The Science Behind Healthy Soil: NRCS Soil Health Literature Review

Mike Kucera Agronomist Lincoln, Nebraska

A Collaborative Project of the NRCS SSRA and S&T Deputy Areas

Deputy Chief for Soil Science and Resource Assessment

Soil Science Division

National Soil Survey Center

Soil Quality and Ecosystems Staff

- Direction and Review
- Literature Search, Analysis, Development, and Summary

Deputy Chief for Science and Technology *East National Technology Support Center National Soil Health and Sustainability Team*

- Direction and Review
- SharePoint and Web site Development

Physical

Biological

Chemical

- Peer-reviewed papers
- Scientific underpinning
- Focus on physical properties (limited chemical and biological properties papers included)
- Primarily cropland practices
- Tool for NRCS and partners (internal and external)
- Biological and economic impacts are targeted (future)

Features, cont.

un)ock the SECRETS

- Random, unbiased selection of papers
- Searchable by practices and properties
- Literature search not all-inclusive (dynamic)
- Submittal process
- Targeted by practice and physical properties
- National Ag Library
- Digi top, Google Scholar
- Journal Articles (NSSC Library)
- US and abroad

Soil Health Definition

- Capacity of the soil to <u>function</u> as a vital <u>living ecosystem</u> that sustains plants, animals, and humans
 - Nutrient cycling
 - Water (infiltration & availability)
 - Filtering and Buffering
 - Physical Stability and Support
 - Habitat for Biodiversity

Soil Health vs. Soil Quality

- The two terms are often <u>used interchangeably</u>.
- Some use the term <u>Soil Quality</u> to refer to <u>Inherent</u> Soil Properties such as texture and depth and <u>Soil Health</u> to refer to <u>Dynamic</u> Soil Properties such as organic matter, bulk density and aggregate stability.
- Soils with good quality are <u>more resilient</u> (bounce back from abuse) and more <u>resistant to degradation</u>.
- Dynamic soil properties are <u>near optimum</u> for a healthy functioning soil (soil functions provided are important).
- Soil Health = <u>Living Ecosystem</u> vs. Soil Quality = specific <u>SQ indicators</u> measured.

Soil Health Planning Principles

- 1. Manage more by **Disturbing Soil Less**
- 2. <u>Use Diversity of Plants</u> to add diversity to soil microorganisms
- 3. Grow Living Roots throughout the year
- 4. Keep the Soil Covered as much as possible
- Integrate livestock
- Manage compaction
- Control erosion

Goal: To create the most favorable habitat possible for the soil-food web

\mathcal{O}

Soil Health Management Systems Include:

What is it?	What does it do?	How does it help?
Conservation Crop Rotation Growing a diverse number of crops in a planned sequence in order to increase soil organic matter and biodiversity in the soil.	 Increases nutrient cycling Manages plant pest (weeds, insects, and diseases) Reduces sheet, rill, and wind erosion Holds soil moisture Adds diversity so soil microbes can thrive 	Improves nutrient use efficiency Decreases use of pesticides Improves water quality Conserves water Improves plant production
Cover Crop An un-harvested crop grown as part of planned rotation to provide conservation benefits to the soil.	Increases soil organic matter Prevents soil erosion Conserves soil moisture Increases nutrient cycling Provides nitrogen for plant use Suppresses weeds Reduces compaction	Improves crop production Improves water quality Conserves water Improves nutrient use efficiency Decreases use of pesticides Improves water efficiency to crops
No Till A way of growing crops without disturbing the soil through tillage.	Improves water holding capacity of soils Increases organic matter Reduces soil erosion Reduces energy use Decreases compaction	Improves water efficiency Conserves water Improves crop production Improves water quality Saves renewable resources Improves air quality Increases productivity
Mulch Tillage Using tillage methods where the soil surface is disturbed but maintains a high level of crop residue on the surface.	Reduces soil erosion from wind and rain Increases soil moisture for plants Reduces energy use Increases soil organic matter	Improves water quality Conserves water Saves renewable resources Improves air quality Improves crop production
Mulching Applying plant residues or other suitable materials to the soil surface to compensate for loss of residue due to excessive tillage.	Reduces erosion from wind and rain Moderates soil temperatures Increases soil organic matter Controls weeds Conserves soil moisture Reduces dust	Improves water quality Improves plant productivity Increases crop production Reduces pesticide usage Conserves water Improves air quality
Nutrient Management Managing soil nutrients to meet crop needs while minimizing the impact on the environment and the soil.	 Increases plant nutrient uptake Improves the physical, chemical, and biological properties of the soil Budgets, supplies, and conserves nutrients for plant production Reduces odors and nitrogen emissions 	Improves water quality Improves plant production Improves air quality
Pest Management Managing pests by following an ecological approach that promotes the growth of healthy plants with strong defenses, while increasing stress on pests and enhancing the habitat for beneficial organisms.	 Reduces pesticide risks to water quality Reduces threat of chemicals entering the air Decreases pesticide risk to pollinators and other beneficial organisms Increases soil organic matter 	Improves water quality Improves air quality Increases plant pollination Increases plant productivity Vieted State: Op NRCS United State: Op Han et al Agriculture Natural State: Cop Han et al Agriculture

Targeted Conservation Practices

Name

- 311- Alley Cropping
- 328- Conservation Crop Rotation
- 329- Residue and Tillage Management- No Till
- 340- Cover Crop
- 344- Residue and Tillage Management-Seasonal
- 345- Residue and Tillage Management-Reduced Till
- 449- Irrigation Water
 Management_Yield_Salinity
- 484- Mulching
- 511- Forage Harvest Management_ Perennials_Harvest
- 512- Forage and Biomass
 Planting_Perennials_Harvest
- 585- Stripcropping
- 590- Nutrient Management_Organic Amends_Application Methods

Selecting Soil Quality Indicators

- Chemical
 - Soil test, such as N, P, K, pH, NA, salinity, sodicity, etc.
- Physical
 - Aggregate stability
 - Available water capacity and water retention
 - Crusting
 - Compaction layers
 - Bulk density
 - Infiltration
- Biological
 - Organic matter (soil color)
 - Potential mineralizable N
 - Active carbon
 - Respiration
 - Microbe analysis
 - Earthworms
 - Fungi

Soil Properties

- Properties in the Matrix (abbrev)
 - BD, Compaction, Soil H₂O, Ksat, Infil/Drain,
 Earthworm, Crust/Seal, Aggregate, Structure,
 Surf Rough, SOM, Fungi, Nitrogen, Phosphorus,
 Soil pH/EC/NA, Hvy Metals, Pest Mvmt/Degr
- Primarily Physical Properties

Features of the Soil Health Literature Review

Public Web site http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/

Soil Health Awareness

- Summary of effects of conservation practices on soil properties
- Excel spreadsheet (matrix) of addressed practices, properties, and climate for each paper/author(s)
- Data dictionary
- Short summaries and citations of papers
- Link to USDA Employee SharePoint

JSDA Natural Resources	Conservation Service About Us Soil Survey Releases National Centers State Websites									
Inited States Department of Agricultu										
Topics Soil Survey Soil Health Co	Browse By Audience A-Z Index Advanced Search Help									
You are Here: Home / Soil Health / Soil Health Management / Soil Health Literature Stay Connected 🚺 💟 遇 🏁 🔝										
	Soil Health Literature									
Soil Health About Soil Health	The Science Behind Healthy Soil									
Soil Biology	The information in the Soil Health Literature files offered below is compiled from peer-reviewed papers relating									
Soil Health Assessment	to the impact of conservation practices on soil physical and chemical properties important for soil health, as summarized by our soil health specialists. Please note that the peer-reviewed papers and conservation									
Soil Health Management	practices included are not exhaustive and will be added to periodically. The current focus of the literature									
Resources & Publications	review is on soil physical and chemical properties. The intent is to address soil biology and economics in future revisions.									
Dig Deeper, Learn More	January 13, 2015, 2p Eastern - Participate in the The Science Behind Healthy Soil: NRCS' Soil Health Literature Review Project webinar at the Science and Technology Training Library. All are welcome to participate.									
Soil Health Literature	> Soil Health Literature Summary – Effects of Conservation Practices on Soil Properties in Areas of Cropland									
Role of Soil Organic Matter Manage for Soil Carbon	> Soil Health Literature Matrix of Soil Properties									
Farming in the 21st Century	 Soil Health Literature Matrix Data Dictionary Soil Health Literature Summaries and Citations 									
Carbon to Nitrogen Ratios in	Soli read Eleradore Soliminaries and Citations									
Cropping Systems	USDA employees and others with USDA Active Directory accounts have full access to reprints of peer-reviewed papers and the interactive database matrix, summaries, and citations at the Science, Soils, & Technology for									
	Soil Health SharePoint (employee intranet).									
un lock the										
SECRETS	Careton Services									
nev manne 🤍 nën të nëndë site 1947										

Soil Health Literature Summary Key conservation practices summarized:

- 328 Conservation Cropping Rotation
- 329 Residue and Tillage Management, No-Till
- 340 Cover Crops
- 484 Mulching
- 590 Nutrient Management
- Additional practices in the future

Soil Health Literature Summary— Effects of Conservation Practices on Soil Properties in Areas of Cropland

Soil Health Literature Summary, cont.

 \mathcal{O}

Table of Contents

Conservation Practice Standards Reviewed	3
Conservation Practice 328—Conservation Crop Rotation	3
Conservation Practice 329—Residue and Tillage Management, No-Till	4
Table 1.—Impact of No-Till Systems and Associated Practices on Physical Soil Properties	
Bulk Density	
Available Water Capacity/Total Soil Water	
Soil Organic Matter	
Penetration Resistance, Compactioin, Crusting/Sealing, and Infiltration	13
Aggregate Size and Stability and Soil Structure	13
Pore-Size Distribution and Its Effects on Bulk Density and Earthworms	13
Conservation Practice 340—Cover Crop	14
Conservation Practice 484—Mulching	15
Conservation Practice 590—Nutrient Management	16
Nitrogen	
Phosphorus	18
Manure and Municipal Waste Application	
Acidity and Alkalinity	
Salts and Sodium	22
Trace Elements (Heavy Metals)	23
References	24

Soil Health Literature Summary, cont.

Conservation Practice 329—Residue and Tillage Management, No-Till

Definition: Limiting soil disturbance to manage the amount, orientation, and distribution of crop and plant residue on the soil surface year-round (NRCS National Handbook of Conservation Practices, 2014)

Purpose: This practice allows for in-row tillage during the planting operation and use of equipment for closing the seed row or furrow. Full-width tillage is not allowed. The practice is used to support one or more of the following—

- Reduce sheet, rill, and wind erosion
- Reduce tillage-induced particulate emissions
- Maintain or increase soil quality and organic matter content
- Reduce energy use
- Increase efficiency of water use and precipitation storage
- Provide food and escape cover for wildlife

Purposes of this practice that directly relate to improving soil physical properties include: reduce sheet, rill, and wind erosion; maintain or increase soil quality and organic matter content; and increase efficiency of water use and precipitation storage.

Degradation of agricultural soils as a result of excessive tillage has spurred interest in no-till cropping systems. These systems help to maintain the physical conditions of a relatively undisturbed soil. Residue is left on the surface of the soil, making it less susceptible to wind and water erosion (Baker and Saxton, 2007). Tillage accelerates mineralization (breakdown) of crop residue and loss of soil organic matter (Stubbs et al., 2004).

No-till (NT) systems have been compared to various tillage practices under a range of conditions. Studies on how the practices affect physical soil properties had mixed results. Overall, NT systems tend to increase macropore connectivity while generating inconsistent responses in total porosity and soil bulk

Soil Health Literature Summary, cont.

Table 1.-Impact of No-Till Systems and Associated Practices on Physical Soil Properties

(Definitions of abbreviations: AgS—aggregate stability; AWC—available water capacity; BD—bulk density; CT—conventional till; Ksat—saturated hydraulic conductivity; MT—mulch till; N/A—not applicable; NT—no-till; POR—porosity; PR—penetration resistance; RT—ridge till; SOM—soil organic matter)

Impact of NT and associated practices (negative effects underlined) Tillage system and associated practices with the most beneficial or least detrimental impact		Years of NT	Moisture regions	Soil temper- <u>ature</u> regime	Soil texture/ limitation; location of study	Reference (first author, date)
NT; perennial grasses in rotation (328)	CRP, NT with corn, soybeans, and wheat rotation and clover cover crop; MT with corn and soybeans rotation; NT with perennial hay and corn rotation	Short term	Subhumid	Mesic	Claypan soil; Missouri	Jiang, 2007
NT; corn, peanuts, cotton-sorghum, and soybeans	NT, CT, organic crop production, plantation forestry-woodlot, abandoned-field succession, integrated crop–livestock	8 years	Humid	Thermic	Sandy loam and loamy sand; Goldsboro, North Carolina	Raczkowski, 2012
NT; small grain without fallow (328)	NT, MT, and CT with small grain, with and without fallow	11 years	Semi-arid	Frigid	Coarse sandy soils; SW Saskatchewan	Campbell, 1996
NT; corn and soybeans rotation with winter cover crops (hairy vetch and cereal rye) (340)	NT with corn and soybeans rotation and winter cover crops	Short term	Humid	Mesic	Silt Ioam; Illinois	Villamil, 2006
	associated practices with the most beneficial or least detrimental impact NT; perennial grasses in rotation (328) NT; corn, peanuts, cotton-sorghum, and soybeans NT; small grain without fallow (328) NT; corn and soybeans rotation with winter cover crops (hairy vetch and cereal	associated practices with the most beneficial or least detrimental impactSystems comparedNT; perennial grasses in rotation (328)CRP, NT with corn, soybeans, and wheat rotation and clover cover crop; MT with corn and soybeans rotation; NT with perennial hay and corn rotationNT; corn, peanuts, cotton-sorghum, and soybeansNT, CT, organic crop production, plantation forestry-woodlot, abandoned-field succession, integrated crop–livestockNT; small grain without fallow (328)NT, MT, and CT with small grain, with and without fallowNT; corn and soybeans rotation with winter cover crops (hairy vetch and cerealNT with corn and soybeans	associated practices with the most beneficial or least detrimental impactSystems comparedYears of NTNT; perennial grasses in rotation (328)CRP, NT with corn, soybeans, and wheat rotation and clover cover crop; MT with corn and soybeans rotation; NT with perennial hay and corn rotationShort termNT; corn, peanuts, cotton-sorghum, and soybeansNT, CT, organic crop production, plantation forestry-woodlot, abandoned-field succession, integrated crop-livestock8 yearsNT; small grain without fallow (328)NT, MT, and CT with small grain, with and without fallow11 yearsNT; corn and soybeans rotation with winter cover crops (hairy vetch and cerealNT with corn and soybeans rotation and winter cover cropsShort term	associated practices with the most beneficial or least detrimental impactSystems comparedYears of NTMoisture regionsNT; perennial grasses in rotation (328)CRP, NT with corn, soybeans, and wheat rotation and clover cover crop; MT with corn and soybeans rotation; NT with perennial hay and corn rotationShort termSubhumidNT; corn, peanuts, cotton-sorghum, and soybeansNT, CT, organic crop production, plantation forestry-woodlot, abandoned-field succession, integrated crop-livestock8 yearsHumidNT; small grain without fallow (328)NT, MT, and CT with small grain, with and without fallow11 yearsSemi-aridNT; corn and soybeans rotation and winter cover cropsNT with corn and soybeansShort termHumid	associated practices with the most beneficial or least detrimental impactSystems comparedYears of NTMoisture regionstemper- ature regimeNT; perennial grasses in rotation (328)CRP, NT with corn, soybeans, and wheat rotation and clover cover crop; MT with corn and soybeans rotation; NT with perennial hay and corn rotationShort termSubhumidMesicNT; corn, peanuts, cotton-sorghum, and soybeansNT, CT, organic crop production, plantation forestry-woodlot, abandoned-field succession, integrated crop-livestock8 yearsHumidThermicNT; small grain without fallow (328)NT, MT, and CT with small grain, with and without fallow11 yearsSemi-aridFrigidNT; corn and soybeans rotation and winter cover cropsNT with corn and soybeans for stry-woodlot, abandoned-field succession, integrated crop-livestockShort termHumidMesic	associated practices with the most beneficial or least detrimental impactSystems comparedYears of NTMoisture regionstemper- ature regimeImitation; location of studyNT; perennial grasses in rotation (328)CRP, NT with corn, soybeans, and wheat rotation and clover cover crop; MT with corn and soybeans rotation; NT with perennial hay and cornShort termSubhumidMesicClaypan soil; MissouriNT; corn, peanuts, coton-sorghum, and soybeansNT, CT, organic crop production, plantation forestry-woodlot, abandoned-field succession, integrated crop-livestock8 yearsHumidThermicSandy loam and loamy sand; Goldsboro, North CarolinaNT; small grain without fallow (328)NT, MT, and CT with small grain, with and without fallow11 yearsSemi-aridFrigidCoarse sandy soils; SW saskatchewanNT; corn and soybeans rotation with winter cover crops (hairy vetch and cerealNT with corn and soybeans rotation and winter cover cropsShort termHumidMesicSilt loam; Illinois

No-Till Literature Summary (keys)

- Limitations of the soil and site
- Previous management
- Soil temperature and moisture regime
- Diversity and intensity of the crop rotation
- Type and amount of crop residue (C:N ratio)
- Removal of residue after harvest
- Irrigated vs. rainfed
- Adaptive management!!!

No-Till Literature Summary, cont.

- Amount of disturbance (no-till vs. strip-till)
- Fertilizer and manure application
- Synergistic impact of multiple practices (use of other practices, such as rotation, cover crops, and mulching along with no-till)
- Research protocols used (variability)
- Weather impacts
- Plots vs. field-size research
- Duration practice or system has been in place (transition)

Matrix/Spreadsheet

		State of the second	STREET, STORE			and the second			Contraction of the second				A. Contraction of the
X	<u> </u>	.									Soil_Health_L	iterature_Matrix	c_of_Soil_Prop
F	ile Home	Insert	Page Layout	Formulas	Data	Review	View	Acrobat					
0	Protected View	This file o	riginated from a	in Internet locat	ion and mi	ight be unsat	e. Click	for more details.	Enable Edi	ting			
	Z1	- (0	f_x										
		А			В		С	D	E	F	G	Н	1
1	Reference, Cita	ation & Su	ımmary 🛛 📘	Standard		-	BD 💌	Compaction 💌	Soil H20 💌	Ksat 💌	Infiltr/Drain	Pore Size	Earthworn
2	Abbas and Fare	es, 2009		590			Yes	No	No	Yes	No	No	No
3	Abdollah et al.,	, 2013		340			No	Yes	Yes	No	No	Yes	No
4	Anderson et al.	, 2009		391; 393			No	No	Yes	No	Yes	No	No
5	Arvidsson and I	Bolenius,	2006	344; 345			Yes	Yes	No	Yes	No	No	No
6	Aslam et al., 20	09		595			No	No	No	No	No	No	No
7	Aziz et al., 2013	}		329			No	No	No	No	No	No	No
8	Bacigaluppo et	al., 2011		329			No	Yes	No	Yes	No	Yes	No
9	Bainard et al., 2	2012		311			No	No	No	No	No	No	No
10	Baker and Mick	elson, 19	94	345; 595			No	No	No	No	No	No	No
11	Baker and Saxte	on, 2007		329			No	No	Yes	No	No	No	Yes
12	Benjamin et al.	, 2007		512			Yes	No	No	Yes	Yes	Yes	No
13	Benjamin et al.	, 2008		328; 329; 34	5; 512		Yes	Yes	Yes	Yes	No	No	No
14	Bhardwaj et al.	2008		345; 449; 59	0; 610		No	No	No	Yes	No	Yes	No
15	Bhattacharyya	et al., 200	7	590			No	No	No	Yes	Yes	No	No
16	Blackshaw, 200	8		595			No	No	No	No	No	No	No
17	Blanco-Canqui	et al. 2004	1	328; 329; 34	5		Yes	Yes	No	Yes	No	No	No
18	Blanco-Canqui	and Lal, 2	007	484			No	No	Yes	Yes	Yes	Yes	Yes
19	Blanco-Canqui	et al., 200	7	329; 511			Yes	No	Yes	Yes	No	Yes	Yes
20	Blanco-Canqui	and Lal, 2	008	329			Yes	No	Yes	Yes	Yes	Yes	Yes
			-										••

Data Dictionary

Soil Health Literature Matrix Data Dictionary, July 21, 2014

C

Column Short Name	Column Full Name	Data	Definition
Reference, Citation & Summary	Peer Reviewed Literature Citation and Short Summary of Literature	Shortened citation from NRCS summary of peer reviewed literature	This entry provides the last name of the first author listed and the year the peer reviewed literature was published. The summary that is referred to is a shorter summary (modified abstract) of the literature completed by NRCS staff and is not the same as the abstract, summaries, or conclusions found in the actual article (e.gstatistics and introductory sentences are omitted from the abstract and additional information may be added important to soil health that was in the article but not noted in the abstract.
Name	Literature File Name	Link to peer reviewed literature pdf file	This entry contains the first author's last name and year published with a link to pdf file of peer reviewed literature. Available only to USDA employees using the Soil Health Literature Review SharePoint.
Standard	NRCS Conservation Practice Standard Number(s)	NRCS Conservation Practice Standard Number or Not Applicable (NA)	NRCS Conservation Practice Standard Number is from the National Handbook of Conservation Practices. The conservation practice numbers listed are addressed in the peer reviewed literature. Multiple entries or not applicable (NA) possible. <u>http://www.nrcs.usda.gov/wps/portal/nrcs/main/national/technical/cp/ncps/</u>
BD	Bulk Density	Yes or No	If "Yes" is shown, information about the impacts of conservation practices on bulk density is contained in the peer reviewed literature, and if "No" is shown, the impacts of conservation practices on bulk density is not included.

Data Dictionary, cont.

Soil Health Literature Matrix Data Dictionary, July 21, 2014

S

Column Short Name	Column Full Name	Data	Definition
Infiltr/Drain	Infiltration/Drainag e Water Management	Yes or No	If "Yes" is shown, information about the impacts of conservation practices on infiltration/drainage water management or related topics is contained in the peer reviewed literature, and if "No" is shown, the impacts of conservation practices on infiltration/drainage water management or related topics is not included.
Pore Size	Pore Size/Porosity/Pore Type	Yes or No	If "Yes" is shown, information about the impacts of conservation practices on pore size/type, porosity, macropores, micropores, or related topics is contained in the peer reviewed literature, and if "No" is shown, the impacts of conservation practices on pore size/type, porosity, macropores, micropores, or related topics is not included.
Earthworm	Earthworms	Yes or No	If "Yes" is shown, information about the impacts of conservation practices on earthworms or related topics is contained in the peer reviewed literature, and if "No" is shown, the impacts of conservation practices on earthworms or related topics is not included.
Crust/Seal	Soil surface crusting and/or sealing	Yes or No	If "Yes" is shown, information about the impacts of conservation practices on soil surface crusting/sealing or related topics is contained in the peer reviewed literature, and if "No" is shown, the impacts of conservation practices on soil surface crusting/sealing or related topics is not included.
Aggregate	Aggregate Stability	Yes or No	If "Yes" is shown, information about the impacts of conservation practices on aggregate stability or related topics is contained in the peer reviewed literature, and if "No" is shown, the impacts of conservation practices on aggregate stability or related topics is not included.
Structure	Soil Structure	Yes or No	If "Yes" is shown, information about the impacts of conservation practices on soil structure or related topics is contained in the peer reviewed literature, and if "No" is shown, the impacts of conservation practices on soil structure or related topics is not included.

Enable Saving

i 🛃 47 - (≌	v ▼ Soil_Health_Literature_Matrix_of_Soil_Properties [Protected Vi	w] - Microsoft Excel	
Protected Vie	This file originated from an Internet location and might be unsafe. Click for more details. Enable Editing		×
B12	▼ (* f _x 512		~
	А	В	
1	Reference, Citation & Summary	Standard	BI
2	Abbas and Fares, 2009	590	Ye
3	Abdollah et al., saving is not available in Protected View. If you trust the source of this file, click Enable Saving to enable the Enable Saving Cancel	s commandO	N
4	Anderson et al., 2009	391; 393	Ν
5	Arvidsson and Bolenius, 2006	344; 345	Y€
6	Aslam et al., 2009	595	Ν
7	Aziz et al., 2013	329	Ν
8	Bacigaluppo et al., 2011	329	Ν
9	Bainard et al., 2012	311	N
10	Baker and Mickelson, 1994	345; 595	N

Filter Data by Practice Standard(s)

			And the second sec	578-48'S	and the second second			
File File	C ^{®I} ≈ = TableTools Home Insert PageLayout Formulas Data Review View Acrobat Design	Literature Matrix Export 7 11 2014 - Microsoft Excel						
Paste V Clipboa	B I U × 小 小 小 小 小 公 Condition ard □ Font □ Alignment □ Number □ Number □	tional Format titing * as Table *	anal Format Check Cell Explanatory Hyperlink Input Linked Cell Insert Delete Format Sort & F					
B1	▼ (* fx Name							
	A	C		D	E			
1	Reference, Citation & Summary	Standard		BD .	Compaction	∎ Soil		
7	Aziz et al., 2013	329	22↓ <u>Sort</u> AtoZ Z↓ <u>Sort</u> ZtoA Sort_byColor ▷	No	No	No		
			Image: Clear Filter From "Standard" Filter by Color					
8	Bacigaluppo et al., 2011	329	Text Eilters Search ✓ □■ (Select All)	No	Yes	No		
11	Baker and Saxton, 2007	329		No	No	Yes		
13	Benjamin et al., 2008	328; 329; 345; 51	211, 500	Yes	Yes	Yes		
			OK Cancel					
17	Blanco-Canqui et al. 2004	328; 329; 345		Yes	Yes	No		
19	Blanco-Canqui et al., 2007	329; 511		Yes	No	Yes		
20	Blanco-Canqui and Lal, 2008	329		Yes	No	Yes		
21	Blanco-Canqui et al., 2010	328; 329		Yes	No	Yes		
22	Blanco-Canqui et al., 2011	329; 340		Yes	Yes	No		
					· · · · · · · · · · · · · · · · · · ·	-		

Filter by Property

	- Activity of the second	Salast			In the second				ALC- IN S
K 🚽 🤊 -		ata Review	View Acrobat	Table Tools Design	Literature Matrix Export 7 11 2014	Microsoft Excel			
Dacto	opy * ormat Painter ard © Font ©		Image: Wrap Text	General s v % v 5.00 Number		Bad Good Ne Explanatory Hyperlink Inp Styles	utral Calculation Linked Cell Cel	ete Format	v
	E		F	G	Н		J	К	-
1	Compaction	Soil	H20	, Ksat 🖉	Infiltr/Drain	Pore Size	Earthworm	Crust/Seal	Aggre
			An and a second sec	,					=
8	Yes	No	Clear Filter From Filter by Color	n "Ksat" ≻	No	Yes	No	No	No
13	Yes	Yes	Text <u>Filters</u> Search		No	No	No	No	Yes
			No ✓ Yes	y					
17	Yes	No			No	No	No	No	No
19	No	Yes		OK Cancel	No	Yes	Yes	No	No
20	No	Yes		Yes	Yes	Yes	Yes	No	No
21	No	Yes		Yes	Yes	No	No	No	No
29	No	No		Yes	Yes	Yes	No	No	No
40	No	No		Yes	Yes	No	No	Yes	No
51	No	Yes		Yes	Yes	No	No	No	No
									•
Ready 29 o	bwssvr / 🕼 / if 187 records found					1	ш	Count: 30 🔠 🗆 🛄 300%	

Filter by Moisture Regime

unlock the

	The second second						THE ALL
K 🛃 ") ▼ File H	· (≌ ~ ↓ Home Insert Page Layout Formulas Data Review	Table Tools View Acrobat Design	Literature Matrix Export 7 11	2014 - Microsoft Excel			22 %
Paste v Clipboa	ut opy * ormat Painter ard r_{a} $Calibri * 11 * A^{*} A^{*} \equiv = $ $B I \underline{U} * \underline{\mathbb{D}} * \underline{\mathbb{O}} * \underline{A}^{*} \equiv = $ $E \equiv I = $ Font r_{a}	🗞 - 📑 Wrap Text General	Conditional Format Formatting * as Table *	Bad Good Explanatory Hyperlink Styles	· · · ·	Exercise 2 AutoSum * 2 AutoSum * Fill * Sort & Find & Fill * Sort & Find & Cells Editing	
B1		1/	14/	V	V	7	
	U	V	W	Х	Y	Z	
1	Pest Mvmt/Degr	Moist Reg 🛛 🖥	Temp Reg	Suppl H20	vs Conv Till	Updated 🔒	Notes
							Data frc
8	No	- /	Μ	NI	No	5/21/2014	massive
13	No	Text Eitters Search ✓ -■ (Select All)	Μ	NI	No	5/21/2014	include
		A Q A; SA H NA					excess t [≢]
17	No	A ISA	Т; М	NI	Yes	6/20/2014	& sb ha
21	No	OK Cancel	Т	NI	No	6/20/2014	Wheel t
40	No	SA; SH	Т	NI	Yes	6/6/2014	Infiltrat
51	No	A; SA	Т	NI	Yes	7/10/2014	NT and
74	No	SA; SH	M; F	I; NI	Yes	6/11/2014	BD lowe
81	No	SH	Μ	l	Yes	6/12/2014	CRP inc
103		SA; SH	Т	NI	No	6/12/2014	SE Que

Applicable Papers (329 & SA)

									Contract of the
	¥7 • (°≓ + ∣≕ Manus Instat Dana Januari Estemulas Data Basian Minus An		Export 7 11 201/	14 - Microsoft Excel					
File	Home Insert Page Layout Formulas Data Review View Acro	crobat Design							ω 🔮 🖬 ν
Normal	Page Page Break Custom Full Gridlines Headings Zoom 100% Zoom	Arrange Freeze	Save	Switch Macros					
	Layout Preview Views Screen Select Workbook Views Show Zoom	ection Window All Panes - Unhide Window Position Window	Workspace	ce Windows * Macros					
	J162 • 6 fr No								
	A	С	D	E	F	G	H		J
1	Reference, Citation & Summary 🗾 🗖	Standard 🖬	a BD	Compaction	Soil H20	<mark>⊾</mark> Ksat	<u>ज</u> Infiltr/Drain	■ Pore Size	Earthwo
8	Bacigaluppo et al., 2011	329	No	Yes	No	Yes	No	Yes	No
13	Benjamin et al., 2008	328; 329; 345; 512	Yes	Yes	Yes	Yes	No	No	No
17	Blanco-Canqui et al. 2004	328; 329; 345	Yes	Yes	No	Yes	No	No	No
21	Blanco-Canqui et al., 2010	328; 329	Yes	No	Yes	Yes	Yes	No	No
40	Dao, 1993	329; 345	Yes	No	No	Yes	Yes	No	No
51	Evett et al., 1999	329; 345	No	No	Yes	Yes	Yes	No	No
74	Jabro et al., 2009	329	Yes	Yes	Yes	Yes	No	No	No
81	Jiang et.al, 2007	328; 329; 340; 484	Yes	No	Yes	Yes	No	Yes	No
103	Li et al., 2008	329; 345	Yes	No	No	Yes	No	No	No
111	Malone et al., 2003	329	No	No	No	Yes	No	Yes	No
149	Sasal et al., 2010	328; 329	Yes	No	No	Yes	Yes	Yes	No
3									
158	Sharratt et al., 2006	329; 345	No	No	Yes	Yes	Yes	No	No
162	So et al., 2009	329	Yes	No	Yes	Yes	Yes	Yes	No
	N owssvr 2] 4 [== 200	→ <u> </u> 0% (-)(+

Soil Health Literature Summaries and Citations

Soil Health Literature Matrix of Soil Properties

C

Reference	Summary	Citation	Updated
Abbas and Fares, 2009	The objectives of this study were to: (i) simulate the effect of OM application rates (0, 168, 336, and	Abbas, F. and A. Fares. 2009. Soil Organic	7/11/2014
	672 kg total N ha-1) and types (chicken and dairy manures) on soil organic C (SOC) and CO2 emissions	Carbon and Carbon Dioxide Emission from	
	from a Hawaiian tropical soil (Waialua gravelly clay variant (very-fine, mixed, superactive,	an Organically Amended Hawaiian Tropical	
	isohyperthermic Pachic Haplustoll)) on 2 to 6% slopes at the Waimanalo agricultural research station	Soil. SSSAJ: Volume 73: Number 3.	
	(21°20′15″ N, 157°43′30″ W) ; and (ii) correlate SOC, CO2 emissions, and two major soil properties:		
	bulk density (pb) and saturated hydraulic conductivity (Ksat). Measurements of SOC and pb were		
	conducted on samples collected from the top 10 cm of soil tilled before and after manure application,		
	cultivated with sweet corn, and drip irrigated for two consecutive growing seasons. The Ksat values		
	were calculated from infiltration data measured with a tension infiltrometer. The Rothamsted C		
	turnover model was used to simulate SOC and CO2 emissions. Results revealed that SOC, CO2		
	emissions, and Ksat increased while pb decreased with increasing OM rates. There was no significant		
	effect of OM type. There was a highly significant correlation between the measured and simulated		
	SOC and between the measured SOC and the simulated CO2 emissions. The Ksat values significantly		
	correlated with the measured and simulated SOC and the simulated CO2 emissions. A significant		
	inverse relationship between pb and Ksat was observed. We concluded that, in addition to improving		
	soil aggregation, decreasing pb, and increasing Ksat, OM application to this tropical soil increases SOC		
	pools that contribute to atmospheric CO2 following tillage and other agricultural practices.		

un ock the SECRETS

As of July 11, 2014

Public Web site & Questions

VSDA Natural Resources Soils Soils United States Department of Agriculti Topics Soil Survey Soil Health You are Here: Home / Soil Health / Soil Health Soil Health	ntact Us Browse By Audience A-Z Index Advanced Search Help
	Stay connected 🥌 🥌 🖉 🖉
Soil Health Soil Biology Soil Health Assessment Soil Health Management Resources & Publications	Soil Health Literature The Science Behind Healthy Soil The information in the Soil Health Literature files offered below is compiled from peer-reviewed papers relating to the impact of conservation practices on soil physical and chemical properties important for soil health, as summarized by our soil health specialists. Please note that the peer-reviewed papers and conservation practices included are not exhaustive and will be added to periodically. The current focus of the literature review is on soil physical and chemical properties. The intent is to address soil biology and economics in future revisions.
Dig Deeper, Learn More	January 13, 2015, 2p Eastern - Participate in the The Science Behind Healthy Soil: NRCS' Soil Health Literature Review Project webinar at the Science and Technology Training Library. All are welcome to participate.
 Soil Health Literature Role of Soil Organic Matter Manage for Soil Carbon Farming in the 21st Century Carbon to Nitrogen Ratios in Cropping Systems 	 Soil Health Literature Summary – Effects of Conservation Practices on Soil Properties in Areas of Cropland Soil Health Literature Matrix of Soil Properties Soil Health Literature Matrix Data Dictionary Soil Health Literature Summaries and Citations USDA employees and others with USDA Active Directory accounts have full access to reprints of peer-reviewed
	papers and the interactive database matrix, summaries, and citations at the Science, Soils, & Technology for Soil Health SharePoint (employee intranet).

Features of the USDA SharePoint Site

- Sortable matrix of practices, properties, and climate of study site
- Journal summaries and full transcripts
- Overall summary
- Announcements, literature review products, and Web links

VIEW			Soil & Tillage Remain & 100 (2008) 141-153
Edit Bern Manage		FLSEVIER	Contents lists available at ScienceDirect Soil & Tillage Research Journel homopage: www.elsevier.com/locate/atili
lame eference	Abbas_2009 Abbas and Fares. 2009		uses to cattle grazing cover crops under conventional and uthern Piedmont USA
Summary	The objectives of this study were to: (i) simulate the effect of OM	Alan J. Franzluebbers *, Jo	ohn A. Stuedemann
ion many	application rates (0, 168, 336, and 672 kg total N ha-1) and types		operative source reaction was a second second second source
	(chicken and dairy manures) on soil organic C (SOC) and CO2 emissions from a Hawaiian tropical soil (Waialua gravelly clay variant (very-fine,	ARTICLEINFO	ABSTRACT
	mixed, superactive, isohyperthermic Pachic Haplustoll)) on 2 to 6%	Anticle history: Received 16 October 2007 Received in neviced form 17 April 2006 Accepted 20 May 2008	Grazing of cover crops in grain cropping systems can increase economic est um and diversify agricultura production systems, but the environmental coverquences of this intensified management have not been well documented, report ally under different tillage systems. We conducted a multiple-year investigation
	slopes at the Waimanalo agricultural research station (21°20'15" N, 157°43'30" W) ; and (ii) correlate SOC, CO2 emissions, and two major	Keywords:	of how cover crop management (graned and suggravel) and sligge system (covercional (CT; initia moldboard ploving and thereafter disk tillage) and no tillage (NT) affected soit physical properties (with dentity, aggregation, infiltration, and penetration resitance) on a typic Kanhaptoobil in Georgia
	soil properties: bulk density (pb) and saturated hydraulic conductivity	Agg regation Bulk density Grazing	Responses were determined in two cropping systems: nummer grain/winter cover crop and winter grain nummer cover crop. Soil bulk density was reduced (P ~0.02) with CT compared with NT to a depth of
	(Ksat). Measurements of SOC and pb were conducted on samples	topiterariaon No nillago	30 ons at the end of 0.5 year, but only to a depth of 12 on at the end of 2, 2.5, and 4.5 years. Grazing of cover cops had little effect on soil hukkdensity, except eventually with 4.5 years of management. Water stable macroaggregation was reduced (P ≤ 0.01) with CT compared with NT to a depth of 12 on at all stable.
<u> </u>			sampling times during the first 2.5 years of evaluation. Stability of macroaggregates in water was unaffected by grasing of cover crops in both talkage systems. Across 7 sampling events during the first years, them was a tendency (P=0.07) for water infiltration at eto be known with grazing of cover crops and the stability of
Sol	l Health Literature Summ	ary—	(5.6 mm min ⁻¹) than when ungrared (6.9 mm min ⁻¹), irrespective of Elage system. Across 10 sampling events, solid penetration resist acces was govater under RT than under CT at a depth of 0-10 cm (P = 0.001) and the difference was govater ungrared than in grared systems (P = 0.061). Biannual CT operations may access the difference was govater ungrared than in grared systems (P = 0.061). Biannual CT operations may access the difference was govater ungrared than in grared systems (P = 0.061). Biannual CT operations may access the difference was governed to the system of the difference was presented by the difference was governed to the system. The difference was presented by the difference was presented by the system of the difference was governed by the difference was governed by the system. The difference was governed by the difference was governed by the system of the difference was governed by the difference
E CC.	1 50		have alleviated any turface degradation with animal traffic, hut the initially high level of soil organi matter following long-term pasture and conversion to cropland with NT may have before the tool from any detimental effects of animal traffic. Overall, the introduction of cattle to common the high-calling
ETTE	ects of Conservation		cover crop forage did not cause substantial damage to the soil. Published by Brevier EV
Pra	ctices on Soil Properties		and (2) limiting access of castle to veherable parts of th landscape, such as narroral water sorces or shaled areas tha wirrorment is generally can result in havely rofflicked and danaged vegenation. evidence is landscapes. So do again matter is a critical component in maintaining so

Table of Contents

	A PARTINE AND		1.0.3					1		1.1.1.1	100	Conservation Practice Standards Reviewed	3				
Soil Health Literature Mat	rix - Instructions											Conservation Practice 328—Conservation Crop Rotation					
Click Reference, Citation & Sur matrix record for the paper in t Refer to the Soil Health Literatu							e linked Nar Actions to ex	me to acces xport the da	s a PDF cop ata.	by of the pa	per. Hove	Conservation Practice 329—Residue and Tillage Management, No Till	4 6 12				
Actions •												Soil Organic Matter Compaction/Penetration Resistance, Crusting/Sealing, and Infiltration Aggregate Size and Stability and Soil Structure	12 13 13				
Reference, Citation & Summary	y Name	Standar	rd BD Corr	paction Soil	H20 Ks	at Infiltr/Dra	in Pore Siz	e Earthwor	m Crust/S	eal Aggrega	ate Struc	Pore-Size Distribution, Morphology, and Earthworms Conservation Practice 340—Cover Crop	13 14				
Abbas and Fares, 2009	Abbas_2009	590	Yes No	No	Ye	s No	No	No	No	No	No	Conservation Practice 484—Mulching. Conservation Practice 590—Nutrient Management	. 15				
Abdollah et al., 2013	Abdollah_2013	340	No Yes	Yes	No	No	Yes	No	No	No	No	Nitrogen	. 17				
Anderson et al., 2009	Anderson_2009	391, 393	No No	Yes	No	Yes	No	No	No	No	No	Phosphorus Manure and Municipal Waste Application Acidity and Alkalinity	. 18				
Arvidsson and Bolenius, 2006	Arvidsson_2006	344, 345	Yes Yes	No	Ye	s No	No	No	No	Yes	Yes	Salts and Sodium Trace Elements (Heavy Metals)	. 22				
Aslam et al., 2009	Aslam_2009	595	No No	No	No	No	No	No	No	No	No	References	24				

II Aleas

USDA SharePoint

Announcements

 \bigcirc

it View Favorites Tools Help 🛐 ▾ 🖃 🛻 ▼ Page ▼ Safety	🔹 Tools 🕶 🔞 🕶 🖉	0 N	
narePoint			Newsfeed OneDrive Sites Kucera, Michael - NRCS, Lincoln, NE 🗸 🧔
OWSE PAGE IT	EMS LIST	1	🜍 Share 🏠 Follow 🗔 Sync 💉 Edit
	th Literature	along w	tive and will be added to periodically. This site provides access to the reprint, a summary, and the citation for each paper, with an interactive database for sorting/filtering all of the papers using common soil health properties, conservation te standards, and regional moisture and temperature regimes.
nouncemen new announcen			
Announcement	Dat	e	Message
Webinar - January 13, 2015, 2p ET	12/		Join us for a 90-minute webinar highlighting the Soil Health Literature Review Project and its associated searchable database and products. For more information, visit http://www.conservationwebinars.net/webinars/the-science-behind-healthy-soil-nrcs-soil-health- literature-review-project
SSRA and S&T join forces for Healthy Soil!	11/		Welcome to NRCS' new Soil Health SharePoint. The Soil Health Literature Review is the featured product. Use the Soil Health Literature Matrix (top navigation tab) to zero in on research papers of interest using filtering/sorting of the properties columns. Using the matrix, you can also download a PDF copy of the paper and view its citation and summary. Be sure to reference the Data Dictionary in the instructions to understand the matrix column headers and content.
join forces for	11,		Literature Matrix (top navigation tab) to zero in on research papers of interest using filtering/sorting of the properties columns. Using the matrix, you can also download a PDF copy of the paper and view its citation and summary. Be sure to reference the Data

Products and Web Links

unlock the

Soil Health Literature Matrix

File Edit View Favorites Tools Help 🏠 👻 🔂 🖛 🔄 Page 🕶 Safety 🕶 Tools 🕶 🔞 🕶		
SharePoint	Newsfeed OneDrive Sites Kucera, Michael - NRCS, Lincoln, NE -	?
BROWSE	🔾 SHARE 🏠 FOLLOW 🗔 SYNC [J,
O NRCS	Science, Soils, & Technology for Soil Health Soil Health Literature Matrix Soil Health Literature Submit a Peer-Reviewed Paper Soil Health Literature Matrix ()	,

Soil Health Literature Matrix - Instructions

Click Reference, Citation & Summary to view the full summary and citation for the peer-reviewed paper. Click the linked Name to access a PDF copy of the paper. Hover over the linked N view the complete matrix record for the paper in the form view. Hover over column names to use sorting and filtering options. Use Actions to export the data.

Refer to the Soil Health Literature Matrix 📆 Data Dictionary for matrix content and column header definitions.

New 🕶 Upload 👻 🧳	Actions 👻											
Reference, Citation & Summary	Name	Standard	BD	Compaction	Soil H20	Ksat	Infiltr/Drain	Pore Size	Earthworm	Crust/Seal	Aggregate	Structure
Abbas and Fares, 2009	Abbas_2009	590	Yes	No	No	Yes	No	No	No	No	No	No
Abdollah et al., 2013	Abdollah_2013	340	No	Yes	Yes	No	No	Yes	No	No	No	No
Anderson et al. 2000	Anderson 2000	201 202	NLa	Nie	Ver	Ma	Vee	Ne	Ne	Ne	NIa	Ne

Filter Column Headers

SharePoint					r	Newsfeed	OneDrive	Sites	Kucera, Micha	el - NRCS, L	incoln, NE 🗸	ø	?
BROWSE New ▼ Upload ▼	Actions •								Q	SHARE 🏠 F	ollow 🗔 s	YNC	
Reference, Citation & Summan	This column type cannot be	^	BD	Compaction	Soil H20	Ksat	Infiltr/Drain	Pore Size	Earthworm	Crust/Seal	Aggregate	Stru	ctun
Aziz et al., 2013	sorted		No	No	No	No	No	No	No	No	No	No	
Baker and Saxton, 2007	(Empty)		No	No	Yes	No	No	No	Yes	No	No	Yes	
Benjamin et al., 2008	311		Yes	Yes	Yes	Yes	No	No	No	No	Yes	No	
	324		-										
Blanco-Canqui et al., 2007	327		Yes	No	Yes	Yes	No	Yes	Yes	No	No	No	
Blanco-Canqui and Lal, 20	328		Yes	No	Yes	Yes	Yes	Yes	Yes	No	No	No	
Blanco-Canqui et al., 2010	329		Yes	No	Yes	Yes	Yes	No	No	No	No	Yes	
Blanco-Canqui et al., 2011	330 332		Yes	Yes	No	No	Yes	No	No	No	Yes	No	
Brock. B.G., 1999	340	~	No	No	Yes	No	Yes	No	No	No	No	No	

Filtered by No-Till 329 Conservation Practice

	and the Read of the				SHEEK.	397	Section and		S. 1. 1. 1. 1.			- S.
SharePoint		V			l	Newsfeed	OneDrive	Sites	Kucera, Micha	ael - NRCS, Li	ncoln, NE 🕶	\$
BROWSE New 🔻 Upload 👻 🗸	Actions 👻							Q	SHARE 🟠 F	ollow 🧔 s	YNC [
Reference, Citation & Summary	Name	Standard	BD	Compaction	Soil H20	Ksat	Infiltr/Drain	Pore Size	Earthworm	Crust/Seal	Aggregate	Structu
Aziz et al., 2013	Aziz_2013	329	No	No	No	No	No	No	No	No	No	No
Baker and Saxton, 2007	Baker_2007	329	No	No	Yes	No	No	No	Yes	No	No	Yes
Benjamin et al., 2008	Benjamin_2008	328, 329, 345, 512	Yes	Yes	Yes	Yes	No	No	No	No	Yes	No
Blanco-Canqui et al., 2007	BlancoCanqui_2007_2	329, 511	Yes	No	Yes	Yes	No	Yes	Yes	No	No	No
Blanco-Canqui and Lal, 2008	BlancoCanqui_2008	329	Yes	No	Yes	Yes	Yes	Yes	Yes	No	No	No
Blanco-Canqui et al., 2010	BlancoCanqui_2010	328, 329	Yes	No	Yes	Yes	Yes	No	No	No	No	Yes
Blanco-Canqui et al., 2011	BlancoCanqui_2011	329, 340	Yes	Yes	No	No	Yes	No	No	No	Yes	No
Brock. B.G., 1999	Brock 1999	329	No	No	Yes	No	Yes	No	No	No	No	No >

Summary and Citation

SharePoint		×		RCS, Lincoln, I	NE - 🌣 ?
BROWSE Aziz et al., 2013 Aziz_	Soil Health Literature - Benjamin et al., 2008	^		☆ FOLLOW No	SYNC []
Bainard et al., 2012 Baina	VIEW View Version History Shared With Workflows		No	No	No
Baker and Mickelson, 1994 Bake	Edit Item Delete Item Manage Actions		No	No	No
Baker and Saxton, 2007 Bake	Name Benjamin_2008	^	No	No	Yes
Benjamin et al., 2007	ReferenceBenjamin et al., 2008SummaryComparisons of long term (15 yr) no-till treatments of non-		No	No	No
Benjamin et al., 2008 Benja	irrigated continuous grass-legume mix vs. wheat/corn/ millet vs. wheat fallow rotation at the semi-arid ARS Central Great Plains Research Station, Akron, CO on a Weld Soil Series (deep smectitic		No	Yes	No
Bhardwaj et al. 2008 Bhar	silt loam over silty clay loam), showed significant increases in SOC in the grass and wheat/corn/millet treatments over the wheat/fallow in the surface 95 mm grading to no differences below 295 mm. K-Sat was significantly higher in the grass treatment to		No	Yes	Yes
Bhattacharyya et al., 2007 Bhatt	370 mm but there were no differences in bulk density and water storage porosity. There were also no differences in water stable aggregates to 180 mm.	~	No	No	No
Blackshaw, 2008 Black		NO	No	No	No
Click on Benjamin 2008 (2nd column)

 \mathcal{D}

							and the second second
Abdollah et al., 2013	Abdollah_2013	340	No	Yes	Yes	No	No
Anderson et al., 2009	Anderson_2009	391, 393	No	No	Yes	No	Yes
Arvidsson and Bolenius, 2006	Arvidsson_2006	344, 345	Yes	Yes	No	Yes	No
Aslam et al., 2009	Aslam_2009	595	No	No	No	No	No
Aziz et al., 2013	Aziz_2013	329	No	No	No	No	No
Bainard et al., 2012	Bainard_2012	311	No	No	No	No	No
Baker and Mickelson, 1994	Baker_1994	345, 595	No	No	No	No	No
Baker and Saxton, 2007	Baker_2007	329	No	No	Yes	No	No
Benjamin et al., 2007	Benjamin_2007	512	Yes	No	No	Yes	Yes
Benjamin et al., 2008	Benjamin_2008	328, 329, 345, 512	Yes	Yes	Yes	Yes	No
Bhardwaj et al. 2008	Bhardwaj_2008	345, 449, 590, 610	No	No	No	Yes	No

Peer-Reviewed Paper

Organic Carbon Effects on Soil Physical and Hydraulic Properties in a Semiarid Climate

Joseph G. Benjamin* Maysoon M. Mikha Merle F. Vigil

USDA-ARS Central Great Plains Research Station Akron, CO 80720 Increasing cropping intensity in the central Great Plains of the United States has the potential to increase organic carbon (OC) stored in the soil and lead to improved soil physical properties. A cropping systems study was started in 1990 at the Central Great Plains Research Station near Akron, CO. In 2005 soil samples were taken in six 95-mm increments to a depth of 370 mm to measure OC, water stable macroaggregates (water stable aggregates > 250 µm), bulk density (pb), total porosity (qtotal), water storage porosity (qwo), and saturated hydraulic conductivity (keet). Samples were collected from permanent grass plots {45% smooth brome [Bromus inermis (Leyss.)], 40% pubescent wheat grass [Agropyrons trichophorum (Link) Richt.], and 15% alfalfa [Medicago sativa (L.)]}, plots in a wheat {[Triticum aestivum (L.)]-corn [Zea mays (L.)]-millet [Panicum miliaceum (L.)]} rotation, and plots in a wheat-fallow rotation. Increased cropping intensity significantly increased OC, water stable macroaggregates, and k_{sat}, but had no significant effect on pb. qtotal, or quest. Permanent grass increased OC compared with the annually cropped rotations, particularly deeper in the soil. Plots in permanent grass had greater k_{sat} and this may indicate greater pore continuity and stability under saturated conditions. Organic carbon and water stable macroaggregates were poorly correlated. Water stable macroaggregates was negatively correlated with ρ_{h} and positively correlated with k_{est} . Increasing soil OC may not immediately lead to changes in soil aggregation in a semiarid climate. Increased time and biological activity may be needed to convert the crop residues into organic compounds that stabilize aggregates and soil pore systems.

Abbreviations: CI, cropping intensity; k_{sat} , saturated hydraulic conductivity; OC, organic carbon; WCM, wheat–corn–millet; WF, wheat–fallow; θ_{g33} , gravimetric water content; θ_{v1500} , wilting point water content; ρ_b , bulk density; φ_{total} , total porosity; φ_{ws} , water storage porosity

Soil organic matter plays an important role in stabilizing soil aggregates. Tisdall and Oades (1982) noted that transient and temporary organic bonding agents were the main binding

field capacity (-33 kPa) and lower cation exchange capacity associated with the loss of organic matter. On the other hand, Bauer and Black (1981) measured no significant soil bulk den-

Organic Carbon Effects on Soil Physical and Hydraulic Properties in a Semiarid Climate

- Practices 328 Crop Rotation, 329 No-Till, 345 Residue Mgt Reduced Tillage, 512 Forage-Biomass Planting
- Properties: BD, compaction, soil H₂O, K_{sat}, aggregate stability, and soil organic matter
- Climate: Semi-arid, mesic soil temperature regime
- Non-irrigated
- Not compared to conventional tillage
- Primarily compared grass to NT wheat/corn/millet to wheat-fallow cropping systems

Short Summaries

SharePoint		Newsfeed	OneDrive
BROWSE ITEMS LIST			
O NRCS	Science, Soils, & Technology for Soil Health Soil Health Literature Matrix Soil Health Literature Submit a Peer-Reviewed Paper Soil Health Literature ()		
Soil Health Literature - Click the linked Reference to view	nstructions the citation and summary in the form view. Hover over column names to use sorting and filtering options. Use Actions to export the data.		
New Actions			
New Item Add a new item to this I	ist. Name		
Abbas and Fares, 2009	Abbas 2009		

Abbas and Fares, 2009

The objectives of this study were to: (i) simulate the effect of OM application rates (0, 168, 336, and 672 kg total N ha-1) and types (chicken and dairy manures) on soil organic C (SOC) and CO2 emission variant (very-fine, mixed, superactive, isohyperthermic Pachic Haplustoll)) on 2 to 6% slopes at the Waimanalo agricultural research station (21°20'15" N, 157°43'30" W) ; and (ii) correlate SOC, CO2 emi and saturated hydraulic conductivity (Ksat). Measurements of SOC and pb were conducted on samples collected from the top 10 cm of soil tilled before and after manure application, cultivated with sv seasons. The Ksat values were calculated from infiltration data measured with a tension infiltrometer. The Rothamsted C turnover model was used to simulate SOC and CO2 emissions. Results revealed decreased with increasing OM rates. There was no significant effect of OM type. There was a highly significant correlation between the measured and simulated SOC and between the measured SOC at significantly correlated with the measured and simulated SOC and the simulated CO2 emissions. A significant inverse relationship between pb and Ksat was observed. We concluded that, in addition to increasing Ksat, OM application to this tropical soil increases SOC pools that contribute to atmospheric CO2 following tillage and other agricultural practices.

Abbas, F. and A. Fares. 2009. Soil Organic Carbon and Carbon Dioxide Emission from an Organically Amended Hawaiian Tropical Soil. SSSAJ: Volume 73: Number 3.

Updated: 7/11/2014

Abdollah et al., 2013

Abdollah_2013

The objective of this study is to quantify the impact on porosity of three tillage treatments including direct drilling (D), harrowing to a depth of 8-10 cm (H) and moldboard plowing to a depth of 20 cm (fodder radish) treatments (subplots) on soil pore characteristics of a sandy loam soil. This study examined the effect of these management practices on soil pore characteristics of a sandy loam soil in a included direct drilling (D), harrowing to a depth of 8-10 cm (H) and moldboard plowing (MP). The cover crop treatments were subplot with cover crop (+CC) and without cover crop (-CC). Minimally c and 18-27 cm depth intervals in the spring of 2012 before cultivation. Soil water retention and air permeability were measured for a range of matric potentials ranging from -1 to -30 kPa. Gas diffusivit scanning was also used to characterize soil pore characteristics. At 4-8 cm and 18-27 cm depths pore characteristics did not differ significantly between tillage treatments. At 12-16 cm depth, negative

Actions

SharePoint							Newsfeed	OneDrive	Sites
BROWSE ITE	EMS LIST								
ON	RCS	Science, Soils, & Technology for So Soil Health Li		Soil Health Literature Matrix	Soil Health Literature	Submit a Peer-Reviewed Paper			
	h Literature - I ed Reference to view	nstructions the citation and summary in the for	m view. Hover c	over column names to use sor	ting and filtering options. U	lse Actions to export the data.			
New 🝷	Actions -								
Reference	Export to Sp Analyze iter	preadsheet ns with a spreadsheet application.				Name			
Abbas and F The objectiv variant (verv	Syndicate it	ems with an RSS reader.			2 21 X	Abbas_2009 and dairy manures) on soil organic 1°20'15″ N, 157°43'30″ W) ; and (ii)			

Alert Me Receive notifications when items change. toll)) on 2 to 6% slopes at the Waimanalo agricultural research station (21°20'15" N, 157°43'30" W) ; and (ii) correlate SOC, CO2 emissions, or of pb were conducted on samples collected from the top 10 cm of soil tilled before and after manure application, cultivated with sweet corred with a tension infiltrometer. The Rothamsted C turnover model was used to simulate SOC and CO2 emissions. Results revealed that SC

decreased with increasing OM rates. There was no significant effect of OM type. There was a highly significant correlation between the measured and simulated SOC and between the measured SOC and the significantly correlated with the measured and simulated SOC and the simulated CO2 emissions. A significant inverse relationship between pb and Ksat was observed. We concluded that, in addition to improvincreasing Ksat, OM application to this tropical soil increases SOC pools that contribute to atmospheric CO2 following tillage and other agricultural practices.

Abbas, F. and A. Fares. 2009. Soil Organic Carbon and Carbon Dioxide Emission from an Organically Amended Hawaiian Tropical Soil. SSSAJ: Volume 73: Number 3.

Updated: 7/11/2014

and saturate

seasons. The

Abdollah et al., 2013

Abdollah_2013

The objective of this study is to quantify the impact on porosity of three tillage treatments including direct drilling (D), harrowing to a depth of 8-10 cm (H) and moldboard plowing to a depth of 20 cm (MP) (fodder radish) treatments (subplots) on soil pore characteristics of a sandy loam soil. This study examined the effect of these management practices on soil pore characteristics of a sandy loam soil in a long-t

General Searches

SharePoint

ONRCS

Result type

Excel

PDF

Web page

Author

Kuykendall, Holli - NRCS,...

1965

Literature Review

SHOW MORE

Modified date

Science, Soils, & Technology for Soil Health

Preference for results in English -

Search

abbas

Soil Health Literature Matrix

Soil Health Literature

unlock the

ρ

Abbas_2009
SSSAJ: Volume 73: Number 3 May–June 2009 995 Soil Sci ... A s of January 2008, there
... solid feedlot beef cattle manure Farhat **Abbas*** Ali Fares Dep. of Natural Resources

... solid feedlot beef cattle manure Farhat **Abbas*** Ali Fares Dep. of Natural Resources and ...

ems-team.usda.gov/sites/NRCS_SSRA/nssc/soilhealth/.../Abbas_2009.pdf

Abbas and Fares, 2009

The objectives of this study were to: (i) simulate the effect of OM application rates (0, 168, 336, and 672 kg total N ha-1) and types (chicken and dairy ... **Abbas**, F. and A. Fares ...

ems-team.usda.gov/sites/.../soilhealthliterature/DispForm.aspx?ID=1

🜃 Soil Health Literature Summary – Effects of Conservation...

Summary of more than 180 peer-reviewed, published documents relating to the effects of conservation management system practices on soil health, soil resiliency, and dynamic soil ...

ems-team.usda.gov/.../Soil Health Literature Summary - Effects of C...

Soil Health Literature Matrix

Reference, Citation & Summary Name Standard BD Compaction ... **Abbas** and Fares, 2009 **Abbas**_2009 590 Yes No No Yes No No No No No No No Yes No Yes ... ems-team.usda.gov/sites/NRCS_SSRA/nssc/.../Forms/AllItems.aspx

Soil Health Literature

Abbas and Fares, 2009 Abbas_2009 ... The objectives of this study were to: (i)

Submit a Paper

()	Is https://ems-team.usda.gov/sites/NRCS_SSRA/nssc/soilhealth/Lists/submitapape	r/All 𝔎 マ 🚔 Ĉ) Submit a Peer-Reviewed Pa ×						×
	dit View Favorites Tools Help 🔊 ་ 💷 🚔 ་ Page་ Safety་ Tools་ 🔞་ 🔊 🔅 🐧							
	arePoint				Newsfeed OneDrive	Sites Kucera, Michael - NRCS, Linc	oln, NE 🗸 🛛 🔯	?
BRO	WSE					🗘 SHAR	e 🟠 Follow	[0]
	Science, Soils, & Technology for Sc Submit a Pee	r-Reviewed Paper ()	Literature Submit a Pee	r-Reviewed Pap	er	Search this site	Q	^
Clic Sha	tructions k New to create an item. Follow the prompts for each entry to sub rePoint's Attach File feature or provide the URL to the paper in the tion entries to include the paper to the Soil Health Literature Revie	Link to Paper entry. Click the hyperlinked Paper Title to edi						
Ν	lew • Actions •					View	v: All Items 🗸	
Ø	Paper Title	Link to Paper	Study Location	Standard	Properties	Created By	Date	
۵	Greening Summer Fallow with Legume Green Manures: On- farm Assessment in Northcentral Montana		Northern Great Plains	328	Nutrients, Soil water, Wheat yield and protein	Tallman, Susan - NRCS - Bozeman, N	MT 12/15/2014	
Ű	Soil Microbial Populations and Activities as Influences by Legume Green Fallow in a Semiarid Climate		Northern Great Plains	328	Biological	Tallman, Susan - NRCS - Bozeman, N	MT 12/15/2014	
Ű	Phosphorus Fertilizatin Reduces Vesicular-arbuscaular Mycorrhizal infection and changes Nodule Occupancy of Field grown Soybeans		Midwest	590	Biological, Nutrients	Thomas, Candy - NRCS, SALINA, KS	12/11/2014	
	Impact of soil health management practices on soil borne pathogens, nematodes and root diseases of	http://naldc.nal.usda.gov/naldc/download.xhtml? id=934&content=PDF	Northeast	595	Biological	Thomas, Candy - NRCS, SALINA, KS	12/11/2014	
U	Long-Term Effects of Cover Crops on Crop Yields, Soil Organic Carbon Stocks and Sequestration		Midwest, Central Great Plains	328, 329, 340, 344	Soil organic matter, soil carbon	Kucera, Michael - NRCS, Lincoln, NE	12/8/2014	
۵	Soil Carbon Storage by Switchgrass Grown for Bioenergy		Northern Great Plains, Central Great Plains	512	Physical, Soil organic matter	Kucera, Michael - NRCS, Lincoln, NE	9/5/2014	~

Complete Data Entry

SharePoint Newsfeed OneDrive Sites Kucera, Michae BROWSE EDIT 👗 Cut ABC \checkmark Copy Save Cancel Paste Attach Spelling File Spelling Clipboard Commit Actions Soil Health Literature \rm Items on this list require content approval. Your submission will not appear in public views until approved by someone with proper rights. More information on content approval. Matrix Paper Title * Soil Health Literature Enter the peer-reviewed paper title. Submit a Peer-Reviewed Paper Link to Paper Type the Web address: (Click here to test) http:// Site Contents Type the description: Enter the full URL that provides access to the submitted paper. If the paper is not available online, attach a pdf copy of the paper using SharePoint's Attach File option in the menu bar immediately above. Author * Enter the last name of the first author. Basis * Briefly describe the soil health basis for submitting the paper. Study Location * National East Northeast Southeast South Midwest Northern Great Plains

Complete Data Entry, cont.

 \bigcirc

	Attach	Spelling	
	File	"	
	Actions	Spelling	L Pacific Northwest
			Southwest
			Specify your own value:
			Select the US regional location of the study or specify City, State or Country using the Fill-in option.
	Star	dard *	□ 311
			324
			327
			328
0			329
			330
1.5			—
			332
1			340
			344
			345
27			390
			391
5			393
			412
			449
			484
27			511
			512
			528
			590
			595
			600
			610
			Select the conservation practice standards supported by the paper.
	Dee	erties *	
	Pro	perties	Physical
			Chemical
- 9			Biological
			Biological diversity
			□ Nutrients
			Soil organic matter
			Soil water
			Water quality
			Specify your own value:
			Select the soil health properties covered by the paper.
	Sup	ervisory Co	entact * Enter a name or email address
			Enter your supervisor's name to have SharePoint provide an account you can select.

Submit Papers (Montana Example)

doi:10.2489/Jswc.68.4.270

Greening summer fallow with legume green manures: On-farm assessment in northcentral Montana

J.K. O'Dea, P.R. Miller, and C.A. Jones

Abstract: Replacing summer fallow practices with annual legumes as green manures (LGMs) may increase the sustainability of northern Great Plains wheat (*Triticum aestivum* L.) systems. Viability hinges on soil water use management and realizing biologically fixed nitrogen (N) benefits. Plot-scale research has shown that managing LGMs with first-flower stage termination and no-till practices conserves soil water and that rotational N benefits can increase wheat grain quality. Nonetheless, farmer adoption of LGMs has been negligible. To better understand this practice and its regional adoption potential, we conducted a participatory on-farm assessment of no-till LGM versus summer fallow–wheat rotations in north–central Montana. Soil water and nitrate (NO₃) levels to 0.9 m (3 ft), potentially mineralizable N (PMN) to 0.3 m (1 ft), wheat yields, conservation potential, and producer adoption challenges were assessed at five farmer–managed, field–scale sites. Compared to fallow, LGM treatment diminished mean wheat yield by 6% (0.24 Mg ha⁻¹ [3.7 bu ac⁻¹]), diminished grain protein by 9 g kg⁻¹ when wheat was fertilized with N (p = 0.01), and increased grain protein by 5 g kg⁻¹ when wheat seeding (17%; 30 mm [1.2 in]) and near–record high rainfall during

wheat with early terminated (anthesis stage, i.e., "first flower") annual legumes, termed legume green manure (LGM), may be a water-conservative way to realize rotational legume benefits in this region, particularly regarding fixed nitrogen (N) and mitigating negative effects of summer fallow that lead to soil degradation, nitrate (NO_3) leaching, and saline seeps (Tanaka et al. 2010).

Beginning in the early 1900s, research initiatives in the NGP on LGMs fluctuated with concerns about inherent soil fertility declines (Army and Hide 1959; Brown 1964; Janzen 2001), N fertilizer price, and sustainability initiatives (Hargrove and Frye 1987; Biederbeck et al. 1993; Peoples et al. 1995). In the NGP, LGM interest has been persistently tempered by water use constraints affecting wheat yield. Historically, studies established that excessive water use by LGMs preclude wheat yield benefits from crop diversification or N fixation (Brown 1964; Biederbeck et al. 1996; Zentner et al. 1996; Janzen 2001) and that LGM biomass production and soil water conservation must be balanced for the practice to be viable (Zentner et al. 2004). Also, N fertilizer has generally been cost effective and reliable, effectively

Example, cont.

avation Society. All rights reserved on 68(4):270-282 www.swcs.org

÷	0	🥭 http	s://ems-team.usda.gov/sites/NRCS_SSRA/nssc/soilhealth/Lists/submitapaper/At 🔎 👻 🔒 👌	遵 ems-team.usda.gov
			Favorites Help	
23	- 61	- 13	- Pare - Safety - Tools - Or N A N	

Figure 1

Example of field site during (a) legume green manure (LGM) stage and (b) subsequent wheat stage. Photos a and b were taken from the same vantage point at Box Elder, with (a) LGM crop at the appearance of first flowers (June 23, 2009) and (b) wheat crop on July 20, 2010. Box Elder was the only site with a visual treatment effect, attributed to slightly delayed maturity on the LGM side. Also shown are no-till LGM residue breakdown stages in (c) September of 2009 and (d) the following August of 2010. Image c shows residue cover heading into winter, and c and d illustrate amounts of LGM residue not yet incorporated into soils (c) by winter wheat seeding and (d) at wheat harvest.

(a)

(b)

(C)

(d)

Approval Management

 \mathcal{C}

SharePoint

Manage

Actions

BROWSE

Edit

Item

un ock the

Soil Health Literature Matrix	Paper Title	Greening Summer Fallow with Legume Green Manures: On-farm Assessment in Northcentral Montana			
Soil Health Literature	Link to Dapar				
Submit a Peer-Reviewed	Link to Paper				
Paper	Author	O'Dea			
Site Contents	Basis	Compares agronomic factors of fallow and single-species legume green manure at five field-scale sites in Montana's major wheat growing region.			
	Study Location	Northern Great Plains			
	Standard	328			
	Properties	Nutrients; Soil water; Wheat yield and protein			
	Supervisory Contact	Laliberty, Joel - NRCS, Bozeman, MT			
	Date	12/15/2014			
	Approval Status	Pending			
	Attachments	ODea 2013 Soil and Water.pdf			
		3:37 PM by Tallman, Susan - NRCS - Bozeman, MT /2014 3:37 PM by Tallman, Susan - NRCS - Bozeman, MT			

Summary of Project

- Web site updates
- SharePoint updates
 - Matrix additions
 - Semi-annual updates
 - Update practice summaries
 - Additional properties (biological and chemical)
 - Economics of practices
 - Gaps in science
- Uses
 - Standard development
 - Designing SHMSs
 - Program priorities
 - Technical background
 - Program targeting (basis)
 - Presentations

Mike Kucera, NRCS Agronomist; <u>michael.kucera@lin.usda.gov</u> Google/Bing: Soil Health Literature Review

Concluding Comments

- Bianca Moebius-Clune, Director, Soil Health Division
- David Hoover, National Leader for Soil Quality and Ecosystems
- David Lamm, Leader, National Soil Health and Sustainability Team