

National Cotton Ginning Particulate Matter Emissions Study Update

Thomas W. Moore and Michael D. Buser

USDA Agricultural Air Quality Task Force April 23, 2015

Project Objectives

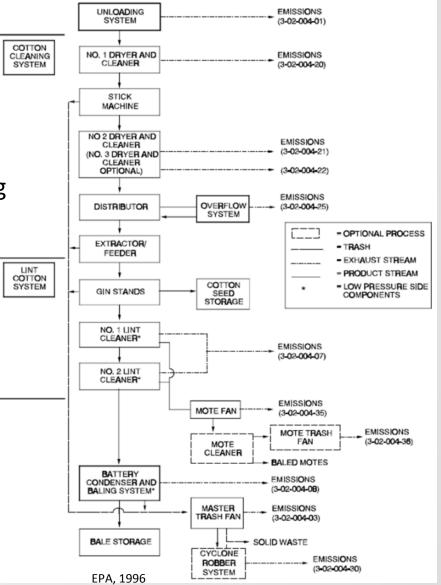
1. Cotton gin emission factors (AP-42 Section 9.7)

- Develop PM_{2.5} emission factors
- Update PM₁₀ & Total PM emission factors
- Characterize PM emitted from cotton gins (AP-42 Appendix B.1)
- Develop a robust PM dispersion modeling data set

AGRICULTURE

AP-42 Compilation of Air Pollutant Emission Factors

- Relates quantity of pollutant to activity releasing pollutant
- First published in 1972
 - Last complete update in 1995 (5th ed.)
 - Post- 1995 chapters supplemented and updated
- Emission factor quality ratings: A E
- States can use AP-42
 - Modeling for SIPs
 - Industry air quality permits
 - Operation permits
 - Construction permits
 - Not all states use AP-42


 $EF = \frac{Mass \ of \ Pollutant}{Unit \ of \ Production}$

 $Emissions = activity rate \times EF$

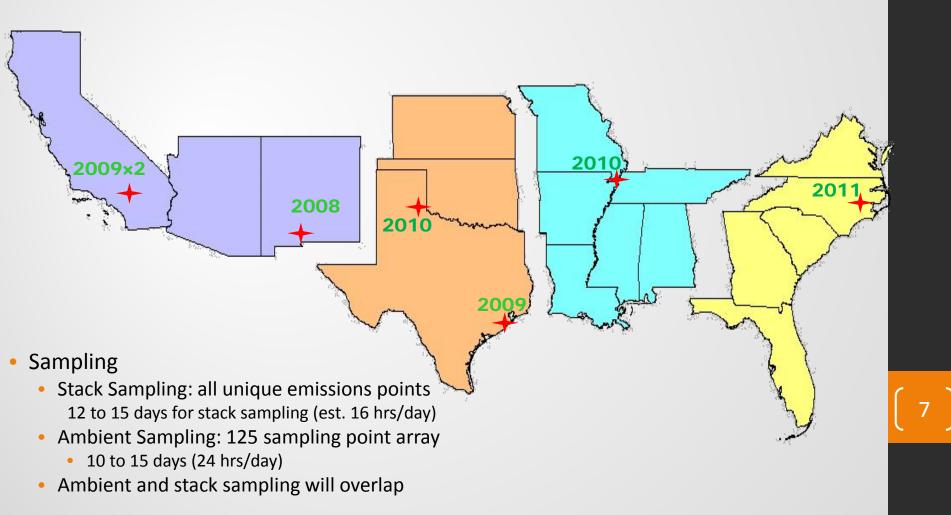
Typical Cotton Gin

- Typical emission points
 - Unloading
 - 1st stage seed-cotton cleaning
 - 2nd stage seed-cotton cleaning
 - Overflow
 - Combined lint cleaning
 - Combined mote
 - Battery condenser
 - Master trash

5

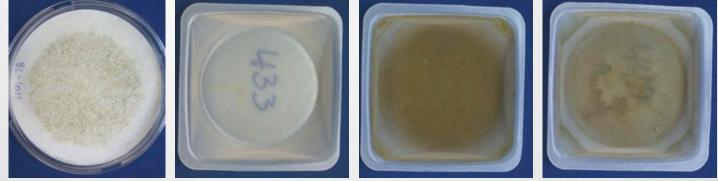
1996 AP-42 for Cotton Gins

System	PM _{2.5} (lb/bale)	Factor Rating	PM ₁₀ (Ib/bale)	Factor Rating	Total PM (Ib/bale)	Factor Rating
Unloading	-	-	0.12	D	0.29	D
1 st Stage Seed-Cotton Cleaning	-	-	0.12	D	0.36	D
2 nd Stage Seed-Cotton Cleaning	-	-	0.093	D	0.24	D
3 rd Stage Seed-Cotton Cleaning	-	-	0.033	D	0.095	D
1 st Stage Lint Cleaning	-	-	-	-	-	-
2 nd Stage Lint Cleaning	-	-	-	-	-	-
Combined Lint Cleaning	-	-	0.24	D	0.071	D
Battery Condenser	-	-	0.014	D	0.58	D
Cyclone Robber	-	-	0.052	D	0.18	D
1 st Stage Mote	-	-	-	-	-	-
2 nd Stage Mote	-	-	-	-	-	-
Combined Mote	-	-	0.13	D	0.28	D
Mote Cyclone Robber	-	-	-	-	-	-
Mote Cleaner	-	-	-	-	-	-
Mote Trash	-	-	0.021	D	0.077	D
Master Trash	-	-	0.074	D	0.039	D
Overflow	-	-	0.026	D	0.54	D
Typical Gin			0.82	D	2.4	D


System Abatement Device Requirements

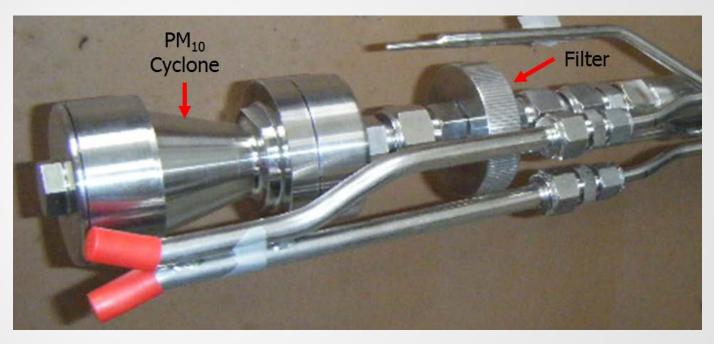
Sampling Timelines

8


Stack Sampling

PM_{2.5} Stack Sampling

PM_{2.5} Stack Sampling

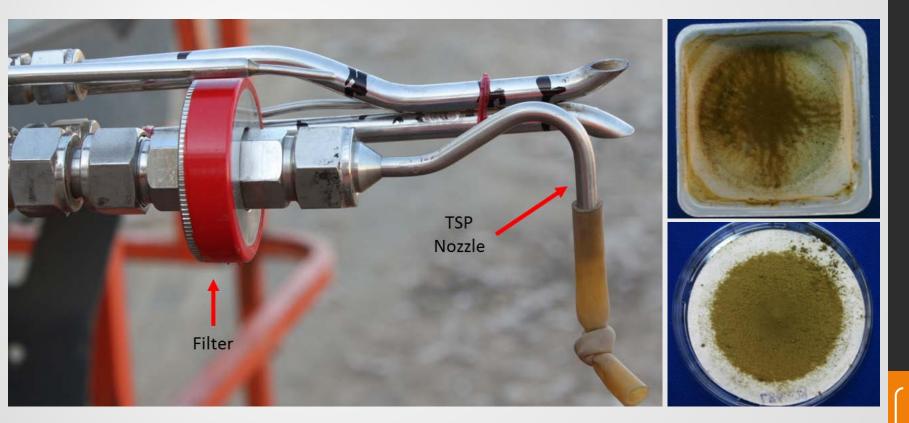

<u>Total Particulate</u> – sum the mass of all 4 samples

 $\underline{PM}_{\underline{10}}$ – sum of the mass from the filter, back half of the $PM_{\underline{2.5}}$ cyclone, and the back half of the $PM_{\underline{10}}$ cyclone

 $\underline{PM}_{2.5}$ – sum the mass from the filter and back half of the $PM_{2.5}$ cyclone

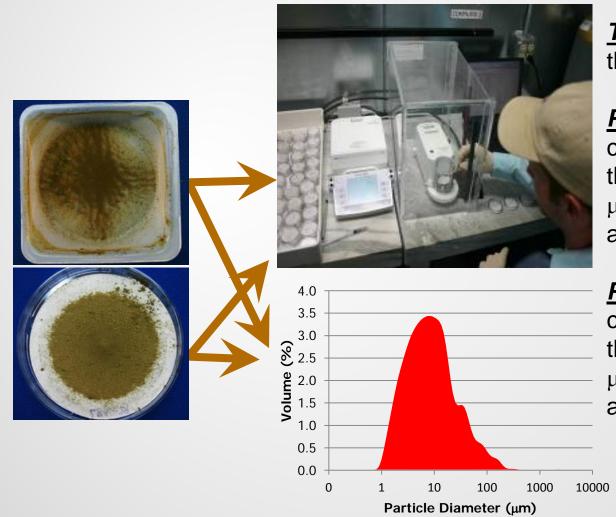
PM₁₀ Stack Sampling

PM₁₀ Stack Sampling



<u>**Total Particulate**</u> – sum the mass of all 3 samples

 $\underline{PM}_{\underline{10}}$ – sum of the mass from the filter and back half of the PM₁₀ cyclone


Total Particulate Stack Sampling

<u>Isokinetic sampling</u> $100 \pm 10\%$ for valid total particulate test runs

Total Particulate Stack Sampling

<u>**Total Particulate**</u> – sum the mass of both samples

 $\underline{PM}_{2.5}$ – total particulate concentration times % of the particles less than 2.5 µm from the particle size analysis

 \underline{PM}_{10} – total particulate concentration times % of the particles less than 10 µm from the particle size analysis

Stack Sampling Data Collected

• There were a total of 594 test runs

	Test Run Emission Factor				
Test Method	PM _{2.5}	PM ₁₀	Total PM		
OTM 27 w/PM ₁₀ and PM _{2.5} Sizing Cyclones	198	198	198		
Method 201a (pre-12/2010) w/PM ₁₀ Sizing Cyclone		198	198		
Method 17			198		
Particle Size Analysis	198	198			
Total	396	594	594		

68 Technical Reports Completed

Particle Size Distribution Characteristics of Cotton Gin 1st Stage Seed-Cotton Cleaning System Total Particulate Emissions

Part of the National Characterization of Cotton Gin Particulate Matter Emissions Project

Final Report: OSU13-02 Ver. 2.0 December 2013 (Revised June 2014)

Submitted to:

San Joaquin Valley Air Pollution Study Agency Cotton Incorporated Cotton Foundation National Cotton Ginners Association Southern Cotton Ginners Association Southeastern Cotton Ginners Association California Cotton Growers and Ginners Association Texas Cotton Ginners Association

Submitted by:

Dr. Michael Buser Department of Biosystems and Agricultural Engineering 214 Agricultural Hall Stillwater, OK 74078

Dr. Derek Whitelock Southwestern Cotton Ginning Research Laboratory USDA Agricultural Research Service 300 E College Dr. Mesilla Park, NM 88047

Mr. J. Clif Boykin Cotton Ginning Research Unit USDA Agricultural Research Service 111 Experiment Station Road Stoneville, MS 38776

Dr. Greg Holt Cotton Production and Processing Research Unit USDA Agricultural Research Service 1604 East FM 1294 Lubbock, TX 79403

(confirmation)	hael Buser pricultural Engineering				
	Air Quality Bioenergy Harvesting Processing Traceability				
Technical Reports					
Home	PM2.5 Technical Reports				
About Dr. Buser	1. 1st Stage Lint Cleaning System				
Projects	2. 1st Stage Mote System				
Extension Documents	3. 1st Stage Seed-Cotton Cleaning System				
Brochures & Presentations	4. 2nd Stage Lint Cleaning System				
Logistics Videos	5. 2nd Stage Mote System				
Links & Resources	6. 2nd Stage Seed-Cotton Cleaning System				
Search	7. 3rd Stage Seed-Cotton Cleaning System				
APPENDED.	8. Battery Condenser System				
Contact	9. Combined Lint Cleaning System				
Dr. Michael Buser	10. Combined Mote System				
Associate Professor:	11. Cyclone Robber System				

http://buser.okstate.edu/air-quality/cotton-gin/technical-reports/

EPA's 2013 Emission Factor Development Procedures

- Data screening
 - Inconsistent gin operation
 - Lab errors
 - Statistical outliers residual analysis
- Data Quality- Individual Test Rating (ITR)
 - Submitter review- document inclusion
 - Regulatory review- quality of documentation
- Factors rated by "representativeness" of industry
 - Poorly
 - Moderately
 - Highly
- Non EPA-approved methods allowed
- No geographic considerations

ITR Development

Supporting documentation and regulatory agency review questions

	Agency Data Quality Rating	Score	
	Supporting Documentation Provided	Response	
1	As described in ASTM D7036-12 Standard Practice for Competence of Air Emission Testing Bodies, does the testing firm meet the criteria as an AETB or is the person in charge of the field team a QI for the type of testing conducted? A certificate from an independent organization (e.g., STAC, CARB, NELAP) or self declaration provides documentation of competence as an AETB.	Yes	
2	Was a representative of the regulatory agency on site during the test?	No	
3	Is a description and drawing of test location provided?	N/A	
4	Is there documentation that the source or the test company sought and obtained approval for deviations from the published test method prior to conducting the test or that the tester's assertion that deviations were not required to obtain data representative of operations that are typical for the facility?		
5	Were all test method deviations acceptable?		
6	Is a full description of the process and the unit being tested (including installed controls) provided?		
7	Has a detailed discussion of source operating conditions, air pollution control device operations and the representativeness of measurements made during the test been provided?		

Individual Test Rating

Gin N Test

.8

Submitter questions- 16

Regulatory review questions- 47

Emission Factor and Quality Calculation

- Sort ITR in descending order
- Use ITRs to calculate Composite Test Rating (CTR)

$$CTR = \left[\frac{\sum_{i=1}^{n} \left(\frac{1}{ITR}\right)^{2}}{N}\right]^{-0.5}$$

Use CTR to calculate Factor Quality Index (FQI)

$$FQI = \frac{100}{CTR * N^{0.5}}$$

- Use FQI to determine factor representativeness
 - Poorly representative: FQI > 0.5774
 - Moderately representative: 0.3015 < FQI < 0.5774
 - Highly representative: FQI < 0.3015

Emission Factors Based on EPA's 2013 Development Procedures (National Study Data Only)

	PM _{2.5}		PN	I ₁₀	Total PM	
System	Emission Factor [†]	Rating*	Emission Factor [†]	Rating*	Emission Factor [†]	Rating*
Unloading	0.0221	Р	0.1034	М	0.1284	М
1 st Stage Seed Cotton Cleaning	0.0081	М	0.0847	Н	0.1360	Н
2 nd Stage Seed Cotton Cleaning	0.0036	М	0.0376	М	0.0559	Н
3 rd Stage Seed Cotton Cleaning	0.0040	Р	0.0209	М	0.0257	М
1 st Stage Lint Cleaning	0.0085	М	0.0599	М	0.0813	Н
2 nd Stage Lint Cleaning	0.0048	М	0.0197	М	0.0334	Н
Combined Lint Cleaning	0.0138	М	0.1369	М	0.2459	М
1 st Stage Mote	0.0039	М	0.0203	М	0.0286	Н
2 nd Stage Mote	0.0022	М	0.0097	М	0.0121	Н
Combined Mote	0.0095	Р	0.1012	М	0.1403	М
Battery Condenser	0.0035	М	0.0181	Н	0.0352	Н
Cyclone Robber	0.0016	Р	0.0078	М	0.0171	М
Mote Cyclone Robber	0.0043	Р	0.0264	М	0.0452	М
Master Trash	0.0044	М	0.0559	М	0.1611	Н
Overflow (Distributer)	0.0041	М	0.0218	М	0.0385	Н
Mote Cleaner	0.0130	Р	0.0598	М	0.1003	М
Mote Trash	0.0011	Р	0.0107	М	0.0190	М
Typical Gin	0.0692		0.5596		0.9413	
Typical Gin (split lint cleaning and mote systems)	0.0653		0.4310		0.7105	
* P – Poorly, M – Moderately, H – Hig	ghly	† kg/bale				

Comparison to 2013 National Study Technical Reports and 1996 AP-42

	Percent difference from					
	PM _{2.5}	F	PM ₁₀	Tota	al PM	
Sustam	National	1996	National	1996	National	
System	<u>Study</u>	AP-42	Study	AP-42	Study	
Unloading	-0.4	90	-3.8	-2.4	-4.4	
1 st Stage Seed Cotton Cleaning	-1.0	56	-13	-17	-10	
2 nd Stage Seed Cotton Cleaning	0.2	-11	-4.7	-49	-4.5	
3 rd Stage Seed Cotton Cleaning	-0.4	40	9.7	-40	9.0	
1 st Stage Lint Cleaning	-1.2	-	45	-	16	
2 nd Stage Lint Cleaning	-3.7	-	11	-	47	
Combined Lint Cleaning	1.2	26	-9.1	-6.5	16	
1 st Stage Mote	-5.4	-	1.6	-	12.8	
2 nd Stage Mote	-13	-	19	-	16	
Combined Mote	-0.3	72	3.8	10	-3.6	
Battery Condenser	-5.1	185	11	99	10.9	
Cyclone Robber	-13	-67	-22	-79	-16.3	
Mote Cyclone Robber	-6.3	-	-4.6	-	-10.3	
Master Trash	5.4	66	0.1	-34	-13	
Overflow (Distributer)	2.9	85	66	19	35	
Mote Cleaner	264	-	21	-	-4.7	
Mote Trash	0.5	12	-5.7	-46	7.4	
Typical Gin	0.2	50	-3.2	-14	-0.7	
Typical Gin (Split lint cleaning and mote systems)	-5.5	16	-25	-35	-25	

EPA's Current Method for Incorporating 1996 AP-42 Data

Current AP-42 source test ratings converted to ITR

	А	В	С	Е	F	G	Н
1							
2					Emission	ns Factor	0.3017191
	Individual					Use for	EF
	Test	ITR	Ν	CTR	FQI	EF	Represent
3	Value					Average?	ativeness
4	0.22367	100	1	100.00	1.0000	Yes	Poorly
5	0.260414	100	2	100.00	0.7071	Yes	Poorly
6	0.663662	100	3	100.00	0.5774	Yes	Moderately
7	0.107266	100	4	100.00	0.5000	Yes	Moderately
8	0.483476	100	5	100.00	0.4472	Yes	Moderately
9	0.071825	100	6	100.00	0.4082	Yes	Moderately
10	0.043	60	7	89.30	0.4232	No	
11	0.062	60	8	83.21	0.4249	No	
12	0.011	60	9	79.24	0.4207	No	
13	0.16	60	10	76.45	0.4137	No	
14	0.22	60	11	74.37	0.4054	No	
15	0.93	60	12	72.76	0.3967	No	
	1 2 3 4 5 6 7 7 8 9 9 10 11 11 12 13 14	1 1 2 Individual Test 3 Value 4 0.22367 5 0.260414 6 0.663662 7 0.107266 8 0.483476 9 0.071825 10 0.043 11 0.062 12 0.011 13 0.16 14 0.22	1	1	1	1	1

- Excluded from emission factor calculation:
 - PM₁₀ 100%
 - Total PM 33%

Incorporation of 1996 AP-42 Data

- Rating current AP-42 data with ITR methodology
- PM₁₀:
 - 80 100: 78%
 - 60 80: 15%
 - < 60: 7% (excluded)
- Total PM:
 - 80 100: 80%
 - 60 80: 11%
 - < 60: 9% (excluded)

	А	В	С	Е	F	G	Н
1							
2					Emission	is Factor	0.2696929
	Individual					Use for	EF
	Test	ITR	Ν	CTR	FQI	EF	Represent
3	Value					Average?	ativeness
4	0.22367	100	1	100.00	1.0000	Yes	Poorly
5	0.260414	100	2	100.00	0.7071	Yes	Poorly
6	0.663662	100	3	100.00	0.5774	Yes	Moderately
7	0.107266	100	4	100.00	0.5000	Yes	Moderately
8	0.483476	100	5	100.00	0.4472	Yes	Moderately
9	0.071825	100	6	100.00	0.4082	Yes	Moderately
10	0.043	89	7	98.18	0.3850	Yes	Moderately
11	0.93	87	8	96.54	0.3662	Yes	Moderately
12	0.16	85	9	95.02	0.3508	Yes	Moderately
13	0.011	85	10	93.86	0.3369	Yes	Moderately
14	0.22	73	11	91.19	0.3306	Yes	Moderately
15	0.062	72	12	88.98	0.3244	Yes	Moderately

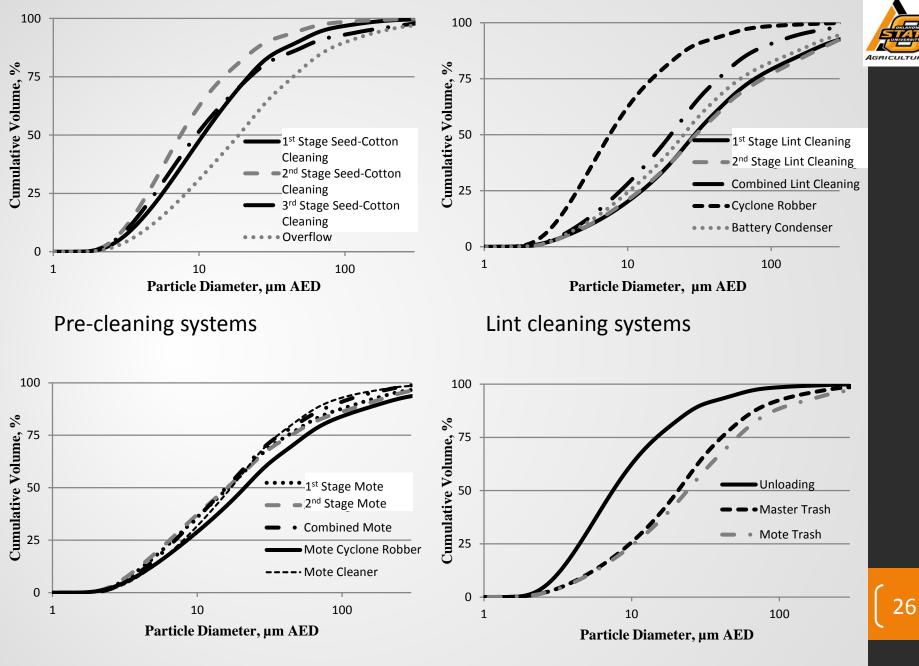
Determine Additional Data Needs

- Tests needed using final CTR (combined with 1996 AP-42)
 - Moderately representative:

 $N = 30,000 * CTR^{-2}$

NOTE: Only 7 systems were poorly representative (PM_{2.5})

• Highly representative:


 $N = 110,000 * CTR^{-2}$

System	Additional <i>N</i> Needed for "Highly Representative"				
-	PM _{2.5}	PM ₁₀	Total PM		
Unloading	9	2	-		
1 st Stage Seed Cotton Cleaning	5	-	-		
2 nd Stage Seed Cotton Cleaning	7	-	-		
3 rd Stage Seed Cotton Cleaning	10	7	5		
1 st Stage Lint Cleaning	8	4	-		
2 nd Stage Lint Cleaning	8	4	-		
Combined Lint Cleaning	8	2	-		
1 st Stage Mote	7	1	-		
2 nd Stage Mote	7	1	-		
Combined Mote	9	-	-		
Battery Condenser	6	-	-		
Cyclone Robber	9	6	2		
Mote Cyclone Robber	9	6	5		
Master Trash	6	1	-		
Overflow (Distributer)	8	2	-		
Mote Cleaner	9	7	8		
Mote Trash	9	6	4		
Total	134	49	24		

Particle Size Distribution

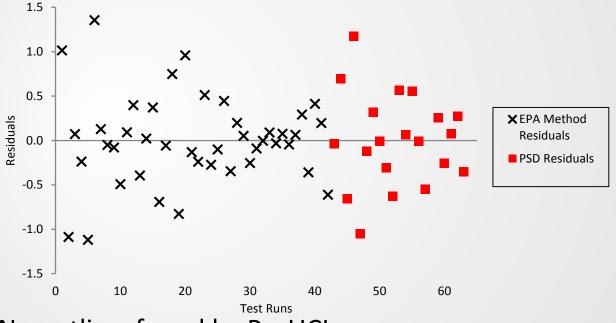
System	Test Runs	MMD	% < 2.5 µm	% < 6 μm	% < 10 μm
Unloading	9	8.0	3.24	36.1	59.6
1 st Stage Seed Cotton Cleaning	21	10.7	2.99	27.5	47.5
2 nd Stage Seed Cotton Cleaning	15	12.2	2.42	25.1	43.2
3 rd Stage Seed Cotton Cleaning	6	9.6	3.84	32.2	51.5
1 st Stage Lint Cleaning	10	29.2	1.39	11.1	20.2
2 nd Stage Lint Cleaning	5	29.8	1.04	11.4	20.9
Combined Lint Cleaning	9	19.9	1.50	15.3	28.2
1 st Stage Mote	14	16.4	2.49	21.6	36.0
2 nd Stage Mote	15	16.1	2.87	23.0	37.3
Combined Mote	6	15.8	1.75	20.4	35.7
Battery Condenser	18	24.5	1.11	13.2	24.3
Cyclone Robber	9	20.3	2.10	17.5	30.3
Mote Cyclone Robber	9	21.2	2.20	16.9	29.0
Master Trash	15	20.6	1.86	14.0	25.7
Overflow (Distributer)	12	18.7	1.67	17.0	31.0
Mote Cleaner	6	17.1	1.53	17.1	31.8
Mote Trash	6	23.9	1.75	13.3	24.2

Mote systems

Unloading and trash systems

PSD Based Emission Factors

System	PM _{2.5} Emission Factor [†]	PM ₆ Emission Factor [†]	PM ₁₀ Emission Factor [†]	Rating*
Unloading	0.0027	0.047	0.0536	Р
1 st Stage Seed Cotton Cleaning	0.0050	0.040	0.0643	М
2 nd Stage Seed Cotton Cleaning	0.0013	0.015	0.0258	М
3 rd Stage Seed Cotton Cleaning	0.0012	0.010	0.0135	Р
1 st Stage Lint Cleaning	0.0010	0.011	0.0148	М
2 nd Stage Lint Cleaning	0.00031	0.0049	0.0050	Р
Combined Lint Cleaning	0.0035	0.038	0.0552	М
1 st Stage Mote	0.00064	0.0065	0.0091	М
2 nd Stage Mote	0.00032	0.0030	0.0043	М
Combined Mote	0.0024	0.027	0.0517	Р
Battery Condenser	0.00041	0.0049	0.0075	М
Cyclone Robber	0.00033	0.0045	0.0047	М
Mote Cyclone Robber	0.0013	0.0085	0.0167	Р
Master Trash	0.0027	0.022	0.0395	М
Overflow (Distributer)	0.00075	0.0061	0.0105	М
Mote Cleaner	0.0013	0.018	0.0275	Р
Mote Trash	0.00031	0.0029	0.0038	Р
Typical Gin	0.0187	0.1998	0.3081	
Typical Gin (Split lint cleaning and mote systems)	0.0150	0.1605	0.2343	


* P – Poorly, M – Moderately, H – Highly [†]kg/bale

28

Combine EPA-Approved Method and PSD Data?

No outliers based on residuals

- No outliers found by ProUCL
- PSD could be combined with EPA-approved methods

Emission Factor Conclusions

- AP-42 Section 9.7 cotton gin datasets could be expanded (pending EPA approval)
 - $PM_{2.5}$ 0 \rightarrow 65
 - PM_{10} 38 \rightarrow 171
 - Total PM- 50 \rightarrow 253
- Six additional systems could be added to the AP-42
 - Splitting combined lint cleaning and mote systems for typical gin reduced emission factors-
 - PM_{2.5}: 6.5%
 - PM₁₀: 16%
 - Total PM: 22%
- PM_{2.5} emission factors
 - 59% moderately representative
 - 41% poorly representative

Emission Factor Conclusions

- If the 1996 AP-42 datasets have value, they must be rerated using ITR methodology
- Improved quality rating of PM₁₀ and total PM emission factors
 - PM₁₀- 24% highly representative
 - Total PM- 71% highly representative
 - No poorly representative factors
- AP-42 Appendix B.1 cotton gin datasets could be expanded (pending EPA approval)
 - 2 systems \rightarrow 17 systems
 - Particle size distribution characteristics
- Emission factors from Method 17 coupled with particle size analyses could be merged with AP-42 Section 9.7 emission factors based on statistical outlier analyses

Finalized Cotton Gin Study Recommended Emission Factors and Data Quality Rating Reports Submitted to EPA

1st Stage Seed-Cotton Cleaning System PM₁₀ and Total PM Emission Factors for Cotton Gin C

Part of the National Characterization of Cotton Gin Particulate Matter Emissions Project

Report ID: 02-PM10-GC-201a September 2014

Submitted to: U.S. Environmental Protection Agency

Submitted by: Dr. Michael Buser (contact) Dept. of Biosystems and Agricultural Engineering Oklahoma State University 113 Agricultural Hall Stillwater, OK 74078 (405) 744-5288 buser@okstate.edu

Mr. Thomas Moore Dept. of Biosystems and Agricultural Engineering Oklahoma State University 117 Agricultural Hall Stillwater, OK 74078 (903) 477-2458 thomas.moorel1@okstate.edu Dr. Derek Whitelock Southwestern Cotton Ginning Research Laboratory USDA Agricultural Research Service 300 E College Dr. Mesilla Park, NM 88047

Table of Contents

Introduction	02
Report List	03
Answered Regulatory Agency Review	04
Outlier Tests	05
Report	06
Field and Laboratory Data	27
Chain of Custody	
Process Calibration Documents	50
Dry Gas Meter Calibration	
Acknowledgements	

280 technical reports

Submitted:
 February 2015

http://buser.okstate.edu/air-quality/cotton-gin/technical-reports-sent-to-epa/

Journal of Cotton Science Manuscripts (Referred Journal Articles)

- 17-PM_{2.5} manuscripts published Jan 2014
- 17-PM₁₀ manuscripts published Sept 2014
- 17 total PM manuscripts published April 2015
- 17 PSD manuscripts published September 2015?

JOURNAL OF COTTON SCIENCE				Desich Southat -
Home Current Issue All Issues Disciplines			Site Map New Issue Notification 1	Contacts About Author Inst
Home > Volume 17 / 2013 = Lasue 4 =				
Issue 4 Table of Contents				
	Michael D. Buser, Derek P. Whitelock, J. Clif Bor Pages: 309-319 Abstract E Full Text PDF (1287K)	d Rates for Cotton Gins: Method 201A Combination PM ₁₀ and PM _{2.5} Sizing Cyclones _{(kin, and Gregory A. Holt culate matter stack sampling at a cotton gin in West Texas}		
Issue Editora				
Agronomy and Soils 6-Benzyladenine Enhancements of Cotton Yields John J. Burke Pages: 245-252		Engineering and Gamaing First Stage Lint Cleaning System PM _{2.5} Emission Factors and Rates for O PM _{2.5} Sizing Cyclones Derek P. Whitelock, Michael D. Buser, J. Clif Boykin, and Gregory A. Holt	Cotton Gins: Method 201A Co	mbination PM ₁₀ and
Abstract The Full Text PDF (1923K)		Pages: 568-379 Abstract Page: 101-101 Abstract Page: 101 Abstract Page: 101 Abstract Page: 101 Abstract Abstract		
Agronomy and Solls Response of Obsolete and Modern Cotton Genotypes to Varyir William T. Pettigrew, William R. Meredith Jr., and Linghe Zeng Pages: 233-262	g Plant Densities	Engineering and Ginning Second Stage Lint Cleaning System PM _{2.5} Emission Factors and Rates fo PM _{2.5} Sizing Cyclones	r Cotton Gins: Method 201A	Combination PM _{to} and
Abstract The Full Text PDF (282K)		J. Clif Boykin, Michael D. Buser, Derek P. Whitelock, and Gregory A. Holt Bases: 380-390		

Abstract T Full Text PDF (1188K)

Project Objectives

1. Cotton gin emission factors (AP-42 Section 9.7)

- Develop PM_{2.5} emission factors
- Update PM₁₀ & Total PM emission factors
- 2. Characterize PM emitted from cotton gins (AP-42 Appendix B.1)

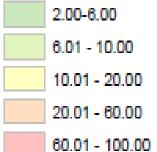
Develop a robust PM dispersion modeling data set

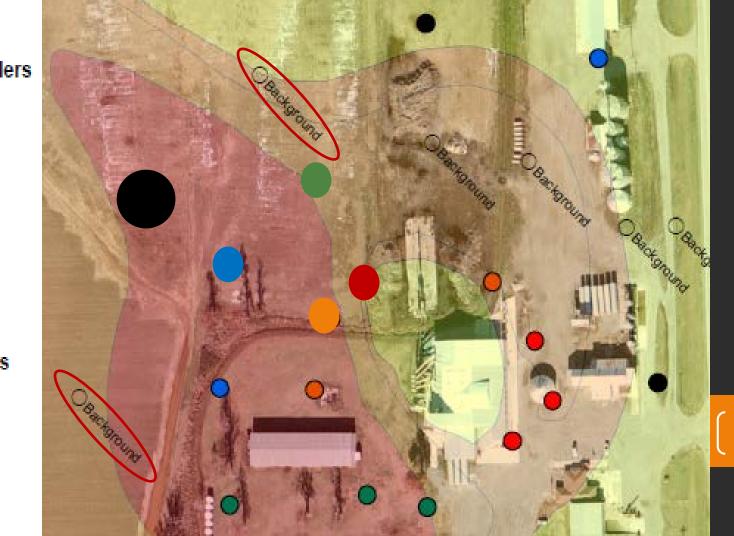
Status/Timeline

- Stack sampling data ready
- Ambient sampling data compiled
 - Error checking 93% complete
- Meteorology data 86% complete
- Structures data 72% complete
- Modeling evaluation
 - Jason Throckmorton M.S. student started Jan. 2015
 - Hope to have initial results to present at the 2016 Beltwide Cotton Conferences
 - Develop a modeling advisory group (August 2015 is the target deadline for forming this group):
 - EPA Joel Huey?
 - Missouri DNR Dawn Froning
 - TCEQ ?
 - USDA NRCS Greg Zwicke
 - Lakes Environmental Dr. The'
 - Others

Dispersion Modeling Evaluations

- Models that will be evaluated:
 - AERMOD, AERSCREEN, ISC3, ...
- Develop model specific concentration databases
 - Geospatial and temporal values will directly correspond to the measured ambient data
- Statistically compare the actual measured TSP concentrations and modeled TSP concentrations.
 - Effects of using on-site meteorology data versus local or region data
 - Can on-site wind field data set be used in explaining some of the differences between the modeled and measured concentrations?
 - Will using particle size data help?




36

Dispersion Modeling

Legend Ambient Air Samplers Model/Sampled

0.0 - 0.5
 0.5 - 1.0
 1.0 - 1.5
 1.5 - 2.1
 5.0 - 7.0
 Background
 Outlier

National Cotton Ginning Particulate Matter Emissions Study Update

Thomas W. Moore and Michael D. Buser

USDA Agricultural Air Quality Task Force April 23, 2015

