SUBSURFACE DRAIN DATA SHEET

Sketch and nomenclature used in ellipse equation

Where: a = depth from drain to barrier (ft) b = depth from drawdown curve to barrier (ft) d = depth of drain (ft)

- d = depth of drain (ft)
- S = drain spacing (ft)

S = _____ft. from Exhibit 14-10 National Engineering Field Handbook (NEFH) or solve the following equation:

$$S = \sqrt{\frac{4P(b^2 - a^2)}{Q_d}} = \sqrt{\frac{4(...)(...)}{Q_d}} =ft$$

Where: P = hydraulic conductivity, in./hr $Q_d =$ removal rate in./hr a and b = See sketch.

TABULATION OF DATA - EACH DRAIN											
Drain Line No.	Station No.	Elev. Natural Ground	Elev. Drain Invert	Ft. of Fall	Length ^{1/} (ft)	Grade ^{1/} (ft/ft)	Drainage Area (acres)	Drainage Coef. ^{1/} (in/24 hr)	Q Req'd (cfs)	Pipe Size ^{2/} (in)	

 $^{1/}$ See NRCS conservation practice standard Subsurface Drain, Code 606.

^{2/} From Exhibit 14-13 NEFH or compute from equation: $d_i^{8/3} = (Q)(n)$

Designed by:	Date:	
Checked by:	 Date:	
Approved by:	 Date:	