

Office of Air Quality Planning and Standards

Ozone NAAQS Staff Paper Update

Susan Lyon Stone stone.susan@epa.gov Agricultural Air Quality Task Force Meeting November 29, 2006

11-06

Health effects

United States Environmental Protection

€EI

- New health information
- Results of exposure and risk analyses
- Findings of 2nd draft Staff Paper
- CASAC comments on 2nd draft Staff Paper
- New analyses for final Staff Paper

Vegetation and ecosystem effects

- New analyses
- Findings of 2nd draft Staff Paper and CASAC comments
 Schedule

Types of Health Studies

- Animal Toxicology
 - Exposures/doses controlled, uniform population, confounders controlled
 - Issues with extrapolation to humans; high doses often used
- Controlled human exposure
 - Exposures and confounders controlled
 - Generally use healthy subjects, health outcomes less severe
- Epidemiology
 - Real-world exposures (short- and long-term), including sensitive groups; more severe health outcomes
 - Issues with potential confounders, exposure error, etc.
- Comparisons between study types:
 - Dose or exposure levels
 - Population group or subjects
 - Health endpoints
 - Interpretation of results
- Consistency and coherence

Δ.

Human Lung

EPA United States Environmental Protection Agency

- Air conducting
 - Trachea
 - Bronchi
 - Bronchioles
- Gas exchange
 - Respiratory bronchioles
 - Alveoli

Ozone Irritates the Airways

• Symptoms

Separation United States Environmental Protection Agency

- Cough
- Sore or scratchy throat
- Pain with deep breath
- Fatigue
- Rapid onset
- Similar symptoms people with and without asthma

Ozone Reduces Lung Function

Exposure to 0.22 ppm O₃ (Frampton et al., 1997)

Ozone Causes Inflammation

- Ozone reacts completely in surface layer forms reactive oxygen molecules
- Influx of white blood cells
- Damages cells that line the airways
- Effect is greater 24 hours after exposure
- Increases airway reactivity
- Inflammation and increased airway reactivity responses greater in people with asthma
- Concern about repeated exposures

California Children's Health Study

CHS: School Absences

- 20 ppb increase in O₃ associated with an 83% increase in school absences for acute respiratory disease (Gilliland et al., 2001)
- Large economic impact of pollution-related school absences (Hall and Lurmann, 2003)

CHS: Ozone and New-onset Asthma

	Low O ₃ Towns	<u>High O₃ Towns</u>
	#	#
Sports	<u>asthma</u> RR	<u>asthma</u> RR
0	58 1.00	46 1.00
1	50 1.28	40 1.28
2	20 0.82	16 1 .28
≥3	9 0.79	20 3.31

McConnell et al., 2002

What's New?

- Controlled human exposure studies to lower levels 0.04 ppm
 - Some individuals show moderate lung function responses down to 0.04 ppm, 6.6-hr average
 - Change in group mean averages not statistically significant at lower levels
- Many new studies show asthmatics much more susceptible
 - Larger lung function and symptomatic responses; increased inflammation and airway responsiveness; more ED visits and hospital admissions
 - Epidemiological studies report effects well below 0.08 ppm
- Epidemiological evidence links O₃ with total (nonaccidental) and cardiorespiratory mortality

Sensitive Groups for Ozone

- People with lung disease
- Children
- Older adults
- People who are active outdoors

See PA United States Environmental Protection Agency

Figure 5C-1. Percent of Active Children (Ages 5-18) Engaged in Moderate Exertion Estimated to Experience At Least One Lung Function Response (Decrement in FEV1 ≥ 15 %) Associated with Exposure to O3 Concentrations That Just Meet the Current and Alternative Average 4th Daily Maximum 8-Hour Standards, for Location-Specific O3 Seasons: Based on Adjusting 2002 O3 Concentrations

EPA United States Environmental Protection Agency

EPA United States Environmental Protection Agency

Urban Areas

EPA United States Environmental Protection Agency

Urban Areas

Findings of Second Draft Staff Paper

- Options for Administrator's consideration:
 - Retention of current standard, 0.08 ppm O₃, based on:
 - Consideration of the uncertainties in lung function responses at levels below 0.08 ppm O₃
 - Places more limited weight on evidence of more uncertain, but serious, morbidity (e.g., hospital admissions, ED visits) and mortality effects
 - Revise standard to more protective level, in the range analyzed, 0.06 to 0.07 ppm O₃, with focus on the level of 0.07 ppm, based on:
 - Consideration that some highly responsive individuals experience lung function decrements at exposures as low as 0.06 and 0.04 ppm
 - Consideration of new evidence that people with asthma have bigger responses to O₃ exposure (e.g., bronchoconstriction, inflammation, increased airway responsiveness) than non-asthmatics risk assessment has not fully addressed the range of health effects likely (e.g., increased medication usage, missed school and work days, physician visits)
 - Places more weight on evidence of serious, but more uncertain, morbidity and mortality effects; some in urban areas with O₃ levels below the current standard

CASAC Panel Conclusions

- There is no scientific justification for retaining the current primary 8-hr NAAQS of 0.08 parts per million (ppm)
 - "New evidence supports and builds upon key, health-related conclusions" drawn in 1997 review
 - Several new single-city studies and large multi-city studies provide more evidence for adverse health effects at concentrations lower than the current standard
 - Epidemiological evidence is backed-up by controlled human exposure studies (cited Adams 2002, 2006 studies as showing adverse lung function effects in some individuals at 0.06 ppm)
 - Lung function studies done in healthy adults; expectation that asthmatics and children would experience larger effects
 - Other adverse effects found in studies (e.g., increased school absenteeism, increased respiratory hospital emergency department visits, increased respiratory symptoms in asthmatics, increased medication usage, increased non-accidental and cardiorespiratory deaths) that reported exposure levels "well below the current standard"

CASAC Panel Conclusions (continued)

- The primary 8-hr NAAQS needs to be substantially reduced to protect human health, particularly in sensitive populations
 - CASAC in "complete agreement" that staff conclusion arguing for consideration of retaining the current standard as an option "is not supported by the relevant scientific data"
 - "No longer significant scientific uncertainty regarding the CASAC's conclusion that the current 8-hr primary NAAQS must be lowered"
- Unanimously recommended a range of 0.060 to 0.070 ppm for the primary ozone NAAQS, with a range of concentration-based forms from third- to fifth-highest daily maximum 8-hr average
 - Recommend that EPA conduct a broader evaluation of implications of alternative forms of standards on public health protection and stability
 - Monitoring technology supports stating standard in terms of ppb or 3 decimal places for ppm

New Analyses for Final Staff Paper

- Sensitivity analyses of policy relevant background (PRB) ozone concentrations
- Extended lung function and mortality risk analyses to include estimates based on 2003 air quality for 5 of the 12 urban areas
- Sensitivity analysis of model form (linear vs. logistic) for lung function decrement risk estimates
- Quantitative risk estimates of asthmatic children experiencing \geq 10% reductions in FEV₁
- Analyses of a "12th maximum 8-hr average O₃ concentration in 3 years" form of the standard

Vegetation and Ecosystem Effects

- Recent studies support and strengthen previous findings:
 - Ambient O₃ levels can cause decreased yield and growth in many crops and forest plants, respectively, and reduce the nutritive quality of some agronomic and forage crops
 - Leaf injury from O₃ exposure is widespread across U.S., as documented at US Forest Service bio-monitoring network field sites
 - O₃ effects on sensitive plant species, including loss of vigor and competitive advantage, have implications for ecosystems
 - A seasonal, cumulative, concentration-weighted index form (such as SUM06 or W126) is a more appropriate index for characterizing vegetation effects than an 8-hr. average form

2001 Estimated Aspen Seedling Annual Biomass Loss

2001 County-Level Incidence of Visible Foliar Injury

Is Foliar Injury Present or Absent?, 2001

Findings Second Draft Staff Paper

- Secondary NAAQS
 - Options analyzed:
 - Current standard of 8 hr. avg. of 0.084 ppm, 4th max
 - 8 hr., 0.070 ppm 4th max
 - 3 mo., 12 hr. SUM06 in the range of 15 to 25 ppm-hr
 - 3 mo., 12 hr. W126 in the range of 13 to 21 ppm-hr
 - Staff identifies a range of standards with biologically relevant forms as appropriate options for consideration, based on:
 - Continued scientific evidence that exposure duration and concentration are important in eliciting plant response
 - NAS Report/CAAAC recommendations
 - Need to develop appropriate indicators for Agency tracking/accountability
 - 1997 Consensus Report 16 experts agreed on a cumulative, concentrationweighted form
- CASAC unanimously agreed that it is not appropriate to continue to promulgate identical primary and secondary standards for O₃
 - Preferred the W126 metric over the SUM06 metric
- For more information contact Dr. Jeffrey Herrick; herrick.jeffrey@epa.gov

Status of Ozone NAAQS Review

- Final CD released March 21, 2006
- Second draft Staff Paper and exposure, health risk, and environmental effects assessments
 - Released to CASAC and the public in July
 - CASAC meeting held August 24-25
 - CASAC letter October 24
- Final Staff Paper targeted for release in January 2007
- CASAC plans to hold teleconference after release to provide any additional comments to EPA
- Consent decree schedule changed:
 - Proposed rule May 2007
 - Final rule February 2008