PM_{2.5} Emissions and Agriculture

Brock Faulkner

Center for Agriculture Air Quality Engineering and Science Texas A&M University

May 14, 2008

PM NAAQS

- 1971 TSP standard promulgated
- 1987 PM₁₀ promulgated
 –TSP standard vacated
- 1997 PM_{2.5} standard promulgated

 2006 – Annual PM₁₀ standard vacated –24-hour PM_{2.5} standard reduced

PM_{2.5} NAAQS

1997-2006	24-hour	65 μg/m³
	Annual	15 µg/m³
Current	24-hour	35 µg/m³
	Annual	15 µg/m³

1997 Standard

 Attainment status based on measurements from 2001-2003

• SIPs due April 2008

Attainment Dates

 April 2010 (2007-2009 Monitoring)
 April 2015 with extension

Currently Designated PM_{2.5} Nonattainment Areas - 1997 Standards Violated annual and/or 24-hour PM_{2.5} standards with designated data (2001-2003*)

Legend	
Nonattainment areas violating:	Number of Areas
both annual (15 µg/m ³) and 24-hour (65 µg/m ³) standards	2
 ONLY the 24-hour standard (65 µg/m³) 	0
 ONLY the annual standard (15 µg/m³) 	37
Total PM25 Nonattainment Are	eas 39

* 2002-2004 data were considered in the designation process but all nonattainment designations were based on 2001-2003 data

2006 Standard

- Attainment status based on measurements from 2007-2009
- Non-attainment designations expected to take effect in 2010

Composition of PM_{2.5}

Primary Particles

- Emitted directly from source
- Dust from field operations, CAFOS, etc.

Secondary Particles

- Result from atmospheric chemical reactions
- Comprise most PM_{2.5} in US
- Nitrogen oxides, sulfur dioxides, etc.

Measurement of Ambient PM

- **PM**₁₀
 - Performance standard (40 CFR 53 Subpart D)
 - Sampler cutpoint = $10 \pm 0.5 \mu m$
 - Penetration data for various size ranges
 Fit by log-normal CDF slope of 1.5 ± 0.1 (Hinds, 1982)
- **PM**_{2.5}
 - Design standard (40 CFR 50 Appendix L)
 - Performance specs listed in 40 CFR 53 and 58
 - Sampler cutpoint = $2.5 \pm 0.2 \mu m$ (USEPA, 1996)
 - Sampler slope is to be "sharp"
 - WINS impactor (FRM) slope = 1.3 ± 0.03 (Buch, 1999)

Ambient Samplers

Source Sampling of PM

PM₁₀ (EPA Method 201a)

- Performance standard
 - Sampler cutpoint = $10 \pm 1.0 \mu m$
 - Fraction efficiency specified by USEPA (2002)

Efficiency Envelope for PM₁₀ Stack Sampling

From Buser and Whitelock (2008)

Source Sampling of PM

PM₁₀ (EPA Method 201a)

- Performance standard
 - Sampler cutpoint = 10 ± 1.0 μm
 - Fraction efficiency specified by USEPA (2002)

PM_{2.5} (EPA Method CTM-039) – Limited information available

• Sampler cutpoint = $2.5 \pm 0.25 \mu m$

Source Sampler Inlet

Ideal Sampler Penetration Curve

No Oversampling

Urban PM

When PM_{2.5} samplers perform as designed:

 Over-sampling biases occur when sampling PM with MMDs greater than 2.5 microns

 Over-sampling biases increase with increasing ambient particle size

FRM PM_{2.5} samplers are not reliable for determining the contribution of agricultural sources to PM_{2.5} <u>concentrations!</u>

Further Confounding the Issue...

- Shifts in sampler penetration curves have been observed when measuring PM from agricultural operations
- These shifts lead to even greater sampling error

Measurement Observations Collocated TSP, PM₁₀, and PM_{2.5} FRM samplers

True PM₁₀/PM_{2.5} Concentrations

Sampler Performance

$$J = \int_{0}^{\infty} \left(f_{TSP}(d_p, MMD, GSD)(1 - FEC_{samp}(d_p, d_{50}, slope) - f_{samp}(d_p, MMD_{samp}, GSD_{samp}) \right) dd_p$$

$$K = \frac{C_{samp}}{C_{TSP}} - \int_{0}^{\infty} \left(f_{TSP}(d_p, MMD, GSD) \times (1 - FEC_{samp}(d_p, d_{50}, slope)) \right) dd_p$$

Sampler cut point and slope were determined by simultaneously minimizing J and K.

Observed Sampler Performance

- FRM PM₁₀ Samplers

 Cutpoints: 6.5 >20 µm
 Slopes: 1.3 >4
- Very Sharp Cut Cyclone PM_{2.5} Samplers

 Cutpoints: 1.9 5.4 µm
 Slopes: 1.3 >4

Shifts in sampler penetration curves further exacerbate oversampling biases in the presence of large particles such as those emitted from agricultural operations.

PM_{2.5}/PM₁₀ Ratio

 Used in AP-42 to characterize PM_{2.5} emissions from some sources

 Many ratios published in AP-42 were based on measurements with highvolume cyclone/cascade impactor systems by MRI

 Ratios higher than most studies observed during field sampling

Cowherd (2005)

- Compared MRI samplers to Partisol 2000 (FRM PM₁₀ and PM_{2.5} sampler)
- Found that MRI samplers had a positive bias of 2 relative to FRM PM_{2.5} samplers
- Recommended PM_{2.5}/PM₁₀ ratios of:
 - -0.15 for most sources of fugitive dust
 - -0.25 for paved roads
 - 0.20 for agricultural crops

Cowherd (2005)

- Problems
 - Averaged PM_{2.5}/PM₁₀ ratios from MRI and FRM samplers for new AP-42 emission factors
 - Observed increasing $PM_{2.5}/PM_{10}$ ratio with increasing PM_{10} concentration
 - PM_{2.5}/PM₁₀ ratio for agricultural crops (0.20) much higher than observed in field studies

Observed PM_{2.5}/PM₁₀ Ratios				
Source	MMD	GSD	PM _{2.5} /PM ₁₀	
	(µm)		(%)	
Urban	5.7	2.25	20	
Dairy	15	2.1	2.7	
Cotton Harvest	14.3	2.2	4.1	
Almond Harvest				
Sweeping	13	2.1	3.6	
Pickup	12.7	2.3	6.6	

Observed PM_{2.5}/PM₁₀ Ratios

Problems with PM_{2.5}/PM₁₀ Ratio

• PM_{2.5}/PM₁₀ ratio is not static

 Not based on sound science for many sources

• PM₁₀ sampling bias

Overstating PM_{2.5} Emissions

Reasons

Over-sampling bias

- Misrepresentative PM_{2.5}/PM₁₀ ratios

Impacts

- Mischaracterization of contributing sources
- Undue compliance burden on minor sources
- Lack of effective regulation
- Poor allocation of resources

PM_{2.5} Control Options

What are they?

SJVUAPCD and SCAQMD have largely proposed to tighten controls on PM_{10} in hopes of reducing $PM_{2.5}$ emissions

Cotton gins

• CAFOs

• CMPs

Unpaved roads

- Etc.
- Will they work?

Evaluation of Ambient Particulate Matter Sampler Performance

- Characterizing sampler performance in controlled environment
 - Wind tunnel meets EPA test criteria for sampler evaluation
 - Isokinetic sampling to determine true concentrations

Evaluation of Ambient Particulate Matter Sampler Performance

- Characterizing sampler performance in controlled environment
 - Wind tunnel meets EPA test criteria for sampler evaluation
 - Isokinetic sampling to determine true concentrations
- TSP, PM₁₀, and PM_{2.5} samplers
- Varying wind speed, concentrations, and PSDs

Errors Associated with PM Stack Samplers

- Characterizing sampler performance in controlled environment
- Method 5 (TSP), Method 201a (PM_{10}), and Method CTM-039 ($PM_{2.5}$) samplers
- Varying stack velocity, concentrations, and PSDs

Conclusions

FRM PM_{2.5} samplers and PM_{2.5}/PM₁₀ ratios do not accurately represent PM_{2.5} emissions from most agricultural sources

- Research is needed to characterize the performance and over-sampling bias of PM_{2.5} samplers
- Research is needed to determine the true contribution of agricultural sources to ambient PM_{2.5} concentrations