

### Particulate Matter Issues in Pinal County Arizona By Bas Aja Arizona Cattle Feeders' Association

## Non-Attainment Menus

Pinal County Nonattainment Areas





## 2006 Maricopa Monitor

| CI        | TY OF N       | <b>IARICOF</b> | PA PM <sub>10</sub> 2 | 2006 TE       | OM Data      |        |               |              |           |               |              |          |
|-----------|---------------|----------------|-----------------------|---------------|--------------|--------|---------------|--------------|-----------|---------------|--------------|----------|
| 24        | Hour A        | verages        | (ug/m <sup>3</sup> )  |               |              |        |               |              |           |               |              |          |
|           | January       | February       | March                 | April         | Мау          | June   | July          | August       | September | October       | November     | December |
| 1         | 49.5          | 89.1           | 50.9                  | 24.2          | 58.6         | 111.2  | 148.8         | 37.3         | 48.8      | 82.8          | 97.5         | 95.1     |
| 2         | 64.9          | 106.7          |                       | 23.6          | 63.2         | 233.6  | 52.3          | 56.9         | 121.5     | 113.1         | 108.1        | 92.7     |
| 3         | 49.0          | 134.9          | 68.0                  | 51.4          | 79.0         | 84.7   | 55.9          |              | 18.6      | 117.7         | 134.0        | 41.2     |
| 4         | 88.2          | 99.1           | 56.7                  | 67.0          | 66.9         | 62.8   | 61.6          | 50.1         | 17.8      | 110.3         | 83.0         | 57.8     |
| 5         | 92.7          | 77.5           | 54.9                  | 95.5          | 60.5         | 66.9   |               | 43.0         | 39.9      | 159.3         | 69.1         | 94.9     |
| 6         | 99.9          | 93.0           |                       | 33.0          | 45.0         |        |               | 41.4         | 37.2      |               | 115.2        | 131.3    |
| 7         | 61.1          | 108.2          | 136.8                 | 60.8          | 35.1         | 88.9   |               | 80.9         | 28.0      | 66.1          | 131.0        | 110.4    |
| 8         | 52.6          | 132.7          | 198.3                 | 62.1          | 53.5         | 38.6   | 32.7          |              | 24.8      | 77.5          | 116.9        |          |
| 9         | 90.2          |                | 50.5                  | 43.3          | 61.7         | 51.0   | 42.8          | 47.5         | 49.3      | 33.6          | 90.8         | 59.1     |
| 10        | 84.9          | 63.0           | 285.5                 | 47.2          | 70.5         | 44.3   | 72.9          | 60.1         | 26.1      | 53.3          | 86.2         | 98.6     |
| 11        | 124.9         | 57.8           | 19.3                  | 40.1          | 78.5         | 43.3   | 70.4          | 42.9         | 61.7      | 76.7          | 86.1         | 90.1     |
| 12        |               | 43.7           | 12.5                  | 60.5          | 65.4         | 101.8  | 55.1          | 14.7         |           |               | 48.0         | 84.1     |
| 13        | 174.8         | 127.5          | 21.9                  | 89.2          | 42.0         | 90.6   | 75.0          | 25.4         | 41.2      | 90.1          | 115.8        | 107.0    |
| 14        | 118.2         | 131.5          | 24.7                  | 321.7         | 45.5         | 60.2   | 67.0          | 97.4         | 58.6      | 25.2          | 83.2         | 140.8    |
| 15        | 59.4          | 389.6          | 40.9                  | 146.3         | 79.9         | 103.5  | 203.4         | 30.9         | 51.3      | 34.9          | 85.4         | 158.2    |
| 16        | 80.0          | 68.0           | 46.5                  | 41.1          | 193.0        | 55.2   | 118.4         | 52.4         | 41.9      | 45.1          |              | 207.9    |
| 17        | 117.1         | 99.0           | 41.4                  | 74.0          | 115.0        | 58.0   | 48.5          | 72.3         | 43.1      | 40.3          |              | 38.1     |
| 18        | 145.3         | 58.9           | 31.7                  | 42.8          | 79.7         | 49.5   |               | 77.3         | 77.4      | 69.0          | 156.6        | 46.5     |
| 19        | 195.6         | 35.3           | 14.5                  |               | 48.5         | 64.5   | 72.4          | 55.3         | 97.5      | 49.8          | 80.1         | 62.7     |
| 20        | 69.8          | 63.2           | 15.4                  | 59.4          | 41.6         | 109.9  | 69.9          | 48.1         | 101.6     | 97.7          | 100.1        | 53.5     |
| 21        | 53.1          | 53.1           | 24.1                  | 92.6          | 95.1         | 78.4   | 94.6          | 220.6        |           | 82.8          | 112.3        | 74.3     |
| 22        | 53.2          | 60.5           | 18.1                  | 85.6          | 171.5        | 84.7   | 72.8          | 23.4         | 77.6      | 73.6          | 171.6        | 70.1     |
| 23        | 93.6          | 82.2           | 31.1                  | 36.5          | 47.1         |        |               | 46.2         | 43.4      | 97.6          | 91.6         | 45.2     |
| 24        | 76.7          | 93.7           | 38.9                  | 34.3          | 52.3         | 202.8  | 96.9          |              | 38.1      |               | 82.7         | 34.9     |
| 25        | 98.3          | 105.9          | 31.2                  | 68.3          |              | 333.6  | 127.6         | 44.9         | 70.1      | 32.2          | 70.9         | 40.3     |
| 26        | 89.6          | 96.6           | 25.2                  |               | 98.5         | 429.8  | 25.5          | 34.9         | 108.7     | 48.1          | 47.1         | 61.1     |
| 27        | 118.0         | 118.9          | 24.2                  | 114.7         | 84.8         | 103.5  | 26.9          | 39.4         | 72.7      | 73.9          | 78.6         | 148.8    |
| 28        | 60.5          | 115.0          | 33.1                  | 38.7          | 49.5         | 71.6   | 45.2          | 82.4         |           | 95.3          | 53.0         | 43.5     |
| 29        | 71.2          |                |                       | 39.1          | 59.5         | 89.9   | 23.8          | 78.9         | 146.2     | 97.4          | 251.1        | 20.9     |
| 30        | 123.6         |                | 31.0                  | 46.2          | 73.0         | 107.2  | 32.2          | 75.2         | 83.7      | 85.7          | 47.1         | 23.5     |
| 31        | 120.6         |                | 37.7                  |               | 99.7         |        | 39.2          | 56.5         |           | 82.8          |              | 26.0     |
|           | 1st quarter a | average        | 81.72                 | 2nd quarter   | average      | 83.41  | 3rd quarter   | average      | 62.90     | 4th quarter   | average      | 84.46    |
|           | # of valid sa | mples          | 85                    | # of valid sa | amples       | 86     | # of valid sa | mples        | 81        | # of valid sa | amples       | 86       |
|           | % of sample   | es collected   | 94.44%                | % of sample   | es collected | 94.51% | % of sample   | es collected | 88.04%    | % of sample   | es collected | 93.48%   |
|           | # of 24 hr ex | ceedances      | 5                     | # of 24 hr e  | xceedances   | 7      | # of 24 hr e  | ceedances    | 2         | # of 24 hr e  | xceedances   | 6        |
| $\square$ | ļ             |                |                       |               |              |        |               |              |           |               |              | 70.40    |

## 2006 Cowtown Monitor

| С  | WTN 140       | 0ab PM       | 10 2006 T            | EOM Da       | ita          |        |               |              |           |               |              |          |
|----|---------------|--------------|----------------------|--------------|--------------|--------|---------------|--------------|-----------|---------------|--------------|----------|
| 24 | 4 Hour A      | verages      | (ug/m <sup>3</sup> ) |              |              |        |               |              |           |               |              |          |
|    | January       | February     | March                | April        | Мау          | June   | July          | August       | September | October       | November     | December |
| 1  | 76.1          | 160.7        | 109.1                | 111.5        | 226.0        | 221.3  | 211.5         | 84.9         | 210.9     | 456.1         | 315.9        | 289.1    |
| 2  | 151.2         | 171.3        | 138.1                | 84.2         |              | 461.3  | 157.1         | 154.3        | 170.5     | 438.5         | 333.3        | 302.4    |
| 3  | 188.9         | 354.5        | 187.4                | 157.8        |              | 312.5  | 208.7         |              | 14.6      | 240.3         |              | 58.9     |
| 4  | 260.6         | 196.9        | 249.1                | 138.4        |              | 256.0  | 146.7         | 59.2         | 25.7      | 402.8         | 343.9        | 183.5    |
| 5  |               | 132.2        | 182.9                | 173.1        |              | 349.2  | 144.2         | 178.2        | 53.8      | 254.2         | 402.6        | 418.1    |
| 6  | 282.4         | 152.9        | 301.4                | 118.4        |              |        |               | 166.6        | 92.2      |               | 540.5        | 531.4    |
| 7  | 286.6         | 184.1        | 468.1                | 136.1        |              |        | 113.8         | 146.9        |           | 172.3         | 641.0        | 271.9    |
| 8  | 288.8         | 352.1        |                      | 250.1        |              |        | 65.6          | 99.7         | 43.2      | 205.8         | 393.2        |          |
| 9  | 311.6         | 316.2        | 207.4                | 285.6        |              | 218.2  | 161.1         |              | 45.3      | 251.3         | 285.8        | 320.3    |
| 10 | 305.8         |              |                      | 346.4        | 209.6        | 139.2  | 226.0         | 115.8        | 63.7      | 174.1         | 373.7        | 202.4    |
| 11 | 344.3         | 160.1        |                      | 155.0        | 245.6        | 208.9  | 224.4         | 83.0         | 157.0     | 263.8         | 294.4        | 336.8    |
| 12 | 249.7         | 430.5        |                      | 106.4        | 353.6        | 164.7  | 169.8         | 13.1         |           |               | 260.7        | 237.3    |
| 13 |               | 443.9        |                      | 198.6        | 248.2        | 284.4  | 226.3         | 42.7         | 236.6     | 213.4         | 326.3        | 230.2    |
| 14 | 240.9         | 354.1        | 36.4                 | 448.4        | 238.9        | 317.0  | 253.0         | 85.3         | 145.2     | 88.3          | 180.9        | 260.2    |
| 15 | 130.1         | 375.6        | 49.5                 | 323.7        | 279.8        | 213.3  | 275.1         | 59.0         | 151.5     | 174.4         |              | 296.5    |
| 16 | 121.1         | 130.2        | 75.8                 | 135.4        | 427.1        | 515.3  | 151.6         | 108.1        | 171.2     | 204.5         |              | 258.3    |
| 17 | 294.8         | 128.4        | 73.7                 |              | 209.5        | 304.0  | 71.2          |              | 503.6     | 194.3         | 433.0        |          |
| 18 | 264.3         | 218.6        | 56.8                 | 370.3        | 237.5        | 294.2  | 200.3         | 224.0        | 394.9     | 322.0         | 473.4        | 137.7    |
| 19 | 306.2         | 139.3        | 16.9                 | 328.6        | 307.6        | 297.4  | 90.4          | 200.9        | 353.1     |               | 252.4        | 110.7    |
| 20 |               | 121.7        | 9.6                  | 353.0        | 348.1        | 323.4  |               | 114.6        | 277.4     | 765.4         | 319.2        | 102.3    |
| 21 | 204.0         | 137.3        | 28.3                 | 510.5        | 279.2        | 245.4  | 167.8         | 356.1        | 796.4     | 481.9         | 492.1        | 92.5     |
| 22 | 159.5         | 387.5        | 14.2                 | 324.8        | 479.8        | 295.5  | 178.1         |              | 246.4     | 359.1         | 436.2        |          |
| 23 | 183.4         | 377.4        | 21.1                 | 159.3        | 453.9        |        | 131.3         | 64.7         | 174.5     | 486.0         | 290.3        | 19.9     |
| 24 | 129.6         |              | 61.2                 | 240.1        | 661.7        | 260.9  | 141.6         |              | 97.1      |               |              | 25.7     |
| 25 | 214.6         |              | 55.8                 | 148.0        |              | 353.6  | 321.9         |              | 679.0     | 62.9          | 150.6        | 38.0     |
| 26 | 249.1         |              | 46.1                 |              | 317.2        | 427.0  |               | 58.5         | 314.4     | 113.1         | 166.8        | 91.9     |
| 27 | 228.1         |              | 44.3                 | 240.0        | 333.2        | 136.9  | 28.7          | 65.6         | 358.2     | 273.8         | 225.2        | 197.7    |
| 28 | 275.5         |              | 46.2                 | 216.4        | 265.7        | 202.4  | 42.6          | 118.6        |           | 339.8         | 128.6        | 53.8     |
| 29 | 143.3         |              |                      | 129.3        | 292.5        | 207.9  | 56.8          | 162.1        | 1050.8    | 372.4         | 472.3        | 17.2     |
| 30 | 273.8         |              | 57.8                 | 394.1        | 314.6        |        | 24.9          | 136.8        | 515.3     | 253.4         | 96.4         | 16.7     |
| 31 | 292.8         |              | 129.4                |              | 260.7        |        | 107.1         | 120.0        |           | 197.3         |              | 15.4     |
|    | 1st quarter   | average      | 193.99               | 2nd quarter  | raverage     | 274.45 | 3rd quarter   | average      | 183.24    | 4th quarter   | average      | 265.51   |
| L  | # of valid sa | amples       | 75                   | # of valid s | amples       | 75     | # of valid sa | amples       | 80        | # of valid sa | amples       | 81       |
| L  | % of sample   | es collected | 83.33%               | % of sample  | es collected | 82.42% | % of sample   | es collected | 86.96%    | % of sample   | es collected | 88.04%   |
|    | # of 24 hr e  | xceedances   | 43                   | # of 24 hr e | xceedances   | 64     | # of 24 hr e  | xceedances   | 37        | # of 24 hr e  | xceedances   | 62       |
| L  |               |              |                      |              |              |        |               |              |           |               |              |          |
|    |               |              |                      |              |              |        |               |              |           |               |              |          |

### 2009 Maricopa Monitor

#### MARICOPA PM<sub>10</sub> 2009 TEOM Data

| 24 | Hour Ave       | erages (ug  | /m°)   |                |             |        |                |             |           |                |             |          |
|----|----------------|-------------|--------|----------------|-------------|--------|----------------|-------------|-----------|----------------|-------------|----------|
|    | January        | February    | March  | April          | May         | June   | July           | August      | September | October        | November    | December |
| 1  | 31.9           | AN          | 53.2   | 70.6           | 73.9        | 51.3   | 57.1           | 40.7        | 37.7      | 51.2           | 113.0       | 60.7     |
| 2  | 37.3           | AN          | 76.6   | 49.4           | 93.6        | 53.4   | 49.0           | 45.3        | 34.0      | 65.1           | 122.1       | 81.9     |
| 3  | 32.3           | 69.1        | 73.4   | 116.4          | 41.2        | 55.3   | 42.2           | 50.3        | 306.2     | 45.2           | 119.8       | 61.8     |
| 4  | 17.3           | 90.2        | 60.6   | 38.6           | 55.6        | 82.2   | 16.8           | 125.0       | 33.8      | 54.5           | 191.4       | 38.8     |
| 5  | 17.2           | 79.7        | 55.8   | 29.1           | 55.9        | 47.6   | 26.2           | 89.7        | 22.8      | 58.3           | 114.7       | 101.0    |
| 6  | 22.2           | 46.7        | 42.6   | 39.5           | 57.0        | 35.3   | 39.1           | 71.7        | 17.4      | 63.0           | 133.1       | 52.0     |
| 7  | 35.0           | 40.0        | 30.4   | 52.9           | AE          | 36.1   | 38.1           | 49.0        | 22.2      | 58.2           | 114.1       | 164.4    |
| 8  | 37.7           | 7.3         | 47.5   | 82.3           | AE          | 46.1   | 45.7           | 66.3        | 40.1      | 76.1           | 68.0        | 34.1     |
| 9  | 38.3           | 29.5        | 42.4   | 42.1           | 46.0        | 68.0   | AN             | 66.4        | 22.5      | 85.9           | 65.8        | 32.7     |
| 10 | 16.7           | 17.2        | 31.5   | 95.3           | 60.7        | 34.7   | 60.4           | 95.4        | 28.8      | AE             | 106.5       | 42.2     |
| 11 | 23.6           | 21.4        | 74.8   | 17.5           | 57.6        | 45.8   | 48.4           | 89.1        | 40.9      | AE             | 116.0       | 63.1     |
| 12 | 53.0           | 26.6        | 39.1   | 17.5           | 77.8        | 57.9   | 125.8          | 204.9       | 36.9      | AE             | 109.2       | 56.9     |
| 13 | 37.4           | 29.9        | 38.7   | 28.2           | 73.8        | 43.0   | 64.0           | 32.6        | 38.3      | AE             | 62.1        | 40.2     |
| 14 | 39.7           | 24.4        | 44.5   | 86.3           | 70.4        | 32.2   | 55.0           | 24.5        | 51.5      | AE             | 37.0        | 27.7     |
| 15 | 48.3           | 27.8        | 35.2   | 170.5          | 54.4        | 58.2   | 83.6           | 33.7        | 63.7      | 73.9           | 22.1        | 26.2     |
| 16 | 50.6           | 34.6        | 51.5   | 30.8           | 51.7        | 82.3   | 58.8           | 28.1        | 56.5      | 81.4           | 37.7        | 29.5     |
| 17 | 41.3           | 13.9        | 81.6   | 34.5           | 107.7       | 55.8   | 607.2          | 43.9        | 60.1      | 72.0           | 55.3        | 44.7     |
| 18 | 26.7           | 21.0        | 70.7   | 44.8           | 62.2        | 45.4   | 454.2          | 53.1        | 39.4      | 51.1           | 64.2        | 75.3     |
| 19 | 17.7           | 20.7        | 72.6   | 45.9           | 99.4        | 91.1   | 162.8          | 46.4        | 56.2      | 66.5           | 56.4        | 41.7     |
| 20 | 41.0           | 29.0        | AN     | 45.9           | 52.4        | 31.8   | 268.7          | 38.3        | 35.6      | 89.6           | BA          | 33.3     |
| 21 | 61.7           | 39.1        | AN     | 57.6           | 52.7        | 34.1   | 82.9           | 83.4        | 55.5      | 44.4           | 73.0        | 117.6    |
| 22 | 21.0           | 40.0        | AN     | 52.5           | 14.6        | 61.6   | 36.5           | 18.0        | 33.9      | 80.5           | 64.1        | 141.4    |
| 23 | 22.5           | 54.7        | AN     | 59.6           | 22.6        | 54.9   | 38.7           | 16.4        | 44.2      | 101.9          | 72.9        | 54.3     |
| 24 | 11.8           | 48.6        | 44.2   | 54.6           | 27.1        | 50.6   | 26.9           | 27.5        | 44.9      | 70.2           | 70.7        | 23.7     |
| 25 | 14.3           | 46.7        | 36.6   | 61.9           | 30.7        | 44.7   | 47.9           | 29.4        | 72.6      | 48.2           | 47.1        | 21.2     |
| 26 | 39.5           | 42.2        | 284.8  | 38.4           | 36.6        | 55.9   | 27.2           | 34.2        | 81.3      | 45.7           | 43.6        | 25.0     |
| 27 | 21.1           | 50.0        | 40.2   | 60.0           | 41.2        | 33.9   | 33.7           | 43.1        | 93.7      | 428.3          | 71.4        | 25.7     |
| 28 | 38.4           | 51.8        | 56.1   | 56.6           | 43.2        | 46.0   | 48.3           | 80.0        | 80.5      | 90.3           | 74.2        | 25.3     |
| 29 | 38.8           |             | 47.6   | 55.9           | 35.3        | 57.2   | 72.0           | 54.9        | 84.1      | 51.2           | 38.9        | 36.5     |
| 30 | AN             |             | 49.3   | 58.1           | 44.7        | 54.1   | 51.1           | 64.8        | 90.6      | 69.4           | 30.5        | 36.9     |
| 31 | AN             |             | 44.7   |                | 43.8        |        | 52.8           | 118.7       |           | 86.4           |             | 24.2     |
|    | 1st quarter av | verage      | 43.4   | 2nd quarter a  | average     | 54.2   | 3rd quarter a  | verage      | 70.5      | 4th quarter a  | verage      | 70.3     |
| [  | # of valid san | nples       | 82     | # of valid san | nples       | 89     | # of valid san | nples       | 91        | # of valid sar | mples       | 86       |
| [  | % of samples   | 5 collected | 91.11% | % of samples   | s collected | 97.80% | % of samples   | 6 collected | 98.91%    | % of sample    | s collected | 93.48%   |
|    | # of 24 hr exc | ceedances   | 1      | # of 24 hr exc | ceedances   | 1      | # of 24 hr exc | eedances    | 6         | # of 24 hr ex  | ceedances   | 3        |

### 2009 Cowtown

#### COWTOWN PM<sub>10</sub> 2009 TEOM Data

| 24 | Hour Ave       | rages (ug   | g/m <sup>3</sup> ) |                |           |        |                |             |           |                |             |          |
|----|----------------|-------------|--------------------|----------------|-----------|--------|----------------|-------------|-----------|----------------|-------------|----------|
|    | January        | February    | March              | April          | May       | June   | July           | August      | September | October        | November    | December |
| 1  | 37.9           | 111.2       | 64.6               | 100.3          | 100.1     | 130.6  | 65.5           | 122.6       | 44.7      | 171.9          | 212.9       | 76.2     |
| 2  | 53.6           | 90.5        | 140.0              | 71.1           | 92.9      | AN     | 64.3           | 82.3        | 73.9      | 136.6          | 155.4       | 74.5     |
| 3  | 30.8           | 128.6       | 106.7              | 199.4          | 67.0      | AN     | 63.7           | 125.0       | 426.2     | 52.9           | 153.1       | 79.8     |
| 4  | 28.5           | 205.2       | 77.7               | 95.5           | 108.5     | AN     | 16.4           | 199.6       | 34.0      | 98.1           | 286.1       | 70.8     |
| 5  | 21.9           | 182.6       | 77.2               | 72.5           | 131.1     | 108.5  | 24.1           | 158.7       | 23.4      | 242.4          | 136.5       | 121.5    |
| 6  | 31.1           | 78.3        | 103.0              | 71.1           | 135.5     | 101.7  | 53.7           | 114.2       | 26.5      | 146.9          | 189.6       | 50.1     |
| 7  | 27.3           | 59.0        | 72.9               | 109.6          | 104.1     | 92.0   | 45.2           | 112.7       | 27.5      | 87.3           | 121.9       | 305.9    |
| 8  | 31.1           | 9.8         | 125.1              | 105.4          | 109.1     | 117.6  | 60.7           | 90.3        | 43.5      | 176.9          | 62.0        | 48.0     |
| 9  | 45.4           | 33.7        | 55.1               | 74.0           | 110.3     | 112.4  | 60.0           | 81.5        | 58.3      | 107.0          | 98.9        | 29.1     |
| 10 | 24.4           | 14.8        | 78.0               | 94.9           | 119.5     | 57.0   | 128.5          | 122.1       | 55.9      | 101.2          | 137.7       | 39.4     |
| 11 | 39.3           | 22.2        | 97.2               | 21.4           | 114.0     | 87.5   | 98.9           | 159.8       | 87.3      | 193.8          | 163.9       | 67.1     |
| 12 | 55.0           | 53.8        | 78.3               | 44.0           | 113.8     | 88.6   | 131.0          | 235.3       | 60.6      | 92.1           | 165.1       | 54.6     |
| 13 | 53.8           | 40.4        | 86.2               | 38.6           | 160.1     | 117.8  | 130.2          | 35.2        | 51.6      | 108.2          | 102.1       | 36.8     |
| 14 | 60.1           | 34.5        | 86.2               | 70.3           | 111.1     | 154.2  | 84.5           | 38.0        | 79.3      | 71.2           | 64.9        | 37.4     |
| 15 | 96.6           | 40.3        | 67.1               | 138.4          | 90.8      | 87.0   | 74.1           | 92.1        | 89.1      | 155.4          | 31.2        | 70.5     |
| 16 | 145.1          | 57.9        | 62.6               | 57.9           | 168.2     | 154.8  | 65.9           | 52.0        | 91.3      | 226.2          | 43.1        | 76.1     |
| 17 | 135.8          | 23.4        | 124.2              | 67.5           | 98.8      | 115.9  | 631.0          | 124.5       | 108.2     | 91.1           | 114.8       | 87.5     |
| 18 | 76.5           | 26.5        | 112.3              | 92.5           | 72.2      | 131.0  | 252.1          | 148.0       | 57.6      | 88.0           | 90.2        | 126.9    |
| 19 | 42.2           | 40.7        | 82.8               | 179.5          | 90.5      | 103.0  | 87.2           | 86.8        | 97.9      | 133.1          | 92.7        | 79.6     |
| 20 | 64.3           | 43.1        | 132.8              | 136.7          | 73.6      | 59.9   | 300.0          | 96.3        | 115.1     | 144.5          | 98.8        | 83.7     |
| 21 | 93.8           | 45.1        | 82.6               | 84.3           | 43.9      | 119.8  | 268.3          | 204.7       | 128.7     | 212.8          | 72.4        | 111.1    |
| 22 | 20.0           | 50.2        | 332.1              | 118.1          | 23.7      | 106.8  | 79.6           | 21.4        | 69.7      | 135.0          | 73.8        | 114.4    |
| 23 | 22.7           | 82.3        | 134.4              | 84.0           | 23.9      | 151.2  | 65.4           | 45.1        | 111.1     | 235.1          | 163.7       | 60.3     |
| 24 | 19.7           | 80.0        | 75.7               | 138.8          | 57.0      | 135.3  | 59.0           | 91.1        | 184.4     | 141.7          | 125.6       | 24.5     |
| 25 | 20.7           | 66.7        | 94.0               | 157.3          | 119.0     | 104.8  | 53.0           | AN          | 210.9     | 163.8          | 88.6        | 23.3     |
| 26 | 77.0           | 74.8        | 224.6              | 156.7          | 105.7     | 135.8  | 46.4           | AN          | 212.8     | 178.7          | 97.9        | 36.6     |
| 27 | 74.4           | 72.2        | 79.7               | 159.4          | 77.9      | 118.4  | 90.8           | 123.3       | 130.8     | 626.3          | 98.3        | 49.1     |
| 28 | 108.1          | 71.7        | 109.3              | 96.8           | 82.0      | 76.5   | 141.4          | 479.1       | 154.1     | 242.3          | 108.9       | 46.2     |
| 29 | 59.7           |             | 94.1               | 129.9          | 98.5      | 81.8   | 122.5          | 135.6       | 118.8     | 219.2          | 71.6        | 57.6     |
| 30 | 82.3           |             | 158.3              | 124.6          | 82.2      | 96.5   | 114.6          | 152.2       | 242.0     | 1/4.9          | 55.6        | 57.0     |
| 31 | 134.1          |             | 85.5               |                | 165.2     | 100.0  | 88.5           | 224.8       |           | 174.6          |             | 31.8     |
|    | 1st quarter a  | verage      | 77.3               | 2nd quarter a  | verage    | 103.3  | 3rd quarter a  | verage      | 117.1     | 4th quarter a  | verage      | 117.8    |
|    | # of valid sar | nples       | 90                 | # of valid san | nples     | 88     | # of valid sar | mples       | 90        | # of valid sai | mpies       | 92       |
|    | % of samples   | s collected | 100.00%            | % of samples   | collected | 90.70% | % of sample    | s collected | 97.83%    | % of sample    | s collected | 100.00%  |
|    | # of 24 hr exe | ceedances   | 5                  | # of 24 hr exc | eedances  | 9      | # of 24 hr ex  | ceedances   | 16        | # of 24 hr ex  | ceedances   | 23       |

# What Caused the Reduction? We tested 3 Primary Measures

The test BMP's were:

- An average of 3 6 gallons of water per head/per day dispersed in occupied pens, roadways and other areas of the yards. These were monitored by a designated employee who directed efforts.
- All traveled roadways and feed alleys were monitored and received dust suppression techniques including water and monitored traffic regimes.
- Speed limits for internal traffic were applied and monitored.

## We Monitored the Costs

### Table 1. Cost of $PM_{10}$ Reduction Measures at Two Feed Yards near the Cowtown Monitor 2/1/2009 thru 8/1/2010

| Category           | Total Amount    | Daily Amount        | \$ Cost            |
|--------------------|-----------------|---------------------|--------------------|
| Water Dispersed    | 2,116 acre feet | 9.8 acre feet p/day | \$703.00 p/day     |
| Fuel               | 20,815 gallons  | 86 gals. p/day      | 227.90 p/day       |
| Worker Hours       | 6,147 hours     | 25 total work hours | 350.00 p/day       |
|                    |                 | p/day               |                    |
| Water Trucks       | 5 trucks        | 3 daytime – 2 night | 150.00 p/day       |
| Repairs            |                 |                     | <u>40.00 p/day</u> |
| Total per day cost |                 |                     | \$1,470.90 p/day   |

\*This is for two feed yards (60,000 + 40,000 head). \*The costs were approximately 2/3 for one and 1/3 for the other. \*These costs will slightly vary based on the climate, meteorological conditions, and activities. \*This timeframe was very dry and very little precipitation occurred.

### 2009-2010 Pinal County Conducted a Source Apportionment Study Course Results for Course

### Table 1: Coarse Particle Chemical Composition

|                        | Casa Grande          | Cowtown              | Pinal County Housing |
|------------------------|----------------------|----------------------|----------------------|
| Coarse Particle Mass   | 31 µg/m <sup>3</sup> | 67 μg/m <sup>3</sup> | 45 μg/m <sup>3</sup> |
| Crustal                | 48%                  | 42%                  | 49%                  |
| Organic                | 12%                  | 25%                  | 9%                   |
| Nitrate                | 2%                   | 1%                   | 2%                   |
| Sulfate                | 1%                   | 1%                   | 1%                   |
| Ammonium               | 0.2%                 | 0.2%                 | 0.1%                 |
| Other Measured Species | 9%                   | 11%                  | 8%                   |
| Unidentified           | 28%                  | 20%                  | 31%                  |

### 2009-2010 Pinal County Conducted a Source Apportionment Study Results for Fine

**Table 2: Fine Particle Chemical Composition** 

|                        | Casa Grande          | Cowtown  | Pinal County Housing |
|------------------------|----------------------|----------|----------------------|
| Fine Particle Mass     | 10 µg/m <sup>3</sup> | 11 µg/m³ | 9 μg/m <sup>3</sup>  |
| Crustal                | 17%                  | 22%      | 30%                  |
| Organic                | 45%                  | 45%      | 31%                  |
| Nitrate                | 3%                   | 8%       | 6%                   |
| Sulfate                | 10%                  | 9%       | 10%                  |
| Ammonium               | 4%                   | 5%       | 4%                   |
| Other Measured Species | 7%                   | 8%       | 9%                   |
| Unidentified           | 14%                  | 3%       | 10%                  |

### Study Average for Course at all 3 Monitors

#### Table 4: Average Coarse Particle Source Contribution at Each Sampling Site

|                    | Casa Grande | Cowtown | Pinal County Housing |
|--------------------|-------------|---------|----------------------|
| Primary Biological | 23%         | 30%     | 22%                  |
| Crustal            | 16%         | 20%     | 24%                  |
| Road Dust          | 20%         | 7%      | 7%                   |
| Feed Lot           | 1%          | 11%     | 1%                   |
| Secondary          | 10%         | 7%      | 10%                  |
| Boron-Rich         | 9%          | 6%      | 15%                  |
| Transported Soil   | 5%          | 7%      | 6%                   |
| Ammonium Nitrate   | 4%          | 4%      | 3%                   |
| Salt               | 3%          | 2%      | 2%                   |
| Unidentified       | 9%          | 6%      | 10%                  |

### Study Average for Fine at all 3 Monitors

 Table 5: Average Fine Particle Source Contribution at Each Sampling Site

|               | Casa Grande | Cowtown | Pinal County Housing |
|---------------|-------------|---------|----------------------|
| Motor Vehicle | 45%         | 41%     | 25%                  |
| Road Dust     | 30%         | 29%     | 29%                  |
| Lead-rich     | 12%         | 8%      | 11%                  |
| Brake Wear    | 4%          | 3%      | 8%                   |
| Crustal       | 2%          | 3%      | 7%                   |
| Salt          | 3%          | 2%      | 3%                   |
| Unidentified  | 4%          | 14%     | 17%                  |

## Weaknesses

- In 2009 Pinal County was proposed to be designated Non-attainment for PM<sub>2.5</sub>
- We now comply with the PM<sub>2.5</sub> standard before the designation process is complete – yet we have to dedicate resources to a solved problem when the focus should be on the problem not yet solved (PM<sub>10</sub>).

| Cowtown | Annual Avg | 3 Year Avg |
|---------|------------|------------|
| PM2.5   | ug/m3      | ug/m3      |
| 2005    | 33.1       | N/A        |
| 2006    | 22.7       | N/A        |
| 2007    | 22.5       | 26         |
| 2008    | 19.6       | 21.6       |
| 2009    | 14.2       | 18.8       |
| 2010    | 12.3       | 15.4       |

## Weaknesses Continued

 Chart below shows compliance with the 24 Hour PM<sub>2.5</sub> Standard

| Year | Maximum<br>Reading | 24Hr Avg<br>98th<br>Percentile | 3 year average of<br>the 98th<br>percentile |
|------|--------------------|--------------------------------|---------------------------------------------|
| 2005 | 144.8              | 78.9                           | N/A                                         |
| 2006 | 69.4               | 48.9                           | N/A                                         |
| 2007 | 59.7               | 53.9                           | 61                                          |
| 2008 | 41.7               | 40.7                           | 48                                          |
| 2009 | 29.4               | 24                             | 40                                          |
| 2010 | 39.5               | 27.1                           | 31                                          |

• \*\*39.5 was flagged for wind event

## Challenges

- We clearly will struggle with gaining compliance with the PM<sub>10</sub> standard (no more than 1 exceedance per year for 3 years) and we will be expending resources to deal with an already achieved PM<sub>2.5</sub> standard.
- We have been spending over \$1,400 dollars per day and still had exceedances (by our standards we had 9 in 2009 that were not windblown/natural events).
- When tough markets or water shortages arrive we are unsure about maintaining such an effort which requires administering one of our scarcest natural resources "water".
- We need a better more logical "windblown/natural events" policy from EPA.

# Summary

- Better science/acceptance on the "oversampling" of course PM by the newer TEOM monitors (Texas AM Research demonstrates a 30% over sampling).
- Better and easily understood "windblown and natural events" policies to allow local authorities to flag the data from those days.
- Better monitor placement requirements and focus on population centers not rural areas near them.

## Summary

- Continue Research on Course PM as necessary
- Adopt a course PM standard that comports with scientific evidence