

Improving Life through Science and Technology

Planned Grazing to Improve Ecosystem Function and Ranch Livelihoods

Air Quality Meeting College Station 20th August 2014

Richard Teague, Texas A&M AgriLife Research, Vernon

Overview

- Need to improve ecosystem function
- Need for more applicable research
- Managing adaptively for desirable results
- Testing a ranch scale hypothesis
- Published research results
- Conclusions
- Importance for climate change mitigation

Improving Rangeland Ecosystem Function

- Healthy agro-ecosystems are considerably more productive, stable and resilient than those in poor condition.
- Ranch livelihoods depend on healthy ecosystems
- The value of ecosystem services to society is worth more to society than agricultural earnings.

Find out :

- Why there is a discrepancy between some research and rancher achievements
- What is the best that management can achieve to sustain:
 - livelihoods
 - delivery of ecosystem goods and services

Edwards Plateau Ranch 3-D View w/ GPS Locations

- 1. 39% area used
- 2. 41% GPS points on 9% area
- 3. SR: 21 ac/cow
- 4. Effective SR: 9 ac/cow

Previous research on multi-paddock grazing

Landscape impact of continuous grazing Planned multi-paddock grazing

Water point

Planned multi-paddock grazing

<u>Animals</u>:

- Graze more of the whole landscape
- Select a wider variety of plant species

<u>Manager can control</u>:

- How much is grazed
- The period of grazing, and
- The length and time of recovery

Restoration using multi-paddock grazing

Noble Foundation, Coffey Ranch

Degraded tallgrass prairie 18 paddocks + water point Managed to <u>improve</u> plant species

and the state of the state of the

Restoration using multi-paddock grazing Noble Foundation, Coffey Ranch

Charles Griffith, Hugh Aljoe, Russell Stevens

Summary of Managing for Desired Outcomes

- Match animal numbers to available forage
- Spread grazing over whole ranch
- Defoliate moderately in growing season
- Short grazing periods
- Adequate recovery before regrazing
- Graze again before forage too mature
- Adaptively change these elements according to changing conditions

Mean annual precipitation

90% of Soil function is mediated by microbes

Microbes depend on plants

So how we manage plants is critical

Infiltration with Vegetation Composition Thurow 1991

Indicator: Soil Temperature

- 1. At 70 °F, 100% of Soil moisture is used for growth.
- 2. At 100 °F, 85% of Soil moisture is lost and 15% is used for growth.
- 3. At 115 °F, microbes begin to breakdown, and
- 4. At 140 °F they die.

Decrease drought impacts

% Leaf Volume Removed	% Root Growt Stoppage	
10%	0%	
20%	0%	
30%	0%	
40%	0%	
50%	2-4%	
60%	50%	
70%	78%	
80%	100%	
90%	100%	

Continuous grazing at Light stocking Over- and under-grazing side-by-side

Continuous grazing at Light stocking Patch selection and overgrazing

Planned multi-paddock grazing Richard's Ranch Jacksboro, TX

48 Paddocks grazed according to grass growth

When the grasses have been grazed once,

Light continuous grazing

High-density grazing

Based on some published science and experience Teague et al., 2013

What we need to know:

Understanding causal mechanisms is critical to knowing how to manage to regenerate from a degraded situation.

- What are the mechanisms causing degradation?
- What management reverses degradation?
- How good is Planned Multi-Paddock management as a restoration and management tool?
- Where does it work and not work?
- How does it need to be managed to make it work as well as it can?

Semi-arid Karroo region in South Africa Average rainfall = 14"

 H_2O, CO_2

No stock for decades

H_2O, CO_2

Managed with Holistic Planned Grazing

An Alternate Ranch Scale Hypothesis

We propose and test the hypothesis that at the *commercial ranch scale*:

Planned multi-paddock grazing, when adaptively managed to give best vegetation and animal performance, has the potential to produce superior long-term:

- 1. Conservation and restoration of resources;
- 2. Ecosystem goods and services; and
- 3. Ranch profitability

Influence of multi-paddock grazing on soil and vegetation

Influence of multi-paddock grazing on soil and vegetation

In each county on 3 neighbouring ranches :

Continuous graze
Continuous graze
Planned multi-paddock

 $@ \pm 20 \text{ ac/AU}$ (Best in class continuous) $@ \pm 10 \text{ ac/AU}$ (Most common management) $@ \pm 10 \text{ ac/AU}$ (Best in class)

Grazing treatment at least 10 years

Continuous grazing at high SR

Stock according to previous practice

Remove stock if grazing runs out

Multi-paddock grazing at high SR

- Match animal numbers to available forage
- Spread grazing over whole ranch
- Defoliate moderately in growing season
- Short grazing periods
- Adequate recovery before regrazing
- Graze again before forage too mature
- Adapt to prevailing conditions

Light Continuous

Heavy Multi-paddock

- Stock according to NRCS advice
- Reduce stock to maintain plant cover

Bare Ground

Tall Grasses

Mid Grasses

Cool Grasses

Texas A&M System

Perennial Forbs

Annual Forbs

Penetration Resistance

Soil Organic Carbon

<u>NB</u> The *difference* between HR and HC is 30 tons/ha

Soil Carbon and Water

Relationship between soil organic carbon and soil water holding capacity (0-30 cm) From Jones 2006

Change in SOC concentration	Change in OC stock (kg/m²)	Extra water holding (litres/ha)	CO ₂ sequestered (t/ha)
1%	4.2	168,000	154
2%	8.4	336,000	308
3%	12.6	504,000	462
4%	16.8	672,000	616

Soil Carbon, Nutrients and Water

Relationship between soil organic carbon and soil water holding capacity (0-30 cm)

Parameter	Heavy Continuous	Light Continuous	Multi- paddock
Soil Organic Carbon	3.1b	4.4b	4.86a
Cation Exchange Capacity	24.6b	23.7b	27.4 <mark>a</mark>
Water holding (Gal/acre)	55,700	79,059	87,324

Total Carbon Stock in Top 90 cm (t/ha)

Russ Conser SHELL pers comm

Summary

Successful multi-paddocks managers use:

- Flexible stocking to match forage availability and animal numbers
- Spread grazing over whole ranch
- Moderate grazing during growing season
- Short graze periods
- Allow recovery before regrazing
- Graze again before forage too mature
- Adaptively adjust to prevailing conditions

Conclusions

Appropriate regenerative grazing management:

- Sequesters more soil carbon
- Improves watershed function
- Improves species composition
- Stabilizes soil and soil fertility
- Enhances wildlife and biodiversity
- Improves economic returns while improving the resource base

Importance for Climate Change Mitigation?

Importance for Climate Change Mitigation?

Data from the Northern Great Plains shows carbon sinks of:

- Light continuous grazing -0.783 tons CO_{2eq} /ha/yr
- With enteric methane of 0.176 tons CO_{2eq} /ha/yr
- Heavy continuous grazing -0.618 tons CO_{2eq} /ha/yr
- With enteric methane of 0.484 tons CO_{2eg} /ha/yr

Our data from Southern tallgrass prairie

 Optimally managed multi-paddock grazing sequestered 11 tons CO_{2eq} /ha/yr more than heavy continuous grazing

Importance for Climate Change Mitigation?

Using regenerative grazing management to:

- Build SOC levels and soil microbial functions
- Control erosion more effectively

Will result in soils being a net sink for agricultural GHGs rather than a major source of GHGs as at present.

