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Machine learning in Earth and environmental 
science requires education and research policy 
reforms
Leveraging advances in artificial intelligence could revolutionize the Earth and environmental sciences. We must 
ensure that our research funding and training choices give the next generation of geoscientists the capacity to 
realize this potential.

Sean W. Fleming, James R. Watson, Ashley Ellenson, Alex J. Cannon and Velimir C. Vesselinov

In Earth and environmental science (EES), 
quantitative prediction models gauge the 
state of scientific knowledge and help put 

it to practical use. With the emergence of big 
data, exponential growth in computational 
speed and increasing awareness of the 
practical limits of classical physics-based and 
statistical models, a new modelling approach 
has appeared: artificial intelligence (AI) (for 
a short glossary of machine learning-related 
jargon, see Table 1). A major component of 
the broader data-science tidal wave, which 
has been deemed the fourth industrial 
revolution1 and fourth paradigm of science2, 
AI can accelerate discovery and prediction 
thanks to its scalability, capacity to 
determine patterns within large datasets and 
wide applicability.

The problem? Every modelling 
framework has its own philosophy, theory, 
nomenclature, implementation details and 
culture of practice — and the proportion 
of geoscientists with expertise in new AI 
technologies and concepts, and particularly 
in how to use and interpret this new class 
of scientific tool, remains very limited. 
We argue that bridging this gap between 
the few EES researchers who specialize 
in AI and the rest of the EES community 
requires something more fundamental and 
comprehensive than technology transfer: 
reforms of policies around research funding 
priorities and education content will be 
needed for AI to more fully transition into, 
and find its place within, EES.

Novel applications and challenges
To illustrate, consider the application of 
AI to streamflow forecasting. Operational 
groups, primarily government agencies, use 
physical process-based or linear statistical 
hydrologic models for high-stakes practical 
applications such as flood and water 
supply forecasting3. For over 25 years, 
machine learning algorithms arising in 
the AI literature have been explored as an 

alternative river prediction paradigm by a 
narrow segment of the research enterprise. 
This led to substantial improvements in 
the ability to discover patterns in data, 
and to use those patterns to make accurate 
predictions. Despite this, AI has not 
substantially diffused into operational 
systems, or more generally into water 
resource science and engineering research 
and education. In our view, this boils down 
to the failure of AI specialists to engage 
the hydrology community, whose detailed 
theoretical and practical requirements 
have therefore not been met by most AI 
applications4. But there is light at the end 
of the tunnel: AI has begun to migrate 
into operations through collaborative 
partnerships between AI researchers and 
operational hydrologists, leading to the 
integration of a priori hydrometeorological 
process knowledge and pragmatic logistical 
needs within new, purpose-built AI 
technologies4. Nevertheless, the average 
hydrologist remains more likely to use AI 
in a smartphone application to find the 
quickest route to the office than in their 
work after they arrive.

This situation — an inability of AI to 
break out into the mainstream, despite a 
demonstrated capacity to out-compete 
existing quantitative methods in many 
respects — remains typical of EES generally.

Research policy and AI
To gain genuine and widespread acceptance 
among the EES community, AI cannot 
exist in a vacuum: it must be used in such a 
way as to incorporate — and ultimately, to 
expand — the substantial existing  
body of quantitative biogeophysical  
process knowledge.

That kind of broad-based intersection 
between an understanding of underlying 
physical processes and data-driven 
analysis dovetails with the current fashion 
among computer scientists of developing 

explainable AI (Table 1). Trust in AI has 
been limited by its nominally black-box 
nature; that is, the inability to explain, 
in terms of accepted process knowledge, 
why the algorithm got the answer it did. 
Resolving this issue is the focus of much 
work today5.

But the intersection we refer to here 
also reflects a deeper and broader sense of 
‘physics-aware AI’, a concept we borrow 
from materials science6. As applied to 
EES, physics-aware AI spans at least four 
different, although overlapping, categories: 
biogeophysical systems characterization, 
theory-guided or physics-informed AI7, 
original knowledge discovery and emulation 
of process-based models (Supplementary 
Table 1). Alignment with domain-specific 
practical needs and issues, such as data 
limitations or computing costs, is another 
crucial aspect of physics-aware AI. EES 
examples so far have been promising (Box 1; 
see also Supplementary Table 1) but remain 
relatively rare.

The policy implication? Research funding 
must emphasize physics-aware AI, which 
will require, and in turn enable, closer ties 
between specialists in EES applications of AI 
and the rest of the EES research and practice 
community.

Education policy and AI
The AI learning experience for EES students 
remains largely one of self-teaching, short 
informal courses or selecting a thesis 
supervisor with an AI specialization—and 
the vast majority of EES students receive no 
AI training whatsoever. As a result, many 
geoscientists, including recent graduates, 
may not have the skills to work effectively 
with these concepts. The consequences can 
range from blanket dismissal of AI by senior 
researchers with no previous knowledge 
of the field to ‘package-surfing’ by new 
adopters, who draw AI capabilities from 
existing Python, R or Julia libraries (for 
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example) without first understanding what 
is under the hood. Inadequate knowledge of 
how these prediction engines relate to the 
biogeophysical and statistical details of the 
EES problem at hand invites flawed results.

Such a lack of widespread AI technical 
capacity blends with deeper concerns 
around unevenness in the quantitative 
literacy of EES graduates. Not every 
geoscientist requires advanced quantitative 
skills, but, in our opinion, by failing to 
provide a uniformly solid grounding in 
mathematical and computational methods, 
universities are leaving students ill-prepared 

to effectively conduct modern science—
including (but not limited to) judicious, 
informed use of AI to support EES 
problem-solving. We urge universities to 
rethink their policies around core curricula, 
so that the next generation of graduates are 
prepared for an AI-enabled future.

the road ahead
Which policies fit the bill? Details depend 
on the local context, but promising avenues 
can be identified. Research funding should 
promote novel partnerships to create 
transformative and widely relevant insights. 

Both cutting-edge AI expertise and a need 
for AI-facilitated practical solutions often 
reside in industry. Innovative funding 
mechanisms designed specifically to 
enable multisectoral academic–public–
private partnerships and two-way 
knowledge transfers in applied research 
and development, such as the Mitacs 
programme (Canada), could therefore be 
a powerful policy instrument for evolving 
the field forwards into mainstream EES use. 
Another consideration is that AI interest 
and expertise tend to be concentrated 
among early-career geoscientists, who 
have relatively limited access to funding 
opportunities. This suggests that adjusting 
priorities at agencies such as the National 
Science Foundation (United States) or 
Natural Environment Research Council 
(United Kingdom) to favour high-risk/
high-reward proposals integrating machine 
learning into EES could be helpful. 
Above all, funding processes that reward 
physics-aware forms of AI will be key to 
successfully bridging the gap between 
machine learning specialists and the 
broader geoscience community. As for 
educational policy, a mandatory EES course 
introducing all undergraduate geoscience 
students to AI, with the necessary maths, 
statistics and computing prerequisites, 
would be a good start. One step further 
would be the creation of joint EES/computer 
science undergraduate programmes that 
provide students with a solid grounding 
in both disciplines. Universities could also 
create dual tenure-track positions—helping 
promote AI expertise in geoscientists, and 
geoscience expertise among computer 
scientists. Once we start thinking seriously 
about such policy reforms, more  
directions will undoubtedly  
present themselves.

AI now permeates society, and it is here 
to stay. EES must come to terms with this 
world-altering shift by learning how to 
understand, build, use and critically evaluate 
AI in a way that is informed, credible, 
objective and powerful for answering 
geoscience questions. The migration of AI 
into the standard toolkit of EES researchers, 
practitioners and educators requires 
a three-way intersection between the 
established body of EES process knowledge, 
a mature and balanced understanding of the 
capabilities and limitations of current and 
emerging AI techniques, and innovation 
leading to tailored AI solutions aligned 
with geoscientific knowledge and practical 
requirements. This combination of attributes 
has only come together in a relative handful 
of EES studies, and in a spontaneous and 
bottom-up fashion, suggesting that a gentle 
nudge from above—that is, targeted policy 

Table 1 | Data science 101

term concept

Data science Algorithm development for building information/knowledge pipelines based on 
data, often to enable automated predictions and actions. Data science builds on 
traditional statistics to include AI and tends to have a ‘whatever works’ philosophy.

Data mining Extracting explanatory/predictive patterns from data, often without clear a priori 
expectations around specific causal linkages. The term originated in traditional 
statistics as a pejorative but in AI has evolved into respected techniques. Data 
mining is typically, but not universally, reserved for pattern identification in large/
complex datasets.

big data Datasets satisfying three ‘V’s of volume (large size), velocity (fast, typically 
continuous, incoming data streams) and variety (spanning a wide, often 
unpredictable content range). YouTube is a prime example. massive datasets are 
routine in some EES areas but seldom satisfy all three criteria; however, analysis 
methods developed for big data can be useful for such datasets as well5

AI A broad science and engineering field devoted, loosely, to inventing technologies 
that emulate human intelligence; it in turn includes several disciplines, such as 
machine learning, robotics and so forth.

machine  
learning (mL)

major AI field using algorithms to identify patterns in data and applying them 
to make predictions. Divided into classification or regression, and unsupervised 
or supervised methods. Examples include various neural network types, random 
forests and support vector machines, and deep learning architectures such as deep, 
long short-term memory and convolutional neural networks. Where there is no risk 
of confusion, including most EES applications, AI and mL are used interchangeably.

Explainable AI mL is typically viewed as a ‘black box,’ meaning that it is unclear how the AI arrived 
at its answers and how to explain those answers in terms of the physics of the 
system being studied. Explainable, interpretable or glass-box AI seeks to overcome 
this limitation7. Explainable AI connects to wider concepts of physics-aware AI4–8.

Hyperparameters AIs have parameters, like a neural network’s neuron weights, that are optimized 
in training (loosely analogous to coefficients in a linear statistical model). AIs also 
have higher-level hyperparameters, like a neural network’s learning rate, that in 
turn control this process of estimating parameter values and overall architecture.

Features and 
targets

Akin to predictors and predictands in traditional statistical modelling. Feature 
engineering (processing or manipulating input data to extract and select features to 
be passed to the AI as predictor variables) is a major element of many AI applications.

AutomL System to automatically build the best AI for a given dataset; may include optimal 
hyperparameter selection and is intended to make mL easier for non-AI specialists 
to apply in their respective practice domains. challenges with AutomL include the 
emergence of still-higher-level parameters (hyperhyperparameters) and model 
equifinality. AutomL is just beginning to find applications in EES4.

Overtraining and 
regularization

Overtraining is an AI’s memorization of the data used to fit it, compromising 
generalization accuracy. It happens in all models involving calibration or derivation 
of parameters from observational data but can be particularly acute for AI due to its 
flexibility. regularization refers to technical methods that mitigate AI overtraining to 
the point that it is no worse than in a traditional statistical or process model.
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reform in research and education—is  
also required.

If these changes do not happen, the world 
will move on, and EES may be left behind. But 
where there is challenge, there is opportunity, 
and EES has potential to capitalize on 
both its existing deep process knowledge 
and emerging AI capabilities to push the 
entire discipline forwards in ways that were 
unimaginable a very short time ago. ❐
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Box 1 | Machine learning for understanding error sources in a physics-based oceanography model

The data processing and pattern 
recognition abilities of machine learning 
can be leveraged to parse large volumes 
of physics-based model output and 
determine when and why model biases 
occur, improving our understanding of 
the underlying physics and our ability 
to capture it in process models. In 
this example8, a wave model predicts 
time series of wave parameters (such 
as significant wave height, mean wave 
direction and mean wave period) at a 
specified location (a buoy location, yellow 
diamond). Imperfections in the physical 

parameterizations of the process model 
led to errors in wave height predictions 
compared with buoy observations (inset 
time series; WW3 denotes the physics-
based model used (WAVEWATCH III) 
and its predicted wave heights). To find 
conditions under which this process model 
is likely to err, a bootstrap aggregated or 
‘bagged’ regression tree (a representative 
example of which is shown on the 
right) is used to detect associations. The 
predictive inputs to the regression tree are 
the process model output (wave height, 
period and direction) and process model 

input (wind speed and direction), and 
the prediction target is the wave model 
error; partition numbers in the lowermost 
boxes in the tree in this example index 
different error predictions obtained via 
different regression tree input–space 
partition paths. By inspecting the 
architecture of the decision tree, one can 
determine the regions of the modelled 
environmental context in which over- and 
underestimations of wave height are likely 
to occur, which can in turn be used to 
improve the physics-based model. Map 
data © Google.
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Supplementary Table S2  Four general classes of physics-aware AI. Other classification schemes are 
possible, and the list of examples provided is cursory, but this illustration provides a broadly reasonable 
and useful representation of major directions in the intersection between EES process knowledge and AI.  
These directions include, but extend well beyond, current interest in explainable machine learning (type 3 
below). Framing research funding calls to support physics-aware AI is one of several crucial research and 
education policy steps needed to successfully integrate machine learning into general EES research and 
practice. References cited in the examples are provided following the table.   

 

Type Description Examples 
 

1.
 

S
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te
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ch
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ac

te
ri

za
ti

on
  Assessing the inherent predictability of an EES system, 

including evaluation of chaotic vs. stochastic dynamics 
and estimation of forecast horizons 

 Accuracy benchmarking and performance diagnostics for 
physics-based process models 

 Provision of direct technical or indirect knowledge 
support to process simulation model development, 
diagnosis, and refinement 

Benchmarking/diagnosing 
complex physics-based ocean1 
and land surface2,3 models, 
identifying deterministic chaos4 
or prediction horizons5 in 
biological systems, guiding 
climate change impact modeling 
functional forms6 

2.
 

T
h

eo
ry

-g
ui

d
ed

 
A
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 Using a priori EES process knowledge to guide 
development of AI prediction models; also known as 
‘physics-guided’ or ‘physics-informed’ AI11 

 Spans a wide variety of approaches, from domain expert-
guided features engineering, to new AI methods and 
metasystem algorithms created to embed and enforce 
biogeophysical constraints, to direct integration of AI 
components into physics-based process-simulation models 

Nonnegativity or monotonicity 
constraints in AIs for water 
supply forecasting7, precipitation 
analysis8, and geochemical site 
characterization9, hydrology-
guided features engineering in 
flood forecast AI10 

3.
 

K
n

ow
le

dg
e 

d
is

co
ve

ry
 

 AI-based pattern recognition to discover physical 
controls/drivers and the nature of governing relationships 
underlying complex, nonlinear, and poorly understood 
phenomena 

 Includes graphical methods and descriptive AI 
 Powerful synergies with the computer science 

community’s drive toward explainable/glass-box/white-
box AI 

Discovering nonlinear dynamics 
and physical controls for Indian 
monsoon strength12, time series 
memory in geophysical fluid 
flows13, gene-gene-environment 
interactions14, and ocean beach 
state15; see 16,17 for reviews in 
meteorology and geoscience 

4.
 

E
m

u
la

ti
on

 

 Train AI on input data and corresponding simulated output 
data generated by a physics-based process-simulation 
model, and then substitute predictions made by the AI in 
subsequent operations 

 Generally for the purpose of achieving major 
computational efficiency gains in iterative procedures like 
system optimization or in severely time-constrained 
emergency management contexts 

Surrogates for complex physics-
based models in optimal aquifer 
remediation design18, hurricane 
storm surge prediction19, 
extreme hydrologic event 
characterization under climate 
change20, long-wave radiation 
transfer within atmospheric 
models21 
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