

Causes and Implications of Large Particle Penetration during PM_{10} Sampling

Brock Faulkner, Ph.D., P.E. Dept. Biological and Agricultural Engineering Texas A&M University

December 2013

Improving Life through Science and Technology.

- Performance metrics specified in 40 CFR 53 Subpart D
 - Wind Tunnel Testing

- Performance metrics specified in 40 CFR 53 Subpart D
 - Wind Tunnel Testing
 - Sampler Cutpoint
 - Estimation of Mass Collected from a standard aerosol relative to an "ideal" sampler

 Performance metrics specified in 40 CFR 53 Subpart D

• Speculations of "oversampling"

Characterize the performance of a FRM PM10 size-selective inlet using analysis methods designed to minimize the uncertainty in measured sampling effectiveness values for large particles.

Texas A&M System

Methods

QAQC for low signal differed from previous studies

Fluorometric Error Quantech Fluorometer: Gain = 10X, PMT = Medium Low

Multiplet/Satellite Correction

- Subpart D
 - Microscopically count doublets and triplets
 - Ignores satellites
 - Limited sample size

- TAMU Method
 - Use APS to quantify distribution
 - Correct for particle stretching

Multiplet/Satellite Correction

Texas A&M System

Results

Results

Large Particle Penetration

Wind Speed	20µm Particle	25µm Particle
FRM "Ideal" Sampler	0%	0%
2 kph	0.5±0.3%	$0.01 \pm 0.01\%^*$
8 kph	$3.4{\pm}2.8\%$	3.5±0.8%
24 kph	5.4±3.3%	4.0±1.2% [§]

*Not statistically different than "zero" § Preliminary data

Implications

Implications

Measured Performance / "Ideal"

Implications/Questions

Implications/Questions

Respiratory Modeling

Large Particle Penetration (Sampler)

Wind Speed	20µm Particle	25µm Particle
FRM "Ideal" Sampler	0%	0%
2 kph	0.5±0.3%	$0.01 \pm 0.01\%$ *
8 kph	$3.4{\pm}2.8\%$	$3.5 \pm 0.8\%$
24 kph	5.4±3.3%	4.0±1.2% [§]

*Not statistically different than "zero" § Preliminary data

Respiratory Deposition Model[#] Simulation

Fraction	16µm	20µm	25µm
Extra thoracic	99%	99.6%	99.9%
Tracheobronchial	0.962%	0.367%	0.132%
Pulmonary	0.0057%	0.0002%	0.000003%

Multiple-Path Particle Dosimetry Model; Applied Research Associates, Inc.

Implications

Possible Path Forward

• Review new data with Dr. Vanderpool

• Is a Subpart D test similar to Subpart F testing more appropriate?

• What is leading to the penetration of large particles? What can be done about it?

Thanks...

- Cotton Foundation
- Texas AgriLife Air Quality Initiative
- Bob Vanderpool/EPA
- RTI for technical discussions
 - Seung-Hyun Cho
 - Christie Sayes
 - Quentin Malloy

