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A B S T R A C T   

In the largely dry and increasingly heavily populated western US, operational modeling systems for seasonal 
river runoff volume forecasting are key elements of the practical water and hydropower management infra-
structure. Explainability of model results in terms of known hydroclimatic processes and conditions is a core 
requirement for these systems. To improve geophysical interpretability of a standard statistical modeling 
approach to operational water supply forecasting (WSF), we introduce a hybrid statistical-artificial intelligence 
method. The procedure involves using a recently developed unsupervised machine learning algorithm designed 
for improved explainability (non-negative matrix factorization with k-means clustering, NMFk) to extract a 
compact basin-scale hydroclimatic index from available precipitation and snowpack data; that index is then used 
as the predictor variate in a largely conventional probabilistic regression on seasonal water supply. The resulting 
method, dominant-signal NMFk regression, is applied to a challenging forecast site, the Owyhee River, drawn 
from the US Department of Agriculture Natural Resources Conservation Service WSF system. Outcomes 
demonstrate that improved interpretability and plausibility relative to conventional statistical methods are 
achieved through physical consistency of NMFk results with nonnegativity of the environmental data being 
analyzed. In particular, the nonnegativity property facilitates identifying potential geophysical relationships to 
input variable type (snow water equivalent vs. accumulated precipitation), location, and underlying hydrologic 
processes; and it encourages nonnegative river runoff predictions, improving physical realism of WSFs over 
conventional statistical approaches in certain cases. The method also offers straightforward interpretation of 
relationships to known forms of climate variability. However, testing suggests that with these capabilities come 
limitations. Its primary anticipated role, at present, is to augment geophysical interpretation when needed, by 
serving as a complement alongside other methods in a next-generation US West-wide operational forecasting 
system.   

1. Introduction 

As margins between water supply and demand continue to narrow in 
the mostly dry American West (loosely defined as the US westward of 
the Great Plains), the importance of maximizing efficiency of the re-
gion’s massive river management infrastructure around drinking, 

irrigation, and industrial water supplies and hydropower grows. In this 
region, water supply forecasts (WSFs) refer to quantitative model pre-
dictions of boreal spring-summer total river flow volume at a given 
location of interest, typically issued once per month or for some loca-
tions more often, beginning the preceding autumn or winter and 
continuing through late spring or early summer. Such forecasts of 
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forthcoming seasonal water supply availability, based largely on mea-
surements of the winter-spring mountain snowpack that provides much 
of the region’s river flow volumes, have long been a crucial requirement 
for the water resource optimization process. 

Methods for generating these hydrologic forecasts fall into two 
general categories: process-simulation models that aim to explicitly 
represent the underlying physics of watershed-scale runoff generation, 
and data-driven phenomenological models that account for the physics 
implicitly using empirical input–output mappings of predictors to pre-
dictands. A tremendous variety of specific models, with a wide range of 
complexity and applicability, fall under these broad umbrellas (see re-
views and syntheses by, for example, Singh and Woolhiser, 2002; Per-
kins et al., 2009; Gelfan and Motovilov, 2009; Bourdin et al., 2012; 
Weber et al., 2012; Cunderlik et al., 2013; Hrachowitz and Clark, 2017; 
Fleming and Gupta, 2020). Even modest incremental improvements in 
WSF skill can reap tens to hundreds of millions of dollars of public 
benefit per year for a single river basin in the western US (Yao and 
Georgakakos, 2001; Hamlet et al., 2002). Consequently, there has been 
intense interest in improving the prediction accuracy of WSF models in 
this and adjacent regions (e.g., Garen, 1998; Mahabir et al., 2003; Hsieh 
et al., 2003; Wood and Lettenmaier, 2006; Kennedy et al., 2009; Gobena 
and Gan, 2009; 2010; Rosenberg et al., 2011; Gobena et al., 2013; 
Robertson et al., 2013; Fleming and Dahlke, 2014; Demargne et al., 
2014; Pagano et al., 2009; Trubilowicz et al., 2015; Harpold et al., 2016; 
Najafi and Moradkhani, 2016; Mendoza et al., 2017; Lehner et al., 2017; 
Fleming and Goodbody, 2019). 

Another crucial aspect of WSF beyond improving predictive accu-
racy, however, is geophysical interpretation of modeling methods and 
results. This issue may be particularly significant in the operational 
hydrologic forecasting community, by which we mean large institutions, 
particularly but not exclusively government agencies, tasked with 
routine generation and distribution of WSFs used for responsible, and 
sometimes high-stakes, decision-making in the public interest, with 
corresponding institutional accountabilities for the reliability and 
timeliness of that information. The ability to readily determine how 
model behaviors relate to physical hydrologic processes is necessary for 
meeting professional responsibilities around assessing and communi-
cating the reliability of forecasts used for these high-impact decisions, 
and for verification diagnostics. More broadly, physical interpretability 
is also critically important for explaining key aspects of the forecasts to 
clients, who often include the general public, such as why a river volume 
prediction increased or decreased and by how much since the last 
forecast date. Such readily communicated hydroclimatological ‘story-
lines’ go beyond simply improving client relations; runoff volume 
forecasts at some locations in the western US are requirements specified 
in legislation, legal decisions, or international treaties, like various 
biological opinions (BiOps) and the Columbia River Treaty, which 
govern water management in certain high-stakes basins and are there-
fore subject to intense public and even political scrutiny. Physical 
interpretability is therefore a key design criterion for all operational 
WSF systems, including those based on statistical and machine learning 
methods (e.g., Garen, 1992; Weber et al., 2012; Fleming and Goodbody, 
2019). 

Achieving such geophysical explainability in a practical WSF system 
can be challenging. Even process-simulation models, which have the 
advantage of explicitly capturing geophysical processes, can suffer from 
interpretability issues; a well-known example is equifinality of pre-
dictions produced by different representations or parameterizations of 
the underlying physics (e.g., Beven and Binley, 1992; Beven, 2006). 
Data-driven methods can be still more susceptible. Statistical regression 
models are the most widely used WSF technique operationally in west-
ern North America due to intrinsically much lower modeling system 
development and operation costs, similar or better forecast skill, easier 
incorporation of emerging new data types, greater operational 
simplicity and robustness, and easier and more accurate estimates of 
forecast uncertainty, relative to process-based methods (e.g., Gobena 

and Gan, 2010; Gobena et al., 2013; Risley et al., 2005; Fleming and 
Dahlke, 2014; Hsieh et al., 2003; Grantz et al., 2005; Harpold et al., 
2016; Regonda et al., 2006; Rosenberg et al., 2011; Pagano et al., 2014; 
Minxue et al., 2016; Moradkhani and Meier, 2010; Mendoza et al., 2017; 
Robertson et al., 2013). However, these logistical and prediction per-
formance advantages can be partially offset by less explicit representa-
tion of underlying physical processes. Additionally, WSF interpretability 
considerations for modern data-driven methods based on machine 
learning intersect with more acute, and much wider, questions around 
the ostensibly black-box nature of these techniques. Exploration of 
machine learning for river flow modeling began 25 years ago (Hsu et al., 
1995; Minns and Hall, 1996), but in spite of significant ongoing ad-
vances (e.g., Lima et al., 2017; Kratzert et al., 2018), machine learning 
has largely failed to transition into production systems (e.g., Abrahart 
et al., 2012; Fleming and Gupta, 2020). In particular, river forecasting 
applications of AI to date have consisted almost exclusively of research 
studies with a narrow emphasis on improved simulation accuracy as 
expressed in terms of some conventional goodness-of-fit metric, with 
little attention to improving explainability; this has been a key reason for 
lack of uptake of machine learning by the operational community (e.g., 
Abrahart et al., 2012; Fleming et al., 2015; Fleming and Goodbody, 
2019). 

Such obstacles are gradually proving surmountable. For example, the 
artificial intelligence (AI) community is responding to explainability 
concerns with a major ongoing drive to develop glass-box machine 
learning. In environmental and geophysical applications, there is a 
limited but well-established track record of using AI to discover and 
explain governing physical processes (e.g., Cannon and McKendry, 
2002; Fleming, 2007; Kratzert et al., 2019; Ellenson et al., 2020). 
Additionally, in hydrologic prediction, new machine learning-based 
systems are being developed and implemented in such a way that they 
explicitly incorporate and obey domain-specific expert hydrometeoro-
logical knowledge (e.g., Fleming et al., 2015; Cannon, 2018; Fleming 
and Goodbody, 2019; Oh and Orth, 2019; Xu et al., 2019; Wang et al., 
2019), amounting to a form of theory-guided machine learning (Kar-
patne et al., 2017). 

We contribute to this process of improving the geophysical trust-
worthiness and explainability of data-driven operational WSF models by 
introducing a new hybrid method. The technique pairs an established 
statistical regression modeling approach with a new unsupervised ma-
chine learning technique, nonnegative matrix factorization with k- 
means clustering (NMFk; Vesselinov et al., 2018), for hydroclimatic 
signal extraction. As discussed below, NMFk was specifically created 
around the need for physical plausibility and interpretability. We then 
apply the resulting WSF method, dominant-signal NMFk regression, to a 
particularly complex and difficult forecast site within the WSF system 
operated by the National Water and Climate Center of the US Depart-
ment of Agriculture’s Natural Resources Conservation Service (NRCS). 
This is the largest stand-alone WSF system in the American West, with 
approximately 600 forecast locations in the Colorado, Columbia, Mis-
souri, Rio Grande, and other basins, and to our knowledge it is the 
world’s largest statistically based operational WSF system. For relevance 
to the operational WSF problems that are our primary focus, the 
implementation here approximately follows standard practices for 
setting up such systems in western North America, including predictor 
and predictand choices. 

We stress that the goal of our study is the relatively new topic of 
exploring novel techniques to improve hydroclimatic interpretation of 
machine learning-based WSF models, rather than the incremental ac-
curacy improvements that have often been the focus of machine learning 
applications in hydrology; and further, that it is framed within the 
practical context of augmenting a well-established production WSF 
system. 
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2. Experimental design and data 

2.1. General problem setup 

To explore dominant-signal NMFk regression in a realistic WSF 
context, we set up the overall prediction problem in a manner similar to 
the existing NRCS forecast system, which is in turn broadly similar to 
most other regression-based operational WSF models in western North 
America. This general structure is as follows. The predictand is spring- 
summer runoff volume, which is usually measured at a US Geological 
Survey streamgage with adjustments as needed for upstream diversions, 
or at some other hydrometric monitoring site. Predictors consist of snow 
water equivalent (SWE) and wintertime-to-date accumulated precipi-
tation measurements at mountain climate monitoring stations, pre-
dominantly NRCS SNOTEL or similar sites. Various other datasets, like 
antecedent streamflow, are occasionally used as supplemental pre-
dictors operationally but were not employed in this particular imple-
mentation, consistent with the existing operational NRCS model for the 
study basin described below. Note that research on data-driven WSF 
systems has extensively tested additional predictor types, like remotely 
sensed SWE, gridded precipitation datasets, seasonal-scale numerical 
climate model forecasts, and other products, but so far, these experi-
mental predictors have not experienced significant operational adoption 
in statistical WSF models. Similarly, to the limited extent that machine 
learning-based WSF models have transitioned into genuinely opera-
tional WSF settings, they use predictors similar to those in current- 
generation statistical regression-based WSF models. 

To illustrate, a typical regression-based WSF model might predict, on 
March 1, the upcoming April-September cumulative flow volume at a 
given point on a given river, using as predictors March 1 SWE and 
October-February total precipitation measured at SNOTEL sites within 
or near the watershed upstream of the streamgage. The number of such 
sites varies widely depending on the basin, but about a half-dozen to two 
dozen is roughly typical. How these predictors are used in the regression 
procedure varies depending on the technique as described in Section 3.5 
below, but as part of the modeling process, the input datasets are usually 
amalgamated in some way into an index that serves as the actual 
regression predictor, or to use the machine learning nomenclature, a 
feature that is presented to the supervised learning algorithm. We use 
the same standard approach here. 

2.2. Owyhee River test case 

In the interest of conciseness, and because the goal of dominant- 
signal NMFk regression is to improve ability to identify and interpret 
relevant geophysical processes and relationships, we mainly focus on a 
reasonably thorough exploration of results and interpretations for one 
watershed (though generality is briefly examined in our assessment of 
capabilities and limitations in Section 4.5). The Owyhee River (Fig. 1) is 
known from operational NRCS experience to be one of the more chal-
lenging forecast points in the western US, with relatively low accuracy, 
tendency of statistical models to occasionally generate physically un-
realistic negative-valued runoff predictions in dry years, and nonsta-
tionary and non-Gaussian prediction residuals that complicate 
prediction interval estimation; it is also relatively sparsely monitored 
compared to some other basins. Its headwaters lie in the remote 
mountains of northwestern Nevada and southwestern Idaho. It flows 
northward through eastern Oregon to empty into the Snake River, a 
major tributary of the international Columbia River. The region is semi- 
arid, and the annual hydrograph is dominated by spring runoff gener-
ated mainly by melting of wintertime mountain snowpack. The US Bu-
reau of Reclamation operates Owyhee Dam and its approximately 80 km 
long reservoir, primarily to provide agricultural irrigation water. 

We consider data from the US Geological Survey streamgage at 
Rome, Oregon and precipitation and snowpack data across the upstream 
drainage area from the SNOTEL network of remotely operated and 

telemetered snow and climate stations. As an illustrative example that 
captures the main features of established operational WSF practices, and 
therefore meaningfully tests the characteristics of dominant-signal 
NMFk regression in an operational WSF context, we take the forecast 
issue date to be April 1, our predictand is April-July total accumulated 
river runoff volume, and our predictors are wintertime-to-forecast-date 
accumulated precipitation and forecast-date SWE at several SNOTEL 
sites within and near the basin. This gives a total of one predictand and 
18 predictors (Table 1). For model training and testing, a standard 30- 
year hydroclimatic normal period (1986–2015) is used. This is also 
typical practice in operational WSF and reflects, among other consid-
erations, trade-offs between better model development using longer 
records vs. modest available record lengths at many observation loca-
tions in the region (see, e.g., Fleming and Goodbody, 2019). As such, the 
input dataset is a matrix containing 30 samples of 18 variables, and the 
output dataset is a vector of length 30. Further details of this test case are 
provided by Fleming and Goodbody (2019), and the data are freely 
available at wcc.sc.egov.usda.gov/reportGenerator. 

3. Method 

3.1. General 

The overall procedure for forming a prediction involves using NMFk 

Fig. 1. Location of study basin.  

Table 1 
Predictor variables for April 1 forecast of April-July flow volume, Owyhee River 
near Rome, Oregon. P: October-March accumulated precipitation; SWE: April 1 
snow water equivalent.  

Variable ID SNOTEL site ID SNOTEL site name Variable type 

X1 336 Big Bend, Nevada SWE 
X2 373 Buckskin Lower, Nevada SWE 
X3 476 Fawn Creek, Nevada SWE 
X4 498 Granite Peak, Nevada SWE 
X5 548 Jack Creek Upper, Nevada SWE 
X6 573 Laurel Draw, Nevada SWE 
X7 654 Mud Flat, Idaho SWE 
X8 774 South Mountain, Idaho SWE 
X9 811 Taylor Canyon, Nevada SWE 
X10 336 Big Bend, Nevada P 
X11 373 Buckskin Lower, Nevada P 
X12 476 Fawn Creek, Nevada P 
X13 498 Granite Peak, Nevada P 
X14 548 Jack Creek Upper, Nevada P 
X15 549 Jacks Peak, Nevada P 
X16 573 Laurel Draw, Nevada P 
X17 654 Mud Flat, Idaho P 
X18 774 South Mountain, Idaho P  
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to extract a compact basin-scale hydroclimatic index from available 
precipitation and snowpack data, and then using that index as the pre-
dictor variate in a probabilistic regression on seasonal water supply. This 
process, and other information from NMFk, contribute to formation of 
geophysical interpretations. Details of the method and additional 
context, including its relationships to data-driven operational WSF 
methods in current widespread operational use, are described below. 

3.2. Non-negative matrix factorization with k-means clustering 

NMFk is an unsupervised learning method used for feature extraction 
from datasets that are inherently nonnegative, and for which the iden-
tified features should in turn be nonnegative to be physically realistic 
and readily interpretable. Details on the NMFk algorithm and its 
implementation are discussed in Alexandrov and Vesselinov (2014), 
Vesselinov et al. (2018), and Vesselinov et al. (2019a, 2019b). The 
following is a brief summary. 

Let us define a nonnegative-valued observational data matrix X of 
size (n,m), where m is the number of observable variables and n is the 
number of samples of each variable over time. The first step in NMFk 
analysis is to decompose the data matrix X into a nonnegative signal 
matrix W of size (n,k) and nonnegative mixing matrix H of size (k,m): 

X ≅ W × H (1) 

where k is an unknown number of features present in the data, that 
is, hidden variables. In other words, a feature represents a time series of 
an unmeasurable “master variable” hidden in the data. Specifically, the 
mixing matrix H describes sets of specific patterns across the variables; 
and the signal matrix W combines all extracted features over time, that 
is, it represents time variability in how strongly the various patterns in H 
are expressed. Thus, for example, the ith (i ∈ [1, k]) extracted feature 
(hidden master variable) is represented by two vectors in the W and H 
matrices, respectively: the ith signal (column) with length n and the ith 

length-m mixing (row) vector. NMFk is a form of blind source separa-
tion: through multiplication of estimated W and H matrices, we can 
obtain an estimate of X which is a reconstruction of the original data 
matrix; the reconstruction would account for how the extracted signals 
in W are mixed (as defined by H) to obtain the original observable 
variables in X. 

The optimal number of hidden signals kopt is unknown a priori and is 
estimated by performing a series of nonnegative matrix factorizations 
for different values of k; k = 1, 2, ⋯, d. The maximum value d cannot 
exceed n or m. This is achieved by minimizing the following objective 
function O based on the Frobenius norm for all possible values of k: 

O = ‖X − W × H‖
F
. (2) 

For each k value in the range 1, 2,⋯, d, nonnegative matrix factor-
ization is performed multiple times (typically, on the order of 1000 
times) based on random initial guesses for W and H matrices. The best 
estimate of O for a given k from all these runs is applied to define the 
reconstruction error for each k value: ε(k). The resulting multiple solu-
tions of H (or alternatively W; typically, it is preferred to cluster the 
smaller matrix) are clustered into k clusters using a customized k-means 
clustering. During clustering, we enforce the condition that each of the k 
clusters contain equal number of members which is equal to the number 
of performed multiple random runs (e.g., 1000 solutions). After clus-
tering, the average silhouette width S(k) is computed. This metric 
(Vesselinov et al. 2018; see also Rousseeuw, 1987) measures how well 
the random NMF solutions are clustered for given value of k. The values 
of S(k) theoretically can vary from − 1 to 1. Typically, S(k) declines 
sharply after an optimal number, kopt, is reached. The kopt value is 
selected to be equal to the maximum number of signals that accurately 
reconstructs the observational data matrix X as estimated by ε

(
kopt

)
and 

the average silhouette width S
(
kopt

)
is close to 1. 

Similar to principal component analysis (PCA), and in contrast to 

classical NMF, NMFk allows identification of the optimal number of 
features (which are somewhat equivalent to basis vectors or eigenvec-
tors). NMFk analyses also lead to strictly additive features that are parts 
of the data (Paatero and Tapper, 1994). Similar to classical NMF (and in 
contrast to PCA), NMFk’s ability to identify readily understandable 
features enables the discovery of new causal structures and unknown 
mechanisms hidden in the data (Cichocki et al., 2009). NMFk and its 
multi-dimensional version, nonnegative tensor factorization (NTFk), 
have recently been used for various types of analyses on observational 
data and model outputs (see above references). Note also that the 
NMFk/NTFk algorithms allow for missing entries in the data matrix or 
tensor X, and that the algorithms are capable of reconstructing such data 
gaps based on the signal/mixing matrices extracted from the available 
data. NMFk/NTFk are also capable of estimating uncertainties associ-
ated with the number of features, W and H estimates, and re-
constructions of X. Though these additional functionalities around 
missing data estimation and matrix uncertainty estimation are poten-
tially useful in some contexts, in this study we focus on leveraging the 
inherent interpretability advantages of NMFk by integrating it with the 
probabilistic regression methods more typically used in in WSF. 

The NMFk algorithm is written in the Julia language. Though 
patented by Los Alamos National Laboratory, open source code and 
documentation, examples, and tests are available online at http://gith 
ub.com/TensorDecompositions/NMFk.jl. We emphasize that the fore-
going is only a brief conceptual summary of NMFk; theoretical and 
numerical implementation details are non-trivial and can be found in the 
references cited above. 

3.3. Dominant-signal NMFk regression 

The NMFk signal for i = 1, which we refer to here as the dominant 
signal, for X consisting of snow water equivalent (SWE) and precipita-
tion time series at various locations within a basin, is taken to be an 
index of wintertime hydroclimatic conditions (see discussion in Section 
2) and used as the predictor in a linear regression on spring-summer 
runoff volume: 

< V(t) >= β0 + β1I(t) (3) 

where <V> is the expectation value of water supply volume in year t 
= [1, …, n]; I is the NMFk-derived basin-scale hydroclimatic index (i.e., 
the first column of W); and β0, β1 are coefficients estimated by ordinary 
least squares (OLS), with β1 providing a measure of the unit sensitivity of 
flow to hydroclimatic variability to the extent it is captured by the 
available input datasets and the signal extraction algorithm. Prediction 
intervals and various goodness-of-fit metrics (see below and Section 4.5) 
were assessed using cross-validated model predictions calculated largely 
following the widely used method of Garen (1992). Motivations for 
cross-validation in data-driven WSF modeling are that out-of-sample 
performance metrics better reflect true predictive skill than in-sample 
measures, and that record lengths are rarely sufficient in western 
North American WSF applications (see Section 2) to simply partition 
data into fully disjoint training and testing subsets of adequate lengths 
(e.g., Garen, 1992; see also Bergmeir and Benitez, 2012; Syed, 2011; 
Koul et al., 2018). The statistics and machine learning communities have 
developed many variants, with the two data science branches sometimes 
adopting different philosophies (e.g., Bergmeir and Benitez, 2012). We 
followed standard practice for data-driven operational WSF systems in 
the western US by using leave-one-out cross-validation, which experi-
ence has shown to provide a reliable estimate of prediction error (e.g., 
Garen, 1992; Pagano et al., 2004; Rosenberg et al., 2012; Lehner et al., 
2017; Fleming and Goodbody, 2019). Note also that empirical partial 
autocorrelation functions of regression residuals from <V> do not 
exhibit statistically significant serial dependence, again typical of WSF 
problems in the western US (e.g., Garen, 1992; Fleming and Goodbody, 
2019). 

Most operational WSF systems are probabilistic, by which is meant 
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that the best estimate provided by regression (or other methods) is 
accompanied by prediction bounds. In NRCS practice, these are the 0.1, 
0.3, 0.7, and 0.9 quantiles of a probability distribution centered at <V>, 
which correspond, respectively, to the 90, 70, 30, and 10% exceedance 
probability flows. A common heuristic method, which is also widely 
applied in WSF, assumes a stationary normal distribution with a stan-
dard deviation equal to the cross-validated regression standard error or 
RMSE (e.g., Garen, 1992; Hyndman and Athanasopoulos, 2013). 

Ideally, however, these quantiles should be estimated with a prob-
ability model that can flexibly accommodate non-Gaussian and hetero-
scedastic regression residuals, as these more complex error structures 
are seen for many NRCS basins, including the Owyhee River test case 
(Fleming and Goodbody, 2019). To do this, we employ a modified 
version of the aforementioned heuristic that uses the Box-Cox transform: 

y(t)(ψ) =

⎧
⎨

⎩

y(t)ψ
− 1

ψ , ψ ∕= 0

ln[y(t) ], ψ = 0
(4) 

where ψ is a parameter and y(t)(ψ) denotes the Box-Cox transform of 
variable y at time t. Both the observed and model-predicted cross-vali-
dated hindcast time series of water supply volume are transformed into 
homoscedastic normally distributed data in this way. The transformed 
datasets are then differenced to obtain the residual time series, which is 
normally distributed in transform space; the corresponding root mean 
square error (RMSE) can therefore be used as a convenient approximate 
metric of the standard deviation of the transform-space residuals. The 
transform-space αth quantile forecast is estimated as: 

Qα[V(t)](ψ) =< V(t)>(ψ) + z
(
RMSECV

(ψ)) (5) 

where z are corresponding z-scores under the normal distribution 
and <V(t)>(ψ) is the transform of the best estimate of runoff. An inverse 
Box-Cox transform is applied to the result to obtain final estimates of the 
αth quantile prediction bounds. This method generates, around a 
deterministic best-estimate model prediction, confidence intervals that 
(if needed) are asymmetric about <V>, show excessive kurtosis, and 
have time-variant widths or (otherwise) are Gaussian and stationary. 
This post-hoc approach, which appears to have been introduced to 
conceptual process simulation-based hydrologic modeling by Feyen 
et al. (2008) and was adapted to data-driven runoff volume forecasting 
with cross-validation by Fleming and Goodbody (2019), is superficially 
similar to but fundamentally different from the use of predictand 
transforms (including the Box-Cox transform) prior to model-building 
(e.g., Garen, 1992; Wang et al., 2012). 

Regression modeling was performed in the R scientific computing 
environment. Forward and inverse Box-Cox transforms were performed 
using the forecast R package (Hyndman, 2017), which also estimates 
optimal ψ . 

3.4. Comparison to standard statistical WSF methods 

Additional regression models were developed using the same dataset 
described above but different methods: composite index regression, and 
principal component regression (PCR). These are the two most common 
approaches for statistically based operational WSF in western North 
America and serve as meaningful points of comparison. 

PCR uses principal component analysis (PCA) to address dimen-
sionality and multicollinearity. It was adapted to WSF by NRCS (Garen, 
1992) and forms the primary basis for its official WSFs. PCA creates a 
new set of variables, obtained by projecting the original data onto a new 
orthogonal coordinate system defined by eigenvectors of the data cor-
relation matrix. The resulting principal component scores are mutually 
uncorrelated and are used as possible predictors in an otherwise con-
ventional regression. In NRCS experience, the leading PCA mode typi-
cally contains at least roughly 70% (or often much more) of the input 
dataset total variance and captures overall year-to-year variability in 

winter-spring snowpack available for spring-summer runoff generation. 
Higher modes are occasionally retained for some basins. For most rivers, 
however, the leading mode is the only PCA mode retained in the oper-
ational WSF regression model on the basis of t-tests of regression sig-
nificance. For convenience we refer to this configuration as leading- 
mode PCR. 

In composite index regression, dimensionality reduction and multi-
collinearity handling are accomplished by averaging together the input 
datasets for a given watershed. This amounts to calculating the mean 
areal cumulative precipitation and snowpack across the basin on the 
basis of available station data. The resulting index captures wintertime 
climatic inputs to the basin and is used as the sole predictor in a linear 
regression (see Garen, 1992). The method is a de facto application of 
stacking, which improves signal-to-noise ratio by the square root of the 
number of input variables, where signal in this context refers to the 
regionally coherent component of year-to-year climatic variability 
across all the input variable locations and types (e.g., Telford et al., 
1990; Monteleoni et al., 2011; Fleming and Barton, 2015). More com-
plex variants exist but can have disadvantages (Perkins et al., 2009; 
Garen, 1992). For convenience, we refer to regression of water supply 
upon an average of the input variables as simple-index regression. 

All three modeling frameworks considered invoke a similar overall 
architecture: an index of wintertime hydroclimatic conditions is formed 
from SNOTEL or other similar data, which then serves as the predictor 
variate in a linear regression model. They differ mainly in how the 
predictive index is created, and of particular interest to us here, how 
thoroughly or easily it can be interpreted. 

In simple-index regression, no information about relationships be-
tween input variables is generated during index creation. This restricts 
possibilities for interpretation without taking additional steps like cor-
relation analyses. In PCR, the eigenvectors contain information about 
relationships between variates in the input data matrix that can be used 
to understand the final predictive model. However, such interpretation 
is hampered by two characteristics. First, there is normally no non-
negativity constraint, and in general both the eigenvector and scores 
contain a mixture of positive and negative values. Second, the signs on 
the eigenvectors and scores are mathematically arbitrary in the sense 
that one can multiply both by − 1 and obtain the same net contribution 
to the total dataset variance and dynamics (that is, a positive-valued 
eigenvector entry corresponding to a certain input variable may repre-
sent either an above- or below-average value of that variable, depending 
on the arbitrary polarity of the scores time series). In contrast, typical 
operational WSF predictor variables (SWE and precipitation; Section 2) 
are strictly nonnegative, so that negative-valued PCA results are physi-
cally unrealistic. A consequence is that, in WSF practice, PCA is normally 
treated only as a data pre-processing trick to facilitate application of 
classical regression to multicollinear problems, and detailed PCA results 
(e.g., eigenvectors) are typically ignored during interpretation of PCR- 
based WSF models. In dominant-signal NMFk regression, the mixing 
matrix and signals provide information loosely akin to PCA eigenvectors 
and scores. In contrast, however, the NMFk mixing matrix and signals 
are nonnegative, like the SWE and precipitation datasets they represent; 
they are therefore more physically realistic, facilitating geophysical 
interpretation. 

These potential improvements in physical explainability motivated 
our exploration of NMFk as an alternative feature extraction approach 
prior to regression modeling. Other advantages and disadvantages of 
dominant-signal NMFk regression relative to standard statistical models 
grew clearer after application to the WSF test case. These are discussed 
in Section 4.5. 

3.5. Post-hoc analysis steps 

Two additional analytical steps were performed during assessment 
and interpretation of results from dominant-signal NMFk regression. 
The first was a simple application of information theory to support 
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preliminary geophysical interpretation of the mixing matrix. (For gen-
eral background on information theory, see Shannon (1948) and Pierce 
(1980); hydrologic applications include, e.g., Amorocho and Espildora 
(1972), Caselton and Husain (1980), Krasovskaia (1995), Weijs et al. 
(2010), Fleming and Dahlke (2014), and Nearing and Gupta (2015)). 
The 18 mixing matrix entries for the leading signal are divided into three 
bins (low, middle, high) with category cutoffs equally spaced between 
the minimum and maximum values. The Shannon entropy is then 
calculated as -Σpilog2(pi), where pi is the estimated probability that any 
given mixing matrix entry falls within the ith bin, found by counting how 
many times entries fall within each bin. This gives the information 
content, in bits, of the dominant-signal entries in the mixing matrix. The 
same category cutoffs are then used to calculate the probabilities and 
corresponding entropy only for those mixing matrix entries corre-
sponding to snow data, giving an estimate of the quantity of information 
provided by SWE measurements as captured in the NMFk dominant 
signal. The procedure is repeated again to find the information content 
of mixing matrix entries for the precipitation data alone. Implications of 
these results and caveats to their interpretation are discussed in Section 
4.3. 

Additionally, to test interpretability of the NMFk-derived basin-scale 
hydroclimatic index in terms of well-established large-scale climate 
patterns, we examined relationships between it and publicly available 
indices for nine modes of climate variability known to be at least 
partially related to North American precipitation and snowpack. 
Spearman rank (nonparametric) correlation was used to robustly esti-
mate statistical significance of linear and monotonically nonlinear as-
sociations without making distributional assumptions. We consider El 
Niño-Southern Oscillation (ENSO), the Pacific Decadal Oscillation 
(PDO), Pacific-North America pattern (PNA), trans-Niño index (TNI), 
North Atlantic Oscillation (NAO), Interdecadal Pacific Oscillation (IPO), 
Arctic Oscillation (AO), Atlantic Multidecadal Oscillation (AMO), and 
North Pacific Gyre Oscillation (NPGO). Note that these patterns are not 
all mutually independent; for instance, statistical and physical re-
lationships exist between the IPO and PDO, and the NAO and AO. 
Monthly indices were obtained from the National Oceanic and Atmo-
spheric Administration Earth System Research Laboratory’s Physical 
Sciences Division (e.g., www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/ 
Data/nino34.long.data for ENSO indices) except for the NPGO index, 
which was obtained from the Ocean Climate & Ecosystem Science group 
at Georgia Tech (www.o3d.org/npgo/). This analysis is intended only to 
confirm climatic interpretability of the dominant NMFk signal by 
comparing it to indices of atmosphere–ocean oscillations for which hy-
drologic teleconnections in some regions of North America are already 
reasonably well-known (e.g., Mantua et al., 1997; Garen, 1998; Hamlet 
and Lettenmaier, 1999; Kennedy et al., 2009; Gobena et al., 2013; 
Fleming and Dahlke, 2014; Enfield et al., 2001; Kingston et al., 2006; 
McCabe et al., 2004; Pascolini-Campbell et al., 2015; Vincent et al., 
2015; Wu et al., 2005). As such, the analysis is not exhaustive. For 
instance, though exploring other averaging intervals could be valuable, 
we focus on wintertime-to-forecast-date mean values of these large-scale 
climate indices, which corresponds to the seasonal timeframe of our 
basin-scale NMFk index (see Section 2). Similarly, while ENSO has 
several indices which are in general closely correlated, we use only Niño 
3.4, a common choice for ENSO teleconnection identification in water 
resource studies. Likewise, certain climate oscillations may demonstrate 
parabolic teleconnections in some locations, like ENSO in northern 
California (e.g., Wu et al., 2005; Fleming and Dahlke, 2014), but only 
linear and monotonically nonlinear relationships are considered here, as 
again is common practice in hydroclimatic analysis. 

4. Results and discussion 

4.1. Raw NMFk results for Owyhee River test case 

NMFk identified three viable solutions for the data matrix described 

in Section 2, containing kopt = 2, 3, and 6 signals. Cursory scoping re-
gressions on water supply volume suggested that within each of these 
solutions, signal i = 1 (i ∈ [1, kopt]), which we refer to as the dominant 
signal (see above), provided the best in-sample WSF predictive ability. 
The 2-signal NMFk solution was selected over the 3- and 6-signal solu-
tions for the remainder of the analysis, primarily because it provides a 
more compact and parsimonious representation of predictor dataset 
dynamics, and secondarily because its dominant signal provided slightly 
better flow volume regression results. 

Raw results from the 2-signal NMFk solution are illustrated in Fig. 2. 
The mixing matrix entries for the dominant signal exhibit moderate 
heterogeneity across predictor variates, and its signal correlates 
reasonably well (R = 0.74) with observed flow volumes. The mixing 
matrix values for the second signal are considerably more heteroge-
neous, and the corresponding signal correlates poorly (R = -0.13) with 
runoff volume. As per Section 3.3, the dominant signal was used as the 
predictor variate in the regression; results are described in the remainder 
of Section 4 below. Geophysical interpretations specifically of the signal 
time series and mixing matrix entries corresponding to the dominant 
NMFk signal are provided in Sections 4.3 and 4.4. 

4.2. Physical acceptability of runoff volume predictions 

Observed and predicted runoff and associated prediction bounds are 
shown in Fig. 3. A notable feature is that the dominant-signal NMFk 
regression-based best estimate and its prediction bounds are without 
exception nonnegative. Application of regression methods to WSF in 
some arid or semi-arid basins in the US West can lead to 90% exceedance 
flows and, in some cases, best estimates, that are negative-valued during 
dry years (for discussion of these effects and why they occur, see Fleming 
and Goodbody, 2019). Physically, of course, river runoff volume cannot 
take on negative values. This is a known issue for the Owyhee River 
forecast point in particular, and the leading-mode PCR and simple-index 
regression models both produce negative-valued best estimates at one or 
more sample times when applied to the identical dataset as dominant- 
signal NMFk regression. This makes the predictions from conventional 
statistical WSF methods unacceptable, and in operational WSF practice 
using such techniques, subjective choices and manual applications of 
predictand transforms are required to sidestep the problem when it 
occurs. That NMFk by construction gives strictly nonnegative regression 
predictors does not guarantee nonnegative best-estimate regression 
model predictions, but it does seem to promote this required charac-
teristic of a physically plausible data-driven water supply forecast 
model. 

4.3. Preliminary geophysical interpretation of NMFk mixing matrix maps 

Fig. 4 presents the dominant-signal NMFk mixing matrix from Fig. 2 
in map format to facilitate interpretation. Many of the precipitation and 
SWE input variables are co-located because they both come from the 
same SNOTEL site (blue dots on Fig. 4), so for convenience of visuali-
zation and interpretation, the dominant-signal mixing matrix entries are 
separated into maps corresponding to SWE (Fig. 4a) and precipitation 
(Fig. 4b) input variables. We emphasize, however, that all the dominant- 
signal NMFk mixing matrix entries are a single vector, which can be 
viewed as coefficients that weight the contributions of each input vari-
able (SWE and precipitation measurements at various locations) to the 
net dominant signal in the NMFk solution; separation of the entries into 
those corresponding to SWE versus precipitation is done only to facili-
tate viewing and interpretation. Long-term average SWE and precipi-
tation fields across the watershed are also shown for reference on Fig. 4a 
and 4b, respectively, 

as are maps of topography (Fig. 4c) and mean air temperature 
(Fig. 4d). The sizes of the blue dots in Fig. 4a and 4b provide the 
magnitude of the corresponding mixing matrix entries. 

These mixing matrix maps provide opportunities for physical 
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interpretation of patterns detected by the NMFk algorithm. The largest 
entries in the mixing matrix correspond to SWE, rather than precipita-
tion. This suggests that SWE contributes more than precipitation to the 
dominant pattern (primary hidden variable; see Section 3.2) that un-
derlies the mixed SWE-precipitation spatiotemporal dataset, which in 
turn seems intuitively reasonable. SWE data in some sense tell more 
about overall hydroclimatic conditions than total precipitation data 
alone, as snowpack reflects the cumulative impact of several geophysical 
and biophysical controls, including precipitation, temperature, wind 
speed, forest canopy, and so forth. That the mixing matrix entries for 
precipitation are nearly uniform across sites whereas those for SWE 
show significant variation further reinforces this notion that the SWE 
data contain more information about underlying patterns of hydro-
climatic variability in this watershed. 

We can provide a back-of-the-envelope quantitative representation 
of this effect using information theory, following the methodology 
described in Section 3.5. The Shannon entropy of all 18 dominant-signal 
mixing matrix entries is 1.1 bits. The value rises to 1.4 bits if we use the 
same category cutoffs but calculate the probabilities and corresponding 
entropy only for mixing matrix entries corresponding to snow data. 

Repeating the procedure again for dominant-signal mixing matrix en-
tries corresponding to the precipitation data alone gives 0 bits, as they 
all fall within the same bin. This result should not be overinterpreted to 
mean precipitation data offer no additional value to a basin-scale index 
of hydroclimatic variability beyond what snowpack data provide, and 
more complex analysis steps could provide a more refined view of 
comparative information contents. With these caveats in mind, howev-
er, the outcome does seem to support the physical interpretation above 
around snow data capturing more information about a wider variety of 
processes than precipitation. 

As described in Sections 2 and 3, as used here NMFk is applied to all 
the hydrometeorological input data to create an index of wintertime 
hydroclimatic conditions. As such, relationships to runoff volume are, by 
construction, not part of this first step in the dominant-signal NMFk 
regression process. It is nevertheless interesting to note that, especially 
for an April 1 forecast date, by which point seasonal snow accumulation 
has typically peaked, SWE is widely known by operational hydrologists 
to be a better predictor of runoff than wintertime-to-date precipitation. 
That is, the NMFk result that snow data captures more information than 
precipitation data is additionally consistent with the generally 

Fig. 2. Two-signal NMFk solution (dimensionless). Top: mixing matrix entries corresponding to the 18 input variables listed in Table 1. Bottom: associated signal 
time series. See Figs. 4 and 5 for more detailed representations of the dominant signal (signal 1) and interpretive information, including juxtapositions of its mixing 
matrix entries against maps of watershed characteristics, and of the signal time series against indices for several modes of large-scale climatic variability. 

Fig. 3. Dominant-signal NMFk regression forecasts of spring-summer water supply volume for the Owyhee River issued on April 1 in millions of cubic meters (MCM). 
Blue dots and connecting line: observations; solid black line: best-estimate predictions; dashed gray lines: cross-validated prediction intervals corresponding to 30% 
and 70% exceedance probability flows; solid gray lines: 10% and 90% exceedance probability flows; red horizontal line: zero-flow marker. 
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established fact that springtime snow data captures more information 
relevant to WSF than precipitation does. 

The NMFk mixing matrix maps may also suggest hypotheses to help 
explain spatial structure in this underlying variability pattern. For 
instance, many of the larger mixing matrix entries correspond to higher- 
elevation SNOTEL sites. These generally experience greater spring 
snowpack than lower-elevation sites and therefore dominate overall 
basin-scale water availability and thus its year-to-year variability. 
Conversely, one of the largest mixing matrix entries corresponds to 
snowpack at Mud Flat, near the northeastern boundary of the watershed, 
which is a relatively warm, low-elevation location that, on average, 
experiences complete melting of the seasonal snowpack in early April, 

several weeks before most of the other SNOTEL sites considered here. 
Thus, SWE data at this site might amount to a de facto snow presence/ 
absence indicator on the April 1 measurement date used here and, in 
turn, as a powerful index of high- versus low-snow years, potentially 
making a large contribution to the overall basin-scale hydroclimatic 
signal. These NMFk-implied hypotheses could form a basis for additional 
research on how different input data types and locations contribute to 
overall basin-wide hydroclimatic signal indexing and predictive value in 
water supply forecasting. 

Note that simple-index regression cannot suggest any such in-
terpretations around the underlying patterns in the dataset and hy-
potheses for their physical origins; similarly, the eigenvector in leading- 

Fig. 4. Dominant-signal NMFk mixing matrix entries at each SNOTEL station (4a: SWE variables, 4b: precipitation variables). Size of blue dots in 4a and 4b indicate 
magnitude of corresponding matrix entry; note nonnegativity. Blue dots in 4c and 4d only denote locations of SNOTEL stations. For interpretative context, mean 
SNODAS April 1 SWE (4a), mean PRISM precipitation (4b), elevation (4c), and mean temperature (4d) are provided. SNODAS and PRISM background fields are 
available at https://www.nohrsc.noaa.gov/nsa and https://prism.oregonstate.edu and are shown solely for context here. 
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mode PCA can be physically interpreted, but in practice it presents more 
barriers to doing so than the NMFk mixing matrix because both 
magnitude and polarity need to be taken account by the interpreter 
(Section 3.4). In contrast, the NMFk mixing matrix streamlines inter-
pretation because it is strictly nonnegative like the environmental data 
types it represents, and only magnitude of the entries needs to be taken 
into account by the hydrologic scientist or engineer. This relative 
simplicity is particularly valuable if the model development and inter-
pretation process may have to be repeated dozens or, in the NRCS sys-
tem, hundreds of times across sites. 

4.4. Preliminary geophysical interpretation of NMFk dominant signal 

The precipitation- and SWE-based NMFk dominant signal represents 

year-to-year watershed-scale cryospheric and meteorological vari-
ability. Such expressions of interannual to interdecadal climate varia-
tion, in turn, generally tend to reflect net superposition of several 
organized modes of large-scale coupled ocean–atmosphere circulation 
patterns. These modes provide a well-established basis for framing in-
vestigations of water resource variations in both explanatory and pre-
dictive contexts (e.g., Redmond and Koch, 1991; Mantua et al., 1997; 
Garen, 1998; Hamlet and Lettenmaier, 1999; Werner et al., 2004; Hsieh 
et al., 2006; Fleming et al., 2006; Moradkhani and Meier, 2010; Gobena 
et al., 2013; Fleming and Dahlke, 2014; Beckers et al., 2016). Inter-
pretability of the NMFk-derived basin-scale hydroclimatic index in 
terms of these circulation patterns was therefore examined using the 
methods and data discussed in Section 3.5. Fig. 5 illustrates the NMFk 
dominant signal from Fig. 2 alongside the large-scale climate indices, 

Fig. 5. Rescaled indices for several climate oscillations, and dominant NMFk signal.  
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which for purposes of visual comparison have been rescaled to the in-
terval [0,1] in this graphic. 

We found clear statistical evidence (p < 0.05 and occasionally p ~ 
0.01) for monotonic correlations between the NMFk basin-scale hydro-
climatic index and ENSO, PDO, TNI, and IPO. Conclusive (p < 0.05) 
statistical evidence was not found for associations with NAO, PNA, and 
AMO, though this does not preclude the presence of subtle tele-
connections to one or more of these patterns that might be unambigu-
ously identified using longer observational records or alternative 
averaging intervals, for example. There was no statistical support in this 
case for AO and NPGO teleconnections. Overall, the set of tele-
connection analysis results is broadly consistent with prior work in 
western North America, and in particular the southern Columbia Basin 
(e.g., Mantua et al., 1997; Garen, 1998; Hamlet and Lettenmaier, 1999; 
Kennedy et al., 2009; Gobena et al., 2013; Fleming and Dahlke, 2014; 
Enfield et al., 2001; Kingston et al., 2006; McCabe et al., 2004; Pascolini- 
Campbell et al., 2015; Vincent et al., 2015; Wu et al., 2005). Note that 
for each of those climate patterns demonstrating statistically significant 
relationships to the NMFk index (ENSO, PDO, IPO, and TNI), the cor-
responding linear correlation coefficient is as high as (for ENSO) or 
higher than (for PDO, IPO, and TNI) the average of the correlation co-
efficients between the respective climate pattern and each of the 18 
input variables. Overall, the results demonstrate that, like indices of 
watershed-scale wintertime precipitation and snowpack conditions 
derived using other methods such as PCA, explanations of interannual 
variability in the dominant-signal NMFk index can be easily and clearly 
framed in reference to specific known hemispheric- to global-scale 
climate processes. 

4.5. Capabilities and limitations 

Considered collectively, the results show that dominant-signal NMFk 
regression generates intermediate analytical products (refer again to 
Figs. 4 and 5, and Sections 4.3 and 4.4) and final WSF predictions (Fig. 3 
and Section 4.2) that meet or beat the physical interpretability, and for 
runoff predictions also the physical plausibility, of statistical WSF 
models of the general types conventionally used in operational WSF for 
the western US. The outcomes are broadly consistent with expectations 
based on how these various modeling approaches are structured (Sec-
tion 3.4). Note that we have focused on an apples-to-apples comparison 
of several index-based linear regression modeling methods based on 
exactly the same input data, with the only free experimental parameter 
being the approach used for feature extraction. Other regression and 
regression-like methods are available for the supervised learning 
component of data-driven WSF, including far more complex machine 
learning approaches, as are optimization methods for input variable 
selection, such as tree-based search methods and genetic algorithms (e. 
g., Garen, 1992; Fleming and Goodbody, 2019). Some of these tech-
niques can significantly improve predictive performance in terms of 
both summary goodness-of-fit measures and physical reliability and, in 
some cases, explainability. These could in principle be combined with 
NMFk-based feature extraction. As a result, the outcomes presented here 
provide a pessimistic assessment of the values of the approaches used, 
including dominant-signal NMFk regression. 

However, testing also revealed limitations and drawbacks. Interest-
ingly, improvements in a priori physical basis, geophysical interpret-
ability, and geophysical plausibility come at the price of poorer cross- 
validated (Section 3.3) statistical goodness-of-fit metrics (Table 2). 
Measures considered here include root mean square error (RMSE), 
which is similar to regression standard error and provides a measure of 
the typical prediction error that might be expected from the model; 
correlation coefficient (R) and coefficient of determination (R2), where 
the former describes how faithfully the predictions reproduce patterns of 
interannual variability in observed flow volumes, and the latter gives the 
proportion of variance explained by the model; and ranked probability 
skill score (RPSS), a measure of the probabilistic skill of the model, 

framed in terms of its ability, relative to a naïve climatology forecast, to 
predict the probability of dry, normal, or wet years as defined by terciles 
of the observed flow volumes (e.g., Wiegel et al., 2007; Guihan, 2014; 
Fleming and Goodbody, 2019). However, these conventional accuracy 
metrics do not penalize the non-physical predictions made by the stan-
dard statistical models or reward the physical acceptability of pre-
dictions made by dominant-signal NMFk regression. This limits the 
ability of such measures to meaningfully describe and diagnose model 
quality in this application (see again Section 4.2). Broad-based quanti-
tative fitness-for-purpose rankings of hydrologic models are complex, 
include subjective components, and are best formed in competitive team 
evaluation processes beyond the scope of the current paper (see Cun-
derlik et al., 2013). Nevertheless, a more comprehensive and balanced 
portrayal of model performance is provided in Table 2 by additionally 
noting whether the model-predicted best estimates, and the lowest of the 
associated prediction intervals considered in standard WSF applications 
(Section 3.3), meet the physicality requirement of being nonnegative for 
all available sample times. In this broader view, the dominant-signal 
NMFk regression performance results are more mixed compared to 
conventional methods. 

Additionally, though nonnegativity of NMFk outcomes matches the 
physical characteristics of typical WSF predictors and therefore sim-
plifies (and thus encourages) deeper interpretations relative to the more 
conventional alternative of PCA (see Sections 3.4 and 4.3), it bears 
noting that nonnegativity is not a strict requirement for such interpre-
tation. There is a long history of geophysically interpreting eigenvectors 
derived from PCA of fundamentally nonnegative hydrologic quantities. 
Examples include watershed regime classification or detecting the im-
pacts of climatic variability and change on streamflow (e.g., Bartlein, 
1982; Guetter and Georgakakos, 1993; Lins, 1997; Fleming et al., 2006). 
NMFk only makes this interpretive process more intuitive and 
accessible. 

The physical interpretability advantages of NMFk are also premised 
on the exclusive use of nonnegative WSF predictors. This is consistent 
with most operational WSF practices in the US West, as standard sta-
tistical WSF predictors are SWE, precipitation, and in some cases ante-
cedent streamflow, all of which are strictly nonnegative. That said, some 
additional predictor types that have seen extensive experimentation and 
occasional operational implementation may not be nonnegative. For 
instance, though not currently used in its production systems, ENSO 
indices were introduced into long lead-time US West operational fore-
casting by NRCS as a de facto early-season surrogate for winter precip-
itation and snow data (Garen, 1998) and have also been operationally 
adopted elsewhere (e.g., Gobena et al., 2013). Dominant-signal NMFk 
regression is not directly applicable to mixed-sign predictors, although 
of course such predictors could be rescaled to render them nonnegative 
as in Fig. 5. 

Table 2 
Model performance. Root mean square error, correlation coefficient, coefficient 
of determination, and ranked probability skill score quantify out-of-sample 
deterministic and probabilistic forecast accuracy. Bottom two metrics are bi-
nary indices of physical plausibility of model predictions, in particular, whether 
the best-estimate volume (V) or the lowermost operationally used prediction 
uncertainty interval on V, the 0.10 quantile flow estimate (Q0.10), are nonneg-
ative at all available sample times. See text for details.  

Metric Dominant-signal 
NMFk regression 

Leading- 
mode PCR 

Simple-index 
regression 

RMSE 0.22 0.19 0.19 
R 0.68 0.78 0.77 
R2 0.46 0.61 0.59 
RPSS 0.26 0.32 0.47 
{<V(t)>} ≥ 0 ∀ t = [1, …, N] 

? 
Y N N 

{〈Q0.10[V(t) ]〉} ≥ 0 ∀ t = [1,
⋯,N]?

Y N N  
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Another applicability question is associated with a distinct technical 
characteristic of NMFk: unlike PCA, the suite of kopt signals in a NMFk 
solution are not mutually uncorrelated. From a rigorous statistical 
modeling perspective, using more than one of these multicollinear sig-
nals as candidate features for a multiple linear regression is therefore 
potentially problematic (e.g., Garen, 1992). In the context of conven-
tional linear statistical regression modeling, then, the WSF role of NMFk 
may be limited to creating a univariate watershed-scale hydroclimatic 
index. 

Finally, scoping applications to other rivers in the western US suggest 
that dominant-signal NMFk regression is a generally viable WSF 
method, but also that the strengths of its advantages and limitations, as 
compared to standard statistical models, vary between basins. To illus-
trate, consider another existing NRCS forecast point, the Yellowstone 
River at Corwin Springs, located in the Rocky Mountain headwaters of 
the Missouri Basin. Similar to the Owyhee River, dominant-signal NMFk 
regression provided serviceable but decreased performance on conven-
tional goodness-of-fit metrics compared to simple-index regression and 
PCR. However, conventional statistical regression models for Yellow-
stone WSF do not produce negative-valued predictions, so the tendency 
of dominant-signal NMFk regression to encourage physically realistic 
nonnegative volume predictions is irrelevant here, unlike the Owyhee 
River. The NMFk mixing matrix entries for the dominant signal offered 
clear physical interpretations for the Yellowstone River, as it did for the 
Owyhee River. That said, we should expect the resulting hydroclimatic 
‘storyline’ to differ from basin to basin, depending on details of pre-
cipitation and SWE monitoring sites, predominant watershed-scale 
terrestrial hydrologic processes, overall climatic characteristics, and 
potentially other factors in each basin. This was seen to be the case. For 
the Yellowstone River, the primary pattern in the dominant-signal NMFk 
mixing matrix entries involved both SWE and precipitation data from a 
single SNOTEL site that stood apart from results for both SWE and 
precipitation at all other sites. This pattern presumably reflects local- 
scale characteristics at the anomalous SNOTEL station, potentially 
including but not necessarily limited to its instrumentation, local land 
cover/land use, or microclimate. Similar to the Owyhee River, the 
dominant NMFk signal for Yellowstone showed correlations with 
various large-scale climate indices consistent with established under-
standing of these teleconnections in western North America. All things 
considered, dominant-signal NMFk regression provided useful inter-
pretive insights into the Yellowstone River but might be considered a 
somewhat less attractive candidate for operational WSF here than in the 
Owyhee basin. 

In the following section, we discuss how the various capabilities and 
limitations described above may guide potential next steps for exploring 
the ways that dominant-signal NMFk regression might be further 
developed, and ultimately deployed in production systems for opera-
tional WSF. 

5. Conclusions 

Operational water supply forecasts are a cornerstone of water man-
agement in the largely arid US West. Ability to tell a hydrologically 
meaningful ‘story’ around what the forecast models are telling us is a 
requirement for understanding and evaluating the models and 
communicating their outcomes to clients. While AI has conventionally 
had a reputation as an uninterpretable black box, recent advances in 
physics-aware AI are changing that perception. Here, we leverage one of 
these advances, NMFk, to improve geophysical plausibility and inter-
pretability compared to traditional statistical models. The result is a 
hybrid that pairs this new theory-guided, glass-box unsupervised 
learning algorithm with a largely conventional statistical prediction 
model. Application demonstrates that it facilitates both easier 
geophysical interpretability and better geophysical plausibility than 
established data-driven WSF methods. This demonstration, in combi-
nation with increasing interest in improving the physical interpretability 

of data-driven WSF systems, in turn suggests that continued research 
and development is warranted on using NMFk for feature extraction in 
WSF. 

One possibility follows on the existence of multiple (kopt) signals. As 
noted in Section 4.5, these are not mutually independent, possibly 
limiting their role as predictors in conventional multiple linear regres-
sion modeling. However, NMFk appears to reduce dimensionality very 
effectively, and the compressed signals it generates may therefore prove 
useful as candidate features to a supervised machine learning-based 
prediction system relating NMFk signals to seasonal flow volume. 
Such supervised AI methods, like neural networks for instance, do not 
strictly require feature independence but do typically benefit from 
reduced input data dimensionality, as this in turn reduces the required 
size and complexity of the network topology and attendant training and 
interpretation complications. 

We currently anticipate that the primary use of dominant-signal 
NMFk regression is as a complement to, rather than a replacement for, 
established approaches within WSF systems. The goal in doing so would 
be to provide additional geophysical interpretive information as needed 
for specific forecasting problems that require special attention, such as 
particularly difficult forecast locations like the Owyhee River we 
focused on here. Our intention is to experiment with integration of 
NMFk as an additional feature extraction technique alongside PCA in a 
multi-method machine learning metasystem that has been developed as 
the basis of the next generation of the US West-wide NRCS operational 
WSF model (Fleming and Goodbody, 2019). 

More broadly, our results seem to reinforce the value of practically 
minded and selective integrations of existing knowledge, methods, and 
processes with certain new machine learning techniques as they emerge, 
to the extent that such techniques may fill certain specific known gaps 
(in this particular case, improving the physical interpretability of 
watershed-scale hydroclimatic signal extraction). This philosophy may 
suggest a template for investigating emergent AI technologies in the 
context of applied hydrometeorological prediction systems, where a 
broad spectrum of quantitative and qualitative considerations, including 
but extending far beyond prediction skill, determine operational desir-
ability of available modeling methods and guide design criteria (e.g., 
Weber et al., 2012; Cunderlik et al., 2013; Fleming and Goodbody, 
2019). 
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