
Field Book for Describing and Sampling Soils

Version 3.0

National Soil Survey Center Natural Resources Conservation Service U.S. Department of Agriculture

September 2012; Reprint 2021

ACKNOWLEDGMENTS

The science and knowledge in this document are distilled from the collective experience of thousands of dedicated soil scientists during the more than 100 years of the National Cooperative Soil Survey (NCSS) program. A special thanks is due to these largely unknown stewards of the natural resources of this nation.

Special thanks and recognition are extended to those who contributed extensively to the preparation and production of this book: the soil scientists from the NRCS and NCSS cooperators who reviewed and improved it; Tammy Umholtz for document preparation and graphics; and the NRCS Soil Science Division for funding it.

Proper citation for this document is:

Schoeneberger, P.J., D.A. Wysocki, E.C. Benham, and Soil Survey Staff. 2012. Field book for describing and sampling soils, Version 3.0. Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE.

Cover Photo: A polygenetic Calcidic Argiustoll with an A, Bt, Bk, 2BC, 2C horizon sequence. This soil formed in Peoria Loess that blankets the fluvial Ash Hollow Formation of the Ogallala Group. It occurs in an undulating area of the Cheyenne Tablelands in northern Banner County, Nebraska. The scale is in meters. (Photo by Doug Wysocki, NRCS, Lincoln, NE, June 2011.)

Trade names are used solely to provide specific information. Mention of a trade name does not constitute a guarantee of the product by the U.S. Department of Agriculture nor does it imply endorsement by the Department or the Natural Resources Conservation Service over comparable products that are not named.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex (including gender identity and expression), marital status, familial status, parental status, religion, sexual orientation, political beliefs, genetic information, reprisal, or because all or part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to: USDA, Assistant Secretary for Civil Rights, Office of the Assistant Secretary for Civil Rights, 1400 Independence Avenue, S.W., Stop 9410, Washington, D.C. 20250-9410, or call toll-free at (866) 632-9992 (English) or (800) 877-8339 (TDD) or (866) 377-8642 (English Federal-relay) or (800) 845-6136 (Spanish Federal-relay). USDA is an equal opportunity provider and employer.

FOREWORD

- **Purpose:** The following instructions, definitions, concepts, and codes are a field guide for making or reading soil descriptions and sampling soils as presently practiced in the USA. (Note: References cited in the Foreword are listed at the end of Chapter 1 [p. 1–31].)
- Background: Soil description methodology was developed by soil scientists throughout the entire course of the soil survey. The USDA published small instruction booklets for field parties, including soil descriptions, in 1902–1904, 1906, and 1914. The first USDA guide for soil horizon identification and description was released in 1937 (Bureau of Chemistry and Soils, 1937). Dr. Roy Simonson and others later summarized and revised this information (Soil Survey Staff, 1951; Soil Survey Staff, 1962). Brief "color-book" inserts with shorthand notation were released by the Soil Conservation Service (Spartanburg, SC, 1961; Western Technical Center, Portland, OR, 1974). Previous Field Books were released in 1998 (Schoeneberger et al.) and 2002 (Schoeneberger et al.). This is an updated Field Book version that summarizes current knowledge, includes updates since 2002, and reflects changes in source documents.
- Standards: This Field Book summarizes and updates current National Cooperative Soil Survey conventions for describing soils (Soil Survey Manual [Soil Survey Division Staff, 1993]; National Soil Survey Handbook [Soil Survey Staff, 2012d]; National Soil Information System (NASIS), release 6.2 [Soil Survey Staff, 2012c]; and NASIS Data Dictionary [Soil Survey Staff, 2012a]). Some content is an abbreviation of primary sources.
- Regarding Pedon PC and NASIS: The Field Book is a current, practical soil description guide for the soil science community. It is not a guide on "How To Use Pedon PC or NASIS." Differences and linkages between soil science conventions, Pedon PC, NASIS, and older systems are shown, where reasonable to do so, as an aid for interpreting and converting archived data.

Standard procedures and terms for describing soils have changed and increased in recent years (e.g., redoximorphic features). Coincident with these changes has been the development and use of computer databases to store soil descriptions and associated information. The nature of databases, for better or worse, requires consistent and "correct" use of terms.

Sources: This Field Book draws from several primary sources: The Soil Survey Manual (Soil Survey Division Staff, 1993) and the National Soil Survey Handbook (NSSH), Parts 618 and 629 (Soil

- Survey Staff, 2012d). Other important sources are footnoted throughout to give appropriate credit and encourage in-depth information review. Other material is unique to this book.
- **Brevity:** In a field book, brevity is efficiency. Despite this book's apparent length, the criteria, definitions, and concepts are condensed. We urge users to review the comprehensive information in original sources to avoid errors resulting from our brevity.
- **Measurement Units:** For soil description, metric units are the scientific standard. Both NASIS and Pedon PC use metric units.
- Format: The "Site Description" and "Profile Description" sections generally follow conventional profile description format and sequence (e.g., SCS-Form 232, December 1984). Some descriptors are arranged in a sequence more compatible with field description rather than data entry (e.g., Horizon Boundary is next to Horizon Depth, rather than at the end). The sequence followed differs somewhat from and does not supersede convention for writing formal soil descriptions in soil survey reports or Official Soil Series Descriptions (e.g., National Soil Survey Handbook, Part 614; Soil Survey Staff, 2012d).
- Codes: Shorthand notation is listed in the Code column for some descriptors. Long-standing conventional codes are retained because of widespread recognition. Some recent codes have been changed to make them more logical. Some data elements have different codes in various systems (e.g., conventional [Conv.] vs. NASIS vs. Pedon PC), and several columns may be shown to facilitate conversions. If only one code column is shown, it can be assumed that the conventional, NASIS, and Pedon PC codes are all the same.
- Standard Terms vs. Creativity: Describe and record what you observe. Choice lists in this document are a minimal set of descriptors. Use additional descriptors, notes, and sketches to record pertinent information and/or features if no data element or choice list entry exists. Record such information as free-hand notes under Miscellaneous Field Notes.
- Changes: Soil science is an evolving field. Changes to this Field Book should and will occur. Please send comments or suggestions to the Director, National Soil Survey Center, USDA-NRCS; 100 Centennial Mall North, Rm. 152; Lincoln, NE 68508-3866.

TABLE OF CONTENTS

ACKNOWLEDGMENTS
FOREWORDi
SITE DESCRIPTION
Describer Name(s)1-1
Date
Climate
(Weather Conditions, Air Temperature, Soil Temperature [Soil Temperature, Soil Temperature Depth])
Location1-2
(Latitude, Longitude, Geodetic Datum)
Topographic Quadrangle
Soil Survey Site Identification Number (Site ID) 1-2
County FIPS Code1-3
MLRA
Transects1-3
(Transect ID, Stop Number, Interval)
Series or Component Name1-4
(Map Unit Symbol, Photo #)
Geomorphic Information1-4
Physiographic Location
(Physiographic Division, Physiographic Province, Physiographic Section, State Physiographic Area, Local Physiographic/Geographic Name)
Geomorphic Description
(Landscape, Landform, Microfeature, Anthropogenic Feature)
Surface Morphometry
(Elevation, Slope Aspect, Slope Gradient, Slope Complexity, Relative Slope Segment Position, Slope Shape, Hillslope - Profile Position, Geomorphic Components [Hills, Terraces and Stepped Landforms, Mountains, Flat Plains], Microrelief, Drainage Pattern)
Water Status
Drainage
Flooding1-13
(Frequency, Duration, Months)
Ponding
(Frequency, Depth, Duration)
(Soil) Water State

Land Cover
(Earth Cover - Kind)
Vegetation
(Plant Symbol, Plant Common Name, Plant Scientific Name, Vegetation Cover)
Parent Material
(Kind)
Bedrock
(Kind, Fracture Interval Class, Weathering Class, Depth [to Bedrock])
Lithostratigraphic Unit(s)1-25
Erosion
(Kind, Degree Class)
Surface Fragments1-26
(Kind, Surface Fragment Class)
Diagnostic Horizons or Characteristics
Size Control Section)
Restriction
(Kind, Hardness)
References1-31
PROFILE/PEDON DESCRIPTION2-1
Observation Method2-1
(Kind, Relative Size)
Horizon and Layer Designations
Master and Transitional Horizons and Layers2-2
Horizon Suffixes
Other Horizon Modifiers
(Numerical Prefixes, Numerical Suffixes, The Prime,
The Caret)
Horizon Depth
Horizon Thickness
Horizon Boundary
Soil Color
Decision Flowchart for Describing Soil Colors 2–8
(Soil) Matrix Color
([Soil] Color, Moisture State, Location or Condition)
Redoximorphic Features—RMFs (Discussion) 2–10
Redoximorphic Features
(Kind, Quantity, Size, Contrast, Color, Moisture State, Shape, Location, Hardness, Boundary)
Tabular List for Determination of Color Contrast 2–16

Mottles2-18
(Quantity, Size, Contrast, Color, Moisture State, Shape, Location)
Concentrations (Discussion)
Concentrations2-20
(Kind, Quantity [Percent of Area Covered], Size, Contrast, Color, Moisture State, Shape, Location, Hardness, Boundary)
Pedogenic Carbonate Stages (Discussion) 2-28
(Development, Multiple Stages, Description) Pedogenic Carbonate Development Stages - Fine Earth Matrix
Pedogenic Carbonate Development Stages - Coarse Fragment Matrix
Ped and Void Surface Features
(Kind, Amount, Continuity, Distinctness, Location, Color)
Soil Texture
Texture Class
(Soil) Textural Triangle (Fine Earth)2–38
Texture Modifiers
(Quantity and Size, Compositional, Terms Used in Lieu of Texture)
Comparison of Particle Size Classes in Different Systems
Rock and Other Fragments
(Kind, Volume Percent, Size Classes and Descriptive Terms, Roundness, Hardness)
Artifacts (Human-derived)2-49
(Kind, Quantity, Roundness, Shape, Cohesion, Penetrability, Persistence, Safety)
(Soil) Structure
(Type, Grade, Size)
Consistence
Rupture Resistance
(Blocks, Peds, and Clods; Surface Crusts and Plates)
Cementing Agents2-64
Manner of Failure
Stickiness
Plasticity
Penetration Resistance
Penetration Orientation
Excavation Difficulty

Roots
(Quantity, Size, Quantity [graphic], Location)
Pores (Discussion)2-73
Pores
(Quantity, Size, Shape, Vertical Continuity)
Cracks
(Kind, Depth, Relative Frequency)
Soil Crusts (Discussion)2-77
Soil Crusts
(Kind)
Special Features2-80
(Kind, Area [%] Occupied)
Saturated Hydraulic Conductivity and Permeability (Discussion)
Saturated Hydraulic Conductivity (K _{sat})2–83
Permeability Classes
Chemical Response
Reaction (pH)
pH Method
Effervescence
(Class, Location, Chemical Agent)
Reduced Conditions2-88
(Dipyridyl - Location)
Salinity Class (Discussion) 2–88
Salinity Class
Sodium Adsorption Ratio (SAR) 2–89
Odor2-90
(Kind, Intensity)
Miscellaneous Field Notes
Minimum Data Set (for a soil description)2-90
Pedon Description Data Sheet2-91 Pedon Description Example2-91
Pedon Description Example
Pedon Description (Data Sheet – Example)
Subaqueous Soils (SAS) Description2-93
(Discussion, Description)
Bathymetry
Site
Water Column Measurements
Soil Profile Measurements and Description
Salinity (of Subaqueous Soils)
Subaqueous Soils Profile Description Data Sheet 2–109
Subaqueous Soils Profile Description Example 2–110

Vibracore Sampling for Subaqueous Soils	2-111
Discussion	. 2-111
Site Description	. 2-111
Core Descriptions	. 2-111
Vibracore Log Sheet	
Vibracore Log Sheet Example	
References	2-115
GEOMORPHIC DESCRIPTION	3-1
Part I: Physiographic Location	
Part II: Geomorphic Description (Outline)	
Part II: Geomorphic Description	3-11
Comprehensive Lists	3-11
Geomorphic Environments and Other Groupings	3-21
Part III: Surface Morphometry	
References	3-46
SOIL TAXONOMY	4-1
Introduction	
Horizon and Layer Designations	4-1
Master and Transitional Horizons or Layers	
Horizon Suffixes	4-3
Horizon & Layer Designations Conversion Charts	4-6
(Soil) Textural Triangle: Family Particle-Size Classes	4-10
Combined Textural Triangles: Fine Earth Texture Classes	
and Family Particle-Size Classes	
Soil Moisture Regimes	
Soil Temperature Regimes and Classes	
References	4–14
GEOLOGY	5-1
Introduction	5-1
Bedrock [Kind]	5-1
Rock Charts	5-4
Igneous Rocks Chart	
Metamorphic Rocks Chart	5-6
Sedimentary and Volcaniclastic Rocks	
Mass Movement (Mass Wasting) Types for Soil Survey	
North American Geologic Time Scale	
Till Terms	
Pyroclastic Terms	
Hierarchical Rank of Lithostratigraphic Units	
References	5-13

LOCATION
GPS Location
Public Land Survey6-2
Townships and Ranges6-3
Sections
Section Subdivisions
Universal Transverse Mercator (UTM) Rectangular
Coordinate System
State Plane Coordinate System
References6-7
MISCELLANEOUS
Percent of Area Covered7-1
K _{sat} Class Estimate
Soil Water Repellency (Discussion)7-14
Soil Water Repellency
Measurement Equivalents and Conversions
Metric to English
English to Metric
Common Conversion Factors
Guide to Map Scales and Minimum Size Delineations7-21
Common Soil Map Symbols (Traditional)7-22
References
SOIL SAMPLING8-1
Introduction
Types of Sampling
(Horizon Sampling, Incremental Sampling, Fixed- Depth Sampling)
Sampling Techniques8-3
Soil Sample Kinds8-3
(Characterization Samples, Reference Samples)
Field Equipment Checklist8-4
Examples of Common Soil-Sampling Equipment8-5
References8-6
TNDEY 0_1

SITE DESCRIPTION

P.J. Schoeneberger, D.A. Wysocki, and E.C. Benham, NRCS, Lincoln, NE

DESCRIBER NAME(S)

NAME (or initials)—Record the observer(s) making the description; e.g., *Erling E. Gamble* or *EEG*.

DATE

MONTH/DAY/YEAR—Record the observation date. Use numeric notation (MM/DD/YYYY); e.g., 05/21/2012 (for May 21, 2012).

CLIMATE

Document the prevailing weather conditions at time of observation (a site condition that affects some field methods; e.g., K_{sat}). Record the major **Weather Conditions** and **Air Temperature**; e.g., *Rain*, 27 °C.

Weather Conditions	Code
sunny/clear	SU
partly cloudy	PC
overcast	OV
rain	RA
sleet	SL
snow	SN

AIR TEMPERATURE—Ambient air temperature at chest height (Celsius or Fahrenheit); e.g., 27 °C.

SOIL TEMPERATURE—Record the ambient **Soil Temperature** and **Depth** at which it is determined; e.g., 22 °C, 50 cm. (**NOTE**: Soil taxonomy generally requires a 50 cm depth.) Soil temperature should only be determined from a freshly excavated surface that reflects the ambient soil conditions. Avoid surfaces equilibrated with air temperatures.

Soil Temperature—Record soil temperature (in °C or °F).

Soil Temperature Depth—Record depth at which the ambient soil temperature is measured; e.g., *50 cm*.

LOCATION

Record precisely the point or site location (e.g., coordinates). Latitude and longitude as measured with a Global Positioning System (GPS) is the preferred descriptor. Report lat. and long. as degrees, minutes, seconds, and decimal seconds with direction, or as degrees and decimal degrees with direction. For example:

LATITUDE-46° 10′ 19.38" N. or 46°.17205 N

LONGITUDE—95° 23′ 47.16″ W. or 95°.39643 W

GEODETIC DATUM (Horizontal_datum_name in NASIS)—A geodetic datum must accompany latitude and longitude. A geodetic datum is a model that defines the earth's shape and size and serves as a latitude, longitude reference. Geodetic datum is a selectable GPS parameter. The preferred datum is the **World Geodetic**System 1984 (WGS-84). See "Location Section" for the complete geodetic datum list (p. 6–1).

Topographic maps display latitude and longitude and the geodetic datum employed (e.g., NAD 27, NAD 83). **NOTE:** NASIS requires latitude and longitude but allows other coordinate or location descriptors (e.g., UTM, State Plane Coordinates, Public Land Survey, Metes and Bounds). See "Location Section" (p. 6–1) for details.

TOPOGRAPHIC QUADRANGLE

Record the topographic map name (USGS quadrangle) that covers the observation site. Include scale (or "series") and year printed; e.g., *Pollard Creek-NW; TX; 1:24,000; 1972*.

SOIL SURVEY SITE IDENTIFICATION NUMBER (SITE ID)

An identification number must be assigned if samples are collected (called **User_Pedon_ID** in NASIS). For the Kellogg Soil Survey Laboratory (Soil Survey Staff, 2011), this identifier consists of five required and one optional item.

Example: S2004WA27009

- S indicates a sampled pedon. ("S" is omitted for pedons described but not sampled.)
- 2004=calendar year sampled. Use 4-digit format; e.g., 2012.
- WA=two-character (alphabetic) Federal Information Processing Standards (FIPS 6-4) code for the state where sampled. For non-U.S. sites, use the Country Code from ISO

- 3166-1 (International Organization for Standards, 2012b); e.g., *CA* for Canada.
- 4) 027=3-digit (numeric) FIPS code for county where sampled. For non-U.S. sites, use the appropriate two- or three-letter Administrative Subdivision code from ISO 3166-2 (International Organization for Standards, 2012b) preceded by a 0 (zero) for two-letter codes; e.g., 0SK for Saskatchewan.
- 5) 009=consecutive pedon number for calendar year for county. This should be a 3-digit number. Use 0s (zeros) as placeholders when necessary; e.g., 9 becomes 009.
- (Optional) A one-character "satellite" code can be used, if needed, to indicate a relationship between a primary pedon and satellite sample points; e.q., A in S2004WA027009A.

NOTE: Do not use spaces, dashes, or hypens (for database reasons). Use uppercase letters. A complete example is S20110K061005A. A sampled soil characterization pedon collected in 2011~(2011) from Oklahoma (OK), Haskell County (061); this is a satellite pedon (A) of the fifth pedon (005) sampled in that county during 2011.

COUNTY FIPS CODE

The Federal Information Processing Standards (FIPS) code is a 3-digit number for a county within a state in the U.S. (National Institute of Standards and Technology, 1990). Record the FIPS code for the county where the pedon or site occurs; e.g., 061 (Haskell County, OK). For non-U.S. sites, use the appropriate two- or three-character Country Code (International Organization for Standards—Country Codes ISO 3166-1; 2012a or current date).

MLRA

This 1- to 3-digit number, often including one alpha character, identifies the Major Land Resource Area (NRCS, 2006); e.g., 58C (Northern Rolling High Plains, Northeastern Part).

TRANSECTS

If a soil description is one of multiple transect points, record transect information; e.g., **Transect ID**, **Stop Number**, **Interval**, **GPS Coordinates**. NASIS also accommodates **Transect Kind** (random point [-R], regular interval [-I]), **Transect Section Method** (biased [-B], random [-R]), **Delineation Size** (acres), **Transect Direction** (azimuth heading, e.g., 180°).

TRANSECT ID—A 4- or 5-digit number that identifies the transect; e.g., 0010 (the tenth transect within the survey area).

STOP NUMBER—If the sample/pedon is part of a transect, enter the 2-digit stop number along the transect; e.g., 07. (**NOTE:** NASIS allows up to 13 characters.)

INTERVAL—Record distance between observation points, compass bearing, and GPS coordinates, or draw a route map in the **Field Notes** ("User Defined Section").

SERIES OR COMPONENT NAME

Assign the appropriate Soil Series or Map Unit Component name at time of description (e.g., *Cecil*). If unknown, enter *SND* for "Series Not Designated." (In NASIS, "SND" is not used; assign an appropriate soil taxonomy class; e.g., *Udorthents*.) *NOTE:* A *field-assigned* series name may change after additional data collection and lab analyses.

MAP UNIT SYMBOL—Record the soil map unit symbol (if known) for the sample site.

PHOTO #—If aerial imagery is used, record the photograph number that covers the sample site.

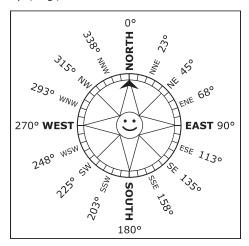
GEOMORPHIC INFORMATION

See the "Geomorphic Description System" for complete lists (p. 3–1). Codes follow each listed choice. Conventionally, the entire name (e.g., mountains) is recorded.

PART 1: PHYSIOGRAPHIC LOCATION

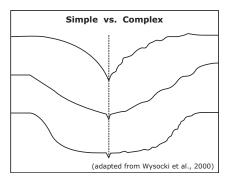
Physiographic Division—e.g., Interior Plains or IN
Physiographic Province—e.g., Central Lowland or CL
Physiographic Section—e.g., Wisconsin Driftless Section or WDS

State Physiographic Area (Opt.)—e.g., *Wisconsin Dells* **Local Physiographic/Geographic Name** (Opt.)—e.g., *Bob's Ridge*


PART 2: GEOMORPHIC DESCRIPTION

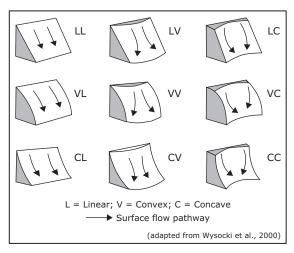
Landscape—e.g., Foothills or FH
Landform—e.g., Ridge or RI
Microfeature—e.g., Mound or MO
Anthropogenic Feature—e.g., sanitary landfill or SL

PART 3: SURFACE MORPHOMETRY

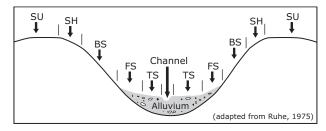

Elevation—The height of a point on the earth's surface relative to Mean Tide Level (MTL), formerly Mean Sea Level (MSL). Record units; e.g., 106 m or 348 ft. Recommended methods: interpolation from topographic map contours; altimeter reading tied to a known elevation datum. **NOTE:** An elevation value from a GPS can be recorded. Since the GPS elevation value typically is less certain than the latitude and longitude values, a correction for quantifiable errors is important (e.g., WAAS, or averaging many elevation values at a point by collecting a track log at the point and averaging the elevation values). The latitude and longitude coordinates can be used to extract an elevation value from a DEM, if available. Note that all parts of a DEM cell return the same elevation value, so a higher resolution DEM is important for accuracy, especially if the point is on a steep slope.

Slope Aspect—The compass direction (in degrees and accounting for declination) that a slope faces, viewed downslope; e.g., 225°.

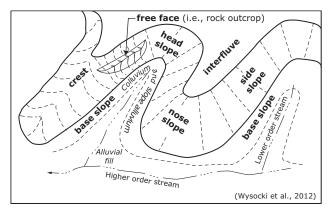
Slope Gradient—The ground surface inclination with respect to the horizontal plane; commonly called "slope." Make observations downslope to avoid errors from clinometer types; e.g., 18%.


Slope Complexity—Describe the relative ground surface uniformity (smooth linear or curvilinear=simple or S) or irregularity (complex or C) downslope through the site; e.g., simple or S.

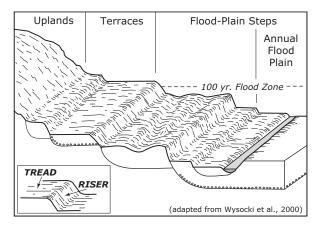
Relative Slope Segment Position (called **geomorph_ slope_segment** in NASIS)—If useful to subdivide long slopes, describe relative slope location of the area or point of interest.


Relative Slope Segment Position	Code	Criteria
lower third	LT	on lower third of slope
middle third	MT	on middle third of slope
upper third	UT	on upper third of slope

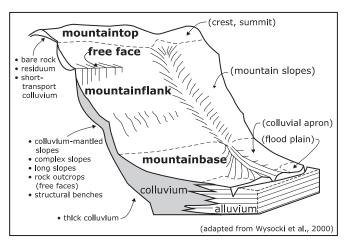
Slope Shape—Slope shape is described in two directions: up and down slope (perpendicular to the elevation contour) and across slope (along the elevation contour); e.g., *Linear*, *Convex* or *LV*.

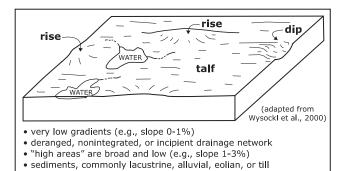

Hillslope-Profile Position (commonly called Hillslope Position)—Two-dimensional geomorphic descriptors that are segments (i.e., slope position) along a line that runs up and down slope; e.g., *backslope* or *BS*. This is best applied to points, not areas (e.g., map units).

Position	Code
summit	SU
shoulder	SH
backslope	BS
footslope	FS
toeslope	TS



Geomorphic Component—Three-dimensional geomorphic descriptors for landforms, landform portions, or microfeatures that are applied to areas. Unique 3D descriptors are defined for Hills, Terraces and Stepped Landforms, Mountains, and Flat Plains; e.g., *Hills-nose slope*, or *NS*.


Hills	NASIS Code
interfluve	IF
crest	СТ
head slope	HS
nose slope	NS
side slope	SS
free face	FF
base slope	BS


Terraces and Stepped Landforms	Code
riser	RI
tread	TR

Mountains	Code
mountaintop	MT
mountainflank	MF
upper third—mountainflank	UT
center third—mountainflank	CT
lower third—mountainflank	LT
free face	FF
mountainbase	MB

Flat Plains	Code
dip	DP
rise	RI
talf	TF

Microrelief—Small, relative elevation differences between adjacent areas on the earth's surface; e.g., *microhigh* or *MH* or *microlow* or *ML*.

Microrelief	Code
microhigh	МН
microlow	ML
microslope	MS

Drainage Pattern—The interconnected system of drainage channels on the land surface; also called drainage network. (See graphics, p. 3–45.) Can be recorded as a Text Note.

Drainage Pattern	Code
annular	AN
artificial	AR
centripetal	CE
dendritic	DN
deranged	DR
karst	KA
parallel	PA
pinnate	PI
radial	RA

Drainage Pattern	Code
rectangular	RE
thermokarst	TH
trellis	TR

WATER STATUS

DRAINAGE—An estimate of the natural drainage class (i.e., the prevailing wetness conditions) of a soil; e.g., somewhat poorly drained or SP.

Drainage Class	Conv. Code
Subaqueous Drainage	SA
Very Poorly Drained	VP
Poorly Drained	PD
Somewhat Poorly Drained	SP
Moderately Well Drained	MW
Well Drained	WD
Somewhat Excessively Drained	SE
Excessively Drained	ED

The following definitions are from the traditional, national criteria for natural soil drainage classes (Soil Survey Division Staff, 1993). Specific regional definitions and criteria exist. (Contact an NRCS State office for specific local criteria.)

Subaqueous Drainage—Free water is above the soil surface. The occurrence of internal free water is permanent, and there is a positive water potential at the soil surface for more than 21 hours each day. The soils have a peraquic soil moisture regime.

Very Poorly Drained—Water is at or near the soil surface during much of the growing season. Internal free water is *very shallow* and *persistent* or *permanent*. Unless the soil is artificially drained, most mesophytic crops cannot be grown. Commonly, the soil occupies a depression or is level. If rainfall is persistent or high, the soil can be sloping.

Poorly Drained—The soil is wet at shallow depths periodically during the growing season or remains wet for long periods. Internal free water is *shallow* or *very shallow* and *common* or *persistent*. Unless the soil is artificially drained, most mesophytic crops cannot be grown. The soil, however, is not

continuously wet directly below plow depth. The water table is commonly the result of a *low* or *very low* saturated hydraulic conductivity class or persistent rainfall or a combination of these factors.

Somewhat Poorly Drained—The soil is wet at a shallow depth for significant periods during the growing season. Internal free water is commonly *shallow* or *moderately deep* and *transitory* or *permanent*. Unless the soil is artificially drained, the growth of most mesophytic plants is markedly restricted. The soil commonly has a *low* or *very low* saturated hydraulic conductivity class or a high water table, receives water from lateral flow or persistent rainfall, or is affected by some combination of these factors.

Moderately Well Drained—Water is removed from the soil somewhat slowly during some periods of the year. Internal free water commonly is moderately deep and may be transitory or permanent. The soil is wet for only a short time within the rooting depth during the growing season but is wet long enough that most mesophytic crops are affected. The soil commonly has a moderately low or lower saturated hydraulic conductivity class within 1 meter of the surface, periodically receives high rainfall, or both.

Well Drained—Water is removed from the soil readily but *not* rapidly. Internal free water commonly is *deep* or *very deep*; annual duration is not specified. Water is available to plants in humid regions during much of the growing season. Wetness does not inhibit growth of roots for significant periods during most growing seasons.

Somewhat Excessively Drained—Water is removed from the soil rapidly. Internal free water commonly is *very deep* or *very rare*. The soils are commonly coarse textured and have *high* saturated hydraulic conductivity or are *very shallow*.

Excessively Drained—Water is removed from the soil very rapidly. Internal free water commonly is *very deep* or *very rare*. The soils are commonly coarse textured and have *very high* saturated hydraulic conductivity or are *very shallow*.

FLOODING—Estimate the **Frequency**, **Duration**, and **Months** that flooding is expected; e.g., *rare*, *brief*, *Jan.-March*.

Frequency—Estimate how often, typically, flooding occurs.

Frequency Class	Code	Criteria: estimated average number of flood events per time span ¹	
None	NO	No reasonable chance (e.g., <1 time in 500 years)	
Very Rare	VR	≥1 time in 500 years, but <1 time in 100 years	
Rare	RA	1 to 5 times in 100 years	
Occasional ²	OC	>5 to 50 times in 100 years	
Frequent ^{2, 3}	FR	>50 times in 100 years	
Very Frequent 3, 4	VF	>50% of all months in year	

¹ Flooding Frequency is an estimate of the current condition, whether natural or human influenced (such as by dams or artificial levees).

Duration—Estimate how long an area typically is flooded during a single flood event.

	Code		Criteria: estimated	
Duration Class	Conv.	NASIS	average duration per flood event	
Extremely Brief	EB	EB	0.1 to < 4 hours	
Very Brief	VB	VB	4 to < 48 hours	
Brief	BR	В	2 to < 7 days	
Long	LO	L	7 to < 30 days	
Very Long	VL	VL	≥ 30 days	

Months—Estimate the beginning and ending month(s) in a year that flooding generally occurs; e.g., *Dec.-Feb.*

² Historically, Occasional and Frequent classes could be combined and called Common; not recommended.

³ Very Frequent class takes precedence over Frequent, if applicable.

⁴ The Very Frequent class is intended for tidal flooding.

PONDING—Estimate or monitor the **Frequency**, **Depth**, and **Duration** of standing water. A complete example is: *occasional*, *50 cm*, *brief*, *Feb.-Apr*.

Frequency—Estimate how often, typically, ponding occurs.

Frequency Class	Code	Code Criteria: estimated, average # of ponding events per time span	
None	NO	<1 time in 100 years	
Rare	RA	1 to 5 times in 100 years	
Occasional	OC	>5 to 50 times in 100 years	
Frequent	FR	>50 times in 100 years	

Depth—Estimate the average, representative depth of ponded water at the observation site and specify units; e.g., 1 ft or 30 cm.

Duration—Estimate how long, typically, the ponding lasts.

Duration	Code		Criteria: estimated, average	
Class	Conv.	NASIS	time per ponding event	
Very Brief	VB	VB	<2 days	
Brief	BR	В	2 to <7 days	
Long	LO	L	7 to <30 days	
Very Long	VL	VL	≥30 days	

(SOIL) WATER STATE (called **Observed Soil Moisture Status** in NASIS.)—Estimate the water state of the soil at the time of observation; e.g., *wet*, *nonsatiated*. Soil temperature must be above 0 °C. (Does not apply to frozen soil.)

Water	Co	de	Criteria:	Traditional Criteria: tension and field	
State Class	Conv.	NASIS	tension		
Dry ¹	D	D	>1500 kPa	>15 bars of tension ² (=1500 kPa)	
Moist ¹	М		≤1500 kPa to >1.0 kPa (or >0.5 kPa) ³	Former Usage: >1/3 to 15 bars of tension (33 to 1500 kPa) (field capacity to wilting point)	
Wet	W	M ⁴	≤1.0 kPa (or <0.5 kPa) ³	0-1/3 bar tension (<33 kPa) (field capacity or wetter)	
Wet: Non- satiated ⁵	WN		>0.00 and ≤1.0 kPa (or <0.5 kPa) ³	No Free Water: Water films are visible; sand grains and peds glisten, but no free water is present	
Wet: Satiated ⁵	WS	W	≤0.00 kPa	Free Water: Free water easily visible	

Additional subclasses of water state can be recognized for *Dry* and *Moist* classes, if desired (Soil Survey Division Staff, 1993, p. 91).

² Convention assumes 15 bars of tension as the wilting point for most annual agricultural row crops. *Caution*: Various perennials, shrubs, trees, and other native vegetation have a wilting point of as much as 66 bars tension (=6600 kPa) or more.

³ Use the 1 kPa limit for all textures, except those coarser than loamy fine sand (which use 0.5 kPa limit; Soil Survey Division Staff, 1993, p. 90).

⁴ NASIS uses the same three class names (Dry, Moist, Wet) but lumps the "wet: nonsatiated" subclass with the Moist class.

⁵ Satiation vs. Saturation: Satiation implies minor amounts of entrapped air in the smallest pores. True saturation implies no entrapped air. In Soil Taxonomy, "Saturation is ... zero or positive pressure in the soil ..." (Soil Survey Staff, 2010). Satiation, for practical purposes, is ≈ saturation. Temporal monitoring of a water table by piezometer or other accepted methods may be needed to verify saturation. Related terms used for classifying soils (i.e., soil taxonomy): Endosaturation is saturation in all

layers to >200 cm (80 inches). *Episaturation* requires saturated layers that overlie unsaturated layers within the upper 2 m (80 inches). *Anthric saturation*, a variant of episaturation, is saturation due to management-induced flooding (e.g., for rice or cranberry production).

LAND COVER

LAND COVER (called **EARTH COVER - KIND** in NASIS)—Record the dominant land cover at the site; e.g., *intermixed hardwoods* and *conifers*.

Kind ¹	Code	Kind ¹	Code	
ARTIFICIAL COVER (A)—Nonvegetative cover; due to human activity.				
rural transportation - roads, railroads	RU	urban and built-up - cities, farmsteads, industry	UR	
BARREN LAND (B)—<5 from construction.	% vege	etative cover naturally o	r	
culturally induced - saline seeps, mines, quarries, and oil-waste areas	CI	other barren - salt flats, mudflats, slickspots, badlands	ОВ	
permanent snow or ice	PS	rock	RK	
		sand or gravel	SG	
CROP COVER (C)—includes entire cropping cycle (land prep, crop, or crop residue) for annual or perennial herbaceous plants.				
close-grown crop - wheat, rice, oats, and rye; small grains	CG	row crop - corn, cotton, soybeans, tomatoes, and other truck crops, tulips	RC	
GRASS/HERBACEOUS COVER (G)—>50% grass, grasslike (sedges/rushes), or forb cover, mosses, lichens, ferns; nonwoody.				
hayland - alfalfa, fescue, bromegrass, timothy	HL	rangeland, savanna - 10 to 20% tree cover	RS	
marshland - grasses and grasslike plants	ML	rangeland, shrubby - 20 to 50% shrub cover	RH	

Kind ¹	Code	Kind ¹	Code
pastureland, tame - fescues, bromegrass, timothy, lespedeza	PL	rangeland, tundra	RT
rangeland, grassland; <10% trees, <20% shrubs; rangeland used for hayland	RG	other grass and herbaceous cover	ОН
SHRUB COVER (S)->5	0% shr	ub or vine canopy cover	r.
crop shrubs - filberts, blueberry, ornamental nusery stock	CS	native shrubs - shrub live oak, mesquite, sagebrush, creosote bush; rangeland >50% shrub cover	NS
crop vines - grapes, blackberries, raspberries	CV	other shrub cover	OS
TREE COVER (T)—>25% canopy cover by woody plants, natural or planted.			
conifers - spruce, pine, fir	СО	swamp - trees, shrubs	SW
crop, trees - nuts, fruit, nursery, Christmas trees	CR	tropical - mangrove and royal palms	TR
hardwoods - oak, hickory, elm, aspen	HW	other tree cover	ОС
intermixed hardwoods and conifers - oak-pine mix	IM		
WATER (W)—water at the soil surface; includes seasonally frozen water.			

frozen water.

VEGETATION

PLANT SYMBOL—Record the codes (scientific plant name abbreviations) for the major plant species found at the site (NRCS, 2012); e.g., *ANGE* (*Andropogon gerardii* or *big bluestem*). (*NOTE:* The combination of plant symbol and common name are the primary plant data element in NASIS.)

¹ Land Cover Kinds are presented at two levels of detail: Bolded table subheadings are the "NASIS - Level 1" choices (NSSH, Part 622.16; Soil Survey Staff, 2012d). Individual choices under the subheadings are the "NASIS - Level 2" choices.

PLANT COMMON NAME—Record the common names of the major plant species found at the site (NRCS, 2012); e.g., cottonwood, big bluestem. This item may be recorded as a secondary data element to augment the **Plant Symbol**. **CAUTION**: Multiple common names exist for some plants; not all common names for a given plant are in the national PLANTS database.

PLANT SCIENTIFIC NAME—Record the scientific plant name along with or in lieu of common names; e.g., *Acer rubrum* (red maple). (*NOTE:* Although used in the past, scientific names of plants [NRCS, 2012] are not presently recorded by the NRCS.) (*NOTE:* NASIS codes for common plant names are derived from the scientific names.)

VEGETATION COVER—Estimate the percent of the ground covered by each plant species recorded at the site.

PARENT MATERIAL

Describe the nature of the unconsolidated material (regolith) in which the soil is formed (e.g., till). If the soil is derived directly from the underlying bedrock (e.g., granite), identify the **Parent Material** as either grus, saprolite, or residuum and then record the appropriate **Bedrock - Kind** choice. (**NOTE:** NASIS uses "Component Parent Material Origin" to convey the source from which a Parent Material is derived, predominantly **Bedrock - Kind**.) Multiple parent materials, if present, should be denoted; e.g., loess, over colluvium, over residuum. Use numerical prefixes in the **Horizon** designations to denote different parent materials (lithologic discontinuities); e.g., A, BE, 2BC, 3C; Peoria Loess, or Calvert Formation.

KIND—e.g., saprolite, loess, colluvium.

Kind ¹	Code	Kind ¹	Code	
EOLIAN DEPOSITS (no	EOLIAN DEPOSITS (nonvolcanic)			
eolian deposit	EOD	loess, calcareous	CLO	
eolian sands	EOS	loess, noncalcareous	NLO	
loess	LOE	parna	PAR	
GLACIAL and PERIGLACIAL DEPOSITS				
cryoturbate	CRY	till, ablation	ATI	
drift	GDR	till, basal	BTI	
glaciofluvial deposit	GFD	till, flow	FTI	
glaciolacustrine deposit	GLD	till, lodgment	LTI	
glaciomarine deposit	GMD	till, melt-out	MTI	

Kind ¹	Code	Kind ¹	Code
outwash	OTW	till, subglacial	GTI
solifluction deposit	SOD	till, supraglacial	UTI
supraglacial debris-flow	SGF	till, supraglacial meltout	PTI
till	TIL		
IN-PLACE DEPOSITS (n	ontrans	sported)	
bauxite	BAU	residuum ²	RES
grus ²	GRU	saprolite ²	SAP
MASS MOVEMENT DEPO	SITS ³	(See Mass Movement Typ	es
MISCELLANEOUS MASS M	OVEMEN	NT DEPOSITS	
colluvium	COL	slump block	SLB
scree	SCR	talus	TAL
MASS MOVEMENT DEPOSI	T (Unsp	ecified Landslide)	MMD
COMPLEX LANDSLIDE DEPOSITS			CLD
FALL DEPOSITS			FAD
debris fall deposit	DLD	soil fall deposit (=earth fall)	SFD
rock fall deposit	RFD		
FLOW DEPOSITS			FLD
earthflow deposit	EFD	debris avalanche deposit	DAD
creep deposit	CRP	debris flow deposit	DFD
mudflow deposit	MFD	debris slide deposit	DSD
sand flow deposit	SAD	lahar	LAH
solifluction deposit	SOD	rockfall avalanche deposit	RAD
SLIDE DEPOSITS			SD
debris slide deposit ⁴			OSD
Rotational Slide deposit	RLD	Translational Slide deposit	TSD
rotational debris slide deposit	RDD	translational debris slide deposits	TDD
rotational earth slide deposit	RED	translational earth slide deposit	TED

Kind ¹	Code	Kind ¹	Code
rotational rock slide deposit	RRD	translational rock slide deposit	TRD
		block glide deposit	BGD
SPREAD DEPOSITS (=late	ral spre	ad)	LSD
debris spread deposit	DPD	rock spread deposit	RSD
earth spread deposit	EPD		
TOPPLE DEPOSITS			TOD
debris topple deposit	DTD	rock topple deposit	RTD
earth topple (=soil topple)	ETD		
MISCELLANEOUS DEPO	SITS		
diamicton	DIM	limonite	LIM
gypsite	GYP		
ORGANIC DEPOSITS 5			
coprogenic materials	СОМ	organic materials	ORM
diatomaceous earth	DIE	organic, grassy materials	OGM
marl	MAR	organic, herbaceous materials	ОНМ
marl, coastal	СМА	organic, mossy materials	ОММ
marl, freshwater	FWM	organic, woody materials	OWM
VOLCANIC DEPOSITS (unconsolidated; eolian and mass movement)			
ash, volcanic (<2 mm)	ASH	cinders (2-64 mm)	CIN
ash, acidic	ASA	lahar deposit (volcaniclastic mudflow)	LAH
ash, andesitic	ASN	lapilli (2-64 mm, >2.0 sg) ⁶	LAP
ash, basaltic	ASB	pumice (<1.0 sg) ⁶	PUM
ash, basic	ASC	pyroclastic flow	PYF
ash flow (pyroclastic)	ASF	pyroclastic surge	PYS
bombs, volcanic (>64 mm)	вом	scoria (>2.0 sg) ⁶	SCO

Kind ¹	Code	Kind ¹	Code
		tephra (all ejecta)	TEP
WATERLAID (or TRANS	PORTE	D) DEPOSITS	
alluvium	ALL	lagoonal deposits	LGD
backswamp deposit	BSD	marine deposit	MAD
beach sand	BES	marl	MAR
coprogenic materials	СОМ	marl, coastal	CMA
diatomaceous earth	DIE	marl, freshwater	FWM
estuarine deposit	ESD	overbank deposit	OBD
fluviomarine deposit	FMD	pedisediment	PED
greensands	GRS	slope alluvium	SAL
lacustrine deposit	LAD	valley side alluvium	VSA
ANTHROPOGENIC DEPOSITS			
coal extraction mine spoil	CES	metal ore extraction mine spoil	MES
dredge spoils	DGD	mine spoil or earthy fill	MSE
human-transported materials	НТМ		

¹ Parent material definitions are found in the "Glossary of Landform and Geologic Terms," NSSH, Part 629 (Soil Survey Staff, 2012b), or the Glossary of Geology (Neuendorf et al., 2005).

² Use the most precise term possible for the in situ material. Residuum is the most generic term.

³ Cruden and Varnes, 1996.

Debris slide is a more general, encompassing term that may be further subdivided into rotational debris slide or translational debris slide.

⁵ These generic terms refer to the dominant origin of the organic materials or deposits from which the organic soil has formed (i.e., parent material) (Soil Survey Division Staff, 1993). These terms partially overlap with those recognized in soil taxonomy (terms that refer primarily to what the organic material presently is); see the "Diagnostic Horizons or Characteristics" table.

⁶ sg=specific gravity=the ratio of a material's density to that of water (weight in air/[weight in air - weight in water]).

Describe the nature of the continuous hard rock underlying the soil. Specify the **Kind**, **Fracture Interval**, **Hardness**, and **Weathering Class**.

KIND—e.g., *limestone*.

Kind ¹	Code	Kind ¹	Code		
IGNEOUS—INTRUSIVE	IGNEOUS—INTRUSIVE				
anorthosite	ANO	peridotite	PER		
diabase	DIA	pyroxenite	PYX		
diorite	DIO	quartz-diorite	QZD		
gabbro	GAB	quartz-monzonite	QZM		
granite	GRA	syenite	SYE		
granitoid ²	GRT	syenodiorite	SYD		
granodiorite	GRD	tonalite	TON		
monzonite	MON	ultramafic rock ²	UMU		
IGNEOUS-EXTRUSIVE					
aa lava	AAL	pahoehoe lava	PAH		
andesite	AND	pillow lava	PIL		
basalt	BAS	pumice (flow, coherent)	PUM		
block lava	BLL	rhyolite	RHY		
dacite	DAC	scoria (coherent mass)	SCO		
latite	LAT	tachylite	TAC		
obsidian	OBS	trachyte	TRA		
IGNEOUS-PYROCLASTI	C				
ignimbrite	IGN	tuff, welded	TFW		
pyroclastics (consolidated)	PYR	tuff breccia	TBR		
pyroclastic flow	PYF	volcanic breccia	VBR		
pyroclastic surge	PYS	volcanic breccia, acidic	AVB		
tuff	TUF	volcanic breccia, basic	BVB		
tuff, acidic	ATU	volcanic sandstone	VST		
tuff, basic	BTU				

Kind ¹	Code	Kind ¹	Code
METAMORPHIC			
amphibolite	AMP	metavolcanics	MVO
gneiss	GNE	mica	MIC
gneiss, biotite	BTG	mica schist	MSH
gneiss, granodiorite	GDG	migmatite	MIG
gneiss, hornblende	HBG	mylonite	MYL
gneiss, migmatitic	MMG	phyllite	PHY
gneiss, muscovite-biotite	MBG	schist	SCH
granofels	GRF	schist, biotite	BTS
granulite	GRL	schist, graphitic	GRS
greenstone	GRE	schist, muscovite	MVS
hornfels	HOR	schist, sericite	SCS
marble	MAR	serpentinite	SER
meta-conglomerate	MCN	siltite	SIT
metaquartzite	MQT	slate	SLA
metasedimentary rocks ²	MSR	slate, sulfidic	SFS
metasiltstone	MSI	soapstone (talc)	SPS
SEDIMENTARY—CLASTICS			
arenite	ARE	mudstone	MUD
argillite	ARG	ortho-quartzite	OQT
arkose	ARK	porcellanite	POR
breccia, nonvolcanic (angular fragments)	NBR	sandstone	SST
breccia, nonvolcanic, acidic	ANB	sandstone, calcareous	CSS
breccia, nonvolcanic, basic	BNB	shale	SHA
claystone	CST	shale, acid	ASH
conglomerate (rounded fragments)	CON	shale, calcareous	CSH
conglomerate, calcareous	CCN	shale, clayey	YSH
fanglomerate	FCN	siltstone	SIS
glauconitic sandstone	GLS	siltstone, calcareous	CSI
graywacke	GRY		

Kind ¹	Code	Kind ¹	Code	
SEDIMENTARY—EVAPORITES, ORGANICS, AND PRECIPITATES				
bauxite	BAU	limestone, coral	COR	
chalk	CHA	limestone, phosphatic	PLS	
lignite	LIG	limonite	LIM	
chert	CHE	novaculite	NOV	
coal	COA	rock anhydrite	RAN	
diatomite	DIA	rock gypsum	GYP	
dolomite (dolostone)	DOL	rock halite	RHL	
limestone	LST	travertine	TRV	
limestone, arenaceous	ALS	tripoli	TRP	
limestone, argillaceous	RLS	tufa	TUA	
limestone, cherty	CLS			
INTERBEDDED (alternating layers of different sedimentary lithologies)				
limestone-sandstone- shale	LSS	sandstone-shale	SSH	
limestone-sandstone	LSA	sandstone-siltstone	SSI	
limestone-shale	LSH	shale-siltstone	SHS	
limestone-siltstone	LSI			

Definitions for kinds of bedrock are found in the "Glossary of Landform and Geologic Terms," NSSH, Part 629 (Soil Survey Staff, 2012b), or in the Glossary of Geology (Neuendorf et al., 2005).

FRACTURE INTERVAL CLASS (called **Bedrock_fracture_interval** in NASIS)—Describe the dominant (average) horizontal spacing between vertical joints (geogenic cracks or seams) in the bedrock layer.

Average Distance Between Fractures	Code
< 10 cm	1
10 to < 45 cm	2

² Generic term; use only with regional or reconnaissance surveys (order 3, 4).

Average Distance Between Fractures	Code
45 to < 100 cm	3
100 to < 200 cm	4
≥ 200 cm	5

WEATHERING CLASS (called **Bedrock_weathering** in NASIS)— The subjective extent to which bedrock has weathered as compared to its presumed nonweathered state. Record in Notes, if used.

Class	Code
Slight	SL
Moderate	MO
Strong	ST

DEPTH (TO BEDROCK)—Record the depth (cm) from the ground surface to the contact with coherent (continuous) bedrock.

LITHOSTRATIGRAPHIC UNIT(S)

Record the lithostratigraphic unit(s) of the unconsolidated material (regolith) and the bedrock in which the soil is formed or from which it is derived. (This is a text field in NASIS.) For example, *Peoria Loess* over *pre-Illinoian* till over *Dakota Formation*. (See discussion, p. 5–12.)

EROSION

Estimate the dominant kind and magnitude of accelerated erosion at the site. Specify the **Kind** and **Degree**.

KIND (called erosion_accelerated_kind in NASIS)—

Kind	Code	Code Criteria ¹	
wind	I	Deflation by wind	
water:	_	Removal by running water	
sheet	S	Even soil loss, no channels	
rill	R	Small channels ²	
gully	G	Big channels ³	
tunnel	Т	Subsurface voids within soil that enlarge by running water (i.e., piping)	

- ¹ Soil Survey Division Staff, 1993, p. 82.
- ² Small runoff channels that can be obliterated by conventional tillage.
- ³ Large runoff channels that cannot be obliterated by conventional tillage.

DEGREE CLASS (called **erosion_class** in NASIS)—

Class 1	Code	Criteria: Estimated % loss of the original, combined A + E horizons or the estimated loss of the upper 20 cm (if original, combined A + E horizons were <20 cm thick). ²	
None	0	0 %	
1	1	> 0 up to 25%	
2	2	25 up to 75%	
3	3	75 up to 100%	
4	4	> 75 % and total removal of A	

¹ In NASIS, the choices include the preceding word "Class" (e.g., Class 1).

SURFACE FRAGMENTS

Record the amount of surface fragment cover (either as a class or as a numerical percent), as determined by either a "point count" or "line-intercept" method. In NASIS, additional details can be recorded: Surface Fragment Kind (called surface_frag_kind in NASIS), Surface Fragment Class (relative quantity), Mean Distance Between Fragments (edge to edge), Shape (FL-flat or NF-nonflat), Size, Roundness (use classes and criteria found in "Rock Fragment – Roundness Table"), and Rock Fragment – Rupture Resistance.

KIND—Document the types of coarse fragments present (same options as "Rock & Other Fragments - Kind").

Kind	Code	Kind	Code
Includes all choices in Bedrock—Kind (except <i>Interbedded</i>), plus:			
calcrete (caliche) ¹	CA	metamorphic rocks ²	MMR
carbonate concretions	CAC	mixed rocks ³	MXR

² Soil Survey Division Staff, 1993, pp. 86-89.

Kind	Code	Kind	Code
carbonate nodules	CAN	ortstein fragments	ORF
carbonate rocks ²	CAR	petrocalcic fragments	PEF
charcoal	СН	petroferric fragments	TCF
cinders	CI	petrogypsic fragments	PGF
durinodes	DNN	plinthite nodules	PLN
duripan fragments	DUF	quartz	QUA
foliated metamorphic rocks ²	FMR	quartzite	QZT
gibbsite concretions	GBC	scoria	SCO
gibbsite nodules	GBN	sedimentary rocks ²	SED
igneous rocks ²	IGR	shell fragments	SHF
iron-manganese concretions	FMC	silica concretions	SIC
iron-manganese nodules	FMN	volcanic bombs	VB
ironstone nodules	FSN	volcanic rocks ²	VOL
lapilli	LA	wood	WO

¹ Fragments strongly cemented by carbonate; may include fragments derived from petrocalcic horizons.

 $^{^{\}rm 3}$ Numerous unspecified fragment lithologies are present, as in till or alluvium; not for use with residuum.

Surface Fragment	Co	de	Criteria: percentage	
Class ¹	Conv. ²	NASIS	of surface covered	
Stony or Bouldery	Class 1	%	0.01 to <0.1	
Very Stony, or Very Bouldery	Class 2	%	0.1 to <3	
Extremely Stony or Extremely Bouldery	Class 3	%	3 to <15	
Rubbly	Class 4	%	15 to <50	
Very Rubbly	Class 5	%	≥50 ³	

² Generic rock names may be appropriate for identifying fragments (e.g., a cobble) but are too general and should *not* be used to name Bedrock—Kind.

- ¹ This is also used to record large wood fragments (e.g., tree trunks) on organic soils, if the fragments are a management concern and appear to be relatively permanent.
- ² Historically called *Surface Stoniness* classes (now *Surface Fragment* classes). Use as a map unit phase modifier is restricted to stone-sized fragments or larger (>250 mm; Soil Survey Staff, 1951).
- ³ If the percentage of surface fragments is >80%, the fragments are considered to be a distinct, separate horizon (NSSH, Amendment #4; 1998).

DIAGNOSTIC HORIZONS or CHARACTERISTICS

Identify the **Kind** and **Upper** and **Lower Depths** of occurrence of soil taxonomic diagnostic horizons and characteristics (Soil Survey Staff, 2010); e.g., *mollic epipedon; 0-45 cm.* Multiple features per horizon can be recorded. (Called **Pedon Diagnostic Features** in NASIS.) Record **Kind**, **Thickness**, **Representative Value** (RV). **High Value** and **Low Value** can also be recorded.

KIND—(see definitions in current *Keys to Soil Taxonomy*)

Kind	Code	Kind	Code		
EPIPEDONS (Diagnostic Surface Horizons)					
anthropic	AN	mollic	МО		
folistic	FO	ochric	ОС		
histic	HI	plaggen	PL		
melanic	ME	umbric	UM		
DIAGNOSTIC SUBSURFACE HORIZONS					
agric	AG	natric	NA		
albic	AL	ortstein	OR		
argillic	AR	oxic	OX		
calcic	CA	petrocalcic	PE		
cambic	CM	petrogypsic	PG		
duripan	DU	placic	PA		
fragipan	FR	salic	SA		
glossic	GL	sombric	SO		
gypsic	GY	spodic	SP		
kandic	KA	sulfuric	SU		

Kind	Code	Kind	Code	
DIAGNOSTIC CHARACTERISTICS—MINERAL SOILS				
abrupt textural change	AC	gypsum accumulations	GA	
albic materials	AM	lamella/lamellae	LA	
albic materials, interfingering of	AI	lithic contact ¹	LC	
andic soil properties	AP	lithologic discontinuity	LD	
anhydrous conditions	AH	paralithic contact ¹	PC	
aquic conditions ¹	AQ	paralithic materials 1	PM	
artifacts	ART	permafrost ¹	PF	
cryoturbation ¹	CR	petroferric contact	TC	
densic contact ¹	DC	plinthite	PI	
densic materials ¹	DM	resistant minerals	RM	
durinodes	DN	slickensides	SS	
fragic soil properties	FP	spodic materials	SPM	
free carbonates	FC	sulfidic materials ¹	SM	
gelic materials ¹	GM	weatherable minerals	WM	
glacic layer ¹	GL			
DIAGNOSTIC CHARAC (also see ^{1s} above)	TERISTI	CS-ORGANIC SOILS		
fibric soil materials	FM	limnic materials:	LM	
hemic soil materials	НМ	coprogenous earth	CO	
humilluvic material	UM	diatomaceous earth	DI	
sapric soil materials	RM	marl	MA	
MISCELLANEOUS HOP	RIZON FE	ATURES/CONDITIONS	5	
anthric saturation ¹	AS	redox depletions with chroma 2 or less ¹	RD	
endosaturation ¹	EN	reduced matrix ¹	RX	
episaturation ¹	ED	salt accumulations	ST	
fibers	FI	secondary carbonates	SC	
n-value >0.7	NV	strongly contrasting particle-size class	SR	
redox concentrations ¹	RC	volcanic glass	VG	

- ¹ Diagnostic properties, materials, or conditions that can occur in either mineral or organic soils.
- ² "Secondary carbonates" replaces "soft, powdery lime." **NOTE:** Gilgai is no longer a diagnostic feature in soil taxonomy.

DEPTH—Document the zone of occurrence for a diagnostic horizon or property, as observed, by recording the **Top Depth** and **Bottom Depth** and specifying units; e.g., 22-39 cm.

SOIL TAXONOMY CLASSIFICATION—After completely describing the soil, classify the pedon as thoroughly as possible (to the lowest level). See most recent version of *Soil Taxonomy* and *Keys to Soil Taxonomy* for complete choice lists; e.g., *fine, mixed, active, mesic Typic Haplohumults*.

PARTICLE-SIZE CONTROL SECTION—Record the **Upper** and **Lower Depth** of the zone used as the basis for identifying the particle-size control section; e.g., *30-80 cm* (used to classify in soil taxonomy).

RESTRICTION

RESTRICTION - KIND—Identify any root-limiting/restrictive layers within the soil profile. Also record the **Upper** and **Lower Depth** of occurrence.

Kind	Code	Kind	Code
abrupt textural change	AC	paralithic bedrock	BPL
cemented horizon	СН	permafrost	PF
densic material	DM	petrocalcic	PE
densic bedrock	BD	petroferric	TC
duripan	DU	petrogypsic	PG
fragipan	FR	placic	PA
human-manufactured materials	HF	plinthite	PI
lithic bedrock	BL	salic	SA
natric	NA	strongly contrasting textural stratification	SR
ortstein	OR	sulfuric	SU

RESTRICTION - HARDNESS—Estimate the hardness of a root-restrictive layer. (Use *Rupture Resistance - Cementation Classes*.)

REFERENCES

Bureau of Chemistry and Soils. 1937. Soil survey manual. USDA Misc. Publ. 274. Washington, DC.

Cruden, D.M., and D.J. Varnes. 1996. Landslide types and processes. *In* A.K. Turner and R.L. Schuster (ed.) Landslides: Investigation and mitigation. Spec. Rep. 247, Transportation Research Board, National Research Council. National Academy Press, Washington, DC.

International Organization for Standards. 2012a (or current date). (http://www.iso.org/iso/country_codes/iso_3166_code_lists.htm) Note: Free versions at http://en.wikipedia.org/wiki/ISO_3166-1 for country codes.

International Organization for Standards. 2012b (or current date). (http://www.iso.org/iso/country_codes/iso_3166-2_database.htm) Note: Free versions at http://en.wikipedia.org/wiki/ISO_3166-1_ alpha-2 for administrative subdivisions within country.

National Institute of Standards and Technology. 1990. Counties and equivalent entities of the United States, its possessions and associated areas. U.S. Dep. Commerce, Federal Information Processing Standards Publ. (FIPS PUB 6–4).

Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. USDA, Agric. Handb. 296. U.S. Gov. Print. Office, Washington, DC.

Natural Resources Conservation Service. 2012 (or most current date) [Online]. Complete PLANTS checklist. (The national PLANTS database.) USDA, National Plant Data Center, Baton Rouge, LA (http://plants.usda.gov).

Neuendorf, K., J.P. Mehl, and J.A. Jackson. 2005. Glossary of geology, 5th ed. Am. Geol. Inst., Alexandria, VA.

Public Building Service. Sept. 1996. Worldwide geographic location codes. U.S. Gen. Serv. Admin., Washington, DC.

Schoeneberger, P.J., D.A. Wysocki, E.C. Benham, and W.D. Broderson. 1998. Field book for describing and sampling soils (ver. 1.1). USDA, NRCS, National Soil Survey Center, Lincoln, NE.

Schoeneberger, P.J., D.A. Wysocki, E.C. Benham, and W.D. Broderson (ed.) 2002. Field book for describing and sampling soils (ver. 2.0). USDA, NRCS, National Soil Survey Center, Lincoln, NE.

Soil Conservation Service. 1981. Land resource regions and major land resource areas of the United States. USDA, Agric. Handb. 296. U.S. Gov. Print. Office, Washington, DC.

Soil Survey Division Staff. 1993. Soil survey manual. USDA, SCS, Agric. Handb. 18. U.S. Gov. Print. Office, Washington, DC.

Soil Survey Staff. 1951. Soil survey manual. USDA, SCS, Agric. Handb. 18. U.S. Gov. Print. Office, Washington, DC.

Soil Survey Staff. 1962. Identification and nomenclature of soil horizons. Supplement to Agric. Handb. 18, Soil Survey Manual (replacing pages 173–188). USDA, SCS. U.S. Gov. Print. Office, Washington, DC.

Soil Survey Staff. 1983. National soil survey handbook, part 603, p. 45. USDA, SCS. U.S. Gov. Print. Office, Washington, DC.

Soil Survey Staff. 2010. Keys to soil taxonomy, 11th ed. USDA, NRCS. U.S. Gov. Print. Office, Washington, DC.

Soil Survey Staff. 2011. Soil survey laboratory information manual. Soil Surv. Invest. Rep. 45, ver. 2.0. USDA, NRCS, National Soil Survey Center, Lincoln, NE (ftp://ftp-fc.sc.egov.usda.gov/NSSC/Lab Info Manual/SSIR 45.pdf).

Soil Survey Staff. 2012a. Data dictionary. *In* National soil information system (NASIS), release 6.2 [Online]. USDA, NRCS, National Soil Survey Center, Lincoln, NE.

Soil Survey Staff. 2012b. Glossary of landform and geologic terms. Part 629, National soil survey handbook (NSSH) [Online]. USDA, NRCS, National Soil Survey Center, Lincoln, NE.

Soil Survey Staff. 2012c. National soil information system (NASIS), release 6.2 [Online]. USDA, NRCS, Lincoln, NE.

Soil Survey Staff. 2012d. National soil survey handbook (NSSH) [Online]. USDA, NRCS, National Soil Survey Center, Lincoln, NE (http://soils.usda.gov/technical/handbook/).

Wysocki, D.A., P.J. Schoeneberger, D. Hirmas, and H.E. LaGarry. 2012. Geomorphology of soil landscapes. *In P.M.* Huang et al. (ed.) Handbook of soil science: Properties and processes, 2nd ed. CRC Press, Taylor and Francis Group, LLC, Boca Raton, FL. ISBN: 978-1-4398-0305-9.

Wysocki, D.A., P.J. Schoeneberger, and H.E. LaGarry. 2000. Geomorphology of soil landscapes. *In* M.E. Sumner (ed.) Handbook of soil science. CRC Press, LLC, Boca Raton, FL. ISBN: 0–8493–3136–6.

PROFILE/PEDON DESCRIPTION

D.A. Wysocki, P.J. Schoeneberger, J.V. Chiaretti, and E.C. Benham, NRCS, Lincoln, NE

OBSERVATION METHOD

For each layer, record the observation method by which the primary observations are made. (Common sampling devices are included in the "Soil Sampling" section.) Describe **Kind** and **Relative Size**; e.g., bucket auger, 3"; trench, $2 \times 4 m$.

KIND (called Observation_Method in NASIS)—

Kind ¹	Code	Criteria			
"Disturbed" Samples					
bucket auger	ВА	Open, closed, sand, mud buckets (5- 12 cm diam.)			
dutch or mud auger	DA	An open, strap-sided bucket (5-10 cm diam.) with a sharpened outer edge and a screw tip with a partial twist			
screw auger	SA	External thread hand augers, power (flight) auger (2-30 cm diam.)			
"Undisturbed" S	amples				
Macaulay sampler	MC	A half-cylinder, "gouge" sampler with a hinged door that's pushed in and partially rotated to obtain a sample of soft sediments (e.g., organics)			
push tube	PT	Handheld or hydraulic, hollow stem (2-10 cm diam.)			
shovel "slice" 2	SS	Undisturbed block extracted with a shovel (sharpshooter: 20 x 40 cm)			
vibracore tube	VT	A hollow tube (4-8 cm diam.) vibrated into wet sand, silt, or organics			
WALL/FLOOR—"	Undist	urbed" Area or Exposure			
small pit	SP	Hand or machine dug (<1 m x 2 m)			
trench	TR	Hand or machine dug (>1 m x 2 m)			
beveled cut	ВС	Roadcuts graded to <60% slope			
cut	CU	Roadcut, streambank, medium borrow pit wall >60% slope (>4 m, <33 m)			
large open pit or quarry	LP	Large borrow pit or quarry with large or irregular banks (>33 m)			

Kind ¹	Code	Criteria		
Other Observations				
dive	DV	A visual onsite assessment performed underwater		
video	VO	Electronically recorded photo or sequential digital images of a subaqueous setting/site		

¹ Refer to **Examples of Common Soil-Sampling Equipment** (p. 8–5) and **Bucket Auger Types** (p. 8–6) for examples of field equipment.

RELATIVE SIZE (of exposure) (called **Relative_Exposure_UOM** in NASIS)—Record the approximate size (scale) of the exposure observed. Use cm for "Drill Cores" and m for "Wall/Floor" observations; e.g., bucket auger, 3 cm; trench wall, 3 m. (**NOTE:** Common size range for each method is indicated in the "Criteria" column of the "Observation Method – Kind" table. These dimensions are approximate; not intended to be precise.)

Relative Size of Exposure Observed	Code	Criteria
centimeters	cm	
meters	m	

HORIZON AND LAYER DESIGNATIONS

Use capital letters to identify master horizons; e.g., A, B. Use suffixes (lowercase letters) to denote additional horizon characteristics or features; e.g., Ap, Btk. (For more detailed criteria, see the "Soil Taxonomy" section [p. 4–1]; for complete definitions, see Keys to Soil Taxonomy [Soil Survey Staff, 2010].) Label a horizon (assign horizon designation) only after all morphology is recorded.

MASTER AND TRANSITIONAL HORIZONS AND LAYERS ¹— Identify the master horizons of the soil profile.

Horizon	Criteria (expanded details listed in "Soil Taxonomy" section)	
0	Organic soil materials (not limnic).	
А	Mineral; organic matter (humus) accumulation, loss of Fe, Al, clay.	

² Field method used for hydric soil investigations.

Horizon	Criteria
	(expanded details listed in "Soil Taxonomy" section)
AB or AE or AC	Dominantly A horizon characteristics but also contains some B, E, or C horizon attributes.
A/B or A/E or A/C	Discrete, intermingled bodies of A and B, E, or C material; majority is A material.
E	Mineral; some loss of Fe, Al, clay, or organic matter.
EA or EB or EC	Dominantly E horizon characteristics but also contains some A, B, or C horizon attributes.
E/A or E/B	Discrete, intermingled bodies of E and A or B horizon material; majority of horizon is E material.
E and Bt B and E	Thin, heavier textured lamellae (Bt) within a dominantly E horizon (or thin E within dominantly B horizon).
BA or BE or BC	Dominantly B characteristics but contains A, E, or C horizon attributes.
B/A or B/E or B/C	Discrete, intermingled bodies of B and A, E, or C material; majority of horizon is B material.
В	Subsurface accumulation of clay, Fe, Al, Si, humus, CaCO ₃ , CaSO ₄ ; or loss of CaCO ₃ ; or accumulation of sesquioxides; or subsurface soil structure.
CB or CA	Dominantly C horizon characteristics but also contains attributes of the B or A horizon.
C/B or C/A	Discrete, intermingled bodies of C and B or A material; majority of horizon is C material.
С	Little or no pedogenic alteration, unconsolidated earthy material, soft bedrock.
L	Limnic soil materials.
w	A layer of liquid water (W) or permanently frozen water (Wf) within or beneath the soil (excludes water/ice above soil).
М	Root-limiting subsoil layers of human-manufactured materials.
R	Bedrock, strongly cemented to indurated.

 $^{^{1}}$ See "Soil Taxonomy" (p. 4–6) for older horizon nomenclature.

² Soil Survey Staff, 2010.

HORIZON SUFFIXES—Historically referred to as "Horizon Subscripts," "Subordinate Distinctions," ¹ "Horizon_Designation_ Suffix" in NASIS, and as "Suffix Symbols" in soil taxonomy ². (Historical designations and conversions are shown in the "Soil Taxonomy" section.)

Horizon Suffix	Criteria ² (expanded details listed in "Soil Taxonomy" section)
а	Highly decomposed organic matter (used only with O)
aa ³	(proposed) Accumulation of anhydrite (CaSO ₄)
b	Buried genetic horizon (not used with C horizons)
С	Concretions or nodules
со	Coprogenous earth (used only with L)
d	Densic layer (physically root restrictive)
di	Diatomaceous earth (used only with L)
е	Moderately decomposed organic matter (used only with O)
f	Permanently frozen soil or ice (permafrost); continuous subsurface ice; not seasonal ice
ff	Permanently frozen soil ("Dry" permafrost); no continuous ice; not seasonal ice
g	Strong gley
h	Illuvial organic matter accumulation
i	Slightly decomposed organic matter (used only with O)
j	Jarosite accumulation
jj	Evidence of cryoturbation
k	Pedogenic CaCO ₃ accumulation (<50% by vol.)
kk	Major pedogenic CaCO ₃ accumulation (>50% by vol.)
m	Continuous cementation (pedogenic)
ma	Marl (used only with L)
n	Pedogenic, exchangeable sodium accumulation
0	Residual sesquioxide accumulation (pedogenic)
р	Plow layer or other artificial disturbance
q	Secondary (pedogenic) silica accumulation
r	Weathered or soft bedrock
s	Illuvial sesquioxide and organic matter accumulation
se	Presence of sulfides (in mineral or organic horizons)
SS	Slickensides

Horizon Suffix	Criteria ² (expanded details listed in "Soil Taxonomy" section)
t	Illuvial accumulation of silicate clay
u	Presence of human-manufactured materials (artifacts)
v	Plinthite
w	Weak color or structure within B (used only with B)
х	Fragipan characteristics
У	Accumulation of gypsum
уу	Dominance of gypsum (≈≥50% by vol.)
z	Pedogenic accumulation of salt more soluble than gypsum

¹ Soil Survey Division Staff, 1993.

OTHER HORIZON MODIFIERS—

Numerical Prefixes (2, 3, etc.)—Used to denote lithologic discontinuities. By convention, 1 is understood but is *not* shown; e.g., *A, E, Bt1, 2Bt2, 2BC, 3C1, 3C2*. (*NOTE:* Discontinuities have important implications for site history, internal water flow, and soil interpretations [see additional discussion under "Subaqueous Soils," p. 2–103]).

Numerical Suffixes—Used to denote subdivisions within a master horizon; e.g., *A1*, *A2*, *E*, *Bt1*, *Bt2*, *Bt3*, *Bs1*, *Bs2*.

The Prime (´) (Called **horz_desgn_master_prime** in NASIS)—Used to indicate the recurrence of identical horizon descriptor(s) in a profile or pedon; e.g., *A, E, Bt, E´ Btx, C*. The prime does not indicate either buried horizons (which are denoted by a lowercase "b"; e.g., *Btb*) or lithologic discontinuities (denoted by numerical prefixes). In NASIS, up to five primes can be used to denote subsequent occurrences of horizon descriptors in a pedon; e.g., *A, E, Bt, E´, Btx, E″, Cd*.

The Caret (^) symbol—Used as a prefix to master horizons to indicate human-transported material; e.g., **^A**, **^Bw**, *C*. (The caret symbol can be applied to all master horizon combinations *except* B and E, B/E, E and B, E/B, EC, L, M, R, or W.)

² Soil Survey Staff, 2010.

³ Personal communication with Soil Survey Standards Staff, 2012.

HORIZON DEPTH—Record the depths of both the upper and lower boundary for each horizon; specify units (centimeters preferred); e.g., 15-24 cm. Begin (zero datum) at the ground surface ¹, which is not necessarily the mineral surface. (**NOTE:** Prior to 1993, the zero datum was at the top of the mineral surface, except for thick organic layers, such as peat or muck. Organic horizons were recorded as above and mineral horizons recorded as below, relative to the mineral surface.)

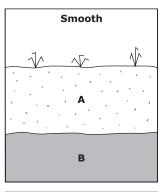
Example: Zero Datum for the same horizons

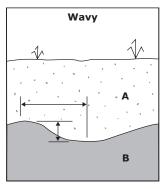
At Present: Oe 0 - 5 cm, A 5 - 15 cm, E 15 - 24 cm Before 1993: Oe 5 - 0 cm, A 0 - 10 cm, E 10 - 19 cm

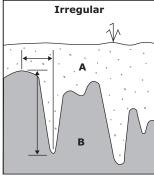
- ¹ Conventionally, the "soil surface" is considered to be the top boundary of the first layer that can support plant/root growth. This equates to:
 - a) (for bare mineral soil) the air/fine earth interface;
 - b) (for vegetated mineral soil) the upper boundary of the first layer that can support root growth;
 - c) (for organic mantles) the same as b) but excludes freshly fallen plant litter and includes litter that has compacted and begun to decompose; e.g., Oi horizon;
 - d) (for submerged soil) the same as b) but refers to the water/ soil contact and extends out from the shore to the limit of rooted plants;
 - e) (for rock mulches; e.g., desert pavement, scree) the same as a) unless the areal percentage of surface rock coverage is greater than 80%, the top of the soil is the mean height of the top of the rocks.

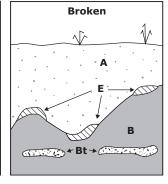
HORIZON THICKNESS—Record the average thickness and range in thickness of horizon; e.g., 15 cm (12-21 cm). **NOTE:** Used primarily for irregular soil horizons/layers.

HORIZON BOUNDARY—Record **Distinctness** and **Topography** of horizon boundaries. (In NASIS, Distinctness is called Boundary Distinctness). Distinctness is the vertical distance through which the bottom of one horizon grades (transitions) into another. Topography is the lateral undulation and continuity of the boundary between horizons. A complete example is *clear*, wavy, or *C*, *W*.

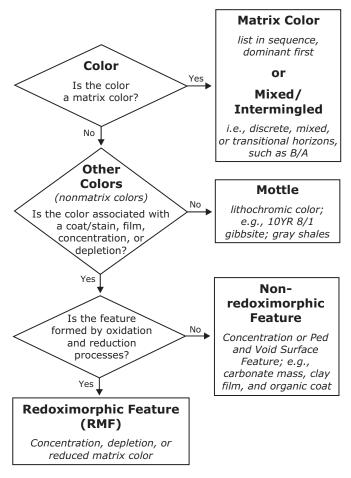

Distinctness—The vertical distance (thickness) over which a horizon transitions to the top of the next.


Distinctness Class	Code	Criteria: transitional zone thickness
Very Abrupt	V	< 0.5 cm
Abrupt	Α	0.5 to < 2 cm


Distinctness Class	Code	Criteria: transitional zone thickness
Clear	С	2 to < 5 cm
Gradual	G	5 to < 15 cm
Diffuse	D	≥ 15 cm


 $\begin{tabular}{ll} \textbf{Topography-} \textbf{Cross-sectional shape of the contact between horizons.} \end{tabular}$

Topography	Code	Criteria	
Smooth	S	Planar with few or no irregularities	
Wavy	W	Width of undulation is > than depth	
Irregular	I	Depth of undulation is > than width	
Broken	В	Discontinuous horizons; discrete but intermingled, or irregular pockets	



DECISION FLOWCHART FOR DESCRIBING SOIL COLORS—Use the following chart to decide how and with which data elements the color patterns of a soil or soil feature should be described.

NOTE: Reduced matrix color is described as a matrix color and in the associated "(Soil Color) - Location or Condition Described Table."

(SOIL) MATRIX COLOR—Record the Color(s), Moisture State, and Location or Condition.

(Soil) Matrix Color - (Soil) Color—Identify the soil matrix color(s) with Munsell® notation (**Hue, Value, Chroma**); e.g., 10YR 3/2. For neutral colors, chroma is zero but not shown; e.g., N 4/. For other gley colors, use appropriate notation (see Munsell® gley pages; e.g., 5GY 6/1). For narrative descriptions (soil survey reports, Official Soil Series Descriptions), both the verbal name and the Munsell® notation are given; e.g., *dark brown*, 10YR 3/3.

(Soil) Matrix Color - Moisture State—Record the general moisture condition of the soil described; e.g., *moist*. (Not to be confused with Soil Water State.)

Moisture State	Code	
Dry	D	
Moist	М	

(Soil) Matrix Color - Location or Condition—Record pertinent circumstances of the color described (called color_physical_state in NASIS) in Notes column.

Color Location or Condition	Code
COLOR LOCATION	
interior (within ped)	IN
exterior (ped surface)	EX
COLOR, MECHANICAL CONDITION	
broken face	BF
crushed	CR
rubbed (used only with organic matter)	RU
COLOR, REDOXIMORPHIC CONDITION	
oxidized ¹	OX
reduced ²	RE
COLOR, INTRICATE MULTICOLORED PATTERN	
variegated ³	VA

¹ Soil that is reduced in situ but has been extracted and exposed to the atmosphere (air) and has oxidized (changed color). A mineral example is vivianite. NOTE: Not used for soil that is normally oxidized in place. For indicators of reduction, see Redoximorphic Features.

- ² Color determined immediately after extraction from a reduced environment and prior to oxidation; e.g., FeS. Also used to record Reduced Matrix.
- ³ Color pattern is too intricate (banded or patchy) with numerous diverse colors to credibly identify dominant matrix colors (e.g., foliated felsic crystalline saprolite).

REDOXIMORPHIC FEATURES—RMFs (DISCUSSION)

Redoximorphic features (RMFs) are color patterns in a soil caused by loss (depletion) or gain (concentration) of pigment compared to the matrix color, formed by oxidation/reduction of Fe and/or Mn coupled with their removal, translocation, or accrual; or a soil matrix color controlled by the presence of Fe⁺². The composition and process of formation for a soil color or color pattern must be known or inferred before it can be described as an RMF. Because of this inference, RMFs are described separately from mottles, other concentrations (e.g., *salts*), or compositional features (e.g., *clay films*). RMFs generally occur in one or more of these settings:

- a. In the soil matrix, unrelated to surfaces of peds or pores.
- b. On or beneath the surfaces of peds.
- c. As filled pores, as linings of pores, or beneath the surfaces of pores.

RMFs include the following:

- Redox Concentrations—Localized zones of enhanced pigmentation due to an accrual of, or a phase change in, the Fe-Mn minerals; or physical accumulations of Fe-Mn minerals. NOTE: Iron concentrations may be either Fe⁺³ or Fe⁺². Types of redox concentrations are:
 - a. Masses—Noncemented bodies of enhanced pigmentation that have a redder or blacker color than the adjacent matrix.
 - b. Nodules or Concretions—Cemented bodies of Fe-Mn oxides.
- 2. Redox Depletions—Localized zones of "decreased" pigmentation that are grayer, lighter, or less red than the adjacent matrix. Redox depletions include, but are not limited to, what were previously called "low-chroma mottles" (chroma ≤2). Redox depletions of chroma ≤2 formed through reduction and oxidation processes are strong field indicators of saturation. Types of redox depletions are:
 - a. **Iron Depletions**—Localized zones that have one or more of the following: a yellower, greener, or bluer hue; a higher value: or a lower chroma than the matrix color. Color value is

- normally ≥4. Loss of pigmentation results from the loss of Fe and/or Mn. Clay content equals that in the matrix.
- b. Clay Depletions—Localized zones that have either a yellower, greener, or bluer hue, a higher value, or a lower chroma than the matrix color. Color value is normally ≥4. Loss of pigmentation results from a loss of Fe and/or Mn and clay. Silt coats or skeletans commonly form as depletions but can be nonredox concentrations if deposited as flow material in pores or along faces of peds.
- 3. **Reduced Matrix**—A soil horizon that has an in situ matrix chroma ≤ 2 due to the presence of Fe⁺². Color becomes redder or brighter (oxidizes) when the sample is exposed to air. The color change usually occurs within 30 minutes. A 0.2% solution of α, α' -dipyridyl dissolved in 1N ammonium acetate (NH₄OAc) pH 7 can verify the presence of Fe⁺² in the field (Childs, 1981).

NOTE: RMF alters the traditional sequence for describing soil color (see the "Decision Flowchart for Describing Colors for Soil Matrix and Soil Features"). RMFs are described separately from other color variations or concentrations. Mottles (color variations *not* due to loss or accrual of Fe-Mn oxides; e.g., variegated weathered rock) are still described under **Soil Color**. A reduced matrix is recorded as an RMF and as "reduced" in **Soil Color - Location** or **Condition Described**.

Record **Kind**, **Quantity** (percent of area covered), **Size**, **Contrast**, **Color**, **Moisture State**, **Shape**, **Location**, **Hardness**, and **Boundary**. A complete example is: *common*, *medium*, *prominent*, *black iron-manganese nodules*, *moist*, *spherical*, *in the matrix*, *weakly cemented*, *sharp* or *c*, *2*, *p*, *5YR 2.5/1*, *FMM*, *M*, *S*, *MAT*, *w*, *s*. At present, relict RMFs, as supported by geomorphic setting, water table data, etc., are recorded as "relict RMFs" (include horizons and depths) under **Miscellaneous Field Notes**.

REDOXIMORPHIC FEATURES - KIND-

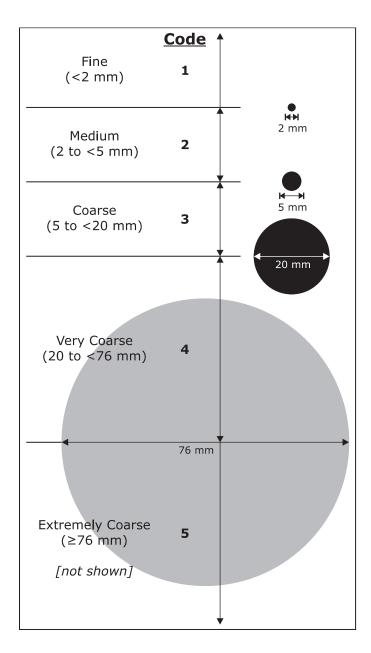
Kind	Code	Kind	Code	
REDUCED MATRIX (chroma ≤2 primarily from Fe ⁺²)				
reduced matrix	RMX			
REDOX DEPLETIONS	(loss of	pigment or material)		
clay depletions	CLD	iron depletions	FED	
REDOX CONCENTRAT material)	REDOX CONCENTRATIONS (accumulated pigment, material)			
Masses 1 (noncement	ted)			
iron (Fe ⁺²) ²	F2M	jarosite	JAM	
iron (Fe ⁺³) ^{3, 4, 5}	F3M	manganese 4, 5	MNM	
iron-manganese 3, 4, 5	FMM			
Nodules 1 (cemented	; no laye	ers, crystals not visible	at 10X)	
ironstone	FSN	jarosite	JAN	
iron-manganese 4	FMN	plinthite	PLN	
Concretions ¹ (cemented; distinct layers, crystals not visible)				
iron-manganese ⁴ FMC			FMC	
Surface Coats/Films or Hypocoats				
manganese (mangans: films)	manganese (mangans: flat black, very thin, exterior films)			
ferriargillans (Fe ⁺³ stained clay film) FEF			FEF	

¹ See discussion under **Concentrations** for definitions.

² A concentration of reduced iron Fe⁺²; e.g., FeS.

³ A concentration of oxidized iron Fe⁺³; e.g., *hematite* (formerly described as *reddish mottles*).

- ⁴ Iron and Mn commonly occur in combination, and field identification of distinct phases is difficult. Use *Mn masses* only for those that are at least *Slightly Effervescent* with H₂O₂. Describe nodules and concretions as *iron-manganese* unless colors are unambiguous.
- ⁵ Suggested color guidelines for field description of Fe vs. Mn masses:


Color of RMF or Concentration		Dominant Composition
Value Chroma		
≤2	≤2	Mn
>2 and ≤4	>2 and ≤4	Fe and Mn
>4	>4	Fe

REDOXIMORPHIC FEATURES - QUANTITY (Percent of Area Covered)—See graphics for **% of Area Covered** (2, 20%) beginning on p. 7–1.

Class	Code		Criteria: percent of
Class	Conv.	NASIS	surface area covered
Few	f	#	< 2
Common	С	#	2 to < 20
Many	m	#	≥ 20

REDOXIMORPHIC FEATURES - SIZE—See size class graphic on next page.

Size Class	Code	Criteria
Fine	1	< 2 mm
Medium	2	2 to < 5 mm
Coarse	3	5 to < 20 mm
Very Coarse	4	20 to < 76 mm
Extremely Coarse	5	≥ 76 mm

REDOXIMORPHIC FEATURES - CONTRAST—Record the color difference between the RMF and the dominant matrix color; e.g., *Prominent* or *p*. Use this table or the following chart to express the difference. (Also used for **Concentrations** and **Mottles**.)

Contrast Class	Code		Difference in Color Between Matrix and RMF (Δ means "difference between")					
		Hue (h)		Value (v)		Chroma (c)		
Faint ¹	F	$\Delta h = 0;$		∆v ≤ 2	and	Δc ≤ 1		
Fallic -	-	Δh = 1;		Δv ≤ 1	and	Δc ≤ 1		
		Δh = 2;		$\Delta v = 0$	and	$\Delta c = 0$		
		$\Delta h = 0;$		∆v ≤ 2	and	$\Delta c > 1 \text{ to } < 4$		
			or	$\Delta v > 2 \text{ to } < 4$	and	Δc < 4		
Distinct ¹	D	Δh = 1;		Δv ≤1	and	$\Delta c > 1 \text{ to } < 3$		
DISCINCL 1			or	$\Delta v > 1 \text{ to } < 3$	and	Δc < 3		
		$\Delta h = 2;$		$\Delta v = 0$	and	$\Delta c > 0 \text{ to } < 2$		
			or	$\Delta v > 0$ to < 2	and	∆c < 2		
Prominent 1	Р	$\Delta h = 0;$		∆v ≥ 4	or	Δc ≥ 4		
		Δh = 1;		$\Delta v \ge 3$	or	Δc ≥ 3		
		$\Delta h = 2;$		$\Delta v \ge 2$	or	$\Delta c \ge 2$		
		Δh ≥ 3;						

¹ If compared colors have both a value ≤3 and a chroma of ≤2, the contrast is Faint, regardless of hue differences.

Tabular List for Determination of Color Contrast

Hues are the same ($\Delta h = 0$)

Δ Value	Δ Chroma	Contrast
0	≤1	Faint
0	7	Distinct
0	3	Distinct
0	54	Prominent
1	<1	Faint
1	2	Distinct
1	ε	Distinct
1	54	Prominent

7
<u> </u>
u =
2
7
, P
щe
ō
nes
-

,	Contrast	Faint	Distinct	Prominent	Faint	Distinct	Prominent	Distinct	Distinct	Prominent	Prominent
` _ ` _	Δ Chroma	1 ≥ 1	2	× 3	1 ≥ 1	2	× 3	<1	2	>3	ı
	∆ Value	0	0	0	1	1	1	2	2	2	>3

Hues differ by 2 ($\Delta h = 2$) ¹

Δ Value	Δ Chroma	Contrast
0	0	Faint
0	1	Distinct
0	≥2	Prominent
1	<1 <	Distinct
1	≥2	Prominent
>2	I	Prominent

Hues differ by 3 or more (Δ h \geq 3) ¹

Δ Value	∆ Chroma	Contrast
Color contrast is	rast is	Prominent
Prominent	Prominent, except for	
low chrom	ow chroma and value $^{\it I}$	

¹ Exception: If both colors have a value ≤3 and a chroma ≤2, the color contrast is *Faint*, regardless of hue differences.

Prominent Prominent

۷۱ 4 I

۷۱ 4

Distinct

Prominent

Distinct Distinct

Distinct

m

Distinct

Faint

VI

2 2 2 2

REDOXIMORPHIC FEATURES - COLOR—Use standard Munsell® notation from the "Soil Color" section; e.g., *light brownish gray* or 2.5Y 6/2.

REDOXIMORPHIC FEATURES - MOISTURE STATE—Describe the moisture condition of the redoximorphic feature (use "Soil Color - Moisture State" table); e.g., *Moist (M)*.

Moisture State	Code
Dry	D
Moist	М

REDOXIMORPHIC FEATURES - SHAPE—Describe the shape of the redoximorphic feature (use "Concentrations - Shape" table); e.g., *Spherical* (S).

REDOXIMORPHIC FEATURES - LOCATION—Describe the location(s) of the redoximorphic feature within the horizon (use "Concentrations - Location" table); e.g., *In the matrix around depletions (MAD)*.

REDOXIMORPHIC FEATURES - HARDNESS—Describe the relative force required to crush the redoximorphic feature (use the same classes and criteria as the "Rupture Resistance for Blocks/Peds/Clods-Cementation" column); e.g., Strongly Cemented (ST).

REDOXIMORPHIC FEATURES - BOUNDARY—The gradation between the redoximorphic feature and the adjacent matrix (use "Concentrations - Boundary" table; p. 2–27); e.g., *Sharp (S)*.

Describe mottles (areas that differ from the matrix color). Mottles commonly have a lithomorphic or lithochromic (e.g., gray shale) geologic origin rather than pedogenic. Mottles do not indicate existing redox conditions. Describe *Redoximorphic Features* and *Ped and Void Surface Features* (e.g., clay films) separately from mottles. Record **Quantity Class** (in NASIS, estimate "Percent of Horizon Area Covered"), **Size, Contrast, Color**, and **Moisture State** (Dor M). **Shape** is an optional descriptor. A complete example is: *common* (15%), *medium*, *distinct*, *reddish yellow*, *moist*, *irregular mottles*; or c, 2, d, 7.5YR 7/8, M, I mottles.

MOTTLE QUANTITY (Percent of Area Covered)—See graphics for **% of Area Covered** (2, 20%), p. 7–1 to p. 7–9.

Quantity	Co	ode	Criteria: range in percent
Class	Conv.	NASIS	Criteria: range in percent
Few	f	%	<2% of surface area
Common	С	%	2 to <20% of surface area
Many	m	%	≥20% of surface area

MOTTLE SIZE—Size refers to dimensions as seen on a plane. If mottle length is <3 times the mottle width, record the greater of the two. If length is >3 times width, record the smaller dimension. (See graphic on p. 2–14.)

Size Class	Code	Criteria
Fine	1	0.25 to < 2 mm
Medium	2	2 to < 5 mm
Coarse	3	5 to < 20 mm
Very Coarse	4	20 to < 76 mm
Extremely Coarse	5	≥ 76 mm

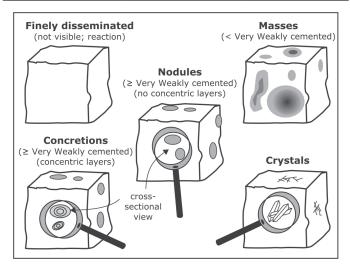
MOTTLE CONTRAST—Use **Redoximorphic Feature - Contrast** criteria and table (p. 2–15).

MOTTLE COLOR—Use standard Munsell® notation of hue, value, and chroma; e.g., 5YR 4/4 (for reddish brown).

MOTTLE MOISTURE STATE—Record moisture condition of mottle (don't confuse with soil water state); e.g., *moist* (*M*) or *dry* (*D*).

MOTTLE SHAPE (optional)—Use "Concentrations - Shape" table; e.g., *irregular*.

MOTTLE LOCATION (optional)—Use (Soil) Matrix Color - Location or Condition table; e.g., interior.


CONCENTRATIONS (DISCUSSION)

Concentrations are soil features that form by accumulation of material during pedogenesis. Dominant processes involved are chemical dissolution/precipitation; oxidation and reduction; and physical and/or biological removal, transport, and accrual. Types of concentrations (modified from Soil Survey Division Staff, 1993) include the following:

- Finely Disseminated Materials are physically small precipitates (e.g., salts, carbonates) dispersed throughout the matrix of a horizon. The materials cannot be readily seen (10X lens) but can be detected by a chemical reaction (e.g., effervescence of CaCO, by HCI) or other proxy indicators.
- Masses are noncemented ("Rupture Resistance-Cementation Class" of Extremely Weakly Cemented or less) bodies of accumulation of various shapes that cannot be removed as discrete units and do not have a crystal structure that is readily discernible in the field (10X hand lens). This includes finely crystalline salts and Redox Concentrations that do not qualify as nodules or concretions.
- Nodules are cemented (Very Weakly Cemented or greater) bodies of various shapes (commonly spherical or tubular) that can be removed as discrete units from soil and don't slake. Crystal structure is not discernible with a 10X hand lens.
- 4. Concretions are cemented bodies (Very Weakly Cemented or greater) that don't slake and are similar to nodules, except for the presence of visible concentric layers of material around a point, line, or plane. The terms "nodule" and "concretion" are not interchangeable.
- Crystals are macro-crystalline forms of relatively soluble salts (e.g., halite, gypsum, carbonates) that form in situ by precipitation from soil solution. The crystalline shape and structure are readily discernible in the field with a 10X hand lens.
- Biological Concentrations are discrete bodies accumulated by a biological process (e.g., fecal pellets) or pseudomorphs of biota or biological processes (e.g., insect casts) formed or deposited in soil.
- 7. Inherited Minerals are field-observable particles (e.g., mica flakes) or aggregates (e.g., glauconite pellets) that impart distinctive soil characteristics and formed by geologic processes in the original parent material and subsequently inherited by the soil rather than formed or concentrated by pedogenic processes. Included here due to historical conventions; not all concentrations descriptors may apply (e.g., shape, color).

General conventions for documenting various types of concentrations:

Type of Distribution	Documentation	Examples
Finely Disseminated (discrete bodies not visible)	Horizon Suffix, Concentrations (finely disseminated)	Carbonates (none) Salts (Bz, Bn)
Masses, Nodules,	Redoximorphic	Mn nodules
Concretions, Crystals,	Features, or	Fe concretions
Biological Features	Concentrations	Insect casts
Continuous	Terms in Lieu of	Duripan
Cementation	Texture	Petrocalcic

CONCENTRATIONS

Record **Kind**, **Quantity** (percent of area covered), **Size**, **Contrast**, **Color**, **Moisture State**, **Shape**, **Location**, **Hardness**, and **Boundary**. A complete example is: *many*, *fine*, *prominent*, *white*, *moist*, *cylindrical*, *carbonate nodules in the matrix*, *moderately cemented*, *clear*, or *m*, 1, *p*, 10YR 8/1, M, c, CAN, MAT, M, c.

CONCENTRATIONS - KIND—Identify the composition and the physical state of the concentration in the soil. **NOTE:** Table subheadings (e.g., *Masses*) are a guide to various physical states of materials. Materials with similar or identical chemical composition may occur in multiple physical states (under several subheadings); e.g., *salt masses* and *salt crystals*.

CONCENTRATIONS (NONREDOX) (accumulations of material)			
Kind	Code	Kind	Code
FINELY DISSEMINATED (bodies not visible by unaided eye; detectable by chemical tests, e.g., Effervescence)			
finely disseminated carbonates	FDC	finely disseminated salts	FDS
finely disseminated gypsum	FDG		
MASSES (noncemented;	crystals	not visible with 10X hand	lens)
barite masses (BaSO ₄)	BAM	gypsum masses (CaSO ₄ • 2H ₂ O) crystals not visible	GYM
carbonate masses (Ca, Mg, NaCO ₃)	CAM	salt masses (NaCl, Na-Mg sulfates)	SAM
clay bodies	СВМ	silica masses	SIM
gypsum crystal clusters (nests) very fine crystals	GNM		
NODULES (cemented; no	ncrystal	lline at 10X, no layers)	
carbonate nodules ¹	CAN	opal	OPN
durinodes (SiO ₂)	DNN	ortstein nodules	ORT
gibbsite nodules (Al_2O_3)	GBN		
CONCRETIONS (cemented; noncrystalline at 10X, distinct layers)			
carbonate concretions 1	CAC	silica concretions	SIC
gibbsite concretions	GBC	titanium oxide concretions	TIC
CRYSTALS (crystals visible with 10X hand lens or larger)			
barite crystals (BaSO ₄)	BAX	salt crystals (NaCl, Na-Mg sulfates)	SAX
calcite crystals (CaCO ₃)	CAX	satin spar crystals (CaSO₄ • 2H₂O)	SSC
gypsum crystals (unspecified; CaSO ₄ • 2H ₂ 0)	GYX	selenite crystals (CaSO ₄ • 2H ₂ O)	SEC

CONCENTRATIONS (NONREDOX) (accumulations of material)			
Kind	Code	Kind	Code
BIOLOGICAL CONCENTRATIONS (entities, byproducts, or pseudomorphs)			
diatoms ²	DIB	root sheaths	RSB
fecal pellets	FPB	shell fragments (terrestrial or aquatic)	SFB
insect casts ³ (e.g., cicada mold)	ICB	sponge spicules ²	SSB
plant phytoliths ² (plant opal)	PPB	worm casts ³	WCB
INHERITED MINERALS (geogenic) 4			
glauconite pellets	GLI	volcanic glass	VOG
mica flakes	MIC		
MISCELLANEOUS 5			
carbonate bands	СВА	carbonate ooliths	CAO
carbonate beds	CBE	carbonate pisoliths	CAP
carbonate laminae	CAL	carbonate root casts	CRC

¹ For example: *loess doll* (aka "*loess kindchen,"* "*loess puppies,"* etc.).

² Commonly requires magnification >10X to be observed.

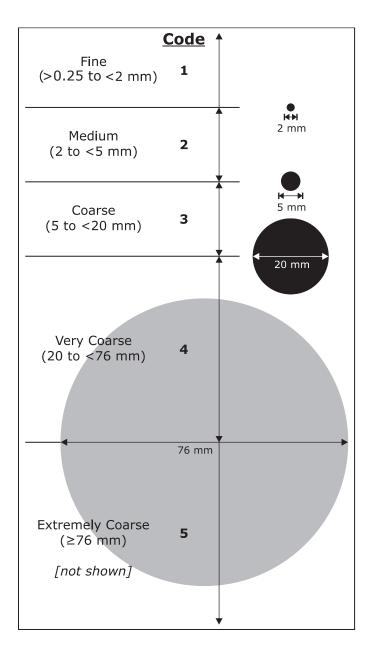
³ Worm casts are ovoid, fecal pellets excreted by earthworms. Insect casts are cemented (e.g., CaCO₃) molds of insect bodies or burrows.

⁴ Minerals inherited from parent material rather than formed in soil.

⁵ See Discussion on carbonate stages (p. 2-28).

CONCENTRATIONS - QUANTITY (PERCENT OF AREA COVERED)—See graphics for **% of Area Covered** (2, 20%) beginning on p. 7–1.

Class	Code		Criteria: percent of	
Class	Conv.	NASIS	surface area covered	
Few	f	#	< 2	
Common	С	#	2 to < 20	
Many	m	#	≥ 20	


CONCENTRATIONS - SIZE (Same as "RMFs" and "Mottle Size Classes")—See graphic on page p. 2–24.)

Size Class	Code	Criteria
Fine	1	0.25 to < 2 mm
Medium	2	2 to < 5 mm
Coarse	3	5 to < 20 mm
Very Coarse	4	20 to < 76 mm
Extremely Coarse	5	≥ 76 mm

CONCENTRATIONS - CONTRAST—Use "RMF - Contrast" table or chart; e.g., *distinct*.

CONCENTRATIONS - COLOR—Use standard Munsell® notation; e.g., 7.5YR 8/1.

CONCENTRATIONS - MOISTURE STATE—Use "Soil Color – Moisture State" table; i.e., *Moist (M)* or *Dry (D)*.

CONCENTRATIONS - SHAPE 1 (also used for **Mottles**, **Redoximorphic Features**)

Shape ¹	Code	Criteria
cubic	CU	crudely equidimensional blocklike units
cylindrical	С	tubular and elongated bodies; e.g., filled wormholes and insect burrows
dendritic	D	tubular, elongated, and branched bodies; e.g., pipestems (root pseudomorphs)
irregular	I	bodies of nonrepeating spacing or shape
lenticular	L	disk-shaped forms with thicker centers and thinning towards outer edge (e.g., double- convex lens)
pendular	PE	irregular drapes, coatings, or nodules suspended from underside of coarse fragments (e.g., pendular gypsum masses)
platy	Р	relatively thin, tabular sheets, lenses; e.g., lamellae
reticulate	R	crudely interlocking bodies with similar spacing; e.g., plinthite
rosettelike	RO	interlocking blades radiating out from a central point forming petal-like clusters; e.g., barite
spherical	S	well-rounded to crudely spherical bodies; e.g., Fe/Mn "shot"
threadlike	Т	thin (e.g., <1 mm diam.) elongated filaments; generally not dendritic (e.g., very fine CaCO ₃ stringers)

¹ Shape terms are presented as adjectives due to the typical data string output (e.g., *dendritic carbonate concretions*).

Examples of Mottles, Concentrations, and RMF Shapes	cubic (e.g., halite)
cylindrical (e.g., filled worm holes)	dendritic (e.g., branched root pseudo- morphs)
irregular	lenticular (e.g., gypsum)
pendular (e.g., CaCO ₃ , CaSO ₄ , SiO ₄)	platy (e.g., lamellae)
reticulate (e.g., plinthite)	rosettelike (e.g., barite, gypsum)
spherical (e.g., Fe/Mn Shot)	threadlike (e.g., very fine CaCO ₃ stringers and filaments)

CONCENTRATIONS - LOCATION—Describe the location(s) of the concentration (or depletion for RMFs) within the horizon. Historically called **Concentrations - Distribution**.

Location	Code	
MATRIX (in soil matrix; not associated with ped faces or pores)		
In the matrix (not associated with peds/pores)	MAT	
In matrix surrounding redox depletions	MAD	
In matrix surrounding redox concentrations	MAC	
Throughout (e.g., finely disseminated carbonates)	TOT	
PEDS (on or associated with faces of peds)		
Between peds	BPF	
Infused into the matrix along faces of peds (hypocoats)	MPF	
On faces of peds (all orientations)	APF	
On horizontal faces of peds	HPF	
On vertical faces of peds	VPF	

Location	Code	
PORES (in pores or associated with surfaces along pores)		
Infused into the matrix adjacent to pores (hypocoats; see Coats/Films graphic p. 2–34)	MPO	
Lining pores (see Coats/Films graphic p. 2-34)	LPO	
On surfaces along pores	SPO	
On surfaces along root channels	RPO	
OTHER		
In cracks	CRK	
At top of horizon	ТОН	
Around rock fragments	ARF	
On bottom of rock fragments (e.g., pendants)	BRF	
On slickensides	SSS	
Along lamina or strata surfaces	ALS	

CONCENTRATIONS - HARDNESS—Describe the relative force required to crush the concentration body (use the same criteria and classes as in the "Rupture Resistance for Blocks, Peds, and Clods – Cementation" column (exclude the *Noncemented* class); e.g., *Moderately Cemented*.

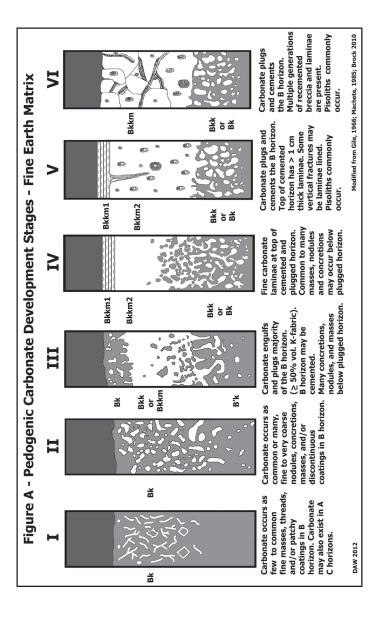
CONCENTRATIONS - BOUNDARY—The gradation between feature and matrix. (Also used to describe **Redoximorphic Features - Boundary.**)

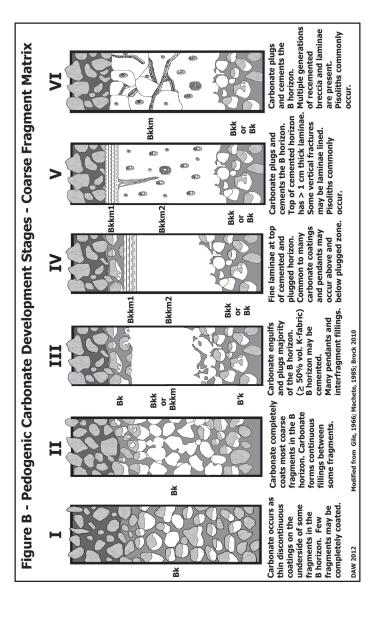
Class	Code	Criteria
Sharp	S	Color changes in <0.1 mm between the feature and the soil matrix; change is abrupt even under a 10X hand lens.
Clear	С	Color changes within 0.1 to <2 mm between the feature and the soil matrix; gradation is visible without 10X lens.
Diffuse	D	Color changes in ≥2 mm between the feature and the soil matrix; gradation is easily visible without 10X hand lens.

PEDOGENIC CARBONATE STAGES (DISCUSSION)

Pedogenic Carbonate Development: In arid, semiarid, and subhumid environments, pedogenic carbonate accumulation is of overarching and unifying importance. The present morphological concepts and intellectual basis for soil-carbonate horizons and stages that follow originate from the seminal contributions of Leland Gile (Gile, 1961, 1970, 1975, 1993; Gile and Grossman, 1968; Gile and Grossman, 1979; Gile et al., 1966; Gile et al., 2007).

Calcium carbonate (CaCO₂) mediates or controls key chemical and physical soil properties (e.g., pH, nutrient availability, dispersionflocculation, organic matter stabilization). Calcium carbonate in soil may be inherited from parent material and/or may accumulate via pedogenic processes. Climate (precipitation, temperature, evapotranspiration), carbonate solubility, and microbial biomineralization control and constrain the rate and quantity of pedogenic carbonate accumulation. Major carbonate accumulation occurs mainly in subhumid to arid regions (precipitation ~<750mm/ annum). Pedogenic carbonate formation requires a Ca source, such as mineral weathering, concentration by soil or ground water evaporation, and/or input via dust and/or precipitation. The carbonate (CO₂-2) source is plant and microbial respiration (CO₂) via the CO₂-HCO₃-¹-CO₃-² equilibria. Beyond the major climatic control, pedogenic carbonate accumulation depends on a balance among geomorphic age or landscape stability, soil water movement (at both profile and landscape scales), soil texture, and vegetation type and quantity.


Pedogenic carbonate accumulation follows a morphogenetic development sequence starting as horizon features, such as carbonate coatings, masses, and fine nodules. If carbonate continues to accumulate, it may entirely engulf, plug, and cement soil horizons. Carbonate-cemented soil horizons are generically termed caliche or calcrete and are recognized in Soil Taxonomy as petrocalcic horizons. Pedogenic carbonate accumulation is closely linked to soil age (Gile et al., 1981; Machette, 1985). Soils on progressively older geomorphic surfaces contain sequentially more pedogenic carbonate. The progression of carbonate development and morphology has been defined as Stages I through VI (see figures A and B) (Gile et al., 1966; Gile et al., 1981; Brock, 2007; Machete, 1985; Bachman and Machette, 1977).


Pedogenic carbonate stage morphology and expression are initially different for a fine earth matrix (fig. A; e.g., lacustrine, distal fan deposits, eolian deposits) than for a coarse fragment matrix (fig. B; e.g., proximal alluvial fan deposits, channel deposits) soils (Gile et al., 1966; Flach et al., 1969; Gile et al., 1981). The time required for carbonate stage development depends on soil texture and its control on porosity. A fine-grained soil has greater surface area and total porosity that requires a correspondingly greater

carbonate quantity to fill voids and form equivalent carbonate stages compared to a coarse-textured soil (Gile, 1993; Gile et al., 1981). Thus, it takes more time for a fine-grained soil to reach the same carbonate stage as a coarse-textured soil under the same conditions.

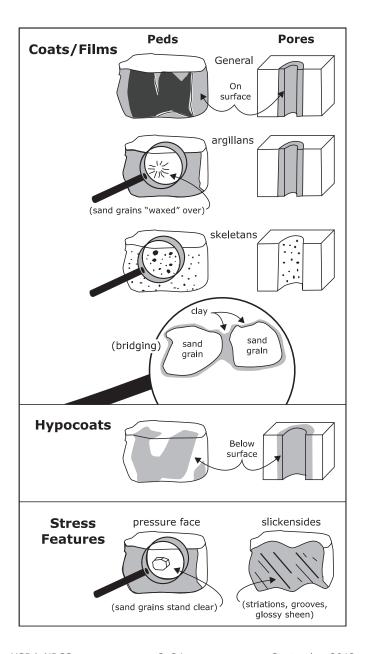
Multiple Carbonate Stages: Pedogenic carbonates (especially Stages IV through VI) are durable and persistent in arid environments. If different sedimentation events and subsequent pedogenesis (separated by time) occur to produce a stacked soil sequence (paleosols), a pedon may contain multiple carbonate stages. Each soil sequence (sediment package) is evaluated independently, and a carbonate stage is attached to horizons in that sequence. For example, Stage II carbonate may occur in a soil overlying a buried soil with Stage IV carbonate; e.g., A, 0-12 cm; Bt, 12-22 cm; Bk (Stage II CaCO, nodules), 22-65cm; 2Bkkm1 (Stage IV CaCO₂), 65-150 cm; 2Bkkm2 (Stage IV CaCO₂), 150-260 cm. Moreover, on stable geomorphic surfaces climatic shifts may superpose younger carbonate forms into preexisting, more advanced stages within the same soil. For example, carbonate nodules may occur above and into a stage IV Bkkm; e.g., A, 0-11 cm; Bt, 11-22 cm; Bk (CaCO₂ nodules), 22-65 cm; Bkkm (Stage IV CaCO₂), 65-150 cm; 2Bkkm (Stage IV CaCO₂), 150-260 cm. Despite the more recent nodules, this soil is Stage IV in the morphogenetic sequence.

Pedogenic Carbonate Stage Description: Evaluate and record the *Pedogenic Carbonate Stage* by pedon. More than one CaCO₃ stage may exist in a pedon as a result of multiple sediment layers or shifting climate conditions (see discussion). Pedogenic carbonates are described under both *Concentrations* and *Ped and Void Surface Features*. In arid and semiarid regions, a pedogenic carbonate stage is commonly based upon the overall carbonate morphology in relation to texture and coarse fragment content (see figures A and B). The "stage" is recorded as an interpretive text note following the conventional carbonate concentration description; e.g., 100-165 cm, 2Bkkm (massive indurated CaCO₃), Stage IV. Assigning a CaCO₃ stage is an interpretive complement to, but <u>not</u> a replacement for, conventional soil horizonation.

PED and VOID SURFACE FEATURES

These features are coats/films, hypocoats, or stress features formed by translocation and deposition or by shrink-swell processes on or along surfaces. Describe **Kind**, **Amount Class** (percent in NASIS), **Distinctness**, **Location**, and **Color** (dry or moist). An example is: many, faint, brown 10YR 4/6 (Moist) clay films on all faces of peds or m, f, 10YR 4/6 (M), CLF, PF.

PED and VOID SURFACE FEATURES - KIND (nonredoximorphic)


Kind	Code	Field Criteria	
COATS, FILMS (exterior, adhered to surface)			
carbonate coats	CAF	off-white, effervescent with HCl	
silica (silans, opal)	SIF	off-white, noneffervesent with HCl	
clay films (argillans)	CLF	waxy, exterior coats	
clay bridges	BRF	"wax" between sand grains	
ferriargillans described as RMF- Kind	see RMFs	Fe ⁺³ stained clay film	
gibbsite coats (sesquan)	GBF	AIOH ₃ , off-white, noneffervescent with HCl	
gypsum coats	GYF	CaSO ₄ • 2H ₂ O	
manganese (mangans) described as RMF- Kind	see RMFs	black, thin films effervescent with ${\rm H_2O_2}$	
organic stains	OSF	dark organic films	
organoargillans	OAF	dark, organic stained clay films	
sand coats	SNF	separate grains visible with 10X	
silt coats 1	SLF	separate grains not visible at 10X	
skeletans ² (sand or silt)	SKF	clean sand or silt grains as coats	
HYPOCOATS 3 (a stain infused beneath a surface)			
STRESS FEATURES	(a sme	ared exterior face)	
pressure faces (i.e., stress cutans)	PRF	look like clay films; sand grains uncoated	

Kind	Code	Field Criteria
slickensides (pedogenic)	SS	shrink-swell shear features (e.g., grooves, striations, glossy surface) on pedo-structure surfaces (e.g., wedges, bowls); can be horizontal
slickensides (geogenic)	SSG	vertical/oblique, roughly planar shear face from external stress (e.g., faults; mass movement); striations, grooves

¹ Individual silt grains are not discernible with a 10X lens. Silt coats occur as a fine, off-white, noneffervescent, "grainy" coat on ped surfaces.

² Skeletans are (pigment) stripped grains >2 µm and <2 mm (Brewer, 1976). Preferably describe either silt coats (grains not discernible with 10X lens) or sand coats (grains discernible with 10X lens).

³ Hypocoats, as used here, are field-scale features commonly expressed only as redoximorphic features. Micromorphological hypocoats include nonredoximorphic features (Bullock et al., 1985).

PED and VOID SURFACE FEATURES - AMOUNT—Estimate the relative percent of the visible surface area that a ped surface feature occupies in a horizon. (See graphics for **% of Area Covered** [5, 25, 50, 90%] beginning on page 7.1.) In NASIS, record the estimate as a numeric percent; e.g., 20%.

Amount	Code		Criteria: percent of surface
Class	Conv.	NASIS	area
Very Few	vf	%	< 5 percent
Few	f	%	5 to < 25 percent
Common	С	%	25 to < 50 percent
Many	m	%	50 to < 90 percent
Very Many	vm	%	≥ 90 percent

PED and VOID SURFACE FEATURES - CONTINUITY (Obsolete in NRCS; replaced with **Ped and Void Surface Features - Amount** in NASIS.)

Continuity Class	Conv. Code	Criteria: features occur as
Continuous	С	Entire Surface Cover
Discontinuous	D	Partial Surface Cover
Patchy	Р	Isolated Surface Cover

PED and VOID SURFACE FEATURES - DISTINCTNESS—The relative extent to which a ped surface feature visually stands out from adjacent material.

Distinctness Class	Code	Criteria:
Faint	F	Visible only with magnification (10X hand lens); little contrast between materials.
Distinct	D	Visible without magnification; significant contrast between materials.
Prominent	Р	Markedly visible without magnification; sharp visual contrast between materials.

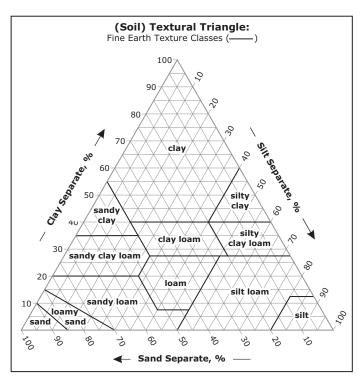
PED and VOID SURFACE FEATURES - LOCATION—Specify where ped surface features occur within a horizon; e.g., *Between sand grains*.

Location	Code
PEDS	
On all faces of peds (vertical and horizontal)	PF
On bottom faces of peds	BF
On top faces of peds	TF
On tops of soil columns	TC
On vertical faces of peds	VF
OTHER (NONPED)	
Between sand grains (bridging)	BG
On bedrock	BK
On bottom surfaces of rock fragments	BR
On concretions	CC
On nodules	NO
On rock fragments	RF
On slickensides	SS
On surfaces along pores	SP
On surfaces along root channels	SC
On top surfaces of rock fragments	TR

PED and VOID SURFACE FEATURES - COLOR—Use standard Munsell® notation (hue, value, chroma) to record feature color. Indicate whether the color is Moist (M) or Dry (D); e.g., 7.5R 5/8 M.

SOIL TEXTURE

Soil texture is the numerical proportion (weight percentage) of the sand, silt, and clay separates in the fine-earth fraction (≤2 mm). Soil texture is field estimated by hand or lab measured by hydrometer or pipette and placed within the textural triangle to obtain **Texture Class**.


Record the **Texture Class**; e.g., *loam*; or Subclass; e.g., *fine* sandy loam; or choose a **Term in Lieu of Texture**; e.g., gravel. If appropriate, use a **Texture Class Modifier**; e.g., gravelly loam.

NOTE: Soil Texture includes only the fine-earth fraction (\leq 2 mm). "Whole-soil Particle-Size Distribution" includes the fine-earth fraction (\leq 2 mm, wt %) and coarse fragments (>2 mm). (**NOTE:**

For fragments \geq 76 mm in diameter, visually estimate the volume percent, which is then converted to a weight basis using the estimated particle density [pd] and bulk density [B_d].)

TEXTURE CLASS—

Texture Class or	Co	Code		
Subclass	Conv.	NASIS		
Coarse Sand	cos	COS		
Sand	S	S		
Fine Sand	fs	FS		
Very Fine Sand	vfs	VFS		
Loamy Coarse Sand	Icos	LCOS		
Loamy Sand	ls	LS		
Loamy Fine Sand	lfs	LFS		
Loamy Very Fine Sand	lvfs	LVFS		
Coarse Sandy Loam	cosl	COSL		
Sandy Loam	sl	SL		
Fine Sandy Loam	fsl	FSL		
Very Fine Sandy Loam	vfsl	VFSL		
Loam	I	L		
Silt Loam	sil	SIL		
Silt	si	SI		
Sandy Clay Loam	scl	SCL		
Clay Loam	cl	CL		
Silty Clay Loam	sicl	SICL		
Sandy Clay	sc	SC		
Silty Clay	sic	SIC		
Clay	С	С		

TEXTURE MODIFIERS—Conventions for using "Rock Fragment Texture Modifiers" and for using textural adjectives that convey the "% volume" ranges for **Rock Fragments - Quantity and Size**.

Frag. Content Vol. %	Rock Fragment Modifier Usage
<15	No texture class modifier (noun only; e.g., loam).
15 to <35	Use fragment-size adjective with texture class; e.g., gravelly loam.
35 to <60	Use " very " with fragment-size adjective with texture class; e.g., very gravelly loam.
60 to <90	Use "extremely" with fragment-size adjective with texture class; e.g., extremely gravelly loam.
≥90	No adjective or modifier. If ≤10% fine earth, use the appropriate fragment-size class name for the dominant size class; e.g., <i>gravel</i> . Use Terms Used in Lieu of Texture (see table on p. 2-43).

$\label{temporal-equation} \textbf{TEXTURE MODIFIERS-Quantity} \ \ \text{and} \ \ \textbf{Size} \ \ \text{adjectives}.$

Rock Fragments:	Code		Criteria: total (rock)	
Quantity and Size ¹	Conv.	NASIS	fragment volume % dominated by (<i>name size</i>) ¹	
ROCK FRAGMENTS	(>2 mm;	≥ Strongly	Cemented)	
Gravelly	GR	GR	≥15% but <35% gravel	
Fine Gravelly	FGR	GRF	≥15% but <35% fine gravel	
Medium Gravelly	MGR	GRM	≥15% but <35% med. gravel	
Coarse Gravelly	CGR	GRC	≥15% but <35% coarse gravel	
Very Gravelly	VGR	GRV	≥35% but <60% gravel	
Extremely Gravelly	XGR	GRX	≥60% but <90% gravel	
Cobbly	СВ	СВ	≥15% but <35% cobbles	
Very Cobbly	VCB	CBV	≥35% but <60% cobbles	
Extremely Cobbly	XCB	CBX	≥60% but <90% cobbles	
Stony	ST	ST	≥15% but <35% stones	
Very Stony	VST	STV	≥35% but <60% stones	
Extremely Stony	XST	STX	≥60% but <90% stones	
Bouldery	BY	BY	≥15% but <35% boulders	
Very Bouldery	VBY	BYV	≥35% but <60% boulders	
Extremely Bouldery	XBY	BYX	≥60% but <90% boulders	
Channery	CN	CN	≥15% but <35% channers	
Very Channery	VCN	CNV	≥35% but <60% channers	
Extremely Channery	XCN	CNX	≥60% but <90% channers	
Flaggy	FL	FL	≥15% but <35% flagstones	
Very Flaggy	VFL	FLV	≥35% but <60% flagstones	
Extremely Flaggy	XFL	FLX	≥60% but <90% flagstones	
PARAROCK FRAGMENTS (>2 mm; < Strongly Cemented) 2, 3				
Paragravelly	PGR	PGR	(same criteria as for gravelly)	
Very Paragravelly	VPGR	PGRV	(same criteria as for very gravelly)	
Extr. Paragravelly	XPGR	PGRX	(same criteria as for extr. gravelly)	
etc.	etc.	etc.	(same criteria as for nonpara)	

Rock Fragments:	Code		Criteria: total (rock)
Quantity and Size ¹	Conv.	NASIS	fragment volume % dominated by (<i>name size</i>) ¹
COMPOSITE ROCK AND ARTIFACT FRAGMENTS 4			
Gravelly - Artifactual	GRART	GRART	(same criteria as for gravelly)
Very Gravelly - Artifactual	VGRART	GRVART	(same criteria as for very gravelly)
Extremely Gravelly - Artifactual	XGRART	GRXART	(same criteria as for extr. gravelly)
etc.	etc.	etc.	(same criteria as for noncomposite)

- ¹ The "Quantity" modifier (e.g., *very*) is the volume % whole soil of the total rock fragment content. The "Size" modifier (e.g., *cobbly*) is independently based on the largest, dominant fragment size. (See "Comparison of Particle-Size Classes" table; p. 2–45, first row.) For a size mixture (e.g., *gravel and stones*), a smaller size class is named if its quantity (%) sufficiently exceeds that of a larger size class. For field texture determination, a smaller rock fragment size class must exceed either 1.5 or 2 times the quantity (volume %) of a larger size class before it is named (e.g., 30% gravel and 14% stones=*very gravelly*, but 20% gravel and 14% stones=*stony*). For detailed naming criteria, see NSSH, Part 618, Subpart B, Exhibits, "Rock Fragment Modifier of Texture" (Soil Survey Staff, 2012c).
- ² Use "Para" prefix if the rock fragments are soft (i.e., meet criteria for "para"). (Rupture Resistance Cementation Class is < Strongly Cemented, and fragments do not slake [slake test: ≈3 cm (1 inch) diam. block, air dried, then submerged in water for ≥1 hour; collapse/disaggregation="slaking"].)</p>
- ³ For "Para" codes, add "P" to "Size" and "Quantity" code terms. Precedes noun codes and follows quantity adjectives; e.g., paragravelly=*PGR*; very paragravelly=*PGRV*.
- ⁴ Used if a horizon contains both rock and artifact fragments >2 mm that are both cohesive and persistent and whose combined % by volume is ≥15%; use appropriate *Quantity Class* (the dominant size fraction is named).

(COMPOSITIONAL) TEXTURE MODIFIERS $^{1,\,2}$ —Compositional adjectives (e.g., ashy silt loam).

Types	Code	Criteria	
VOLCANIC			
Ashy	ASHY	Andic soil properties, and is neither hydrous nor medial, or $\geq 30\%$ of the <2 mm fraction is 0.02 to 2.00 mm in size, $\geq 5\%$ is volcanic glass, and the [Al + 1/2 Fe, % by ammonium oxalate) x 60] + % volc glass is ≥ 30	
Hydrous	HYDR	Andic soil properties, and with field moist 15 bar water content ≥100% of the dry weight	
Medial	MEDL	Andic soil properties, and with field moist 15 bar water content ≥30% to <100% of the dry weight, or ≥12% water content for air-dried samples	
ORGANIC SOIL	MATER	IALS	
Grassy ³	GS	OM >15% (vol.) grassy fibers	
Herbaceous ³	НВ	OM >15% (vol.) herbaceous fibers	
Mossy ³	MS	OM >15% (vol.) moss fibers	
Woody ³	WD	OM ≥15% (vol.) wood pieces or fibers	
HIGHLY ORGANIC MINERAL MATERIALS			
Highly Organic ⁴	НО	Organic carbon (wt %) is: >5 to <20% (no mineral clays) 12 to <20% (if mineral clay is ≥60%) or 5+ (clay % x 0.12 to <20%) (if mineral clay is <60%)	
Mucky ⁵	MK	Mineral soil >10% OM and <17% fibers	
Peaty ⁵	PT	Mineral soil >10% OM and >17% fibers	
LIMNIC MATERIALS (used only with Histosols)			
Coprogenous	СОР	Limnic layer with many very small fecal pellets	
Diatomaceous	DIA	Limnic layer composed of diatoms	
Marly	MR	$\begin{array}{c} \mbox{Light-colored limnic layer composed of} \\ \mbox{CaCO}_{3} \mbox{ mud} \end{array}$	

Types	Code	Criteria	
ANTHROPOGEN	ANTHROPOGENIC MATERIALS		
Artifactual	ART	≥15% but <35% (vol.) artifacts	
Very Artifactual	ARTV	≥35% but <60% (vol.) artifacts	
Extremely Artifactual ²	ARTX	≥60% but <90% (vol.) artifacts	
OTHER			
Cemented	CEM	Material is "cemented" by ≥1 cementing agents; does not slake	
Gypsiferous	GYP	≥15 to <40% (by weight) gypsum	
Permanently Frozen	PF	e.g., Permafrost	

¹ (Compositional) Texture Modifiers can be used with the Soil Texture Name (e.g., gravelly ashy loam) or with Terms Used in Lieu of Texture (e.g., mossy peat). For complete definitions and usage of (Compositional) Texture Modifiers, see NSSH, Part 618.67 (Soil Survey Staff, 2012c).

² If artifact fragments are >90% (by vol.), no texture is described and a **Term Used in Lieu of Texture** is applied (i.e., artifacts).

³ Used to modify muck, mucky peat, or peat terms in histic epipedons and organic horizons (of any thickness) that are saturated with water for ≥30 consecutive days in normal years (or are artificially drained), including those in Histels and Histosols (except Folists).

⁴ Used only with near-surface horizons of mineral soils saturated <30 cumulative days in normal years (and *not* artificially drained).

⁵ Designed for near-surface horizons saturated ≥30 cumulative days annually.

TERMS USED IN LIEU OF TEXTURE—nouns (used only if fragments or artifacts are >90% by volume). Bedrock, organic terms, gypsum materials, and permanent water have different criteria.

Terms Used in Lieu of Texture	Code			
SIZE (ROCK FRAGMENTS) ≥ Strongly Cemented				
Gravel	GR			
Cobbles	СВ			
Stones	ST			
Boulders	BY			
Channers	CN			
Flagstones	FL			
SIZE (PARAROCK FRAGMENTS) < Strongly Cemen	ted			
Paragravel	PG			
Paracobbles	PCB			
Parastones	PST			
Paraboulders	PBY			
Parachanners	PCN			
Paraflagstones	PFL			
COMPOSITION				
Cemented/Consolidated:				
Bedrock	BR			
Organic Soil Materials:				
Highly Decomposed Plant Material (Oa) $^{\it 1}$	HPM			
Moderately Decomposed Plant Material (Oe) ¹	MPM			
Slightly Decomposed Plant Material (Oi) ¹	SPM			
Muck ² (≈Oa)	MUCK			
Mucky Peat ² (≈Oe; saturated, moderately decomposed organic matter)	MPT			
Peat ² (≈Oi)	PEAT			
Other:				
Artifacts ³ (human-manufactured materials)	ART			
Coarse Gypsum Material	CGM			
Fine Gypsum Material	FGM			
Ice ⁵ (permanent, subsurface)	ICE			
Water ⁴ (permanent, subsurface)	W			

- Use only with organic horizons of mineral and organic soils that are saturated <30 cumulative days in normal years (and are not artificially drained).
- ² Use only with organic horizons (of any thickness) of mineral and organic soils that are saturated ≥30 cumulative days in normal years or are artificially drained.
- ³ "Artifacts" is used only to denote presence of artificial materials associated with human activities (bitumen, bricks, construction debris, garbage, etc.).
- ⁴ Use only for layers found below the soil surface (e.g., a floating bog).
- ⁵ Used for permanent (nonseasonal), massive, subsurface ice; e.g., a glacic layer.

[Footnotes below apply to the following table:]

- ¹ Soil Survey Staff, 2011; p. 489.
- 2 Soil Survey Staff, 2011; p. 33. Note: Mineralogy studies may subdivide clay into three size ranges: fine (<0.08 um), medium (0.08–0.2 μm), and coarse (0.2–2 μm) (Jackson, 1969).
- The Kellogg Soil Survey Laboratory (Lincoln, NE) uses a no. 300 sieve (0.047-mm opening) for the USDA sand/silt measurement. A no. 270 sieve (0.053-mm opening) is more readily available and widely used.
- Soil Survey Staff, 1951; p. 207.
- ⁵ ASTM, 2011; ASTM designation D2487–92.
- ⁶ AASHTO, 1997a.
- ⁷ AASHTO, 1997b.
- ⁸ Ingram, 1982.

Comparison of Particle Size Classes in Different Systems

			בזעוב באסדט]					OTIVE DAY AND A	NOVO	CAVTO	9		14"
		NIL	L LAK					K	7	746/1	C / N =	150	380 (900 mm
										channers		flagst	st stones	boulders
1	Clay 2	Silt	,		Š	Sand			Grö	Gravel		Cop-	040	0,000
USDA	fine co.	fine	09	v.fi.	fi.	med.	.00 .00	fine	medium		coarse	ples	Scories	
millimeters:	0.0002 .002 mm	002 mm	. 02	.05 .1	.25	7.	н	2 mm	. 22	20	7	76 25	250 mm 6	600 mm
U.S. Standard Sieve No. (opening):	: No. (opening)		30	300 ³ 140	9	35	18	10	4	(3/4")	(3")		(10")	(25")
Inter- national	Clay	Silt		fino	Sand	000	9	_	Gravel			S	Stones	
millimeters:	0.	.002 mm	.02	2	.20	3	3	2 mm		20 mm	E			
U.S. Standard Sieve No. (opening):	No. (opening)	<u>.</u> .						10		(3/4")				
11.6004 5		Cilt or Clay				Sand	рı			Gravel		Cobblee		Rouldere
nalling		Oilt oil ciay			fine	E	medium	00	fine		coarse			o land
millimeters:				.074		.42		2 mm 4.8	4.8	19	76	10	300 mm	
U.S. Standard Sieve No. (opening):	: No. (opening)			200		40		10	4	(3/4")	(3")	")		
A A CLITO 6, 7		#:0			0)	Sand		0	Gravel or Stones	ır Ston	es	Broke	en Rock (Broken Rock (angular),
AASHIO	Clay	200			fine	0	coarse	<u></u>	fine	med.	.00	or Bo	onlders (or Boulders (rounded)
millimeters:	-	.005 mm		.074		.42		2 mm	9.5	25		75 mm		
U.S. Standard Sieve No. (opening):	No. (opening)	:		200		40		10	(3/8")	(1")	(3")	.)		
phi #: 1	12 10	9 8 7 6	2	4	3 2	н	0		-2 -3	-4 -5	9	-7 -8	-9 -10	-12
Modified ₈ Wentworth	← clay	†	silt		<u> </u>	sand –	+	<u> </u>	bebl	pebbles —	1	\$ 999	♦ ♦ ♦ ♦ ♦ • • • • • • • • • •	lers 🕕
millimeters: .00	.00025 .0	.002 .004 .008 .016 .031 .062 .125	16 .031	.062 .1	25 .25	7.5		2 ,	8	16 32	2 64	128 256		4092 mm
U.S. Standard Sieve No.:	. No.:			230 120	09 0	32	18	10	5					

ROCK and OTHER FRAGMENTS

These are discrete, water-stable particles > 2 mm. Hard fragments (e.g., rock) have a Rupture Resistance - Cementation Class ≥ Strongly Cemented. Softer fragments (e.g., pararock) are less strongly cemented. (NOTE: Artifacts are addressed separately following this section [p. 2-49].) Describe Kind, Volume Percent (classes given below), Roundness or Shape, Size (mm), and Hardness; e.g., granite, 17%, subangular, gravel, indurated; or GRA, 17%, SA, GR, I.

ROCK and OTHER FRAGMENTS - KIND (called **FRAGMENTS** in NASIS)—Use the choice list given for **Bedrock - Kind** and the additional choices in the table below. **NOTE:** Interbedded rocks from the "Bedrock - Kind" table are not appropriate choices or terminology for rock fragments.

Kind	Code	Kind Cod	
Includes all choices in Bed plus:	rock - K	Kind (except <i>Interbedded</i>	d),
calcrete (caliche) fragments ¹	CA	metamorphic rock fragments, unspecified ²	MMR
carbonate concretions	CAC	mixed rock fragments ³	MXR
carbonate nodules	CAN	ortstein fragments	ORF
carbonate rocks ²	CAR	petrocalcic fragments	PEF
charcoal fragments	СН	petroferric fragments	TCF
cinders	CI	petrogypsic fragments	PGF
durinodes	DNN	plinthite nodules	PLN
duripan fragments	DUF	quartz fragments	QUA
foliated metamorphic rocks ²	FMR	quartzite fragments	QZT
gibbsite concretions	GBC	scoria fragments	SCO
gibbsite nodules	GBN	sedimentary rock fragments, unspecified ²	SED
igneous rock fragments, unspecified ²	IGR	shell fragments	SHF
iron-manganese concretions	FMC	silica concretions	SIC
iron-manganese nodules	FMN	volcanic bombs	VB

Kind	Code	Kind	Code
ironstone nodules	FSN	volcanic rock fragments, unspecified ²	VOL
lapilli	LA	wood fragments	wo

¹ Fragments strongly cemented by carbonate; may include fragments derived from petrocalcic horizons.

ROCK and OTHER FRAGMENTS - VOLUME PERCENT

(Quantity)—Estimate the quantity (volume percent) of rock and other fragments present. **NOTE:** Refer to the "Total (rock) fragment volume percent" column found under **Texture Modifiers - Quantity and Size** table (p. 2–39).

ROCK and OTHER FRAGMENTS - SIZE CLASSES AND DESCRIPTIVE TERMS—

Size ¹	Noun	Adjective ²
SHAPE—SPHERICAL or or spherical)	CUBELIKE (discoid	dal, subdiscoidal,
>2 - 76 mm diam.	gravel	gravelly
>2 - 5 mm diam.	fine gravel	fine gravelly
>5 - 20 mm diam.	medium gravel	medium gravelly
>20 - 76 mm diam.	coarse gravel	coarse gravelly
>76 - 250 mm diam.	cobbles	cobbly
>250 - 600 mm diam.	stones	stony
>600 mm diam.	boulders	bouldery
SHAPE—FLAT (prismoi	dal or subprismoid	lal)
>2 - 150 mm long	channers	channery
>150 - 380 mm long	flagstones	flaggy
>380 - 600 mm long	stones	stony
>600 mm long	boulders	bouldery

¹ Fragment sizes measured by sieves; class limits have a greater lower limit.

² Generic rock names may be appropriate for identifying fragments (e.g., a cobble) but are too general and should *not* be used to name Bedrock - Kind.

³ Numerous unspecified fragment lithologies are present, as in till or alluvium; not for use with residuum.

² For a mixture of sizes (e.g., both gravel and stones present), the largest size class (most mechanically restrictive) is named. A smaller size class is named only if its quantity (%) sufficiently exceeds that of a larger size class. For field texture determination, a smaller size class must exceed 2 times the quantity (volume %) of a larger size class before it is named (e.g., 30% gravel and 14% stones=*very gravelly*; but 20% gravel and 14% stones=*stony*). For more explicit naming criteria, see NSSH, Part 618, Subpart B, Exhibits, "Rock Fragment Modifier of Texture" (Soil Survey Staff, 2012c).

ROCK and OTHER FRAGMENTS - ROUNDNESS—Estimate the relative roundness of rock fragments; use the following classes.

Roundness Class	Code	Criteria: visual estimate ¹
Very Angular	VA	
Angular	AN	
Subangular	SA	[Use Roundness graphic on
Subrounded	SR	p. 2–49]
Rounded	RO	
Well Rounded	WR	

¹ The criteria consist of a visual estimation; use the following graphic.

Estimate the relative roundness of rock fragments. (Ideally, use the average roundness of 50 or more fragments.) The conventional geologic and engineering approach is presented in the following graphic. *NOTE:* NRCS does *not* quantify **Sphericity**. It is included here for completeness and to show the **Fragment Roundness** range.

				Round	ness ^{1, 2}		
		Very Angular 0.5	Angular 1.5	Sub- angular 2.5	Sub- rounded 3.5	Rounded 4.5	Well Rounded 5.5
	Discoidal 0.5						
 	Sub- discoidal 1.5						
Sphericity	Spherical 2.5						
S	Sub- Prismoidal prismoidal 4.5 3.5						
	Prismoidal 4.5						

¹ After Powers, 1953.

ROCK and OTHER FRAGMENTS - HARDNESS (called **fragment_hardness** in NASIS)—Describe the relative force required to crush the fragment. Use the same criteria and classes as the **Rupture Resistance for Blocks, Peds, and Clods - Cementation** column (p. 2–63); e.g., *Moderately Cemented* (exclude the *Noncemented* class).

ARTIFACTS (Human-derived)

These are discrete, water-stable fragments of human origin (cultural byproducts) (called **Human_artifacts** in NASIS). They are described separately from **Rock and Other Fragments** due to their unique properties and nongeologic origins and due to unique historical and cultural implications.

Describe Kind, Quantity (vol. percentage), Roundness, Shape, Cohesion, Penetrability, Persistence, Safety.

Numerical values below Roundness and Sphericity headings are class midpoints (median rho values; Folk, 1955) used in statistical analysis.

ARTIFACTS - KIND—Record the dominant types of human artifacts present by horizon/layer. (Used in NASIS primarily for % passing sieve calculation.) All fragments ≥2 mm.

Kind	
bitumen <i>(asphalt)</i>	fly ash
boiler slag	glass
bottom ash	metal
brick	paper
cardboard	plasterboard
carpet	plastic
cloth	potsherd
coal combustion byproducts	rubber (tires, etc.)
concrete (fragments)	treated wood
debitage (stone tool flakes)	untreated wood

ARTIFACTS - QUANTITY—Estimate the relative amount (volume %) of artifacts by horizon/layer. In NASIS, estimate a Representative Value (RV).

Quantity	Criteria
#	(volume percent)

ARTIFACTS - ROUNDNESS—Estimate the dominant extent of roundness of the artifacts by horizon/layer. (Refer to **Rock and Other Fragments - Roundness** graphic on p. 2–49.)

Roundness Class	Code
Angular	AN
Rounded	RO
Subangular	SA
Subrounded	SR
Very Angular	VA
Well Rounded	WR

ARTIFACTS - SHAPE—Describe the dominant form (shape) of the artifacts by horizon/layer.

Shape Class	Code	Criteria
Elongated	E	One dimension (length, width, or height) is 3X longer than either of the others.
Equidimensional	Q	Length, width, height are approximately the same.
Flat	F	One dimension is $<1/3$ that of either of the others, and one dimension is $<3X$ that of the intermediate.
Irregular	I	Branching or convoluted form.

ARTIFACTS - COHESION—Describe the dominant relative fragment integrity.

Cohesion Class	Code	Criteria
Cohesive	С	Cannot be readily broken to <2 mm pieces.
Noncohesive	N	Easily broken to <2 mm pieces by hand or simple crushing.

ARTIFACTS - PENETRABILITY—Describe the prevalent relative ease of penetration of artifacts by external mechanical force by horizon/layer.

Penetrability Class	Code	Criteria
Nonpenetrable	N	Roots cannot penetrate through or between artifacts.
Penetrable	Р	Roots can penetrate through or between artifacts.

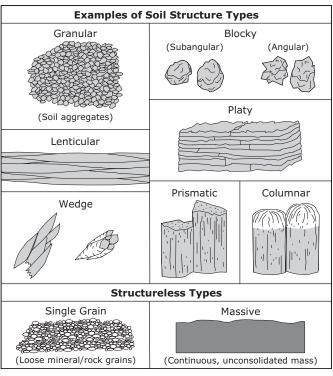
$\mbox{\bf ARTIFACTS}$ - $\mbox{\bf PERSISTENCE}-\mbox{\bf Describe}$ the dominant relative extent.

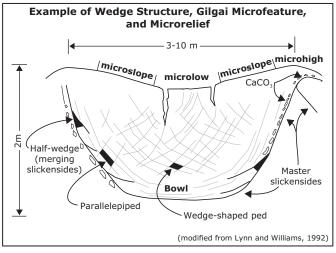
Persistence Class	Code	Criteria
Nonpersistent	N	Susceptible to relatively rapid weathering or decay (expected loss in <10 years).
Persistent	Р	Expected to remain intact in soil for >10 years.

ARTIFACTS - SAFETY—Describe the dominant relative level of chemical safety of artifacts present.

Safety Class	Code	Criteria
Innocuous artifacts	IA	Harmless to living beings (e.g., brick, wood, glass, etc.).
Noxious artifacts	NA	Potentially harmful or destructive to living beings (e.g., batteries, garbage, petroleum products).

(SOIL) STRUCTURE


(Soil) structure is the naturally occurring arrangement of soil particles into aggregates that results from pedogenic processes. Record **Grade**, **Size**, and **Type**. For compound structure, list each size and type; e.g., medium and coarse SBK parting to fine GR. Lack of structure (structureless) has two end members: massive (MA) or single grain (SG). A complete example is: weak, fine, subangular blocky or 1, f, sbk.


(SOIL STRUCTURE) - TYPE (formerly **Shape**)—Record the dominant type of ped, by layer; e.g., *granular* or *gr*. If a prevailing large shape readily breaks into smaller units, record as "(larger type) parting to (smaller type)"; e.g., *prismatic parting to subangular blocky*.

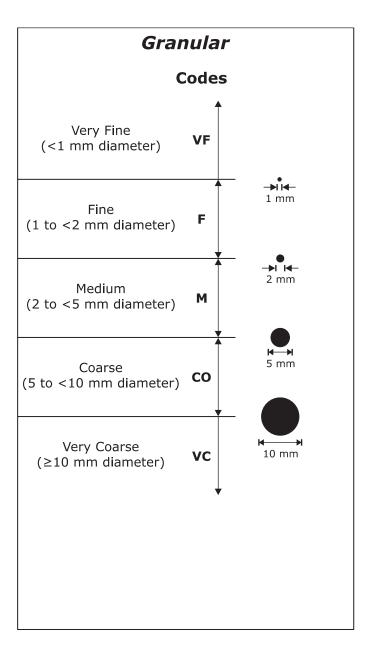
T	Code		Cuitouia, dofinition			
Туре	Conv.	NASIS	Criteria: definition			
NATURAL SOIL STRUCTURAL UNITS (pedogenic structure)						
Granular	gr	GR	Small polyhedrals with curved or very irregular faces.			
Angular Blocky	abk	ABK	Polyhedrals with faces that intersect at sharp angles (planes).			
Subangular Blocky	sbk	SBK	Polyhedrals with subrounded and planar faces lacking sharp angles.			
Lenticular	lp	LP	Overlapping, lens-shaped peds generally parallel to the soil surface that are thick at the center and taper toward the edges; formed by active or relict periglacial frost processes. Most common in soils with moderate to high water-holding capacity in moist conditions.			
Platy	pl	PL	Flat and platelike units.			
Wedge	wg	WEG	Elliptical, interlocking lenses that terminate in acute angles, bounded by slickensides; not limited to vertic materials.			
Prismatic	pr	PR	Vertically elongated units; flat tops			
Columnar	cpr	COL	Vertically elongated units with rounded tops that commonly are "bleached."			
STRUCTUR	ELESS					
Single Grain	sg	SGR	No structural units; entirely noncoherent; e.g., loose sand.			
Massive	m	MA	No structural units; material is a coherent mass (not necessarily cemented).			
ARTIFICIAL (nonpedoge			MENTS OR CLODS ¹			
Cloddy ¹	_	CDY	Irregular blocks created by artificial disturbance; e.g., tillage or compaction.			

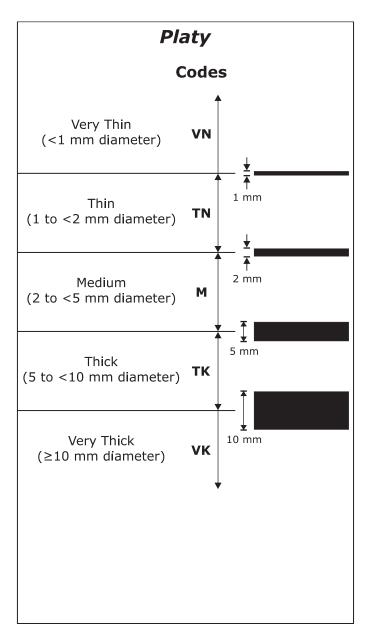
Used only to describe oversized, "artificial" earthy units that are not pedogenically derived soil structural units; e.g., the direct result of mechanical manipulation; use **Blocky Structure Size** criteria.

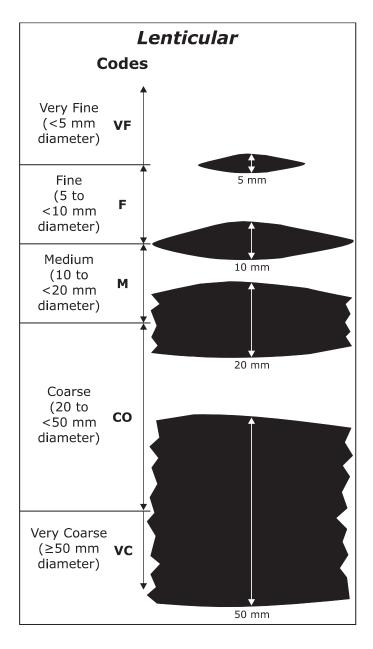
USDA-NRCS 2-53 September 2012

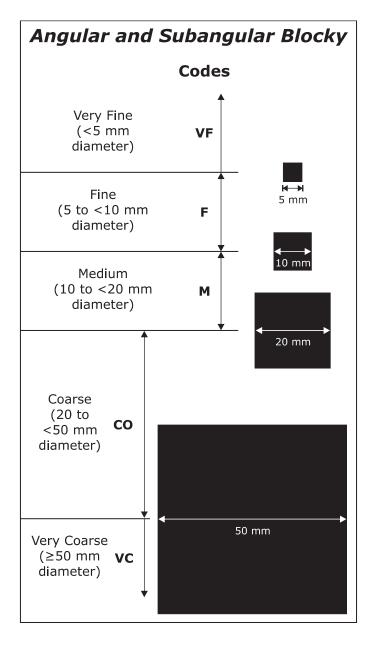
(SOIL STRUCTURE) - GRADE-

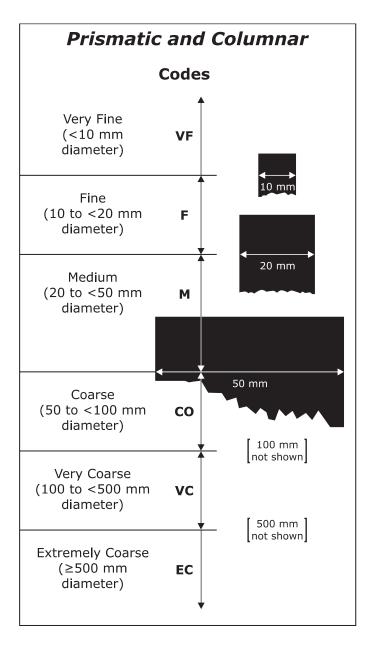
Grade	Code	Criteria
Structureless	0	No discrete units observable in place or in hand sample.
Weak	1	Units are barely observable in place or in a hand sample.
Moderate	2	Units well formed and evident in place or in a hand sample.
Strong	3	Units are distinct in place (undisturbed soil) and separate cleanly when disturbed.

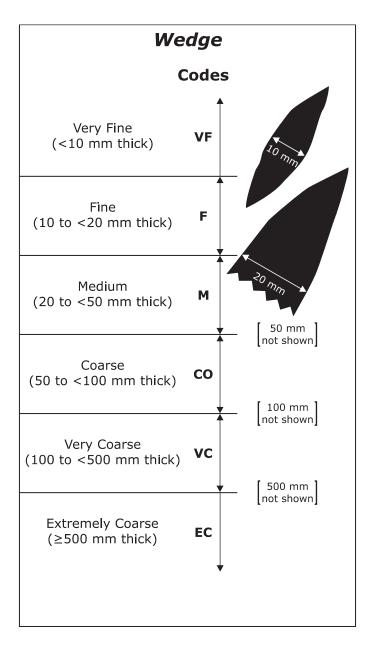

(SOIL STRUCTURE) - SIZE—

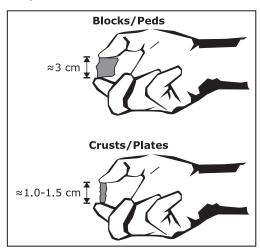

Size	Code						
Class	Conv.	NASIS	Criteria: structural unit size 1 (mn				
			Granular, Platy ², (Thickness)	Columnar, Prismatic, Wedge ³ (Diameter)	Angular & Subangular Blocky and Lenticular (Diameter)		
Very Fine (Very Thin) ²	vf (vn)	VF (VN)	< 1	< 10	< 5		
Fine (Thin) ²	f (tn)	F (TN)	1 to < 2	10 to < 20	5 to < 10		
Medium (Medium)	m (m)	M (M)	2 to < 5	20 to < 50	10 to < 20		
Coarse (Thick) ²	co (tk)	CO (TK)	5 to < 10	50 to <100	20 to < 50		
Very Coarse (Very Thick) ²	vc (vk)	VC (VK)	≥10	100 to<500	≥ 50		
Extremely Coarse	ec (—)	EC (-)	_	≥500	_		


¹ Size limits always denote the *smallest* dimension of the structural units.


² For platy structures only, substitute *Thin* for *Fine* and *Thick* for *Coarse* in the Size Class names.


³ Wedge structure is generally associated with Vertisols (for which it is a requirement) or related soils (e.g., "Vertic" subgroups) with high amounts of smectitic clays.





Consistence is the degree and kind of cohesion and adhesion that soil exhibits and/or the resistance of soil to deformation or rupture under an applied stress. Soil-water state strongly influences consistence. Field evaluations of consistence include: **Rupture Resistance** (Blocks, Peds, and Clods; or Surface Crusts and Plates), **Manner of Failure** (Brittleness, Fluidity, Smeariness), **Stickiness**, **Plasticity**, and **Penetration Resistance**. Historically, consistence applied to dry, moist, or wet soil as observed in the field. Wet consistence evaluated stickiness and plasticity. **Rupture Resistance** now applies to dry soils and to soils in a water state from moist through wet. **Stickiness** and **Plasticity** of soil are independent evaluations.

RUPTURE RESISTANCE—A measure of the strength of soil to withstand an applied stress. Separate estimates of **Rupture Resistance** are made for **Blocks/Peds/Clods** and for **Surface Crusts and Plates** of soil. Block-shaped specimens should be approximately 2.8 cm across. If 2.8-cm cubes (e.g., \approx 2.5-3.1 cm, or 1 inch) are not obtainable, use the following equation and the table below to calculate the stress at failure: [(2.8 cm/cube length cm)² X estimated stress (N) at failure)]; e.g., for a 5.6-cm cube $[(2.8/5.6)^2 \times 20 \ N] = 5 \ N \Rightarrow Soft Class$. Plate-shaped specimens (surface crusts or platy structure) should be approximately 1.0-1.5 cm long by 0.5 cm thick (or the thickness of occurrence, if <0.5 cm thick).

RUPTURE RESISTANCE FOR:

Blocks, Peds, and Clods—Estimate the class by the force required to rupture (break) a soil unit. Select the column for the appropriate soil water state (*dry* vs. *moist*) and/or the *Cementation* column, if applicable.

Dry ¹		Moist 1		Cementation ²		Specimen
Class	Code ³	Class	Code ³	Class	Code ³	Fails Under
Loose	L	Loose	L(1-)	[Not Applicable]		[Intact specimen not obtainable]
	d(lo)		m(lo)			
Soft	S	Very Friable	VFR	Non- cemented	NC	Very slight force between fingers.
	d(so)		m(vfr)			<8 N
Slightly Hard	SH	Friable	FR	Extremely Weakly Cemented	EW	Slight force between fingers. 8 to <20 N
	d(sh)		m(fr)			
Mod. Hard	МН	Firm	FI	Very Weakly Cemented	VW	Moderate force between fingers.
	d(h)		m(fi)			20 to 110 11
Hard	НА	Very Firm	VFI	Weakly Cemented	W	Strong force between fingers.
	d(vh)		m(vfi)		c(w)	40 to <80 N
Very Hard	VH	Extr. Firm	EF	Moderately Cemented	М	Moderate force between hands.
	d(vh)		m(efi)			80 to <160 N
Extr. Hard	EH	Slightly Rigid	SR	Strongly Cemented	ST	Foot pressure by full body weight.
	d(eh)		m(efi)		c(s)	160 to <800 N
Rigid	R	Rigid	R	Very Strongly Cemented	VS	Blow of <3 J but not body weight. 800 N to <3 J
	d(eh)		m(efi)			
Very Rigid	VR	Very Rigid	VR	Indurated	I	Blow of ≥3 J (3 J = 2 kg
	d(eh)		m(efi)		c(I)	weight dropped 15 cm)

¹ Dry Rupture Resistance column applies to soils that are moderately dry or drier (*Moderately Dry* and *Very Dry* **Soil Water State** subclasses). Moist column applies to soils that are slightly dry or wetter (*Slightly Dry* through *Satiated* **Soil Water State** subclasses) (Soil Survey Division Staff, 1993, p. 91).

- ² This is not an immediate field test; specimen must first be air dried and then submerged in water for a minimum of 1 hour prior to test; collapse/disaggregation="slaking" (Soil Survey Division Staff, 1993, p. 173).
- ³ Codes in parentheses (e.g., d(lo); Soil Survey Staff, 1951) are obsolete.

Surface Crust and Plates-

Class (air dried)	Code	Force ¹ (Newtons)
Extremely Weak	EW	Not Obtainable
Very Weak	VW	Removable, < 1N
Weak	W	1 to < 3N
Moderate	М	3 to < 8N
Moderately Strong	MS	8 to < 20N
Strong	S	20 to < 40N
Very Strong	VS	40 to < 80N
Extremely Strong	ES	≥ 80N

¹ For operational criteria (field estimates of force [N]), use the *Fails Under* column in the "Rupture Resistance for Blocks, Peds, Clods" table.

CEMENTING AGENTS (called **rupture_resist_cem_agent** in NASIS)—Record kind of cementing agent, if present.

Kind	Code 1
carbonates	K
gypsum ²	G
humus	Н
iron	I
silica (SiO ₂)	S

¹ Conventional codes traditionally consist of the entire material name or its chemical symbols; e.g., *silica* or *SiO*₂. Consequently, the Conv. code column would be redundant and is not shown in this table.

² Gypsum is not a true cement but functionally behaves as such.

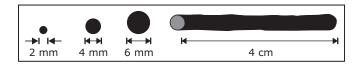
MANNER OF FAILURE—The rate of change and the physical condition soil attains when subjected to compression. Samples are moist or wetter.

Failure Class	Code	Criteria: related field operation
BRITTLENESS		Use a 3-cm block (press between thumb and forefinger)
Brittle	BR	Ruptures abruptly ("pops" or shatters).
Semi- deformable	SD	Rupture occurs before compression to <1/2 original thickness.
Deformable	DF	Rupture occurs after compression to $\geq 1/2$ original thickness.
FLUIDITY 1		Use a palmful of soil (squeeze in hand)
Nonfluid	NF	After full compression, no soil flows through the fingers. n value = 0
Slightly Fluid	SF	After full compression is exerted, some soil flows through fingers; most remains in the palm. n value >0 to <0.7
Mod. Fluid	MF	After full pressure is exerted, most soil flows through fingers; some remains in the palm. n value >0.7 to <1.0
Very Fluid	VF	Under very gentle pressure, most soil flows through the fingers as a slightly viscous fluid; very little or no residue remains in the palm of the hand. n value >1.0
SMEARINESS	5	Use a 3-cm block (press between thumb and forefinger)
Nonsmeary ²	NS	At failure, the sample does not change abruptly to fluid, fingers do not skid, no smearing occurs.
Weakly Smeary ²	WS	At failure, the sample changes abruptly to fluid, fingers skid, soil smears, little or no water remains on fingers.
Moderately Smeary ²	MS	At failure, the sample changes abruptly to fluid, fingers skid, soil smears, some water remains on fingers.
Strongly Smeary ²	SM	At failure, the sample abruptly changes to fluid, fingers skid, soil smears and is slippery, water is easily seen on fingers.

STICKINESS—The capacity of soil to adhere to other objects. Stickiness is estimated at the moisture content that displays the greatest adherence when pressed between thumb and forefinger.

Stickiness		ode	Criteria: work moistened soil
Class	Conv.	NASIS	between thumb and forefinger
Nonsticky	(w) so	SO	Little or no soil adheres to fingers after release of pressure.
Slightly Sticky	(w) ss	SS	Soil adheres to both fingers after release of pressure. Soil stretches little on separation of fingers.
Moderately Sticky ¹	(w) s	MS	Soil adheres to both fingers after release of pressure. Soil stretches some on separation of fingers.
Very Sticky	(w) vs	VS	Soil adheres firmly to both fingers after release of pressure. Soil stretches greatly upon separation of fingers.

¹ Historically, the *Moderately Sticky* class was simply called *Sticky*.


PLASTICITY—The degree to which "puddled" or reworked soil can be permanently deformed without rupturing. The evaluation is made by forming a roll (wire) of soil at a water content where the maximum plasticity is expressed.

Plasticity Co		ode	Criteria: make a roll of soil	
Class	Conv.	NASIS	4 cm long	
Nonplastic	(w) po	РО	Will not form a roll 6 mm in diameter, or if a roll is formed, it can't support itself if held on end.	
Slightly Plastic	(w) ps	SP	6 mm diameter roll supports itself; 4 mm diameter roll does not.	
Moderately Plastic ¹	(w) p	MP	4 mm diameter roll supports itself; 2 mm diameter roll does not.	
Very Plastic	(w) vp	VP	2 mm diameter roll supports its weight.	

¹ Historically, the *Moderately Plastic* class was simply called *Plastic*.

¹ See additional comments on fluidity under Subaqeous Soils (p. 2-105).

² Smeariness failure classes are used dominantly with materials displaying andic soil properties (and some spodic materials).

PENETRATION RESISTANCE—The ability of soil in a confined (field) state to resist penetration by a rigid object of specified size. A pocket penetrometer (Soil-Test Model CL-700) with a rod diameter of 6.4 mm (area 20.10 mm²) and insertion distance of 6.4 mm (note line on rod) is used for the determination. An average of five or more measurements should be used to obtain a value for penetration resistance.

NOTE: The pocket penetrometer has a scale of 0.25 to 4.5 tons/ft² (tons/ft² \approx kg/cm²). The penetrometer does *not* directly measure penetration resistance. The penetrometer scale is correlated to and gives a field estimate of *unconfined compressive strength* of soil as measured with a Tri-Axial Shear device. The table below converts the scale reading on the pocket penetrometer to penetration resistance in MPa. Penetrometer readings are dependent on the spring type used. Springs of varying strength are needed to span the range of penetration resistance found in soil.

Penetrometer Scale Reading	Spring Type ^{1, 2, 3}			
tons/ft²	Original MPa	Lee MPa	Jones 11 MPa	Jones 323 MPa
0.25	0.32 L	0.06 VL	1.00 M	3.15 H
0.75	0.60	0.13 L	1.76	4.20
1.00	0.74	0.17	2.14 H	4.73
1.50	1.02 M	0.24	2.90	5.78
2.75	1.72	0.42	4.80	8.40 EH
3.50	2.14 H	0.53	_	_

On wet or "soft" soils, a larger "foot" may be needed (Soil Survey Division Staff, 1993).

² Each bolded value highlights the force associated with a rounded value on the penetrometer scale that is closest to a *Penetration Resistance Class* boundary. The bolded letter represents the *Penetration Resistance Class* from the following table (e.g., M indicates the *Moderate* class).

³ Each spring type spans only a part of the range of penetration resistance possible in soils; various springs are needed to span all *Penetration Resistance Classes*.

Penetration Resistance Class (called **Penetration Resistance** in NASIS)—Record the appropriate class, by horizon or layer, based on the average value of five or more measurements with a pocket penetrometer.

Penetration Resistance Class	Code	Criteria: Penetration Resistance (MPa)
Extremely Low	EL	< 0.01
Very Low	VL	0.01 to < 0.1
Low	L	0.1 to < 1
Moderate	М	1 to < 2
High	Н	2 to < 4
Very High	VH	4 to < 8
Extremely High	EH	≥ 8

PENETRATION ORIENTATION—Record the orientation of the pocket penetrometer used to determine the **Penetration Resistance Class**.

Orientation	Code	Criteria
Horizontal	Н	Oriented perpendicular to a vertical pit face
Vertical ¹	V	Oriented perpendicular to the ground surface

¹ The conventional (preferred) orientation.

EXCAVATION DIFFICULTY—The relative force or energy required to dig soil out of place. Describe the **Excavation Difficulty Class** and the moisture condition (*moist* or *dry*, but not wet); use the "(Soil) Water State" table; e.g., *moderate*, *moist* or *M*, *M*. Estimates can be made for either the most limiting layer or for each horizon.

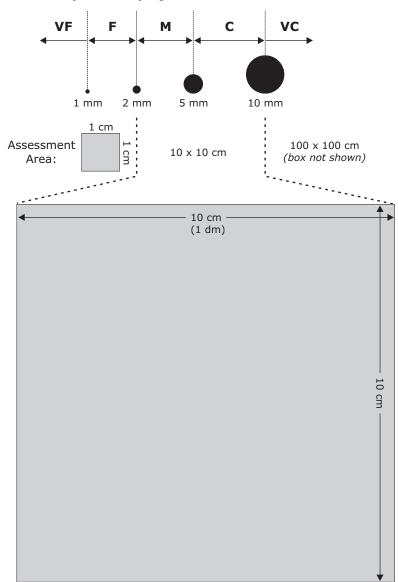
Class	Code	Criteria
Low	L	Excavation by tile spade requires arm pressure only; impact energy or foot pressure is not needed.
Moderate	М	Excavation by tile spade requires impact energy or foot pressure; arm pressure is insufficient.
High	Н	Excavation by tile spade is difficult but easily done by pick using over-the-head swing.
Very High	VH	Excavation by pick with over-the-head swing is moderately to markedly difficult. Backhoe excavation by a 50- to 80-hp tractor can be made in a moderate time.
Extremely High	EH	Excavation via pick is nearly impossible. Backhoe excavation by a 50- to 80-hp tractor cannot be made in a reasonable time.

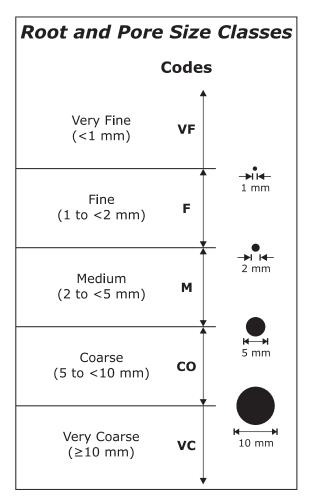
Record the **Quantity**, **Size**, and **Location** of roots in each horizon. **NOTE:** Describe **Pores** using the same **Quantity** and **Size** classes and criteria as those for **Roots** (use the combined tables). A complete example for roots is: *Many*, *fine*, *roots In mat at top of horizon or 3*, *f* (*roots*), *M*.

ROOTS (and PORES) - QUANTITY—Describe the quantity (number) of roots for each size class in a horizontal plane. (**NOTE:** Typically, this is done across a vertical plane, such as a pit face.) Record the average quantity from three to five representative unit areas. **CAUTION:** The unit area that is evaluated varies with the *Size Class* of the roots being considered. Use the appropriate unit area stated in the *Soil Area Assessed* column of the "Size (Roots and Pores)" table (also see following graphic). In NASIS, record the actual number (#) of roots/unit area (NASIS then assigns the appropriate class). Use class names in narrative description.

Quantity	Code		Average Count ²	
Class ¹	Conv.	NASIS	(per assessed area)	
Few	1	#	<1 per area	
Very Few ¹	_	#	<0.2 per area	
Moderately Few ¹	_	#	0.2 to <1 per area	
Common	2	#	1 to <5 per area	
Many	3	#	≥5 per area	

¹ The *Very Few* and *Moderately Few* subclasses can be used for roots (optional) but do not apply to pores.


ROOTS (and PORES) - SIZE—(See the following graphic for size.)


Size	Code		Diameter	Soil Area
Class	Conv.			Assessed ¹
Very Fine	vf	VF	< 1 mm	1 cm ²
Fine	f	F	1 to < 2 mm	1 cm ²
Medium	m	М	2 to < 5 mm	1 dm²
Coarse	со	С	5 to <10 mm	1 dm ²
Very Coarse	VC	VC	≥10 mm	1 m ²

¹ One dm²=a square that is 10 cm on a side, or 100 cm².

² The applicable area for appraisal varies with the size of roots or pores. Use the appropriate area stated in the Soil Area Assessed column of the "Size (Roots and Pores)" table or use the following graphic.

ROOTS (and PORES) - QUANTITY—Soil area to be assessed.

ROOTS - LOCATION (Roots only)—Identify where roots occur.

Location	Code
Between peds	Р
In cracks	С
In mat at top of horizon ¹	М
Matted around rock fragments	R
Throughout	Т

¹ Describing a root mat at the top of a horizon rather than at the bottom or within the horizon flags the horizon that restricts root growth.

PORES (DISCUSSION)

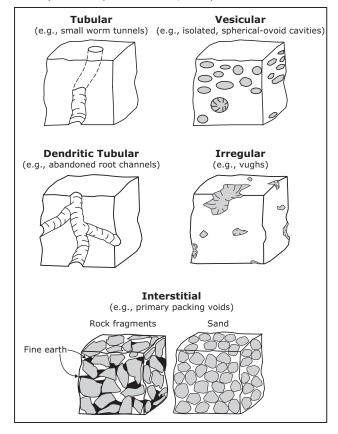
Pores are the air- or water-filled voids in soil. Historically, description of soil pores, called "nonmatrix" pores in the Soil Survey Manual (Soil Survey Division Staff, 1993), excluded interstructural voids, cracks, and, in some schemes, interstitial pores. Interstructural voids (i.e., the subplanar fractures between peds; also called interpedal or structural faces/planes), which can be inferred from soil structure descriptions, are not recorded directly, Cracks can be assessed independently (Soil Survey Division Staff, 1993). *Interstitial pores* (i.e., visible, primary packing voids) may be visually estimated, especially for fragmental soils, or can be inferred from soil porosity, bulk density, and particle-size distribution. Clearly, one cannot assess the smallest interstitial pores (e.g., <0.05 mm) in the field. Field observations are limited to those that can be seen through a 10X hand lens or larger. Field estimates of interstitial pores are considered to be somewhat tenuous but still useful.

PORES

Describe the **Quantity** and **Size** of pores for each size class, by horizon, in a horizontal plane. (**NOTE:** Typically, this is actually assessed on a vertical face.) Description of soil pore **Shape** and **Vertical Continuity** is optional. A complete example for pores is: common, medium, tubular pores, throughout or c, m, TU (pores), T.

PORES - QUANTITY—See and use Quantity (Roots and Pores).

PORES - SIZE—See and use **Size** (Roots and Pores).

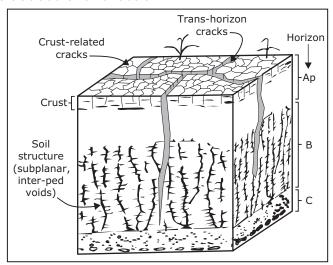

PORES - SHAPE (or Type)—Record the dominant form (or "type") of pores discernible with a 10X hand lens and by the unaided eye. (See following graphic.)

Description	Code	Criteria
SOIL PORES 1		
Dendritic Tubular	DT	Cylindrical, elongated, branching voids; e.g., empty root channels.
Irregular	IG	Nonconnected cavities, chambers; e.g., vughs; various shapes.
Tubular	TU	Cylindrical and elongated voids; e.g., worm tunnels.

Description	Code Criteria		
Vesicular	VE	Ovoid to spherical voids; e.g., solidified pseudomorphs of entrapped gas bubbles concentrated below a crust; most common in arid and semiarid environments.	
PRIMARY PA	PACKING VOIDS ²		
Interstitial	IR	Voids between sand grains or rock frags.	

¹ Also called "Nonmatrix Pores" (Soil Survey Division Staff, 1993).

² Primary Packing Voids include a continuum of sizes. As used here, they have a minimum size that is defined as pores that are visible with a 10X hand lens. Primary Packing Voids: also called "Matrix Pores" (Soil Survey Division Staff, 1993).



PORES - VERTICAL CONTINUITY—The average vertical distance through which the minimum pore diameter exceeds 0.5 mm. Soil must be moist or wetter.

Class	Code		Criteria:
Class	Conv.	NASIS	vertical distance
Low	_	L	< 1 cm
Moderate	_	М	1 to < 10 cm
High	_	Н	≥ 10 cm

CRACKS

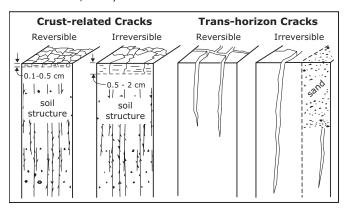
Cracks (also called "Extra-Structural Cracks"; Soil Survey Division Staff, 1993) are fissures other than those attributed to soil structure. Cracks are commonly vertical, subplanar, and polygonal and are the result of desiccation, dewatering, or consolidation of earthy material. Cracks are much longer and can be much wider than planes that surround soil structural units, such as prisms and columns. Cracks are key to preferential flow, also called "bypass flow" (Bouma et al., 1982), and are a primary cause of temporal (transient) changes in ponded infiltration and hydraulic conductivity in soils (Soil Survey Division Staff, 1993). Cracks are primarily associated with, but not restricted to, clayey soils and are most pronounced in high shrink-swell soils (high COLE value). Record the **Relative Frequency** (estimated average number per m²), **Depth** (average), and **Kind**. A complete example is: 3, 25 cm deep, reversible trans-horizon cracks.

Kind	Code 1	General Description	
CRUST-RELATED CRACKS ² (shallow, vertical cracks related to crusts; derived from raindrop-splash and soil puddling followed by dewatering/consolidation and desiccation)			
Reversible Crust- Related Cracks ³	RCR	Very shallow (e.g., 0.1-0.5 cm); very transient (generally persist less than a few weeks); formed by drying from surface down; minimal seasonal influence on ponded infiltration (e.g., raindrop crust cracks).	
Irreversible Crust- Related Cracks ⁴	ICR	Shallow (e.g., 0.5-2 cm); seasonally transient (not present year-round nor every year); minor influence on ponded infiltration (e.g., freeze-thaw crust and associated cracks).	
TRANS-HORIZON CRACKS ⁵ (deep, vertical cracks that commonly extend across more than one horizon and may extend to the surface; derived from wetting and drying or original dewatering and consolidation of parent material)			
Reversible Trans- Horizon Cracks ⁶	RTH	Transient (commonly seasonal; close when rewetted); large influence on ponded infiltration and $K_{\rm sat}$; formed by wetting and drying of soil (e.g., Vertisols, vertic subgroups).	
Irreversible Trans- Horizon Cracks ⁷	ITH	Permanent (persist year-round; see <i>Soil Taxonomy</i>), large influence on ponded infiltration and K _{sat} (e.g., extremely coarse subsurface fissures within glacial till;	

¹ No conventional codes; use entire term. NASIS codes are shown.

drained polder cracks).

² Called "Surface-Initiated Cracks" (Soil Survey Division Staff, 1993).


³ Called "Surface-Initiated Reversible Cracks" (Soil Survey Division Staff, 1993).

⁴ Called "Surface-Initiated Irreversible Cracks" (Soil Survey Division Staff, 1993).

⁵ Also called "Subsurface-Initiated Cracks" (Soil Survey Division Staff, 1993).

⁶ Called "Subsurface-Initiated Reversible Cracks" (Soil Survey Division Staff, 1993).

⁷ Called "Subsurface-Initiated Irreversible Cracks" (Soil Survey Division Staff, 1993).

CRACKS - DEPTH—Record the **Average Apparent Depth** (also called a "depth index value" in the *Soil Survey Manual* [Soil Survey Division Staff, 1993]), measured from the surface, as determined by the wire-insertion method (≈2 mm diameter wire). **NOTE:** This method commonly gives a standard but conservative measure of the actual fracture depth. Do not record this data element for cracks that are not open to the surface. Depth (and apparent vertical length) of subsurface cracks can be inferred from the *Horizon Depth* column of layers exhibiting subsurface cracks.

CRACKS - RELATIVE FREQUENCY—Record the **Average Number of Cracks**, per meter, across the surface or **Lateral Frequency** across a soil profile as determined with a line-intercept method. This data element cannot be assessed from cores or push tube samples.

SOIL CRUSTS (DISCUSSION)

C. Franks, R. Grossman, and P. Schoeneberger, NRCS, Lincoln, NE

A soil crust is a thin (i.e., <1 cm up to 10 cm thick) surface layer of soil particles bound together by living organisms and/or by minerals into a horizontal "mat" or small polygonal plates. Soil crusts form at the soil surface and have different physical and/or chemical characteristics than the underlying soil material. Typically, soil crusts change the infiltration rate of the mineral soil and stabilize loose soil particles and aggregates. There are two general categories of soil crusts: (I) biological crusts and (II) mineral crusts.

(I) **Biological Crust** (also called *biotic*, *cryptogamic*, *microbiotic*, or *microphytic* crust): a thin, biotically dominated surface layer or

mat formed most commonly by cyanobacteria (blue green algae), green and brown algae, mosses, and/or lichens (NRCS, 1997; NRCS, 2001) that forms in or on the soil surface. Various types of microbiotic crusts have been recognized based on the biological communities of which they are composed (no prevailing consensus on types of biological crusts, at present).

- (II) **Mineral Crust** (also called *abiotic*, *nonbiotic*, or *nonmicrobiotic* crust): a thin surface layer composed of reversibly bonded soil particles or secondary mineral crystals, sometimes laminated, that is *not* physically dominated by a microbiotic "mat."
- 1. **Chemical Crust** (e.g., salt incrustations): a thin surface layer that is dominated by macro- or microcrystalline evaporites of halite (NaCl), MgSO₄, mirabilite (Na₂SO₄ 10H₂O), thenardite (Na₂SO₄), epsomite (MgSO₄ 7H₂O), hexahydrite (MgSO₄ 6H₂O), bloedite (Na₂Mg(SO₄)₂ 4H₂O), konyaite (Na₂Mg(SO₄)₂ 5H₂O), loeweite (Na₁₂Mg₇ (SO₄)₁₃ 15H₂O), gypsum (CaSO₄ 2H₂O) (Singer and Warrington, 1992; Doner and Lynn, 1989), or other minerals. Other surficial mineral incrustations (e.g., from acid mine drainage or other sources) are included within this group.
- Physical Crust: a physically reconstituted, reaggregated, or reorganized surface layer composed predominantly of primary mineral particles.
 - a). Raindrop Impact Crust (also called a structural crust): a thin layer that forms as a result of raindrop impact, which causes the clay in the soil to disperse, and subsequently hardens into a massive structureless or platy surface layer when it dries (Singer and Warrington, 1992).
 - b). Depositional Crust (also called a "fluventic zone"; Soil Survey Division Staff, 1993): a surface layer, commonly laminated and of variable thickness, consisting of small aggregates or primary mineral grains deposited by short-range runoff and subsequently dried (Singer and Warrington, 1992).
 - c). Freeze-Thaw Crust (Soil Survey Division Staff, 1993): a seasonal surface sediment layer 1 to 5 cm thick occurring on bare ground that has been disaggregated or puddled by radiant heating and cooling to produce freeze/thaw cycles while Very Moist or Wet. Commonly, the layer is composed of interlocking polygonal plates 5 to 20 cm in diameter, separated by cracks 1 to 2 cm wide that extend to the base of the crust and do not completely close upon wetting; Dry Rupture Resistance is ≤ Moderately Hard.
 - d). Vesicular Crust: a surface soil layer or zone characterized by spherical or ovoid, discontinuous pores 0.5 to 2 mm in

diameter that are visible to the naked eye and make up a substantial portion of the matrix volume (i.e., $\geq 20\%$ cross-sectional area). These vesicles are believed to form when the pores between clay particles in platy soil structure are subjected to repeated wetting and drying. If soil aggregates become particularly unstable when they become saturated, air pressure may form small round voids (e.g., "bubbles") that remain when the soil dries (Blackburn et al., 1975). Vesicular crusts occur primarily in arid and semiarid areas.

SOIL CRUSTS

Soil Crusts—Record the presence of any surface crust. No entry implies that no crust is present. (In NASIS, crusts are included under **Pedoderm**.)

Description—Soil crusts can be identified and recorded by **Kind**. Additional suggested descriptors may include: **Rupture Resistance** (**Surface Crusts and Plates**), **Porosity (Kind)**, **Size**, **Diameter**, **Thickness**, **Amount** (cross-sectional ground coverage), and **Color**.

SOIL CRUSTS - KIND-

Kind	Code	Criteria
BIOLOGICAL CRUSTS	MC	biotically dominated surface "mat" of algae, lichens, mosses, etc.; also called biotic, cryptogamic, microbiotic, or microphytic crusts; slightly flexible when moist
MINERAL CRUSTS	MI	reversibly bonded primary, secondary mineral grains; not biotically dominated; stiff or rigid when moist or dry
Chemical Crusts	CC	evaporites (e.g., NaCl) or precipitates (e.g., CaCO ₃)
Physical Crusts	_	reorganized, reconstituted
raindrop impact crust	RC	dispersed, puddled, dried
depositional crust	DC	sediments of variable thickness
freeze-thaw crust	FC	bare ground, small polygons
vesicular crust/ zone	VC	substantial discontinuous, spherical or ovoid pores; e.g., 0.5 to 4 mm diameter

Record the **Kind** and **Area (%) Occupied**. Describe the special soil feature by kind and estimate the cross-sectional area (%) of the horizon that the feature occupies; e.g., *lamellae*, 15%.

SPECIAL FEATURES - KIND [Called **Horizon Feature Kind** in NASIS]—Identify the kind of special soil feature.

Kind	Code 1	Criteria
desert pavement ²	DP	A natural concentration of closely packed and polished stones at the soil surface in a desert (may or may not be an erosional lag).
water repellent layer	HL	Either a surface or subsurface layer that repels water (e.g., dry organic materials; scorch layers in chaparral). See p. 7–14.
ice wedge cast	IC	A vertical, often trans-horizon, wedge- shaped or irregular form caused by infilling of a cavity as an ice wedge melts; commonly stratified.
krotovinas	KR	Filled faunal burrows.
lamellae ³	LA	Thin (e.g., >0.5 cm), pedogenically formed plates or intermittent layers.
lamina	LN	Thin (e.g., <1 cm), geogenically deposited strata or layers of alternating texture (e.g., silt and fine sand or silt and clay).
stone line	SL	A natural concentration of rock fragments caused by water erosion or transport erosional lag (i.e., carpedolith).
tongues of albic material	E	Small areas or lobes of albic material that dip down (interfinger) more than 5 cm into nonalbic material.
tongues of argillic material	В	Small areas or lobes of argillic material that dip down (interfinger) more than 5 cm into nonargillic material.

¹ Conventional codes consist of the entire name; e.g., *Tongues of Albic Material*. Consequently, no *Conv. code* is shown.

² In NASIS, proposed to be moved to a new descriptor (data element) called **Pedoderm** (in NASIS 6.2) (Soil Survey Staff, 2012b).

³ In NASIS, described under **Diagnostic Horizon or Property -**Kind.

SPECIAL FEATURES - AREA (%) OCCUPIED—Estimate the cross-sectional area (%) of the horizon that the feature occupies (see graphics, p. 7–1).

SATURATED HYDRAULIC CONDUCTIVITY AND PERMEABILITY (DISCUSSION)

Saturated hydraulic conductivity (K_{sat}) is the single most scientifically valuable parameter for phenomena related to soilwater flow and transport. K_{sat} quantitatively defines a soil's capacity to transmit water. Traditionally, NRCS (formerly SCS) used the term "permeability" for water-flow phenomena and used *Permeability Classes* (PC), which have prescribed percolation rate ranges (originally inches/hr). The PC and associated percolation rates are commonly mistaken to be K_{sat} . The confusion between K_{sat} , the term "permeability," and the *Permeability Classes* arises for several reasons (Wysocki et al., 2002). A primary reason is that the term "permeability" has three meanings in soil science.

- "Permeability" in a qualitative sense describes a soil's capacity to transmit fluids, including water, or gases. No quantitative measure is implied. For example, sandy soils are more "permeable" than clayey soils.
- 2) "Permeability" (k) (Richards, 1952) (also known as intrinsic permeability) is an exclusive, quantitative porous material parameter controlled by pore geometry. In a stable porous material, (k) is independent of the fluid. Permeability (k) is the hydraulic conductivity (K) times the fluid viscosity (n) divided by the fluid density (p) and the gravitational constant (g) (Eq. 1). Permeability (k) has area units (e.g., m²).
- 3) "Permeability" is short for permeability coefficient, which is hydraulic conductivity (K), or in saturated soil ($K_{\rm sat}$). The Darcy equation quantitatively defines (**Eq. 2**) hydraulic conductivity (K) as the factor that relates flux (q) to the hydraulic gradient ($\Delta h/l$). $K_{\rm sat}$ depends upon both soil and fluid attributes. Measurement units for $K_{\rm sat}$ depend on the input units. With flux expressed as volume (cm³), head change (Δh) as cm (cm H_2O /cm), and length as cm, the $K_{\rm sat}$ units are length/time (cm/s). Note that both variables q and K have units of length/time (cm/s), but they are distinctly different entities. Flux (q), when expressed as length/time, is an apparent rate that varies with $\Delta h/l$. $K_{\rm sat}$ is a proportionality factor that relates q to $\Delta h/l$. $K_{\rm sat}$ remains constant when the hydraulic gradient ($\Delta h/l$) varies. It is a physical parameter, not a rate.

Eq. 1 $k = Kn/\rho q$

k = permeability (cm²)

K = hvdraulic conductivity (cm/sec)

n = fluid (water) viscosity (dyne-sec/cm)

 $\rho = \text{fluid (water) density (gm/cm}^3)$

q = gravitation acceleration (cm/sec²)

$q = V/At = -K(\Delta h/I)$ Eq. 2 Darcy's Equation (one dimensional flow)

a = fluid flux (cm/s)

V = fluid volume (cm³)

A = cross-sectional area (cm²)

t = time(s)K = hvdraulic conductivity (cm/s)

 Δh = change in hydraulic head (cm)

I = lenath (cm)

The different permeability meanings have important distinctions that are not scientifically interchangeable. Most importantly, the intended meaning of "permeability" is not specifically discernible from written or verbal context alone. Meaning #1 carries no quantitative implications; meanings #2 and #3 have defined scientific applications. Uhland and O'Neal (1951) developed seven Permeability Classes (PC) from measurements on about 10,000 3-inch cores collected from 900 sites. They chose the original PC ranges such that each class represented an equal number of measured values from the sample population (Mason et al., 1957). Uhland and O'Neal (1951) measured discharge volume and calculated flux (q) as follows.

Eq. 3 q = V/At

V = fluid volume (in³)

A = cross-sectional area (in²)

t = time (hr)

Uhland and O'Neal (1951) specifically noted that the calculated value was a "percolation rate" with units of inches hr-1. These percolation rates defined the Permeability Class ranges. The Uhland and O'Neal study did not calculate K_{cr} from Darcy's equation (Eq. 2). The study method employed both a falling and constant head phase during measurement; the hydraulic gradient ($\Delta h/I$) varied and was undefined. Darcy's equation requires a defined hydraulic gradient to solve for K_{sat}. The PC, therefore, are a set of soil "permeability" (meaning #1) classes arrayed by a method-specific percolation rate. To obtain an approximation of K_{cst} for the Uhland and O'Neal (1951) study, one can use the constant head hydraulic gradient (0.857 in) and the flux (V/At) as a general solution of Darcy's equation, which yields V/At times 0.857=K_{sat}. This solution shows that PC percolation rates, at a minimum, exceed Kest by

about 15%. Two errors result if percolation rates are used as a proxy for $K_{\rm sat}.$ One is added uncertainty when estimating a soil $K_{\rm sat}.$ Do you decrease the estimate by 15%? Secondly, measured $K_{\rm sat}$ values would not be equivalent to the PC percolation rates. $K_{\rm sat}$ is the scientific standard for soil-water flow calculations (Hillel, 1980), and there is great scientific merit in using $K_{\rm sat}$ over PC for soil-water flow interpretations.

Uhland and O'Neal (1951) also developed a set of field-observable properties to link the large number of unmeasured soils to a permeability class. The field properties included structure size and type, aggregate overlap, texture, pores, compaction, and clay mineralogy (O'Neal, 1952). NRCS soil scientists assigned soils to the permeability classes based on this characteristic set, or extrapolation from soils measured in the initial study. The original percolation rate ranges for the PC were altered (Soil Survey Staff, 1971) and an eighth class added. The PC have historic merit and are retained for selected uses.

To avoid the confounding difficulties inherent in the PC and the term "permeability," the Soil Survey Division Staff (1993) developed $\rm K_{\rm sat}$ classes. To summarize:

- K_{sat} and the percolation rates (that defined the *Permeability Classes*) are different physical parameters. Both K_{sat} and percolation rates are commonly expressed in units length/time, which presents a false equivalency.
- 2) Darcy's equation relates K_{sat} to PC percolation rates. Core percolation rates used in *Permeability Class* development exceed K_{sat} by a minimum 15%. K_{sat} is not a rate.
- No simple transformation exists to reliably convert PC percolation rates to K_{sat}. Soils with slower percolation rates have a greater difference between K_{sat} than those with more rapid percolation rates.
- 4) To prevent confusion and avoid scientific inaccuracies, NRCS now emphasizes K_{sat} rather than the term "permeability" and K_{sat} classes rather than Permeability Classes.

SATURATED HYDRAULIC CONDUCTIVITY (K_{SAT})

Saturated hydraulic conductivity (K_{sat}) is the ease with which a saturated soil can transmit water through the pore space. K_{sat} is formally defined as the proportionality factor that relates water flow rate to the hydraulic gradient in Darcy's equation (see Discussion). K_{sat} is a measurable soil property, or it may be estimated from the properties (texture, structure, bulk density, etc.). Direct field K_{sat} measurement is possible with various devices (Amoozemeter, Guelph Permeameter, double-ring infiltrometer). Multiple (e.g.,

 \geq 5) measurement replications are needed on a horizon or layer to capture the natural variation.

Record an estimated $\mathbf{K}_{\mathrm{sat}}$ class or a measured $\mathbf{K}_{\mathrm{sat}}$ value for each horizon/layer. If measured, record the **Average K**_{sat}, **Standard Deviation**, **Replication Number (n)**, and **Method**. See NSSH, Exhibit 618.88 (Soil Survey Staff, 2012c) for guidelines for $\mathbf{K}_{\mathrm{sat}}$ Class estimation using texture and bulk density (see p. 7–10).

K	NASIS		Criteria ²	
Class	Code 1	s/wrl	cm/hr	in/hr
Very Low	#	< 0.01	> 0.0036	< 0.001417
Low	#	0.01 to < 0.1	0.00360 to < 0.036	0.001417 to < 0.01417
Mod. Low	#	0.1 to < 1.0	0.0360 to < 0.360	0.01417 to < 0.1417
Mod. High	#	1.0 to < 10	0.360 to < 3.60	0.1417 to < 1.417
High	#	10 to < 100	3.60 to < 36.0	1.417 to < 14.17
Very High	#	> 100	≥ 36.0	> 14.17

International Units [Kg s/m³]), see the Soil Survey Manual (Soil Survey Division For alternative units commonly used for these class boundaries (e.g., Standard Staff, 1993, p. 107).

 2 To convert $\mu m/sec$ to in/hr, $multiply \mu m/sec$ by 0.1417; e.g., (100 $\mu m/sec$) x(0.1417)=14.17 in/hr. To convert in/hr to µm/sec, multiply by 7.0572.

NRCS deemphasizes the use of *Permeability Classes*. Use K_{sat} . The *Permeability Classes* are listed here because of historic usage and because they are needed for selected soil interpretations.

Permeability Class	Code	Criteria: estimated in/hr 1
Impermeable	IM	< 0.0015
Very Slow	VS	0.0015 to < 0.06
Slow	SL	0.06 to < 0.2
Moderately Slow	MS	0.2 to < 0.6
Moderate	MO	0.6 to < 2.0
Moderately Rapid	MR	2.0 to < 6.0
Rapid	RA	6.0 to < 20
Very Rapid	VR	≥ 20

¹ These class breaks were originally defined in English units and are retained here as no convenient metric equivalents are available.

CHEMICAL RESPONSE

Chemical response is the reaction of a soil sample to an applied chemical solution or a measured chemical value. Responses are used to identify the presence or absence of certain materials, to obtain a rough assessment of the amount present, to measure the intensity of a chemical parameter (e.g., pH), or to identify the presence of chemical species (e.g., Fe⁺²) in the soil.

REACTION (pH) - (Called Field_pH in NASIS)—Record pH and Method; record the pH value to the precision limit of the method (e.g., to the nearest tenth). The preferred method is pH meter for 1:1 (water:soil). In NASIS, record pH numerical value and the method used (e.g., pH 6.5; 1:1 water:soil).

Descriptive Term	Code 1	Criteria: pH range
Ultra Acid	#	<3.5
Extremely Acid	#	3.5 to 4.4
Very Strongly Acid	#	4.5 to 5.0
Strongly Acid	#	5.1 to 5.5
Moderately Acid	#	5.6 to 6.0
Slightly Acid	#	6.1 to 6.5
Neutral	#	6.6 to 7.3

Descriptive Term	Code 1	Criteria: pH range
Slightly Alkaline	#	7.4 to 7.8
Moderately Alkaline	#	7.9 to 8.4
Strongly Alkaline	#	8.5 to 9.0
Very Strongly Alkaline	#	>9.0

¹ No codes; enter the measured value.

pH METHOD (called **ph_determination_method** in NASIS)—Record the method used to measure pH.

pH Method	1	Code
INDICATOR SOLUTION 2	(pH range) ¹	
Bromocresol green	3.8 - 5.4	BG
Bromocresol purple	5.2 - 6.8	BP
Bromophenol blue	3.0 - 4.6	BL
Bromothymol blue	6.0 - 7.6	ВВ
Chlorophenol red	5.2 - 6.8	CHR
Cresol red	7.0 - 8.8	CR
Methyl red	4.8 - 6.0	MR
Phenol red	6.8 - 8.4	PR
Phenolphthalein	8.2 - 10.0	PT
Thymol blue	8.0 - 9.6	ТВ
COMMERCIAL COLORIMETRI	C KITS	
Hellige-Truog (kit)		HT
Lamotte-Morgan (kit)		LM
Soil Test (kit)		ST
pH METER ²		
pH meter 1:1 water ³		M11
pH meter 1:2 water (0.01 M Ca	Cl ₂) ³	C12
pH meter 1N KCl		M12
pH meter, saturated paste		MSD
INDICATOR STRIPS 2		
indicator paper strip 1N NaF ¹		NF
pH indicator strip (unspecified) ²		STR
(H)ydrion (unspecified; = hydrogen ion paper strip)		YD
pH unspecified ^{2, 3}		PHU

¹ Soil Survey Staff, 2009.

² The pH method options in NASIS, release 6.2.

³ Preferred method.

EFFERVESCENCE—The gaseous response (seen as bubbles) of soil to applied HCl (carbonate test), H_2O_2 (MnO $_2$ test), or other chemicals. Commonly, ≈ 1 N HCl is used for carbonate test. Apply the chemical to the soil matrix (for HCl, effervescence class refers only to the matrix; do not include carbonate masses, which are described separately as "Concentrations"). Record the observed response (**Effervescence Class**) and the **Chemical Agent** used. A complete example is: Strongly Effervescent with 1N HCl; or ST, H2. (NOTE: In NASIS, manganese effervescence [by H_2O_2] is handled in separate tables; called MN_Effervescence_Agent and Mn_Effervescence classes; class codes and criteria are the same as those for Effervescence Class.)

Effervescence - Class—

Effervescence Class	Code	Criteria
Noneffervescent	NE	No bubbles form.
Very Slightly Effervescent	VS	Few bubbles form.
Slightly Effervescent	SL	Numerous bubbles form.
Strongly Effervescent	ST	Bubbles form a low foam.
Violently Effervescent	VE	Bubbles rapidly form a thick foam.

Effervescence - Location (obsolete in NASIS)—Use locations and codes from **(Ped and Void) Surface Features - Location**. (**NOTE:** The requirement to apply chemical agents [e.g., HCl] to the soil matrix makes many location choices invalid.)

Effervescence - Chemical Agent (In NASIS, the manganese chemical test agent $[H_2O_2]$ is recorded in a separate table [mn_effervescence_agent].)

Effervescence Agent	Code	Criteria
HCl (unspecified) ¹	H1	Hydrochloric Acid: Concentration Unknown
HCI (1N) 1, 2	H2	Hydrochloric Acid: Concentration=1 Normal
HCI (3N) 1, 3	Н3	Hydrochloric Acid: Concentration=3 Normal
HCI (6N) ^{1, 4}	H4	Hydrochloric Acid: Concentration=6 Normal
H ₂ O ₂ (unspecified) ^{5, 6}	P1	Hydrogen Peroxide: Concentration Unknown
H ₂ O ₂ ^{5, 6}	P2	Hydrogen Peroxide: Concentration 3-4%

- ¹ Positive reaction indicates presence of carbonates (e.g., CaCO₃).
- 2 The only HCl concentration used for the effervescence field test. **NOTE:** A (1N HCl) solution is made by combining 1 part concentrated (37%) HCl (which is widely available) with 11 parts distilled $\rm H_2O$.
- ³ Use 3N HCl to determine the Calcium Carbonate Equivalent test. It is not used for **Effervescence Class**. An approximately 3N HCl solution (10% HCl or 2.87N) is made by combining 6 parts 37% HCl (which is widely available) with 19 parts distilled H₂O.
- 4 A 6N HCl solution is used to distinguish between calcium and dolomitic carbonates. Dolomite reaction is slower and less robust than ${\rm CaCO_3}$ effervescence. A 6N HCl solution is made by combining 1 part concentrated (37%) HCl (which is widely available) with 1 part distilled ${\rm H_2O}.$ Soil sample should be saturated in a spot plate and allowed to react for 1 to 2 minutes; froth=positive response.
- ⁵ Rapid reaction indicates presence of manganese oxides (e.g., MnO₂). Not used to determine "Effervescence Class."
- 6 Under ambient conditions, Mn-oxides react rapidly whereas most organic matter reacts slowly with (3-4%) $\rm H_2O_2$.

REDUCED CONDITIONS (called **Reaction to alpha-dipyridyl** in NASIS)—Record under "Notes" if evaluated.

Chemical Agent	Code	Criteria
α , α -dipyridyl 1	Р	positive reaction ² : red or pink color develops
(0.2% conc. ³)	N	negative reaction: no color develops

¹ Commonly stated as "alpha-alpha dipyridyl."

Dipyridyl - Location—Describe the location(s) where the chemical test was conducted (use "Concentrations - Location" table); e.g., *In the matrix (MAT)*.

SALINITY CLASS (DISCUSSION)—Soil salinity classes are based on electrical conductivity from a saturation paste extract. Gypsum (CaSO $_4$ • 2H $_2$ O) and salts more soluble than gypsum (e.g., Na, Mg, and Ca chlorides and sulfates) are the sole or major contributors to the saturated paste extract EC.

 $^{^{2}}$ Positive reaction indicates presence of $\mbox{Fe}^{\mbox{\tiny +2}}$ (i.e., reduced conditions).

³ Childs, 1981.

NOTE: Electrical conductivity may be measured at various soil solution extract ratios (e.g., 1:1, 1:2, 1:5). The resultant EC values are not directly comparable because of the dilution effect. The salinity standard is the saturated paste extract EC. To avoid confusion, saturated paste EC is commonly denoted as ECe and other extracts denoted by the dilution ratio (e.g., EC.,.).

In addition to solution extracts, field measures of EC exist (e.g., electromagnetic induction [EMI], salinity probes). These measurements obtain an EC value that depends on salinity, moisture content, mineralogy, and texture. Such EC measurements are *not* directly comparable to ECe or EC of any extract ratio. For example, the electromagnetic induction (EMI) EC is known as apparent EC, which is denoted as ECa.

SALINITY CLASS—Estimate the **Salinity Class**. If the electrical conductivity is measured, record the **EC Value** (in the "Notes" column). Salinity class is based on saturated paste extract EC.

Salinity Class	Code	Saturated Paste - ECe dS/m
Nonsaline	0	< 2
Very Slightly Saline	1	2 to < 4
Slightly Saline	2	4 to < 8
Moderately Saline	3	8 to < 16
Strongly Saline	4	≥ 16

SODIUM ADSORPTION RATIO (SAR)—A measure of ion equilibrium between sodium (Na) in solution and exchangeable Na adsorbed on the soil (Soil Survey Staff, 2011). It is applied to soil solution extracts and irrigation waters. SAR=[Na⁺]/[([Ca⁺²] + [Mg⁺²])/2]^{0.5}, where the cation concentration is in milliequivalents per liter. As a field method, it is commonly determined with soil paste and an electronic wand.

ODOR—Record the **Kind** and relative **Intensity of odor (by horizon)** immediately after soil is exposed to air. The presence of an intense hydrogen sulfide odor (H_2S ; rotten egg) is commonly associated with a strongly anaerobic horizon where sulfate is reduced to sulfide (Fanning and Fanning, 1989).

Odor - Kind	Code	Criteria
None	N	No odor detected.
Petrochemical	Р	Presence of gaseous or liquid gasoline, oil, creosote, etc.
Sulfurous	S	Presence of H ₂ S (hydrogen sulfide); "rotten egg"; commonly associated with strongly reduced soil containing sulfides.

Odor Intensity (proposed)—Estimate and record the relative intensity of any odor present.

Odor Intensity	Code	Criteria: relative intensity of odor
Slight	SL	Odor is faint (e.g., only detected when sample is brought close to nose).
Moderate	MD	Odor is readily noticeable at arm's length as one handles the material (e.g., intermediate intensity); only detected as one starts to dig into the material.
Strong	ST	Odor is quite intense and readily detected before or immediately after the sample is exposed to air.

MISCELLANEOUS FIELD NOTES

Use additional descriptors and sketches to capture and convey information and features with no existing data element. Record as freehand notes under **Miscellaneous Field Notes**.

MINIMUM DATA SET (for a soil description)

Purpose, field logistics, habits, and soil materials all influence the specific properties necessary to "adequately" describe a given soil. However, some soil properties or features are so universally essential for interpretations or behavior prediction that they should always be recorded. These include: **Location**, **Horizon**, **Horizon**

Depth, Horizon Boundary, Color, Redoximorphic Features, Texture, Structure, and Consistence.

PEDON DESCRIPTION DATA SHEET

Over the decades, field data for soils have been documented in various ways. For many years soil descriptions were made on small blue cards (SCS-SOI-232 form: USDA-SCS, various versions, dates, and locations of issuance). Since the NRCS reorganization in 1995, some MLRA Soil Survey Regional Offices (MOs) and other groups have generated informal, locally tailored data sheets.

The following (blank) data sheet is provided as an option to record basic soil description information. This revised data sheet contains the most widely used soil descriptors (e.g., depth, color). Other descriptors (called data elements in NASIS) should be added as needed in blank boxes or in the **Miscellaneous Field Notes** box or in the **Notes** column. See p. 2–93.

PEDON DESCRIPTION EXAMPLE

A completed profile description data sheet is included to demonstrate recording soil information in the field (see p. 2–95).

Most field descriptions will likely be entered into an electronic database by the describer or must be deciphered by other scientists. Therefore, descriptions should use reasonably mnemonic abbreviations, standard codes, or a combination of these or be written in "longhand" (using complete words). The following profile description contains examples of all of these conventions.

Soil descriptions in soil survey reports, Official Soil Series Descriptions (OSDs), or other NRCS products should follow prescribed formats and descriptor sequences (i.e., NSSH, Part 614; Soil Survey Staff, 2012c).

USDA-N	IRCS								PEDON [DESC	RIP	1OIT	1	PEDON II	D#:							2/20	12
Series or C	omponen	t Name	:			Ма	p Unit Symbol		Photo #:	Classifica	ation:								Soil	Moist.	Regime	(Tax.):
Describer(s): Date: Weather:			Tem	Γemp.: Air: Latitude:			0						Location:				\dashv						
									Soil: Dep			itude:		" w				Sec			:	R.	
UTM: 2	Zone:	mE:	ml	N:	Торо Q	<u>Q</u> uad	1:						Transect: ID: Stop#: Interval:										
Landscape	:	Landfo	rm:	Microf	eature:	1	Anthro:		Elevation:	Aspect	: Slo	ope (%):	Slope	Complexity:	Slo	pe Sh	ape: (Up & E	On / A	cross)			
Hillslope P	rofile Pos	sition:	a: Geom. Component: Microrelief: Physio. Division: Physio. Province: Physio. Section: State Physio. Area:				rea:	L	ocal P	hysio. A	rea:												
Drainage: Flooding:					Por	ding: Soil Moisture Status: K _{sat} :					ı	Land Cover / Use:											
Parent Material: Bedrock:			:	Kind: Fra	ct.:	Hard.: De _l	oth:	Lithost	trat. Units	:	Group:		Fori	mation:			Memi	per:					
Erosion:	Kind:	D	egree:		Surface I	Frag	y %: GR:	СВ:	ST: BD	: CN	l: FL		th Ran	rol Section:		Ave.	Clay%:			Ave.	Rock Fra	ag %:	
Diagnostic	Horz. / P	rop.:	Kind	d:	Depth	:																	
	VE	GETA ⁻	ΓΙΟΝ:							М	ISCEL	LANEO	US FI	ELD NOTES / S	SKE	ТСН	l:						
SYMBOL	сом	MON N	AME	% G	D COVE	R								-									
] [
]																	
						41									_					ļ <u>i</u>			
						41									-					ļ			
						4									-				: : :	<u> </u>			
						+																	

			С	omponen	t Name:					Map Unit Symbol	:				Date:
	Obser. Method	Horizon	De l	p th (cm)	Bnd	Matr Dry	ix Color Moist	Texture	Rock Frags Knd % Rnd Sz	Structure Grade Sz Type	Dry	Consi Mst	stence Stk	Pls	Notes
1															
2															
3															
4															
5															
6															
7															
8															
9															
10															
	Redoxi % Sz Cn	morphic Fe Hd Sp Kd Ld	atures oc Bd Col	c % Sz Cr	concentrat n Hd Sp Kd	ions Loc Bd Col	Ped / V. Surfa % Dst Cont	ce Features Kd Loc Col	Roots Qty Sz Loc	Pores Qty Sz Shp	pH, method	Effer (agent)	Clay %	Sand %	Notes
1															
2															
3															
4															
5															
6															
7															
8															
9															
10															

USDA-NRCS							PEDON	l DE	SCR	IPTIO	N	PEDON II	D#:			2/2012
Series or Componer	nt Nam	e:			Map Unit Symbol	l:	Photo #:	Clas	sificatio	n:				So	oil Moist. Regime	(Tax.):
Caveat Emptor	^				CaC		127A	fin	ie, sme	ctitic, mee	віс Турі	c Argiudoll		l	Jdic (≈ 27" aı	nual)
Describer(s):		Date:			Weather:	Tem	p.: Air: 78°F	F	La	atitude: 4	0° 4	-9 ' 10.0 " n	Geodetic Datum:	Locati	ion: NE 1/4, SV	V 1/4
PJS & DAW		10/12/	2000		sunny		Soil:	Depth:	Le	ongitude: 9	6° 4	-6' 06.1 " w	NAD '83	Sec. 2	20 т. 10N	r. 6E
UTM: Zone:	mE:	m	N:	Topo Qu	ıad: Emerald,	NE	Site ID:	Yr:	State:	County: Pe	edon #:	Soil Survey Area:	MLRA/LRU:	Trans	ect: ID: 2	
				7.5 t	opo 1978		5	2002	2 NE	109	006	Lancaster Co.	106	Stop#	: 6 Interva	: 10m
Landscape:	Landf	orm:	Microf	eature:	Anthro:		Elevation:	Ası	pect:	Slope (%):	(%): Slope Complexity: Slope Shape: (Up			0 & Dn / Across)		
till plain	low	hill			furrow		1240'	3	34°	6%	sim	1ple	VV (convex,	onvex)		
Hillslope Profile Po	sition:	Geom	. Comp	onent:	Microrelief:	Phy	sio. Division:	n: Physio Province:			Physi	io. Section:	State Physio. Area:		Local Physio. Area:	
shoulder		nos	se slop	е	micro-low	ln-	terior Plain	15 0	Central	Lowland	Dis	sected Till Plain			Middle Creek Basin	
Drainage: WD		Flood	ing:	- 1	Ponding:	Soil N	loisture Stat	tus:	Ksa	at:	•			Lan	d Cover / Use:	
(Well Drained)		nor	1e		none	mo	ist		la	ow (ave. = 0	0.011 c	:m/hr; n=3; deptl	1: 35-50 cm)	5	oybeans (CCC	9)
Parent Material:	ess, o	ver	В	edrock:	Kind: Fra	act.:	Hard.:	Depth:	Lit	hostrat. Unit	ts:	Group:	Formation:		Member:	
pedisediment,	over t	ill		Sandst	tone (in adjac	ent e	gully) > 15 r	m	P	eoria Loes	s, Gillr	nan Canyon, unn	amed pedisedir	nent,	unnamed till	
Erosion: Kind: Degree: Surface Frag %: GR: CB: ST: BD: CN: FL: P.S. Control Section: Ave. Clay%: Av						Ave. Rock Fra	g %:									
R (F	Rill)	1	K	(ind:	C)				D	epth Ran	ge: 30-80 cm	37%		< 1%	
Diagnostic Horz. / I	-	Kin 1ic 30-9		Depth:						1						

VEGETATION:	
COMMON NAME	% GD COVER
Soybean stubble	1%
Crabgrass	5%
	COMMON NAME

	MISCELL	ANEOUS FIELD NO	TES / S	KETC	H:				
deep polygonal joints in t	ill:		M	<u>cm</u>					
$= 30^{\circ}$ angle; 10-20 cm di	am.		Ар			$Z /_{-}$	//	//	black
white, Ca	iCO ₃	loess	Α	30	3 3	3 3 3	3 3 3	3_	eil
lined sea	ms Peoria-	i	Bt1						gray br. ail
(1-4 cm di		colluvial loess with scattered gr.	2Bt2	60	0	0	٥	٥	brown loam
in center		}	1	90	——`				104111
//// bounded by	Gillman Canyon•	colluvial loess	2Bt3		ه ره	٥	0		dark br. loàm
brown / black	pedisediment—	<u></u>	3B	130	0000	09 900	0	0	
Fe / Mn zone which is	'	red paleosol	4Btb1		73	7 [5 5	900	gravels red.cl.
bounded by yellow / br.		weathered,		163		ーフ厂	\mathcal{T}^{-1}	7-	
Fe (goethite) halo at		oxidized, leached	4Btb2			// //	/		brown cl.
250 cm depth.	Pre-Illinoian till•	mottled, unoxidized,	2 - 4BC	210		// // 	11		arayish
·		leached	400	230	- ਨਾ/	<u></u>		<u> </u>	Brown c
	_	mottled, unoxidized, unleached	4C	260	011	<i>عانا</i> ج	// <i>C</i>		grayish brown c
		·		200	71	soil topple	debris /	/	//

			Componer	nt Name:					Map Unit Symbol:					Date:
	Obser. Method	Horizon	Depth (cm)	Bnd	Matrix Dry	Color Moist	Texture	Rock Frags Knd % Rnd Sz	Structure Grade Sz Type	Cons Dry Mst		stence Stk	Pls	Notes
1	LP*	Ар	0-20	Abrupt Smooth	10YR 4/2	10YR 3/1	silt loam (sil)	0	common, fine & med. granular	Slightly Hard	Friable	non- sticky	non- plastic	Observ. Meth.: LP, 4 x 300 m
2	LP	Α	20-30	CW	10YR 4/2	10YR 3/1	sil	0	3 f, m abk	МН	FI	50	PO	
3	LP	Bt1	30-60	GW	2.5YR 6/2	10YR 5/3	sicl	0	2 m, c sbk	Н	VFI	55	MP	
4	LP	2Bt2	60-90	GW	10YR 6/3	70% 10YR 4/3 30% 10YR 5/3	sicl	2% scattered f, m rounded gr.	2 m pr ⇒ 2 m sbk	Н	VFI	55	MP	
5	LP	2Bt3	90-130	AW	10YR 4/4	40% 7.5YR 4/3 60% 7.5YR 3/3	sil	2% scattered f, m rounded gr.	1 m, co. pr ⇒ 2 m sbk	МН	FI	55	SP	
6	LP	3Bw	130-145	AW	7.5YR 5/4	7.5YR 4/6	xgrscl	85% f, m, co. rounded gravels mixed lithology	0 sg	L	L	50	PO	
7	LP	4Btb1	145-163	GW	7.5YR 5/6	7.5YR 4/6	cl	10% f, rounded gr., mixed lithology	2 m sbk ⇒ 3 vf, f sbk	VH	EF	MS	MP	\
8	LP	4Btb2	163-210	DW	7.5YR 4/4	7.5YR 4/4	cl	1% f, m rounded gr., mixed lithology	3 co., vco pr ⇒ 3 f, m sbk	EH	SR	MS	MP	15% coarse, faint, 10YR 4/3 mottles, M, irregular, on faces of peds
9	LP	4BC	210-230	DI	2.5YR 7/2	2.5YR 5/2	С	1% f, m rounded gr., mixed lithology	3 co, vco pr ⇒ 2 m sbk	EH	R	VS	VP	None
10	SP	4C	230-260+		2.5YR 5/2	2.5YR 5/2	С	1% f, m rounded gr., mixed lithology	3 co, vco pr ⇒ 3 f, m abk	R	R	VS	VP	None

	Redoximorphic Features % Sz Cn Hd Sp Kd Loc Bd Col	Concentrations % Sz Cn Hd Sp Kd Loc Bd Col	Ped / V. Surface Features % Dst Cont Kd Loc Col	Roots Qty Sz Loc	Pores Qty Sz Shp	pH, Effer Clay Sand method (agent) % %	Notes
1	None 	None 	None 	1 m T 2 vf, f T	few, very fine, dendr. tubular	5.0, ** NE, H2 M11	(** pH by pocket meter, 1:1 soil to water)
2			\	1 m T 2 vf, f T	2 vf TE	6.0 NE, H2	
3			60%, faint, clay films (CFL) on ped faces (PF)	2 vf T 1 f T	2 vf, f TE	6.7 NE, H2	
4			60%, faint, clay films (CFL) on ped faces (PF)	1 vf T 1 f T	2 vf, f TE	6.9 NE, H2	
5			30%, faint, clay films (CFL) on ped faces (PF)	few, very fine, between peds	2 vf TE	7.2 NE, H2	
6			20%, prominent, clay films on rock fragments (RF)	None 	3 vf, f IR	7.1 NE, H2	gravel pavement with scattered, small gully fills
7	\		85%, P, clay films (CLF) on all ped faces (PF)		2 vf, f TE	7.1 NE, H2	till joint ghosts remain; truncated paleosol; strong argillans & pedo. structure
8	common, med., distinct 10YR 6/3 iron depletions in matrix		40%, D, CLF on PF		2 vf TE 1 f TE	7.6 NE, H2	till joints ghost and fade upwards to top at 45°; clay & Fe/Mn coated prisms
9	f, 3, P, 10YR 2/1, MNF, APE	+	27%, D, CLF on ped faces (PF)		2 vf TE	7.7 SL, H2	polygonal till joints ghost & tip 30° to North (down slope)
10	c, 4, P, 2.5 / N, MNF, on prism faces (APF)	c, vco, P, white, I, CaCO ₃ nodules along joints (CRK) & in matrix	7%, P, pressure faces (PRF) on PF throughout	+	1 vf, f 1 <i>G</i>	8.2, SL, H2 M11 (nodules VE)	till joints tip 30° to North (down slope)

SUBAQUEOUS SOILS (SAS) DESCRIPTION

S. McVey, P.J. Schoeneberger, J. Turenne, M. Payne, and D.A. Wysocki, NRCS, and M. Stolt, URI

DISCUSSION: Permanently submerged mineral or organic substrates covered by relatively shallow water display recognizable soil morphology and meet Simonson's soil formation (1959) model in that chemical and physical additions, losses, transformations, and translocations created the morphology. Such soils are informally known as "subaqueous soils." Kubiena (1953) proposed a comprehensive classification that included subaqueous soils. More recently, Demas (1993, 1998) and Demas et al. (1996) reintroduced subaqueous soil concepts in the U.S. Recent reviews (Stolt and Rabenhorst, 2012; Soil Survey Staff, 2012d) provide comprehensive treatment of subaqueous soil settings and processes. Payne (2010) presents operational methods for subaqueous soil inventory. The 11th edition of Keys to Soil Taxonomy (Soil Survey Staff, 2010) presently recognizes subaqueous soils as suborders of Entisols and Histosols (Wassents and Wassists) that meet the criterion of "a positive water potential at the soil surface for more than 21 hours of each day in all years."

The description of subaqueous soils is similar to that of terrestrial soils but differs in several important ways. Many subaqueous soil parameters (color, texture, RMF, etc.) fit traditional descriptive conventions outlined in this Field Book. The unique setting and morphology of subaqueous soil coupled with its recent scientific import warrant a separate section that presents all descriptors in one place. This section includes description forms and subaqueous soil description examples. (*NOTE:* The most prevalent subaqueous settings are coastal marine or brackish estuarine. The descriptive conventions presented here reflect this. Freshwater subaqueous settings may require additional descriptors.)

SUBAQUEOUS SOILS DESCRIPTION—Record subaqueous soil profile information using the following parameters. (*NOTE:* Field Book soil descriptors presented elsewhere [e.g., horizon] have page number references. Please refer to the cited page for complete choice lists.)

BATHYMETRY

Bathymetry is the measurement of sea- or lake-floor or river bottom relief. Because of nautical importance, bathymetric data are commonly expressed as a depth from the water surface at Mean Lower Low Water (MLLW) tidal datum to the bottom. The water surface reference in a coastal setting is commonly Mean Low Water (MLW) or Mean Tide Level (MTL) (see graphic on p. 2–99). Lack of bathymetric data often requires field collection of such data during

subaqueous soil survey. Protocols for bathymetric data collection are addressed elsewhere (Payne, 2010; Bradley and Payne, 2010).

The inverse of water depth is the subaqueous soil survey relief, which is useful for interpretation of subaqueous geoforms (landforms) and geomorphic description. Geomorphic description for subaqueous soils follows the same convention as those for terrestrial soils (p. 1–4). A compendium of subaqueous geoforms exists in the Geomorphic Description System (GDS) (Schoeneberger and Wysocki, 2012) (p. 3–38).

SITE

SITE/PEDON ID—Record the site/pedon identification number, such as the Soil Survey Site Identification Number (see p. 1–2). A complete example is S2011RI009014A. (Translation: This is a pedon sampled [S] for soil characterization during 2011 [2011], from Rhode Island [RI], in Washington County [009]; it is the fourteenth pedon [014] sampled in that county during 2011; and it is a satellite sample [A] related to the primary pedon.)

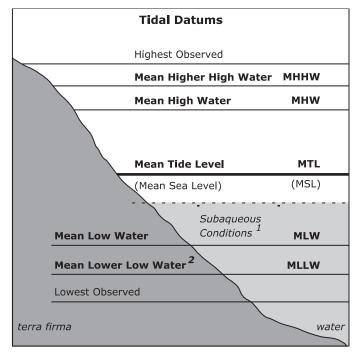
DATE—Record the date the sample was collected; e.g., *MM*, *DD*, *YYYY*.

TIME: START/END—Record the time that the pedon was opened (Start Time) and exposed to aerobic conditions for description and the time that the description was finished (End Time). (*NOTE:* First describe soil color and other soil properties that can change as a result of oxidation.)

DESCRIBER(S)—Record the people who describe the core; e.g., *Herman Munster* or *HM*.

WAYPOINT (Number)—Record the GPS waypoint number.

GPS (Model)—Record the GPS model used. (In NASIS, this is a text field.)


COORDINATES—Record the sample site GPS coordinates. (*NOTE:* For subaqueous soils, location is always obtained as a GPS coordinate.)

GEODETIC DATUM—Record the Geodetic Datum (called **GPS Datum** in NASIS) used; e.g., *WGS84*.

ELEVATION—Elevation should be normalized relative to an appropriate vertical or tidal datum. In the U.S., use the North American Vertical Datum, 1988 (NAVD88). This elevation datum is the standard shown on recent USGS topographic maps. **NOTE:** For elevations below Mean Tidal Level (MTL), a minus sign precedes the numerical value (e.g., -1.2 m). For terrestrial anthropogenic water

bodies (e.g., reservoir), the elevational reference (datum) is the design pool level.

TIDAL DATUM (DISCUSSION)—In a tidal system, a Tidal Datum is the elevation of the contact between open water and the land at a specified mean tidal level. A variety of tidal datums are commonly used (see Tidal Datums graphic). Mean Tide Level (MTL), formerly known as Mean Sea Level (MSL), is the average of all tidal fluctuation in a given area and represents the land-water interface on conventional topographic maps. It is also the datum to which terrestrial elevations are normalized. Mean High Water (MHW) and Mean Low Water (MLW) represent typical 24-hour tidal cycles. Mean Higher High Water (MHHW) and Mean Lower Low Water (MLLW) are based on lunar cycles that increase the amplitude of tides. Nautical charts used for boating are based on Mean Lower Low Water in an attempt to represent minimum water depths for navigation. Highest and Lowest Observed water depths are often related to severe storm events (e.g., storm surge) that exaggerate the typical tidal water depth. Specific vegetative communities are associated with the various tidal datums.

¹ Stylized SAS upper limit: ≥21 hours submerged/day (Soil Survey Staff, 2010a, p. 123).

USDA-NRCS 2–99 September 2012

² Tidal datum widely used on nautical maps for navigational context.

MAP UNIT—Record the map unit name or symbol in which the sample site occurs.

LOCATION DESCRIPTION—Record relevant geographic information (e.g., *Greenwich Bay, Warwick, RI*—southeastern shoreline, 1300 m SE of Sally Rock Point).

WATER DEPTH—Record water depth at observation time; e.g., 120 cm.

BOTTOM TYPE—Record the dominant bottom type (used in combination with subaqueous vegetation type) at the sample site; e.q., sand.

Bottom Type ¹	Criteria
Mud	A silty, clayey, or organic bottom matrix.
Sand	A sandy bottom matrix.
Shelly	A bottom dominated by shells or shell fragments.
Stony or Bouldery	A bottom sparsely covered by stones or boulders (0.01 to $<0.1\%$).
Very Stony or Very Bouldery	A bottom partially covered by stones or boulders (0.1 to $<$ 3%).
Extremely Stony or Extremely Bouldery	A bottom dominated by stones or boulders (3 to $<15\%$).
Gravelly/Cobbly	A bottom sparsely covered by gravel or cobbles (0.01 to $<0.1\%$).
Very Gravelly/ Very Cobbly	A bottom partially covered by gravel or cobbles (0.1 to <3%).
Extremely Gravelly/ Extremely Cobbly	A bottom dominated by gravel or cobbles $(3 \text{ to } < 15\%).$
Rubbly	A bottom substantially covered by large rock fragments of various sizes (15 to <50%).
Very Rubbly	A bottom extensively covered by boulders (>50%) ² .

¹ These bottom types have been used in coastal SAS mapping. Other types exist and should be added as necessary. A formal ecologically based substrate array is found in the Coastal and Marine Ecological Classification Standard (Federal Geographic Data Committee, 2012).

² If the surface rock fragments are >80%, the fragments are described as a distinct horizon and should be described as such (NSSH Amendment #4, 1998).

SUBMERGED AQUATIC VEGETATION (SAV) (In NASIS, called **Site Existing Vegetation** table); e.g., *ZOSTE* [*Zostera L.*], *eelgrass.*—Record the *Plant Symbol, Plant Common Name*, and *Plant Scientific Name* of aquatic plants observed at the site (see p. 1–17). It is helpful to record the estimated percent cover for each major plant.

OBSERVATION METHOD—For each layer, describe the **Kind** of sampling device or procedure used to make observations of the site. Methods and tools for SAS are listed in the following table.

KIND (called Observation Method in NASIS)—

Kind	Code	Criteria: Tools and Methods
Bucket Auger	ВА	Open, closed, sand, or mud buckets (5-12 cm diam.)
Dutch or Mud Auger	DA	An open, strap-sided bucket auger (5-10 cm diam.) with a sharpened outer edge and a screw tip with a partial twist.
Dive	DV	A visual, onsite assessment performed under water.
Macaulay Sampler	MS	A half-cylinder "gouge" sampler with a hinged door that's pushed in and partially rotated to obtain a sample of soft sediments (e.g., organics).
Vibracore Tube	VT	A hollow tube (e.g., 4-8 cm diam.) vibrated into wet sands, silts, or organics.
Video	VO	Electronically recorded, photo or sequential digital images of a subaqueous setting/site.

(SOIL) DRAINAGE CLASS—Subaqueous soils have, by definition, a *subaqueous* (soil) Drainage Class (p. 1–11). There is a positive water potential at the soil surface for more than 21 hours of each day. The soils have a *peraquic* soil moisture regime.

USDA-NRCS 2–101 September 2012

WATER COLUMN MEASUREMENTS

Water quality measurements are not required but are recommended to provide supplemental information on the specific aquatic environment in which the soil is found.

pH—Measure the pH (see p. 2–86) at two depths within the water column above the soil.

pH (#)	Criteria
pH top	Within 10 cm of the water surface.
pH bottom	Within 10 cm of the bottom.

pH METHOD—Record the pH method used, as there can be considerable difference between methods (e.g., *pH meter* vs. *pH indicator strip*) (see p. 2–86).

Dissolved Oxygen or DO (mg/l)—Measure the dissolved oxygen (**DO**) at two depths within the water column above the soil.

Dissolved Oxygen (DO) (#)	Criteria (mg/l)					
DO top	Within 10 cm of the water surface.					
DO bottom	Within 10 cm of the bottom.					

SALINITY (ppt)—Measure the salinity; record in parts per thousand (ppt) at two depths within the water column above the soil. Measurement methods include handheld salinity meters and refractometers (e.g., *YSI salinity meter*, *Vee Gee refractometer*).

Salinity (#)	Criteria					
Salinity top	Within 10 cm of the water surface.					
Salinity bottom	Within 10 cm of the bottom.					

WATER TEMPERATURE—Record the water temperature at two depths within the water column above the soil.

Water Temperature (#)	Criteria: Degrees (Celsius [°C] or Fahrenheit [°F])					
Water Temperature top	Within 10 cm of the water surface.					
Water Temperature bottom	Within 10 cm of the bottom.					

SOIL PROFILE MEASUREMENTS AND DESCRIPTION

HORIZON AND LAYER DESIGNATIONS—See p. 2-2.

HORIZON SUFFIXES FOR SUBAQUEOUS SOILS

(DISCUSSION)—Amongst the conventional list of horizon subscripts (see *Horizon Subscripts*; p. 2–4), several suffixes are used extensively for subaqueous soils and warrant brief clarification:

- **g Strong gleying:** The suffix g is used for soil horizons (including subaqueous soils) where Fe has been reduced and pedogenically removed, resulting in a chroma of 2 or less. (*NOTE:* Subaqueous soils are permanently submerged, and most are dominated by reduced conditions and subsequent gray colors, indicated by the use of the g suffix. The g is not applied to soil materials with gray colors attributed to the natural color of the geologic material from which they are derived [geogenic colors; e.g., gray shales].)
- **se Presence of sulfides:** This symbol indicates the presence of sulfides in mineral or organic horizons. Horizons with sulfides typically have dark colors (e.g., value ≤ 4 , chroma ≤ 2).

DISCUSSION: An se horizon typically forms in coastal soil environments that are permanently saturated or submerged (e.g., low tidal marshes, lagoons, and some freshwater marshes or swamps). Soil materials in which sulfur reduction actively occurs release hydrogen sulfide gas (H_2S), which is detectable by its distinctive odor (Fanning and Fanning, 1989; Fanning et al., 2002). (**NOTE:** Not all sulfide-bearing soil materials produce hydrogen sulfide gas. Sulfides may also occur in drier [oxidized] upland environments that have a geologic sulfide source. Examples include soils formed in parent materials derived from coal deposits [e.g., lignite] or soils that formed in coastal plain deposits [e.g., marcasite or pyrite] that have not been oxidized because of thick layers of overburden.)

LITHOLOGIC DISCONTINUITIES (*DISCUSSION*)—Describe the presence of any lithologic discontinuities (see p. 2–5; Numerical Prefixes; The Prime). Contrasting changes in parent material are indicated in Soil Horizon nomenclature by a sequential numeric prefix (e.g., *A–Bw–2Bw–3C*). (*NOTE:* The prefix "1" is implied and not shown by convention.) Discontinuities in subaqueous soils are described when there is a significant change in particle size or mineralogy that indicates the material was deposited by a different process. Important examples are a discontinuity at the change from material deposited in a marine environment to older material deposited on land and later inundated, or sand deposited over marsh organics. In contrast, deposits of similar particle size from multiple washover events on a washover-fan flat behind a barrier

island would not be described as discontinuities (analogous to finely stratified alluvium).

USE OF PRIMES—A prime (') is used for horizons with identical characters that are separated by a horizon with different designations. The prime symbol ('), where appropriate, is placed after the master horizon designation and before the lowercase suffix letter symbols that follow it; e.g., B't. In cases where three to five horizons have identical letter symbols, three to five prime symbols can be used for the other horizons (e.g., A, Cg, Aseb, Cseg1, Cseg2, A'seb, Cseb, A''seb, C'seb).

HORIZON THICKNESS—See p. 2-6.

HORIZON BOUNDARY—Record HORIZON BOUNDARY DISTINCTNESS when possible (see p. 2–6). (NOTE: The HORIZON BOUNDARY TOPOGRAPHY cannot be adequately determined from small auger, push tube, or vibracore samples.)

ROCKS AND OTHER FRAGMENTS (Coarse Frags)—Describe the **Kind, Size**, and **Quantity** (% vol.), **Roundness**, etc., of rock and other coarse fragments in each horizon (see p. 2–46). Shell fragments > 2 mm are considered to be coarse fragments.

FIELD TEXTURE CLASS—Estimate the **Field Texture Class** by hand for each horizon (see p. 2–36).

SOIL COLOR—Record the Munsell color of the soil matrix (see p. 2–9). Include **Color Condition** as needed (e.g., *reduced*).

REACTION TO H₂**O**₂ (or *Peroxide Color Change*—see SAS Description Form) (In NASIS, called **Reduced Monosulfide Presence**)—Record the soil color response, as either **yes** (**Y**) or **no** (**N**), to the application of 3% H₂O₂ solution immediately after exposure to the air (e.g., a freshly broken ped or core interior). A positive reaction (color change) indicates the presence of reduced monosulfides (FeS), which quickly oxidize and change color upon application of hydrogen peroxide. "Peroxide Color Change" is an immediate (within 10 seconds), discernible color change upon addition of H₂O₂. (*NOTE*: This method is for monosulfide detection only and is *not* applicable to other sulfides [e.g., pyrite, marcasite, FeS₇].)

Monosulfides, often in the form of Fe(II) monosulfides (FeS), are visible in reduced soil as a black color (e.g., $10YR \ 2/1 \ or \ N \ 2.5/0$). When a sulfidic soil is oxidized, either in place due to oxidized water conditions or when the soil is drained or excavated and thus exposed to air (oxidized), Fe(II) converts to Fe(III) and the typical black color is lost, leaving a gray or brown color (Lyle, 1983). An example of a common monosulfide oxidation reaction is: $4FeS + 9O_3 + 10H_3O = 4Fe(OH)_3 + 8H^+ + 4SO_4$.

REACTION BY OXIDIZED pH (DISCUSSION) (Not a field test)—Oxidation of sulfides creates sulfuric acid as a byproduct that lowers pH. Monosulfidic materials are typically identified in the laboratory using an "oxidized pH" measurement (pH 1:1 water by pH meter), in which a soil undergoes aerobic incubation for at least 16 weeks and the change in pH measurements are compared over time (especially initial vs. final). Sulfidic materials are indicated when 1) the initial pH >3.5 and 2) after oxidation the pH decreases by ≥ 0.5 unit to a value ≤ 4.0 within 16 weeks (or longer if the pH is still dropping after 16 weeks) until the pH reaches a nearly constant value. Exposure and oxidation of sulfidic materials (acid sulfate weathering) result in a sulfuric horizon via the formation of sulfuric acid. Field pH is initially measured either immediately after sampling or after thawing a frozen sample. Care should be taken to prevent oxidation of the sample prior to starting the aerobic incubation period and measurements. Hydrogen peroxide has also been used to determine the presence of reduced sulfides in soil samples with pH measurements made after complete oxidation with H₂O₂ (Finkelman and Giffin, 1986; Jennings et al., 1999). Hydrogen peroxide speeds up the natural oxidation reaction and can be represented in the following reaction as:

 $2FeS + 9H_2O_2 = 2Fe(OH)_3 + 2SO_4^{2-} + 4H^+ + 4H_2O.$

REACTION BY OXIDIZED pH (laboratory test)—Measure the pH over time; report the initial and final pH (after 16 weeks) and compare results for evidence of pH reduction over time.

FLUIDITY CLASS—See p. 2–65, under **Manner of Failure**. Record the Fluidity class of each horizon/layer. (*NOTE:* Fluidity is estimated by squeezing a moist to wet palmful of soil and observing the extent to which the soil flows out between clenched fingers. Fluidity classes are based on the degree of "flow." Soil bearing capacity decreases as fluidity increases.)

Fluidity Class	Code	Criteria
Nonfluid	NF	After full compression, no soil flows through the fingers.
Slightly Fluid	SF	After full compression is exerted, some soil flows through fingers; most remains in the palm.
Moderately Fluid	MF	After full pressure is exerted, most soil flows through fingers; some remains in the palm.
Very Fluid	VF	Under very gentle pressure, most soil flows through the fingers as a slightly viscous fluid; very little or no residue remains in the palm of the hand.

ODOR—Record the **Kind** and **Intensity** immediately after soil is exposed to air (see p. 2–90).

ORIGIN—Record the source of parent material from which the soil is derived (e.g., *estuarine deposit*).

NOTES—See **Miscellaneous Field Notes** (see p. 2–93). Describe supplemental information in the "Miscellaneous Field Notes" area or the "Notes" column on the description form. For example, describe the dominant plant fragment type and % (e.g., black needlerush fragments, 25%).

SALINITY (of Subaqueous Soils)

ELECTRICAL CONDUCTIVITY OF SUBAQUEOUS SOILS (*DISCUSSION*)—Salinity in terrestrial soils is evaluated by electrical conductivity (ds/m) of a saturated paste extract (Saturated Paste method, SSIR 51; Soil Survey Staff, 2009) or a given soil:water (by weight) ratio (e.g., 1:2, 1:5). The saturated paste EC is the standard salinity measure for terrestrial soils and is placed into *Salinity Classes* (see p. 2–89). Salinity is a crucial property of subaqueous soils and is also evaluated via EC measurement. The EC measurement, however, is conducted on a 1:5 by *volume* soil:solution mixture (1:5 vol. method, SSIR 51; Soil Survey Staff, 2009). The resultant EC is **not** placed into the conventional (terrestrially focused) *Salinity Classes*.

Electrical conductivity of subaqueous soils is measured on samples that typically have been stored in a refrigerator or freezer immediately after sampling to prevent sulfide oxidation, which can influence the EC value. Terrestrial soil samples are dried prior to preparing a saturated paste extract. Subaqueous soils cannot be dried because of the sulfide oxidation potential. Hence, a 1:5 volume method is used as follows: Measure 10 ml of moist sample; add 50 ml distilled water (5 times the soil volume). Stir the mixture briefly (10 seconds) and let settle (15 to 60 minutes). Electrical conductivity of the unfiltered supernatant is measured using a hand-held conductivity meter.

Electrical Conductivity of SAS (1:5 vol method)—Measure and record the **Electrical Conductivity (EC)** in dS/m and record the **Measurement Method** used (e.g., *11.2 dS/m by hand-held electrical conductivity meter*).

SULFIDES (*DISCUSSION*)—Identifying the presence of sulfate is important to both pH and salinity (see **Reaction by Oxidized pH**). Oxidation of sulfides may generate salts that can alter salinity.

BULK DENSITY SATIATED (DISCUSSION) (These are variations of the Soil Core Method. See Section 3.3.1.4 in SSIR 51, Soil Survey Staff, 2009)—It is generally not possible to collect subaqueous soil

samples using the clod method for bulk density determination. Recommended alternative methods are:

 Collect a known volume at the field moisture state (satiated). Bulk density is then calculated based on the dried weight of a known volume of soil at the field moisture status.

Calculations (Soil Survey Staff, 2009)

Db = (ODW - RF - CW)/[CV - (RF/PD)], where:

Db = Bulk density of <2-mm fabric at sampled, field water state (g cm⁻³)

ODW = Oven-dry weight

RF = Weight of rock fragments

CW = Empty core weight

CV = Core volume

PD = Density of rock fragments

- 2) For vibracore samples (opened by cutting the sampling tube rather than by compressive extrusion), a 50-ml syringe with the end removed and shaped to fit the curved core is used as a mini-corer to extract a 10- to 30-ml volume sample. The cylinder is removed, extracting a sample of known volume. The sample is then analyzed following method 1 (above).
- Samples collected in a peat sampler (e.g., Macaulay sampler) can be analyzed for bulk density following method
 if a known volume (e.g., a core segment) is collected and dried.

SUBAQUEOUS SOILS PROFILE DESCRIPTION										
Site/Pedon ID:		Map Unit:								
Date:		Location Description:		Water Colum	n Measuren	nents				
Start Time:					Тор	Bottom				
End Time:		Water Depth (cm):		pH:						
Describer(s):		Bottom Type:		DO (mg/l):						
Waypoint (#):		Submerged Aq. Veg:		salinity (ppt):						
GPS (unit #):		Observation Method:		temp <i>(°C)</i> :						
Coordinates 1:		Site Notes:								
Coordinates 2:										
Geodetic Datum:										

Depth (cm)	Horizon	Horizon Boundary Distinct-	Soil Color (matrix)	Field Texture Class	Coarse Frags (%)	Fluidity Class	RMFs	Peroxide Color Change	Oxidiz init.	ed pH 16 wks.	Odor (Intensity, Kind)	Origin	Notes
		ness						(Y/N)					

SUBAQUEOUS SOILS PROFILE DESCRIPTION										
Site/Pedon ID:	S2011RI009014A	Map Unit:	Frankensoil mucky silt loam							
Date:	8/16/2011	Location Description:	Ninigret Pond; 1000 m. E. of intersection	Water Column Measurements						
Start Time:	8:30 AM		of Route 1 and Route 1A at Ninigret Park, RI		Тор	Bottom				
End Time:	11:45 AM	Water Depth (cm):	120 cm	pH:	7.7	7.7				
Describer(s):	Herman Munster	Bottom Type:	mud	DO (mg/l):	6	5				
Waypoint (#):	4	Submerged Aq. Veg:	thick macroalgae	salinity (ppt):	27	29				
GPS (unit #):	Trimble Geo XH	Observation Method:	Vibracore tube	temp (°C):	20 °C	18 °C				
Coordinates 1:	N 41° 22' 13.0" Lat	Site Notes:			•	-				
Coordinates 2:	W 71° 39' 4.0" Lon									
Geodetic Datum:	WGS 84									

Depth (cm)	Horizon	Horizon Boundary Distinct-	Soil Color (matrix)	Field Texture Class	Coarse Frags	Fluidity Class	RMFs	Peroxide Color	Oxidiz init.	16	Odor (Intensity,	Origin	Notes
		ness	(шастіх)	Class	(%)			Change (Y/N)		wks.	Kind)		
0-12	Α	Abrupt	5Y 6/1	mucky silt loam	0	Very Fluid		Y	7.8	4.7	strong sulfurous	marine silt	pH by pH meter
12-53	C1	Clear	5Y 2.5/1	mucky silt loam	0	Moderately Fluid		Y	7.7	4.9	strong sulfurous	marine silt	
53-88	C2	Abrupt	5Y 3/1	mucky silt loam	0	Moderately Fluid		Y	8.0	2.6	strong sulfurous	marine silt	
88-98	20a1	Abrupt	N 2.5/	muck	14 % gr	Slightly Fluid		N	7.8	6.6	slight sulfurous	organics, fresh	
98-130	20a2	Abrupt	10YR 2/1	muck	1 % wood frags	Slightly Fluid		N	7.7	6.5	none	organics, fresh	
130-191	20a3	ı	10YR 2/2	muck	1 % wood frags	Slightly Fluid		N	7.7	6.5	none	organics, fresh	

VIBRACORE SAMPLING FOR SUBAQUEOUS SOILS

Discussion

Subaqueous soils are challenging to observe and sample because of the positive pore pressure of free water in the soil and the water above the soil; therefore, a slightly different protocol for sampling them is helpful. Vibracore sampling is particularly well suited to obtain minimally disturbed samples from sandy, silty, or organic subaqueous materials lacking large or substantial coarse fragments. The principal concern is accounting for sample compression (compaction, repacking, or "core rot"), especially in material with *Moderately Fluid or Very Fluid* fluidity classes. (*NOTE:* A Vibracore Log Sheet [p. 2–113] must be paired with a Subaqueous Soil Profile Description [p. 2–109] or a conventional Soil Profile Description [p. 2–93].)

Site Description

Record subaqueous soil site information much the same as you record subaerial soil site information (see p. 1–1). Additional items to evaluate and describe include the following:

WATER DEPTH (UNIT)—Record the depth of water (and the units used) above the soil surface at the time the core is collected. (This information is used to develop/verify the map unit name; e.g., Billington silt loam, 0-1 m water depth.)

TIDAL PERIOD—Record the tidal period (*incoming*, *high*, *outgoing*, *low*, *none*) at the time of sample extraction. (*NOTE:* Most freshwater lakes do not exhibit appreciable tidal fluctuations.)

Core Descriptions

TOTAL PIPE LENGTH—Describe the total length of the collection pipe prior to coring. (This information is used as a check for depth of sample collection. The information may also be used to track how much pipe is consumed during a field season.)

RISER LENGTH—After insertion of the pipe tube, record the external length (cm) from the top of the collection pipe to the soil surface outside the pipe.

INSIDE LENGTH—After insertion of the pipe tube, record the length (cm) from the top of the collection pipe to the soil surface *inside* the pipe. (**NOTE:** A sinker tied to a string and lowered to the soil surface inside the pipe facilitates measurement.)

CORE SETTLEMENT—Calculate the sample settlement/compaction (also called "rot") by subtracting the Riser Length from the Inside Length. (*NOTE:* Settlement of the soil sample inside the pipe is

common and difficult to precisely account for; therefore, vibracore samples only provide reasonable estimates of horizon depths.)

FINAL CORE LENGTH—Record the calculated length of the soil profile collected. (See graphic on Vibracore Log Sheet, p. 2–113.)

WHERE CORE IS STORED—Describe where the core is stored for future retrieval, description, and analysis (e.g., *shed 2, core # 2011-25*). (*NOTE:* Subaqueous soils should be kept in refrigerated storage to slow chemical reactions, such as conversion of sulfides to sulfates, which influence pH or other soil properties.)

VIBRACORE LOG SHEET				
SITE				
Site/Pedon ID (YYYYSTFIPS###)			_	
Date/Time Sampled]	Core Ske	etch	
Soil Type				
Map Unit			}	
Location (geographic)		INS		
Waypoint (#)		INSIDE	RISE	
GPS (model/unit #)	Water Surface			_
Lat.		듵	[편	
Lon.		Length	Length	
UTM Easting		-	=	0.0
UTM Northing				TOTAL Pipe
UTM Zone	outside			<u>.</u>
Elevation (NAVD 88)	soil surface			
Water Depth (cm)	3/5		7/	
Tidal Period	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	 	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Length
CORE LOG	core settlement,		, ,	
a) TOTAL Pipe Length (before coring)	compression			
b) RISER Length (after coring)	<u>.</u>			
c) INSIDE Length (sinker length: surface to bottom)				
d) Core Settlement (= c - b)				
Final Core Length (after core completed: = a - c)				
Where Is Core Stored?				
Date Described				

VIBRACORE LOG SHEET EXAMPLE SITE Site/Pedon ID (YYYYSTFIPS###) 52011RI009014A Core Sketch **Date/Time Sampled** 8/16/2011 8:30 AM Soil Type Frankensoil Map Unit Frankensoil mucky silt loam Ninigret Pond: 1000 m E. of intersection of Route 1 and Route 1A at Ninigret Park, RI Location (geographic) INSIDE RISER Waypoint (#) **Water Surface GPS** (model/unit #) Trimble Geo XH Length 41° 22' 13.0" Lat. W 71° 39' 4.0" Lon. TOTAL **UTM Easting** 721720 m **UTM Northing** 4583254 m 19 **UTM Zone** Pipe outside Elevation (NAVD 88) - 1.2 m soil surface Length Water Depth (cm) 120 cm **Tidal Period** Outgoing **CORE LOG** settlement, a) TOTAL Pipe Length (before coring) 390 cm compression **b)** RISER Length (after coring) 260 cm 264 cm c) INSIDE Length (sinker length: surface to bottom) d) Core Settlement (= c - b)4 cm **Final Core Length** (after core completed: = a - c) 126 cm Where Is Core Stored URI Bay Campus cold storage 8/17/2011 **Date Described**

USDA-NRCS 2–114 September 2012

REFERENCES

AASHTO. 1997a. The classification of soils and soil-aggregate mixtures for highway construction purposes. AASHTO designation M145–91. *In* Standard specifications for transportation materials and methods of sampling and testing, Part 1: Specifications (18th ed.). American Association of State Highway and Transportation Officials, Washington, DC.

AASHTO. 1997b. Terms relating to subgrade, soilaggregate, and fill materials. AASHTO designation M146–91 (1995). *In* Standard specifications for transportation materials and methods of sampling and testing, Part 1: Specifications (18th ed.). American Association of State Highway and Transportation Officials, Washington, DC.

Amoozegar, A., and A.W. Warrick. 1986. Hydraulic conductivity of saturated soils: Field methods. *In* A. Klute (ed.) Methods of soil analysis, Part 1: Physical and mineralogical methods, 2nd ed. ASA, Agron. Monogr. 9, Madison, WI.

ASTM. 2011. Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). ASTM designation D2487–92. *In* Soil and rock; dimension stone; geosynthetics. Annual book of ASTM standards.

Bachman, G.O., and M.W. Machette. 1977. Calcic soils and calcretes in the southwestern U.S. U.S. Geol. Soc. Open-File Rep. 77–794.

Blackburn, W.H., R.E. Eckert, Jr., M.K. Wood, and F.F. Peterson. 1975. Influence of vesicular horizons on watershed management. p. 494–515. *In* Proc. ASCE Watershed Management Symposium. Logan, UT, 11–13 Aug. 1975. ASAE, New York.

Bouma, J., R.F. Paetzold, and R.B. Grossman. 1982. Measuring hydraulic conductivity for use in soil survey. Soil Surv. Invest. Rep. 38. USDA, SCS. U.S. Gov. Print. Office, Washington, DC.

Bradley, M.P., and M. Payne. 2010. Bathymetric mapping and landscape units in shallow subtidal coastal environments: Integrating fathometry, GPS, and GIS. *In* 2nd National Workshop on Subaqueous Soils. Rhode Island, 9–12 Aug. 2010. Available online at http://nesoil.com/sas/15A_Bradley_Bathymetry_GIS.pdf.

Brewer, R. 1976. Fabric and mineral analysis of soils. Krieger Publ. Co., Huntington, NY.

Brock, A.L. 2007. Characterization of stage VI petrocalcic horizons—S. Nevada and N.W. Arizona. Ph.D. diss. Univ. of Nevada Las Vegas, Department of Geoscience.

Brock, A.L. 2010. Personal communication (carbonate stages source graphic).

Bullock, P., N. Fedoroff, A. Jongerius, G. Stoops, and T. Tursina. 1985. Handbook for soil thin section description. Waine Res. Publ., Wolverhampton, England.

Bureau of Chemistry and Soils. 1937. Soil survey manual. USDA Misc. Publ. 274. Washington, DC.

Childs, C.W. 1981. Field tests for ferrous iron and ferric-organic complexes (on exchange sites or in water-soluble forms) in soils. Aust. J. Soil Res. 19:175–180.

Cruden, D.M., and D.J. Varnes. 1996. Landslide types and processes. *In* A.K. Turner and R.L. Schuster (ed.) Landslides: Investigation and mitigation. Spec. Rep. 247, Transportation Research Board, National Research Council. National Academy Press, Washington, DC.

Demas, G.P. 1993. Submerged soils: A new frontier in soil survey. Soil Surv. Horiz. 34:44–46.

Demas, G.P. 1998. Subaqueous soils of Sinepuxent Bay, MD. Ph.D. diss. Univ. of Maryland, College Park.

Demas, G.P., R.B. Rabenhorst, and J.C. Stevenson. 1996. Subaqueous soils: A pedological approach to the study of shallowwater habitats. Estuaries 19:229–237.

Doner, H.E., and W.C. Lynn. 1989. Carbonate, halide, sulfate, and sulfide minerals. *In* J.B. Dixon and S.B. Weed (ed.) Minerals in the soil environment, 2nd ed. SSSA Book Ser. 1. SSSA, Madison, WI.

Fanning, D.S., and M.C.B. Fanning. 1989. Soil: Morphology, genesis, and classification. John Wiley & Sons, New York.

Fanning, D.S., M.C. Rabenhorst, S.N. Burch, K.R. Islam, and S.A. Tangren. 2002. Sulfides and sulfates. *In* J.B. Dixon et al. (ed.) Soil mineralogy with environmental applications. SSSA, Madison, WI.

Federal Geographic Data Committee. 2012. Coastal and marine ecological classification standard, ver. 4.0. Federal Geographic Data Committee Secretariat, U.S. Geol. Surv., Reston, VA.

Finkelman, R.B., and D.E. Giffin. 1986. Hydrogen peroxide oxidation: An improved method for rapidly assessing acid-generation potential of sediments and sedimentary rocks. Recl. Reveg. Res. 5:521–534.

Flach, K.W., W.D. Nettleton, L.H. Gile, and J.G. Cady. 1969. Pedocementation: Induration by silica, carbonates, and sesquioxides in the Quaternary. Soil Sci. 107:442–453.

Folk, R.L. 1955. Student operator error in determination of roundness, sphericity and grain size. J. Sediment. Petrol. 25:297–301.

- Gile, L.H. 1961. A classification of Ca horizons in soils of a desert region, Doña Ana County, New Mexico. Soil Sci. Soc. Am. Proc. 25(1):52–61.
- Gile, L.H. 1970. Soils of the Rio Grande valley border in southern New Mexico. Soil Sci. Soc. Am. Proc. 34(3):465–472.
- Gile, L.H. 1975. Causes of soil boundaries in an arid region, I. Age and parent materials. Soil Sci. Soc. Am. Proc. 39:316–323.
- Gile, L.H. 1993. Carbonate stages in sandy soils of the Leasburg surface, southern New Mexico. Soil Sci. 156:101–110.
- Gile, L.H., and R.B. Grossman. 1968. Morphology of the argillic horizon in desert soils of southern New Mexico. Soil Sci. 106(1):6–15.
- Gile, L.H., and R.B. Grossman. 1979. The desert project soil monograph. USDA, Natl. Tech. Inf. Serv. Doc. PB80–13534. Springfield, VA.
- Gile, L.H., J.W. Hawley, and R.B. Grossman. 1981. Soils and geomorphology in the Basin and Range area of southern New Mexico—Guidebook to the desert project. New Mexico Bureau of Mines and Mineral Resources, Memoir 39.
- Gile, L.H., H.C. Monger, R.B. Grossman, R.J. Ahrens, J.W. Hawley, F.F. Peterson, R.P. Gibbens, J.M. Lenz, B.T. Bestelmeyer, and B.A. Nolen. 2007. A 50th anniversary guidebook for the desert project. USDA, NRCS, National Soil Survey Center, Lincoln, NE.
- Gile, L.H., F.F. Peterson, and R.B. Grossman. 1966. Morphological and genetic sequences of carbonate accumulation in desert soils. Soil Sci. 101:347–360.
- Guthrie, R.L., and J.E. Witty. 1982. New designations for soil horizons and layers and the new soil survey manual. Soil Sci. Soc. Am. J. 46:443–444.
- Hillel, D. 1980. Fundamentals of soil physics. Academic Press, New York, NY.
- Ingram, R.L. 1982 (updated by M. Johnson, 2007). Modified Wentworth scale. *In* Grain-size scales. AGI data sheet 8.2. J.D. Walker and H.A. Cohen (ed.) 2005 (reprinted 2007). The geoscience handbook. AGI data sheets, 4th ed. Am. Geol. Inst., Alexandria, VA.
- Jackson, J.A. (ed.) 1997. Glossary of geology, 4th ed. Am. Geol. Inst., Alexandria, VA.
- Jackson, M.L. 1969. Soil chemical analysis—Advanced course. Madison, WI.
- Jennings, S.R., D.J. Dollhopf, and W.P. Inskeep. 1999. Acid production from sulfide minerals using hydrogen peroxide weathering. Appl. Geochem. 15:235–243.

Kubiena, W.M. 1953. The soils of Europe. T. Murby, London.

Lyle, M. 1983. The brown-green color transition in marine sediments: A marker of the Fe(III)-Fe(II) redox boundary. Limnol. Oceanogr. 28:1026–1033.

Lynn, W., and D. Williams. 1992. The making of a Vertisol. Soil Surv. Horiz. 33:23–52.

Machette, M.N. 1985. Calcic soils of the southwestern United States. *In* D.L. Weide (ed.) Soils and Quaternary geomorphology of the southwestern United States. Geol. Soc. Am. Spec. Pap. 203.

Mason, D.D., J.F. Lutz, and R.G. Petersen. 1957. Hydraulic conductivity as related to certain soil properties in a number of great soil groups—Sampling errors involved. Soil Sci. Soc. Am. Proc. 21:554–561.

National Institute of Standards and Technology. 1990. Counties and equivalent entities of the United States, its possessions and associated areas. U.S. Dep. Commerce, Federal Information Processing Standards Publ. (FIPS PUB 6–4).

Natural Resources Conservation Service. 1997. Introduction to microbiotic crusts. USDA, NRCS, Soil Quality Institute and Grazing Lands Technology Institute, Fort Worth, TX.

Natural Resources Conservation Service. 2001. Physical and biological soil crusts. Soil Quality Information Sheet—Rangeland Information Sheet 7. USDA, NRCS, Soil Quality Institute and National Soil Survey Center, Lincoln, NE.

Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. USDA, Agric. Handb. 296. U.S. Gov. Print. Office, Washington, DC.

Natural Resources Conservation Service. 2012 (or most current date) [Online]. Complete PLANTS checklist. (The national PLANTS database.) USDA, National Plant Data Center, Baton Rouge, LA (http://plants.usda.gov).

Neuendorf, K., J.P. Mehl, and J.A. Jackson. 2005. Glossary of geology, 5th ed. Am. Geol. Inst., Alexandria, VA.

O'Neal, A.M. 1952. A key for evaluating soil permeability by means of certain field clues. Soil Sci. Soc. Am. Proc. 16:312–315.

Payne, M. 2010. Bathymetry data collection for subaqueous soil mapping. *In* 2nd National Workshop on Subaqueous Soils. Rhode Island, 9–12 Aug. 2010 (http://nesoil.com/sas/15_Payne_Bathymetry.pdf).

Powers, M.C. 1953. A new roundness scale for sedimentary particles. J. Sediment. Petrol. 23:117–119.

Public Building Service. Sept. 1996. Worldwide geographic location codes. U.S. Gen. Serv. Admin., Washington, DC.

Richards, L.A. (chairman) 1952. Report of the subcommittee on permeability and infiltration, committee on terminology, Soil Science Society of America. Soil Sci. Soc. Am. Proc. 16:85–88.

Ruhe, R.V. 1975. Geomorphology: Geomorphic processes and surficial geology. Houghton-Mifflin Co., Boston, MA.

Schoeneberger, P.J., and D.A. Wysocki. 2012. Geomorphic description system, ver. 4.2. USDA, NRCS, National Soil Survey Center, Lincoln, NE (ftp://ftp-fc.sc.egov.usda.gov/NSSC/GDS/GDS_v4_14.pdf).

Schoeneberger, P.J., D.A. Wysocki, E.C. Benham, and W.D. Broderson. 1998. Field book for describing and sampling soils (ver. 1.1). USDA, NRCS, National Soil Survey Center, Lincoln, NE.

Simonson, R.W. 1959. Outline of a generalized theory of soil genesis. Soil Sci. Soc. Am. Proc. 23:152–156.

Singer, M.J., and D.N. Warrington. 1992. Crusting in the western United States. *In* M.E. Sumner and B.A. Stewart (ed.) Advances in soil science: Soil crusting—Chemical and physical processes. Lewis Publishers, Boca Raton, FL.

Soil Conservation Service. 1981. Land resource regions and major land resource areas of the United States. USDA, Agric. Handb. 296. U.S. Gov. Print. Office, Washington, DC.

Soil Survey Division Staff. 1993. Soil survey manual. USDA, SCS, Agric. Handb. 18. U.S. Gov. Print. Office, Washington, DC.

Soil Survey Staff. 1951. Soil survey manual. USDA, SCS, Agric. Handb. 18. U.S. Gov. Print. Office, Washington, DC.

Soil Survey Staff. 1962. Identification and nomenclature of soil horizons. Supplement to Agric. Handb. 18, Soil Survey Manual (replacing pages 173–188). USDA, SCS. U.S. Gov. Print. Office, Washington, DC.

Soil Survey Staff. 1971. Guide for interpreting engineering uses of soils. USDA Handb. NB-1. U.S. Gov. Print. Office, Washington, DC.

Soil Survey Staff. 1975. Soil taxonomy. USDA, SCS, Agric. Handb. 436. U.S. Gov. Print. Office, Washington, DC.

Soil Survey Staff. 1999. Soil taxonomy, 2nd ed. USDA, NRCS, Agric. Handb. 436. U.S. Gov. Print. Office, Washington, DC.

Soil Survey Staff. 2009. Soil survey field and laboratory methods manual. Soil Surv. Invest. Rep. 51, ver. 1.0. R. Burt (ed.) USDA, NRCS.

Soil Survey Staff. 2010. Keys to soil taxonomy, 11th ed. USDA, NRCS. U.S. Gov. Print. Office, Washington, DC.

Soil Survey Staff. 2011. Soil survey laboratory information manual. Soil Surv. Invest. Rep. 45, ver. 2.0. USDA, NRCS, National Soil Survey Center, Lincoln, NE.

Soil Survey Staff. 2012a. Data dictionary. *In* National soil information system (NASIS), release 6.2 [Online]. USDA, NRCS, National Soil Survey Center, Lincoln, NE.

Soil Survey Staff. 2012b. National soil information system (NASIS), release 6.2 [Online]. USDA, NRCS, Lincoln, NE.

Soil Survey Staff. 2012c. National soil survey handbook (NSSH) [Online]. USDA, NRCS, National Soil Survey Center, Lincoln, NE (http://soils.usda.gov/technical/handbook/).

Soil Survey Staff. 2012d. Subaqueous soils primer (draft). USDA, NRCS, National Soil Survey Center, Lincoln, NE.

Stolt, M.H., and M.C. Rabenhorst. 2012. Introduction and historical development of subaqueous soil concepts. *In* P.M. Huang et al. (ed.) Handbook of soil science. CRC Press, LLC, Boca Raton, FL. ISBN: 978–1–4398–0305–9.

Sumner, M.E., and B.A. Stewart (ed.) 1992. Soil crusting: Chemical and physical processes. Advances in soil science. Lewis Publishers, Boca Raton, FL.

Uhland, R.E., and A.M. O'Neal. 1951. Soil permeability determinations for use in soil and water conservation. SCS-TP-101. Washington, DC.

Vepraskas, M.J. 1992. Redoximorphic features for identifying aquic conditions. North Carolina Agric. Res. Serv. Tech. Bull. 301. North Carolina State University, Raleigh.

Wysocki, D.A., P.J. Schoeneberger, and H.E. LaGarry. 2000. Geomorphology of soil landscapes. *In* M.E. Sumner (ed.) Handbook of soil science. CRC Press, LLC, Boca Raton, FL. ISBN: 0–8493–3136–6.

Wysocki, D.A., P.J. Schoeneberger, B. Lowery, and R. Paetzold. 2002. Hydraulic conductivity vs. soil permeability classes: Facts, fiction, and the future. ASA, Indianapolis, IN.

GEOMORPHIC DESCRIPTION

GEOMORPHIC DESCRIPTION SYSTEM

(Version 5.0—08/14/2017)
P.J. Schoeneberger and D.A. Wysocki, NRCS, Lincoln, NE

P.J. Schoeneberger and D.A. Wysocki, NRCS, Linco

PART I: PHYSIOGRAPHIC LOCATION

- A) Physiographic Division
- B) Physiographic Province
- C) Physiographic Section
- D) State Physiographic Area
- E) Local Physiographic/Geographic Name

PART II: GEOMORPHIC DESCRIPTION

- A) Landscape
- B) Landform
- C) Microfeature
- D) Anthropogenic Features

PART III: SURFACE MORPHOMETRY

- A) Elevation
- B) Slope Aspect
- C) Slope Gradient
- D) Slope Complexity
- E) Slope Shape
- F) Hillslope—Profile Position
- G) Geomorphic Component
 - 1. Hills
 - 2. Terraces, Stepped Landforms
 - 3. Mountains
 - 4. Flat Plains
- H) Microrelief
- I) Drainage Pattern

NOTE: Italicized NASIS shorthand codes, if available, follow each choice. Conventionally, the entire term is recorded.

PART I: PHYSIOGRAPHIC LOCATION

References for items **A**, **B**, and **C**: Physical Divisions of the United States (Fenneman, 1946); Physiographic Divisions of Alaska (Wahrhaftig, 1965).

Physiographic Divisions (A) Physiographic Provinces (B) Physiographic Sections (C)

Laurentian Upland	LU	1. Superior Upland	SU
Atlantic Plain	AP	2. Continental Shelf	CS
		3. Coastal Plain a. Embayed section b. Sea Island section c. Floridian section d. East Gulf Coastal plain e. Mississippi alluvial valley f. West Gulf Coastal plain	CP EMS SIS FLS EGC MAV WGC
Appalachian Highlands	АН	Piedmont Province a. Piedmont upland b. Piedmont lowlands	PP PIU PIL
		5. Blue Ridge Provincea. Northern sectionb. Southern section	BR NOS SOS
		Valley and Ridge Province a. Tennessee section b. Middle section c. Hudson Valley	VR TNS MIS HUV
		7. St. Lawrence Valley a. Champlain section b. St. Lawrence Valley, Northern section	SL CHS NRS
		8. Appalachian Plateau a. Mohawk section b. Catskill section c. Southern New York sect. d. Allegheny Mountain sect. e. Kanawaha section f. Cumberland Plateau sect. g. Cumberland Mtn. sect.	AP MOS CAS SNY AMS KAS CPS CMS

Physiographic Provinces (B) Physiographic Sections (C) Physiographic Divisions (A)

		, , ,	- (-)
		9. New England Province a. Seaboard lowland sect. b. New England upland sect. c. White Mountain section d. Green Mountain section e. Taconic section	NE SLS NEU WMS GMS TAS
	1	0. Adirondack Province	AD
Interior Plains	IN 1	Interior Low Plateaus a. Highland rim section b. Lexington lowland c. Nashville basin d. Possible western section (not delimited on map)	IL HRS LEL NAB WES
	1	2. Central Lowland Province a. Eastern lake section b. Western lake section c. Wisconsin driftless section d. Till plains e. Dissected till plains f. Osage plain	CL ELS WLS WDS TIP DTP OSP
	1	3. Great Plains Province a. Missouri plateau, glaciated b. Missouri plateau, unglaciated c. Black Hills d. High Plains e. Plains Border f. Colorado Piedmont g. Raton section h. Pecos valley i. Edwards Plateau k. Central Texas section	GP MPG MPU BLH HIP PLB COP RAS PEV EDP CTS
		n includes portions of Alaska Physiographic Areas" section).	
Interior Highlands	IH 1	Ozark Plateau a. Springfield-Salem plateaus b. Boston "Mountains"	OP SSP BOM
USDA-NRCS	1	5. Ouachita Province a. Arkansas Valley b. Ouachita Mountains 3-3 Septembe	OU ARV OUM er 2012

Physiographic Divisions (A)	Physiographic Provinces (B)
	Physiographic Sections (C)

		, , ,	. ,
Rocky Mountain	RM	16. Southern Rocky Mountains	SR
System		17. Wyoming Basin	WB
		18. Middle Rocky Mountains	MR
		19. Northern Rocky Mountains	NR
		ion includes portions of Alaska n Physiographic Areas" section).	
Intermon Plateaus	tane IP	20. Columbia Plateau a. Walla Walla Plateau b. Blue Mountain section c. Payette section d. Snake River Plain e. Harney section	CR WWP BMS PAS SRP HAS
		21. Colorado Plateau a. High Plateaus of Utah b. Uinta Basin c. Canyon Lands d. Navajo section e. Grand Canyon section f. Datil section	CO HPU UIB CAL NAS GCS DAS
	This divisi	22. Basin and Range Province a. Great Basin b. Sonoran Desert c. Salton Trough d. Mexican Highland e. Sacramento section	BP GRB SOD SAT MEH SAS
		on includes portions of Alaska in Physiographic Areas" section).	
Pacific Mountain	PM	23. Cascade-Sierra Mountainsa. Northern Cascade Mtns.b. Middle Cascade Mtns.c. Southern Cascade Mtns.d. Sierra Nevada	CM NCM MCM SCM SIN
		24. Pacific Border Provincea. Puget Troughb. Olympic Mountainsc. Oregon Coast Range	B PUT OLM OCR

	d. Klamath Mountainse. California Troughf. California Coast Rangesg. Los Angeles Ranges	KLM CAT CCR LAR
25.	Lower California Province	LC

This division includes portions of Alaska (see "Alaskan Physiographic Areas" section).

Alaskan Physiographic Areas (Warhaftig, 1965)

The following Alaskan-Peninsula physiographic areas are extensions of the preceding North American Physiographic Divisions (e.g., Rocky Mountain System). These Alaskan extensions are presented separately rather than intermingled with the previous Division I Province lists because: a) they constitute a geographically coherent package (Wahrhaftig, 1965); b) these extensions were not contained within Fennman's original work, which dealt only with the conterminous U.S. (Fenneman, 1931, 1938, 1946); and c) Wahrhaftig's map unit numbers are independent of, and inconsistent with, Fenneman's. Wahrhaftig's original map unit scheme and numbers are retained here for simplicity in using his map of the Alaskan peninsula. *CAUTION:* Wahrhaftig's map unit numbers should not be confused with similar map unit numbers from Fenneman's map for the conterminous U.S.

Interior Plains	IN	 Arctic Coastal Plain Province Teshekpuk Hills section White Hills section Arctic Foothills Province Northern Section Southern Section 	_ _ _ AF _ _
Rocky Mountains System	RM	Arctic Mountains Province 3. Delong Mountains section 4. Noatak Lowlands section 5. Baird Mountains section 6. Central & E. Brooks Range sect. 7. Ambler-Chandalar Ridge & Lowland sect.	AM - - - -

NOTE: The map unit numbering sequence shown here is from Wahrhaftig (1965) and is independent of, and not consistent with, that of Fenneman.

USDA-NRCS 3–5 September 2012

Intermontane Plateaus	IP	Northern Plateaus Province 8. Porcupine Plateau section a. Thazzik Mountain 9. Old Crow Plain section (noted but not described) 10. Olgivie Mountains section 11. Tintina Valley (Eagle Trough) sect. 12. Yukon-Tanana Upland section a. Western Part b. Eastern Part 13. Northway-Tanacross Lowland sect. 14. Yukon Flats section 15. Rampart Trough section 16. Kokrine-Hodzana Highlands sect. a. Ray Mountains	
		b. Kokrine Mountains	
		Western Alaska Province 17. Kanuti Flats section 18. Tozitna-Melozitna Lowland sect. 19. Indian River Upland section 20. Pah River Section a. Lockwood Hills b. Pah River Flats c. Zane Hills	
		d. Purcell Mountains 21. Koyukuk Flats section 22. Kobuk-Selawik Lowland sect. a. Waring Mountains 23. Selawik Hills section 24. Buckland River Lowland sect. 25. Nulato Hills section 26. Tanana-Kuskowin Lowland	_ _ _ _
		sect. 27. Nowitna Lowland section 28. Kuskokwim Mountains section 29. Innoko Lowlands section 30. Nushagak-Big River Hills sect. 31. Holitna Lowland section 32. Nushagak-Bristol Bay Lowland sect.	

33. Seward Peninsula Province

a. Bendeleben Mountains

b. Kigluaik Mountains	
c. York Mountains	
Bering Shelf Province	BES
34. Yukon-Kuskokwim Coastal	_
Lowland sect.	
 a. Norton Bay Lowland 	
35. Bering Platform section	_
 a. St. Lawrence Island 	
b. Pribilof Island	
c. St. Matthew Island	
d. Nunivak Island	
36. Ahklun Mountains Province	_

SEP

NOTE: The map unit numbering sequence shown here is from Wahrhaftig (1965) and is independent of, and not consistent with, that of Fenneman.

Pacific Mountain System	PM	Alaska-Aleutian Province 37. Aleutian Islands section 38. Aleutian Range section 39. Alaska Range (Southern Part) sect. 40. Alaska Range (Central & Eastern Parts) section a. Mentasta-Nutzotin Mtn. segment 41. Northern Foothills of the Alaska Range section	AAC _ _ _ _
		Coastal Trough Province 42. Cook Inlet-Susitna Lowland sect. 43. Broad Pass Depression section 44. Talkeetna Mountains section a. Chulitna Mountains b. Fog Lakes Upland c. Central Talkeetna Mountains d. Clarence Lake Upland e. Southeastern Talkeetna Mountains	=======================================
		45. Upper Matanuska Valley sect.46. Clearwater Mountains section	_

USDA-NRCS 3–7 September 2012

47. Gulkana Upland section 48. Copper River Lowland section	_
a. Eastern Partb. Western Part: Lake LouisPlateau	
49. Wrangell Mountains section	_
50. Duke Depression (not described) 51. Chatham Trough section	_
52. Kupreanof Lowland section	_
Pacific Border Ranges Province	PBS
53. Kodiak Mountains section	-
54. Kenai-Chugach Mtns. sect.	_
55. St Elias Mountains section	_
a. Fairweather Range subsection	
56. Gulf of Alaska Coastal section	
57. Chilkat-Baranof Mtns. section	_
	_
a. Alsek Ranges subsection	
 b. Glacier Bay subsection 	
 c. Chichagof Highland subsection 	
 d. Baranof Mountains subsection 	
58. Prince of Wales Mtns. sect.	_
Coast Mountains Province	СОМ
59. Boundary Pass section	_

Coast Mountains Province	СОМ
59. Boundary Pass section	_
60. Coastal Foothills section	_

Other Physiographic Areas

(not addressed by Fenneman, 1946, or Wahrhaftig, 1965)

Pacific Rim

PR Pacific Islands Province PΙ a. Hawaiian Islands HAIb. Guam GUM c. Trust Territories * TRT (e.g., Commonwealth of the Northern Mariana Islands, Federated States of Micronesia, Palau, Republic of Marshall Islands, American Samoa, etc.) d. Other

^{*} Most of the former U.S. Trust Territories of the Pacific are now independent nations. This designation is used here solely for brevity and to aid in accessing archived historical data.

Caribbean Basin CB Caribbean Islands Province
a. Greater Antilles (Puerto Rico,

Greater Antilles (Puerto Rico, GRA Cuba, Hispaniola, Jamaica)

b. Lesser Antilles (U.S. Virgin Islands, Barbados, Grenada, Martinique, etc.) LEA

CI

c. Other

Undesignated *UN* Other

OT

(reserved for temporary or international designations)

STATE PHYSIOGRAPHIC AREA (D)

e.g., Des Moines Lobe (IA)

(OPTIONAL) (Entries presently undefined; to be

developed in conjunction with each State Geological Survey; target scale is approximately 1:100,000.)

LOCAL PHYSIOGRAPHIC/GEOGRAPHIC NAME (E)

e.g., Pilot's Knob (IA)

(OPTIONAL) (Entries presently undefined; to

be developed in conjunction with each State Geological Survey; may include area names found on USGS 7.5- and 15-minute topographic maps; target scale is

approximately 1:24,000.)

PART II: GEOMORPHIC DESCRIPTION (OUTLINE)

- COMPREHENSIVE LISTS: Alphabetical rosters of all terms currently recognized in a given category.
 - A) LANDSCAPES
 - **B) LANDFORMS**
 - C) MICROFEATURES

Subaqueous Features

D) ANTHROPOGENIC FEATURES

II) GEOMORPHIC ENVIRONMENTS and OTHER GROUPINGS:

Landscape, landform, and microfeature terms grouped by geomorphic process (e.g., Fluvial) or by common settings (e.g., Water Bodies). These lists are *not* mutually exclusive; some features occur in more than one environment or setting (e.g., *hill*).

1. Coastal Marine and Estuarine 2. Lacustrine 3. Fluvial 4. Solution 5 Folian **GEOMORPHIC ENVIRONMENTS** 6. Glacial 7. Perialacial 8. Mass Movement 9. Volcanic and Hydrothermal 10. Tectonic and Structural 11. Slope 12. Frosional 13. Depressional **OTHER GROUPINGS** 14. Wetlands 15. Water Bodies

PART II: GEOMORPHIC DESCRIPTION

Codes: Conventionally, the entire land-feature term is used (e.g., dune field). Some data storage programs (e.g., NASIS) may have shorthand codes developed for some terms. If available, an italicized code follows each term (e.g., meander belt MB); these are shown for historical purposes.

I) COMPREHENSIVE LISTS:

A) LANDSCAPES (broad assemblages or unique groups of natural, spatially associated features). (LF=Landform; w=water body)

alluvial plain	AP	fold-thrust hills	FTH
alluvial plain remnant	AR	foothills	FH
badlands	BA	glaciokarst	GK
bajada (also LF)	BJ	gulf (w; also LF)	GU
barrier island (also LF)	BI	hills (singular=LF)	HI
basin	BS	ice-margin complex	IC
basin floor (also LF)	BC	intermontane basin (also	IB
batholith	BL	LF)	
bay [coast] (w; also LF)	BY	island (also LF)	IS
bolson	BO	karst	KR
breached anticline (also LF)	BD	kegel karst	KK
breaklands	BR	lagoon (w; also LF)	LG
breaks (also LF)	BK	lake plain (also LF)	LP
caldera (also LF)	CD	lava field (also LF)	LF
canyonlands	CL	lava plain (also LF)	LV
coastal plain (also LF)	CP	lava plateau (also LF)	LL
cockpit karst	CPK	lowland	LW
cone karst	CK	marine terrace (also LF)	MT
continental glacier	CG	meander belt	MB
delta plain (also LF)	DP	mountain range	MR
dissected breaklands	DB	mountains (singular=LF)	MO
dissected plateau	DI	mountain system	MS
drumlin field	DF	ocean (w)	OC
dune field (also LF)	DU	outwash plain (also LF)	OP
estuary (w; also LF)	ES	peninsula	PE
everglades	EG	piedmont	PI
fan piedmont (also LF)	FP	piedmont slope	PS
fault-block mountains	FM	plain (singular=LF)	PL
fluviokarst	FK	plateau (also LF)	PT
fluviomarine terrace (also	FT	rift valley	RF
LF)		river valley (also LF)	RV

SP	strait (w; also LF)	ST
SH	tableland	TB
SC	thermokarst	TK
SEA	till plain (also LF)	TP
SB	tower karst	TW
SV	upland	UP
SX	valley (also LF)	VA
SK	volcanic field (also LF)	VF
SO		
	SH SC SEA SB SV SX SK	SH tableland SC thermokarst SEA till plain (also LF) SB tower karst SV upland SX valley (also LF) SK volcanic field (also LF)

B) LANDFORMS (discrete, natural, individual earthsurface features mappable at common survey scales). (LS=Landscape; Micro=Microfeature; w=water body. Italicized NASIS code follows each term.)

aa lava flow	ALF	basin floor (also LS)	BC
alas	AA	basin-floor remnant	BD
alluvial cone	AC	bay [coast] (w; also LS)	BAY
alluvial fan	AF	bay [geom.]	BYG
alluvial flat	AP	bay bottom	BOT
alpine glacier	AG	bayou (w)	WC
anticline	AN	beach	BE
arete	AR	beach plain	BP
arroyo	AY	beach ridge	BG
ash field	AQ	beach terrace	BT
ash flow	AS	berm	ВМ
atoll	AT	beveled base	BVB
avalanche chute	AL	blind valley	VB
axial stream	AX	block field	BW
back-barrier beach	BBB	block glide	BLG
back-barrier flat	BBF	block lava flow	BLF
backshore	AZ	block stream	BX
backswamp	BS	blowout	BY
bajada (also LS)	BJ	bluff	BN
ballena	BL	bog	ВО
ballon	BV	box canyon	BOX
bar	BR	braided stream	ΒZ
barchan dune	BQ	breached anticline (also LS)	BRL
barrier beach	BB	breaks (also LS)	BK
barrier beach [relict]	BBR	broad interstream divide	BID
barrier cove	BAC	butte	BU
barrier flat	BF	caldera (also LS)	CD
barrier island (also LS)	BI	canyon	CA

canyon bench	CYB	deflation flat	DFL
canyon wall	CW	delta	DE
Carolina Bay	CB	delta plain (also LS)	DC
channel (also Micro)	CC	depression	DP
chenier	CG	diapir	DD
chenier plain	CH	diatreme	DT
cinder cone	CI	dike	DK
cirque	CQ	dip slope	DL
cirque floor	CFL	disintegration moraine	DM
cirque headwall	CHW	distributary	DIS
cirque platform	CPF	divide	DN
cliff	CJ	dome	DO
climbing dune	CDU	drainageway	DQ
closed depression	CLD	drainhead complex	DRC
(also Micro)	C.D.	draw	DW
coastal plain (also LS)	CP	drumlin	DR
cockpit	COC	drumlinoid ridge	DRR
col	CL	dune	DU
collapse sinkhole	CSH	dune field (also LS)	DUF
collapsed ice-floored lakebed	CK	dune lake (w)	DUL
collapsed ice-walled lakebed	CN	dune slack (also Micro)	DUS
collapsed lake plain	CS	earthflow	EF
collapsed outwash plain	CT	earth spread	ESP
colluvial apron	COA	earth topple	ETO
complex landslide	CLS	end moraine	EM
coral island	COR	ephemeral stream (also Micro)	EPS
coulee	CE	eroded fan remnant	EFR
cove	CO	eroded fan-remnant	EFS
cove [water] (w)	COW	sideslope	LIS
crag and tail	CAT	erosion remnant	ER
creep	CRE	escarpment	ES
crevasse filling	CF	esker	EK
cuesta	CU	estuary (w; also LS)	WD
cuesta valley	CUV	faceted spur	FS
cutoff	CV	fall	FB
debris avalanche	DA	falling dune	FDU
debris fall	DEF	fan	FC
debris flow	DF	fan apron	FA
debris slide	DS	fan collar	FCO
debris spread	DES	fanhead trench	FF
debris topple	DET	fan piedmont (also LS)	FG
deflation basin	DB	fan remnant	FH

fan skirt	FI	gulf (w; also LS)	GU
fault block	FAB	gut [channel]; (w; also	WH
fault-line scarp	FK	Micro)	61.4
fault zone	FAZ	gut [valley]	GV
fen	FN	half graben	HG
fissure vent	FIV	hanging valley	HV
fjord (w)	FJ	headland	HE
flat	FL	head-of-outwash	HD
flatwoods	FLW	headwall	HW
flood plain	FP	high hill	HH
flood-plain playa	FY	highmoor bog	HB
flood-plain splay	FM	hill (plural=LS)	HI
flood-plain step	FO	hillslope	HS
flood-tidal delta	FTD	hogback	НО
flood-tidal delta flat	FTF	homoclinal ridge	HCR
flood-tidal delta slope	FTS	homocline	HC
flow	FLO	horn	HR
flute (also Micro)	FU	horst	HT
fluviomarine bottom	FMB	hot spring	HP
fluviomarine terrace (also	FMT	ice-contact slope	ICS
LS)		ice-marginal stream	IMS
fold	FQ	ice pressure ridge	IPR
foredune	FD	ice-pushed ridge	IPU
fosse	FV	inlet	IL
free face (also Geom.	FW	inselberg	IN
Component—Hills, Mountains)		inset fan	IF
fringe-tidal marsh	FTM	interdrumlin	IDR
gap	GA	interdune (also Micro)	ID
geyser	GE	interfluve (also Geom. Component—Hills)	IV
geyser basin	GEB	interior valley	INV
geyser cone	GEC	intermittent stream (also	INT
giant ripple	GC	Micro)	
glacial drainage channel	GD	intermontane basin (also	IB
glacial lake (w)	WE	LS)	
glacial lake [relict]	GL	island (also LS)	IS
glacial-valley floor	GVF	kame	KA
glacial-valley wall	GVW	kame moraine	KM
glacier	GLA	kame terrace	KT
gorge	GO	karst cone	KC
graben	GR	karstic marine terrace	KMT
ground moraine	GM	karst lake	KAL
gulch	GT	karst tower	KTO

karst valley	KVA	marine terrace (also LS)	MT
kettle	KE	marsh	MA
kipuka	KIP	mawae	MAW
knob	KN	meander	MB
knoll	KL	meandering channel	MC
lagoon (w; also LS)	WI	meander scar	MS
lagoon bottom	LBO	meander scroll	MG
lagoon channel	LCH	medial moraine	MH
lagoon [relict]	LAR	mesa	ME
lahar	LA	meteorite crater	MEC
lake (w)	WJ	mogote	MOG
lakebed (w)	LB	monadnock	MD
lakebed [relict]	LBR	monocline	MJ
lake plain (also LS)	LP	moraine	MU
lakeshore	LF	mountain (plural=LS)	MM
lake terrace	LT	mountain slope	MN
landslide	LK	mountain valley	MV
lateral moraine	LM	mudflow	MW
lateral spread	LS	mud pot	MP
lava dome	LD	muskeg	MX
lava field (also LS)	LFI	natural levee	NL
lava flow	LC	nearshore zone	NZ
lava flow unit (also Micro)	LFU	nearshore zone [relict]	NZR
lava plain (also LS)	LN	notch	NO
lava plateau (also LS)	LL	nunatak	NU
lava trench (also Micro)	LTR	open depression (also	ODE
lava tube	LTU	Micro)	
ledge (also Micro)	LE	outwash delta	OD
levee	LV	outwash fan	OF
loess bluff	LO	outwash plain (also LS)	OP
loess hill	LQ	outwash terrace	OT
longitudinal dune	LDU	overflow stream channel	OSC
longshore bar	LON	oxbow	OX
longshore bar [relict]	LR	oxbow lake (w)	WK
louderback	LU	paha	PA
low hill	LH	pahoehoe lava flow	PAF
lowmoor bog	LX	paleoterrace	PTR
maar	MAA	parabolic dune	PB
mainland cove	MAC	parna dune	PD
main scarp (also Micro)	MAS	partial ballena	PF
mangrove swamp	MAN	patterned ground	PG
marine lake (w)	ML	pavement karst	PAV
• •			

peak	PK	river valley (also LS)	RVV
peat plateau	PJ	roche moutonnée (also	RN
pediment	PE	Micro)	0.05
perennial stream (w; also Micro)	PS	rockfall (also Micro) rockfall avalanche	ROF RFA
pillow lava flow	PIF	rock glacier	RO
pingo	PI	rock pediment	ROP
pinnacle (also Micro)	PIN	rock spread	ROS
pitted outwash plain	PM	rock topple	ROT
pitted outwash terrace	POT	rotational debris slide	RDS
plain (plural=LS)	PN	rotational earth slide	RES
plateau (also LS)	PT	rotational rock slide	RRS
playa	PL	rotational slide	RTS
playa dune (also Micro)	PDU	sabkha	SAB
playa floor (also Micro)	PFL	saddle	SA
playa lake (w)	WL	sag (also Micro)	SAG
playa rim (also Micro)	PRI	sag pond (w; also Micro)	SGP
playa slope (also Micro)	PSL	salt marsh	SM
playa step (also Micro)	PST	salt pond (w; also Micro)	WQ
plug dome	PP	sand flow (also Micro)	RW
pluvial lake (w)	PLL	sand ramp	SAR
pluvial lake [relict]	PQ	sand sheet	RX
pocosin	PO	scarp	RY
point bar	PR	scarp slope	RS
point bar [coastal]	PRC	scree slope	SCS
pothole (also Micro)	PH	sea (w; also LS)	SEA
pothole lake (w)	WN	sea cliff	RZ
proglacial lake (w)	WO	seep (also Micro)	SEE
proglacial lake [relict]	PGL	seif dune	SD
pyroclastic flow	PCF	semi-open depression	SOD
pyroclastic surge	PCS	shield volcano (also LS)	SHV
raised beach	RA	shoal (w)	WR
raised bog	RB	shoal [relict]	SE
ravine	RV	shore	SHO
recessional moraine	RM	shore complex (also LS)	SHC
reef	RF	sill	RT
ribbed fen	RG	sinkhole	SH
ridge	RI	slackwater (w)	WS
rim	RJ	slickrock (also Micro)	SLK
rise (also Micro) (also	RIS	slide	SJ
Geom. Component—Flat		slot canyon	SLC
Plains)		slough (w)	SL
river (w)	RIV	3 ()	

slump block	SN	terrace remnant	TER
snowfield	SNF	thermokarst depression	TK
soil fall	SOF	(also Micro)	
solution platform	SOP	thermokarst lake (w)	WV
solution sinkhole	SOS	tidal flat	TF
sound (w; also LS)	SO	tidal inlet	TI
spit	SP	tidal inlet [relict] (w)	TIR
spur	50	tidal marsh	TM
stack [coast]	SRC	till-floored lake plain	TLP
stack [geom.]	SR	till plain (also LS)	TP
star dune	SDU	toe (also Micro)	TOE
steptoe	ST	tombolo	TO
stock	STK	topple	TOP
stoss and lee	SAL	tor	TQ
strait (w; also LS)	STT	Toreva block	TOR
strand plain	SS	translational debris slide	TDS
strath terrace	SU	translational earth slide	TES
stratovolcano	SV	translational rock slide	TRS
stream (w)	STR	translational slide	TS
stream terrace	SX	transverse dune	TD
strike valley	STV	trough	TR
string bog	SY	tunnel valley	TV
structural bench	SB	tunnel-valley lake (w)	TVL
submerged back-barrier	SBB	underfit stream	US
beach		U-shaped valley	UV
submerged mainland beach	SMB	valley (also LS)	VA
submerged point bar	SPB	valley-border surfaces	VBS
[coast]	CTM	valley flat	VF
submerged-upland tidal marsh	STM	valley floor	VL
submerged wave-built	SWT	valley-floor remnant	VFR
terrace		valley side	VS
submerged wave-cut	SWP	valley train	VT
platform		volcanic cone	VC
swale (also Micro)	SC	volcanic crater	CR
swallow hole	TB	volcanic dome	VD
swamp	SW	volcanic field (also LS)	VOF
syncline	SZ	volcanic neck	VON
talus cone	TC	volcanic pressure ridge (also Micro)	PU
talus slope	TAS	volcano	VO
tarn (w; also Micro)	TAR		VV
terminal moraine	TA	V-shaped valley wash	WA
terrace	TE	washover fan	WF
		wasiiovei idli	VV I

washover-fan flat	WFF	wind gap	WG
washover-fan slope	WFS	window	WIN
water-lain moraine	WM	wind-tidal flat	WTF
wave-built terrace	WT	yardang (also Micro)	YD
wave-cut platform	WP	yardang trough (also Micro)	YDT
wave-worked till plain	WW		

- C) MICROFEATURES (discrete, natural earth-surface features typically too small to delineate at common survey scales).
 - 1) **Common Microfeatures** (not used in association with the landform "patterned ground").

bar	BA	open depression (also LF)	OP
channel (also LF)	CH	perennial stream (w; also	PS
closed depression (also LF)	CD	LF)	
corda	CO	pinnacle (also LF)	PI
cutter	CU	playa dune (also LF)	PD
dune slack (also LF)	DS	playa floor (also LF)	PF
dune traces	DT	playa rim (also LF)	PR
earth pillar	EP	playa slope (also LF)	PSL
ephemeral stream (also LF)	ES	playa step (also LF)	PST
finger ridge	FR	playette	PL
flute (also LF)	FL	pond (w)	PON
frost boil	FB	pool (w)	P00
glacial groove	GG	pothole (also LF)	PH
groove	GR	rib	RB
gully	GU	rill	RL
gut [channel] (w; also LF)	WH	ripple mark	RM
hillock	HI	rise (also LF) (also Geom. Component—Flat Plains)	RIS
hoodoo	НО	rockfall (also LF)	ROF
ice wedge	IWD	roche moutonnée (also LF)	POC
ice wedge cast	IWC	sag (also LF)	SAG
interdune (also LF)	ID	sag pond (w; also LF)	SP
intermittent stream (w;	INT	salt pond (w; also LF)	WQ
also LF)		sand boil	SB
karren	KA	sand flow (also LF)	RW
lava flow unit (also LF)	LFU	, ,	SE
lava trench (also LF)	LT	seep (also LF)	
main scarp (also LF)	MAS	shoreline	SH
minor scarp	MIS	shrub-coppice dune	SCD
mound	MO	slickrock (also LF)	SLK
nivation hollow	NH	slip face	SF

solifluction lobe	SOL	tarn (w; also LF)	TN
solifluction sheet	SS	terracettes	TER
solifluction terrace	ST	thermokarst depression	TK
solution chimney	SCH	(also LF)	
solution corridor	SCO	toe [mass mvt.] (also LF)	TOE
solution fissure	SOF	tree-tip mound	TTM
solution pipe	SOP	tree-tip pit	TTP
spatter cone	SPC	tumulus (pl.: tumuli)	TU
spiracle	SPI	vernal pool (seasonal water)	VP
strandline	SL	volcanic pressure ridge (also LF)	VPR
swale (also LF)	SW	` '	1/0
swash zone	SZ	yardang (also LF)	ΥD
		yardang trough (also LF)	YDT
tank (w)	TA	zibar	ZB

Periglacial "patterned ground" Microfeatures (Singular forms [e.g., circle] are used for a single feature [pedon scale], whereas plural forms [e.g., circles] are used for map unit components.)

circle	CI	palsa (=peat hummock)	PA
earth hummock	EH	polygon	PYG
high-center polygon	HCP	sorted circle	SCI
ice wedge polygon	IWP	stripe	STR
low-center polygon	LCP	turf hummock	TH
nonsorted circle	NSC		

Other "patterned ground" Microfeatures (Singular forms [e.g., hummock] are used for a single feature [pedon scale], whereas plural forms [e.g., hummocks] are used for map unit components.)

bar and channel	BC	linear gilgai	LG
circular gilgai	CG	mima mound	MM
elliptical gilgai	EG	pimple mound	PM
gilgai	GI	puff	PU
hummock	HU		

D) ANTHROPOGENIC FEATURES (discrete, artificial [human-made] earth-surface features).

anthroscape	ANT	hillslope terrace (ancient)	HT
artificial collapsed	ACD	impact crater	IC
depression		interfurrow	IF
artificial levee	AL	landfill (see sanitary landfill)	_
beveled cut	BC	leveled land	LVL
bioswale	BS	log landing	LL
borrow pit	BP	midden	MI
burial mound	BM	openpit mine	OM
conservation terrace (modern)	CT	polder	POL
cut (e.g., railroad)	CUT	pond (human-made)	PO
cut (e.g., ramoau)	CB	quarry	QU
ditch	DI	railroad bed	RRB
double-bedding mound	DBM	reclaimed land	RL
(i.e., bedding mound used	DDM	rice paddy	RP
for timber; lower Coastal		road bed	RB
Plain)	DD	road cut	RC
drainage ditch		sand pit	SP
dredge-deposit shoal	DDS	sanitary landfill	SL
dredge spoil bank	DSB	scalped area	SA
dredged channel	DC	sewage lagoon	SWL
dump	DU	skid trail	ST
fill	FI	spoil bank	SB
filled marshland	FM	spoil pile	SPP
floodway	FW	surface mine	SM
furrow	FR	tillage mound	TM
gravel pit	GP	truncated soil	TS
headwall <i>(anthro)</i>	HW		

II) GEOMORPHIC ENVIRONMENTS and OTHER GROUPINGS:

Landscape, landform, and microfeature terms grouped by geomorphic process (e.g., Fluvial) or by common setting (e.g., Water Body). LS=Landscape; LF=Landform; Micro=Microfeature. Lists are not mutually exclusive.

 COASTAL MARINE and ESTUARINE (wave or tidal control or near-shore/shallow marine).

Landscapes:

barrier island (also LF)	BI	lagoon (w; also LF)	LG
bay [coast] (w; also LF)	BY	lowland	LW
coastal plain (also LF)	CP	marine terrace (also LF)	MT
delta plain (also LF)	DP	ocean (w)	OC
estuary (w; also LF)	ES	peninsula	PE
fluviomarine terrace (also	FT	sea (w; also LF)	SEA
LF)		shore complex	SX
gulf (w; also LF)	GU	sound (w; also LF)	50
island (also LF)	IS	strait (w; also LF)	ST

ΛT

dolta

Landforms:

---11

atoli	ΑI	delta	DE
back-barrier beach	BBB	delta plain (also LS)	DC
back-barrier flat	BBF	drainhead complex	DRC
backshore	AZ	estuary (also LS)	WD
bar	BR	flat	FL
barrier beach	BB	flatwoods	FLW
barrier cove	BAC	fluviomarine terrace (also	FMT
barrier flat	BF	LS)	
barrier island (also LS)	BI	foredune	FD
bay [coast] (w; also LS)	BAY	fringe-tidal marsh	FTM
bay bottom	BOT	gulf (w; also LS)	GU
beach	BE	gut [channel] (w, also Micro)	WH
beach plain	BP	headland	HE
beach ridge	BG	island (also LS)	IS
beach terrace	BT	lagoon (w; also LS)	WI
berm	BM	lagoon [relict]	LAR
bluff	BN	longshore bar	LON
chenier	CG	-	
chenier plain	CH	longshore bar [relict]	LR
coastal plain (also LS)	CP	mangrove swamp	MAN
coral island	COR	marine lake (w)	ML
	COW	marine terrace (also LS)	MT
cove [water] (w)	COW	nearshore	NZ

 Γ

nearshore zone [relict]	NZR	stack [coast]	SRC
point bar [coastal]	PRC	strait (w; also LS)	STT
raised beach	RA	strand plain	SS
reef	RF	submerged-upland tidal	STM
sabkha	SAB	marsh	
salt marsh	SM	tidal flat	TF
sea (w; also LS)	SEA	tidal inlet	TI
sea cliff	RZ	tidal inlet [relict]	TIR
semi-open depression	SOD	tidal marsh	TM
shoal [relict]	SE	tombolo	TO
shore	SHO	washover fan	WF
shore complex (also LS)	SHC	wave-built terrace	WT
sound (w; also LS)	SO	wave-cut platform	WP
spit	SP	wind-tidal flat	WTF
Microfeatures:			
gut [channel] (w; also LF)	WH	shoreline	SH
ripple mark	RM	swash zone	SZ

2. LACUSTRINE (related to inland water bodies).

USDA-NRCS

Landscapes:			
bay [coast] (w; also LF)	BY	lake plain (also LF)	LP
delta plain (also LF)	DP	peninsula	PE
island (also LF)	IS	shore complex (also LF)	SX
Landforms:			
backshore	AZ	longshore bar [relict]	LR
bar (also Micro)	BR	nearshore zone	NZ
barrier beach	BB	nearshore zone [relict]	NZR
barrier flat	BF	oxbow lake	WK
barrier island	BI	playa	PL
bay [coast] (w; also LS)	BAY	playa floor (also Micro)	PFL
beach	BE	playa lake (w)	WL
beach plain	BP	playa rim (also Micro)	PRI
beach ridge	BG	playa slope (also Micro)	PSL
beach terrace	BT	playa step (also Micro)	PST
berm	BM	pluvial lake (w)	PLL
bluff	BN	pluvial lake [relict]	PQ
delta	DE	raised beach	RA
delta plain (also LS)	DC	sabkha	SAB
flat	FL	salt marsh	SM
flood-plain playa	FY	shoal [relict]	SE
foredune	FD	shore	SHO
headland	HE	shore complex (also LS)	SHC
island (also LS)	IS	spit	SP
karst lake	KAL	stack [coast]	SRC
lagoon	WI	strand plain	SS
lagoon [relict]	LAR	till-floored lake plain	TLP
lake (w)	WJ	tombolo	TO
lakebed [relict]	LBR	water-lain moraine	WM
lake plain (also LS)	LP	wave-built terrace	WT
lakeshore	LF	wave-cut platform	WP
lake terrace	LT	wave-worked till plain	WW
longshore bar	LON		
Microfeatures:			
bar (also LF)	BA	ripple mark	RM
playa floor (also LF)	PF	shoreline	SH
playa rim (also LF)	PR	strandline	SL
playa slope (also LF)	PSL	swash zone	SZ
playa step (also LF)	PST	vernal pool	VP
playette	PL		

3-23

September 2012

3. FLUVIAL (dominantly related to concentrated water flow [channel flow]; includes both erosional and depositional features with the exceptions of glaciofluvial landforms [see Glacial] and permanent water features [see Water Bodies]).

Landscapes:

alluvial plain	AP	delta plain (also LF)	DP
alluvial plain remnant	AR	dissected breaklands	DB
badlands	BA	fan piedmont	FP
bajada (also LF)	BJ	meander belt	MB
breaklands	BR	river valley (also LF)	RV
breaks	BK	scabland	SC
canyonlands	CL		

Landforms:

alluvial cone	AC	fan skirt	FI
alluvial fan	AF	flood plain	FP
alluvial flat	AP	flood-plain playa	FY
arroyo	AY	flood-plain splay	FM
axial stream (w)	AX	flood-plain step	FO
backswamp	BS	giant ripple	GC
bajada (also LS)	BJ	gorge	GO
bar (also Micro)	BR	gulch	GT
basin-floor remnant	BD	gut [valley]	GV
block stream	BX	inset fan	IF
box canyon	BOX	intermittent stream (also	INT
braided stream	BZ	Micro)	
canyon	CA	levee	LV
channel	CC	meandering channel	MC
coulee	CE	meander scar	MS
cutoff	CV	meander scroll	MG
delta	DE	natural levee	NL
delta plain (also LS)	DC	overflow stream channel	OSC
drainageway	DQ	oxbow	OX
drainhead complex	DRC	paleoterrace	PTR
draw	DW	point bar	PR
ephemeral stream (also	EPS	ravine	RV
Micro)		river valley (also LS)	RVV
fan apron	FA	semi-open depression	SOD
fan collar	FCO	slot canyon	SLC
fanhead trench	FF	strath terrace	SU
fan remnant	FH	stream terrace	SX

terrace remnant	TER	valley-floor remnant	VFR
valley flat	VF	wash	WA
valley-border surfaces	VBS	wind gap	WG
Microfeatures:			
bar (also LF)	BA	gully	GU
bar and channel (patterned ground)	ВС	intermittent stream (also LF)	INT
channel	CH	ripple mark	RM
ephemeral stream (also LF)	ES	swash zone	SZ
groove	GR		
4. SOLUTION (dom subsurface draina		y dissolution and, common	ly,
Landscapes:			
cockpit karst	CPK	kegel karst	KK
cone karst	CK	sinkhole karst	SK
fluviokarst	FK	thermokarst	TK

Landforms:

karst

glaciokarst

blind valley	VB	pavement karst	PAV
cockpit	COC	pinnacle	PIN
collapse sinkhole	CSH	sinkhole	SH
interior valley	INV	solution platform	SOP
karst cone	KC	solution sinkhole	SOS
karstic marine terrace	KMT	swallow hole	TB
karst lake (w)	KAL	thermokarst depression	TK
karst tower	KTO	(also Micro)	
karst valley	KVA	yardang (also Micro)	ΥD
mogote	MOG	yardang trough (also Micro)	YDT

GK

KR

tower karst

Microfeatures:

cutter	CU	solution pipe	SOP
karren	KA	thermokarst depression	TK
solution chimney	SCH	(also LF)	
solution corridor	SCO	yardang (also LF)	YD
solution fissure	SOF	yardang trough (also LF)	YDT

TW

5. EOLIAN (dominantly wind related; erosion or deposition).

Landscapes:

dune field (also LF)	DU	sand plain	SP
sandhills	SH		

Landforms:

barchan dune	BQ	longitudinal dune	LDU
blowout	BY	paha	PA
climbing dune	CDU	parabolic dune	PB
deflation basin	DB	parna dune	PD
deflation flat	DFL	playa dune (also Micro)	PDU
dune	DU	sabkha	SAB
dune field (also LS)	DUF	sand ramp	SAR
dune lake (w)	DUL	sand sheet	RX
dune slack (also Micro)	DUS	seif dune	SD
falling dune	FDU	slickrock (also Micro)	SLK
foredune	FD	star dune	SDU
interdune (also Micro)	ID	transverse dune	TD
loess bluff	LO	yardang (also Micro)	YD
loess hill	LQ	yardang trough (also Micro)	YDT

Microfeatures:

dune slack (also LF)	DS	slickrock (also LF)	SLK
dune traces	DT	slip face	SF
interdune (also LF)	ID	yardang (also LF)	YD
playa dune (also LF)	PD	yardang trough (also LF)	YDT
playette	PL	zibar	ZB
shrub-coppice dune	SCD		

6. GLACIAL (directly related to glaciers; includes glaciofluvial, glaciolacustrine, glaciomarine, and outwash features).

Landscapes:

continental glacier	CG	ice-margin complex	IC
drumlin field	DF	outwash plain (also LF)	OP
glaciokarst	GK	till plain (also LF)	TP
hills	HI		

Landforms:

alpine glacier	AG	kame terrace	KT
arete	AR	kettle	KE
cirque	CQ	lateral moraine	LM
cirque floor	CFL	medial moraine	MH
cirque headwall	CHW	moraine	MU
cirque platform	CPF	nearshore zone	NZ
col	CL	nearshore zone [relict]	NZR
collapsed ice-floored	CK	nunatak	NU
lakebed		outwash delta	OD
collapsed ice-walled lakebed		outwash fan	OF
collapsed lake plain	CS	outwash plain (also LS)	OP
collapsed outwash plain	CT	outwash terrace	OT
crag and tail	CAT	paha	PA
crevasse filling	CF	pitted outwash plain	PM
disintegration moraine	DM	pitted outwash terrace	POT
drumlin	DR	pothole (also Micro)	PH
drumlinoid ridge	DRR	pothole lake (intermittent	WN
end moraine	EM	water)	
esker	EK	proglacial lake (w)	WO
fjord (w)	FJ	proglacial lake [relict]	PGL
flute (also Micro)	FU	recessional moraine	RM
fosse	FV	roche moutonnée (also	RN
giant ripple	GC	Micro)	
glacial drainage channel	GD	rock glacier	RO
glacial lake (w)	WE	snowfield	SNF
glacial lake [relict]	GL	stoss and lee	SAL
glacial-valley floor	GVF	swale (also Micro)	SC
glacial-valley wall	GVW	tarn (w; also Micro)	TAR
glacier	GLA	terminal moraine	TA
ground moraine	GM	till-floored lake plain	TLP
hanging valley	HV	till plain (also LS)	TP
head-of-outwash	HD	tunnel valley	TV
ice-contact slope	ICS	tunnel-valley lake (w)	TVL
ice-marginal stream	IMS	underfit stream	US
ice pressure ridge	IPR	U-shaped valley	UV
ice-pushed ridge	IPU	valley train	VT
interdrumlin	IDR	water-lain moraine	WM
kame	KA	wave-worked till plain	WW
kame moraine	KM		

Microfeatures:

flute (also LF)	FL	pothole (also LF)	PH
glacial groove	GG	roche moutonnée (also LF)	POC
ice wedge	IWD	swale (also LF)	SW
ice wedge cast	IWC	tarn (w; also LF)	TN
nivation hollow	NH		

7. **PERIGLACIAL** (related to nonglacial, cold climate [modern or relict], including periglacial forms of patterned ground. **NOTE:** Consider "patterned ground" as a landform, but treat specific types of patterned ground [singular or plural] as microfeatures).

Landscapes:

coastal plain	CP	plains	PL
hills	HI	thermokarst	TK
Landforms:			
alas	AA	pingo	PΙ
block field	BW	rock glacier	RO
muskeg	MX	string bog	SY
patterned ground (see Microfeatures below for	PG	thermokarst depression (also Micro)	TK
types)		thermokarst lake (w)	WV
peat plateau	PJ		
Microfeatures:			
circle	CI	palsa (=peat hummock)	PA
earth hummock	EH	polygon	PYG
frost boil	FB	solifluction lobe	SOL
high-center polygon	HCP	solifluction sheet	SS
ice wedge	IWD	solifluction terrace	ST
ice wedge cast	IWC	sorted circle	SCI
ice-wedge polygon	IWP	stripe	STR
low-center polygon	LCP	thermokarst depression	TK
nivation hollow	NH	(also LF)	

nonsorted circle

NSC

turf hummock

TH

8. MASS MOVEMENT (=MASS WASTING) (dominated by gravity, including creep forms; also see "Mass Movement Types" table, p. 5–8).

Landscapes: These generic landscapes are not mass movement features per se but are commonly modified by and include localized areas of mass movement.

areas or mass movemen	τ.		
breaklands	BR	hills	HI
dissected breaklands	DB	mountain range	MR
foothills	FH	mountains	МО
Landforms:			
ash flow	AS	rockfall avalanche	RFA
avalanche chute	AL	rock glacier	RO
block glide	BLG	rock spread	ROS
block stream	BX	rock topple	ROT
colluvial apron	COA	rotational debris slide	RDS
complex landslide	CLS	rotational earth slide	RES
creep	CRE	rotational rock slide	RRS
debris avalanche	DA	rotational slide	RTS
debris fall	DEF	sag (also Micro)	SAG
debris flow	DF	sag pond (w; also Micro)	SGP
debris slide	DS	sand flow	RW
debris spread	DES	scree slope	SCS
debris topple	DET	slide	SJ
earthflow	EF	slump block	SN
earth spread	ESP	soil fall	SOF
earth topple	ETO	talus cone	TC
fall	FB	talus slope	TAS
flow	FLO	toe (also Micro)	TOE
lahar	LA	topple	TOP
landslide	LK	Toreva block	TOR
lateral spread	LS	translational debris slide	TDS
main scarp (also Micro)	MAS	translational earth slide	TES
mudflow	MW	translational rock slide	TRS
rockfall (also Micro)	ROF	translational slide	TS
Microfeatures:			
main scarp (also LF)	MAS	solifluction lobe	SOL
minor scarp	MIS	solifluction sheet	SS
rockfall (also LF)	ROF	solifluction terrace	ST
sag (also LF)	SAG	terracettes	TER
sag pond (w; also LF)	SP	toe (also LF)	TOE
sand boil	SB		

9. VOLCANIC and HYDROTHERMAL

Landscapes:

caldera (also LF)	CD	lava plateau (also LF)	LL
foothills	FH	mountains	MO
hills	HI	shield volcano (also LF)	SV
lava field (also LF)	LF	volcanic field (also LF)	VF
lava plain (also LF)	LV		

Landforms:

aa lava flow	ALF	lava trench (also Micro)	LTR
ash field	AQ	lava tube	LTU
ash flow	AS	louderback	LU
block lava flow	BLF	maar	MAA
caldera (also LS)	CD	mawae	MAW
cinder cone	CI	mud pot	MP
diatreme	DT	pahoehoe lava flow	PAF
dike	DK	pillow lava flow	PIF
fissure vent	FIV	plug dome	PP
geyser	GE	pyroclastic flow	PCF
geyser basin	GEB	pyroclastic surge	PCS
geyser cone	GEC	shield volcano (also LS)	SHV
hot spring	HP	steptoe	ST
kipuka	KIP	stratovolcano	SV
lahar	LA	volcanic cone	VC
lava dome	LD	volcanic crater	CR
lava field (also LS)	LFI	volcanic dome	VD
lava flow	LC	volcanic field (also LS)	VOF
lava flow unit (also Micro)	LFU	volcanic neck	VON
lava plain (also LS)	LN	volcanic pressure ridge	PU
lava plateau (also LS)	LL	(also Micro)	
		volcano	VO

corda	CO	spiracle	SPI
lava flow unit (also LF)	LFU	tumulus (pl.: tumuli)	TU
lava trench (also LF)	LT	volcanic pressure ridge	VPR
spatter cone	SPC	(also LF)	

10. TECTONIC and STRUCTURAL (related to regional or local bedrock structures or crustal movement; recognized only if expressed at or near the land surface).

Landscapes:

basin floor	BC	mountain range	MR
batholith	BL	mountains	MO
bolson	ВО	mountain system	MS
breached anticline (also LF)	BD	piedmont slope	PS
dissected plateau	DP	plateau (also LF)	PT
fault-block mountains	FM	rift valley	RF
fold-thrust hills	FTH	semi-bolson	SB
foothills	FH	tableland	TB
hills	HI	valley	VA
intermontane basin	ΙB		

Landforms:

anticline	AN	hogback	НО
breached anticline (also LS)	BRL	homoclinal ridge	HCR
canyon bench	CYB	homocline	HC
cuesta	CU	horst	HT
cuesta valley	CUV	louderback	LU
diapir	DD	meteorite crater	MEC
dike	DK	monocline	MJ
dip slope	DL	rock pediment	ROP
dome	DO	scarp slope	RS
fault block	FAB	sill	RT
fault-line scarp	FK	stock	STK
fault zone	FAZ	strike valley	STV
fold	FQ	structural bench	SB
graben	GR	syncline	SZ
half graben	HG	window	WIN

Microfeatures:

sand boil SB

11. SLOPE (generic terms [e.g., hill] or those that describe slope form, geometry, or arrangement of land features rather than any particular genesis or process).

Landscapes:

badlands	BA	mountain range	MR
breached anticline (also LF)	BD	mountains	MO
breaklands	BR	mountain system	MS
breaks	BK	piedmont	PI
canyonlands	CL	piedmont slope	PS
dissected breaklands	DB	plains (singular=LF)	PL
dissected plateau	DI	plateau (also LF)	PT
fault-block mountains	FM	tableland	TB
foothills	FH	upland	UP
hills (singular=LF)	HI		

Landforms:

beveled base	BVB	interfluve (also Geom.	IV
block stream	BX	Component—Hills)	
bluff	BN	knob	KN
breached anticline (also LS)	BRL	knoll	KL
broad interstream divide	BID	ledge (also Micro)	LE
butte	BU	low hill	LH
canyon bench	CYB	mesa	ME
canyon wall	CW	mountain (plural=LS)	MM
cliff	CJ	mountain slope	MN
colluvial apron	COA	mountain valley	MV
cuesta	CU	notch	NO
dip slope	DL	paha	PA
dome	DO	peak	PK
escarpment	ES	pediment	PE
faceted spur	FS	plain (plural=LS)	PN
fault block	FAB	plateau (also LS)	PT
fault-line scarp	FK	ridge	RI
free face (also Geom.	FW	rim	RJ
Component—Hills,		rise (also Micro) (also	RIS
Mountains)	٠.	Geom. Component—Flat Plains)	
gap	GA	rock pediment	ROP
headwall	HW	'	
high hill	HH	scarp	RY
hill (plural=LS)	HI	scarp slope	RS
hillslope	HS	scree slope	SCS
hogback	НО	slickrock (also Micro)	SLK

spur	SQ	tor	TQ
stack [geom.]	SR	valley	VA
structural bench	SB	valley-floor remnant	VFR
talus cone	TC	wind gap	WG
talus slope	TAS		

finger ridge	FR	rise (also LF) (also Geom.	RIS
mound	MO	Component—Flat Plains)	
rib	RB	slickrock (also LF)	SLK
rill	RL		

12. EROSIONAL (related dominantly to water erosion but excludes perennial, concentrated channel flow [i.e. fluvial, glaciofluvial] or eolian erosion).

Landscapes:

badlands	BA	hills	HI
breached anticline (also LF)	BD	mountain range	MR
breaklands	BR	mountains	МО
breaks	BK	piedmont	PI
canyonlands	CL	piedmont slope	PS
dissected breaklands	DB	plateau (also LF)	PT
dissected plateau	DI	tableland	TB
foothills	FH		

Landforms:

ballena	BL	monadnock	MD
ballon	BV	notch	NO
basin floor remnant	BD	paha	PA
beveled base	BVB	partial ballena	PF
breached anticline (also LS)	BRL	peak	PK
canyon bench	CYB	pediment	PE
canyon wall	CW	plateau (also LS)	PT
col	CL	rock pediment	ROP
colluvial apron	COA	sabkha	SAB
cuesta	CU	saddle	SA
cuesta valley	CUV	scarp slope	RS
eroded fan remnant	EFR	slickrock (also Micro)	SLK
eroded fan-remnant	<i>EFS</i>	stack [geom.]	SR
sideslope		strike valley	STV
erosion remnant	ER	structural bench	SB
free face (also Geom. Component—Hills,	FW	terrace remnant	TER
Mountains)		tor	TQ
gap	GA	valley-border surfaces	VBS
hogback	НО	valley-floor remnant	VFR
inselberg	IN	wind gap	WG
-		window	WIN

earth pillar	EP	pinnacle	PI
finger ridge	FR	rib	RB
groove	GR	rill	RL
gully	GU	slickrock (also LF)	SLK
hoodoo	НО	swale	SW

13. DEPRESSIONAL (low areas or declivity features, excluding permanent water bodies).

Landscapes:

basin	BS	breaklands	BR
basin floor (also LF)	BC	dissected breaklands	DB
bolson	ВО	semi-bolson	SB
breached anticline (also LF)	BD	valley	VA

Landforms:

alluvial flat	AP	mountain valley	MV
basin floor (also LS)	BC	open depression (also	ODE
basin floor remnant	BD	Micro)	
box canyon	BOX	playa	PL
breached anticline (also LS)	BRL	playa floor (also Micro)	PFL
canyon	CA	playa rim (also Micro)	PRI
canyon wall	CW	playa slope (also Micro)	PSL
Carolina Bay	СВ	playa step (also Micro)	PST
closed depression (also	CLD	pothole (also Micro)	PH
Micro)		pothole lake (intermittent	WN
col	CL	water)	
coulee	CE	ravine	RV
cove	CO	sabkha	SAB
cuesta valley	CUV	saddle	SA
depression	DP	sag (also Micro)	SAG
drainageway	DQ	semi-open depression	SOD
drainhead complex	DRC	slot canyon	SLC
gap	GA	strike valley	STV
gorge	GO	swale (also Micro)	SC
gulch	GT	trough	TR
gut [valley]	GV	U-shaped valley	UV
intermontane basin	IB	valley	VA
kettle	KE	valley floor	VL
rettie	NL.	V-shaped valley	VV
		. ,	

closed depression (also LF)	CD	playette	PL
open depression (also LF)	OP	pothole (also LF)	PH
playa floor (also LF)	PF	sag (also LF)	SAG
playa rim (also LF)	PR	semi-open depression	SOD
playa slope (also LF)	PSL	swale (also LF)	SW
plava step (also LF)	PST	tree-tip pit	TTP

14. WETLANDS (related to vegetated and/or shallow water areas and wet soils). (Provisional list: conventional, geologic definitions; not legalistic or regulatory usage.)

Landscapes:

estuary (also LF)	ES	everglades	EG
Landforms:			
alas backswamp bog Carolina Bay dune slack (also Micro) ephemeral stream (also Micro) estuary (also LS) fen flood-plain playa fringe-tidal marsh highmoor bog	AA BS BO CB DUS EPS WD FN FY FTM HB	oxbow lake (ephemeral water) peat plateau playa (intermittent water) pocosin pothole (also Micro) pothole lake (w) raised bog ribbed fen sabkha salt marsh seep (also Micro)	WK PJ PL PO PH WN RB RG SAB SM SEE
intermittent stream (also Micro) lowmoor bog mangrove swamp marsh muskeg	INT LX MAN MA MX	semi-open depression slough (intermittent water) string bog swamp tidal flat tidal marsh	SOD SL SY SW TF TM
Microfeatures: dune slack (also LF) ephemeral stream (also LF) intermittent stream (also LF)	DS ES INT	playette pothole (also LF) vernal pool (seasonal water)	PL PH VP

15. WATER BODIES (discrete "surface water" features; primarily permanent open water, which in soil survey reports is commonly treated as the generic map unit "water" [e.g., lake] or as a spot/line symbol [e.g., perennial stream]).

Landscapes:

bay [coast] (also LF)	BY	ocean	OC
estuary (also LF)	ES	sea (also LF)	SEA
gulf (also LF)	GU	sound (also LF)	SO
lagoon (also LF)	LG	strait (also LF)	ST

Landforms:

axial stream	AX	playa lake	WL
bay [coast] (also LS)	BAY	pluvial lake	PLL
bayou	WC	pothole lake	WN
cove [water]	COW	proglacial lake	WO
dune lake	DUL	river	RIV
estuary (also LS)	WD	sag pond (also Micro)	SGP
fjord	FJ	salt pond (also Micro)	WQ
glacial lake	WE	sea (also LS)	SEA
gulf (also LS)	GU	shoal	WR
gut [channel] (also Micro)	WH	slackwater	WS
ice-marginal stream	IMS	slough	SL
inlet	IL	sound (also LS)	SO
lagoon (also LS)	WI	strait (also LS)	STT
lagoon channel	LCH	stream (permanent water)	STR
lake	WJ	tarn (also Micro)	TAR
marine lake	ML	thermokarst lake	WV
nearshore zone	NZ	tidal inlet	TI
oxbow lake	WK	tidal inlet [relict]	TIR
perennial stream (also Micro)	PS	tunnel-valley lake	TVL

channel (permanent water)	CH	sag pond (also LF)	SP
gut [channel] (also LF)	WH	salt pond (also LF)	WQ
perennial stream (also LF)	PS	tank	TA
pond	PON	tarn (also LF)	TN
pool	POO		

16. SUBAQUEOUS FEATURES (discrete underwater features [that commonly can support rooted plants] and adjacent features ordinarily found below permanent open water; historically, in soil survey reports these underwater features have been included in the generic map unit "water." Subaqueous "Landscape" terms are obviously not terrestrial but are earth-surface features).

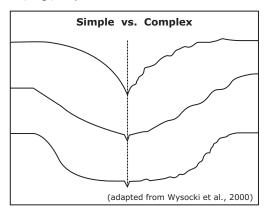
Landscapes:

bay [coast] (w; also LF)	BY	ocean (w)	OC
estuary (w; also LF)	ES	sea (w; also LF)	SEA
gulf (w; also LF)	GU	sound (w; also LF)	SO
lagoon (w; also LF)	LA	strait (w; also LF)	ST

Landforms:

barrier cove	BAC	marine lake	ML
bay [coast] (w; also LS)	BAY	nearshore zone	NZ
bay bottom	BOT	reef	RF
cove [water] (w)	CO	sea (w; also LS)	SEA
estuary (also LS)	WD	shoal	WR
flood-tidal delta	FTD	sound (w; also LS)	<i>S0</i>
flood-tidal delta flat	FTF	strait (w; also LS)	STT
flood-tidal delta slope	FTS	submerged back-barrier	SBB
fluviomarine bottom	FMB	beach	
gulf (w; also LS)	GU	submerged mainland beach	SMB
inlet	IL	submerged point bar [coast]	SPB
lagoon (also LS)	WI		SWT
lagoon bottom	LBO	submerged wave-built terrace	3111
lagoon channel	LCH	submerged wave-cut	SWP
lake	WJ	platform	
lakebed (w)	LB	tidal inlet	TI
longshore bar	LON	tidal inlet [relict]	TIR
mainland cove	MAC	washover-fan flat	WFF
		washover-fan slope	WFS

Microfeatures:

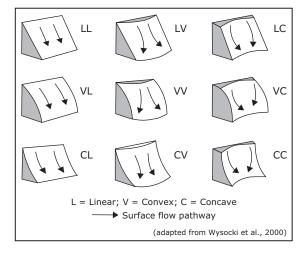

channel (permanent water)	CH	gut [channel] (w)	WH
---------------------------	----	-------------------	----

Anthropogenic Features:

dredge-deposit shoal	DDS	dredged channel	DC

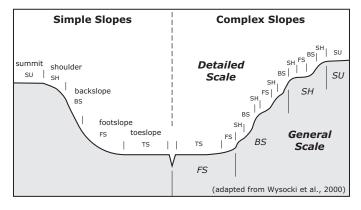
PART III: SURFACE MORPHOMETRY

- A) **Elevation**: The height of a point on the earth's surface relative to mean sea level (msl); indicate units; e.g., 106 m or 348 ft.
- B) Slope Aspect: The compass bearing (in degrees, corrected for declination) that a slope faces, viewed downslope; e.g., 287°.
- C) Slope Gradient: The angle of the ground surface (in percent) through the site and in the direction that overland water would flow (commonly referred to as slope); e.g., 18%.
- D) Slope Complexity: Describe the relative uniformity (smooth linear or curvilinear=simple or S) or irregularity (complex or C) of the ground surface leading downslope through the point of interest; e.g., simple or S.

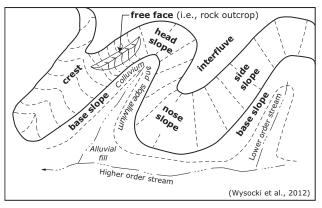


E) Relative Slope Segment Position (called geomorph_ slope_segment in NASIS): If useful to subdivide long slopes, describe the relative slope location of the area of interest.

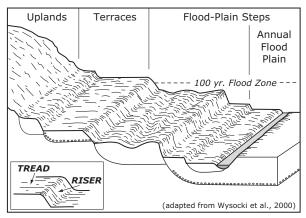
Relative Slope Segment Position	Code	Criteria
lower third	LT	on lower third
middle third	MT	on middle third
upper third	UT	on upper third


F) Slope Shape: Slope shape is described in two directions: 1) up and down slope (perpendicular or "normal" to the contour; called slope_down in NASIS); and 2) across slope (along the horizontal contour; called slope_across in NASIS). These two descriptors are commonly reported as a pair. The first term refers to up and down slope (or vertical), and the second term refers to across slope; e.g., Linear, Convex, or LV.

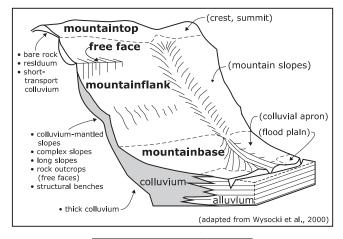
Down Slope (Vertical)	Across Slope (Horizontal)	Code
concave	concave	CC
concave	convex	CV
concave	linear	CL
convex	concave	VC
convex	convex	VV
convex	linear	VL
linear	concave	LC
linear	convex	LV
linear	linear	LL

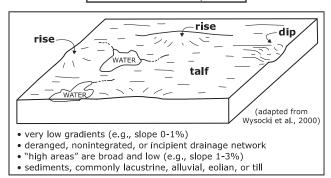

G) Hillslope—Profile Position (commonly called Hillslope Position): Two-dimensional descriptors of parts of line segments (i.e., slope position) along a transect that runs up and down the slope; e.g., backslope or BS. This set of terms is best applied to transects or points, not areas.

Position	Code
summit	SU
shoulder	SH
backslope	BS
footslope	FS
toeslope	TS



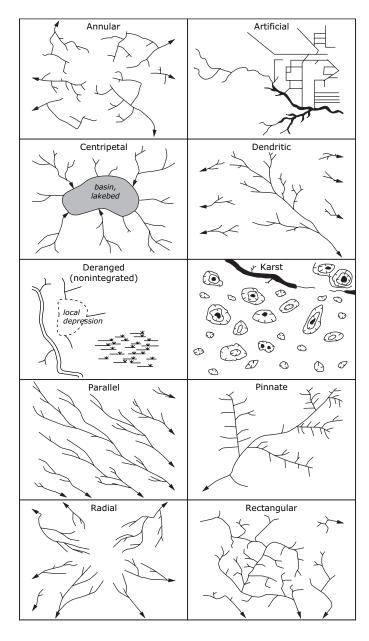
H) Geomorphic Component (Geomorphic Position in PDP): Three-dimensional descriptors of parts of landforms or microfeatures that are best applied to areas. Other unique descriptors are available for Hills, Terraces and Stepped Landforms, Mountains, and Flat Plains; e.g. (for Hills), nose slope or NS.

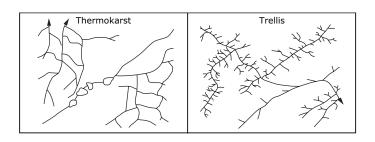

1) Hills	Code
interfluve	IF
crest	СТ
head slope	HS
nose slope	NS
side slope	SS
free face	FF
base slope	BS


2) Terraces and Stepped Landforms	Code
riser	RI
tread	TR

3) Mountains	Code
mountaintop	MT
mountainflank	MF
upper third – mountainflank	UT
center third – mountainflank	СТ
lower third – mountainflank	LT
free face	FF
mountainbase	MB

4) Flat Plains	Code
dip	DP
rise	RI
talf	TF


 Microrelief: Small, relative differences in elevation between adjacent areas on the earth's surface; e.g., microhigh or MH.


Microrelief	Code
microhigh	MH
microlow	ML
microslope	MS

NOTE: See graphic p. 2-54.

J) **Drainage Pattern**: The arrangement of drainage channels on the land surface; also called drainage network.

Drainage Pattern	Code
annular	AN
artificial	AR
centripetal	CE
dendritic	DN
deranged	DR
karst	KA
parallel	PA
pinnate	PI
radial	RA
rectangular	RE
thermokarst	TH
trellis	TR

REFERENCES

Fenneman, N.M. 1931. Physiography of the western United States. McGraw-Hill Co., New York, NY.

Fenneman, N.M. 1938. Physiography of the eastern United States. McGraw-Hill Co., New York, NY.

Fenneman, N.M. 1946 (reprinted 1957). Physical divisions of the United States. U.S. Geological Survey. U.S. Gov. Print. Office, Washington, DC. 1 sheet; 1:7,000,000.

Ruhe, R.V. 1975. Geomorphology: Geomorphic processes and surficial geology. Houghton-Mifflin, Boston, MA.

Schoeneberger, P.J., and D.A. Wysocki. 1996. Geomorphic descriptors for landforms and geomorphic components: Effective models and weaknesses. *In* Agronomy abstracts, ASA, Madison, WI.

Soil Survey Staff. 2012. Glossary of landform and geologic terms. Part 629, National soil survey handbook (NSSH) [Online]. USDA, NRCS, National Soil Survey Center, Lincoln, NE.

Wahrhaftig, C. 1965. Physiographic divisions of Alaska. U.S. Geol. Surv. Prof. Pap. 482.

Wysocki, D.A., P.J. Schoeneberger, D. Hirmas, and H.E. LaGarry. 2012. Geomorphology of soil landscapes. *In* P.M. Huang et al. (ed.) Handbook of soil science: Properties and processes, 2nd ed. CRC Press, Taylor and Francis Group, LLC, Boca Raton, FL. ISBN: 978–1–4398–0305–9.

Wysocki, D.A., P.J. Schoeneberger, and H.E. LaGarry. 2000. Geomorphology of soil landscapes. *In* M.E. Sumner (ed.) Handbook of soil science. CRC Press, LLC, Boca Raton, FL. ISBN: 0–8493–3136–6.

SOIL TAXONOMY

P.J. Schoeneberger, D.A. Wysocki, and J.V. Chiaretti, NRCS, Lincoln, NE

INTRODUCTION

The purpose of this section is to expand upon and augment the abbreviated soil taxonomic contents of the "Profile/Pedon Description" section. Complete definitions are found in *Keys to Soil Taxonomy* (Soil Survey Staff, 2010a).

HORIZON AND LAYER DESIGNATIONS

NOTE: Horizons are considered to be layers of pedogenically derived or modified material. Layers are deemed to be zones of nonpedogenically derived/modified material (e.g., geologic strata).

MASTER AND TRANSITIONAL HORIZONS or LAYERS—

Horizon	Criteria ¹
О	Organic soil materials other than limnic materials. The mineral fraction is a small percent by volume and is <80% by weight.
А	Mineral soil, formed at the surface or below an O horizon, little remnant rock structure, and one or more: 1) accumulation of humified organic matter but dominated by mineral matter, and not dominated by E or B horizon properties; 2) properties resulting from cultivation, pasturing, or similar disturbance; or 3) morphology resulting from surficial processes different from the underlying B or C. Excludes recent eolian or alluvial deposits that retain stratification.
AB or AE or AC	Dominantly A horizon characteristics but also contains some B, E, or C horizon attributes.
A/B or A/E or A/C	Discrete, intermingled bodies of two horizons: A material dominates with lesser but discrete bodies of B, E, or C material.
E	Mineral soil with some loss of silicate clay, iron, aluminum, and/or organic matter leaving a net concentration of sand and silt; little or no remnant rock structure; typically lighter color (higher value, chroma) and coarser texture than A.

Horizon		Criteria ¹
eA or eB or eC		antly E horizon characteristics but also contains A, B, or C horizon attributes.
E/A or E/B	materi	e, intermingled bodies of two horizons: E al dominates with lesser but discrete bodies of material.
E and Bt B and E	predon	eavier textured lamellae (Bt) within a ninantly E horizon with less clay (or thin E within a predominantly B horizon).
BA or BE or BC	1	antly B characteristics but also contains some r C horizon attributes.
B/A or B/E or B/C	materi	re, intermingled bodies of two horizons: B al dominates with lesser but discrete bodies of r C material.
В	or no r following 1) 2) 3) 4) 5)	illuvial accumulation of silicate clay, Fe, Al, humus, carbonate, gypsum, silica, or salt more soluble than gypsum (one or more);

Horizon	Criteria ¹
CB or CA	Dominantly C horizon characteristics but also contains some B or A horizon attributes.
C/B or C/A	Discrete, intermingled bodies of two horizons: C material dominates, with lesser but discrete bodies of A or B material.
С	Mineral soil, soft bedrock (excluding Strongly Cemented to Indurated bedrock unless highly cracked); layer little affected by pedogenesis and lacks properties of O, A, E, or B horizons. May or may not be parent material of the solum.
L	Limnic soil materials. Sediments deposited in a body of water (subaqueous) and dominated by organic materials (aquatic plant and animal fragments and fecal material) and lesser amounts of clay.
w	A layer of liquid water (W) or permanently frozen ice (Wf), within or beneath the soil (<u>excludes</u> water / ice above soil).
М	Root-limiting subsoil layers of human-manufactured materials; e.g., geotextile liner.
R	Hard bedrock (continuous, coherent <i>Strongly Cemented</i> to <i>Indurated</i> Cementation Classes).

¹ Soil Survey Staff, 2010a.

HORIZON SUFFIXES—Historically referred to as "Horizon Subscripts," "Subordinate Distinctions," ¹ "Horizon_Designation_ Suffix" in NASIS, and "Suffix Symbols" in *Keys to Soil Taxonomy*. ² (Historical nomenclature and conversions are shown in the tables on page 4-6.)

Horizon Suffixes	Criteria ²
а	Highly decomposed organic matter (OM); rubbed fiber content <17% (by vol.); used only with O (see e , i).
aa ³	(proposed) Accumulation of anhydrite (CaSO ₄).
b	Buried genetic horizon (not used with organic materials or to separate organic from mineral materials).
С	Concretions or nodules; significant accumulation of cemented bodies enriched with Fe, Al, Mn, Ti (cement not specified except excludes a predominance of silica [see q]); not used for carbonates or soluble salts (see z).

Horizon Suffixes	Criteria ²				
со	Coprogenous earth (used only with L); organic materials deposited under water and dominated by fecal material from aquatic animals.				
d	Physical root restriction due to high bulk density (natural or human-induced conditions; e.g., lodgment till, plow pans.				
di	Diatomaceous earth (used only with L); materials deposited under water and dominated by the siliceous diatom remains.				
e	Moderately (intermediately) decomposed organic matter; rubbed fiber content 17 to <40% (by vol.); used only with O (see a, i).				
f	Permafrost (permanently frozen subsurface soil or ice); excludes seasonally frozen ice and surface ice.				
ff	Dry permafrost (permanently frozen soil; not used for seasonally frozen soil; no continuous ice bodies [$see f$]).				
g	Strong gley (Fe reduced and pedogenically removed); typically ≤2 chroma; may have other redoximorphic features (RMF); not used for geogenic gray colors.				
h	Illuvial organic matter (OM) accumulation (with B: accumulation of illuvial, amorphous OM-sesquioxide complexes); coats sand and silt particles and may fill pores; use <i>Bhs</i> if significant accumulation of sesquioxides and moist chroma <i>and</i> value ≤3.				
i	Slightly decomposed organic matter; rubbed fiber content ≥40% (by vol.); used only with O (see a, e).				
j	Jarosite accumulation; e.g., acid sulfate soils.				
jj	Evidence of cryoturbation; e.g., irregular or broken horizon boundaries, sorted rock fragments (patterned ground), or OM in lower boundary between active layer and permafrost layer.				
k	Pedogenic carbonate accumulation (e.g., CaCO ₃ ; <50% by vol.).				
kk	Major pedogenic carbonate accumulation; soil fabric is plugged \approx continuous (\geq 50% by vol. estimated).				
m	Continuous pedogenic cementation or induration (>90% cemented, even if fractured); physically root restrictive. Dominant cement type can be indicated by additional letters; e.g., km or kkm—carbonates, qm—silica, kqm—carbonates and silica, sm—iron, yym—gypsum, zm—salts more soluble than gypsum.				

Horizon Suffixes	Criteria ²			
ma	Marl (used only with L); materials deposited under water and dominated by a mixture of clay and CaCO ₃ ; typically gray or beige.			
n	Pedogenic exchangeable sodium accumulation.			
О	Residual accumulation of sesquioxides.			
р	Tillage or other disturbance of surface layer (pasture, plow, etc.). Designate <i>Op</i> for disturbed organic surface, <i>Ap</i> for mineral surface even if the layer clearly was originally an E, B, C, etc.			
q	Accumulation of secondary (pedogenic) silica.			
r	Used with C to indicate weathered or soft bedrock (root-restrictive saprolite or soft bedrock), such as weathered or partially consolidated sandstone, siltstone, or shale; materials are sufficiently incoherent to allow hand digging with a spade (Excavation Difficulty classes are <i>Low</i> to <i>High</i>). Roots only penetrate along joint planes.			
s	Significant illuvial accumulation of amorphous, dispersible sesquioxides and organic matter complexes and moist color value or chroma ≥4. Used with B horizon; used with h as <i>Bhs</i> if moist color value and chroma are ≤3.			
se	Presence of sulfides (in mineral or organic horizons). Typically dark colors (e.g., value ≤4, chroma ≤2); may have a sulfurous odor.			
ss	Slickensides; e.g., oblique shear faces 20-60° off horizontal; caused by shrink-swell clay action; wedge-shaped peds and seasonal surface cracks also are commonly present.			
t	Accumulation (by translocation or illuviation) of silicate clays (clay films, lamellae, or clay bridging in some part of the horizon).			
u	Presence of human-manufactured materials (artifacts); e.g., asphalt, bricks, plastic, glass, metals, construction debris, garbage.			
v	Plinthite (high Fe, low OM, reddish contents; firm or very firm moist consistence; irreversible hardening with repeated wetting and drying).			
w	Incipient color or pedogenic structure development, minimal illuvial accumulations; used only with B horizons, excluded from use with transition horizons.			

Horizon Suffixes	Criteria ²			
x	Fragipan or fragic characteristics (pedogenetically developed brittleness, firmness, bleached prisms, high bulk density, root restrictive).			
У	Accumulation of gypsum (CaSO $_4$ • 2H $_2$ O); <50% by volume (estimated).			
уу	Dominance of gypsum ($\approx \geq 50\%$ by vol. estimated); light colored (e.g., value ≥ 7 , chroma ≤ 4); may be pedogenically derived or inherited transformation of primary gypsum from parent material.			
z	Pedogenic accumulation of salts more soluble than gypsum; e.g., NaCl.			

¹ Soil Survey Division Staff, 1993.

HORIZON AND LAYER DESIGNATIONS CONVERSION CHARTS—(*NOTE:* Gray boxes indicate the year the convention was first adopted.)

Master Horizons, Layers, or Combinations						
1951 ¹	1962 ² , 1975 ³	1982 4	1998 ⁵	2006 ⁶ , 2010 ⁷		
Aoo or Ao	0	0	0	0		
Aoo	01	Oi and/or Oe	Oi and/or Oe	Oi and/or Oe		
Ao	02	Oe and/or Oa	Oe and/or Oa	Oe and/or Oa		
_	_	Oi	Oi	Oi		
_	_	Oe	Oe	Oe		
_	_	Oa	Oa	Oa		
Α	А	A	А	A		
A1	A1	А	А	A		
A2	A2	E	E	E		
А3	A3	AB or EB	AB or EB	AB or EB		
AB	AB	_	_	_		
A&B	A&B	A/B or E/B	A/B or E/B	A/B or E/B		
AC	AC	AC	AC	AC		
_	_	E and Bt	E and Bt	E and Bt		

² Soil Survey Staff, 2010a.

³ Personal communication with Soil Survey Standards Staff, 2012.

	Master	Horizons, Laye	rs, or Combina	tions
1951 ¹	1962 ² , 1975 ³	1982 4	1998 ⁵	2006 ⁶ , 2010 ⁷
В	В	В	В	В
B1	B1	BA or BE	BA or BE	BA or BE
B&A	B&A	B/A or B/E	B/A or B/E	B/A or B/E
B2	B2	B or Bw	B or Bw	B or Bw
G	g ⁸	Ag, Bg, Cg	Ag, Bg, Cg	Ag, Bg, Cg
В3	В3	BC or CB	BC or CB	BC or CB
_	_	B/C, C/B, C/A	B/C, C/B, C/A	B/C, C/B, C/A
С	С	С	С	С
Cca	Cca	Bk	Bk	Bk, Bkk ⁶
Ccs	Ccs	Ву, Су	Ву, Су	By or Byy, Cy or Cyy ⁷
D	_	_	_	_
Dr	R	R	R	R
_	_	_	L 3, 6	L
_	_	_	_	M ⁶
_	_	_	W	w

¹ Soil Survey Staff, 1951.

² Soil Survey Staff, 1962; same content used in *Soil Taxonomy* (Soil Survey Staff, 1975), except for addition of Limnic (L) horizon. ³

³ Soil Survey Staff, 1975. Limnic materials and limnic layer were recognized in 1975, formally dropped in 1985 (National Soil Taxonomy Handbook 615.30); master L horizon was formally adopted in 2006. ⁶

⁴ Guthrie and Witty, 1982.

⁵ Soil Survey Staff, 1998.

⁶ Soil Survey Staff, 2006.

⁷ Soil Survey Staff, 2010a.

⁸ Master horizon G (1951) was changed to a horizon suffix (g) that can be used with master horizon A, B, or C; e.g., Bg.

$\label{thm:convention} \mbox{HORIZON SUFFIXES-(NOTE: } \mbox{Gray boxes indicate the year the convention was first adopted.)}$

(also	xes ts" and "Sub	ordinate		
1951 ¹	1962 ² , 1975 ²	1982 ³	1998 ⁴	2010 ⁵
_	_	а	а	а
b	b	b	b	b
ca	ca	k	k	k
cn	cn	С	С	С
_	_	_	co ⁶	со
CS	cs	У	У	У
_	_	_	d (1988) ⁷	d
_	_	_	di ⁶	di
_	_	е	е	е
f	f	f	f	f
_	_	_	ff	ff
g	g	g	g	g
h	h	h	h	h
ir	ir	S	S	S
_	_	i	i	i
_	_	_	j	j
_	_	_	jj	jj
са	са	k	k	k
_	_	_	_	kk ⁸ (2006)
m	m ⁹	m	m	m
_	_	_	ma ⁶	ma
_	_	n	n	n
_	_	0	0	0
р	р	р	р	р
si	si	q	q	q
r ¹⁰	_	r	r	r
ir	ir	S	S	S
sa	sa	п	n	п
	_	_	_	se ⁹ (2011)
_	si	q	q	q

(also called "Horizon Subscripts" and "Subordinate Distinctions") 1962 2, 1951 1 1982³ 1998 ⁴ 2010 ⁵ 1975 ² ss (1991) SS t t t t t u u ⁸ (2006) V ٧ W W W Х Х Х Х CS CS У У У уу ⁵ sa sa Z Z Z

Horizon Suffixes

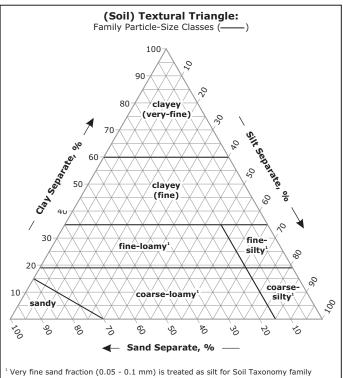
¹ Soil Survey Staff, 1951.

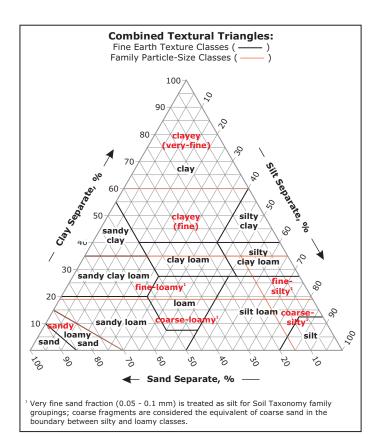
² Soil Survey Staff, 1962; same content also used in *Soil Taxonomy* (Soil Survey Staff, 1975).

³ Guthrie and Witty, 1982.

⁴ Soil Survey Staff, 1998.

⁵ Soil Survey Staff, 2010a.


⁶ Soil Survey Staff, 1999.


⁷Soil Survey Staff, 1988.

⁸ Soil Survey Staff, 2006.

 $^{^{9}}$ The definition is changed to no longer include fragipans (which become "x").

¹⁰ Definition of r (1951; dropped 1962 ²) is *not* the same as used since 1981. ³

SOIL MOISTURE REGIMES—Refers to soil moisture or ground water presence in or on soil at tensions >0 and ≤ 1500 kPa ($\approx \le 15$ bar).

Soil moisture conditions of a pedon (i.e., *Soil Water State*) can be estimated or measured at the time of observation and subsequently assigned to a Water State class (or subclass; see p. 1–15). In a broader context, the prevailing soil moisture condition of a site can be estimated or measured for "normal years" (i.e., most typical or dominant climatic conditions). Class assignment takes into account: 1) the extent of ground water influence (usually via "depth to") and 2) the seasonal status of water held at tensions <1500 kPa (\approx <15 bar) in the moisture control section. 1 In soil taxonomy 1 , soil moisture regimes are assigned as classes (e.g., *Ustic Soil Moisture Regime*) and are used at the higher categories of the system (i.e., from Order down through Subgroup).

Soil Moisture Regime	Criteria ¹ (generalized, abbreviated)
aquic	A reducing regime for soils that are free of dissolved oxygen and saturated (seasonal ground water fluctuations typical). Unlike other regimes, the aquic regime may occur temporarily for only a few days.
peraquic	A reducing regime for soils that are free of dissolved oxygen and permanently saturated (ground water is almost always above, at, or very close to the surface).
aridic (torric) ²	The predominantly dry regime for soils of arid and semiarid climates that are unsuitable for cultivation without irrigation. Soil is dry (in all parts of soil moisture control section) >50% of all days annually when soil is >5 °C at 50 cm and moist in some part for <90 consecutive days when soil is >8 °C at 50 cm in normal years.
udic	The predominantly moist regime for soils of humid climates with well distributed rainfall. Soil is dry (in any part of soil moisture control section) for <90 cumulative days in normal years.
perudic	An extremely wet regime for soils of climates where precipitation exceeds evapotranspiration in all months in normal years. Soil is almost always moist; soil tension is rarely >100 kPa (\approx >1 bar).
ustic	The temporarily dry regime for soils of climates that are intermediate between dry (aridic) and moist (udic). Soil is intermittently moist and dry; moisture limited but usually available when climate is suitable for plant growth. Soil is moist >180 cumulative days or >90 consecutive days.
xeric	The seasonally dry regime for soils of Mediterranean climates with cool, moist winters and warm, dry summers. Soil is moist in all parts for ≥45 consecutive days in the 4 months following the winter solstice and dry in all parts for ≥45 consecutive days in the 4 months following the summer solstice. Soil is also moist in some part >50% of all days when soil is >5 °C at depth of 50 cm or moist in some part for ≥90 consecutive days when soil is >8 °C at depth of 50 cm in normal years.

¹ Complete criteria available in *Keys to Soil Taxonomy*, 11th ed. (Soil Survey Staff, 2010a).

² Aridic and torric are terms for the same soil moisture regime, but they are used in different categories in soil taxonomy. Limits set

for soil temperature exclude from this regime soils in very cold and dry polar regions and in areas at high elevations. Such soils are considered to have *anhydrous conditions*.

SOIL TEMPERATURE REGIMES AND CLASSES (per Keys to Soil Taxonomy $^{1,\,2}$)—

Soil Temperature Regimes ¹	Soil Temperature Classes ²	Criteria: MAST ³ measured at 50 cm or at the upper boundary of a root-limiting layer if shallower	
Gelic	(see below)	\leq 0 °C in Gelic suborders and Gelic great groups $or <$ 1 °C in Gelisols (permafrost expected)	
	Hypergelic	≤ -10 °C	
	Pergelic	-10 to -4 °C	
	Subgelic	-4 to 1 °C	
Cryic	(no family temperature class)	≥0 to <8 °C, but no permafrost, and 1. In mineral soils: the MSST ⁴ is: a. If soil is not saturated during summer and (1) If no O horizon: ≥0 to 15 °C; or (2) If there is an O horizon: ≥0 to 8 °C; or b. If soil is saturated during summer and (1) If no O horizon: ≥0 to 13 °C; or (2) If there is an O horizon or a histic epipedon: ≥0 to 6 °C. 2. In organic soils: ≥0 to 6 °C.	
For soils with a di temperature of ≥		nean summer and mean winter soil	
Frigid	Frigid	≥0 to <8 °C (but warmer than cryic in summer)	
Mesic	Mesic	8 to <15 °C 15 to <22 °C	
Thermic	Thermic		
Hyperthermic	Hyperthermic	≥22 °C	
	soils with a difference between mean summer and mean winter so perature of <6 °C:		
Isofrigid	Isofrigid	<8 °C	
Isomesic	Isomesic	8 to <15 °C	
Isothermic	Isothermic	15 to <22 °C	
Isohyperthermic	Isohyperthermic	≥22 °C	

- ¹ Soil temperature regimes are used as criteria in the suborder, great group, and subgroup categories of soil taxonomy (Soil Survey Staff, 2010a).
- ² Soil temperature classes are used as differentiae in the family category of soil taxonomy, excluding cryic soils (Soil Survey Staff, 2010a).
- ³ MAST=Mean annual soil temperature (Soil Survey Staff, 1999).
- ⁴ MSST=Mean summer soil temperature (see Soil Survey Staff, 1999, p. 108).

REFERENCES

Guthrie, R.L., and J.E. Witty. 1982. New designations for soil horizons and layers and the new Soil Survey Manual. Soil Sci. Soc. Am. J. 46:443–444.

Natural Resources Conservation Service, Soil Classification Staff. 1999. Personal communication. USDA, NRCS, National Soil Survey Center, Lincoln, NE.

Soil Survey Division Staff. 1993. Soil survey manual. USDA, SCS, Agric. Handb. 18. U.S. Gov. Print. Office, Washington, DC.

Soil Survey Staff. 1951. Soil survey manual. USDA, SCS, Agric. Handb. 18. U.S. Gov. Print. Office, Washington, DC.

Soil Survey Staff. 1962. Identification and nomenclature of soil horizons. Supplement to Agric. Handb.18, Soil Survey Manual (replacing pages 173–188). USDA, SCS. U.S. Gov. Print. Office, Washington, DC.

Soil Survey Staff. 1975. Soil taxonomy. USDA, SCS, Agric. Handb. 436. U.S. Gov. Print. Office, Washington, DC.

Soil Survey Staff. 1988. Keys to soil taxonomy, 4th ed. SMSS Tech. Monogr. 6, Cornell Univ., Ithaca, NY.

Soil Survey Staff. 1998. Keys to soil taxonomy, 8th ed. USDA, SCS. U.S. Gov. Print. Office, Washington, DC.

Soil Survey Staff. 1999. Soil taxonomy, 2nd ed. USDA, NRCS, Agric. Handb. 436. U.S. Gov. Print. Office, Washington, DC.

Soil Survey Staff. 2006. Keys to soil taxonomy, 10th ed. USDA, NRCS. U.S. Gov. Print. Office, Washington, DC.

Soil Survey Staff. 2010a. Keys to soil taxonomy, 11th ed. USDA, NRCS. U.S. Gov. Print. Office, Washington, DC.

Soil Survey Staff. 2010b. National soil survey handbook (NSSH) [Online]. USDA, NRCS, National Soil Survey Center, Lincoln, NE (http://soils.usda.gov/technical/handbook/).

GEOLOGY

P.J. Schoeneberger, D.A. Wysocki, and E.C. Benham, NRCS, Lincoln, NE

INTRODUCTION

The purpose of this section is to expand and augment the geologic information found or needed in the "Site Description" and "Profile/Pedon Description" sections.

BEDROCK - KIND-

This table is repeated here from the "Site Selection" section for convenience in using the following rock charts.

Kind ¹	Code	Kind ¹	Code
IGNEOUS—INTRUSIVE			
anorthosite	ANO	peridotite	PER
diabase	DIA	pyroxenite	PYX
diorite	DIO	quartz-diorite	QZD
gabbro	GAB	quartz-monzonite	QZM
granite	GRA	syenite	SYE
granitoid ²	GRT	syenodiorite	SYD
granodiorite	GRD	tonalite	TON
monzonite	MON	ultramafic rock ²	UMU
IGNEOUS-EXTRUSIVE			
a'a lava	AAL	pahoehoe lava	PAH
andesite	AND	pillow lava	PIL
basalt	BAS	pumice (flow, coherent)	PUM
block lava	BLL	rhyolite	RHY
dacite	DAC	scoria (coherent mass)	SCO
latite	LAT	tachylite	TAC
obsidian	OBS	trachyte	TRA

Kind ¹	Code	Kind ¹	Code
IGNEOUS-PYROCLASTI	IC .		,
ignimbrite	IGN	tuff, welded	TFW
pyroclastics (consolidated)	PYR	tuff breccia	TBR
pyroclastic flow	PYF	volcanic breccia	VBR
pyroclastic surge	PYS	volcanic breccia, acidic	AVB
tuff	TUF	volcanic breccia, basic	BVB
tuff, acidic	ATU	volcanic sandstone	VST
tuff, basic	BTU		
METAMORPHIC			
amphibolite	AMP	metavolcanics	MVO
gneiss	GNE	mica schist	MSH
gneiss, biotite	BTG	migmatite	MIG
gneiss, granodiorite	GDG	mylonite	MYL
gneiss, hornblende	HBG	phyllite	PHY
gneiss, migmatitic	MMG	schist	SCH
gneiss, muscovite-biotite	MGB	schist, biotite	BTS
granofels	GRF	schist, graphitic	GRS
granulite	GRL	schist, muscovite	MVS
greenstone	GRE	schist, sericite	SCS
hornfels	HOR	serpentinite	SER
marble	MAR	siltite	SIT
meta-conglomerate	MCN	slate	SLA
metaquartzite	MQT	slate, sulfidic	SFS
metasedimentary rocks ²	MSR	soapstone (talc)	SPS
metasiltstone	MSI		
SEDIMENTARY—CLASTI	CS		
arenite	ARE	mudstone	MUD
argillite	ARG	ortho-quartzite	OQT
arkose	ARK	porcellanite	POR
breccia, nonvolcanic (angular fragments)	NBR	sandstone	SST

		Ι .	_
Kind ¹	Code	Kind ¹	Code
breccia, nonvolcanic, acidic	ANB	sandstone, calcareous	CSS
breccia, nonvolcanic, basic	BNB	shale	SHA
claystone	CST	shale, acid	ASH
conglomerate (rounded fragments)	CON	shale, calcareous	CSH
conglomerate, calcareous	CCN	shale, clayey	YSH
fanglomerate	FCN	siltstone	SIS
glauconitic sandstone	GLS	siltstone, calcareous	CSI
graywacke	GRY		
EVAPORITES, ORGANIC	S, AND	PRECIPITATES	
bauxite	BAU	limestone, argillaceous	RLS
chalk	СНА	limestone, cherty	CLS
chert	CHE	limestone, coral	COR
coal	COA	limestone, phosphatic	PLS
diatomite	DIA	limonite	LIM
dolomite (dolostone)	DOL	novaculite	NOV
gypsum	GYP	travertine	TRV
limestone	LST	tripoli	TRP
limestone, arenaceous	ALS	tufa	TUA
INTERBEDDED (alternati lithologies)	ng layer	rs of different sedimentary	У
limestone-sandstone- shale	LSS	sandstone-shale	SSH
limestone-sandstone	LSA	sandstone-siltstone	SSI
limestone-shale	LSH	shale-siltstone	SHS
limestone-siltstone	LSI		

Definitions for kinds of bedrock are found in the "Glossary of Landform and Geologic Terms," NSSH, Part 629 (Soil Survey Staff, 2012), or in the Glossary of Geology (Neuendorf et al., 2005).

² Generic term; use only with regional or reconnaissance surveys (Order 3, 4, 5; see Guide to Map Scales and Minimum-Size Delineations, p. 7–21).

ROCK CHARTS

The following rock charts (**Igneous**, **Metamorphic**, and **Sedimentary** and **Volcaniclastic**) summarize grain size, composition, or genetic differences between related rock types. **NOTE:** 1) Most, but not all, of the rocks in these tables are found in the NASIS choice lists. Those not in NASIS are uncommon in the pedosphere but are included in the charts for completeness and to aid in the use of geologic literature. 2) Most, but not all, of the rocks presented in these tables can be definitively identified in the field; some may require additional laboratory analyses (e.g., grain counts, thin section analyses).

IGNEOUS ROCKS CHART

				KEY MINE	KEY MINERAL COMPOSITION	ION		
	Acidic (Felsic)	dic sic)		INTERMEDIATE	EDIATE		Basic (mafic)	Ultrabasic (ultramafic)
CRYSTALLINE	Potassium (K) Feldspar >2/3 of Total Feldspar	K) FeldsparAl Feldspar	Potassium (K) Feldspar and Plagioclase (Na, Ca)	K) Feldspar ase (Na, Ca)	Plagiocla: >2/3 of To	Plagioclase (Na, Ca) Feldspar >2/3 of Total Feldspar Content	eldspar Content	Pyroxene and Olivine
	Content	ent	reidspar in about equal proportions	oar in about equal proportions	Sodic (Na) Plagioclase	agioclase	Calcic (Ca)	
	Quartz	No Quartz	Quartz	No Quartz	Quartz	No Quartz	Plagioclase	peridotite (mostly
PEGMATITIC 1	granite pegmatite	syenite pegmatite	monzonite pegmatite	monzonite pegmatite		diorite pegmatite	gabbro pegmatite	olivine)
PHANERITIC 2	granite	syenite	quartz monzonite	monzonite	quartz-diorite granodiorite	diorite	gabbro	pyroxenite (mostly pyroxene)
PORPHYRITIC 3	granite porphyry	syenite porphyry	quartz- monzonite porphyry	monzonite porphyry	quartz-diorite porphyry	diorite porphyry	diabase	
	rhyolite porphyry	trachyte porphyry	quartz-latite porphyry	latite porphyry	dacite porphyry	andesite porphyry	basalt porphyry	
APHANITIC 4 micro ⁵ crypto ⁶	rhyolite	trachyte	quartz latite	latite	dacite	andesite	basalt	} lava ⁷
GLASSY 8	Obsidian (and Pyroclastics a	d its varieties are shown on	Obsidian (and its varieties: perlite, pitchstone, pumice, scoria` Pyroclastics are shown on the Sedimentary and Volcaniclastic	one, pumice, so y and Volcanick	Obsidian (and its varieties: perlite, pitchstone, pumice, scoria) Pyroclastics are shown on the Sedimentary and Volcaniclastic Rocks chart.			
Pegmatitic: Very coarse, uneven-sized crystal grains; 5 to Phaneritic: Crystals discernable by eye or 10X lens; 1-5 to prophyritic: Larger crystals embedded within a fine-grain prophyritic: Crystals not visible by eye or 10X lens; <1 m N Aphanitic: Crystals not visible by eye or 10X lens; <1 m N Microcrystalline crystals resolvable by optical microscope	ry coarse, une stals discernatinger crystals estals not visible crystals estals not visible crystals resolv	ven-sized cry ole by eye or mbedded with e by eye or 10 vable by optic	Pegmatitic: Very coarse, uneven-sized crystal grains; 5 to > 20 mm Phaneritic: Crystals discernable by eye or 10X lens; 1-5 mm Porphyritic: Larger crystals embedded within a fine-grained matrix Aphanitic: Crystals not visible by eye or 10X lens; < 1 mm Microcrystalline crystals resolvable by optical microscope		 Cryptocrystalline crystals resolvable by electron microscope Lava: Generic name for extrusive flows of non-clastic, aphanitic rocks (rhyolite, andesite, basalt) Glassy: Noncrystalline or weakly crystalline 	crystals resc ame for extru rhyolite, ande talline or wea	ilvable by electrisive flows of no esite, basalt) ikly crystalline	on microscope on-clastic,

METAMORPHIC ROCKS CHART

types shown here are available on Bedrock - Kind choice list. They are included here for completeness and as aids to using geologic literature.] [Not all rock types listed here can be definitively identified in the field (e.g., may require grain counts). Not all rock

NONFOL	NONFOLIATED STRUCTURE	RUCTURE	CRUDE ALIGNMENT	FOLIATED	FOLIATED STRUCTURE (e.g., banded)	(e.g., banc	(paj
Σ	CONTACT METAMORPHISM	ISM	FAULT ZONE METAMORPHISM	REGIONAL METAMORPHISM	AL HISM	PLUT	PLUTONIC METAMORPHISM
Low Grade	Medium Grade	High Grade	Low Grade	Low Grade	Medium Grade	Η Ι	High Grade
_ O	granofels hornfels marble metaquartzite serpentinite soapstone (talc)	e e	crush breccia mylonite	slate phyllite schist gn greenstone amphibolite gr <metaconglomerate< td=""><td>phyllite schist greess greenstone amphibolite granulite migmatite*</td><td>granulite granulite</td><td>migmatite*</td></metaconglomerate<>	phyllite schist greess greenstone amphibolite granulite migmatite*	granulite granulite	migmatite*
				<metas< td=""><td>Metasedimentary</td><td><u> </u></td><td></td></metas<>	Metasedimentary	<u> </u>	
* Partial 1	* Partial melting occurs.	urs.					

(Schoeneberger and Wysocki, 1998)

SEDIMENTARY AND VOLCANICLASTIC ROCKS

		CLASTIC		NONCTY	NONCLASTIC	JIC	
	Domir	Dominant Grain Size		ភ	Chemical	Biochemical	Organic
Very Fine	Fine	Medium	Coarse				
< (Argil)	< (Argillaceous)>	(Arenaceous)	(Rudaceous)	Evaporate	Evaporates, Precipitates	Accretionates	Reduzates
< 0.002 mm	< 0.002 mm 0.002 - 0.06 mm	0.06 - 2.0 mm	>2.0 mm				
<pre>< argillite (more indurated, less lam</pre>	< argillite> (more indurated, less laminated and fissile)	Sandstones (ss): arenite	breccia (nonvolcanic, angular frags)	anhydrite (<i>CaSO₄)</i>	CARBON Limes (>50º	CARBONATE ROCKS Limestones (Is) (>50% calcite)	
(laminat (laminat) (nonlaminat	(laminated, fissile) < mudstone> (nonlaminated, nonfissile)	arkose (mainly feldspar) glauconitic ss	conglomerate (nonvolcanic, rounded frags)	9ypsuiii (<i>CaSO</i> ₄ • 2 <i>H</i> ₂ <i>O</i>)	chemical types caliche	accretionary types biostromal Is	black shale
(≈ equal	(≈ equal clay and silt)	graywacke (dark, "dirty" ss)		halite (<i>NaCl</i>)	travertine tufa	organic reef pelagic Is	(organics and fine sediments)
claystone (non-	siltstone (nonlaminated,	orthoquartzite (mainly quartz)				bio-clastic types	bituminous Is
laminated, nonfissile)	nonfissile)					coquina oolithic Is	coal
	VOLCANICLAST	VOLCANICLASTICS (includes Pyroclastics)	lastics)			lithographic Is	
>	ignimbrite	<>	agglomerate				
(mainly pumi	ce frags; consolidate	(mainly pumice frags; consolidated pyroclastic flows)	(rounded frags)		dolomite		
	tuff(consolidate volcanic ash, tephra	sh, tephra)	volcanic breccia (angular frags)		(>50% CaMg(CO ₃)) phosphatic limestone	one	
\ \ \	· pumice (specific	< pumice (specific gravity <1.0; highly vesicular)>	icular)>		OTHER	OTHER NONCLASTIC ROCKS	
< scorie	a (specific gravity >.	<>	ely vesicular)>	Siliceous rocks (Rock phosphate	(Silica dominated): o	Siliceous rocks (Silica dominated): chert (jasper, chalcedony, opal); diatomite Rock phosphate	pal); diatomite
				Iron-bearing r	ocks (Fe-SiO ₂ domina	Iron-bearing rocks (Fe-SiO ₂ dominated): jaspilite, specular hematite, magnetite	natite, magnetite

MASS MOVEMENT (MASS WASTING) TYPES FOR SOIL SURVEY

(landforms, processes, and sediments)

L					LANDSLIDE)E		
ξ	Movement Types:	FALL Free fall, bouncing, or rolling	TOPPLE Forward rotation over a point	Net lateral displacement along a slip fa Rotational Slide Translational Lateral Slide Slide Slide Concave slip face displacement along Lateral Latera	ce de	SPREAD A wet layer becomes "plastic", squeezes up and out and drags along intact blocks or beds; e.g., extrusion, iquefaction (=Lateral Spread)	FLOW The entire mass, wet or dry, moves as a viscous liquid	COMPLEX LANDSLIDE Combination of multiple (2 or more) types of movement No unique subtypes are recognized
leire	Consolidated: (Bedrock) Bedrock masses dominant	rockfall	rock topple	rotational rock slide (e.g., Toreva block)	translational rock slide (=planar slide) (e.g., block glide)	rock spread block spread	rock fragment flow (e.g., rockfall avalanche =sturzstrom)	here; many possible
eteM tneni	Unconsolidated: Coarser Coarse fragments dominant	debris fall	debris topple	rotational debris slide <	rotational debris translational debris slide slide	debris spread	debris avalanche (drier, steep slope) debris flow (wetter) (e.g., lahar)	Option: name the main movement
mo Q	Finer Fine earth particles dominant	earth fall (=soil fall)	earth topple (=soil topple)	rotational earth slide	translational earth slide	earth spread (e.g., sand boil)	earth flow (e.g., creep, loess flow, mudflow, sandflow, solifluction)	Complex Rock Spread-Debris Flow Landslide)
*	* Slides especially rotational slides are commonly and imprecisely called "slumps"	tional clides	are commo	solv and imprecisely c	alled "slumns"			

Slides, especially rotational slides, are commonly and imprecisely called "slumps."

NORTH AMERICAN GEOLOGIC TIME SCALE 1, 2

ERA		logic riod	Geologic Epoch	Sub- division	Oxygen Isotope Stage	Years (BP)	
			Holocene		(1)	0 to 10-12 ka*	
	QUATERNARY			Late Wisconsin	(2)	10-12 to 28 ka	
			<i>Late</i>	Middle Wisconsin	(3, 4)	28 to 71 ka	
			Pleistocene	Early Wisconsin Late Sangamon	(5a - 5d)	71 to 115 ka	
		ER		Sangamon	(5e)	115 to128 ka	
CENOZOIC		QUAT	Pleistocene	Late Middle Pleistocene (Illinoian)	(6 - 8)	128 to 300 ka	
CEN			Middle Pleistocene	Middle Pleistocene	(9 - 15)	300 to 620 ka	
				Early Middle Pleistocene	(16 - 19)	620 to 770 ka	
			Early Pleistocene			770 ka to 2.6 Ma**	
		Neo- gene	Pliocene			2.6 to 5.3 Ma	
	1RY	Se ge	Miocene			5.3 to 23.0 Ma	
	TERTIARY	- a	Oligocene			23.0 to 33.9 Ma	
	TEI	Paleo- gene	Eocene			33.9 to 55.8 Ma	
		₾ 0,	Paleocene			55.8 to 65.5 Ma	
IC	CRETA	CEOUS		65.5 to 99.6 Ma			
MESOZOIC			Early Cretaceou		99.6 to 145.5 Ma		
ESC	JURASSIC 145					15.5 to 201.6 Ma	
Σ	TRIASSIC 201.6 to 251.0						
	PERMIAN 251.0 to 299.0 l						
ارا						99.0 to 318.0 Ma	
ZOI	MISSISSIPPIAN				318.0 to 359.0 Ma		
PALEOZOIC	DEVO	NIAN			35	9.0 to 416.0 Ma	
PAL	SILUR	IAN			41	6.0 to 444.0 Ma	
	ORDI	/ICIAN			44	14.0 to 488.0 Ma	
	САМВ	RIAN			488.	0 to ≈ 542.0 Ma	
$ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{L}}}}$	PREC	AMBRIA	N ERA			> 542.0 Ma	

TILL TERMS

Genetic classification and relationships of till terms commonly used in soil survey (Schoeneberger and Wysocki, 2000; adapted from Goldthwaite and Matsch. 1988).

Location (Facies of tills grouped by	Till Types	
position at time of deposition)	Terrestrial	Waterlaid
Proglacial Till	proglacial flow till	waterlaid flow till
(at the front of or in front of glacier)		
Supraglacial Till (on top of or within upper part of glacier)	supraglacial flow till ^{1, 3} supraglacial melt-out till ¹ (ablation till—NP) ¹ (lowered till—NP) ² (sublimation till—NP) ²	_
Subglacial Till (within the lower part of or beneath glacier)	lodgment till ¹ subglacial melt-out till subglacial flow till (= "squeeze till" ^{2, 3}) (basal till—NP) ¹ (deformation till—NP) ² (gravity flow till—NP) ²	waterlaid melt-out till waterlaid flow till iceberg till (= "ice-rafted")

¹ Ablation till and basal till are generic terms that only describe "relative position" of deposition and have been widely replaced by more specific terms that convey both relative position and process. Ablation till (any comparatively permeable debris deposited within or above stagnant ice) is replaced by supraglacial melt-out till, supraglacial flow till, etc. Basal till (any dense, nonsorted subglacial till) is replaced by lodgment till, subglacial melt-out till, subglacial flow till, etc.

^{*}ka = x 1,000 ** Ma = $x 1,000,000 (\approx = approximately)$

¹ Modified from Morrison, 1991; Sibrava et al., 1986; and Harland et al., 1990.

² Modified from Walker and Geissman, 2009.

² Additional (proposed) till terms that are outdated or have not gained wide acceptance and are considered to be *Not Preferred* and should *not* be used.

³ Also called *gravity flow till* (not preferred).

(Schoeneberger and Wysocki, 2002)

Pyroclasts and Pyroclastic Deposits (Unconsolidated)				
Size Scale: 0.062 mm ¹ 2 m		m 64 mm ¹		
<>				
		(all ejecta)		
< a	sh ¹ >	< cinders ² >	< bombs 1>	
<> fine ash ¹	<> coarse ash ¹	(specific gravity >1.0 and <2.0)	(fluid-shaped coarse fragments)	
		< lapilli ¹ > (specific gravity >2.0)	< blocks ¹ > (angular-shaped coarse fragments)	
		<pre><> (slightly or moderately vesicular; specific gravity >2.0)</pre>		
	<> pumiceous ash ³	<		
Associated Lithified (Consolidated) Rock Types				
<> fine tuff ¹	<> coarse tuff ¹	<- lapillistone ¹ -> (sp. gravity >2.0)	<> pyroclastic breccia	
<> welded tuff 1>		<> (rounded, volcanic coarse fragments)		
<> ignimbrite> (consolidated ash flows and nuee ardentes)		<> (angular, volcanic coarse fragments)		

¹ These size breaks are taken from geologic literature (Fisher, 2005) and based on the modified Wentworth scale. The 0.062-mm break is very close to the USDA's 0.05-mm break between coarse silt and very fine sand (Soil Survey Division Staff, 1993). The 64-mm break is relatively close to the USDA's 76-mm break between coarse gravel and cobbles. (See "Comparison of Particle Size Classes in Different Systems" in the "Profile/Pedon Description" on p. 2–45.)

² A lower size limit of 2 mm is required in soil taxonomy (Soil Survey Staff, 1994; p. 54) but is *not* required in geologic usage (Fisher, 2005).

³ The descriptor for pumice particles <2 mm, as used in soil taxonomy (Soil Survey Staff, 1999). Geologic usage does not recognize any size restrictions for pumice.

HIERARCHICAL RANK OF LITHOSTRATIGRAPHIC UNITS 1, 2, 3

Supergroup—The broadest lithostratigraphic unit. A supergroup is an assemblage of related, superposed groups, or groups and formations. Supergroups are most useful in regional or broad scale synthesis.

Group—The lithostratigraphic unit next in rank below a supergroup. A group is a named assemblage of related superposed formations, which may include unnamed formations. Groups are useful for small-scale (broad) mapping and regional stratigraphic analysis.

Formation (called Geologic Formation in NASIS)—The basic lithostratigraphic unit used to describe, delimit, and interpret sedimentary, extrusive igneous, metavolcanic, and metasedimentary rock bodies (excludes metamorphic and intrusive igneous rocks) based on lithic characteristics and stratigraphic position. A formation is commonly, but not necessarily, tabular and stratified and is of sufficient extent to be mappable at the earth's surface or traceable in the subsurface at conventional map scales.

(Formations can be, but are not necessarily, combined to form higher rank units [groups and supergroups] or subdivided into lower rank units [members or beds].)

Member—The formal lithostratigraphic unit next in rank below a formation and always part of a formation. A formation need not be divided selectively or entirely into members. A member may extend laterally from one formation to another.

Specifically defined types of members:

Lens (or Lentil): A geographically restricted member that terminates on all sides within a formation.

Tongue: A wedge-shaped member that extends beyond the main formation boundary or that wedges or pinches out within another formation.

Bed—The smallest formal lithostratigraphic unit of sedimentary rock. A bed is a subdivision of a member based upon distinctive characteristics and/or economic value (e.g., coal bed). Members

need not be divided selectively or entirely into beds.

Flow—The smallest formal lithostratigraphic unit of volcanic rock. A flow is a discrete, extrusive, volcanic body distinguishable by texture, composition, superposition, and other criteria.

- ¹ Lithostratigraphic units are mappable rock or sediment bodies that conform to the Law of Superposition (Article 2, Section A).
- ² Separate data element (text field) in NASIS.
- ³ Adapted from *North American Stratigraphic Code* (North American Commission on Stratigraphic Nomenclature, 1983).

REFERENCES

Cruden, D.M., and D.J. Varnes. 1996. Landslide types and processes. *In* A.K. Turner and R.L. Schuster (ed.) Landslides: Investigation and mitigation. Spec. Rep. 247, Transportation Research Board, National Research Council. National Academy Press, Washington, DC.

Fisher, R.V. (updated by T. Frost) 2005. Pyroclastic sediments and rocks. AGI data sheet 6.3. *In* J.D. Walker and H.A. Cohen (ed). The geoscience handbook. AGI data sheets, 4th ed. Am. Geol. Inst., Alexandria, VA.

Goldthwaite, R.P., and C.L. Matsch (ed.) 1988. Genetic classification of glacigenic deposits: Final report of the commission on genesis and lithology of glacial Quaternary deposits of the International Union for Quaternary Research (INQUA). A.A. Balkema, Rotterdam.

Harland, W.B., R.L. Armstrong, L.E. Craig, A.G. Smith, and D.G. Smith. 1990. A geologic time scale. Press Syndicate of University of Cambridge, Cambridge, UK. 1 sheet.

Jackson, J.A. (ed.) 1997. Glossary of geology, 4th ed. Am. Geol. Inst., Alexandria, VA.

Morrison, R.B. (ed.) 1991. Quaternary nonglacial geology: Conterminous United States. Geol. Soc. Am., Decade of North American Geology, Geology of North America, vol. K–2.

Neuendorf, K., J.P. Mehl, and J.A. Jackson. 2005. Glossary of geology, 5th ed. Am. Geol. Inst., Alexandria, VA.

North American Commission on Stratigraphic Nomenclature. 1983. North American stratigraphic code. Am. Assoc. Petrol. Geol. Bull. 67:841–875.

Schoeneberger, P.J., and D.A. Wysocki. 1998. Personal communication. USDA, NRCS, National Soil Survey Center, Lincoln, NE.

Schoeneberger, P.J., and D.A. Wysocki. 2000. Personal communication. USDA, NRCS, National Soil Survey Center, Lincoln, NF.

Schoeneberger, P.J., and D.A. Wysocki. 2002. Personal communication. USDA, NRCS, National Soil Survey Center, Lincoln, NE.

Sibrava, V., D.Q. Bowen, and D.Q. Richmond (ed.) 1986. Quaternary glaciations in the Northern Hemisphere: Final report of the International Geological Correlation Programme, Project 24. Quaternary Sci. Rev., Vol. 5. Pergamon Press, Oxford.

Soil Survey Division Staff. 1993. Soil survey manual. USDA, SCS, Agric. Handb. 18. U.S. Gov. Print. Office, Washington, DC.

Soil Survey Staff. 1994. Keys to soil taxonomy, 6th ed. USDA, SCS. Pocohantas Press, Inc., Blacksburg, VA.

Soil Survey Staff. 1999. Soil taxonomy, 2nd ed. USDA, NRCS, Agric. Handb. 436. U.S. Gov. Print. Office, Washington, DC.

Soil Survey Staff. 2011. Soil survey laboratory information manual. Soil Surv. Invest. Rep. 45, ver. 2.0. USDA, NRCS, National Soil Survey Center, Lincoln, NE (ftp://ftp-fc.sc.egov.usda.gov/NSSC/Lab_Info_Manual/SSIR_45.pdf)

Soil Survey Staff. 2012. Glossary of landform and geologic terms. Part 629, National soil survey handbook (NSSH) [Online]. USDA, NRCS, National Soil Survey Center, Lincoln, NE.

Tennissen, A.C. 1974. Nature of earth materials. Prentice-Hall, Inc., Englewood Cliffs, NJ.

Walker, J.D., and J.W. Geissman. 2009. Geologic time scale. Geol. Soc. Am.

LOCATION

D.A. Wysocki, P.J. Schoeneberger, and E.C. Benham, NRCS, Lincoln, NE

GPS LOCATION

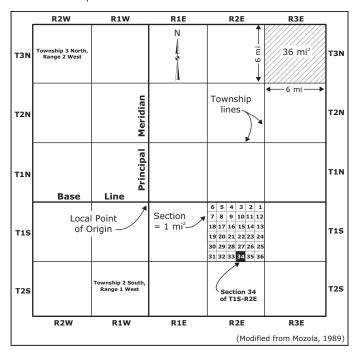
GEODETIC DATUM (Horizontal_datum_name in NASIS)—A geodetic datum must accompany latitude and longitude. A geodetic datum is a model that defines the earth's shape and size and serves as a latitude, longitude reference. Geodetic datum is a selectable GPS parameter. The preferred datum is the World Geodetic System 1984 (WGS-84).

Datum Nama	Cada
Datum Name	Code
American Samoa 1962	
Astro Beacon "E" 1945	
Astro Tern Island (FRIG)	
Astronomical Station 1952	
Bellevue (IGN)	
Canton Astro 1966	
Chatham Island Astro 1971	
DOS 1968	
Easter Island 1967	
Geodetic Datum 1949	
Guam 1963	
Gux 1 Astro	
Johnston Island 1961	
Kusaie Astro 1961	
Luzon	
Midway Astro 1961	
North American Datum of 1927	NAD27
North American Datum of 1983 ¹	NAD83
Old Hawaiian	
Pitcairn Astro 1967	
Santo (DOS) 1965	
Viti Levu 1916	
Wake Island Astro 1952	
Wake-Eniwetok 1960	
World Geodetic System 1984 ¹	WGS84

¹ Preferred datum method for continental U.S.

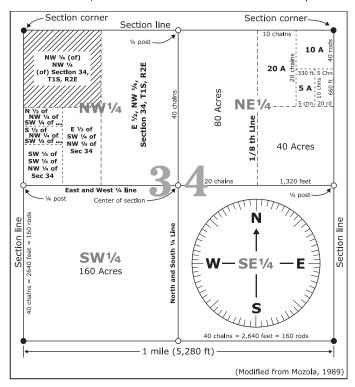
PUBLIC LAND SURVEY

The Public Land Survey System (PLSS) is a rectangular method for describing and subdividing land in the U.S. The PLSS process first establishes two controlling survey lines for a large tract: an eastwest base line and a north-south principal meridian, which intersect at an initial point. Thompson (1987; p. 82–83) shows base lines and principal meridians for the conterminous U.S. Lines parallel (standard parallels) to the base line are established at 24- or 30-mile intervals. The meridian, baseline, and standard parallels form a lattice for further subdivision. Subsequent survey divides land into townships of 36 square miles (6 miles on a side). Each township is subdivided into 36 sections 1 mile square (640 acres). Each section is further subdivided into quarter-sections (160 acres).


<u> </u>	
PLSS Principal	Meridians
Black Hills	New Mexico Principal
Boise	Ohio Company Purchase
Chickasaw	Ohio River
Choctaw	Principal
Cimarron	Salt Lake
Connecticut Western Reserve	San Bernardino
Copper River	Second Principal
Fairbanks	Second Scioto River
Fifth Principal	Seward
First Principal	Sixth Principal
First Scioto River	St. Helena
Fourth Principal	St. Stephens
Fourth Principal Extended	Tallahassee
Gila and Salt River	Third Principal
Great Miami River	Third Scioto River
Humboldt	Twelve-Mile Square
Huntsville	U.S. Military
Indian	Uintah
Kateel River	Umiat
Louisiana	Ute
Michigan	Washington
Mount Diablo	West of the Great Miami
Muskingum River	Willamette
Navajo	Wind River

Prior to the GPS, soil descriptions predominantly used the PLSS for location. Land survey in certain States predates the PLSS and commonly employs the State Plane Coordinate System for location description. These States include Connecticut, Delaware, Georgia,

Kentucky, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, North Carolina, Ohio (parts), Pennsylvania, Rhode Island, South Carolina, Tennessee, Texas, Vermont, Virginia, and West Virginia (see State Plane Coordinate System, p. 6–7).


In soil survey, the base line and principal meridian are generally not recorded. Instead, the name of the appropriate USGS topographic 7.5-minute or 15-minute quadrangle is recorded; e.g., Pleasant Dale, NE, 7.5 min. Quad.

TOWNSHIPS and RANGES—Each township is identified using two indexes: 1) **Township or Tier** (north-south number relative to the base line), and 2) **Range** (east-west number relative to the Principal Meridian). For example, a township is described as T2N, R4E for second township row north of the base line and fourth range row east of the prime meridian.

SECTIONS—Each 1-square-mile **section** is numbered sequentially starting with 1 in the northeast corner of a township proceeding in east-west rows, wrapping back and forth to fill in the township; e.g., *Section 34, T1S, R2E* (Section 34 of Township 1 South, Range 2 East).

NOTE: Due to the earth's curvature, survey error, or joins to other survey systems (e.g., Metes and Bounds), occasional irregularities occur in grid areas. Survey adjustments can result in nonstandard size sections and/or breaks in the usual section number sequence.

SECTION SUBDIVISIONS—The PLSS subdivides sections into half- and quarter-sections. The section area fraction (1/2, 1/4) is combined with the compass quadrant that the area occupies in a section; e.g., *SW 1/4*, *Section 34*, *T1S*, *R2E* (southwest quarter of section 34, township 1 south, range 2 east). Additional subdivisions, by halves and quarters, describe progressively smaller areas. The land description is presented consecutively beginning with the smallest subdivision; e.g., a 20-acre parcel described as *N 1/2*, *NW 1/4*, *SW 1/4*, *NW 1/4 of Section 34*, *T1S*, *R2E* (north half of the northwest quarter of the southwest quarter of the northwest quarter of section 34, township 1 south, range 2 east).

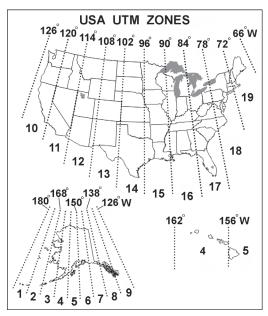
NOTE: Point locations (e.g., soil pits) using the PLSS were traditionally measured in English units with reference to a specified

section corner or quarter-corner (1/4 post); e.g., 660 feet east and 1320 feet north of the southwest corner post, Section 34, T1S, R2E.

UNIVERSAL TRANSVERSE MERCATOR (UTM) RECTANGULAR COORDINATE SYSTEM

The Universal Transverse Mercator coordinate system (UTM) is an international reference (military and civilian) that depicts the earth's three-dimensional surface in a relatively accurate, two-dimensional, flat plane and uses Cartesian coordinates (meters) for location. The U.S. Army began use of the UTM projection and grid system in 1947. GPS units can display UTM coordinates, which are simpler for map distance plotting and measurement than latitude and longitude.

The UTM grid spans from 80°S through 84°N latitude (the Universal Polar Stereographic [UPS] system covers polar areas). The UTM system divides the earth into 60 equally spaced, vertically arranged planes known as zones, or world zones; each zone spans 6 degrees of longitude. The zones are sequentially numbered 1 through 60 west to east. Zone numbering begins at 180 degrees longitude, the International Date Line. UTM zone 1 encompasses 180–174 degrees W longitude, zone 2 spans 174–168 W longitude, and so forth through zone 60.


The UTM grid system also divides the earth into 20 equally spaced east-west rows. Each row circles the globe and spans exactly 8 latitude degrees, except for the 12-degree-wide row between 72 and 84 degrees north latitude. The 20 UTM rows are lettered C through X from south to north beginning at 80 degrees south latitude; I and O are omitted to avoid confusion with numbers. Row C spans 80–72 degrees south latitude, row D encompasses 72–64 degrees south latitude, and so forth. The southern hemisphere contains rows C, D, E, F, G, H, J, K, L, and M, whereas the northern hemisphere contains rows N, P, Q, R, S, T, U, V, W, and X.

The central meridian of each zone is the east-west control for UTM coordinates, and other N-S grid lines are parallel to the central meridian. UTM coordinates are expressed as a distance in meters east of a zone's central meridian. This value is called an "easting." The central meridian by convention is given a value of 500,000 meast; this eliminates negative distance values. A location west of the central meridian has a value <500,000 m. Easting values can range from 166,000 to 834,000 m. Some protocols give the easting value a leading zero (e.g., 0166000).

The initial north-south grid line for the northern hemisphere is the Equator, which has a value of 0 m. A UTM value called a "northing" is expressed as distance in meters north of the Equator. For the northern hemisphere, northings range from 0 to 9,328,000 m (84 N Lat). In the southern hemisphere, the 0 m reference is the South

Pole; the northing is expressed as distance in meters north of it. The range in northings is 1,118,000 (80 S Lat) to 10,000,000 m (Equator). Points on the Equator can be described by either the north or south reference.

A complete UTM location gives in order the zone number, row letter, easting value, and northing value; for example, 16 T, 0313702 m E, 4922401 m N. The row letters designate the hemisphere location (northern or southern).

All quadrangle maps prepared by the USGS show the UTM coordinates (Snyder, 1987). On 7.5-minute quadrangle maps (1:24,000 and 1:25,000 scale) and 15-minute quadrangle maps (1:50,000, 1:62,500, and standard edition 1:63,360 scales), the UTM grid lines are indicated at 1,000-meter intervals, either by blue ticks in the map margin or with full grid lines. The maps display shortened 1,000-meter values at the tick or grid lines. The full meter values are shown only at ticks nearest the southeast and northwest map corners.

To obtain a UTM grid location from a USGS map, use the grid lines, draw lines connecting corresponding ticks on opposite map edges, or place a transparent grid overlay on the map. Measure distance between any map point and the nearest grid line in cm. If the map scale is 1:24000, multiply the measured cm distance by 240 to

obtain meters on the ground. The northing of a point is the value of the nearest grid line south plus its distance north of that line; the easting is the value of the nearest grid line west of it plus its distance east of that line. On maps at 1:100,000 and 1:250,000 scale, a full UTM grid is shown at intervals of 10,000 meters and is numbered and used in the same way. Various overlay UTM templates that facilitate distance and coordinate measurement from topographic maps are commercially available.

STATE PLANE COORDINATE SYSTEM

The State Plane Coordinate System (SPCS) is designed for mapping and surveying in the U.S. It was developed in the 1930s by the U.S. Coast and Geodetic Survey. Historically, soil description locations sometimes used the SPCS system where the PLSS is nonexistent. The States that have used this system are Connecticut, Delaware, Georgia, Kentucky, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, North Carolina, Ohio (parts), Pennsylvania, Rhode Island, South Carolina, Tennessee, Texas, Vermont, Virginia, and West Virginia.

The SPCS divides all 50 states of the United States, Puerto Rico, and the U.S. Virgin Islands into 120 numbered zones. The zones correspond to political boundaries (State and most counties). The SPCS establishes a separate coordinate system and two Principal lines in each State: a north-south line and an east-west line. USGS 7.5-minute topographic maps indicate SPCS grids by tick marks along the neatlines (outer border). **NOTE:** Older topo maps based on NAD27 have grid units in feet. After adoption of NAD83, meters become the grid unit.

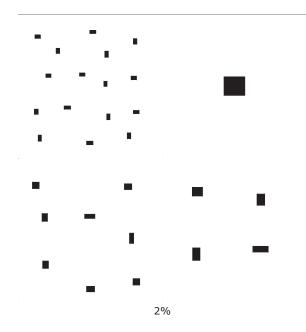
Specific location coordinates are described by distance and primary compass direction (north [northing], south [southing], east [easting], or west [westing]) relative to the Principal lines; e.g., 10,240 m easting and 1,234 m northing.

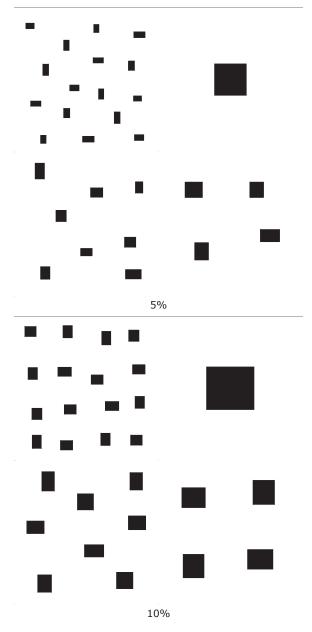
Contact the NRCS State office or the Regional Soil Survey MLRA Office for State-specific details.

REFERENCES

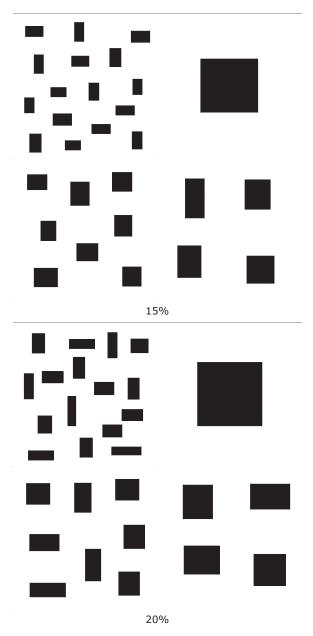
Mozola, A.J. 1989. U.S. public land survey. *In* J.T. Dutro et al., AGI data sheets, 3rd ed. Am. Geol. Inst., United Book Press, Inc.

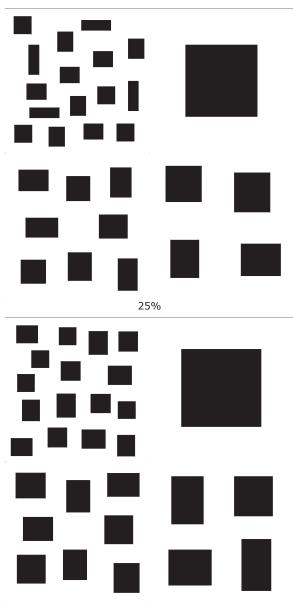
Snyder, J.P. 1987. Map projections—A working manual. U.S. Geol. Surv. Prof. Pap. 1395. U.S. Gov. Print. Office, Washington, DC.

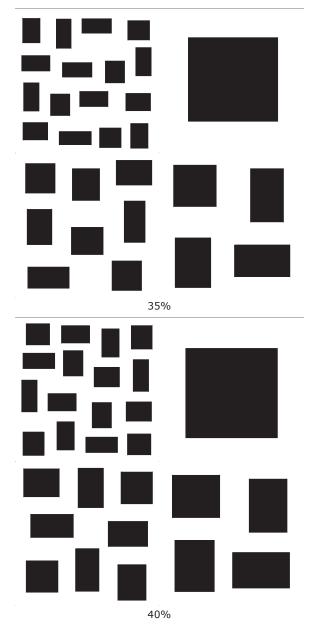

Thompson, M.M. 1987. Maps for America, 3rd ed. U.S. Geol. Surv., U.S. Dep. Interior. U.S. Gov. Print. Office, Washington, DC.

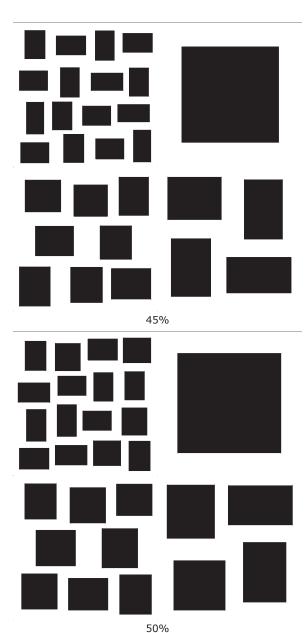

MISCELLANEOUS

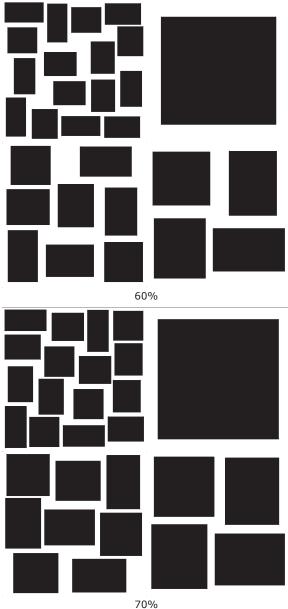
D.A. Wysocki, P.J. Schoeneberger, and E.C. Benham, NRCS, Lincoln, NE

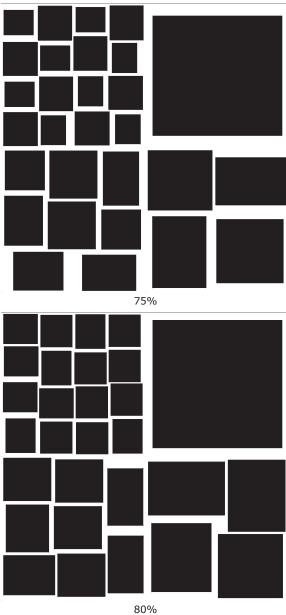

PERCENT OF AREA COVERED

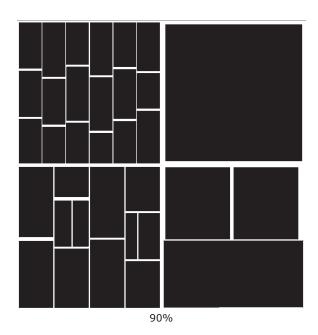

The following graphics are Area Percent Covered used to describe "Amount" or "Quantity." (**NOTE:** Within each large box [e.g., 2%], a quadrant contains the same total area covered but contains different object sizes and numbers.)

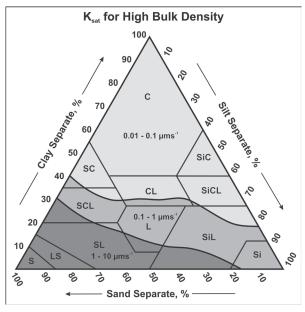


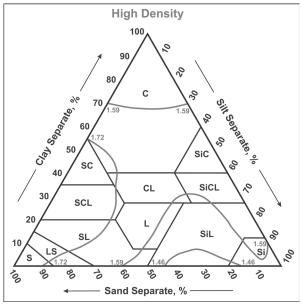


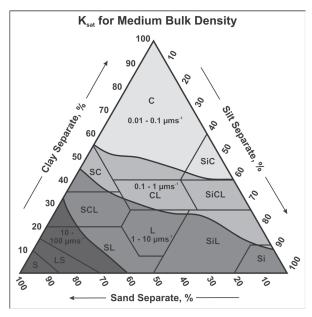

USDA-NRCS 7-2 September 2012

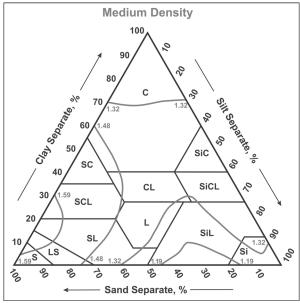


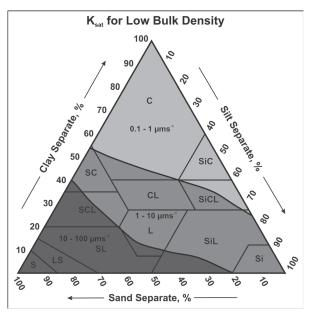


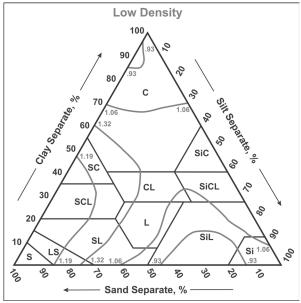

K_{SAT} CLASS ESTIMATE


Field $K_{\rm sat}$ is an important soil property and its measurement is greatly preferred over laboratory determined or mathematically predicted $K_{\rm sat}$ values. Field $K_{\rm sat}$ reflects horizon, pedon, and larger-scale macropore networks that strongly influence water flow in soilscapes. Various methods exist for field $K_{\rm sat}$ measurement (Soil Survey Staff, 1982; Bouma et al., 1982; Amoozegar and Warrick, 1986; Soil Survey Staff, 2009).


Where measured $K_{\rm sat}$ values are unavailable, mathematical models or predictions can provide approximate estimates. Such $K_{\rm sat}$ estimates rely on other estimated or measured soil physical properties (e.g., texture, bulk density, porosity). Estimated $K_{\rm sat}$ values are assigned as a class range to compare soils and are not used as a $K_{\rm sat}$ value for a specific site (Soil Survey Division Staff, 1993).


A general guide for estimating K_{sat} classes (Soil Survey Staff 2012; Rawls and Brakensiek, 1983) involves a set of textural triangles that group soils by relative bulk density (low, medium, or high) and soil texture. Use the following charts and steps to predict K_{sat} by class range.


- **Step 1** Use an estimated or known bulk density and texture to select the appropriate bulk density triangle for the layer. [e.g., a clay loam (35% sand and 35% clay) with a 1.4 g cm⁻³ bulk density fits the *Medium Bulk Density* triangle].
- **Step 2** Use the appropriate *Bulk Density / K*_{sat} *Class Triangle* to assign a K_{sat} class. [e.g., a clay loam texture (35% clay and 35% sand) with medium bulk density assigns an estimated *Moderately Low* (0.1 1.0 μ m/sec) K_{sat} Class].



SOIL WATER REPELLENCY (DISCUSSION)

Water repellency is a soil's ability to resist spontaneous wetting when water is placed on a soil surface. Water-repellent compounds arise from organic matter decomposition, including plant root exudates, fungal processes, and surface waxes from plant leaves (Mainwaring et al., 2004). Initial, irreversible drying of organic materials (Hallett et al., 2003) causes hydrophilic functional groups to strongly bond with each other and soil particles. This process results in an exposed water-repellent surface (Dekker et al., 1998). Soil water repellency is a dynamic property that varies with climate, plant community, and microbial decomposition pathways. Fire is also an important factor; heat volatilizes water-repellent organic substances that move and condense where soil is cooler (Savage, 1974). Fire may have a 3- to 5-year influence on water repellency (DeBano and Krammes, 1966). Water repellency decreases water infiltration and increases surface runoff and soil erodibility.

Organic compounds, particularly fats, waxes, and resins, form repellent coatings on mineral grains. The repellency degree depends on the quantity of particles covered (Doerr et al., 2006). Sandy soils (with low surface area) are more prone to water repellency than are loamy or clayey soils. Soil water repellency is spatially variable both laterally and with depth (Robichaud and Miller, 1999; Hubbert et al., 2006). Soil moisture content strongly influences water repellency. Soils that are more than about 10% moisture wet more readily than dry soils (Hubbert and Oriol, 2005; MacDonald and Huffman, 2004).

A common technique to assess water repellency is the Water Drop Penetration Test (WDPT). A water drop is placed on a clean soil surface and the absorption time recorded (Letey, 1969). The WDPT test measures repellency persistence (Doerr et al., 2006). Water may penetrate instantly or take hours. Various time classifications relate water repellency to absorption time (Robichaud et al., 2008). Such classifications have convenient intervals that allow relative comparison, but the times do not have intrinsic physical meaning.

SOIL WATER REPELLENCY

Evaluate and record the relative soil water repellency determined from a Water Drop Penetration Time (WDPT) measurement. (**NOTE:** Soil should be in a dry state.)

WDPT PROCEDURE

- 1) Prepare with a knife or trowel a clean, level horizontal 15 x 15 cm area of soil at a desired depth.
- Use an eyedropper or plastic squeeze bottle to randomly place 5 drops of distilled water (each drop approximately 5 mm in diameter) from a 1-cm height onto the prepared surface.
- 3) Record the average time (in seconds) that the drops remain on the surface before absorption.

Determine the relative water repellency class according to the following table.

Relative Water Repellency Class	Code	Absorption Time (seconds)
Non-Water Repellent	NWR	0 to 5
Slightly Water Repellent	SWR	> 5 to 60
Moderately Water Repellent	MWR	> 60 to 180
Strongly Water Repellent	TWR	> 180

Modified from Robichaud, 2008.

MEASUREMENT EQUIVALENTS AND CONVERSIONS

METRIC TO ENGLISH

Known	Symbol	Multiplier	Product	Symbol
LENGTH				
micrometers (microns)	μm	3.9370	inches	in or "
(=10,000 Angstrom unit	s)	x 10 ⁻⁵		
millimeters	mm	0.03937	inches	in or "
centimeters	cm	0.0328	feet	ft or '
centimeters	cm	0.3937	inches	in or "
meters	m	3.2808	feet	ft or '
meters	m	1.0936	yards	yd
kilometers	km	0.6214	miles (statute)	mi
AREA				
square centimeters	cm²	0.1550	square inches	in²
square meters	m²	10.7639	square feet	ft²
square meters	m²	1.1960	square yards	yd²
square kilometers	km²	0.3861	square miles	mi²
hectares	ha	2.471	acres	ac
VOLUME				
cubic centimeters	cm³	0.06102	cubic inches	in³
cubic meters	m^3	35.3146	cubic feet	ft³
cubic meters	m^3	1.3079	cubic yards	yd³
cubic meters	m³	0.0008107	acre-feet (=43,560 ft³)	acre-ft
cubic kilometers	km³	0.2399	cubic miles	mi³
liters (=1000 cm)	1	1.0567	quarts (U.S.)	qt
liters	1	0.2642	gallons (U.S.)	gal
milliliter	ml	0.0338	fluid ounces	OZ
1 milliliter=1 cm ³ =1 gm	(H ₂ 0, at 2	5 °C)		
MASS				
grams	g	0.03527	ounces (avdp.)	OZ
kilograms	kg	2.2046	pounds (avdp.)	lb
megagrams (= metric tons)	Мд	1.1023	short tons (2000	lb)
megagrams	Mg	0.9842	long tons (2240	lb)

ENGLISH TO METRIC

Known	Symbol	Multiplier	Product	Symbol
LENGTH				
inches	in or "	2.54 x 10 ⁴	micrometers (microns)	μm
			[=10,000 Angstrom units	s (A)]
inches	in or "	2.54	centimeters	cm
feet	ft or '	30.48	centimeters	cm
feet	ft or '	0.3048	meters	m
yards	yd	0.9144	meters	m
miles (statute)	mi	1.6093	kilometers	km
AREA				
square inches	in²	6.4516	square centimeters	cm ²
square feet	ft²	0.0929	square meters	m^2
square yards	yd²	0.8361	square meters	m^2
square miles	mi²	2.59	square kilometers	km²
acres	ac	0.405	hectares	ha
VOLUME				
acre-feet	acre-ft	1233.5019	cubic meters	m^3
acre-furrow-slice	afs	=6-inthick layer that's 1 acre in area		
≈ 2,000,000 lbs	(assume	es b.d.=1.3 g/	/cm³)	
cubic inches	in³	16.3871	cubic centimeters	cm³
cubic feet	ft³	0.02832	cubic meters	m^3
cubic yards	yd³	0.7646	cubic meters	m^3
cubic miles	mi³	4.1684	cubic kilometers	km³
gallons (U.S.)	gal	3.7854	liters	1
(=0.8327 Imperial	gal)			
quarts (U.S.)	qt	0.9463	liters (=1000 cm ³⁾	1
ounces	OZ	29.57	milliliters	ml
1 milliliter=1 cm³=	1 gm (H ₂	0, at 25 °C)		
MASS				
ounces (avdp.)	OZ	28.3495	grams	g
ounces (avdp.)	(1 troy	oz.=0.083 lb)		
pounds (avdp.)	lb	0.4536	kilograms	km
short tons (2000 ll	b)	0.9072	megagrams (= metric tons)	Mg
long tons (2240 lb)	1.0160	megagrams	Mg

COMMON CONVERSION FACTORS

Known	Symbol	Multiplier	Product	Symbol
acres	ас	0.405	hectares	ha
acre-feet	acre-ft	1233.5019	cubic meters	m³
acre-furrow-slice	afs	=6-inthick la	ayer that's 1 acre squar	е
≈ 2,000,000 lbs	(assume:	s b.d.=1.3 g/cr	m³)	
Angstrom units	Α	1x 10 ⁻⁸	centimeters	cm
Angstrom units	Α	1x 10 ⁻⁴	micrometers	um
Atmospheres	atm	1.0133 x 10 ⁶	dynes/cm ²	
Atmospheres	atm	760	mm of mercury (Hg)	
BTU (mean)	BTU	777.98	foot-pounds	
centimeters	cm	0.0328	feet	ft or '
centimeters	cm	0.3937	inches	in or "
centimeters/hour	cm/hr	0.3937	inches/hour	in/hr
centimeters/second	cm/s	1.9685	feet/minute	ft/min
centimeters/second	cm/s	0.0224	miles/hour	mph
chain (U.S.)		66	feet	ft
chain (U.S.)		4	rods	
cubic centimeters	cm³	0.06102	cubic inches	in³
cubic centimeters	cm³	2.6417 x 10 ⁻⁴	gallons (U.S.)	gal
cubic centimeters	cm³	0.999972	milliliters	ml
cubic centimeters	cm³	0.0338	ounces (U.S.)	oz
cubic feet	ft³	0.02832	cubic meters	m^3
cubic feet (H ₂ O, 60 °F)	ft³	62.37	pounds	lbs
cubic feet	ft³	0.03704	cubic yards	yd³
cubic inches	in³	16.3871	cubic centimeters	cm³
cubic kilometers	km³	0.2399	cubic miles	mi³
cubic meters	m^3	35.3146	cubic feet	ft³
cubic meters	m^3	1.3079	cubic yards	yd³
cubic meters	m³	0.0008107	acre-feet (=43,560 ft³)	acre-ft
cubic miles	mi³	4.1684	cubic kilometers	km³
cubic yards	yd³	0.7646	cubic meters	m^3
degrees (angle)	0	0.0028	circumfrences	
Faradays		96500	coulombs (abs)	
fathoms		6	feet	ft

Known	Symbol	Multiplier	Product	Symbol
feet	ft or '	30.4801	centimeters	cm
feet	ft or '	0.3048	meters	m
feet	ft or '	0.0152	chains (U.S.)	
feet	ft or '	0.0606	rods (U.S.)	
foot pounds		0.0012854	BTU (mean)	BTU
gallons (U.S.)	gal	3.7854	liters	1
gallons (U.S.)	gal	0.8327	Imperial gallons	
gallons (U.S.)	gal	0.1337	cubic feet	ft³
gallons (U.S.)	gal	128	ounces (U.S.)	oz
grams	g	0.03527	ounces (avdp.)	OZ
hectares	ha	2.471	acres	ac
horsepower		2545.08	BTU (mean)/hour	
inches	in or "	2.54 x 10 ⁴	micrometers (micron)	μm
			(=10,000 Angstrom u	nits [A])
inches	in or "	2.5400	centimeters	cm
inches/hour	in/hr	2.5400	centimeters/hour	cm/hr
inches/hour	in/hr	7.0572	micrometers/sec	μm/sec
kilograms	kg	2.2046	pounds (avdp.)	lb
kilometers	km	0.6214	miles (statute)	mi
joules	J	1×10^{7}	ergs	
liters	1	0.2642	gallons (U.S.)	gal
liters	1	33.8143	ounces	OZ
liters (=1000 cm ³)	1	1.0567	quarts (U.S.)	qt
long tons (2240 lb)		1.0160	megagrams	Mg
megagrams (= metric tons)	Мд	1.1023	short tons (2000 lb)	
megagrams	Mg	0.9842	long tons (2240 lb)	
meters	m	3.2808	feet	ft or '
meters	т	39.37	inches	in
micrometers (microns)	μm	1.000	microns	μ
micrometers/second	μm/sec	0.1417	inches/hour	in/hr
micron	μ	1 x 10 ⁻⁴	centimeters	cm
microns	μ	3.9370	inches	in or "

Known	Symbol	Multiplier	Product	Symbol
(=10,000 Angstrom u	ınits)	x 10 ⁻⁵		
micron	μ	1.000	micrometer	μm
miles (statute)	mi	1.6093	kilometers	km
miles/hour	mph	44.7041	cent./second	cm/s
miles/hour	mph	1.4667	feet/second	ft/s
milliliter	ml	0.0338	fluid ounces	ΟZ
1 milliliter ≈ 1 cm³=1	gm (H ₂ O	, at 25°C)		
milliliter	ml	1.000028	cubic centimeters	cm³
millimeters	mm	0.03937	inches	in or "
ounces	OZ	29.5729	milliliters	ml
1 milliliter ≈ 1 cm³=1	gm (H ₂ O	, at 25 °C)		
ounces (avdp.)	OZ	28.3495	grams	g
ounces (avdp.) 1 troy	oz.=0.08	33 lb		
pints (U.S.)	pt	473.179	cubic centimeters	cm³ or cc
pints (U.S.)	pt	0.4732	liters	I
pounds (avdp.)	Ib	0.4536	kilograms	kg
quarts (US liquid)	qt	0.9463	liters (=1000 cm ³)	1
rods (U.S.)		0.25	chains (U.S.)	ft
rods (U.S.)		16.5	feet (U.S.)	ft
short tons (2000 lb)		0.9072	megagrams (= metric tons)	Mg
square centimeters	cm²	0.1550	square inches	in²
square feet	ft²	0.0929	square meters	m²
square inches	in²	6.4516	sq. centimeters	cm²
square kilometers	km²	0.3861	square miles	mi²
square meters	m^2	10.7639	square feet	ft²
square meters	m²	1.1960	square yards	yd²
square miles	mi²	2.5900	square kilometers	km²
square yards	yd²	0.8361	square meters	m²
yards	yd	0.9144	meters	m

GUIDE TO MAP SCALES AND MINIMUM SIZE DELINEATIONS ¹

of Soil Man Scale		Inches Per Mile	Minimum Size Delineation ²		
Survey		Per Mile	Acres	Hectares	
	1:500	126.7	0.0025	0.001	
	1:1,000	63.4	0.100	0.004	
Order 1	1:2,000	31.7	0.040	0.016	
Order 1	1:5,000	12.7	0.25	0.10	
	1:7,920	8.0	0.62	0.25	
	1:10,000	6.34	1.00	0.41	
	1:12,000	5.28	1.43	0.6	
Order 2	1:15,840	4.00	2.50	1.0	
Order 2	1:20,000	3.17	4.00	1.6	
	1:24,000 ³	2.64	5.7	2.3	
Order 3	1:30,000	2.11	9.0	3.6	
Order 3	1:31,680	2.00	10.0	4.1	
	1:60,000	1.05	36	14.5	
Order 4	1:62,500 ⁴	1.01	39	15.8	
	1:63,360	1.00	40	16.2	
	1:80,000	0.79	64	25.8	
	1:100,000	0.63	100	40	
Order 5	1:125,000	0.51	156	63	
Order 5	1:250,000	0.25	623	252	
	1:500,000	0.127	2,500	1,000	
	1:750,000	0.084	5,600	2,270	
	1:1,000,000	0.063	10,000	4,000	
Very General	1:7,500,000	0.0084	560,000	227,000	
	1:15,000,000	0.0042	2,240,000	907,000	

¹ Modified from Peterson, 1981.

² Traditionally, the minimum size delineation is assumed to be a 1/4-inch square, or a circle with an area of 1/16 inch². Cartographically, this is about the smallest area in which a conventional soil map symbol can be legibly printed. Smaller areas can be, but rarely are, delineated and the symbol "lined in" from outside the delineation.

³ Corresponds to USGS 7.5-minute topographic quadrangle maps.

⁴ Corresponds to USGS 15-minute topographic quadrangle maps.

COMMON SOIL MAP SYMBOLS (TRADITIONAL)

(From Soil Survey Staff, 1990.) The following symbols are common on field sheets (original aerial photograph-based soil maps) and in many soil surveys published prior to 1997. Current guidelines for map compilation symbols are in NSSH, Exhibit 627-5, Feature and Symbol Legend for Soil Survey (Soil Survey Staff, 2012).

FEATURE	SYMBOL
LANDFORM FEATURES	
SOIL DELINEATIONS	BaC MiA
ESCARPMENTS	
Bedrock	V V V V V V V (Points down slope)
Other than bedrock	(Points down slope)
SHORT STEEP SLOPE	• • • • • • • • • •
GULLY	~~~~~~~~
DEPRESSION, closed	♦
SINKHOLE	\Diamond
Prominent hill or peak	*
EXCAVATIONS	
Soil sample site (Type location, etc.)	S
Borrow pit	\boxtimes
Gravel pit	×
Mine or quarry	\propto
LANDFILL	

FEATURE	SYMBOL	
MISCELLANEOUS SURFACE FEATURES		
Blowout	ullet	
Clay spot	*	
Gravelly spot	•	
Lava flow	٨	
Marsh or swamp	*	
Rock outcrop (includes sandstone and shale)	V	
Saline spot	+	
Sandy spot	•••	
Severely eroded spot	0	
Slide or slip (tips point upslope)	})	
Sodic spot	Ø	
Spoil area	3	
Stony spot	0	
Very stony spot	\odot	
Wet spot	Ý	

FEATURE	SYMBOL
ROAD EMBLEMS	
Interstate	79 79 345
Federal	410 410 224
State	(52) (52) 347
County, farm, or ranch	378
CULTURAL FEATURES	
RAILROAD	+ + + + + +
POWER TRANSMISSION LINE (normally not shown)	
PIPELINE (normally not shown)	нннннн
FENCE (normally not shown)	- * * * * *

FEATURE	SYMBOL
CULTURAL FEATURES (continu	red)
LEVEES	
Without road	
With road	<u> </u>
With railroad	
Single side slope (showing actual feature location)	
DAMS	
Medium or small	W
Large	

FEATURE	SYMBOL
HYDROGRAPHIC FEATURES	
STREAMS	
Perennial, double line (large)	
Perennial, single line (small)	· · · · · · · · · · · · · · · · · · ·
Intermittent	
Drainage end or flow direction	
SMALL LAKES, PONDS, AND RESERVOIRS	
Perennial water	
Miscellaneous water	
Flood pool line	FLOOD POOL LINE
Lake or pond (perennial)	
MISCELLANEOUS WATER FEATURES	
Spring	○
Well, artesian	-
Well, irrigation	-0-

FEATURE	SYMB	OL			
MISCELLANEOUS CULTURAL FEATURES					
Airport	†				
Cemetery	+				
Farmstead, house (omit in urban areas)	•				
Church	<u>†</u>				
School					
Other religion (label)		Mt. Carmel			
Located object (label)	•	Ranger Station			
Tank (label)	•	Petroleum			
Lookout tower	\bowtie				
Oil and/or natural gas wells	\triangle				
Windmill	χ				
Lighthouse					

REFERENCES

Amoozegar, F. and A.W. Warrick. 1986. Hydraulic conductivity of saturated soils: Field methods. *In* A. Klute (ed). 1986. Methods of soil analysis part 1. Physical and mineralogical methods, 2nd ed. ASA, Agron. Mono. 9, Madison, WI, pp. 735-770.

DeBano, L.F., and J.S. Krammes. 1966. Water repellent soils and their relation to wildfire temperatures. Int. Assoc. Sci. Hydrol. Bull., XI Annals 2, pp. 14-19.

DeBano, L.F. 1981. Water repellent soils: A state-of-the-art. Gen. Tech. Rpt. PSW-46. Berkeley, CA: USDA, Forest Service, Pacific Southwest Forest and Range Experiment Station. 21 p.

Dekker, L.W., C.J. Ritsema, K. Oostindie, and O.H. Boersma. 1998. Effect of drying temperature on the severity of soil water repellency. Soil Sci. 163:780-796.

Doerr, S.H., R.A. Shakesby, L.W. Dekker, and C.J. Ritsema. 2006. Occurrence prediction and hydrological effects of water repellency amongst major soil and land-use types in a humid temperate climate. Eur. J. Soil Sci. 57:741-754.

Hallett, P.D., D.C. Gordon, and A.G. Bengough. 2003. Plant influence on rhizosphere hydraulic properties: Direct measurements using a miniaturised infiltrometer. New Phytologist 157:597-603.

Hubbert, K.R., and V. Oriol. 2005. Temporal fluctuations in soil water repellency following wildfire in chaparral steeplands, southern California. Intern. J. Wildland Fire 14:439-447.

Hubbert, K.R., H.K. Preisler, P.M. Wohlgemuth, R.C. Graham, and M.G. Narog. 2006. Prescribed burning effects on soil physical properties and soil water repellency in a steep chaparral watershed, southern California. U.S.A. Geoderma. 130:284-298.

Mainwaring, K.A., C.P. Morley, S.H. Doerr, P. Douglas, C.T. Llewellyn, G. Llewellyn, I. Matthews, and B.K. Stein. 2004. Role of heavy polar organic compounds for water repellency of sandy soils. Env. Chem. Letters 2:35-39.

Letey, J. 1969. Measurement of contact angle, water drop penetration time, and critical surface tension. Proceed. of the Symp. on Water-Repellent Soils, 6-10 May 1968, UC, Riverside, pp. 43-47.

Peterson, F.F. 1981. Landforms of the Basin and Range Province defined for soil survey. Nevada Agric. Exp. Stn. Tech. Bull. 28. Reno, NV.

Rawls, W.J., and D.L. Brakensiek. 1983. A procedure to predict Green and Ampt infiltration parameters. *In* Advances in infiltration. Proc. of the National Conf. on Advances in Infiltration, Dec. 12-13. Chicago, IL.

Robichaud, P.R., and S.M. Miller. 1999. Spatial interpolation and simulation of post-burn duff thickness after prescribed fire. Intern. J. Wildland Fire 9:137-143.

Robichaud, P.R., S.A. Lewis, and L.E. Ashmun. 2008. New procedure for sampling infiltration to assess post-fire soil water repellency. USDA, Forest Service, Rocky Mountain Research Station, Research Note RMRS-RN-33.

Savage, S.M. 1974. Mechanism of fire-induced water repellency in soil. Soil Sci. Soc. Amer. Proc. 38:652-657.

Soil Survey Division Staff. 1993. Soil survey manual. USDA, SCS, Agric. Handb. 18. U.S. Gov. Print. Office, Washington, DC.

Soil Survey Staff. 1982. Measuring hydraulic conductivity for use in soil surveys. Soil Survey Investigations Report No. 38, USDA, SCS, National Soil Survey Center, Lincoln, NE.

Soil Survey Staff. 1990. National soil survey handbook (NSSH), Title 170, Part 601. USDA, NRCS, National Soil Survey Center, Lincoln, NE.

Soil Survey Staff. 2009. Soil survey field and laboratory methods manual. Soil Surv. Invest. Rep. 51, ver. 1.0. R. Burt (ed.) USDA, NRCS.

Soil Survey Staff. 2012. National soil survey handbook (NSSH) [online]. USDA, NRCS, National Soil Survey Center, Lincoln, NE. (http://soils.usda.gov/technical/handbook/)

SOIL SAMPLING

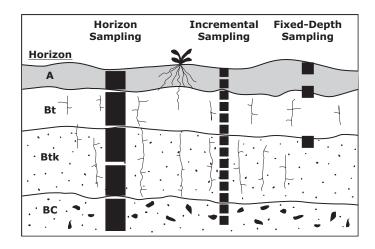
P.J. Schoeneberger, D.A. Wysocki, and E.C. Benham, NRCS, Lincoln, NE

INTRODUCTION

Laboratory measurement of soil properties (e.g., particle size, organic carbon, etc.) requires sample collection. Two fundamental sampling requirements are: 1) appropriate site selection, and 2) a detailed soil description. Soils are landscape entities that reflect geomorphic, pedologic, and hydrologic processes and parent material distribution (Wysocki et al., 2011). Thus, site selection, regardless of purpose, must consider soilscape relationships. A soil profile description identifies the horizons and their thickness and provides context for data collection and interpretation. Soil property data by itself has little value without context; soil data requires an accompanying geo-referenced description. Sampling needs and strategies vary by project objectives. Various reviews and summaries (Buol et al., 2003; Soil Survey Staff, 2004; Soil Survey Staff, 2009; Robertson et al., 1999; Carter, 1993) outline sampling strategies and techniques.

Statistical design and analysis (e.g., random, randomized block, grid, transect, traverse, geostatistical) are important aspects of sample collection (Buol et al., 2003). Discussion of statistical methods and design is beyond the scope of this publication. Summary information is available in Webster and Oliver (2007) and Webster and Oliver (1990). Note, however, that statistical blocking by geomorphic context stratifies soil areas by similar geologic and pedogenic processes. Random sampling within a geomorphically stratified area allows determination of both random soil variation and systematic landscape variation (Hall and Olson, 1991).

SOILSCAPE SEQUENCES—Soil sampling commonly considers pedons as distinct points separate from adjoining soils. Soil water flow is generally interpreted as predominantly vertical; lateral flow receives considerably less emphasis. In many soilscapes, however, vertical flow is important but lateral flow is more influential. A slight difference in elevation (15 cm) in nearly level landscapes produces substantial hydrologic and morphological differences (Knuteson et al., 1989). Soilscape sampling and characterization is an important strategy for increasing and organizing both spatial and soil property data (Wysocki et al., 2011). This approach evaluates landscapescale processes that relate ecosystem dynamics to soil distribution.


TYPES OF SAMPLING

HORIZON SAMPLING—Cost and time limit the number of sample collections. The most effective and efficient strategy for sampling

is by horizon. Soil horizons develop from natural processes acting over time. Variations in soil properties may occur within a horizon, but distinct differences generally occur between horizons. Consequently, soil horizons are a meaningful and comparable schema for sample collection (see graphic). Soil horizons vary in thickness and boundary (e.g., wavy, irregular, broken) within a pedon and across landscapes. Soil profile descriptions and horizon sampling techniques incorporate depth and boundary variability and can produce homogeneous samples. It is advisable to subsample soil horizons >50 cm thick. Fixed-depth sampling alone does not capture such variation and may lead to the erroneous interpretation of data.

INCREMENTAL SAMPLING—Project objectives (e.g., soil genesis or archeological) may require within-horizon detail. Property variation or trends within horizons require samples at specified increments (e.g., every 10 cm). Increment samples should be taken within horizons; sample depths should not cross horizon boundaries. Increment sampling provides more detail than horizon sampling but adds time and expense. This approach is generally limited to special projects.

FIXED-DEPTH SAMPLING—Specified objectives (e.g., surface compaction studies) may address properties by fixed depths (e.g., 0-5 cm or 5-10 cm) instead of by soil horizons. This approach, while appropriate for certain purposes, precludes data comparison by horizon. Data collected by depth is comparable within a study and to other studies employing the same depths. Fixed-depth samples may straddle horizons that contain contrasting materials (e.g., sandy over clayey strata). The resultant data represents neither horizon and is difficult to interpret. Use this approach with caution.

SAMPLING TECHNIQUES

Excavate a fresh soil pit for sample collection. Avoid road cuts as sample sites because dust and exposure can alter soil properties. If excavation is not possible, collect samples from intact cores (e.g., Giddings tube). If an auger is the only means for sample collection, place the collected soil onto a tarp to identify and sample by horizon. For soil characterization, collect 3- to 4-kg samples. Soils with fragments up to 20 mm in size require a minimum 1 kg (dry weight) sample for a representative quantity (ASTM, 2004). If fragment size exceeds 20 mm, larger sample sizes are needed.

During sample collection:

- 1) Collect samples in a soil pit from the bottom up. This minimizes contamination by falling debris.
- Collect the sample across a horizon's full depth and breadth. Avoid atypical pockets or lenses, or subsample these separately.

SOIL SAMPLE KINDS

CHARACTERIZATION SAMPLES—Samples collected from a fully described soil chosen to be representative of a given soil series or soil landscape area. All horizons are bulk sampled to a depth of 200 cm or more. In addition, three fist-sized clods are collected from each horizon for bulk density measurement. Bulk samples undergo a suite of analyses (e.g., particle size, 1500 kPa water content, CEC, pH, extractable cations, organic carbon, clay mineralogy, etc.). The specified analyses vary with soil composition. A Mollisol needs a different set of analyses for characterization than does an Andisol or Spodosol. Characterization sampling provides a complete set of measured values for soil comparison or extrapolation.

REFERENCE SAMPLES (grab samples)—Samples collected for a single or limited set of analyses (e.g., OC, PSA, pH) to answer a specific question. For example, there may be a question of whether or not the A horizon has sufficient organic carbon for mollic epipedon criteria (OC \geq 0.6 %). References samples are generally targeted to specific horizons or layers (e.g., A horizon, Bt horizon, control section) in a profile. Sample intent is to answer a question quickly with little expense.

1. Digging Tools (commonly choose 1 or 2): see graphic

Bucket Auger

Sharp Shooter

Montana Sharp Shooter (for rocky soils)

Tile Spade (only for well cultivated or loose material)

Spade (standard shovel)

Push Probe (e.g., Backsaver®, Oakfield®)—include a clean-out tool

Pulaski

Soil Description

Knife

Hand Lens (10X or combination lenses)

Acid Bottle (1N HCl)

Water Bottle

Color Book (e.g., Munsell®, EarthColors®)

Picture Tapes ("pit tape"—metric preferred)

Tape Measure (metric or English and metric)

(3) Ultra-Fine Point Permanent Marker Pens

Pocket pH Kit or Electronic "Wand"

Pocket Soil Thermometer

Camera

Sample bags (for grab samples)

Soil Description Sheet (232 or PEDON description form)

Site Description

Field Note Book

GPS Unit

Abney Level

Clinometer

Compass

Altimeter (pocket-sized)

Field References

Field Book for Describing and Sampling Soils

Aerial Photographs

Topographic Maps (1:24,000, 7.5 min; 1:100,000)

Geology Maps

Soil Surveys (county or area)

AGI Field Sheets

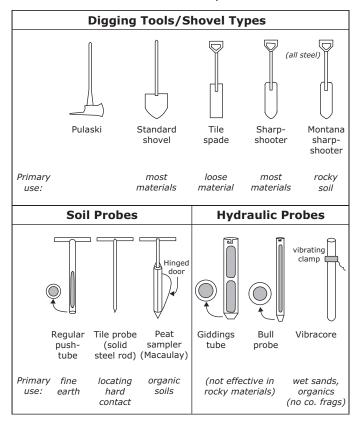
Personal Protective Gear

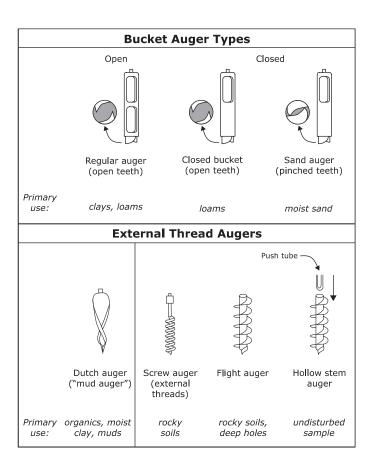
Small First Aid Kit

Leather Gloves

Sunglasses

Insect Repellent


Sunscreen


Hat

Drinking water

EXAMPLES OF COMMON SOIL-SAMPLING EQUIPMENT

(Use of trade or company names is for informational purposes only and does not constitute an endorsement.)

REFERENCES

American Society for Testing and Materials (ASTM). 2004. Standard practice for description and identification of soils. D2488 Annual Book of ASTM Standards. Construction. Section 4, Soil and Rock; Dimension Stone. Vol. 04.08. Philadelphia, PA.

Buol, S.W., R.J. Southard, R.C. Graham, and P.A. McDaniel. 2003. Soil genesis and classification. 5th edition. Iowa State Press, Ames, IA. ISBN: 0-8138-2873-2.

Carter, M. (editor). 1993. Soil sampling and methods of analysis. Lewis Publishers, CRC Press, Inc., Boca Raton, FL. ISBN: 0-87371-861-5.

Hall, G.F., and C.G. Olson. 1991. Predicting variability of soils from landscape models. *In* M.J. Mausbach and L.P. Wilding (eds.) Spatial variability of soils and landforms. Soil Sci. Soc. Am. Spec. Pub. #28, SSSA, Inc., Madison, WI. ISBN: 0-89118-198-7.

Knuteson, J.A., J.L. Richardson, D.D. Patterson, and L.D. Prunty. 1989. Pedogenic carbonates in a Calciaquoll associated recharge wetland. Soil Sci. Soc. Am. J. 53:495-499.

Robertson, G.P., D.C. Coleman, C.S. Bledsoe, and P. Sollins (editors). 1999. Standard soil methods for long-term ecological research. Oxford University Press, Inc., New York, NY. ISBN: 0-19-512083-3.

Soil Survey Staff. 2004. Soil survey laboratory methods manual. Soil Survey Invest. Rep. (SSIR) 42, Version 4.0. R. Burt (ed.), USDA, Natural Resources Conservation Service.

Soil Survey Staff. 2009. Soil survey field and laboratory methods manual. Soil Survey Invest. Rep. No. 51, Version 1.0. R. Burt (ed.), USDA, Natural Resources Conservation Service. Available at http://soils.usda.gov/technical/.

Soil Survey Staff. 2012. National soil survey handbook (NSSH) [Online]. USDA, NRCS, National Soil Survey Center, Lincoln, NE (http://soils.usda.gov/technical/handbook/).

Webster R., and M.A. Oliver. 1990. Statistical methods in soil and land resource survey. Oxford University Press. Oxford, England.

Webster R., and M.A. Oliver. 2007 Geostatistics for environmental scientists. 2nd edition. John Wiley and Sons, Inc. West Sussex, England.

Wysocki, D.A., P.J. Schoeneberger, D.R. Hirmas, and H.E. LaGarry. 2011. Geomorphology of soil landscapes. *In* P.M. Huang, Y. Li, and M.E. Sumner (eds.) Handbook of Soil Sciences: Properties and Processes, 2nd ed, pp. 29-1–29-26. CRC Press, Boca Raton, FL.

INDEX

A

```
Across Slope • 1-6, 3-40
Air Temperature • 1-1
Alpha Alpha Dipyridyl • 2-88
   Location • 2-88
Anthric Saturation • 1–16
Anthropogenic Feature • 1-4, 3-1, 3-10, 3-20
Area Covered (%) Example • 7-1
Araillans • 2-32
Artifacts • 2-49
   Cohesion • 2-51
   Kind • 2-50
   Penetrability • 2-51
   Persistence • 2-51
   Ouantity • 2-50
   Roundness • 2-50
   Safety • 2-52
   Shape • 2-51
Aspect • See Slope Aspect
```

B

```
Bathymetry • 2-97
Bedrock • 1-22
   (Bedrock)-Fracture Interval Class • 1-24
   Depth to Bedrock • 1-25
   Kind • 1-22, 5-1
   Weathering Class • 1-25
Biological Concentrations • 2–19, 2–22
Biological Crusts • 2-77, 2-79
Bottom Type • 2-100
Boundary Distinctness • 2-6 • See also Horizon Boundary
   Distinctness
Bridging (clay) • 2-32, 2-34
Brittleness • 2-65
Bulk Density Satiated
   Discussion • 2-106
Bypass Flow • 2-75
```

C

Calcium Carbonate Equivalent Test • 2–88
Carbonate Stages • 2–30
Caret (The) (Horizon Nomenclature) • 2–5
Carpedolith • 2–80
Cementation Classes (Rupture Resistance) • 2–63

```
Cementing Agents • 2-64
Characterization Samples • 8-3
Chemical Agent • 2-87
Chemical Crusts • 2-78
Chemical Response • 2–85
Clay Depletions • 2-11, 2-12
Clay Films • 2-32
Climate • 1-1
Coastal Marine and Estuarine (Geomorphic Environments;
   Landforms) • 3-21
Coats • 2-32
Cohesion (Artifacts) • 2-51
Color Contrast • See Mottle Contrast
Color Location • 2-9
Color, Mechanical Condition • 2-9
Color Physical State (NASIS) • See Soil Matrix Color - Location or
   Condition
Color, Redoximorphic Condition • 2-9
Common Conversion Factors • 7-18
Common Soil Map Symbols (Traditional) • 7-22
Common Soil-Sampling Equipment (Examples) • 8-5
Comparison of Particle Size Classes in Different Systems (table) •
   2 - 45
Compositional Texture Modifiers • 2-41
Concentrations • 2-20
   Boundary • 2-27
   Color • 2-23
   Contrast • 2-23
   Hardness • 2-27
   Kind • 2-20
   Location • 2-26
   Moisture State • 2-23
   Quantity • 2-23
   Shape • 2-25
   Size • 2-23
Concentrations (Discussion) • 2-19
Concretions • 2-10, 2-12, 2-19, 2-20, 2-21
Consistence • 2-62
Contrast of Soil Mottles • 2-16, 2-18
Coordinates • 1-2, 2-98
Coprogenous Earth • 1-29, 2-41
Core Descriptions • 2-111
Core Settlement • 2-111
County FIPS Code • 1-3
Cracks • 2-75
   Depth • 2-77
   Kind • 2-76
   Relative Frequency • 2-77
Crust-Related Cracks • 2-75, 2-76
Crusts • See Soil Crusts
Crystals • 2-19, 2-20, 2-21
```

```
Date • 1-1, 2-98
Decision Flowchart For Describing Soil Colors • 2-8
Delineation Size (Transect) • 1–3
Dendritic Tubular Pores • 2-73, 2-74
Densic Contact • 1-29
Densic Materials • 1-29
Depositional Crust • 2-78
Depressional (Landforms) • 3-35
Depth (To Bedrock) • 1-25
Describer(s) Name • 1-1, 2-98
Desert Pavement • 2-80
Diagnostic Characteristics - Mineral Soils • 1–29
Diagnostic Characteristics - Organic Soils • 1-29
Diagnostic Horizons • 1-28
Diagnostic Properties • 1-28
Diagnostic Subsurface Horizons • 1–28
Diatomaceous Earth • 1-29, 2-41
Dipyridyl • See Alpha Alpha Dipyridyl
Dissolved Oxygen • 2–102
Down Slope • 1-6, 3-40
Drainage • 1-11
Drainage Class • 1-11, 2-101
Drainage Network • See Drainage Pattern
Drainage Pattern • 3-1, 3-44
Durinode • 1-29, 2-21
Duripan • 1-28, 2-44
Duripan Fragments • 1-27, 2-46
```

E

```
Earth Cover - Kind • 1-16
Effervescence • 2-87
   Chemical Agent • 2–87
   Class • 2-87
Electrical Conductivity • 2–89
Electrical Conductivity of Subaqueous Soils • 2-106
Elevation • 1-5, 2-98, 3-39,
Endosaturation • 1-15
English To Metric (conversions) • 7–17
Eolian Deposits • 1–18
Eolian (Geomorphic Environment; Landforms) • 3-26
Epipedons • 1-28
Episaturation • 1–16
Erosion • 1-25
   Degree Class • 1-26
   Kind • 1-25
Erosion Accelerated Kind • See Erosion Kind
Erosional Lag • 2-80
```

```
Erosional (Landforms) • 3–34
Estuarine (Geomorphic Environment; Landforms) • 3–21
Evaporites • 1–24, 5–3, 5–7
Excavation Difficulty • 2–69
Excavation Difficulty Class • 2–69
Extra-Structural Cracks • 2–75
```

F

```
Faunal Burrows • 2-80
Fecal Pellets • 2-22
Ferriargillans • 2-12, 2-32
Field Equipment Checklist • 8-4
Field Notes • 2-90
Field pH (NASIS) • See Reaction (pH)
Filaments • 2-25
Films • 2-12, 2-32
Final Core Length • 2-112
Finely Disseminated Materials • 2-19, 2-20, 2-21
FIPS Code • 1-3
Fissures • 2-75
Flat Plains (Geomorphic Components of) • 1-10, 3-43
Floodina • 1-13
   Duration • 1-13
   Frequency • 1-13
   Months • 1-13
Fluidity • 2-65
Fluidity Class • 2-105
Fluvial (Geomorphic Environment; Landforms) • 3-24
Formation (Lithostratigraphic Unit) • 1-25, 5-12
Fragipan • 1-28
Fragment Hardness • See Rock and Other Fragments - Hardness
Fragment Roundness • See Rock and Other Fragments - Roundness
Fragments • See Rock and Other Fragments
Freeze-thaw Crust • 2-78
```

G

```
Geodetic Datum • 1–2, 2–98, 6–1
Geologic Formation (NASIS) • See Formation
Geologic Time Scale • See North American Geologic Time Scale
Geology • 5–1
References • 5–13
Geomorphic Component • 1–8, 3–41,
Flat Plains • 1–10, 3–43, 3–2
Hills • 1–8, 3–42,
Mountains • 1–9, 3–1, 3–43
Terraces, Stepped Landforms • 1–8, 3–42, 3–1
Geomorphic Description • 1–4, 3–1, 3–11
References • 3–46
```

```
Geomorphic Description (Outline) • 3–10
Geomorphic Description System • 3–1
Geomorphic Information • 1–4
Gilgai Microfeatures • 2–54
Glacial and Periglacial Deposits • 1–18
Glacial (Geomorphic Environment; Landforms) • 3–26
Glauconite • 2–19
GPS • 2–98
Ground Surface • 2–6
Group (Lithostratigraphic Unit) • 5–12
Guide To Map Scales And Minimum-Size Delineations • 7–21
Gully (Erosion) • 1–25
Gully (microfeature) • 3–18, 3–25, 3–34
```

Н

```
Hard Rock Fragments • See Rock Fragments
Hierarchical Rank of Lithostratigraphic Units • 5-12
Hills (Geomorphic Components of) • 1-8, 3-42
Hillslope Position • See Hillslope - Profile Position
Hillslope - Profile Position • 1-7, 3-1, 3-41
Horizon and Layer Designations • 2-2
Horizon Boundary • 2-6, 2-104
   Distinctness • 2-6, 2-104
   Topography • 2-7
Horizon Depth • 2-6
Horizon Feature Kind (NASIS) • See Special Features
Horizon & Layer Designations • 2-103, 4-1
Horizon & Layer Designations Conversion Charts • 4-6
Horizon Modifiers (Other) • 2-5
   Caret • 2-5
   Numerical Prefixes • 2-5
   Prime • 2-5
Horizon Subscripts • See Horizon Suffixes
Horizon Suffixes • 2-4, 2-103, 4-3, 4-8
Horizon Suffixes for Subaqueous Soils (Discussion) • 2-103
Horizon Thickness • 2-6
Human Artifacts • See Artifacts
Hydrothermal • 3-30 • See also Volcanic and Hydrothermal
   (Geomorphic Environments; Landforms)
Hypocoats • 2-12, 2-32, 2-34
```

I

```
Ice Wedge Cast • 2–80
Igneous Rocks • 1–22, 5–1
Igneous Rocks Chart • 5–5
In-Place Deposits • 1–19
Insect Casts • 2–19, 2–20, 2–22
Inside Length • 2–111
```

Interbedded Rocks • 1–24, 5–3 Interstitial Pores • 2–74 Inter-Structural Voids • 2–73 Interval (Transect) • 1–4 Iron Depletions • 2–10 Irregular Pores • 2–73, 2–74

K

Krotovinas • 2–80 $K_{\rm sat}$ • See also Saturated Hydraulic Conductivity $K_{\rm sat}$ Class Estimate • 7–10

L

```
Lacustrine (Geomorphic Environment; Landforms) • 3-23
Lamellae • 1-29, 2-25, 2-80
Lamina • 2-80
Land Cover • 1-16
   Kind • 1-16
Landform • 1-4, 3-1, 3-10, 3-12
Landscape • 1-4, 3-1, 3-10, 3-11
Landslide • See Mass Movement (Geomorphic Environment;
   Landforms), Mass Movement Types for Soil Survey
Landuse • See Earth Cover - Kind
Limnic Materials • 1-29, 2-41
Lithic Contact • 1-29
Lithologic Discontinuities
   Discussion • 2-103
Lithostratigraphic Units • 1-25, 5-12
Local Physiographic / Geographic Name • 1-4, 3-1, 3-9
Location • 1-2, 6-1
   Description • 2-100
   References • 6-7
Loess Doll (Kindchen, Puppy) • 2-22
```

M

Major Land Resource Area • 1–3
Manganese Effervescence Agent • See Effervescence Agent
Manganese Effervescence Class • See Effervescence Class
Mangans • 2–12, 2–32
Manner of Failure • 2–65
Map Unit • 2–100
Marl • 1–29, 2–41
Masses • 2–10, 2–12, 2–19, 2–20, 2–21
Mass Movement Deposits • 1–19
Mass Movement (Geomorphic Environment; Landforms) • 3–29
Mass Movement Types for Soil Survey • 5–8

```
Master Horizons • 2-2, 4-1, 4-6
Matrix Color • See Soil Matrix Color
Mean Sea Level • 1-5, 3-39
Measurement Equivalents & Conversions • 7-16
Member (Lithostratigraphic Unit) • 5-12
Metamorphic Rocks • 1-23, 5-2
Metamorphic Rocks chart • 5-6
Metric To English (conversions) • 7-16
Microbiotic Crust • 2-77
Microfeature • 1-4, 3-1, 3-10, 3-18
Microfeature (terms) • 3-18
Microrelief • 1-10, 2-54, 3-1, 3-44
Mineral Crusts • 2-78
Minimum Data Set • 2-90
Miscellaneous • 7-1
Miscellaneous Field Notes • 2-90
MLRA • 1-3
Month / Day / Year • 1-1
Mottles • 2-18
   Color • 2-18
   Contrast (also called Color Contrast) • 2-18
   Moisture State • 2-18
   Quantity • 2-18
   Shape • 2-18
   Size • 2-18
Mountains (Geomorphic Components of) • 3-43
Multicolored Pattern • 2-9
```

N

```
Name • 1–1
Nodules • 2–10, 2–12, 2–19, 2–20, 2–21
North American Geologic Time Scale • 5–9
```

0

```
Observation Method • 2-1, 2-101
Kind • 2-1, 2-101
Relative Size • 2-2
Observed Soil Moisture Status (NASIS) • 1-14 • See also (Soil)
Water State
Odor • 2-90, 2-106
Intensity • 2-90, 2-106
Kind • 2-90, 2-106
Organic Deposits • 1-20
Organics • 1-24, 5-3
Ortstein • 1-28, 2-44
Ortstein Fragments • 1-27, 2-46
Oxidation / Reduction • 2-10
```

```
Paralithic Contact • 1-29
Paralithic Materials • 1–29
Pararock Fragments • 2-39
Parent Material • 1-18
Particle Size Classes • 2-45
Ped and Void Surface Features • 2-32
   Amount • 2-35
   Color • 2-36
   Continuity • 2-35
   Distinctness • 2-35
   Kind • 2-32
   Location • 2-36
Pedogenic Carbonate Development Stages
   Coarse Fragment Matrix • 2-31
   Fine Earth Matrix • 2-30
Pedogenic Carbonate Stages (Discussion) • 2-28
Pedon Description
   Example • 2-95
   Form • 2-93
Pendant • 2-27
Penetrability (Artifacts) • 2-51
Penetration Orientation • 2-68
Penetration Resistance • 2-67
Penetration Resistance Class • 2-68
Periglacial (Geomorphic Environment; Landforms) • 3-28
Permeability Classes • 2-85
Permeability (Discussion) • 2-81
Peroxide Color Change • 2-104
Persistence (Artifacts) • 2-51
Petrocalcic Horizon • 1-28, 2-44
Petroferric • 1-29, 2-44
Petrogypsic Horizon • 1-28, 2-44
pH • 2-85, 2-102
   Method • 2-86, 2-102
Physical Crusts • 2-78
Physiographic Division • 1-4, 3-1, 3-2
Physiographic Location • 1-4, 3-1, 3-2
Physiographic Province • 1-4, 3-1, 3-2
Physiographic Section • 1-4, 3-1, 3-2
Phytoliths (plant) • 2-22
Pipestems • 2-25
Piping (Erosion) • 1-25
Placic Horizon • 1-28
Plant Common Name • 1-18
Plant Opal • See Phytoliths
Plant Scientific Name • 1–18
Plant Symbol • 1-17
Plasticity • 2-66
Plasticity Class • 2-66
```

```
Plinthite • 1-29, 2-25
Pocket Penetrometer • 2-67
Ponding • 1-14
   Depth • 1-14
   Duration • 1-14
   Frequency • 1-14
Pores • 2-73
   Quantity • 2-70
   Quantity Class • 2-70
   Shape • 2-73, 2-74
   Size • 2-70
   Size Classes • 2-70, 2-72
   Vertical Continuity • 2-75
Pores (Discussion) • 2-73
Precipitates • 1-24, 5-3, 5-7
Preferential Flow • 2-75
Pressure Faces • 2-32, 2-34
Primary Packing Voids • 2-74
Prime (The) (Horizon Nomenclature) • 2-5, 2-104
Profile / Pedon Description • 2-1
   References • 2-115
Public Land Survey • 6-2
Pyroclastic Terms • 5-11
```

Q

quadrangle • 1-2

R

```
Raindrop Impact Crust • 2-78
Range (location) • 6-3
Reaction Oxidized pH • 2-105
   Discussion • 2-105
Reaction (pH) • 2-85
Reaction to Alpha-dipyridl (NASIS) • See Reduced Conditions
Reaction to H2O2 (Peroxide Color Change) • 2-104
Redox Concentrations • 2-10, 2-12
Redox Depletions • 2-10, 2-12
Redoximorphic Features • 2-12
   Boundary • 2-17
   Color • 2-17
   Contrast • 2-15
   Hardness • 2-17
   Kind • 2-12
   Location • 2-17
   Moisture State • 2-17
   Quantity • 2-13
   Shape • 2-17
   Size • 2-13
```

```
Redoximorphic Features-RMF (Discussion) • 2-10
Reduced Conditions • 2-88
Reduced Matrix • 2-11, 2-12
Reduced Monosulfide Presence • 2-104
Reference Samples • 8-3
Relative_Exposure_UOM • 2-2
Relative Size (of Exposure) • 2-2
Relative Slope Segment Position • 1-6, 3-39
Restriction • 1-30
   Kind • 1-30
Rill (Erosion) • 1-25
Rill (Microfeature) • 3-18, 3-33, 3-34
Riser Length • 2-111
RMF Shapes • 2-26
Rock and Other Fragments • 2-46
   Hardness • 2-49
   Kind • 2-46
   Roundness • 2-48
   Size Classes and Descriptive Terms • 2-47
   Volume Percent • 2-47
Rock Charts • 5-4
Rock Fragments • 2-38, 2-43, 2-46
   Quantity • 2-38
   Size • 2-38
Root Channels • 2-73
Root Pseudomorphs • 2-25
Roots • 2-70
   Location • 2-72
   Quantity • 2-70
   Quantity Class • 2-70
   Size • 2-70
   Size Classes • 2-70, 2-72
Roundness (Artifacts) • 2-50
Roundness (Rock and Other Fragments) • 2-48, 2-49
Rupture Resistance • 2-62
   Blocks, Peds, And Clods • 2-63
   Surface Crusts and Plates • 2-64
```

S

```
Safety (Artifacts) • 2–52
Salinity • 2–88, 2–102, 2–106
Salinity Class • 2–89
Sampling Techniques • 8–3
Sampling, Types of • 8–1
Fixed-Depth Sampling • 8–2
Horizon Sampling • 8–1
Incremental Sampling • 8–2
Sand Coats • 2–32
Satiation • 1–15
```

```
Saturated Hydraulic Conductivity • 2-83
Saturated Hydraulic Conductivity Classes • 2-84
Saturated Hydraulic Conductivity (Discussion) • 2-81
Saturation • 1-15
Scale (topographic quadrangle) • 1-2
Scientific Plant Name • 1–18
Secondary Carbonates • 1-30
Section (location) • 6–3
Sedimentary and Volcaniclastic Rocks Chart • 5-7
Sedimentary Rocks • 1-23, 5-2
Series Name • 1-4
Shape (Artifacts) • 2-51
Sheet (Erosion) • 1-25
Shell Fragments • 2-22
Shot • 2-25
Silt Coats • 2-32
Site Description • 1-1, 2-98, 2-111
Site/Pedon ID • 2-98
Skeletans • 2-32
Slake Test • 2-40
Slickensides • 1-29, 2-33
Slope Aspect • 1-5, 3-39,
Slope Complexity • 1-5, 3-39,
Slope Gradient • 1-5, 3-39,
Slope (Landforms) • 3-32
Slope Shape • 1-6, 3-40,
Smeariness • 2-65
Sodium Adsorption Ratio (SAR) • 2-89
Soft, Powdery Lime • See Secondary Carbonates
Soft Rock Fragments • See Pararock Fragments
Soil Color • 2-8
Soil Crusts • 2-79
   Kind • 2-79
Soil Crusts (Discussion) • 2-77
Soil Drainage Class • See Drainage Class
Soil Matrix Color • 2-9
Soil Matrix Color - Location or Condition • 2-9
Soil Moisture Regimes • 4-11
Soil Moisture Status • See Soil Water State
Soil Permeability • 2-81
Soil Sample Kinds • 8-3
Soil Sampling • 8-1
   References • 8-6
Soilscape Sequences • 8-1
Soil Series Name • 1-4
Soil Structure • 2-52
   Grade • 2-55
   Size • 2-55
   Type • 2-52
Soil Surface • 2-6
Soil Survey Area Identification Number (SSID) • 1-2
```

```
Soil Taxonomy • 4-1
   References • 4-14
Soil Taxonomy Classification • 1-30
Soil Temperature • 1-1
Soil Temperature Depth • 1-1
Soil Temperature Regimes and Classes • 4-13
Soil Textural Triangle • See Textural Triangle
Soil Texture • 2-36
Soil Water Repellency • 7-15
Soil Water Repellency (Discussion) • 7-14
Solution (Geomorphic Environment; Landforms) • 3-25
Special Features • 2-80
Sphericity • 2-48
Sponge Spicules • 2-22
State Physiographic Area • 1-4, 3-1, 3-9
State Plane Coordinate System • 6-7
Stickiness • 2-66
Stickiness Class • 2-66
Stone Line • 2-80
Stop Number (Transect) • 1-4
Stress Features • 2-32, 2-34
Stringers • 2-25
Structure • See Soil Structure
Structure Shape • See Soil Structure - Type
Subaqueous Soils • 2-97
Subaqueous Soils Profile Description
   Example • 2-110
   Form • 2-109
Submerged Aguatic Vegetation • 2-101
Subordinate Distinctions • See Horizon Suffixes
Sulfides
   Discussion • 2-106
Surface Coats • 2-12
Surface Crust and Plates Classes (Rupture Resistance) • 2-64
Surface Crust and Plates (Rupture Resistance) • 2-62
Surface Crusts • 2-77 • See also Soil Crusts
Surface Fragments • 1-26
   Class • 1-26
   Kind • 1-26
   Mean Distance Between Fragments • 1-26
   Shape • 1-26
   Size • 1-26
Surface Morphometry • 1-5, 3-39,
```

T

Table Comparing Particle Size Systems • 2–45
Tabular List for Determination of Color Contrast • 2–16
Tectonic and Structural (Geomorphic Environments; Landforms) • 3–31

```
Terms Used In Lieu of Texture • 2-43
Terraces and Stepped Landforms (Geomorphic Components of) •
   1-8
Terraces, Stepped Landforms (Geomorphic Components of) • 3-42
Textural Triangle
   Combined Textural Triangles: Fine Earth Texture Classes and
   Family Particle-Size Classes • 4-11
   Family Particle-Size Classes • 4-10
   Fine Earth Texture Classes • 2-38
Texture Class • 2-37
Texture Modifiers • 2-38, 2-39
Texture Modifiers (Compositional) • 2-41
Threadlike • 2-25
Tidal Datum (Discussion) • 2-99
Tidal Period • 2-111
Till Terms • 5-10
Time
   End • 2-98
   Start • 2-98
Time Scale • See North American Geologic Time Scale
Tongues • 2-80
Topographic Quadrangle • 1-2
Total Pipe Length • 2-111
Townships (location) • 6-3
Transects • 1-3
   Delineation Size • 1-3
   ID • 1-4
   Kind • 1-3
Trans-Horizon Cracks • 2-75, 2-76
Transitional Horizons • 2-2, 4-1
Transported Deposits • 1-21
Tubular Pores • 2-73, 2-74
Tunnel (Erosion) • 1-25
U
```

```
Unconfined Compressive Strength • 2–67
Undulation • 2–6
Universal Transverse Mercator (UTM) Rectangular Coordinate
System • 6–5
```

V

```
Variegated (color) • 2–9
Vegetation • 1–17
Vegetation Cover • 1–18
Vertical Datum
Discussion • 2–100
Vesicular Crust • 2–78
```

Vesicular Pores • 2–74 Vibracore Log Sheet Example • 2–114 Form • 2–113

Vibracore Sampling for Subaqueous Soils (Discussion) • 2–111 Volcanic and Hydrothermal (Geomorphic Environment; Landforms) • 3-30

Volcanic Deposits • 1−20 Volcaniclastic Rock Terms • 5−7

Vughs • 2-73, 2-74

W

Water Bodies (Landforms) • 3–37
Water Column Measurements • 2–102
Water Depth • 2–100, 2–111
Water Laid Deposits • 1–21
Water Repellent Layer • 2–80
Water Status • 1–11
Water Table • See Depth to Water Table, Seasonal High Water Table
Water Temperature • 2–102
Waypoint • 2–98
Wedge Structure • 2–53, 2–54
Wetland (Landforms) • 3–36
Where Core Is Stored • 2–112