environmental	J. Impacts to Special Enviro	onmen	tal Concerns			
Concerns	No Action		Alternative 1		Alternative 2	
(Document existing/	Document all impacts	√ if	Document all impacts	√if	Document all impacts	√ if
benchmark conditions)	(Attach Guide Sheets as	needs	Attach Guide Sheets as	needs	(Attach Guide Sheets as	needs
,	àpplicable)	further action	applicable)	further action	àpplicable)	further action
	May Affect	action	May Affect	action	-r - · · - /	action
	BMPs, would be implemented to		BMPs, would be implemented to			
Clean Water Act / Waters of the	reduce the quantity of sediment (1)		reduce the quantity of sediment (1)			
U.S.	entering drainages, and (2) flowing		entering drainages, and (2) flowing			
	downstream and violating any		downstream and violating any			
	federal or state water quality rules		federal or state water quality rules			
	and regulations.		and regulations.			
	No Effect		No Effect			_
Coastal Zone Management	Not Applicable		Not Applicable			
	No Effect		No Effect			
Coral Reefs	Not Applicable		Not Applicable			
	No Effect	_	No Effect No Adverse Effect determination	_		
Cultural Resources / Historic	No Adverse Effect determination has been made for project		has been made for project			
Properties	measures and SHPO concurrence		measures and SHPO concurrence			
	has been received.		has been received.			
	May Affect		May Affect			
	A BA is not required and there is		May Affect Not Likely to Adversely			
	increased risk to desert tortoise,		Affect for desert tortoise and May			
	Virgin River chub, wouldfin,		Affect Likely to Adversely Affect for			
	southwestern willow flycatcher,		Virgin River chub, woundfin,			
Endangered and Threatened	and yellow-billed cuckoo with no		Southwestern willow flycatcher,			
Species	avoidance and minimization measures in place.		and yellow-billed cuckoo. A BA was submited to USFWS and and			
	measures in place.		BO issued. The project will comply			
			with avoidance and minimization			
			measures identified in the BO.			
	No Effect		No Effect			_
	No disproportionately high or		No disproportionately high or			
	adverse human health or environmental effects on minority		adverse human health or environmental effects on minority			
Environmental Justice	or low-income populations are		or low-income populations are			
	anticipated. Project actions are		anticipated. Project actions are			
	intended to benefit subject		intended to benefit subject			
	populations.		populations.			
	No Effect		No Effect			
Essential Fish Habitat	Essential fish habitat is not located		Essential fish habitat is not located			
	in or near the project area.		in or near the project area.			_
	No Effect		May Affect			
	There would be no change to		Removes flooding to 162 acres of			┨┍┑╽
	flooding from the existing		land containing 200 residences, 16			
	conditions.		commercial/office buildings, 36			
Floodplain Management			roads, and one major interstate for			
			up to and including a 100-year			
			flood, which provides a long-term benefit that decreases the risk to			
			life and property.			
1			ine and property.			

G. Special Environmental	J. Impacts to Special Envir	onmen	tal Concerns			
Concerns	No Action		Alternative 1		Alternative 2	
(Document existing/	Document all impacts	√if	Document all impacts	√if	Document all impacts	√if
benchmark conditions)	(Attach Guide Sheets as	needs further	(Attach Guide Sheets as	needs further	(Attach Guide Sheets as	needs further
	applicable)	action	applicable)	action	applicable)	action
	May Affect		May Affect			
	This alternative would put the		Similar to the No Action Alternative			
	project area at risk for future		but a Post Construction			
	invasion of noxious weeds and		Rehabilitation Plan (PCRP) would			
	invasive plants. BMPs would be		also be developed. Impacts would			
Invasive Species	implemented to minimize the short-		be minimal with implementation of			
	term impacts associated with construction activities.		BMPs and development of a PCRP. Non-native and N&I plant			
	construction activities.		species would be removed and			
			replaced with native species in			
			sensitive riparian habitat at			
			Seegmiller Marsh.			
	May Affect		May Affect			
	Construction activities have the		Migratory birds and bald eagles			
	potential to destroy nests and		could be present in the project			
	harm or kill species, if present.		area. Preconstruction surveys			
	Impacts to suitable habitat for		would be performed, and spatial			
	migratory birds would be temporary and minor based on		buffers would be established as necessary in coordination with			
	duration of construction,		USFWS and NRCS. Impacts to			
Migratory Birds/Bald and Golden	restoration of disturbed areas, and		migratory birds/bald eagles and			
Eagle Protection Act	abundant suitable habitat in the		associated habitat would be			
	surrounding area.		temporary and minor based on the			
			duration of construction,			
			restoration of disturbed areas,			
			abundant suitable habitat in the			
			surrounding area, and			
			avoidance/minimization measures			
			in place.			
	No Effect There are no protected natural		No Effect There are no protected natural	_		
	areas or Areas of Critical		areas or Areas of Critical			
Natural Areas	Environmental Concern located		Environmental Concern located			
	within the project area.		within the project area.			
	May Affect Approximately 1.96 acres would be		May Affect Approximately 2.82 acres would be			
	temporarily disturbed and 0.53		temporarily disturbed and 0.58			
Prime and Unique Farmlands	acres would be permanently		acres would be permanently			
	disturbed on irrigated lands with		disturbed on irrigated lands with			
	soils designated as "prime		soils designated as "prime			
	farmland if irrigated."		farmland if irrigated."			
	May Affect		May Affect			
	Removal of 0.93 acres of riparian		Removal of 1.04 acres of riparian			
	vegetation would have minor long-		vegetation and adding 5.53 acres	_		
	term impacts.		of new riparian vegetation would			
			take place. Also, 10.35 acres of			
			riparian habitat would be converted to new water and wetland habitat			
Riparian Area			areas. There would be temporary			
			adverse impacts to riparian areas			
			during construction and long-term			
			beneficial impact from the			
			reestablishment of native riparian			
			vegetation and habitat diversity in			
			the riparian corridor.			
	May Affect		May Affect			
	Temporary impacts would occur		Temporary impacts would occur			
	during construction from		during construction from			
	construction disturbance and		construction disturbance and			
Scenic Beauty	construction equipment.		construction equipment.			
	Construction of a new trail system		Construction of a new trail system			
	would offer a long-term benefit from increased opportunity to view		would offer a long-term benefit from increased opportunity to view			
	scenic areas of the Virgin River		scenic areas of the Virgin River			
	-		_			
1	corridor.		corridor.			

G. Special En	vironmental	J. Impacts to Special Environmental Concerns						
Concerns		No Action		Alternative 1		Alternative 2		
(Document exis	0	Document all impacts	√ if needs	Document all impacts	√ if needs	Document all impacts	√ if needs	
benchmark cor	nditions)	(Attach Guide Sheets as	further	(Attach Guide Sheets as	further	(Attach Guide Sheets as	further	
		applicable)	action	applicable)	action	applicable)	action	
		May Affect Removes 0.09 acres of emergent		May Affect Removes 0.13 acres of emergent				
Wetlands		wetland.		wetland and adds 14.23 acres of				
				new wetland.				
		No Effect		No Effect				
Wild and Scenic	Rivers	No Wild and Scenic Rivers are		No Wild and Scenic Rivers are				
		present in or near the project area.		present in or near the project area.				
K. Other Agencies and Broad Public Concerns		No Action		Alternative 1		Alternative 2		
Easements, Pern	nissions, Public	Easements for trails would be need	ed at	Easements with no costs on SITLA	lands			
Review, or Permi				needed at Site 1. Conservation and				
Agencies Consul	ted.	required. Washington City and St. C building/grading permits as necessa	-	easement needed at Site 2. Trail ea and utility easements needed at Site				
		ballang, graanig pormite as noocool	ary.	Easement for pumping facility and	5 1.			
				purchase of water shares needed at Site 5.				
				USFWS Section 7, Section 106, and tribal				
				consultation completed. USACE 40				
				permit, FEMA floodplain map updat	'			
				UDEQ permits, Utah Division of Wa				
				Rights authorization, and county/city permits needed.	/			
Cumulative Effec		Minor short-term cumulative disturb	ance to	Minor short-term cumulative disturb	ance to			
(Describe the cur considered, inclu-		wildlife/special status animal species/migratory birds and habitat if other		wildlife/special status animal species/migratory birds and habitat if other				
present and know				actions occur at the same time and in the				
regardless of who	performed the	same area as the proposed action.		same area as the proposed action.				
actions)		Cumulative increase in recreational facilities would improve recreation		Cumulative long-term beneficial impact that would decrease sediment and flood				
		opportunities over the long-term.		damages within developed areas of				
				Warner Draw Watershed and increa				
				safety to the public. Cumulative incr recreational facilities would improve				
				recreation opportunities over the lor				
				Temporary direct socioeconomic be				
			from additional employment require that may be necessary during const					
				of projects.	addion			
L. Mitigation		None		Measures would be in place for eros	sion			
(Record actions t	o avoid,	None		suface water quality, air quality, nox				
minimize, and co	mpensate)			weeds, wildlife, special status specie				
				migratory birds/bald eagles, hazardo materials, and visual resources.	ous			
M. Preferred Alternative	√ preferred alternative			✓				
	Supporting	Does not meet the pupose and nee the project.	101	Meets the pupose and need for the and results in long-term benefits to	project			
	reason			resources.				
· · · ·		of alternatives analysis)	local	local				
affected interes		must be analyzed in several con	ntexts s	such as society as a whole (hum	an, nat	ional), the affected region, the		
		ledge, the data shown on this	form is	accurate and complete:				
In the case whe	ere a non-NR	CS person (e.g. a TSP) assists v			gnature	block and then NRCS is to sig	n the	
second block to	o verify the inf	ormation's accuracy.		MoMillon Joogha Assariat	6			
Shi Fith			McMillen Jacobs Associate Natural Resources Consulta	6/18/2021				
Signature (TSP if applicable)		Title		Date				
			Title					
If preferred all		ature (NRCS) ot a federal action where NRC	S has d		nis NRC	Date CS-CPA-52 is shared with son	neone	
-		ndicate to whom this is being		• •				

1	The following sections are to be completed by the Responsible Fede	eral Official (RFO)						
NRCS is the RFO if the action is subject to NRCS control and responsibility (e.g., actions financed, funded, assisted, conducted, regulated, or								
approved by NRCS). These actions do not include situations in which NRCS is only providing technical assistance because NRCS cannot								
	control what the client ultimately does with that assistance and situations where NRCS is making a technical determination (such as Farm Bill							
	determinations) not associated with the planning process.							
P. Determinat	ion of Significance or Extraordinary Circumstances questions below, consider the severity (intensity) of impacts in the contexts identified abov	e Impacts may be both beneficial						
	significant effect may exist even if the Federal agency believes that on balance the effect							
	led by terming an action temporary or by breaking it down into small component parts.	win be benenelal. Eighnodriee						
	ANY of the below questions "yes" then contact the State Environmental Liaison as t	there may be extraordinary						
	and significance issues to consider and a site specific NEPA analysis may be requ	ired.						
Yes No								
	 Is the preferred alternative expected to cause significant effects on public health or Is the preferred alternative expected to cause significantly effect using a percentriction of the preferred alternative expected to cause significantly effect using a percentriction of the percen							
	 Is the preferred alternative expected to significantly affect unique characteristics of t proximity to historic or cultural resources, park lands, prime farmlands, wetlands, without the second second							
	critical areas?	In and scenic rivers, or coologically						
	• Are the effects of the preferred alternative on the quality of the human environment							
	 Does the preferred alternative have highly uncertain effects or involve unique or unit 	known risks on the human						
	environment?							
	 Does the preferred alternative establish a precedent for future actions with significant and the preferred alternative establish a precedent for future actions with significant actions. 	nt impacts or represent a decision in						
	principle about a future consideration?							
	 Is the preferred alternative known or reasonably expected to have potentially signific 	cant environment impacts to the						
	quality of the human environment either individually or cumulatively over time?							
	Will the preferred alternative likely have a significant adverse effect on ANY of the s the Evaluation Deceedure Quide Checks to period in this determination. This isolute							
	the Evaluation Procedure Guide Sheets to assist in this determination. This include such as cultural or historical resources, endangered and threatened species, enviro							
	floodplains, coastal zones, coral reefs, essential fish habitat, wild and scenic rivers,							
	areas, and invasive species.	clean air, npanan areas, naturai						
	 Will the preferred alternative threaten a violation of Federal, State, or local law or re 	quirements for the protection of the						
	npliance Finding (check one)							
The preferred		Action required						
		Desument in IID 41 heleuu						
	1) is not a federal action where the agency has control or responsibility.	Document in "R.1" below.						
		No additional analysis is required						
	2) is a federal action ALL of which is categorically excluded from further	Document in "R.2" below.						
	environmental analysis AND there are no extraordinary circumstances as identified	No additional analysis is required						
	in Section "P".							
	3) is a federal action that has been sufficiently analyzed in an existing Agency state,							
	regional or national NEPA document and there are no predicted significant adverse							
environmental effects or extraordinary circumstances.								
	4) is a federal action that has been sufficiently analyzed in another Federal agency's NEDA document (EA or EIS) that addresses the proposed NBCS exting and its offered.							
International text and respenses the proposed NRCS action and its' effects Liaison for list of NEPA documents								
and has been formally adopted by NRCS. NRCS is required to prepare and publish								
	tiering. Document in "R.1" below.							
	applicable to FSA)	No additional analysis is required						
	5) is a federal action that has NOT been sufficiently analyzed or may involve predicted	Contact the State Environmental						
\checkmark	significant adverse environmental effects or extraordinary circumstances and may Liaison. Further NEPA analysis							
	require an EA or EIS.	required.						

R. Rationale Supporting the	he Finding					
R.1		nvironmental Assessment is required for the Wa	arner Draw Watershed and Flood			
Findings Documentation	Operations Project.					
R.2	None					
Applicable Categorical						
Exclusion(s)						
(more than one may apply)						
7 CFR Part 650 Compliance						
With NEPA, subpart 650.6						
Categorical Exclusions states prior to determining that a						
proposed action is categorically						
excluded under paragraph (d) of						
this section, the proposed action						
must meet six sideboard criteria.						
Environmental Concerns, a finding indicated above S. Signature of Responsib	and Extraordinary Circumstance	ource Concerns, Economic and Social s as defined by Agency regulation and	policy and based on that made the			
S	Bignature	Title	Date			
	AC	Iditional notes				