CHARACTERIZATION OF COTTON GIN PARTICULATE MATTER EMISSIONS STUDY

PRESENTATION TO THE USDA AGRICULTURAL AIR QUALITY TASK FORCE COLLEGE STATION, TEXAS, AUGUST 2014

Derek Whitelock

USDA-ARS, Southwestern Cotton Ginning Research Laboratory Mesilla Park, NM

Background

- 2006 EPA implemented more stringent rules for PM_{2.5}
- Primary issues surrounding particulate matter regulations for cotton gins
 - 1) limited or lack of PM_{2.5} data
 - 2) over-prediction of current dispersion models
 - 3) effects of sampler errors
- State Implementation Plans Gin PM_{2.5} emissions further study and/or additional control measures
- All cotton gins eventually impacted
- National, California, Texas, Southern, and Southeastern associations..."urgent need to collect gin emissions data to address these issues".

How much PM_{2.5} is emitted from Cotton Gins?

Regulatory $PM_{2.5}$ Estimates ~ 36% of Total USDA $PM_{2.5}$ Estimates ~ < 5% of Total

Dispersion Model Errors

Some models over-estimate PM concentrations by as much as 10x

Sampler Errors

Limestone	PM ₁₀ Over-Sampling	<u>PM₂₅ Over-Sampling</u>
Rate = 32 g/m ³	123%	700%
Rate = 148 g/m ³ Starch	133%	606%
Rate = 32 g/m ³	477%	30000%
Rate = 148 g/m ³	444%	25316%

⁹Limestone - MMD = 7.0 μm ESD; GSD = 1.71; *ρ* = 2.62 g/cm³ ⁹Starch - MMD = 15.1 μm ESD; GSD = 1.33; *ρ* = 1.26 g/cm³

	PM ₁₀ Over -
Source	Sampling Rate
Cotton Gin	181 %
Cattle Feed Yard	185 %
Almond Harvesting	139 %

Study Results

Background

- 2006 EPA implemented more stringent rules for $PM_{2.5}$
- Primary issues surrounding particulate matter regulations for cotton gins
 - 1) limited or lack of PM_{2.5} data
 - 2) over-prediction of current dispersion models
 - 3) effects of sampler errors
- State Implementation Plans Gin PM_{2.5} emissions further study and/or additional control measures
- All cotton gins eventually impacted
- National, California, Texas, Southern, and Southeastern associations..."urgent need to collect gin emissions data to address these issues".

National Collaboration

<u>USDA Gin Labs</u>
 Derek Whitelock – Mesilla Park, NM
 Clif Boykin – Stoneville, MS
 Greg Holt – Lubbock, TX

Oklahoma State University Michael Buser

- Texas A&M University
- Texas, California, Southern, Southeastern, and National Ginners Associations
- Cotton Incorporated
- Cotton Foundation
- Primary and alternate gins selected for the study
- California Air Resources Board
- San Joaquin Valley Air Pollution Control District
- Texas Commission on Environmental Quality
- Missouri Department of Environmental Quality
- North Carolina Department of Environmental Quality
- NRCS Air Quality and Climate Change Unit in Portland, OR
- USDA-ARS Aerial Application Unit in College Station, TX
- EPA (National, Region 9, and Region 4)

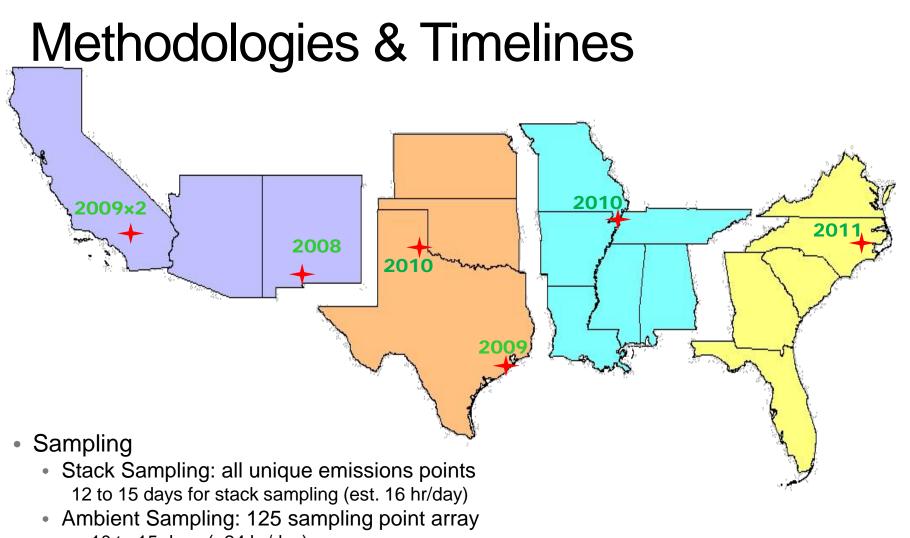
Advisory Groups

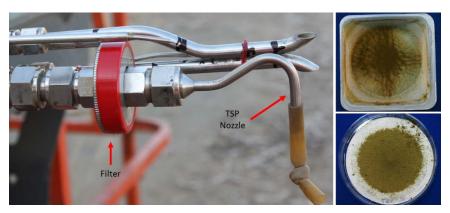
- Gin Advisory Group
 - 8 primary members
 - Gin Associations, Cotton Inc., and Texas A&M
- Air quality Group
 - 26 primary members
 - Gin Associations, Federal and State Regulatory Agencies, USDA ARS and NRCS

Project Objectives

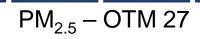
- Gin emission factors
 - Develop PM_{2.5}
 - Verify current PM₁₀ & TSP
- Characterize PM emitted from cotton gins
- Develop a robust PM dispersion modeling data set
- Quantify EPA PM₁₀, PM₁₀-PM_{2.5}, and PM_{2.5} sampler performance characteristics

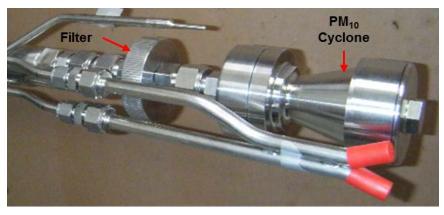
Resources



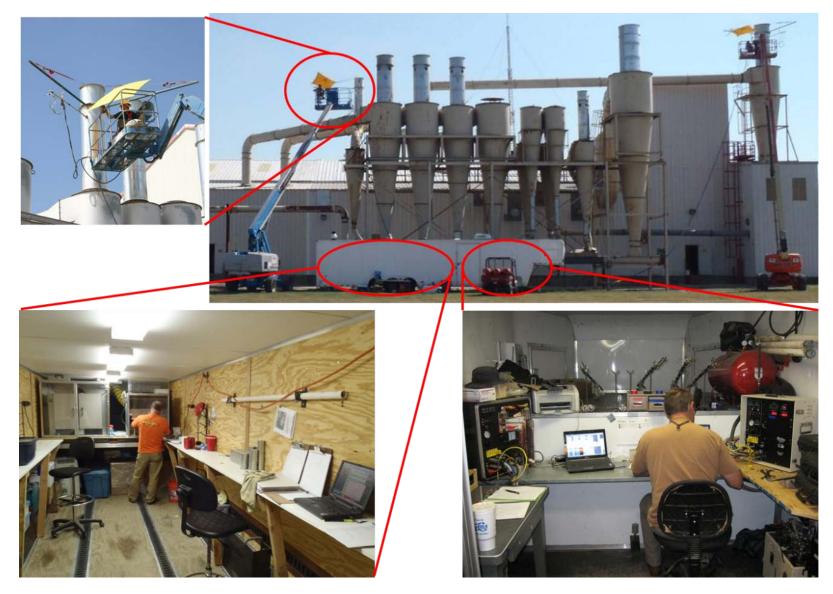


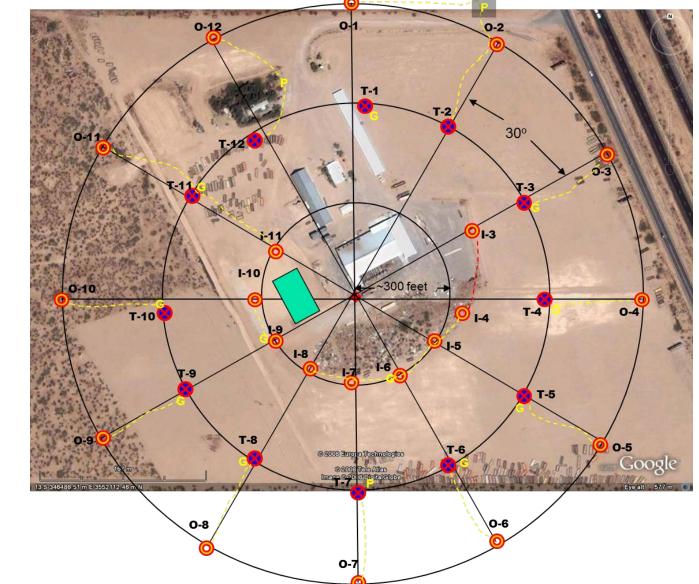
11


- 10 to 15 days (~24 hr/day)
- Ambient and stack sampling will overlap


Stack Sampling

Total Particulate - Method 17





PM₁₀ – Method 201A

Stack Sampling

Ambient Sampling

 Tower Sampler
 Stand Alone Sampler

2 Tower Sites:

- 1 TEOM
- 2 PM10 Samplers
- 2 PM2.5 Samplers
- 1 Tower
- 2 Tower Sites: 1 – TEOM 1 – PM10 Sampler 1 – PM2.5 Sampler
- 1 Tower

8 Tower Sites: 1 – PM10 Sampler 1 – PM2.5 Sampler 1 - Tower

TI

24 Stand-alone Sites:

0.0

- 1 TSP Sampler
- 1 PM2.5 Sampler
- 1 Tower

New Mexico

12 Systems Sampled12 Days of Ambient1800 total samples6 weeks on site

Missouri

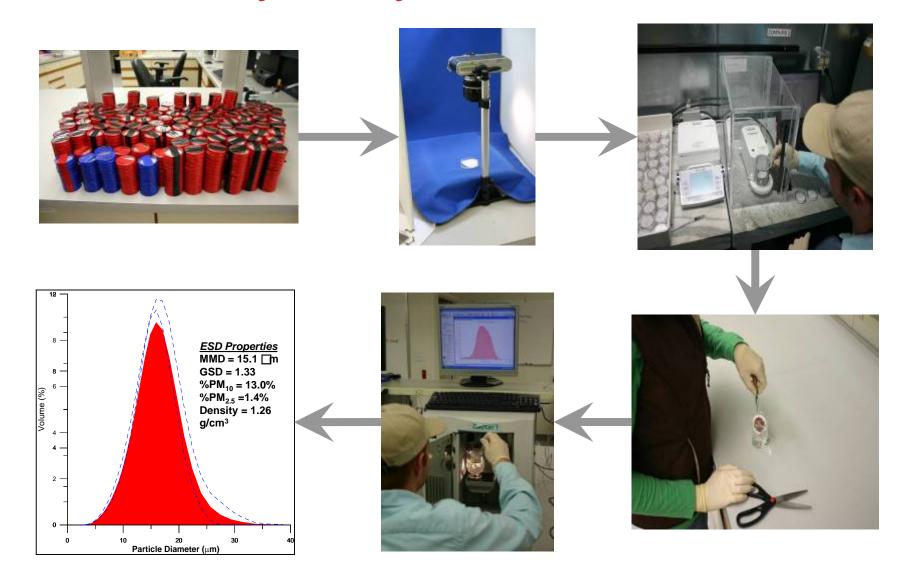
9 Systems Sampled
10 Days of Ambient
1500 total samples
3 ¹/₂ weeks on site

South Texas

9 Systems Sampled 9 Days of Ambient 1200 total samples 3 ¹⁄₂ weeks on site

West Texas

10 Systems Sampled
10 Days of Ambient
1500 total samples
2 ¹/₂ weeks on site


California

2 Gins 26 Systems Sampled 14 Days of Ambient 2600 total samples 4 ¹⁄₂ weeks on site

North Carolina

7 Systems Sampled 10 Days of Ambient 1600 total samples 4 weeks on site

Laboratory Analyses

Current Status

- Field work COMPLETED
 - 7 Gins
 - 73 Stacks x 3 Methods
 - 65 days Ambient x 125 Samplers
- Laboratory analysis COMPLETED
 - ~10,000 Samples
- Data compilation and QC
 - Stack sampling COMPLETED
 - Ambient sampling COMPLETED

Current Status

- Reporting
 - Project Plan Manuscript
 - Published in Journal of Cotton Science April 2012
 - Emissions Data Manuscripts
 - Journal of Cotton Science (http://www.cotton.org/journal/)
 - Stack sampling (EPA approved sampling methodologies)
 - 17 unique gin systems
 PM_{2.5} published Dec 2013
 Total PM in revision

PM₁₀⁻ accepted Jan 2014 PSD – submitted Jul 2014

- Technical Reports
 - Stack sampling (EPA approved sampling methodologies)
 - All background and sampling data
 - buser.okstate.edu/air-quality/national-cotton-gin-technical-reports/

Emission Factors for AP-42 Typical Gin

Unloading, 1st & 2nd Stage Seed Cotton Cleaning, , Overflow, Lint Cleaners, Mote Fan, Battery Condenser, Master Trash

	Total	PM10	PM2.	.5	
Gin PM Study EPA Methods	1.743	0.987		0.148	8.5% of Total
AP-42	2.4	0.82	CA Est.	0.861	
Difference EPA - AP-42	-27%	20%	Difference EPA – CA Est.	-83%	
Gin PM Study PSD Methods		0.660		0.044	
Difference PSD – EPA		-33%		-70%	
Difference PSD – AP-42		-20%	Difference PSD – CA Est.	-95%	

Current Impact

- California
 - SJVAPCD PM_{2.5} Implementation Plan Based on the Project data recommends not additional regulatory actions for gins
- Texas
 - Completely revised its cotton gin permitting rules utilizing the Project data

Current Work

- Thomas Moore
 - Michael Buser Biosystems & Agricultural Engineering, Oklahoma State University
- Use National Study data and current AP-42
- New EPA emission factor guidelines (Aug. 2013)
 - Develop PM_{2.5} emission factors and quality ratings
 - Update PM₁₀ emission factors and quality ratings
- Package data for submittal to EPA
- Assistance from Ron Myers, EPA Measurement Policy Group

Source test quality ratings

Supporting documentation and regulatory agency review questions

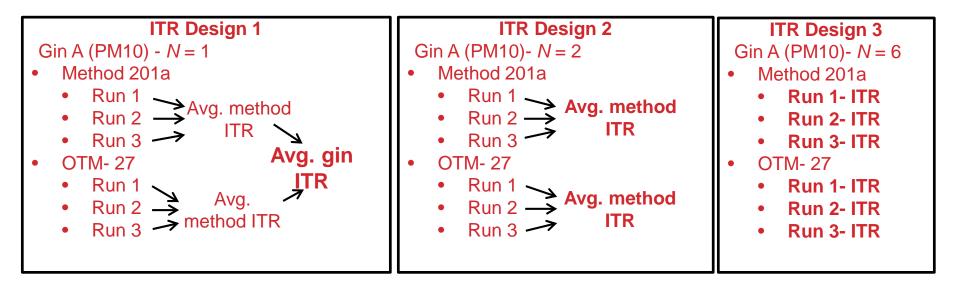
ь 7 8 9	Emissions Factor	Deve	lopment Quality Indicator Value Rating	0		
10	Supporting Documentation Provided	de so	Regulatory Agency Review		, or a	Individual Test Rating
11				GIITTTESC		
27	Have the following been included in the report:					Individual Test Dating
28	Dry gas meter (DGM) calibrations, pitot tube and nozzle inspections?		Was the DGM pre-test calibration within the criteria specified by the test method?			Individual Test Rating Gin 2 Test
29			Was the DGM post-test calibration within the criteria specified by the test method?			
30			Were thermocouple calibrations within method criteria?			Individual Test Rating
31			Was the pitot tube inspection acceptable?			Gin N Test
32			Were nozzle inspections acceptable?			
33			Were flow meter calibrations acceptable?			
34	Was the Method 1 sample point evaluation included in the report?		Were the appropriate number and location of sampling points used?			
35	Were the cyclonic flow checks included in the report?		Did the cyclonic flow evaluation show the presence of an acceptable average gas flow angle?			_
20	Were the raw sampling data and test sheets included in the report?		Were all data required by the method recorded?			_

Submitter questions- 16

Regulatory review questions- 47

Factor Calculation

Use ITRs to calculate Composite Test Rating (CTR)


5

$$CTR = \left[\frac{\sum_{i=1}^{n} \left(\frac{1}{ITR}\right)^{2}}{N}\right]^{-0}$$

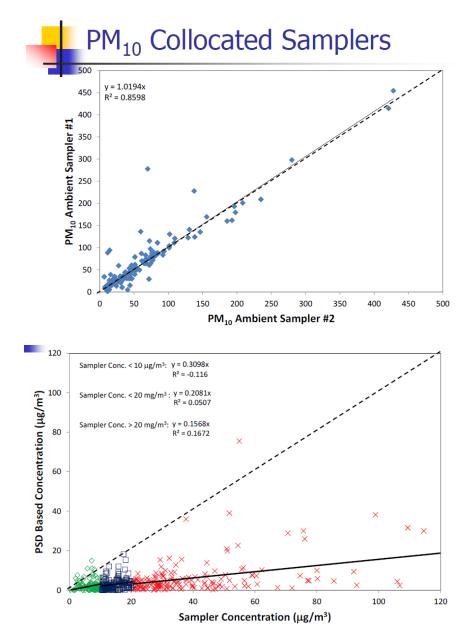
- Use CTR to calculate Factor Quality Index (FQI) $FQI = \frac{100}{CTR * N^{0.5}}$
- Use FQI to determine factor representativeness
 - Poorly representative: FQI > 0.5774
 - Moderately representative: 0.3015 < FQI < 0.5774
 - Highly representative: FQI < 0.3015

EPA Guidelines

• ITR determination is open to interpretation. What is a "test"?

Proposed PM_{2.5} Emission Factors

System	Emission Factor (Ibs/bale)	Represent ativeness	No. of Systems Tested	No. of Test Runs	N needed for moderate	<i>N</i> needed for highly
Unloading	0.0488	Poorly	3	9	1	9
1st Stage Seed Cotton Cleaning	0.0178	Moderately	7	21	0	5
2nd Stage Seed Cotton Cleaning	0.0080	Moderately	4	15	0	8
3rd Stage Seed Cotton Cleaning	0.0088	Poorly	2	6	2	10
1st Stage Lint Cleaning	0.0188	Moderately	4	12	0	8
2nd Stage Lint Cleaning	0.0106	Moderately	4	12	0	8
Combined Lint Cleaning	0.0303	Poorly	3	9	1	9
1st Stage Mote	0.0085	Moderately	5	15	0	7
2nd Stage Mote	0.0048	Moderately	5	14	0	10
Combined Mote	0.0209	Poorly	2	6	2	10
Battery Condenser	0.0077	Moderately	5	18	0	6
Cyclone Robber	0.0035	Poorly	4	12	1	9
Mote Cyclone Robber	0.0094	Poorly	2	9	1	10
Master Trash	0.0098	Moderately	5	15	0	7
Overflow (Distributer)	0.0091	Moderately	3	9	0	8
Mote Cleaner	0.0287	Poorly	1	3	2	10
Mote Trash	0.0024	Poorly	2	6	2	10


- **50** Tests needed (assuming constant CTR)
 - Moderately representative: $N = 30,000 * CTR^{-2}$
 - Highly representative: $N = 110,000 * CTR^{-2}$

Additional Work

- Incorporate additional data into rating process
 - Re-rate current AP-42 data
 - Stack sampling compliance tests
 - California
 - Missouri
 - New Mexico
 - Particle size analysis data
- Organization of supporting documentation for EPA submission
 - Annotated technical reports
 - Gin layouts
 - Chain of custody
 - Target submission date: September 2014

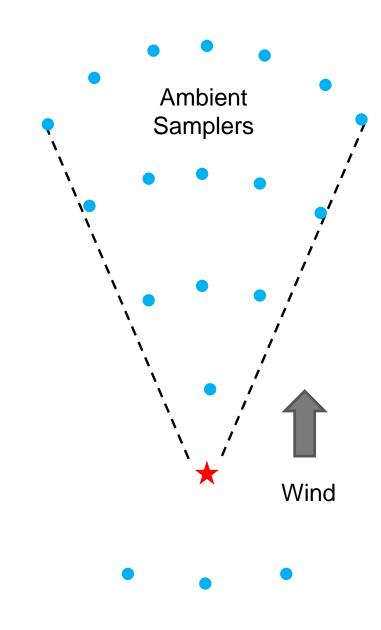
Future Work

- Field Evaluation of EPA Samplers
- PM_{10} and $PM_{2.5}$
- Particle Size Distribution with TSP samples



Future Work

Ambient Data & Model Analyses


- Point-by-point comparison
 - Ambient Sampler Concentrations
 - Model Output using measured emissions

Future Work

- Modeling Dataset
- Controlled Release Study
- Location
 - Few outside influences
 - Consistent wind direction
- Particulate
 - Known Characteristics & Concentration
- Varied Release Heights

Thank you

- Texas A&M University
- Texas, California, Southern, Southeastern, and National Ginners Associations
- Cotton Incorporated
- Cotton Foundation
- Primary and alternate gins selected for the study
- California Air Resources Board
- San Joaquin Valley Air Pollution Control District
- Texas Commission on Environmental Quality
- Missouri Department of Environmental Quality
- North Carolina Department of Environmental Quality
- NRCS Air Quality and Climate Change Unit in Portland, OR
- USDA-ARS Aerial Application Unit in College Station, TX
- EPA (National, Region 9, and Region 4)

