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ABSTRACT: Cross-validated principal component regression (PCR) is widely used in day-to-day operational fore-
casting systems for seasonal river runoff volume in western North America. Complexities are increasing in both
predictor datasets (including climate-science products) and in predictive models employed instead of linear
regression within the PCR framework (including artificial intelligence), potentially complicating cross-validation
for model evaluation. We explored these issues with 300 modeling experiments on two high-impact and hydrocli-
matically diverse basins in the western United States, the Truckee River (Sierra Nevada) and Rio Grande head-
waters (southern Rockies), using five different PCR and PCR-like machine learning models. The results suggest
out-of-sample error is satisfactorily estimated by applying cross-validation to only the final, supervised learning,
step of PCR/PCR-like procedures. The outcome facilitates streamlined algorithms and potentially reduced com-
putational times for more complex emerging model architectures and datasets; provides reassurance around a
possible inability to perform genuinely complete cross-validation when predictors include certain complex and
externally sourced data sources; and may reflect mitigation of overtraining by geophysical process-informed
model development protocols normally used during feature selection in operational water supply forecast (WSF).
The results provide practical guidance helping support the design of next-generation WSF models.

(KEYWORDS: water supply forecasting; water management; statistical modeling; machine learning.)

INTRODUCTION

Water supply forecasts (WSFs) in the western United
States (U.S.) are predictions, issued beginning in win-
ter, of upcoming spring-summer river runoff volume.
Operational WSFs are crucial here for informing water
management, including agriculture, hydropower, flood
planning, ecosystem management, and municipal water
management. Some of these activities are governed by
legal decisions and international treaties, attracting

close scrutiny of WSFs, and even modest WSF accuracy
improvements can yield millions of dollars of benefit per
year for a single basin (e.g., Hamlet et al. 2002). Fur-
thermore, population growth is increasing water
demand, and climate change may reduce manageable
water supply, primarily through warmer winters giving
lower mountain snowpack (see Bureau of Reclamation
2016). Considerations like these have motivated
research to improve WSF skill, and gauging the effec-
tiveness of these modeling developments requires reli-
able measurements of WSF accuracy.

Paper No. JAWR-21-0015-N of the Journal of the American Water Resources Association (JAWR). Received February 9, 2021; accepted
April 30, 2022. © Published 2022. This article is a U.S. Government work and is in the public domain in the USA.. Discussions are open
until six months from issue publication.

National Water and Climate Center, Natural Resources Conservation Service, US Department of Agriculture, Portland, Oregon, USA (Cor-
respondence to Fleming: sean.fleming@usda.gov).

Citation: Fleming, S.W., and D.C. Garen. 2022. “Simplified Cross-Validation in Principal Component Regression (PCR) and PCR-Like
Machine Learning for Water Supply Forecasting.” Journal of the American Water Resources Association 1–8. https://doi.org/10.1111/1752-
1688.13007.

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION JAWRA1

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION

AMERICAN WATER RESOURCES ASSOCIATION

https://doi.org/10.1111/1752-1688.13007
https://doi.org/10.1111/1752-1688.13007
http://crossmark.crossref.org/dialog/?doi=10.1111%2F1752-1688.13007&domain=pdf&date_stamp=2022-05-15


Leave-one-out cross-validated (LOOCV) principal
component regression (PCR) is one of the most preva-
lent techniques in production systems used by gov-
ernment agencies and other organizations tasked
with producing WSFs operationally (e.g., Fleming
and Gupta 2020). It was adapted to WSF by the U.S.
Department of Agriculture Natural Resources Con-
servation Service (NRCS) to facilitate linear regres-
sion modeling under predictor multicollinearity
(Garen 1992; James et al. 2013). It has since been
widely adopted for operational WSF in the U.S. and
Canada, and as a WSF modeling tool in hydrology,
snow, and climate research (e.g., Eldaw et al. 2003;
Hsieh et al. 2003; Risley et al. 2005; Regonda, Raja-
gopalan, and Clark 2006; Regonda, Rajagopalan,
Clark, and Zagon 2006; Kennedy et al. 2009; Perkins
et al. 2009; Moradkhani and Meier 2010; Oubeidillah
et al. 2011; Rosenberg et al. 2011; Gobena et al. 2013;
Najafi and Moradkhani 2016; Harpold et al. 2017;
Lehner et al. 2017; Fleming and Goodbody 2019; Gla-
bau et al. 2020). PCR contains two separate proce-
dures: principal component analysis (PCA) to project
(typically, multicollinear) input data into a new coor-
dinate system where the variables are mutually
uncorrelated, that is, unsupervised learning for fea-
ture extraction; followed by classical stepwise linear
regression modeling using these time series as poten-
tial predictors, that is, supervised learning for feature
selection and predictive modeling. For several rea-
sons, out-of-sample skill is estimated by LOOCV,
which experience has shown to be reliable in WSF
applications (for details see, e.g., Garen 1992; Pagano
et al. 2004; Rosenberg et al. 2011; Lehner et al. 2017;
Fleming and Goodbody 2019).

However, data-driven WSF methods are evolving
with the appearance of more complex and diverse
suites of predictors and more sophisticated predictive
models. Some of this growth complicates the forego-
ing picture of what PCR is, how to deploy it for WSF,
and how to perform cross-validation in a meaningful
and efficient manner.

Consider five examples, which we return to below.
Hsieh et al. (2003) used PCA to extract hemispheric-
scale climate information from datasets consisting of
time series of tropical Pacific sea surface temperature
anomaly data at each location in a large-scale grid; a
second, separate PCA, of gridded watershed-scale
precipitation data, to obtain an index of initial soil
moisture conditions; and several existing indices of
large-scale climate variability from publicly accessible
databases. These diverse analytical products were
gathered to form a predictor pool for an artificial neu-
ral network (ANN)-based predictive WSF model. Car-
rier et al. (2013) developed a support vector machine-
based WSF model, using as predictors a combination
of instrumental climate indices and reconstructed

(tree ring-derived) paleoclimate metrics, both
extracted from existing climate-science community
databases. Fleming and Goodbody (2019) introduced
a WSF metasystem in which six statistical and
machine learning prediction models each received an
individually optimal feature set, derived from raw
input precipitation and mountain snowpack data by
PCA and a stochastic global search algorithm, along
with algorithms to enforce a priori physicality con-
straints. Rosenberg et al. (2011) employed standard
linear PCR for WSF, but used as predictors the high-
dimensional output of a physics-based spatially dis-
tributed snow model. Our fifth example is Gobena
and Gan (2010), who used long-range forecasts from
a seasonal numerical climate model as predictive
input to a robust M-regression-based WSF model.

A question that arises with these more involved
emerging WSF frameworks is whether cross-
validation is required across the entire PCR process
(i.e., beginning with sample removal in the raw input
dataset), as is common practice for classical linear
PCR in conventional WSF applications, or if it is suf-
ficient to perform cross-validation solely on the super-
vised learning (predictive modeling) portion of the
process. The former is straightforward when a con-
ventional PCR-in-WSF workflow is used, but it grows
cumbersome, nuanced, inefficient, or even infeasible
for more complex and sophisticated predictor sets
developed through elaborate features engineering or
derived in turn from other models.

The above examples illustrate some of these poten-
tial complications. The intricate, domain expertise-
driven manual features engineering employed by
Hsieh et al. (2003) could be clumsy to automate in a
cross-validation process. Though Carrier et al. (2013)
did not explicitly use PCR or PCA in their WSF model-
ing procedure, publicly available paleoclimate recon-
structions and instrumental climate indices they used
as inputs are developed in turn by climate scientists
who often use PCA or PCR behind the scenes in their
own data processing (e.g., Mantua et al. 1997; Cook et
al. 1999). Another issue is the potential naivete of the
cross-validation procedure. Consider the heavily pro-
cessed gridded climate data used by Hsieh et al.
(2003), paleoclimate reconstructions used by Carrier
et al. (2013), or seasonal numerical climate model fore-
casts used by Gobena and Gan (2010). These are end
products of extensive studies performed by third-party
subject-matter experts and, being climate models and
data, naturally contain complex internal dynamical
structure. Leaving out one sample at a time of the
resulting time series when using it as a potential
input among others in WSF PCR model development
and testing may only superficially be LOOCV. To truly
exclude information from that sample time when
building an out-of-sample model during WSF cross-
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validation, one might instead have to recreate the
input climate data products as if information at that
sample time had never existed at any point in the ana-
lytical processes used to create them, for example, as
if the tree-ring width corresponding to a particular
year had never been measured, and then repeating for
every sample time. Doing so is generally infeasible.
Still another question is whether PCA on much
higher-dimensional input datasets, such as the snow
model in Rosenberg et al. (2011), may grow computa-
tionally intensive enough to appreciably slow the iter-
ative cross-validation procedure. Similarly, the
multiple semi-independent modeling system optimiza-
tions in Fleming and Goodbody (2019) are sufficiently
time-consuming to require parallel computing, and
reduction in CPU time could be advantageous. Still
another potential consideration is the role of machine
learning in place of conventional linear regression in
PCR, as in Hsieh et al. (2003), Carrier et al. (2013),
and Fleming and Goodbody (2019). This changes the
fundamental goal of PCR-like modeling: multicolli-
nearity is not usually considered problematic per se
for supervised machine learning, and PCA is used
instead primarily to reduce input data dimensionality,
giving a more parsimonious, regularized, interpret-
able, and efficiently trained artificial intelligence.
Additionally, given the greater potential vulnerability
of machine learning to overtraining in the absence of
adequate regularization procedures, one might
hypothesize that in PCR-like machine learning appli-
cations, discrepancies between in-sample and cross-
validated performance might be mainly attributable to
overtraining in the artificial intelligence, not the PCA.

All things considered, there are several reasons to
consider estimating out-of-sample WSF skill by only
subjecting the regression or regression-like portion of
the PCR or PCR-like modeling process to cross-
validation. But how much validity may be lost from esti-
mates of forecast accuracy? Addressing this question is
useful for informing WSF best practices going forward.

DATA AND METHOD

A data matrix, X = xm,n contains standardized
observations of M predictive variables at N sample
times (in operational WSF systems, these are typically
annual time series of observational precipitation and
snow data at various locations, see below). As per
standard applications of PCR to WSF, unrotated PCA
is performed on X to ultimately obtain a scores matrix,
A = am,n, containing the PC time series for each of M
PCA modes at N times; these scores time series are by
construction mutually uncorrelated and are used as

candidate features in regression or machine-learning
predictions of the vector of streamflow volumes at the
corresponding N sample times, q = qn.

Out-of-sample estimates of this best-fit model’s pre-
diction error were then estimated by cross-validation.
Two scenarios were considered. In (1) full LOOCV, a
sample for a given time is dropped from X and q,
PCA is re-performed and the supervised learning
model is re-fit, a prediction is made with that new
model using input data from the sample time omitted
during its construction, and the process is repeated
for all other sample times to create a length-N
LOOCV q estimate used as the basis for calculating
fit metrics like root mean square error (RMSE) and
coefficient of determination (R2). In (2) supervised
learning-only LOOCV, the process is identical except
A is calculated only once, during initial model devel-
opment using all the data; during cross-validation,
one sample at a time is omitted from this set of PCA-
derived features when forming the re-fitted suite of N
cross-validation sub-models and length-N LOOCV q
time series. These scenarios are summarized, for a
given set of retained inputs and PCA modes, in Algo-
rithms 1 and 2 below.

We applied both scenarios to two forecast points in
the NRCS operational WSF system, (1) the Truckee
River at Farad (Sierra Nevada snowmelt-fed outlet of
Lake Tahoe) and (2) the Rio Grande near Del Norte
(headwater location in the southern Rocky Mountains
fed by snowmelt and minor spring-summer rainfall).
Predictive inputs were SNOTEL observations of
wintertime-to-date accumulated precipitation and
forecast-date SWE; antecedent streamflow is addi-
tionally used for the Truckee. We considered early-
season (January 1, for Rio Grande) and late-season
(April 1, for Truckee) forecast issue dates. The target
was U.S. Geological Survey (USGS) streamgage mea-
surements of flow volume accumulated over the
established primary management periods of April–
September for Rio Grande and April–July for
Truckee, with adjustments by NRCS to approxi-
mately naturalize flows, that is, correct for with-
drawals and other local-scale water management
processes. Data over a standard N = 30 hydroclimatic
normal period (1986–2015) were employed.

This overall setup corresponds to existing opera-
tional PCR models at NRCS and elsewhere, helping
ensure relevance to practical WSF applications. Simi-
larly, our predictor variate choices and dataset sizes
(M = 25 for Truckee, 10 for Rio Grande) closely
reflect those in the current NRCS PCR models for
these locations (e.g., Garen 1992; Perkins et al. 2009;
Gobena et al. 2013; Fleming and Goodbody 2019).
Tables S1 and S2 provide further details of these
datasets, which are publicly available from NRCS
(2021).
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For both scenarios at both forecast points, we per-
formed the following model-fitting exercises: (1) using
all input variables and the resulting leading PCA
mode as a predictor; (2) using all input variables and
corresponding PCA modes 1 through 4 as predictors;
and (3) using a genetic algorithm to optimize feature
selection, spanning both input variable and

corresponding PCA mode choices, and retaining up to
two modes, a practical choice given that in operational
WSF practice most PCR models retain only one or two
PCA modes (see discussion below). Where a genetic
algorithm is used, min(LOOCV RMSE) was the cost
function, though other choices are of course possible.
For instance, NRCS WSF modeling procedures have

Algorithm 1: Scenario 1 (full) LOOCV procedure
Step 1   Assemble available n = 1,N samples of target qn and of m = 1,M input variables at the 
              same N times, xm,n
Step 2   Perform PCA on input variables

Step 2a   Standardize each length (N) input time series to zero mean and unit variance 
                    on the basis of its sample mean and variance and combine into data matrix, X

Step 2b   Calculate correlation matrix, C = N-1 X XT

Step 2c   Find eigenvectors E of C, and scores matrix A = ET X for N samples and M modes
Step 3   Train predictive model on A and q

Step 3a   Select subset of PCA modes in A to use as predictive features, A’ = am,n, m ∈
                    (1,2,…,M), n = 1,N
    Step 3b   Train a supervised learning algorithm, f, to predict expectation values of target, 
                    <q> , from A’
Step 4   Obtain out-of-sample predictive error estimate by leave-one-out cross-validation

Step 4a   For each t=1,N calculate expectation value of target, <qt> , using a supervised 
                    model retrained on all data except those from tth sample

Step 4a(i)     Create data subset leaving out one sample, LOOqn = qn ∀ n ≠ t and LOOxm,n = 
                              xm,n ∀ n ≠ t
        Step 4a(ii)    Standardize each length (N-1) input variable time series to zero mean and 
                              unit variance on the basis of its sample mean and variance, and combine 
                              into  LOOX  
        Step 4a(iii)   Calculate correlation matrix, LOOC = (N-1)-1  LOOX LOOXT

Step 4a(iv)   Find eigenvectors LOOE of LOOC, and scores matrix LOOA = LOOET  LOOX
        Step 4a(v)    Create features matrix by selecting the same PCA modes from LOOA as 
                             retained in Step 3a, LOOA’ =  LOOam,n, m ∈ (1,2,…,M), n = 1,N-1
        Step 4a(vi)   Train predictive model, LOOf, on LOOA’ and LOOq

Step 4a(vii)  Retrieve left-out observational data, CVqt = qn=t and CVxm,t = xm,n=t
        Step 4a(viii) Standardize the left-out sample for each of the M input variables, CVxm,t , 
                              using sample means and variances of  LOOxm,n found in Step 4a(ii), and 
                              combine into CVX

Step 4a(ix) CVA’ = LOOET CVX using the same modes m ∈ (1,2,…,M) retained in Steps 
                             3a and 4a(v) and the same LOOE calculated in Step 4a(iv)
        Step 4a(x)    Estimate <CVqn=t> using model, LOOf , forced by the features in CVA’

Step 4b   Obtain performance measures (RMSE, R2) by comparing <CVq> and q time series    

Algorithm 2: Scenario 2 (partial) LOOCV procedure
Step 1   Assemble available n = 1,N samples of target qn and of m = 1,M input variables at the 
              same N times, xm,n
Step 2   Perform PCA on input variables
    Step 2a   Standardize each length (N) predictor time series to zero mean and unit variance 
                    on the basis of its sample mean and variance and combine into data matrix, X 
    Step 2b   Calculate correlation matrix, C = N-1 X XT

    Step 2c   Find eigenvectors E of C, and scores matrix A = ET X for N samples and M modes
Step 3   Train predictive model on A and q
    Step 3a   Select subset of PCA modes in A to use as predictive features, A’ = am,n, 
                    m∈(1,2,…,M), n=1,N
    Step 3b   Train a supervised learning algorithm, f, to predict expectation values of target, 
                    <q> , from A’
Step 4   Obtain out-of-sample predictive error estimate by leave-one-out cross-validation
    Step 4a   For each t=1,N calculate expectation value of target, <qt> , using a supervised 
                    model retrained on all data except those from the tth sample
        Step 4a(i)     Create subset of target and selected features leaving out one sample, LOOqn = 
                              qn ∀ n ≠ t and LOOA’= A’ ∀ n ≠ t, where A’ is the original scores matrix 
                             found in Step 3a
        Step 4a(ii)    Train predictive model, LOOf, on LOOA’ and LOOq
        Step 4a(iii)   Retrieve observational data for target and selected features at the left-out 
                              sample time, CVqn=t and CVA’ = A’ for n = t only
        Step 4a(iv)   Estimate <CVqn=t> using model, LOOf , forced by features, CVA’
    Step 4b   Obtain performance measures (RMSE, R2) by comparing <CVq> and q time series     
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historically used in-sample standard error during
model development, including PCA mode selection,
reserving LOOCV procedures for robustly reporting
expected out-of-sample prediction performance for the
finalized model and generating corresponding predic-
tion intervals (e.g., Garen 1992). However, using
cross-validated prediction error for PCA mode selec-
tion is more consistent with general statistics-
community usage of PCR (e.g., James et al. 2013).
This approach tends to yield a smaller number of
retained modes and a more parsimonious model that
is less likely to be overtrained; such considerations
grow still more important when nonlinear machine
learning prediction algorithms are substituted for lin-
ear regression, as is increasingly common practice.

Further, the entire foregoing process was repeated
using each of five different prediction models within
the overall PCR structure: (1) linear regression (i.e.,
classical PCR), (2) quantile regression, (3) random
forests, (4) a support vector machine, and (5) a feed-
forward error-backpropagation ANN. Algorithms, reg-
ularization steps, and other hyperparameters and
procedures were generally as described in Fleming
and Goodbody (2019); these steps are complex, and in
the interest of conciseness, readers are referred there
for further details. Fleming et al. (2021) provide addi-
tional details around the properties and performance
of these five specific WSF models. Ten reruns were
performed in each instance and the results were
pooled, to account for stochasticity in several of the
supervised learning procedures (e.g., random initial
weights with nonlinear optimization in neural net-
work training) and the evolutionary algorithm-based
feature selection (e.g., random gene mutations).

RESULTS AND DISCUSSION

Outcomes from the 300 resulting models were
broadly similar. Figure 1 gives a representative
example; the remainder is provided in Figures S1–
S12. As expected for any model of any type that is fit
or calibrated to observational data, prediction error
typically increases from in-sample to out-of-sample
estimates. The size of that gap varies across forecast
locations and dates and the predictive modeling
method. In any given case, however, out-of-sample
error estimates are virtually indistinguishable
between the two cross-validation scenarios.

This conclusion may initially be surprising. Fea-
tures available to the supervised learning step are
calculated in the unsupervised learning step. In prin-
ciple, using a slightly different dataset in each PCA
during cross-validation should lead to fluctuations in

PCA outcomes, which ought in turn propagate to the
best-fit predictive model structure and parameters
and thus, presumably, net predictive error.

That in practice this does not appear to be a signif-
icant effect is, however, intuitively consistent with
other considerations. Cross-validated RMSE and R2

correspond by definition to predictive models, like lin-
ear regression, feed-forward error-backpropagation
ANNs, and the like. In contrast, PCA is not a predic-
tive model having predictive errors per se. Rather, it
is a decomposition of data into orthogonal basis func-
tions, loosely akin to a Fourier transform, for exam-
ple; and similarly, the original data can be fully
reconstructed from these basis functions with no
error. Notwithstanding variants developed for differ-
ent tasks like missing data imputation, PCA is funda-
mentally a means for finding structure in data, not
predicting data. While in PCR and PCR-like models,
only a subset of PCA modes is retained as regression
predictors and therefore some of the information in
the original data is lost, this decision to keep or dis-
card specific PCA modes reflects a standard question
of feature selection in the subsequent predictive
modeling step (e.g., classical forward stepwise linear
regression modeling, or evolutionary algorithm-
guided feature selection in a support vector machine).
Consequently, it seems intuitively reasonable to treat
PCA as an offline data pre-processing step that does
not benefit from cross-validation the way the subse-
quent regression or regression-like step does. As
noted above, this distinction seems still more relevant
when the regression-like step uses highly flexible
nonlinear machine learning techniques, which can be
more vulnerable to overtraining. The wider statistical
literature tends to confirm that cross-validation is
most clearly meaningful for supervised learning
tasks; it can be performed for unsupervised learning
methods like PCA, but in that case, its interpretation
is more subtle, theoretical and practical complications
can be significant, and the best approach may be
unclear (e.g., Bro et al. 2008).

Our result may also reflect established best prac-
tices for WSF applications of PCR and their ramifica-
tions for regularization. User protocols are typically
in place at operational institutions for WSF model
development. This injection of WSF-specific subject-
matter expertise represents an often-underdiscussed,
but typically valuable, human component of all real-
world operational WSF systems (Weber et al. 2012;
Wood et al. 2020). These protocols emphasize judi-
cious PCA mode selection with an eye to geophysical
interpretability, effectively corresponding to a form of
theory-guided data science (Karpatne et al. 2017).
Specifically, the final models usually retain only
the leading PCA mode, which is (given typical WSF
predictors like those used here) a convenient
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watershed-scale index of observed winter climate con-
ditions, or occasionally the first two modes, where the
second often captures aquifer-stream interactions;
only very rarely is a third retained (e.g., Fleming et
al. 2021). These restrictive a priori decisions on num-
ber of PCA modes retained provides, in effect, a geo-
physically informed limit to overtraining potentially
occurring in the unsupervised learning portion of the
PCR procedure. Such basic geophysical signals can in
general be reliably extracted from available SNOTEL
and naturalized USGS data using PCA of environ-
mental records sampled over a standard hydrocli-
matic normal period or something similar. That is,
typical WSF practice of using about three decades of
data yields stable PCA-derived signal estimates. This
was confirmed in practice: for the first one or two
PCA modes, for instance, eigenvectors were typically

very similar, and often almost identical, between the
full dataset and the 30 length N � 1 datasets con-
structed during cross-validation in the scenario (1)
models.

As a corollary, we observed that differences
between in-sample and cross-validated (either full or
partial) WSF errors are larger as more PCA modes
are retained. That is, relative to using only the lead-
ing mode as a predictor, using all of the first four
modes improved in-sample but worsened out-of-
sample performance. This finding has practical impli-
cations for whether to use in-sample or cross-
validated errors for PCA mode selection in WSF, as it
suggests the former will lead to retention of more
modes (due to lower in-sample error) and ultimately
an overtrained solution (captured by higher out-of-
sample error). As noted above, using cross-validated

FIGURE 1. Illustrative example of results: root mean square error (kaf) for 50 models developed using five supervised learning methods
with principal component analysis predictor data pre-processing for Rio Grande January 1 water supply forecast using genetic algorithm-
based feature selection. SL leave-one-out cross-validated (LOOCV) refers to cross-validation on the supervised learning (SL) portion of the
principal component regression (PCR) or PCR-like modeling process; full LOOCV is cross-validation across both unsupervised and supervised
steps. Outcomes are similar for R2. Details vary substantially between supervised modeling techniques, modeling runs, and forecast locations
and dates. However, general relationships between SL and full LOOCV are generally consistent across all 300 models.
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regression error as the basis for PCA mode selection
is also consistent with general statistics community
practice. However, this does not imply that historical
NRCS and other PCR implementations using in-
sample regression error to select PCA modes gave
overtrained models, because accompanying model
development protocols force geophysically based and
conservative PCA mode selections (see above). It is
well-recognized that truncating PCA modes itself reg-
ularizes the subsequent regression compared to using
all input data, and the more severe the truncation,
the stronger the overfitting mitigation; and more
broadly, that using physical process knowledge to
constrain relationships captured by machine learning
contributes additional regularization (e.g., Zhang and
Zhang 1999; Karpatne et al. 2017). Nonetheless, it
could be prudent to use cross-validated error for fea-
ture optimization, especially if more automated
(“over-the-loop”; e.g., Wood et al. 2020; Fleming et al.
2021) WSF frameworks are adopted. This recommen-
dation seems consistent with preliminary experi-
ments (not shown) which appear to confirm, again
irrespective of whether full or partial cross-validation
is used, that setting the genetic algorithm objective
function to min(in-sample RMSE) tends to slightly
increase overtraining relative to min(LOOCV RMSE),
particularly for machine learning-based supervised
models.

CONCLUSIONS

Numerical experiments suggest WSF skill esti-
mates are largely indistinguishable between cross-
validation across the full PCR or PCR-like machine
learning process vs. cross-validation performed only
on the final (predictive modeling) step of that proce-
dure. This is particularly apparent when other
sources of model performance variability are taken
into account, like slightly different outcomes when
model development processes have a stochastic com-
ponent, such as some algorithms for machine learn-
ing or feature optimization, and in particular when
various different methods are adopted for the predic-
tive modeling step, for example, linear regression vs.
random forests (Figure 1). PCA might therefore best
be viewed as an offline data-compression and signal-
boosting technique in PCR/PCR-like WSF.

The result may help inform future WSF model
development in three ways. First, it allows for more
streamlined workflows and more computationally effi-
cient algorithms. Second, it gives some reassurance
that cross-validation may provide reliable WSF accu-
racy estimates when it is cumbersome to truly leave

out all input information for a given timestep during
the LOOCV process, as might be the case for some
climatological products for instance. Third, because
the result partly reflects regularization provided by
geophysically guided modeling protocols leading to
conservative PCA mode selections, it emphasizes the
continued usefulness of manual hydrologic expertise
during model development, even (or especially) in
emerging machine-learning based approaches.
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Station name Variable type Measurement date/date range 
Big Meadow Instantaneous SWE April 1 
Big Meadow Accumulated precipitation October 1-March 31 
CSS Lab Instantaneous SWE April 1 
CSS Lab Accumulated precipitation October 1-March 31 
Donner Summit Instantaneous SWE April 1 
Independence Camp Instantaneous SWE April 1 
Independence Camp Accumulated precipitation October 1-March 31 
Independence Creek Instantaneous SWE April 1 
Independence Creek Accumulated precipitation October 1-March 31 
Independence Lake Instantaneous SWE April 1 
Independence Lake Accumulated precipitation October 1-March 31 
Mt Rose Ski Area Instantaneous SWE April 1 
Mt Rose Ski Area Accumulated precipitation October 1-March 31 
Squaw Valley GC Instantaneous SWE April 1 
Squaw Valley GC Accumulated precipitation October 1-March 31 
Tahoe City Cross Instantaneous SWE April 1 
Tahoe City Cross Accumulated precipitation October 1-March 31 
Truckee Num 2 Instantaneous SWE April 1 
Truckee Num 2 Accumulated precipitation October 1-March 31 
Ward Creek Num 2 Instantaneous SWE April 1 
Ward Creek Num 3 Instantaneous SWE April 1 
Ward Creek Num 3 Accumulated precipitation October 1-March 31 
Webber Lake Instantaneous SWE April 1 
Webber Peak Instantaneous SWE April 1 
Truckee River at Farad Accumulated antecedent flow volume October 1-March 31 

 

Table S1  Pool of M = 25 predictors used for April 1 forecast of yearly April-July flow volume for the 
Truckee River at Farad.  For WSF modeling runs where genetic algorithm is used for feature optimization, 
these predictors form a candidate pool; for runs where automated feature selection is not used, all these 
predictors are employed.  Station name refers to NRCS SNOTEL or CCSS automated snow and climate 
monitoring station or snow course location for accumulated precipitation and snow water equivalent (SWE) 
data, or to USGS gage location for streamflow volume data.  N = 30 annual values over 1986-2015 were 
used for each predictor.  This predictor list is strongly guided by long-term NRCS experiential knowledge 
with WSF at this location as captured in its current operational forecast models, and the overall predictor 
selections and WSF problem setup are typical of data-driven operational WSF models in western North 
America generally.  See article main text and Fleming et al. (2021) for further details.  All data are freely 
available at NRCS (2021). 
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Station name Variable type Measurement date/date range 
Beartown Instantaneous SWE January 1 
Beartown Accumulated precipitation October 1-December 31 
Lily Pond Instantaneous SWE January 1 
Lily Pond Accumulated precipitation October 1-December 31 
Middle Creek Instantaneous SWE January 1 
Middle Creek Accumulated precipitation October 1-December 31 
Slumgullion Instantaneous SWE January 1 
Slumgullion Accumulated precipitation October 1-December 31 
Upper San Juan Instantaneous SWE January 1 
Upper San Juan Accumulated precipitation October 1-December 31 

 

Table S2  As in Table S1, but for M = 10 predictors used in January 1 forecast model for yearly April-
September flow volume at the Rio Grande near Del Norte.  See Table S1 caption, and main article text, for 
additional details.  
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Figure S1.  RMSE (kaf) for 50 models developed using five supervised learning methods with PCA 
predictor data pre-processing for Rio Grande January 1 WSF using genetic algorithm-based feature 
selection retaining up to two PCA modes.  SL LOOCV refers to cross-validation on the supervised 
learning portion of the PCR or PCR-like modeling process; full LOOCV is cross-validation across both 
unsupervised and supervised steps.  This is the most realistic (see text of main article and Fleming et al., 
2021) set of scenarios for PCR/PCR-like WSF model development and implementation at NRCS.  (As 
in Figure 1 of main article) 
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Figure S2.  As in Figure S1 but for R2 
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Figure S3.  As in Figure S1 but for Truckee River April 1 WSF 
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Figure S4.  As in Figure S3 but for R2 
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Figure S5.  As in Figure S1 but using PCA modes 1 through 4 inclusive as the features delivered to the 
supervised learner, with no automated feature selection.  As such, stochasticity inherent to genetic 
algorithm-based feature optimization is by construction absent in these modeling scenarios, and 
outcomes for linear and quantile regression are therefore deterministic, unlike Figures S1-S4.  The three 
machine learning-based (random forests, support vector machine, artificial neural network) methods all 
retain stochasticity in the initialization and training process, giving a range of outcomes somewhat akin 
to Figures S1-S4, but with much less variability due to the aforementioned absence of stochastic feature 
optimization.  In practical WSF applications only the leading one or, occasionally, two PCA modes are 
retained (see main article text), with higher modes generally corresponding to noise, so imposing use of 
the top four modes as features in PCR/PCR-like models is non-parsimonious, forces a fit to noise, and 
may represent a worst-case scenario, among those considered here, around overtraining and in-sample 
vs. out-of-sample performance characteristics. 
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Figure S6.  As in Figure S5 but for R2. 
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Figure S7.  As in Figure S5 but for Truckee River April 1 WSF. 
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Figure S8.  As in Figure S7 but for R2. 
   

 

 

 



12 
 

 

 

  

  

 

 
 
 
 

 

 
 
Figure S9.  As in Figure S5 but using the leading PCA mode as the sole feature delivered to the 
supervised learner.  As in Figures S5-S8 (and unlike Figures S1-S4) stochastic genetic algorithm-based 
feature optimization is not used. Degree of stochasticity in outcomes from the three machine learning 
algorithms (random forests, support vector machine, and artificial neural network) has some loose 
tendency to be slightly lower than in Figure S5, because the Figure S9 models are more parsimonious 
due to the three fewer input features used relative to Figure S5, giving a lesser number of machine 
learning parameters to be estimated stochastically during the training process for each of those models.  
Note that retention of a single mode is the most common, but not sole, outcome encountered in 
mainstream operational applications of PCR/PCR-like models to WSF (see main article text). 
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Figure S10.  As in Figure S9 but for R2. 
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Figure S11.  As in Figure S9 but for Truckee River April 1 WSF. 
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Figure S12.  As in Figure S11 but for R2. 
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