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ABSTRACT Hydroelectric power generation, water supplies for municipal, agricultural, manufacturing,
and service industry uses including technology-sector requirements, dam safety, flood control, recreational
uses, and ecological and legal constraints, all place simultaneous, competing demands on the heavily
stressed water management infrastructure of the mostly arid American West. Optimally managing these
resources depends on predicting water availability. We built a probabilistic nonlinear regression water supply
forecast (WSF) technique for the US Department of Agriculture, which runs the largest stand-alone WSF
system in the US West. Design criteria included improved accuracy over the existing system; uncertainty
estimates that seamlessly handle complex (heteroscedastic, non-Gaussian) prediction errors; integration
of physical hydrometeorological process knowledge and domain-specific expert experience; ability to
accommodate nonlinearity, model selection uncertainty and equifinality, and predictor multicollinearity and
high dimensionality; and relatively easy, low-cost implementation. Some methods satisfied some of these
requirements but none met all, leading us to develop a novel, interdisciplinary, and pragmatic prediction
metasystem through a carefully considered synthesis of well-established, off-the-shelf components and
approaches, spanning supervised and unsupervised machine learning, nonparametric statistical modeling,
ensemble learning, and evolutionary optimization, focusing on maintaining but radically updating the
principal components regression framework widely used for WSF. Testing this integrated multi-method
prediction engine demonstrated its value for river forecasting; USDA adoption is a landmark for transitioning
machine learning from research into practice in this field. Its ability to handle all the foregoing design criteria
and requirements, which are not unique to WSF, suggests potential for extension to complex probabilistic
prediction problems in other fields.

INDEX TERMS Machine learning, regression analysis, forecast uncertainty, hydroelectric power generation,
water resources, environmental management, industry applications.

I. INTRODUCTION
President Teddy Roosevelt’s 1901 description of the Ameri-
can West, ‘‘Whoever controls the stream practically controls
the land,’’ remains true today. The combination of generally
dry but highly variable climate, high water demand, immense
economic scale and its sensitivity to water and energy avail-
ability, and strong technical capacity and resourcing, has
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made the western US a proving ground for new water man-
agement technologies.

Forecasts of spring-summer river runoff volumes, issued
starting the previous winter and based largely but not
exclusively on mountain snowpack measurements, are a
cornerstone of the vast organizational and engineering
infrastructure around water in this region. The implications
of this predictive environmental information span agricul-
tural, industrial, and municipal water supplies, hydroelectric
power generation, and environmental and legal constraints,
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such as international treaty requirements and legal decisions
around required ecological flows. Even modest incremental
improvements in water supply forecast (WSF) skill can yield
over $(US)100 million per year in benefit for a single river
basin [1].

Implications of WSF accuracy to hydropower genera-
tion and electricity pricing in the Pacific Northwest are an
interesting example of the overall worth and some of the
socioeconomic ripple effects of WSFs. Hydroelectric power
producersmust operate reservoirs tomeet a dynamic portfolio
of social, economic, and environmental objectives, including
power generation – which grows increasingly challenging
under, for example, a shift from winter heating demand peaks
in the past to record-high summer cooling demands due to
climate change, and the need to use hydropower to even out
the high-frequency variability of growing generation from
green energy sources like wind power [2], [3] – as well as
dam safety, flood control, and water licensing. Legal obli-
gations also play an important day-to-day role in operating
choices around hydroelectric reservoirs; examples from just
the Columbia River Basin alone include court decisions on
required ecological minimum flows such as the Biological
Opinions (BiOps) for the Federal Columbia River Power
System, and coordinated Canada-US reservoir operation and
management under the Columbia River Treaty. Foreknowl-
edge of reservoir inflows is crucial to reliably attaining these
goals, so hydropower producers in the region rely onWSFs to
safely run and in some cases optimize their systems, and cer-
tain large power producers, such as Bonneville PowerAuthor-
ity and BCHydro, additionally run their own operational river
forecasting systems and teams to complement information
available from government agencies [4]–[6]. Moreover, in
a hydropower context, WSFs amount to predictions of the
supply of de facto ‘‘fuel’’ available to generate energy [7].
Some hydroelectric utilities and power brokers (e.g., [8]) in
the Pacific Northwest have used WSFs to help set the pricing
of futures contracts on electricity in the western interconnec-
tion, and disparities inWSF information provided by different
agencies using different input data and modeling approaches
and used by different utilities have been assessed by power
traders for potential competitive advantage.

The largest stand-alone WSF system in the American
West is that of the US Department of Agriculture’s Natural
Resources Conservation Service (NRCS), spanning over 600
forecast locations [9], [10]. The probabilistic WSF system
currently used by NRCS was revolutionary in the industry
when introduced in the early 1990s due to its adoption
of both principal components regression (PCR) to address
input multicollinearity issues typical of WSF problems,
and a probabilistic forecasting philosophy such that best-
estimate predictions were accompanied by statistically rig-
orous prediction intervals. However, specific performance
limitations, including difficulties reproducing nonlinear func-
tional relationships or heteroscedastic and non-Gaussian
prediction bounds without extensive and subjective manual
interventions in the modeling process, as well as logistical

considerations such as budget and staffing restrictions, argue
for a fresh approach based on modern automated data science
concepts.

We modernized the NRCS WSF system using machine
learning. In practice, this had to be accomplished in such
a way as to (a) solve known technical limitations with the
existing system; (b) accommodate disciplinary subject matter
expertise and experience around river and reservoir inflow
prediction; and (c) integrate the specific operational require-
ments of a WSF-issuing federal government agency in gen-
eral and the NRCS specifically. These three overall design
principles in turn led to multiple design criteria, briefly dis-
cussed below in Section I.B. Some advanced statistical and
machine learning techniques satisfied some of these criteria
but none met all, leading us to develop a new but pragmatic
framework, integrating multiple solution pathways drawn
from a diverse range of existing, off-the-shelf methods in
several disciplines including machine learning, advanced sta-
tistical modeling, and process-based water resource, climate,
and ecological modeling.

When considering prediction algorithms to include in our
technique or to use as a performance benchmark against
which to meaningfully compare it, it is necessary to rec-
ognize that we do not have a blank canvas to work on,
and that the successful intersection of machine learning
with operational water supply forecasting requires some
methodological and study design choices to be made that
may not be entirely obvious. Though the technique and the
lessons learned designing it are likely to be more broadly
relevant (see below), it is nonetheless built for a specific
purpose: operational forecasting of seasonal water supplies
in the US West by a federal government agency that has
been performing this task since the 1920s. To be accepted
by the water resource science and engineering community
and its forecast product users, any predictive method must
align with the established body of knowledge and practice
in that specific field. The consequences for forecast model
design are twofold: our new system cannot be developed
completely from scratch; and the vast majority of available
data-driven prediction algorithms are not on the table for
potential adoption. Rather, three general considerations –
institutional requirements around what is and what is not a
logistically feasible applied science and engineering solu-
tion to this specific prediction task, the largely successful
decades-long track record of the existing PCR-based forecast
system, and that system’s consistency with the large body
of environmental and geophysical science knowledge around
water resources and their prediction – point in combination
to a solution that involves building upon the existing PCR
framework. By this we mean multicollinearity mitigation and
dimensionality reduction through independent signal extrac-
tion from specific known classes of geophysical predictor
datasets, followed by a phenomenological modeling process
relating selected signals to the predictand through some form
of regression-like input-output mapping, along with an auto-
mated process for optimally choosing which candidate input
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variables, and signals derived from them in the initial data
pre-processing step, to retain in the final model. Even within
the constraints imposed by this powerful guidance around the
range of viable solutions, however, there is abundant oppor-
tunity to radically update and upgrade the existing framework
with a diverse selection of machine learning, ensemble mod-
eling, and evolutionary computing approaches.

That said, the design criteria in Section I.B – which are
largely centered around a combination of prediction accuracy
improvements, increased flexibility and robustness, combin-
ing established practice domain-specific principles and prac-
tices with artificial intelligence and evolutionary computing
methods, and low cost and risk around institutional adoption
– is pertinent to other applied prediction problems. As such,
while the resulting technique is most immediately relevant
to environmental management and optimization of natural
resources, such as hydroelectric power generation, it may
also suggest viable practical approaches for certain problems
commonly encountered by applied scientists and engineers
in applications of machine learning to prediction of complex
open systems in other fields as well.

A. PRIOR WORK
WSF originated in the 1920s, based on manual snow
measurements by mountaineering-savvy scientists and engi-
neers and simple back-of-the-envelope water volume calcu-
lations based on those data. Modern WSF prediction systems
build on those long-established fundamentals using either
process-based or data-driven approaches. Process simula-
tion approaches are mathematical models that determin-
istically represent the large number of geophysical and
biophysical processes (forest and crop evapotranspiration,
snowpack accumulation and melt, rainfall and snowmelt
infiltration, groundwater interactions, etc.) and correspond-
ing environmental parameters that control river runoff pro-
duction for a given watershed. In contrast, data-drivenmodels
do not explicitly represent underlying physical processes,
instead using empirical fits between inputs like snowpack,
precipitation, and climate data, and outputs like seasonal
river runoff volume. In operational practice, data-driven
approaches consist of statistical models, typically multiple
linear regression or principal components regression using
heuristic prediction bounds based on out-of-sample (cross-
validated) standard error as a measure of predictive error
variance. At NRCS, the regression predictand is most com-
monly April-July aggregated river flow or reservoir inflow
volume, forecasts begin to be issued in January or Febru-
ary and may continue into May or June, and predictor vari-
ates typically consist of mountain snowpack measurements
taken just before the forecast is made along with a few
other environmental variables; details vary between rivers
and between forecast-issuing agencies, but the generalities
are the same across the North American west. Alternative
linear statistical regression techniques, such as M-regression
and partial least squares regression, have been explored in
the research literature but are close variations on the same

theme. Memory-based (Box-Jenkins, ARIMAX, etc.) time
series models are used across the physical, life, and social
sciences for data-driven prediction and also have an important
place in hydrologic and climate science, but in general they
have not been found to be a good match to the specific
problem of WSF in the American West; the yearly sampling
interval of spring-summer flow volume time series normally
exceeds the decorrelation timescale of streamflow data, and
as previously noted (and discussed in further detail below),
it is well-established that predictive skill here is mainly
derived from regression upon springtime mountain snowpack
data along with a few other, in most cases contemporaneously
measured, environmental variables.

Overall operational WSF community experience has been
that process simulation models provide valuable physical
insights and diagnostics, and temporally high-frequency
model products that can be useful for some applications, but
that data-driven models typically are much cheaper in terms
of both setup and operating costs, can be computationally
more reliable and much faster, are more amenable to incor-
porating new predictor data types such as newly discovered
climate indices, match or exceed the prediction performance
of process simulation models, and provide more reasonable
prediction uncertainty information (e.g., [11], [12]). For these
reasons, they tend to be the most widespread type of oper-
ational WSF model; those organizations that run process
simulation models usually also run data-driven models either
officially or for supplemental information (e.g., California
Department of Water Resources, National Weather Service
Colorado River Basin River Forecast Center, BC Hydro)
and several organizations run only data-driven WSFs oper-
ationally, even if process simulation models are available to
them (e.g., US Bureau of Reclamation and US Army Corps
of Engineers forecasts in the Columbia River Basin, NRCS,
Alberta Environment).

Under this WSF categorization scheme, machine learning,
that aspect of artificial intelligence concerned with detecting
patterns in data and using these to make predictions, is also
considered a data-driven approach. Machine learning was
first assessed for hydrological applications, primarily the
related but distinct, and much shorter-timescale, problem of
flood forecasting in the 1990s [13], and research on the topic
has abounded since then. Literature documenting machine
learning for seasonal water supply forecasting is compara-
tively recent and sparse. Examples include neural networks
and support vector machines [14], [15]. Broadly speaking,
research community experience has been that machine learn-
ing solutions provide deterministic prediction quality as good
as or better than both linear statistical and process simulation
models.

Nevertheless, there has been a ‘‘glaring lack of’’ [16]
migration of these seemingly promising research outcomes
into mainstream operational hydrology, that is, into govern-
ment agencies or companies having a responsibility, with
some degree of associated accountability, to produce river
forecasts on a routine basis for internal or external clients who
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rely upon them to make real-world decisions having signifi-
cant consequences. A few instances of successful adoption
in operational roles for flood forecasting have been recently
documented [17], but overall, water resource scientists and
engineers are far more likely to use AI to navigate the most
traffic-free route to work in the morning using a smartphone
application than to apply it to the water resource prediction
problems they face when they get there.

This general failure of machine learning to transition
widely into practical hydrologic applications stems from sev-
eral issues [16], [17]. Its black-box nature suggests a lack of
interpretability or ability to ingest or respect existing knowl-
edge of the underlying physics of the system being modeled.
A lack of emphasis on addressing uncertainty has also been
identified as a key limitation in environmental applications.
Quantitative prediction uncertainty estimates are a core prod-
uct of all modern water, weather, and climate prediction
systems, for example, yet are not an integral part of many
machine learning methods, which often tend to focus exclu-
sively on obtaining the best possible deterministic predic-
tion. In fact, some major current trends in machine learning,
such as mining big data for predictive patterns using deep
learning-based massive neural networks, for example, seem
to be moving further away from the awareness of specific
physical problem knowledge and statistical predictive error
estimation required by applied scientists and engineers in
problems like river forecasting. Further, government agencies
have strong professional and organizational accountabilities
around reliable generation of readily explainable river fore-
casts. This can lead to risk aversion around using unfamiliar
approaches like machine learning to replace proven tech-
nologies that have, over years or decades, achieved buy-in
with large and diverse public stakeholder communities. Only
those machine learning-based solutions that work closely
with experienced operational WSF professionals to address
their central concerns and requirements are likely to be oper-
ationally adopted. Given the general lack of transitioning
of machine learning into mainstream, non-academic, opera-
tional hydrometeorological prediction, a new approach seems
to be required.

B. DESIGN CRITERIA
The new system was required to simultaneously meet several
criteria:
(1) Improvements in forecast accuracy were expected.
(2) Improved potential for automation was desired.

Building and running models in the existing system is labor-
intensive, can involve many subjective choices, and is not
conducive to certain long-term NRCS institutional goals,
such as more frequent issuing of forecasts. Though domain
experts feel that no WSF system should be entirely hands-
off, steps were desired to minimize unnecessary time expen-
ditures and streamline model-building and operations.

(3) It was similarly necessary to retain the relatively low
cost of a traditional statistical WSF solution, without resort-
ing to extensive and expensive computational or staffing

resources for modeling system development, implementa-
tion, and operation.

(4) The system had to address three known technical limita-
tionswith the existing PCR-basedmethod: (a) nonlinear func-
tional forms, and (b) heteroscedastic and (c) non-Gaussian
residuals. Practical WSF experience shows it can involve
nonlinear relationships between regression predictors
(i.e., features) and the predictand (i.e., target), and linear
approximations sacrifice predictive capacity and can occa-
sionally even contribute to non-physical outcomes, such as
negative-valued flow volume predictions. Additionally, pre-
diction uncertainty is typically greatest when flow volumes
are high, and are also often characterized by model errors that
are not normally distributed around the best estimate. These
attributes are not accommodated by most traditional statis-
tical methods and instead require the capability to generate,
when needed, prediction bounds that are asymmetric about
the estimate and having a width that varies from year to year.
Failure to do so can lead to misleading information about the
confidence of the prediction and, in some cases, prediction
intervals that contain non-physical negative-valued flows in
dry years. Using predictand transforms prior to modeling is a
standard statistical trick for applying linear stationary Gaus-
sian techniques to nonlinear, nonstationary, non-Gaussian
datasets and is used in the current NRCS system, but in
practice it requires slow and subjective manual intervention
and can lead tomodel relationships that are also non-physical.

(5) The resulting prediction system was expected to
achieve an overall balance between visibly demonstrating
innovation and performance improvements, while also being
constructed from established building blocks using proven
tools. For instance, on one hand the operational hydrology
community and forecast product users would typically view
the use of a completely new, cutting-edge artificial intelli-
gence method in an operational WSF system as irresponsible
and unprofessional, and it was also felt important to retain
some broad design elements of the existing, successful, and
broadly accepted NRCS linear statisticalWSF system. On the
other hand, innovation and progress were required; for exam-
ple, the new system assimilates some recently introduced
machine learning variants having specific properties needed
for achieving some of the required design criteria, uses a
novel framework for integrating off-the-shelf components,
and where necessary employs certain statistical and algorith-
mic methods or developments that do not appear to have
been widely reported in the hydrology or machine learning
literature.

(6) A multi-method ensemble approach was required.
Equifinality is a central issue in virtually all forms of envi-
ronmental prediction, including water supply forecasting.
Equifinality is a non-unique dependence of various model
fit measures on model philosophy, structure, or parameter
values, such that many (either subtly or significantly dif-
ferent) models perform similarly overall, leading to model
selection uncertainty and undermining model interpretation
and credibility. That is, while for a given river and prediction
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performance measure, one model among several developed
will always be ‘‘best,’’ the margins between models are often
small, and which model is best typically varies between fit
measures and specific examples. More generally, every mod-
eling technique has advantages and limitations, complicating
identification of any one approach as being the sole correct
model for a given application. Multi-model ensembles are
used in many fields to address this issue; such ensembles
typically provide more robust and consistent prediction per-
formance relative to the constituent models within the ensem-
ble by blending the capabilities and damping the limitations
of each, and they can be capable of outperforming the indi-
vidual ensemble members through mutual error cancelation.
A modular and expandable architecture was also desired,
such that individual methods could be switched out, or a fore-
cast generated externally, possibly even by another agency
using completely different methods, could be ingested into
the multi-method ensemble.

(7) Ability to accommodate both high-dimensional mul-
ticollinear predictor data and potential for multiple inde-
pendent input signals was required. Predictive information
for a WSF model at a given time step includes present
and sometimes previous values of a range of geophysical
variables. These datastreams have much redundant infor-
mation (such as whether it is a high-snow or low-snow
year) that can be compressed into a compact feature space,
improving the reliability of linear predictive models and
reducing the required complexity of a machine learning-
based nonlinear regression model. However, the capacity
to retain higher-order non-redundant information potentially
contained in the input fields (like year-to-year carryover
of water in large groundwater aquifers within a water-
shed) can also be vital in certain river basins for enhancing
WSF accuracy.

(8) Integrating a measure of physics-awareness into the
machine learning solution was important to establishing
buy-in for the new system from the NRCS and its clients.
Though machine learning is to some degree fundamentally
black-box, steps can be taken to help ensure that outcomes
are interpretable in terms of, or at least honor, certain key
aspects of the known process physics. For example, there
is a track record of using machine learning to discover
underlying process physics in complex open environmen-
tal systems, such as identifying controls on the strength of
the Indian Monsoon, understanding the origin of nonlinear
memory processes in watershed dynamics, and discover-
ing key controls on the formation and erosion of beaches
in coastal engineering [18]–[20]. Of key concern here was
allowing certain known properties of the physical problem
to be enforced. In particular, the selection of particular ML
methods having specific computational characteristics, like
non-negativity or monotonicity, can be used in combina-
tion with an understanding of the physical background to
the specific forecasting application at hand, like knowl-
edge of the general relationships between snowpack and
runoff and what functional forms are and are not reasonable

for those relationships, to create machine learning solutions
that are physically defensible.

C. PAPER ORGANIZATION
Section II summarizes the system developed in accordance
with the multiple, interdisciplinary goals outlined in I.B
above. Section III discusses some practical details of WSF
and provides an example application of the new system.
Section IV provides a summary, identifies directions for
additional future work, and discusses some of the broader
potential implications of the prediction system.

These implications extend both to WSF generally – an
increasingly challenging and high-stakes problem given pro-
jections of a 55% increase in global water demand by
mid-century, while nearly two billion are without adequate
water even today – as well as to other, non-WSF, pre-
diction tasks having similar or analogous technical and
logistical requirements. Most of the design requirements
laid out in I.B tend to be typical of geophysical and
environmental prediction problems, and we expect that
probabilistic nonlinear regression prediction tasks in other
fields might also benefit from some of the developments
presented here.

II. INTEGRATED MULTI-METHOD PREDICTION ENGINE
A. OVERALL FRAMEWORK
A probabilistic forecast model estimates the probability dis-
tribution of the future predictand, y, conditional upon the
current values of the predictor vector, P[y(n + 1t)]|X =
X (n), where X = {x1(n), x2(n), . . . , xM (n)} are M predictor
time series and 1t is the forecast lead time. In practice, and
particularly for continuous-valued predictands, the desired
product often consists of a best estimate of y, taken to be
some measure of central tendency (most often but not always
the mean; see below) of P, and an associated estimate of the
uncertainty in that best available prediction. We frame much
of the following prediction system description in these terms
for convenience of presentation and consistency with NRCS
needs, but note that these methods can generate additional
probabilistic forecasting products, like the probability that the
predictand will exceed a threshold value or occupy a certain
category.

The overall concept we use, illustrated in Fig. 1, contains
several main elements: unsupervised statistical learning for
extracting dominant features from high-dimensional input
data, a multi-method core drawing on statistical and machine
learning techniques for relating the extracted features to the
predictand, and evolutionary methods for automated genera-
tion of optimal model suites, that is, input data and feature
selections on a per-model basis. This overall system design
directly reflects the way that the water resource science
and engineering community frames and structures statistical
WSF, which can be summarized as follows.

The job of a probabilistic WSF system is to provide a best-
estimate prediction, with quantitative estimates of prediction
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FIGURE 1. Approximate representation of some major components and workflows in the model-building step. Items listed in the bottom box are the
main products of the model-building process and are subsequently used in forecast operations. Not all system components and workflows are illustrated
here. Acronyms are as defined in the text. In summary, (i) the prediction metasystem starts with the unsupervised learning method of principal
components analysis for extracting independent signals from the predictor dataset; (ii) six probabilistic regression and regression-like methods, carefully
selected for specific capabilities from the large available number of advanced statistical modeling and supervised machine learning techniques, are each
fitted separately to relate those extracted signals to the predictand, including algorithms for hyperparameter tuning as needed and partial parallelization
across processor cores to improve computational efficiency; (iii) a genetic algorithm is wrapped around (i) and (ii) to optimize feature extraction and
selection for each of the six regression and regression-like methods separately; (iv) when the six individual regressions are finalized as per (iii), a simple
averaging process then combines the probabilistic predictions from each of them into a multi-method mean forecast distribution; and (v) a final quality
control step is undertaken, mainly to help ensure the predictions obey certain physical constraints.

error, of spring-summer total runoff volume for a given
location on a river of interest. Official forecasts are issued
once per month, starting in February or earlier, and con-
tinuing through April or later, though more frequent updat-
ing is routinely undertaken. Typical WSF predictor variates
can include snowpack, soil moisture, and precipitation data
from each of multiple measurement locations within or near
the watershed area. For the NRCS, these points are mostly
SNOTEL sites, a network of remote high-elevation environ-
mental measurement stations with automated data collec-
tion and telemetry (for additional detail, see Section III).
Additional WSF predictor data can include soil moisture
measurements, antecedent streamflow observations, indices

of interannual climate variation such as El Niño-Southern
Oscillation (ENSO), output from process-based snow mod-
els, and snow estimates from airborne or satellite remote
sensing. Selection of specific candidate input variables for a
WSFmodel for a given location and forecast date is necessar-
ily based on hydrologist expertise, and includes factors like
spatial proximity, incorporating redundancy through multiple
partially correlated SNOTEL sites in the event of sensor
or telemetry failures during forecast operations, capturing
local-scale environmental heterogeneity across a watershed
using a variety of SNOTEL sites, and many other considera-
tions. Details vary considerably from watershed to watershed
depending on local climatic and geologic characteristics.
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For a given predictand, each forecast issue date has its
own regression model and corresponding set of predictor
variates, which evolve over the forecast season. For instance,
the forecast made on 1 February of April-July flow volume
for a certain rivermight include the 1November to 31 January
average ENSO index as one of its predictor variates, because
for complex and incompletely understood reasons of global
climate dynamics it serves as a proxy and therefore partial
predictor of total seasonal snow accumulation through the end
of winter, and therefore of spring-summer river flow volume.
By April, however, the winter snow accumulation has typ-
ically ceased and direct measurements of it have obviously
become available, so the forecast made on 1 April of April-
July aggregated flow volume tends to drop large-scale climate
indices as predictors, favoring 1 April snowpack observations
instead. A given river therefore has a suite of separate models,
one for each forecast issue date. Further, for a given forecast
date and river, multiple target periods (April-July, May-June,
etc.) may be considered as predictands, leading to additional
models in some cases. That said, a combination of geophys-
ical predictability and water management considerations are
such that the 1April forecast of April-July volume is, for most
rivers, the cornerstone of the model suite.

To help illustrate, a realistic and common example of how
aWSF regression (or regression-like) model is structured and
used operationally in the USWest would be a forecast, issued
on 1March 2019, of 1 April through 31 July 2019 total runoff
volume at a certain location on a certain river of interest,
using eight predictor variables: 1 March 2019 snow water
equivalent measurements at eight SNOTEL sites to capture
the most recent available mountain snowpack information
across the upstream watershed area draining to that location
on the river. Typically, the training dataset for a regression
or regression-like model of this type would be roughly 30
samples, one for each of the same number of years. For a
1986-2015 training set, for instance, the first sample would
consist of the observed 1April 1986 to 31 July 1986 total flow
volume (the single predictand); and 1 March 1986 measure-
ments of mountain snowpack for each of the eight SNOTEL
stations (the eight predictors). The second sample would be
1987 measurements of the same variables, and so on for
the 28 subsequent samples. In linear regression modeling,
these samples are used to estimate regression coefficients and,
typically, assess the statistical significance of individual pre-
dictors; the linear PCR method currently used at NRCS and
elsewhere additionally uses PCA pre-processing of the eight
inputs (which would usually be highly correlated) to extract
mutually uncorrelated signals used as the predictors in the
linear regression. Further, a semi-quantitative combination
of the statistical significance of each predictor in the regres-
sion under standard assumptions, a tree-based algorithm for
selectingwhich of the input variables to retain, and qualitative
hydrologist judgement and intervention are currently used
at NRCS to find a quasi-optimal model (see Section III for
more detail).

These basic facts of how the water resource science and
engineering community performs WSF in the US West moti-
vate the overall framework depicted in Fig. 1, which can
be viewed as a modernized and upgraded version of the
existing NRCS system (see Section III). From experience,
a data-driven WSF system requires methods for addressing
predictor multicollinearity, identifying multiple input signals
with potential WSF predictive value, an objective means for
identifying the most promising predictor variables from a
pool of broadly reasonable candidates, and relating these to
forthcoming water supply availability using a regression-like
model. These tasks are performed here using a combination
of an unsupervised learning algorithm for feature extraction,
an evolutionary algorithm for feature selection, and a suite
of regression models embedded within that semi-automated
feature generation and selection framework that were cho-
sen for specific characteristics known to be important from
WSF experience, such as ability to handle nonlinearity and
heteroscedastic or non-normal error distributions, as well as
other logistical considerations, such as a proven track record,
as described above in the system design criteria (Section I.B).

Modeling is split into model-building and model-operation
phases. This is typical of traditional statistical prediction
and many machine learning applications, and applied science
and engineering models in general, but departs from some
contemporary directions in machine learning for big-data
applications. These phases are described here for clarity.

Model-building is a de facto inverse modeling problem:
for a given WSF forecast task (that is, a certain combination
of river and forecast date) the modeler selects, on the basis
of hydrologic expertise, an input variable candidate pool
consisting of a few decades of annually sampled data for
certain geophysical variables at certain locations, and makes
a few basic modeling choices; the prediction engine then
forms an optimal (in some practical sense; see below) suite of
regression models for the dataset and saves them with some
associated modeling choices and performance metrics. The
model-operation phase is a de facto forward model run using
the optimized prediction engine: the saved modeling suite for
a given problem is retrieved and then run using a new input
data sample, corresponding to the observed values of the pre-
dictors that year. The small sample sizes (roughly 20-40 sam-
ples; see example application below), slow trickle of new data
(one sample per year for each predictor and the predictand),
and established WSF protocols around periodic recalibration
once every few years including re-evaluation of candidate
predictor choices based on practical considerations like mea-
surement site suitability after wildfires, land use change, and
so forth, are such that online sequential machine learning
approaches, though useful for certain big-data settings includ-
ing, potentially, some environmental applications [21], do not
appear to offer significant value in a seasonal WSF context.

The system was implemented in the R scientific com-
puting environment, chosen for its combination of diverse
packages, ease of use, widespread and long-standing

VOLUME 7, 2019 119949



S. W. Fleming, A. G. Goodbody: Machine Learning Metasystem for Robust Probabilistic Nonlinear Regression

adoption and therefore (it is hoped) robustness to obsoles-
cence, and free, open-source status. The various components
of the integrated prediction system (each machine learn-
ing method, for instance) consisted of existing and well-
documented R packages, directly available for easy download
and installation from a CRAN mirror site; these were tied
together in customR scripts. The specificR packages used are
identified along with citations as they arise in the following
discussion. Construction emphasized a modular and flexible
framework into which new methods, or probabilistic pre-
diction products from completely different external sources
(such as physical process simulation models), can be inte-
grated in the future if desired, leaving as many development
and refinement options open as pragmatically possible.

B. FEATURE CREATION BY UNSUPERVISED LEARNING
The dimensionality and multicollinearity problem is
addressed using principal component analysis (PCA) data
pre-processing. PCA is a pattern recognition technique that
compresses the information content of a large dataset into
a series of mutually uncorrelated modes that efficiently
concentrate the total dataset variance. A classical eigen-
analysis method is employed here. Other matrix factoriza-
tion approaches, such as singular value decomposition or
non-negative matrix factorization, might also be used and
could be explored for adoption in a WSF system in future
work. However, PCA is by far the most widely known and
proven of these techniques, and its track record in WSF
applications leads to its selection here.

The length-N time series (corresponding to the training
set; or combined training and testing set in a cross-validation
framework) of each of M predictor variables is standardized
to zero mean and unit variance and arranged into an M by N
data matrix:

X =

 x11 · · · x1N
...

. . .
...

xM1 · · · xMN

 (1)

The M by M correlation matrix is then:

C =
1
N
XXT (2)

where XT denotes the transpose of X . Eigenanalysis is
performed on C , giving eigenvectors arranged in a M by
M matrix, E , and corresponding eigenvalues arranged in a
vector, λ:

E =

 e11 · · · e1M
...

. . .
...

eM1 · · · eMM

 (3)

λ =

 λ1
...

λM

 (4)

The eigenvectors provide orthogonal basis functions, and the
eigenvalues define the proportion of variance explained by

each mode. The PCA scores are:

A = ETX (5)

where T again denotes the transpose such that each row of ET

contains an eigenvector and each column of ET is indexed to
one of the original variables in X , and A is a M by N matrix
consisting of the projections of the original time series into
the new coordinate system defined by the unit vectors in E :

A =

 a11 · · · a1N
...

. . .
...

aM1 · · · aMN

 (6)

The principal component time series corresponding to each
of the PCA modes are mutually uncorrelated and are used as
candidate features in multi-method nonlinear regressions (see
below), with an emphasis on the few leading modes which by
construction explain the most variance within the predictor
matrix.

C. MULTI-METHOD ENSEMBLE: CONCEPT
We address the model selection problem using multi-method
ensembles. Model averaging can produce more accurate
predictions than the individual ensemble members through
mutual error cancellation and, in particular, leads to more
consistently reliable predictions.

It has a strong pedigree across several distinct fields. For
instance, machine learning examples include bagging and
boosting, which guard against overtraining or combine mul-
tiple weak learners into a strong learner (e.g., [22]); the
no-free-lunch theorem is also an expression of underlying
model selection ambiguities [23]. Ensemble learning con-
tinues to be an active field of AI research (e.g., [24]–[28]).
In statistics, multi-model inference involves addressing
model selection problems with linear combinations of dif-
ferent but similarly-performing linear models, sometimes
weighting constituent models using information theoretic or
Bayesian criteria [29], [30]. In risk analysis, multiple prob-
ability density functions generated by different quantitative
models or human expert opinions are routinely combined into
a consensus distribution using linear opinion pooling [31].
In some areas of science and engineering, the underlying
physics or its optimal explicit representation for a given scale
and purpose of application can be ambiguous, leading to
multiple plausible process simulation models, and the most
accurate and consistent outcomes are generated by an ensem-
ble mean across these [32].

A common thread across these fields is that the more
diverse the models in the ensemble, the better. In machine
learning, for instance, both random forests and bagged
CART models are ensemble regression trees, but the decor-
related trees used in random forests are preferred. Similarly,
in weather, water, and climate prediction, for example,
if strongly methodologically distinct models are used (cap-
turing different physics or combining physics-based and
data-driven models) then only 3-6 models are needed to
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realize the benefits of ensemble modeling [32], [33]. Though
perhaps counter-intuitive, poorly performing ensemble mem-
bers should be retained (up to a point) because even a
poor performer can contribute valuable prediction informa-
tion at certain timesteps corresponding to certain condi-
tions that it may capture reasonably well, but that are not
captured by other (and under most other circumstances,
better-performing) models. In practice, equally weighted lin-
ear combinations often perform as well as or better than
more complex approaches based on weighting by individual
model performances, particularly when samples sizes are
small [31]–[33].

Here, for each of R probabilistic supervised learning meth-
ods, the expectation value at time n, and prediction bounds
around it expressed as desired quantiles of the forecast dis-
tribution, are averaged with corresponding outcomes from
the other R-1 methods to collectively form the ensemble
probabilistic prediction:

〈E[y(n)]〉 =
1
R

R∑
r=1

E[y(n)]r ,

〈Q0.10[y(n)]〉 =
1
R

R∑
r=1

Q0.10[y(n)]r , (7)

. . .

where Q0.10[y(n)], for example, is the 10th percentile of a
probability density function having mode E[y(n)]. That is,
the final probabilistic forecast is the average of the forecast
probability density functions from the R individual proba-
bilistic methods.

If one or more of the R individual regression or regression-
like modeling methods is in turn the outcome of an ensemble
learning process, such as a random forest or bagged neural
network, then (7) produces an ensemble of ensembles. This
is known in some fields (such as hurricane forecasting or
climate change projections) as a super-ensemble. That is,
the method entails, in part, a multi-level hierarchy of multi-
model ensembles, with a low-level ensemble learner (e.g.,
a random forest or bagged neural network) being one of
several predictors integrated into a higher-level multi-method
ensemble.

By the same token, our multi-method approach is dis-
tinguished from some common ensemble techniques in
machine learning, such as bagging and boosting using multi-
ple slightly different versions of the same model (e.g., a boot-
strapped regression tree), by the use of R strongly distinct
classes of probabilistic regression and regression-like meth-
ods, as described below. This approach of using significantly
different constituent regression methods to form a multi-
method ensemble is again similar to, and inspired by, that
used for both statistical and process simulation-based models
in fields like weather and climate prediction, as described
above.

To help ensure clarity in the following discussion, we gen-
erally use the term ‘‘method’’ to refer to one of the six regres-
sion and regression-like modeling techniques integrated into

themulti-method ensemble, to help distinguish these from the
isolated models (e.g., an isolated regression tree) that occur
within those particular methods which are in turn ensemble
learners (e.g., a random forest).

D. CONSTITUENT PROBABILISTIC REGRESSION/
REGRESSION-LIKE METHODS
For reasons described above, selection of specific methods
for our current (R = 6) suite is guided by capacities to
capture nonlinear relationships, to quantitatively represent
forecast uncertainty through generation of prediction bounds
accommodating heteroscedastic and non-Gaussian residu-
als, and/or to permit some level of physics-awareness by
respecting basic problem constraints like monotonicity and
non-negativity when desired. A track record of successful
prior application in several fields, and preferably some prior
experimental application to geophysical prediction problems,
is also strongly valued.

A three-layer, feed-forward, error-backpropagation artifi-
cial neural network (ANN), that is, a multi-layer percep-
tron (MLP), was chosen for its track record as themost widely
used supervised machine learning algorithm:

E[y(n)]ANN =b(2) +
J∑
j=1

w(2)
j

h
 M ′∑
m=1

w(1)
m,jam(n)+ b

(1)
j


(8)

where am(n) is the value of the mth mode PCA time series
at time n; M ’ ≤ M is the number of retained PCA modes; w
and b are weights and biases, respectively; the superscripts (1)
and (2) denote consecutive network layers; J is the number of
hidden-layer neurons; and h is a nonlinear activation function,
commonly tanh. Such an MLP is, in principle, a universal
approximator.

Two MLP variants were selected. The monotone artifi-
cial neural network (mANN) offers a user-selectable option
of enforcing a monotonicity constraint for specified pre-
dictors (r = 1). This contributes to regularization and
enables use of, and ensures compliance with, the underlying
physics of certain problems where the relationship between
the mth candidate predictor and the predictand is known to be
(potentially nonlinear but) monotonically non-increasing or
non-decreasing:

∂E[y(n)]
∂am(n)

≥ 0∀ n or
∂E[y(n)]
∂am(n)

≤ 0∀ n (9)

This is accomplished by exponentiating the neural network
weights [34]. mANN was implemented using monmlp [35],
which employs a quasi-Newton (Broyden-Fletcher-Goldfarb-
Shanno) algorithm for supervised training; additional regu-
larization options included are bagging and stopped training.
We employ a heuristic post-processed approach in Box-Cox
transform space [36] to generate associated prediction bounds
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accommodating non-Gaussian and heteroscedastic residuals:

y(n)(ψ) =


y(n)ψ − 1

ψ
, ψ 6= 0

ln[y(n)], ψ = 0
(10)

where ψ is a parameter and y(n)(ψ) denotes the Box-Cox
transform of y at time, n. Both the observed and
mANN-predicted time series of y are transformed; the pre-
dictions used in this process are obtained using k-fold cross-
validation to better capture out-of-sample forecast accuracy.
These two transformed datasets are then differenced to obtain
the residual time series, which is normally distributed in Box-
Cox transform space. The root mean square error (RMSE)
can therefore be used as a convenient approximate metric
of the standard deviation of the transform-space residuals.
The transform-space αth quantile forecast is estimated as:

Qα[y(n)](ψ) = E[y(n)](ψ) + z
(
RMSE (ψ)

CV

)
(11)

where z are corresponding z-scores under the normal distri-
bution. An inverse Box-Cox transform is applied to the result
to obtain final estimates of the αth quantile prediction bounds.
Forward and inverse Box-Cox transforms were performed
using the forecast package [37], which also finds opti-
mal ψ . Note that the one-parameter Box-Cox transform uses,
and returns, only positive values; thus, if the best-estimate
prediction is strictly positive-valued, the prediction bounds
around it determined using (10) and (11) will also be positive-
valued, a desired characteristic of a WSF system.

The second MLP (r = 2) is a monotone composite
quantile regression neural network (MCQRNN) [38]. This
method incorporates nonlinear quantile regression, such that
both E[y(n)] and Qα[y(n)] for user-specified quantiles of the
forecast distribution are directly generated. We take E[y(n)]
to be Q0.50[y(n)] so that MCQRNN is a form of rank-based
(median) regression, giving a best-estimate prediction that
is comparatively robust to outliers. The technique ensures
non-crossing quantiles, an occasional issue for small sample
sizes of noisy data. In addition to allowing enforcement of
monotonicity constraints as in (9), the forecast distribution
can also be forced to be non-negative, further contributing
to guaranteed physical plausibility of outcomes in certain
common applications including WSF:

E[y(n)] ≥ 0∀ n and Qα[y(n)] ≥ 0∀α, n (12)

Themethod is implemented using qrnn [38], which employs
a Newton-type training algorithm and weight penalty regu-
larization. While both MLPs fit a model of the general form
of (8), in practice the final models and their predictions are
strongly distinct.

Random forests (RF) was selected (r = 3) due to its
widespread acceptance as a contemporary nonlinear machine
learning algorithm; its fundamental difference from MLPs,
contributing to a more methodologically diverse ensemble of
models; its relative ease and robustness of application to a
wide range of problems; and reduced (relative to some other

methods) model development and implementation complica-
tions, such as overtraining or extensive manual hyperparam-
eter tuning:

E[y(n)]RF =
1
L

L∑
l=1

< yl(n) >,

< yl(n) > = dl
[
am=1,M ′ (n)

]
(13)

where < yl > here denotes the prediction from one of
L regression trees and the best estimate is an ensemble of
these. A tree is formed by recursive binary partitioning with-
out pruning, leading to a number of terminal leaves, each
corresponding to the mean value of the response variable
over some disjoint subset of the predictors. Each subset is
defined by a predictor function, d , so as to minimize resid-
ual sum of squares at each decision point. An ensemble
of mutually decorrelated trees is generated through random
selection of both the retained samples (bagging) and the
retained explanatory variates. RF was implemented using
randomForest [39], and prediction bounds were obtained
using the post-processed Box-Cox transform-space heuristic
described above for mANN.

Whereas ANN and RF can be viewed as soft-computing
methods that emulate the information processing capabilities
of biological or social processes (ANN: the brain’s network of
neurons and synapses; RF: the intuitive decision-tree model
of human choice), the support vector machine (SVM; r = 4),
also a widely successful machine learning technique, is very
different and therefore adds further to the desired method-
ological diversity of the model ensemble. It is based on
abstract geometric constructs, in particular an ε-insensitive
loss function and a kernel function taken here to be a radial
basis function, that turn relatively low-dimensional nonlinear
regression problems into high-dimensional linearly separa-
ble classification problems (e.g., [40]) solved by fitting the
hyperplane:

u · v− b = 0 (14)

that maximizes the margin between itself and the nearest
observations, which constitute its namesake support vectors,
where v is a set of predictor vectors built from the original
features through the kernel function and u is a set of weights
that defines the normal vector to the hyperplane. We used
e1071 [41]. Cross-validated prediction bounds were esti-
mated using a Box-Cox transform-space heuristic.

Nonlinear relationships are one of our central concerns
here, yet linear methods have persisted in data-driven mod-
eling because typically they are tractable, easily interpreted,
and often provide serviceable approximations. We therefore
additionally include two linear techniques, while acknowl-
edging that in some applications they can be omitted on
the basis of a priori problem-specific physical informa-
tion (known strongly nonlinear relationships) or a posteriori
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performance assessment (see pruning step below):

E[y(n)] = β0 +
M ′∑
m=1

βmam(n) (15)

where β are model coefficients. Linear quantile regression
(r = 5) is a nonparametric (distribution-free) technique that
accommodates heteroscedastic and non-Gaussian errors, and
is robust to outliers due to its use of themedian as the best esti-
mate, E[y(n)]QR [42]. Quantile regression was implemented
using quantregGrowth [43], which ensures non-crossing
quantiles. It is somewhat akin to MCQRNN (see above), but
of course the structural model form is fundamentally differ-
ent, coefficients are fit for each quantile by linear programing
rather than by nonlinear optimization, and the quantile lines
are determined sequentially rather than simultaneously [38].
Finally, conventional linear regression (which in combination
with PCA pre-processing amounts to principal components
regression, PCR) was included (r = 6) due to its central
role in the established theory of linear statistical modeling
and more than a century of widespread application across
all fields of science and engineering, including extensive
use in WSF. E[y(n)]LR−BC is taken to be the mean value
of the predictand conditional on the current values of the
predictor variates, and corresponding regression parameters
are estimated by least squares. A common heuristic estimate
of linear regression prediction bounds is provided by (11)
but in non-transform space, consistent with the standard
regression assumption of Gaussian homoscedastic residuals.
As a serviceable back-of-the-envelope approach to modi-
fying standard linear regression to generate non-Gaussian
heteroscedastic prediction bounds, we instead apply the
post-processed Box-Cox transform space-based approach
we use here for mANN, RF, and SVM. Experimentation
suggested this approach is generally effective at produc-
ing time-variant and asymmetric prediction bounds when
needed, but also automatically reduces to near-Gaussian
homoscedastic bounds when appropriate, rendering an other-
wise conventional LR (or in effect, PCR) more flexible. Sim-
ilarly, experimentation demonstrated that all the nonlinear
machine learning methods captured linear relationships when
appropriate.

E. OPTIMAL FEATURE SELECTION USING
EVOLUTIONARY COMPUTING
Following the lead established by computational statistics,
biology, and economics, a genetic algorithm (GA) is used
here to solve the NP-hard [44] combinatorial optimization
problem of optimal predictor selection [45]–[47], which
in our application requires simultaneously selecting input
datasets from a pool of candidates and, for a given trial
input dataset, the corresponding PCA modes to retain. This
approach avoids restrictive and often unrealistic statistical
(e.g., distributional) assumptions for assessing the signifi-
cance of individual candidate predictors in linear statistical
models, it is suitable for application to machine learning

methods that do not have clear parametric tests for judging
which inputs are significant, and it combines the selection of
candidate input variables and PCAmodes into a single unified
step. This GA-based feature selection is done separately for
each model, as experimentation showed each technique could
prefer its own optimal combination of both input variables
and retained PCA modes. Evolutionary fitness of a trial
solution is judged by its (arithmetic-space) cross-validated
RMSE. For computational efficiency, we restricted candi-
date PCA modes considered by the GA to a user-selectable,
not necessarily consecutive [48], subset, starting with the
mode explaining the most variance. The genalg package
was invoked for GA implementation [49], [50] and uses
the basic genetic operators of elitism, single-point crossover
with roulette-wheel mating pair selection, and mutation; the
rbga.bin functionality was employed, corresponding to
binary discrete optimization (switching genes corresponding
to individual candidate input variables and PCA modes on or
off). The final gene sequence for a given model (e.g., mANN)
encodes the optimal feature extraction and selection.

F. MODEL OUTPUT AGGREGATION AND PRACTICAL
QUALITY CONTROL
After probabilistic predictions from the R = 6 optimized
individual regression methods are aggregated using (7),
the final step in our framework tests the solution for key
criteria and adjusts the ensemble composition if needed.
Model selection uncertainty is such that while some regres-
sion techniques, out of all those conceivably available, might
be ruled out a priori (strangers), it is difficult to uniquely
determine which subset potentially appropriate to a problem
(the family) is the best (family we like). Thus, we introduce
a quality control (QC) process in which we invite the family
(the short-listed ensemble of regression and regression-like
methods described in the foregoing section) to Thanksgiving
dinner, and only if absolutely necessary, kick out relatives
who misbehave.

For a given application, wemight define some inadmissible
behaviors on a per-method basis, such as sub-par perfor-
mance for method r ′, judged by one or more metrics, relative
to the other methods individually and/or collectively, e.g.:

RMSEr=r ′ >
1

R− 1

∑
r 6=r ′

RMSEr + δ,

AICr=r ′ > max (AICr )+ ε ∀ r 6= r ′

 : remove r ′
RMSEr=r ′ ≤

1
R− 1

∑
r 6=r ′

RMSEr + δ,

AICr=r ′ ≤ max (AICr )+ ε ∀ r 6= r ′

 : keep r ′ (16)

where δ,∈ are tolerances, and AIC is the Akaike informa-
tion criterion. (Opinions vary around AIC-type measures for
nonlinear modeling where degrees of freedom do not exactly
correspond to the number of model parameters [51]–[53];
obviously, one may substitute other metrics if preferred).
However, all models are flawed, particularly in real-world
applications to complex systems; and even models having
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a poor value for some summary skill metric can contribute
useful predictive information in certain cases (we sometimes
see a model that is generally mediocre but outperforms other
ensemble members for timesteps when the predictand takes
on, for example, an extreme value).

So, individually problematic behavior from a givenmethod
is not necessarily cause for removal, and another approach is
to assess the ensemble mean forecast distribution and deter-
mine whether this end product meets criteria of interest. If it
does not, we iteratively step through the ensemble members,
pruning the gravest contributor to the problem one at a time
until the corresponding multi-method ensemble is satisfac-
tory. Any test thought important to the specific application
can be used, such as consistently plausible behavior, e.g.,
a strictly non-negative forecast distribution for an application
where a negative-valued predictand is physically impossible:

min [〈Qα[y(n)]〉 ∀n, α] < 0 : prune ensemble

min [〈Qα[y(n)]〉 ∀n, α] ≥ 0 : accept ensemble (17)

where α again denotes the set of specified quantiles,Q, of the
forecast distribution, P, for which results are desired and<>
is the ensemble mean across regressionmethods. Overall, this
method-trimming philosophy is more realistic than expecting
a fixed subset of methods to perform well for all forecast
problems, and it is easily automated.

Note that each regression method (monotone composite
quantile regression neural network, monotone artificial neu-
ral network, random forests, support vector machine, quan-
tile regression with a non-crossing constraint, and linear
regression), together with its method-specific feature extrac-
tion (principal components analysis) and feature selection
(genetic algorithm) steps and predictive bound estimation,
constitutes a forecasting system. In combination, and inte-
grated with an ensemble generation and correction process,
they form a modular prediction metasystem.

G. HYPERPARAMETER TUNING
The performance of machine learning methods can be
sensitive to hyperparameter values. Preliminary system test-
ing suggested that for our WSF application, the most cru-
cial choices are around network topology (mANN and
MCQRNN); neural network bootstrapping (mANN); ε, γ ,
and C in SVM; and the number of generations and the popu-
lation size in the genetic algorithm.

Experimentation demonstrated that a single hidden layer
with one neuron and no bootstrapping, or two neurons (with-
out bootstrapping, MCQRNN; with bootstrapping, mANN)
were sufficient, depending on the particular river. Note that
after PCA pre-processing, our WSF problem becomes very
low-dimensional (one predictand and therefore one MLP
output-layer neuron; one to four predictors and a correspond-
ing number of MLP input-layer neurons). More complex
topologies did not provide consistently better out-of-sample
performance, unnecessarily complicated the training pro-
cess, and seemed slightly more susceptible to overtraining.

A pragmatic algorithm for automated MLP configuration
selection could therefore be implemented. The default for
given set of predictors is a parsimonious and computationally
fast single-neuron, no-bootstrapping configuration. This is
tested by a criterion similar to (16). That is, if RMSE or R2 for
this MLP performs significantly worse than the mean RMSE
or R2 across all the non-neural network methods, an alter-
native configuration with two hidden-layer neurons is fitted;
for mANN, this also includes bootstrapping (10 bootstraps
were found to be sufficient; we wish to keep this number as
low as possible to mitigate run times). The maximum allow-
able percentage performance deficit relative to the remainder
of the models is a user-selectable run control parameter;
25% was found to work sufficiently well in this application.
The alternative configuration is kept if either of two con-
ditions are met: (a) its performance deficit is within this
specified tolerance; or (b) it provides a lower AIC than the
default configuration. Otherwise, the algorithm reverts to the
default MLP configuration. If the default configuration meets
the performance deficit criterion, no alternative configuration
is considered. The user is also free to manually select all
MLP hyperparameters, but these two basic configurations and
the automated procedure for choosing between them proved
satisfactory for our application.

SVM performance was found to be sensitive to some key
hyperparameters, so we used the tune functionality in the
e1071 package to perform a simple grid search to find
best values for a given predictor set. Initial experimentation
showed that allowing γ to be determined in this way seemed
to lead to overtraining. Manual experimentation suggested a
value of about 0.2 provided a good balance, in our applica-
tion, between allowing sufficient nonlinearity to capture the
underlying nonlinear functional forms commonly present in
the relationships between predictors and predictands in WSF
(see Section III) while minimizing any tendency to memorize
the data. The grid search was used to optimize ε and C . The
search is inefficient, so removing γ from consideration also
improves run times. Users may also deploy automated tuning
of all three of these major SVM hyperparameters, or set all
SVM hyperparameters manually, if preferred.

The computational scale of the GA problem is largely
determined by the population size and the number of gen-
erations. Systematic testing was undertaken to track various
model performance metrics as a function of GA problem
scale. Results differed slightly between test cases, with the
larger search spaces associated with larger input variable
candidate pools unsurprisingly benefitting from the addi-
tional refinements potentially derived from more exhaustive
searches using larger population sizes and longer runs, but
broadly speaking the results were fairly uniform. Specifically,
even the most rudimentary GA optimization (population size
of 10 with only 5 generations) provided a large gain in pre-
diction quality relative to no optimization of feature creation
and selection; and a population size of 15 to 25, with 7 to
10 generations, provided significantly better results but also
marked a point of diminishing returns, with prediction quality
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plateauing at a population size of about 25 to 50 with 10 to
15 generations. There was no consistent benefit to using
larger GAproblem scales (testing considered population sizes
as large as 400 and up to 25 generations). Note that the run
time cost of larger GA problem scales is large. We therefore
selected a population size of 15 with 7 generations as the
default for our application, though the user can make alter-
native choices as desired.

Hyperparameters other than those discussed above were,
in general, left at the default values in the corresponding
R packages as they either seemed to perform satisfactorily,
or had little effect, in our application. For example, the num-
ber of trees in a regression forest strongly impacts accuracy in
some applications, but testing revealed that departures from
the default yielded little consistent effect here.

H. PARALLELIZATION
The nonlinear optimization problem of ANN training,
in combination with other iterative model-building pro-
cedures (bagging, cross-validation, predictor optimization),
initially gave somewhat long run times in some applications.
The embarrassingly parallel task of mANN and MCQRNN
cross-validation was therefore distributed across multiple
processor cores using foreach and doParallel con-
structs [54], [55]. The significant efficiency gains obtained
were adequate to our present purposes, but several additional
parts of the model-building cycle described above are clearly
amenable to parallelization and could capitalize on, for
instance, distributed cloud computing resources. Conversely,
operational forecasting – that is, running a previously com-
pleted and archived set of model objects (lowermost box
in Fig. 1) using a new (current) sample of the input data
vector – is extremely quick under any reasonable computing
environment.

III. APPLICATION
The prediction engine has been successfully applied to
several test cases drawn from the NRCS WSF domain. Ulti-
mately, hundreds of such applications will be made. We pro-
vide three illustrative examples below that demonstrate some
of the issues faced in WSF and how the prediction engine
addresses them. Detailed results differ from river to river, but
the overall conclusions are similar.

A. TEST CASES
The Gila River is a tributary to the Lower Colorado River.
The continental divide forms its eastern watershed bound-
ary and separates the Gila and Rio Grande basins. At the
upstream location considered here, it is an arid mountain
river draining the Mogollon, Pinos Altos, and Black Ranges
of southwestern New Mexico. The Upper Gila is relatively
pristine, but downstream its waters are heavily diverted
for agricultural and municipal water supplies and its flows
are supplemented using Colorado River water through the
Central Arizona Project. The Deschutes River is a tributary
to the Columbia River. It flows from the moist crest of

the Cascade Range in central Oregon. Dams and diversions
on the Deschutes provide agricultural and municipal water
supplies and hydropower generation, and the river has sig-
nificant recreational and tourism values. It is a geophysically
unusual basin insofar as the extensive volcanic aquifers of the
Cascades result in close coupling of groundwater and surface
water, yielding seasonally stable flows. The Owyhee River
is a remote semi-arid watershed with headwaters in northern
Nevada that also flows through southern Idaho and southeast
Oregon and empties into the Snake River. The US Bureau
of Reclamation operates a dam on the Owyhee to provide
irrigation water for regional agriculture. Specific existing
NRCS forecast points on these rivers, which correspond to
US Geological Survey streamgage locations (see below),
considered here are the Gila River near Gila, Owyhee River
near Rome, and Deschutes River below Snow Creek. In these
examples we consider the yearly 1 April forecast of 1 April-
31 May (Gila) or 1 April-31 July (Owyhee, Deschutes) flow
volume.

The existing US Department of Agriculture operational
WSF modeling approach, which has also subsequently been
adopted by a variety of other organizations in the US
and Canada, uses PCR as noted previously. The NRCS
PCR model-building procedure involves a tree-based search
approach to prioritizing input variables for inclusion in the
model, beginning with a one-variable model and progres-
sively addingmore variables, in various combinations, in new
models until the standard error no longer improves. Choices
around the number of PCA modes to retain for a given set of
input variables are guided by starting with a linear regression
model using only the leading PCA time series as a predictor,
and sequentially including higher PCA modes until the addi-
tional predictor is no longer statistically significant using a
t-test under the standard assumptions at, usually, p < 0.10.
Prediction uncertainty quantification assumes a stationary
normal distribution with a standard deviation equal to the
leave-one-out cross-validated standard error of prediction,
centered at the regression prediction.

Issues with this NRCS PCR approach for the Gila River
include heteroscedastic and non-Gaussian regression residu-
als and a nonlinear functional form; that is, several of the cen-
tral assumptions made in a linear regression are not met. The
approach used to address these issues in the official NRCS
PCRmodel for this location is to apply a cube-root predictand
transform prior to modeling (other options available in the
existing system, which is termed VIPER, include log and
square-root transforms). There is no physical basis in hydrol-
ogy for a cube-root transform, however, and its selection
over other commonly used transform types is subjective and
somewhat arbitrary. Improvements in prediction accuracy
were also desired. TheOwyhee River is similarly known from
NRCS experience to be problematic as a result of nonlinear-
ity and heteroscedasticity. The Deschutes River, in contrast,
obeys the assumptions of linear Gaussian statistical modeling
and the existing NRCS PCRmodel performs well. The NRCS
Owyhee and Deschutes models do not employ transforms.
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Outcomes from these NRCS PCR (VIPER) models form
the baseline against which the prediction engine is compared.
While this choice reflects the needs and priorities of the
NRCS insofar as the new prediction systemmust meet or beat
the predictive accuracy of the existing system, more generally
the PCR model additionally provides a classical linear sta-
tistical modeling benchmark for evaluating the performance
of the integrated, machine leaning-based, multi-method non-
linear regression metasystem. The NRCS model was refit to
the same 1986-2015 historical period (see below) as the pre-
diction engine to help ensure a reasonably apples-to-apples
comparison.

Note that the broad framework of this existing NRCS
approach, with PCA pre-processing followed by linear
regression modeling, input variable selection via a search
algorithm, and testing for which PCA modes to include
as predictors for a given trial set of input variables, bears
similarities to the new prediction engine; this is intentional
and reflects some of the fundamental design criteria and
overall requirements listed in sections I.B and II.A. That is,
the machine learning-based prediction engine can be viewed
as a modernized and upgraded version of the existing, proven,
and widely accepted operational forecasting model, in which
newer predictive analytics methods are judiciously applied to
address some limitations of the current NRCS system.

B. PROBLEM SETUP
A 30-year model development period was employed,
corresponding to the standard climatic ‘‘normal period’’
typically used by the weather and climate communities to
calculate mean climate conditions. About 20-40 years of
data is a common choice for hydrologic model-fitting, as it
provides a reasonable balance among competing considera-
tions. Using longer (50-100 year) records would of course
provide larger sample sizes and capture a wider variety of
hydroclimatic extremes. On the other hand, longer records
would be more likely to capture gradual land use and climate
changes that create nonstationarities which could undermine
the reliability of model fits intended for the shorter-timescale
problem of forecasting one or two seasons ahead, and it
could dramatically reduce the number of available input
data locations, given that many environmental (e.g., weather,
snow, and streamflow) monitoring sites were established
relatively recently. The dataset for prediction engine devel-
opment therefore consists of 30 samples, one per year (see
also Section II.A).

The experimental data considered here were obtained from
large accumulated centralized databases of routine, long-
term, ongoing environmental and natural resourcemonitoring
programs conducted by theNRCS andUSGeological Survey,
and which currently serve as the basis for NRCS opera-
tional WSF. NRCS SNOTEL sites measure SWE using snow
pillows, fluid-filled bladders with pressure transducers that
weigh the overlying snowpack. SNOTEL stations also have
weather stations monitoring precipitation and temperature;
some stations have enhanced configurations with sensors

for additional environmental variables, such as soil mois-
ture. Data are telemetered to central offices by meteor-burst
radio transmission, cellular modems, or satellite, and are then
quality-controlled and archived. SNOTEL sites are often very
remote and difficult to access, and power is provided by solar
cells. NRCS snow surveys, in contrast, involve periodic field
visits by ski, snowmobile, or helicopter to a fixed monitoring
location, called a snow course, by NRCS staff to manually
measure snow depth and density. Streamflow data are col-
lected by the US Geological Survey at streamgages, which in
most cases measure water depth using a pressure transducer
and combine that information with bathymetry and peri-
odic manual water velocity measurements to find volumetric
flow rate; in some cases, they are instead local reservoir
inflow volumes that are back-calculated from dam operation
information, reservoir surface elevation recordings, and other
information. Data were obtained from the freely avail-
able online NRCS database, wcc.sc.egov.usda.gov/report
Generator.

The following input variable candidate pools were
determined on the basis of NRCS SNOTEL operations and
operational WSF experience, and include concerns like mon-
itoring station proximity, record length and continuity, and
reliability, as well as a variety of geophysical considera-
tions as discussed earlier in this paper. For the Gila River,
1 April snow water equivalent (SWE; the amount of water
that would be released from the measured snowpack given
its observed depth and density) and 1 November through
31 March accumulated precipitation at three SNOTEL sites
(SNOTEL station names: Lookout Mountain, Signal Peak,
Silver Creek Divide) were selected as potential predictors,
forming a candidate pool of six input variables. Similarly,
the candidate pool for the Owyhee River was 1 April SWE
and 1 November-31 March accumulated precipitation at each
of eight SNOTEL stations (Big Bend, Buckskin Lower, Fawn
Creek, Granite Peak, Jack Creek Upper, Laurel Draw, Mud
Flat, South Mountain), as well as SNOTEL April 1 SWE at
Taylor Canyon and SNOTEL 1November-31March accumu-
lated precipitation at Jacks Peak, giving a total of 18 available
input variables. Potential predictors for the Deschutes River
were 1 April SWE and 1 November through 31 March accu-
mulated precipitation at each of two SNOTEL sites (Irish
Taylor and Three Creeks Meadow), SWE from a manual
snow survey site (Tangent), and its own 1-31 March average
flow rate at a specific location known to serve as an indirect
but useful index of the aforementioned aquifer storage effects
(Deschutes River at Benham Falls), giving a total of six
candidate input variables.

The GA selected the optimal combination of input vari-
ables from the candidate pool to retain; the leading PCAmode
was used without exception, and the GAwas given the option
of selecting whether to retain higher PCA modes up to the
second mode. In WSF applications of this type, the leading
PCAmode is known to capture variability in basin-wide over-
all wintertime precipitation and snowpack levels and is there-
fore the primary predictor. Higher modes capture either more
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FIGURE 2. Observations (red dashed line with dots), best-estimate predictions (black line), and associated 0.10 and 0.90 quantile (solid gray lines) and
0.30 and 0.70 quantile (dashed gray lines) prediction intervals for spring-summer flow volume in kaf of the Gila River. Horizontal red line denotes
zero flow.

subtle patterns of spatiotemporal variability in snowpack and
precipitation, or in the case of the Deschutes, aquifer-stream
interactions, and may or may not be retained for predictive
purposes depending on basin-specific circumstances.

Though fine details of the underlying processes are com-
plex, and accurate water supply forecasts can be difficult to
produce for some basins, particularly those in the US desert
southwest like the Gila River, general a priori knowledge
of the underlying system physics is nevertheless significant.
This process understanding leads to some key points for
machine learning model setup. As one example, we know
what are and are not potential controls on spring-summer
runoff volume, and this information is reflected in input
variable selection; this is not a data-mining exercise. Another
example is that the relationship between the dominant PCA
mode and runoff is known to often be nonlinear; this is an
expression of hydrologic processes reflecting varying con-
tributions of seasonal snowpack or precipitation vs. internal
watershed storage (lakes, soil moisture, aquifers, wetlands,
etc) during wet vs. dry years. This relationship is also known
to be monotonic: for instance, low snowpack never gives
high water supply, all else being equal. Additionally, river
flow volume cannot be negative. Available monotonicity
(MCQRNN and mANN) and non-negativity (MCQRNN;
model pruning procedure of (17)) constraints were therefore
invoked. Consequently, the resulting solution respects, and
is in turn explainable in terms consistent with, certain key
aspects of physical process knowledge. This property helps
ensure physical defensibility of the results – found from
experience to be essential for credibility with operational
hydrologists and forecast product consumers. These con-
straints on the available solution space were also found to
have a noticeable regularization effect on the machine learn-
ing solutions, reducing overfitting when invoked, consistent
with expectations [34].

Some additional technical notes are as follows. Cross-
validation was performed using k = 1, i.e., leave-one-out
cross-validation (LOOCV), as partial autocorrelation func-
tions of residuals were not significantly different from zero.
NRCS service delivery obligations require forecasts framed
as a best estimate with associated 0.10, 0.30, 0.70, and 0.90
quantiles. Results discussed below are for the default GA
settings we determined for WSF problems in testing (see
Section II.G), i.e., a population size of 15 with 7 genera-
tions, which required only 15-20 minutes to run on a typical

current general consumer-grade four-core PC using partial
parallelization (Section II.H). Forward simulation for a new
sample in forecasting operations using the saved modeling
suite is essentially instantaneous.

C. RESULTS
Table I provides five key performance metrics for the inte-
grated multi-method ensemble mean prediction for this test
case. LOOCV RMSE (see Sections II.D and III.B) is an
approximate but instructive measure of typical prediction
error. Coefficient of determination, R2, is the square of
the Pearson product-moment linear correlation coefficient
between the observations and predictions, and it provides the
proportion of predictand variance explained by the model.
RMSE and R2 are common measures of deterministic pre-
diction accuracy, i.e., verifying the expectation value of the
forecast distribution. Assessing the accuracy of probabilis-
tic prediction information involves, directly or indirectly,
verifying higher-order statistics, which can be challenging
for modest sample sizes compared to verifying the mean,
but we found two approaches in tandem provided a useful
view on the quality of the prediction bounds and underlying
probability models. One is a quantitative metric, the ranked
probability skill score (RPSS). RPSS originated in the
weather forecasting community and has spread to other fields
including WSF. It rewards both the ability to forecast which
category the flow will fall into (correct expectation value
of the forecast distribution) and to do so with confidence
(narrow prediction bounds about that best estimate); incorrect
best-estimate predictions, and forecast intervals that are so
wide that the correct value is almost inevitably included no
matter what best-estimate prediction is made, are penalized.
Following typical geophysical practice, three categories are
defined for RPSS evaluation, and the terciles of the observed
predictand are used as the category cutoffs. Another approach
to assessing the reasonableness of the prediction intervals
as well as the overall fit is a qualitative check, i.e., visual
comparison of the observations, best-estimate predictions,
and prediction intervals; an example is provided for the
Gila River in Fig. 2. Another crucial requirement of the
system is that it generates physically plausible estimates
without user intervention, in particular, that it does not pro-
duce negative-valued flow predictions within the relevant
state space. Table 1 therefore also indicates whether the
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best estimate (BE) or the lowest (0.10 quantile) prediction
bound (PB) < 0 for any of the samples.

Table 1 additionally provides this set of performance
metrics for the individual regression methods within the
multi-method ensemble, and for the existing official NRCS
PCR WSF models. As noted previously, outcomes from the
NRCS PCR models (the VIPER results in Table 1) form the
baseline against which the prediction engine is compared.
There are two reasons for this choice: NRCS requires the
new prediction system to meet or beat the predictive accuracy
of the existing system – and more generally, the principal
components regression model, which is merely linear regres-
sion preceded by principal components analysis, provides a
meaningful classical linear statistical modeling benchmark,
particularly given its use for WSF at a variety of institutions
across western North America as discussed above, against
which to evaluate the performance of our forecasting meta-
system.

In the interest of conciseness, we focus our performance
assessment and interpretation on seven central outcomes.

1) LR COMPONENT PERFORMANCE RELATIVE TO LINEAR
STATISTICAL MODELING BENCHMARK OF EXISTING
NRCS WSF SYSTEM
An interesting starting point for comparing the prediction
engine against the PCR benchmark is the linear regression
that forms one of the six regression and regression-like meth-
ods within the multi-method metasystem. As the prediction
engine includes PCA pre-processing, the LR component of
it amounts to PCR, much like the VIPER modeling envi-
ronment used classically by NRCS and other water supply
forecast agencies.

Importantly, however, the LR component within our multi-
method ensemble contains two major updates relative to
VIPER: the use of a post-processed Box-Cox transform
space-based heuristic for generating prediction intervals that
can, when needed, seamlessly accommodate heteroscedastic
and non-Gaussian residuals, i.e., produce asymmetric and
time-varying prediction bounds; and the use of evolutionary
optimization for feature selection. These two changes seem to
provide a clear performance advantage of LR over classical
PCR (Table 1), providing similar or slightly better determin-
istic (R2, RMSE) and probabilistic (RPSS) prediction quality
across all three rivers. As expected, however, it does not
help with the inability of PCR to accommodate significantly
nonlinear relationships, as seen for Owyhee.

2) OTHER CONSTITUENT MODEL PERFORMANCES
RELATIVE TO LINEAR STATISTICAL MODELING
BENCHMARK OF EXISTING NRCS WSF SYSTEM
The integrated multi-method prediction engine contains
a total of six individual probabilistic regression and
regression-like models, each independently combined with
PCA-based feature creation and genetic algorithm-based fea-
ture selection. As noted above in point (1), certain attributes
of this metasystem allow even an otherwise conventional

linear regression to turn in better performances than a
standard PCR approach. How effective is this framework
when used with the five other methods, spanning nonpara-
metric statistical modeling and several machine learning
methods?

Table 1 demonstrates that, for most cases, all the indi-
vidual constituent methods within the new prediction meta-
system show superior performances to the existing NRCS
PCR system. The benefits are by far the most noticeable for
the Gila and Owyhee Rivers, which as discussed above are
known to be marked by both nonlinear dependence of spring-
summer flow volume on wintertime precipitation and snow
accumulation, as well as heteroscedastic and non-Gaussian
residuals. The prediction engine was specifically built to
easily handle these complications (see Sections I and II).
It produces superior performance statistics to VIPER, and
of particular note, its nonlinear constituent methods – that
is, the four machine learning techniques (mANN, RF, SVM,
MCQRNN) – produce predictions, and associated prediction
intervals, that are always positive-valued, a key physicality
requirement for acceptance of machine learning solutions in
a water resource prediction application. (We note that it is
perhaps ironic that the machine learning methods, which are
often viewed as being black-box and without physical inter-
pretation, deliver geophysical predictions that better match
known physical processes and constraints.) While the linear-
ity of QR can be a limiting factor in its deterministic predic-
tion accuracy and physicality for some rivers, most notably
Owyhee, it also usually turns in the best RPSS values among
all the individual methods in the ensemble and relative to the
conventional linear PCR modeling benchmark, indicating an
ability to contribute the most accurate quantitative estimates
of prediction uncertainty.

For the Deschutes, which as noted above is known to
be a linear, Gaussian, homoscedastic regression problem for
which a traditional statistical model should suffice, the pre-
diction system performs about on parwith the existingVIPER
approach – so there is no disadvantage to using it even
when its full capabilities are not required. In this case, the
various machine learning methods, though capable of accom-
modating nonlinearities, faithfully capture the essentially
linear relationships, at this river, between spring-summer
flow volume and its predictors. Similarly, the more sophis-
ticated and flexible prediction interval generation techniques
used in all the constituent methods within the ensemble,
including but not limited to both of the linear statistical
methods (QR, LR), automatically reduce to the homosce-
dastic and Gaussian uncertainty estimates required for
this river.

3) MULTI-METHOD ENSEMBLE MEAN PERFORMANCE
RELATIVE TO LINEAR STATISTICAL MODELING
BENCHMARK OF EXISTING NRCS WSF SYSTEM
The most immediately important litmus test for the
prediction engine is that its final product, the multi-method
ensemble mean forecast distribution, matches or exceeds the
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TABLE 1. Performance of existing linear statistical modeling-based NRCS WSF VIPER system vs. integrated multi-method ensemble.

performance of the existing official NRCS PCR (VIPER)
model forecast, a key design criterion for the new forecast
technique (Section I.B).

Table 1 shows that it does so, across all rivers, for every per-
formancemetric. Significant gains are seen in RMSE, R2, and
RPSS, and strictly non-negative predictions and prediction
intervals are generated, without manual user requirements
around evaluating the need for, selecting, and implementing
predictand transforms. The sole partial exception is RPSS for
Deschutes, for which it matches the performance of the linear
statistical WSF benchmark model.

The degree to which the mean forecast distribution from
the multi-method framework outperforms the conventional
linear PCRmodeling reference forecast varies between basins
in much the same way as discussed for its individual con-
stituent methods in points (1) and (2) above. That is, on the
one hand, the advantages of the integrated prediction engine
are most pronounced for rivers that have the sorts of prob-
abilistic regression challenges it was intended to tackle,
i.e., nonlinear relationships and a need for time-varying and
asymmetric prediction bounds at Gila and Owyhee. On the
other hand, for Deschutes, where those capabilities are not
required, the multi-method ensemble mean essentially repro-
duces the performance of a conventional linear Gaussian
regression model, as desired; although the performance still
appears somewhat better than that of the NRCS PCR model,
presumably at least in part due to the capabilities discussed
in point (1), in particular the use of a genetic algorithm for
feature selection.

4) MODEL SELECTION UNCERTAINTY WITHIN THE
MULTI-METHOD FRAMEWORK
Model selection uncertainty and equifinality amongst the
individual methods within the multi-method framework are
strongly evident. No single method – LR, SVM, RF, mANN,
QR, or MCQRNN – can be said to be uniquely best across all
rivers and performance measures.

In the interest of conciseness, we will not run through
the results of every method, river, and fit metric, but a
few examples illustrate the point. For instance, RF is the
clear winner for deterministic measures (R2 and RMSE) for
Owyhee yet its probabilistic accuracy measure (RPSS) for
this watershed is the worst of the sixmethods; its performance
for Deschutes is mediocre compared to the other methods;
and its R2 and RMSE for Gila are middling yet its RPSS
for that watershed is tied for top spot among the individ-
ual methods. Additionally, even where models have clear
flaws in some respects, they also offer distinct advantages in
other respects: while MCQRNN turns in the poorest accuracy
metrics for Owyhee and may therefore initially seem like a
low-performing method, it reliably ensures non-negative pre-
dictions and associated prediction intervals, i.e., physically
plausible water supply forecasts, such that it is in this crucial
respect superior to several of the other constituent methods
for this watershed. Similarly, as a linear method, QR can have
difficulty dealing with the more nonlinear basins, particu-
larly Owyhee where the method-pruning algorithm of (17)
removed it from the ensemble (see details in footnotes to
Table 1), but as noted in point (2) above, it consistently turns
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in some of the best RPSS performances of all the individ-
ual probabilistic regression methods within the multi-method
framework and therefore contributes substantial value around
prediction uncertainty. Each of themethods offers capabilities
and limitations.

5) MUTUAL ERROR CANCELLATION IN THE
MULTI-METHOD ENSEMBLE MEAN
The multi-method mean prediction, which meets or beats the
linear performance benchmark of the NRCS PCR statistical
model (point (3)), also meets – or beats – its constituent
methods in many respects.

Of particular note is that the water supply forecast obtained
by averaging those made by the six constituent methods
delivers a RPSS value of 0.66 for Gila, whereas the RPSS
values for the predictions of each of those constituent meth-
ods ranged from 0.59 (LR) to 0.64 (QR, RF, and SVM).
Similarly, the multi-method ensemble mean prediction R2

for Deschutes is 0.83, better than that of any of the methods
that went into the ensemble. These results are consistent with
the well-known mutual error cancellation property of multi-
model averaging (see Section II.C).

Even where the ensemble mean prediction does not
outperform all of its constituent methods, it typically delivers
performance metrics that are among the best for a given river
andmetric, that is, it has reliably consistent prediction quality,
as discussed in point (6) below.

6) GREATER PERFORMANCE CONSISTENCY OF THE
MULTI-METHOD ENSEMBLE MEAN RELATIVE
TO ITS CONSTITUENT METHODS
A particularly notable asset of the integrated multi-method
prediction engine is that, in addition to outperforming the
VIPER linear benchmark (see point (3) above), it also pro-
vides greater overall consistency and reliability relative to any
of the individual methods within it.

The overall implications are dramatic. For each river,
irrespective of its geophysical and statistical characteris-
tics, the multi-method ensemble mean is always either the
best or second-best performer for all five prediction quality
measures, that is, without exception it provides the best
or second-best quantitative metrics of both deterministic
and probabilistic forecast performance (R2, RMSE, RPSS)
and for binary metrics (BE, PB<0?) it was always correct.
In contrast, the worst performance for each of the individual
constituent methods was always worse than second for each
of the rivers, and indeed, some methods capable of turning in
a very good performance for one river or metric performed,
comparatively, quite poorly on others.

The multi-method ensemble mean addresses model selec-
tion uncertainty by capitalizing on the strengths of individual
methods and damping their weaknesses, providing a more
stable performance than any individual ensemble member.
For example, although PB < 0 for QR at Gila, QR was still
retained by the QC algorithm of (17) as this individually
non-physical result did not ultimately lead to a non-physical

ensemble mean prediction, and in fact, combining QR with
the outcomes of the other constituent models allowed the
ensemble to capitalize on the good aspects of QR perfor-
mance, in particular high RPSS, while overcoming its poor
aspect, i.e., the generation of negative-valued prediction
intervals. As another clear example, MCQRNN at Owyhee
provided relatively poor quantitative performance measures
but its guarantee of BE, PB ≥ 0 helped ensure that the
multi-method ensemble mean satisfied key physicality con-
straints, which was a significant challenge for Owyhee.

This consistency is a crucial practical advantage for an
operational forecast system intended for ultimate application
to over 600 forecast points across the western US. Given
the model selection uncertainty and equifinality apparent for
the six individual methods in Table 1 and described above,
choosing a single best (across all performance measures,
and hundreds of rivers) regression/regression-like modeling
technique would seem impossible. But by integrating these
six, very different, regression methods into a multi-method
averaging framework, far greater consistency and reliabil-
ity in prediction quality (R2, RMSE, RPSS) and physical
plausibility (BE, PB<0?) are achieved and the prediction
metasystem can be applied with greater confidence across the
modeling domain.

7) COROLLARIES TO THE PERFORMANCE CONSISTENCY
AND RELIABILITY OF THE MULTI-METHOD
ENSEMBLE MEAN
There are two interesting corollaries to point (6).

First, by exactly the same token, several testing runs (not
shown for conciseness) also demonstrate the multi-method
ensemble mean tends to damp overall performance fluctua-
tions arising from specific architecture and hyperparameter
choices for the individual methods (mANN, RF, etc.) and for
the GA, provided of course that these choices are broadly rea-
sonable. Such configuration and hyperparameter selections
can lead to slightly different final models for each technique,
and to correspondingly different relative rankings among the
methods as captured by various performance measures, but
the ensemble mean across all the methods tends to remain
largely stable. In general, for a given test case, noteworthy
changes in the ensemble mean performance only occurred if
major changes in procedure were made, such as increasing
the scale of the GA problem by two orders of magnitude or
omitting the GA optimization altogether (see also hyperpa-
rameter tuning discussion in Section II.G).

Second, recall from Section II.C and II.D that some of
the individual methods within the multi-method framework
are themselves ensemble learners, specifically, RF, and for
configurations where bagging is employed mANN. That is,
as discussed previously, the multi-method framework is in
part an ensemble of ensembles, or super-ensemble to bor-
row a term from the weather and climate modeling commu-
nity. The multi-method ensemble framework is obviously not
in competition with individual ensemble learning methods
like RF to replace them, as it integrates and depends upon
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these methods. However, it is interesting to contemplate the
implications of the performance of the multi-method pre-
diction engine relative to each of its individual constituent
methods (points 4, 5, and 6 above) in light of the fact that
some of those methods are in turn ensemble learners. The
prediction engine therefore becomes, in part, a multi-level
hierarchy of ensemble learners, at least with respect to RF
and bagged mANN, and the far greater consistency of the
multi-method ensemble mean, and for some metrics and
rivers its better performance measures through error cancel-
lation (see points (5) and (6) above), show that (i) while
an individual ensemble learner benefits from internal model
averaging, such that, typically, RF performs better than a
single isolated regression tree or a bagged mANN performs
better than a single isolated neural network, there is still
significant model selection uncertainty and equifinality when
comparing these classes of individual ensemble learner (that
is, RF vs. bagged mANN) against each other, (ii) still higher
levels of model aggregation beyond that employed within
a RF or bagged mANN, in particular that implemented in
the multi-method engine across six distinct modeling tech-
nologies including but not limited to both RF and bagged
mANN, is useful for addressing that model selection uncer-
tainty and equifinality, and (iii) the more diverse the methods
within a multi-method average, the better its performance
and in particular the reliability of that performance, consis-
tent with prior experience in the machine learning, statisti-
cal modeling, and geophysical and environmental modeling
communities.

IV. CONCLUSION
We describe a study in which a number of supervised and
unsupervised machine learning, nonparametric statistical,
ensemble modeling, and evolutionary optimization methods
were integrated into a prediction metasystem and used to
radically update and improve an existing principal compo-
nents regression framework for water supply forecasting in
the US West. It has direct implications to various aspects of
water resource management, including optimal hydroelectric
power generation and planning, and potentially, sustainable
practices in certain water-intensive tech-sector areas like chip
manufacturing and server farms. More broadly, the technique
may have applications to probabilistic nonlinear regression
problems in other applied science and engineering fields hav-
ing similar statistical requirements. The study also provides
a successful demonstration of the way in which the per-
formance and reliability of established geophysical predic-
tion techniques can be upgraded using artificial intelligence
and other modern data analytics methods, through a process
of carefully merging the bodies of knowledge and practice
of machine learning with those of environmental science;
lessons learned from this example may have implications to
successful AI implementation in applied science and engi-
neering areas beyond environmental prediction.

Specifically, a new, largely machine learning-based
prediction system was developed using a relatively

multi-disciplinary philosophy to replace the existing linear
statistical regression framework for the largest stand-alone
water supply forecast system in the western US. A central
aspect of both the existing and new systems are that they are
probabilistic, generating predictions consisting of a best esti-
mate with associated prediction intervals. The new approach
is an integrative, modular, multi-method framework for prob-
abilistic nonlinear regression modeling that is suitable for
a wide class of prediction problems and incorporates – not
replaces – a careful selection of well-established concepts in
predictive analytics and ensemble modeling drawn from the
machine learning, statistics, risk assessment, and hydrologic
and climate modeling communities. In particular, it amounts
to a prediction metasystem that capitalizes on the successful
aspects of the existing, well-proven system by upgrading its
principal components regression framework using a range
of modern machine learning and evolutionary computing
techniques; enhances flexibility and efficiency by automating
many steps and incorporating various nonlinear regression
methods and error estimation techniques chosen for their abil-
ity to handle a wide range of problem types, including non-
linear relationships and heteroscedastic and non-Gaussian
prediction errors, without requiring user intervention or
excessive tuning; and employs a multi-method ensemble
spanning a diverse selection of regression and regression-like
modeling techniques to create a relatively robust and stable
estimator and to help sidestep model selection uncertainty.
Testing of the new system suggests it is more amenable to
automation and produces more accurate forecasts than the
well-established and finely tuned current operational system.

A wide range of additional work is under consideration,
including experimentation with new predictor types such as
outputs from snow and climate models and airborne and
satellite remote sensing products, upgrading some additional
elements of the prediction framework, adding other types of
machine learning-based nonlinear regression methods to the
multi-method ensemble, and integrating WSFs from physics-
based process simulation models, such as those issued by
other agencies like the National Weather Service, into the
multi-method ensemble. In the latter case, the prediction
engine would grow from a modeling framework into a
broader platform for integrating a wide variety of predic-
tion products from various sources generated using different
methods; this is broadly consistent with some contemporary
research directions in hydrologic modeling [56], [57] and in
principle could enable a re-introduction of the informal multi-
agency forecast coordination process that used to take place
in the US West.

Demonstrating that a suitable machine learning approach
to WSF, developed jointly using both geophysical and
AI knowledge and tools, can successfully transition from
research to operational agency applications has implica-
tions for improving other WSF systems, in the US West
and elsewhere. Globally, over a billion people are currently
without adequate access to water, and estimates call for an
increase of 55% in water demand by 2050 due to population
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and economic growth [58]. Climate change may also be a
concern, potentially leading to increasingly unpredictable
water supplies [59]. Successful management and planning of
water for basic living needs, water-intensive agricultural and
industrial production, hydroelectric power generation, and
ecological and legal requirements, will demand increasingly
powerful geophysical prediction tools as themargins between
water supply and demand narrow.

The relatively multifaceted and interdisciplinary approach
taken here, in which diverse required design criteria were
achieved by integrating multiple existing techniques into a
type of regression metasystem that combines the qualities
of the constituent methods, may also be useful to predic-
tion of other types of complex open systems. Generation of
quantitative prediction intervals that accommodate complex
(in particular, heteroscedastic and non-Gaussian) predictive
errors, integration of some basic physical process consid-
erations, nonlinearity, high dimensionality, model selection
uncertainty and equifinality, reduced need for manual user
intervention and increased amenability to automation, and
low cost are all requirements for many problems. Exam-
ples include other geophysical problems, ecosystem mod-
eling, and economic systems. As noted above, predictive
analytics methods that accommodate one or a few of these
requirements and complications are common; methods that
simultaneously accommodate all of them are not.

Some ability to impose solution constraints suggested by
physical knowledge of the process being modeled may be
worth emphasizing given current interest in, and criticism
of, machine learning solutions. Water supply forecasting
is not the only applied science and engineering field in
whichmachine learning has encountered difficulty transition-
ing from academic research to widespread mainstream use,
or finding its place within the standard industrial toolkits of
those fields. Another well-documented example is materials
science, and questions like small sample sizes, addressing
uncertainty, and in particular an expectation for some level of
physics-awareness, may set such applied science and engi-
neering applications apart from many other AI uses [60].
Some of these issues tie into still-broader questions: when
IBM surveyed 5,000 businesses about using artificial intelli-
gence, 82% expressed interest yet two-thirds of those compa-
nies indicated they were reluctant to proceed, with the leading
roadblock being that the resulting machine learning solutions
suffered from a lack of explainability in terms of underlying
(e.g., physical) processes [61]. Our study does not solve these
problems, and indeed, solutions may be application area-
specific, such as methods for optimal design of chemistry
experiments to develop new materials [62]. Nevertheless,
some aspects of the approach adopted here for helping ensure
physicality, such as guaranteeing non-negative predictions
or monotonically nonlinear functional relationships through
appropriate selection of specific machine learning methods
from the huge range of AI techniques available, and develop-
ing post-modeling QC steps to retroactively adjust ensemble
composition when needed, are likely to be transportable to

other fields and at a minimum provide further demonstration
that it is possible to incorporate some physical process knowl-
edge into machine learning solutions in a practical way.
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