
Chapter 

5
By Suzann Kienast-Brown and Zamir Libohova, USDA-NRCS, and 
Janis Boettinger, Utah State University.

Digital Soil Mapping

Principles and Concepts

Digital soil mapping is the generation of geographically 
referenced soil databases based on quantitative relationships 
between spatially explicit environmental data and measure-

ments made in the field and laboratory (McBratney et al., 2003). The 
digital soil map is a raster composed of two-dimensional cells (pixels) 
organized into a grid in which each pixel has a specific geographic 
location and contains soil data. Digital soil maps illustrate the spatial 
distribution of soil classes or properties and can document the uncertainty 
of the soil prediction. Digital soil mapping can be used to create initial 
soil survey maps, refine or update existing soil surveys, generate specific 
soil interpretations, and assess risk (Carré et al., 2007). It can facilitate 
the rapid inventory, re-inventory, and project-based management of lands 
in a changing environment.1

SCORPAN Model
The scientific foundation of soil mapping is Hans Jenny’s (1941) 

conceptual model that soils (S) on a landscape are a function of five 
environmental factors, namely climate (cl), organisms (o), relief (r), 
parent material (p), and time (t):

S = f (cl, o, r, p, t)

While this model, sometimes known as CLORPT, has been useful 
in conventional soil mapping, it is not quantitative nor spatially explicit. 

1 Trade or company names used in this chapter are for informational purposes only. 
This use does not constitute an endorsement by USDA–NRCS or the contributing 
authors of this chapter.
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To represent soil and the related environmental factors in a spatial 
context and express these relationships quantitatively, McBratney et al. 
(2003) proposed the SCORPAN model, where soil (as either soil classes, 
Sc , or soil attributes, Sa ) at a point in space and time is an empirical 
quantitative function of seven environmental covariates: soil (s), climate 
(c), organisms (o), relief (r), parent material (p), age (a), and spatial 
location (n):

Sc,a = f (s, c, o, r, p, a, n) 

The important advances of the SCORPAN model for use in digital 
soil mapping are: (1) the recognition that the environmental factors 
are not necessarily independent of each other and are thus defined as 
environmental covariates, (2) the inclusion of soil as an environmental 
covariate, (3) the spatially explicit nature of the model, and (4) the 
quantitative nature of the functional relationships. In the SCORPAN 
model, soil, either as point observational data, existing soil maps, 
or remotely sensed spectral properties, can be used as input data. 
Environmental covariates are digital and spatially explicit data in a 
raster that is processed using a geographic information system (GIS). 
The SCORPAN model facilitates the quantification of the relationships 
between spatially explicit digital environmental covariates and the soil 
classes or attributes to be predicted in a spatial context. It also facilitates 
the estimation of error or uncertainty of the spatial prediction of soil 
classes or properties.

Digital vs. Conventional Soil Mapping
The availability and accessibility of geographic information 

systems (GIS), global positioning systems (GPS), remotely sensed 
spectral data, topographic data derived from digital elevation models 
(DEMs), predictive or inference models, and software for data analysis 
have greatly advanced the science and art of soil survey. Conventional 
soil mapping now incorporates point observations in the field that are 
geo-referenced with GPS and digital elevation models visualized in a 
GIS. However, the important distinction between digital soil mapping 
and conventional soil mapping is that digital soil mapping uses 
quantitative inference models to generate predictions of soil classes 
or soil properties in a geographic database (raster). Models based on 
data mining, statistical analysis, and machine learning organize vast 
amounts of geospatial data into meaningful clusters for recognizing 
spatial patterns. 
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Various digital soil mapping tools, methodologies, and inference 
models have been developed and tested in the U.S. and abroad to 
facilitate the rapid visualization and quantification of landscape patterns 
at multiple spatial scales (Lagacherie et al., 2007; Hartemink et al., 
2008; Behrens et al., 2010; Minasny et al., 2012). A significant amount 
of the data used in digital soil mapping can be archived in a spatially 
explicit digital format in a GIS, so the expert knowledge used to predict 
soil distribution on the landscape is retained. Objective sampling plans 
can be implemented to statistically capture variability of the landscape, 
representing it by digital environmental covariates. Probably the most 
exciting aspect of digital soil mapping is the ability to generate spatially 
distributed information on soil classes and/or properties and the associated 
estimate of uncertainty (the probability that a particular soil type and/
or property occurs at a specific point on the Earth’s surface). There is 
a great demand globally for spatially distributed soil information. This 
is evidenced by the launch of GlobalSoilMap (Arrouyas et al., 2014), 
a project to make a digital soil map of the world using state-of-the-art 
technologies for soil mapping and predicting soil properties at 100-m 
resolution. 

Maps that predict the spatial distribution of soil classes or properties 
are of interest in many countries because they inform soil use and 
management decisions. Digital soil mapping better captures observed 
spatial variability and reduces the need to aggregate soil types based on a 
set mapping scale (Zhu et al., 2001). An important component of digital 
soil mapping is the method of analysis used to define the relationship 
between soil observations and environmental covariates. Many types 
of methods have been investigated, including expert systems (Cole and 
Boettinger, 2007; Saunders and Boettinger, 2007; Zhu et al., 2001), 
unsupervised classification (Boruvka et al., 2008; Triantifilis et al., 
2012), and machine learning or predictive modeling (Behrens et al. 2005; 
Behrens and Scholten, 2006; Bui and Moran, 2003; Stum et al., 2010; 
Brungard et al., 2015). 

Discrete vs. Continuous Models

Discrete Models
A map of soil classes, such as soil map units, is a type of discrete, 

or crisp, model (Hole and Campbell, 1985; Burrough and McDonnell, 
1998). Discrete models represent thematic or categorical data in 
which the values represent a predefined class with a finite number of 
possibilities. These models are typically nominal, ordinal, or binary and 
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therefore lack numerical meaning. When applied in a raster, each pixel 
value represents the class associated with the pixel (e.g., soil class A, soil 
class B, soil class C, etc.). Mathematical operations cannot be applied 
directly to discrete data because the values do not have true numerical 
meaning (e.g., soil class B is not twice as great as soil class A).

Soil mapping has traditionally used the discrete model to represent 
distinct soil types and groups of soil types on the landscape. In a raster 
environment, discrete models simplify the display of modeled classes 
and align conceptually with the conventional soil survey approach. 
However, discrete soil class models present the assumption that soils are 
constant across a class. Classes can be defined either narrowly or broadly 
for any soil landscape unit, similarly to how the traditional map unit can 
be categorized as a consociation or complex. Narrowly defined classes 
are best for providing site-specific interpretations and are most suitable in 
situations where sufficient field observations (training data) are available 
to adequately define the classes. Broadly defined soil classes may help 
bridge the gap from conventional (polygon, vector) to digital (raster) 
soil mapping and are most suitable in situations where field observations 
(training data) are limited. 

Continuous Models
A map of soil properties is a type of continuous model. Continuous 

models represent data in which the values are measurements or 
calculations that have numerical meaning and represent a continuum. 
In a raster environment, each pixel value represents a real quantitative 
value (measured, calculated, or inferred) and can have various levels of 
precision (e.g., integer or floating point). Continuous models allow for 
any value over a continuous range, whereas discrete models have only a 
finite number of predefined outcomes. 

Continuous soil models are designed to handle the continuous nature 
of soil properties more realistically than discrete models. In theory, 
continuous models eliminate the disadvantages of predefined classes and 
distinct boundaries in soil mapping. In practice, the continuity depends 
upon the cell size and the precision used. Predictions of soil properties 
are typically represented with a continuous data model. 

The majority of the environmental covariates used in digital soil 
mapping are continuous data models. Terrain attributes derived from 
a digital elevation model (DEM), such as slope gradient, curvature, 
and area solar radiation, are continuous models. Spectral data, such as 
reflectance, derived from satellite or aircraft remote-sensing platforms 
are also continuous models. 
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Stages and Processes

Typically, each digital soil mapping project is unique. Many aspects 
of a project may vary (e.g., the objectives of the project, the biophysical 
properties of the study area, the availability of environmental covariates, 
the method of prediction applied). However, the stages and processes 
of digital soil mapping should be consistent in all projects. Each stage 
comprises a series of specific objectives that must be accomplished for 
the digital soil mapping project to progress. The digital soil mapping 
process is iterative and requires review and assessment at several points. 
The stages and processes of digital soil mapping projects are outlined in 
the following list and described in the following subsections.

Outline of Stages and Processes
Stage: 
1.	 Define	area	and	project	scope

a. Define and refine objective: soil classes or properties
2.	 Identify	physical	features	of	interest	

a. SCORPAN—important covariates and appropriate data
b. Scale of processes and measurements
c. Available measurements (field and remote sensing)

3.	 Data	sources	and	preprocessing	
a. Identify and acquire data
b. Assess data quality
c. Organize data
d. Preprocess data

4.	 Data	exploration	and	landform	analysis	
a. Derive terrain and spectral data products
b. Select appropriate predictors

5.	 Sample	for	training	data	
a. Case-based and a priori samples
b. Field samples
Review and assess: 
• Do the data layers represent the important environmental 

covariates?
o Yes—proceed to Stage 6
o No—return to Stages 2, 3, and 4

• Are the training data adequate to predict the classes or 
properties of interest?
o Yes—proceed to Stage 6
o No—return to Stage 5
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6.	 Predict	soil	classes	or	properties	
a. Choose and apply appropriate prediction method

i. Soil classes – unsupervised or supervised classification, 
predictive modeling

ii. Soil properties – predictive modeling, geostatistics
Review and assess: 
• Are the prediction results reasonable?

o Yes—proceed to Stage 7
o No—apply a different prediction method, combination 

of predictors, or set of training data—return to Stages 4, 
5, and 6

7.	 Calculate	accuracy	and	uncertainty	of	results	
Review and assess:
• Are accuracy and uncertainty results acceptable?

o Yes—proceed to Stage 8
o No—revisit prediction method, predictors, and training 

data—return to Stages 4, 5 and 6
8.	 Apply	digital	soil	mapping	

a. Produce soil class or property maps
b. Evaluate existing maps
c. Create soil information products
d. Apply to other disciplines

Defining the Area and Scope of the Project
Before beginning a digital soil mapping project, it is important to 

clearly define the project area and scope. For example: 

• What is the specific objective of the project?
• Is the project intended to create initial soil survey information or 

to update existing soil mapping and data?
• Is the objective to produce a map for a specific purpose?
• What is the geographic extent of the project area?
• What are the biophysical characteristics of the area?
• How are the biophysical characteristics of the area related to the 

distribution of soils on the landscape?
• At what spatial scale is the expected variation in soil distribution 

expressed (local vs. regional)?
• Are soil classes and/or soil properties to be predicted?
• What is the scale of the final map product(s)? 

Digital soil mapping can address a variety of questions. The key is to 
determine how digital soil mapping can be applied in your project area to 
achieve your objectives.
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Identifying the Physical Features of Interest

Environmental Covariates and Appropriate Data 
The first step after defining the area and scope is to determine which 

environmental covariates are most important to soil development and 
distribution in the project area. Once these are determined, the related 
specific terrain and spectral characteristics can be identified and 
appropriate digital data selected to allow the discrimination of those 
physical phenomena. Five environmental covariates in the SCORPAN 
model are commonly derived from digital data: soil properties (s), 
organisms (o), parent material (p), relief (r), and climate (c). How humans 
have altered the Earth’s surface may also be considered, which in some 
cases can represent the time or age (a) covariate.

Soil (s).—Soil can be represented by covariates derived from: (1) 
georeferenced point data representing field and/or laboratory meas-
urements, (2) remotely sensed spectral data, or (3) existing soil maps. 
Digital data may include point data such as soil taxonomic class, soil 
depth to bedrock, or soil chemical or physical properties by genetic 
horizon (e.g., soil laboratory data associated with a georeferenced sample 
location at the NRCS Kellogg Soil Survey Laboratory). Surface or near 
surface properties of the soil may have diagnostic spectral signatures 
distinguishable by remote sensing data. For example, Nield et al. (2007) 
used Landsat 7 ETM+ data to digitally map the occurrence of soils 
with surficial accumulations of gypsum, which was distinguished by a 
normalized difference ratio of the two shortwave-infrared (SWIR) bands 
(bands 5 and 7). Existing soil class data in the form of soil maps may also 
be useful, particularly in soil survey update projects or in disaggregating 
soil map unit associations into soil components (Nauman and Thompson, 
2014).

Organisms (o).—Organisms are typically represented by vegetation 
or land cover digital data, including existing land cover data and 
remotely sensed spectral data. Existing land cover data can include 
maps of vegetation, land use, and species distribution, such as those 
available from the National Gap Analysis Program (USDI-USGS, 1999). 
Vegetation is commonly represented by remotely sensed spectral data 
because green vegetation reflects near infrared (NIR) and absorbs red 
electromagnetic radiation. The Normalized Difference Vegetation Index 
(NDVI) is a normalized difference band ratio of the NIR and red bands 
of a multispectral image. The values range from -1.0 to 1.0—higher 
values indicate higher vegetation density. NDVI can be quantified 
for any spectral data source that contains NIR and red bands, such as 
Landsat data. For example, NDVI was an important covariate in digitally 
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mapping the occurrence of badlands with very low vegetation cover in 
the Powder River Basin in Wyoming (Cole and Boettinger, 2007).

Parent material (p).—Parent material can be derived from a 
geology map or gamma radiometric data or by using remotely sensed 
spectral data to discriminate mineralogical correlates of parent material. 
Mineral assemblages in different parent materials (rocks and sediments) 
will vary in spectral response. Mineralogy is particularly responsive 
in the SWIR range of the electromagnetic spectrum, represented by 
Landsat TM or ETM bands 5 and 7, Landsat 8 OLI bands 6 and 7, and 
Advanced Spaceborne Thermal Emission and Reflection Radiometer 
(ASTER) bands 4 through 9. For example, the San Francisco Mountains 
in the Great Basin of southwestern Utah are characterized by mixed 
sedimentary rocks (mainly quartzite) intruded by igneous rocks (mainly 
andesite) with mixed basin fill. A principal components analysis of 
Landsat ETM+ bands 1 through 5 and 7 helped distinguish an andesite 
intrusion from sedimentary rocks and showed the influence of andesite 
on the composition of the alluvium downslope from the intrusion (Stum 
et al., 2010).

Relief (r).—The covariate representing relief can be derived from 
elevation data, such as Light Detection and Ranging (LiDAR), the 
National Elevation Dataset (NED), Interferometric Synthetic Aperture 
Radar (IFSAR), photogrammetric data, etc. These data derivatives are 
known as terrain attributes or elevation derivatives. Examples of terrain 
derivatives are slope gradient, slope length, slope curvature, wetness 
index, ruggedness index, slope aspect, landform, and relative elevation. 
Various combinations of terrain attributes can generate geomorphic 
surfaces and describe processes related to soil development.

Climate (c).—The climate covariate can be approximated in some 
areas by elevation, especially in landscapes subject to orographic effects 
(i.e., higher elevations are subject to cooler temperatures and greater 
amounts of precipitation). Regional climate models and data are also 
available, e.g., climate data at about 800-m resolution in the U.S. from the 
PRISM Climate Group (2016). Solar radiation is commonly an excellent 
proxy for climate, particularly in aspect-driven climate scenarios. Solar 
radiation models are widely available and can be calculated in various 
GIS software packages.

Age (a).—While not commonly considered a SCORPAN covariate, 
soil age has a major impact on the degree of profile development and soil 
properties. Humans, for example, play an important role in altering the 
landscape and/or land cover, thus changing soil properties (attributes), 
soil classes, and land use. Therefore, in some cases the human impact 
on the landscape can represent age. One example is the northern part 
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of the Las Vegas area, Nevada, where humans have urbanized the arid 
desert landscape and created green space via irrigation. In many areas, 
petrocalcic horizons have been destroyed, changing the habitat necessary 
for rare endemic plant species, and irrigation has altered soil properties 
and regional hydrology by leaching salts out of soils, raising water 
tables, and disrupting natural waterflow patterns. Human alterations 
of the landscape and land cover may also indicate soil properties. For 
example, the parts of a landscape converted into agriculture may indicate 
the location of soils that have desirable properties, such as lower contents 
of rock fragments or lower levels of salinity.

Scale of Processes and Measurements
The processes responsible for the development and distribution 

of soils on the landscape operate over a wide range of spatial scales, 
from continental (e.g., tectonic events and glaciation) to regional (e.g., 
deposition of alluvium and windblown sand) to hillslope (erosion and 
deposition) to pedon (addition, removal, transformation, and translocation 
of materials). These processes, their interactions, and their scale of 
spatial expression can create complex soil patterns. The processes must 
be understood and represented by the appropriate measurements for both 
environmental covariates and field observations. Digital data can be 
used to stratify landscapes into relatively homogenous geological and 
geomorphic units, which are helpful in understanding these processes 
and developing an appropriate design for collecting data in the field.

Field measurements.—Field measurements in digital soil mapping 
are derived from georeferenced points. They may be full or abbreviated 
pedon descriptions and associated laboratory data. The goal is to predict 
soil classes and properties beyond the location of field observations. Soil 
sample size and the area or volume of representation should be considered 
when determining the location of field sampling sites and timing of 
measurements (Bouma et al., 1989; Mohanty and Mousli, 2000). 

Remote sensing measurements.—Remote sensing has been defined 
as the “art and science of deriving information from measurements made 
at a distance” (Colwell, 1997). Remote sensing measurements detect 
electromagnetic radiation from the Earth’s surface in two different ways: 
passive and active. Passive remote sensing collects electromagnetic 
information produced as a result of the interaction between the sun’s 
energy and surface materials, such as measurements collected by satellite 
sensors. Active remote sensing collects information returned from the 
Earth’s surface as a result of an emitted signal, such as LiDAR (Light 
Detection and Ranging) or radar. (See chapter 6 for more information on 
remote sensing and other tools for proximal soil sensing.) 
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Remote sensing measurements that provide digital elevation and 
spectral response data are commonly used in digital soil mapping. The 
remote sensing of topography via passive sensors (e.g., aerial photographs) 
or active sensors (e.g., LiDAR) results in the generation of digital 
elevation models. The use of digital elevation models in soil mapping is 
extensive and well documented because variations in relief are closely 
linked to the distribution of soil properties and classes. Remote sensing of 
spectral data provides direct information about the surface properties of 
soils, vegetation, or other materials. Spectral properties remotely sensed 
at the surface can be related to environmental covariates that control soil 
development. The spectral properties can therefore potentially be used to 
infer other soil characteristics. Specifically, remote sensing data can be 
used to map the variations in relief, climate, organisms, parent material, 
and even time (indirectly). 

When reviewing remotely sensed data sources, the data collection 
mechanism, the extent and consistency of the data, and the scale of 
the data compared to the scale of the physical phenomena need to be 
considered. The spatial detail, the spectral wavelengths of imagery, and 
even the season of the year or other temporal aspects of the physical 
environment that influence the timing of data acquisition should also be 
considered. 

Because remote sensing measurements are collected at varying 
spatial and spectral resolutions, careful consideration should be given 
to selecting data at the appropriate spatial and spectral scale to represent 
the environmental covariates and processes in the project area. The focus 
should be the specific scope of a project, e.g., what spatial and spectral 
resolution is most appropriate for the question(s) being asked? These 
needs should then be compared against the range of data that is actually 
available given budget or other constraints.

Selecting Data Sources and Preprocessing

Identify and Acquire Data
One of the most critical steps in a digital soil mapping project is 

selection of the data. Incorporating data that match the question or problem 
being considered is essential to the success of the project. The properties 
of the data should be directly related to the physical attributes and soil-
forming processes in the area of interest. For example, in mountainous 
areas a 30-m DEM might adequately characterize the significant features 
on the landscape. In low-relief areas where soil formation is driven by 
very subtle changes in topography, a much higher resolution DEM may 



 soil survey Manual 305

be necessary to adequately characterize the terrain features. Several 
studies have shown that soil-landscape relationships exist over a range 
of scales (Thompson et al., 2001; Smith et al., 2006; Park et al., 2009). 
Spatial information commonly has to be down-scaled or up-scaled to 
match other environmental covariates.

A project may require a mix of data to adequately represent the 
multiple SCORPAN covariates that influence soil development in a 
particular area. Elevation derivatives and spectral derivatives are a 
powerful combination for predicting soil classes or properties in most 
areas. However, depending on the question being considered and the 
physical features of the area, a project may require only one of these data 
sources.

In the United States, there are multiple sources for both DEMs and 
remote sensing images. One of the largest archives of remote sensing 
imagery is the USGS EarthExplorer site (USDI-USGS, 2016a). The USGS 
National Elevation Dataset provides DEMs for most locations (USDI-
USGS, 2016b). Many States have archives available for DEMs (USGS 
and LiDAR), Landsat, and ASTER imagery and should be investigated 
as potential data sources. The NRCS Geospatial Data Gateway also 
provides many different types of data layers (USDA-NRCS, 2016a). 

Assess Data Quality
Once data sources have been identified, the quality of the data should 

be assessed to ensure the best data available are being used for model 
development. Data attributes to be considered include resolution, spatial 
projection, units, and source.

Resolution.—Resolution of the data is one of the most important 
attributes to consider when selecting data. Many high-resolution data 
sources are currently available, but they may not address the problem 
being considered. High-resolution data can provide “too much 
information” and add undesirable noise and/or excess data storage and 
processing time to analysis and modeling. The scale of physical features 
or properties on the landscape should be considered when choosing the 
most appropriate resolution.

 The types of resolution—spatial, spectral, temporal, and radiomet-
ric—must be considered. Spatial resolution applies to all data sources and 
equates to grid cell size. In deciding the appropriate spatial resolution, 
the features of interest on the landscape must be considered; the grid cell 
size must be able to adequately capture the desired features. One rule of 
thumb is that the smallest object recognized should be equivalent to four 
grid cells of a DEM (Rossiter, 2003).
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When considering spectral data derived from remote sensing 
sources, spectral resolution may be the most important attribute. 
Spectral resolution refers to the number of bands of data a sensor 
provides and which part of the electromagnetic spectrum they capture. 
Generally, the red and NIR part of the spectrum is most important 
if the focus is vegetation and the SWIR part of the spectrum is most 
important if the focus is minerals, parent materials, or bare soils  
(fig. 5-1). 

Figure 5-1
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Temporal resolution indicates the time of year and frequency of 
image acquisition. Seasonality or repetition of image acquisition over 
several years may be an important variable. In addition, noting the date 
of acquisition is important if several images are mosaicked together. 
Ideally, the images for a mosaic should be acquired on or near the same 
date to minimize differences in atmospheric and Earth surface conditions. 
If data meeting those criteria are not available, and data from different 
years are used, the data used should at least be from the same time of 
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year. Image acquisition frequency typically ranges from every day (e.g., 
MODIS and AVHRR) to every 16 days (e.g., Landsat).

Radiometric resolution is an important, though rarely considered, 
spectral sensor attribute. It refers to the number of gray levels the sensor 
can potentially differentiate. Gray levels describe the brightness values 
(BV) or the digital number (DN) values that are recorded for an image. 
Because these quantization values are integers, they are only whole 
numbers. Therefore, there is a direct correlation between the range of 
numbers that are used in describing an image and the level of detail in 
the brightness variation.

Spatial projection.—It is important to ensure that all digital data 
are the same spatial projection (geographic vs. projected datum, etc.) for 
ease of processing. There are many software packages that can be used 
to define the projection (if data comes without a projection file but the 
projection is known) and re-project the data. The georeferencing of the 
data should be checked by comparing key features in a data source with 
the same key features in a reliable image source, such as the National 
Agriculture Imagery Program (NAIP). If georeferencing needs to be 
corrected, many software packages offer this functionality.

Units and data type.—Understanding the units of the data and 
how to interpret them is important. If units between data sources are 
not compatible (e.g., feet vs. meters for a DEM), values may need to 
be converted. Data ranges should be noted as they will impact certain 
classification methods. 

The data type and how the data are stored should also be noted, such 
as whether the data is a floating point (contains decimal places) or an 
integer and the number of bits of the data. For integers, 1-bit data are 
binary and store 2 values (0 and 1), 8-bit data can store 256 values, and 
16-bit data can store 65,536 values. Floating point numbers are either 
single (32 bit) or double (64 bit). Another aspect to consider is the file 
type: thematic (discrete, categorical) or continuous. Typically, thematic 
data are integer and continuous data are floating point. The numbers in 
a continuous dataset have intrinsic meaning and represent real physical 
measurements (elevation or reflectance) or are the result of a calculation 
that has been performed on the data (e.g., wetness index from elevation, 
spectral band ratio from reflectance). In contrast, thematic (categorical) 
data typically represent an interpreted class. All of the information 
needed to properly understand the data typically can be found in the file’s 
metadata.  

Data issues.—Several issues may occur with data, but most can 
be resolved during preprocessing. For spectral imagery, issues include 
clouds, smoke, sun glint, data loss, and calibration. When possible, 
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another image of better quality should be used. Images without clouds 
and smoke are preferable since these issues cannot be resolved through 
preprocessing. If an alternate image is not available, data preprocessing 
techniques should be tried to reduce the impact of sun glint, data loss, or 
calibration issues on analysis.

Elevation data are developed to model the bare earth terrain features 
from a number of sources, and each source has a unique set of issues. 
The most frequently used form of elevation data in digital soil mapping 
is a raster surface comprised of a matrix of cells arranged in rows and 
columns. The elevation values in the cells can be interpolated from 
points or contour lines. The accuracy of the elevation values themselves 
is commonly reported for data sources and indicated in the metadata. 
Accuracy typically is expressed using root mean squared error (RMSE) 
as related to the absolute error of the elevation surface. Smaller RMSE 
values more closely match the absolute elevations of the modeled surface. 
The spatial resolution of a cell determines the level of characterization 
detail that can be attained for the analysis of the bare earth terrain 
features. The cell size used should not exceed the accuracy level of the 
source data.

DEMs derived from hypsography (digital contour data), also called 
HypsoDEMs, will have a characteristic contour-line bias, which is 
expressed as an artificial, terraced landscape. DEMs produced from 
hypsography may also have flat-topped ridges, peaks, and indistinct 
junctures between footslopes and toeslopes. The contour line interval 
is a critical factor when considering the use of DEM-derived data for 
terrain analysis, especially in areas of low relief. Derivative products 
created from the HypsoDEM in which the contour line interval exceeds 
the change in relief will portray features that reflect the locations of the 
contour lines and not the features of the terrain surface. No satisfactory 
solutions are available to correct this problem. 

DEMs produced from LiDAR may have areas of uncertainty 
associated with vegetation and the presence of water. Areas with dense 
vegetation may have few to no returns of the emitted signal from the 
actual ground surface. The LiDAR sensor rarely receives a return when 
the pulse makes contact with any surface water. Areas with very shallow 
water will have either no data collected or will have points where the 
pulse contacted vegetation above the water surface. In these cases, the 
DEM will have elevations that are greater than the actual ground surface. 
If there are isolated patches of dense vegetation, artificial “spikes” may 
occur in the DEM. In areas with mixed land cover, such as cultivated 
cropland and small woodlands, the effect of the wooded areas may be 



 soil survey Manual 309

pronounced. Performing a minimum focal filter in association with 
iterative focal smoothing operations can help minimize these problems.

DEMs produced from radar (such as x-band radar, e.g., IFSAR) will 
not represent the bare earth surface where vegetation is present unless 
augmented with elevation data from another source. Unlike LiDAR, 
IFSAR produced with x-band radar will not adequately penetrate 
vegetation to model the bare earth surface. In addition, IFSAR is not 
sensitive to features with abrupt changes in slope, such as narrow, 
convex ridges or concave, closed depressions. Because DEMs from this 
data source may mute the expression of such features, modifications 
should be made to accurately reflect terrain derivatives such as slope 
or curvature, or the less defined representation of the features should be 
acknowledged. 

Artifacts derived from the data management scheme used in the 
source data may be apparent with DEMs developed from LiDAR or 
radar data. Tiling is an effective method of managing and processing 
the large volumes of source data. It organizes the data into small, 
systematic, rectangular grids. The juncture between adjacent tiles may 
introduce inadvertent artifacts. One or several smoothing (Gaussian or 
focal) operations may be able to adequately blend away these artifacts. 
However, the best practice is to consult the original data source (if 
available).

Organize Data
A data management plan is needed at the onset of a project. It should 

include a common directory structure, file naming convention, minimum 
metadata standard or other means of documentation, and a data backup 
process. This plan is particularly important if the project will include 
multiple members of a team accessing and utilizing the same data. It 
should be simple enough for the members to effortlessly implement.

One approach is to keep the original data sources separate from the 
processed data. The folder structure should represent the steps in the 
process, and the names of folders and files should reflect their content. 
The processing and analysis steps and the file naming convention should 
be kept in a separate document or in the metadata. Regardless of the 
folder structure and naming conventions, the processing steps of the 
project could be used as a guide to organizing the data. 

Preprocess Data
Data rarely are in an immediately usable format. Some degree of 

preprocessing typically is needed before the data can be incorporated 
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into analysis or modeling. Some basic guidelines for data preprocessing 
are: 

• Ensure that all data are in the same projection and have the same 
extent.

 ○ Select natural boundaries when possible for the project 
area and include a buffer around the perimeter of the 
area when clipping or subsetting data for processing. 
This minimizes or eliminates potential edge-effect from 
processing along the margins of a dataset.

 ○ Use a snap raster to maintain consistency in grid cell 
alignment.

• Validate georeferencing with a reliable image source (e.g., 
NAIP).

• Normalize spatial resolution (grid cell size) between layers.
 ○ If multiple datasets are being combined, it may be best if 

they share a common spatial resolution. 
• For elevation data, include in DEM preparation:

 ○ Filling sinks and trimming peaks; 
 ○ Removing linear, human-made artifacts (e.g., roads, 

railroads, channelized waterways);
 ○ Applying a low-pass filter or other smoothing algorithm; 

and
 ○ Ensuring that derivatives based on hydrology (e.g., flow 

accumulation, upslope contributing area, topographic 
wetness index, stream power index) encompass entire 
watersheds for consistent interpretation and application 
of values across the entire project area. 

• For spectral data, apply image standardization or atmospheric 
correction to calculate surface reflectance when:

 ○ Mosaicking images for classification (if images were 
not acquired on the same day/time and under the same 
atmospheric conditions);

 ○ Calculating band ratios;
 ○ Extracting biophysical information from the image 

(biomass, NDVI); and
 ○ Extending class signatures across multiple images, 

particularly if images were acquired on a different date 
or location.

 Landsat 4, 5, 7, 8 surface reflectance products are available from 
USGS EarthExplorer (USDI-USGS, 2016a). 
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• If a mosaic is required, apply all the preprocessing prior to 
mosaicking. 

• Stratify the area to reduce variability for analysis, modeling, or 
classification.

 ○ Choose a stratification that applies to the overall goal of 
the project and is based on natural boundaries, such as 
geology, elevation, physiographic areas, etc. 

Data Exploration and Landscape/Landform Analyses
The process of digital soil mapping requires exploring the data 

available for a project and linking it to key SCORPAN covariates and 
pedological knowledge. With the soil processes and end goal of the 
project in mind, an exploration analysis should be used to determine 
if the data will provide adequate information on the variability and 
distribution of key covariates across the area of interest. Commonly, 
unexpected variation in the data is discovered and an evaluation is needed 
to determine if real information or noise is represented. In most cases, the 
development of terrain or spectral data derivatives is necessary to exploit 
the data to its full potential for predicting soil classes or properties.

Deriving Terrain Attributes
Terrain attributes are derived from DEMs and are typically 

represented using the raster data format. Elevation can also be represented 
as points (e.g., LiDAR returns) or triangulated irregular networks (TIN), 
but the raster format is typically preferred due to its greater flexibility. 
Elevation data are typically developed from contours, topographic 
surveys, or LiDAR data. Terrain attributes may be broadly grouped 
into two categories: (1) primary attributes, which are computed directly 
from a DEM; and (2) compound attributes, which are combinations of 
primary attributes (Moore et al., 1991). The field of geomorphometry 
(Hengl and Reuter, 2008) has advanced with the technology of GIS and is 
contributing to the evolving list of terrain attributes. Table 5-1 lists some 
terrain attributes commonly used in digital soil mapping. An exhaustive 
list is available in Wilson and Gallant (2000). All these terrain attributes 
can be calculated using commonly available GIS and statistical software 
packages (e.g., ArcGIS, SAGA, R).

A critical variable to consider when calculating terrain derivatives is 
the neighborhood size used. The typical raster GIS operation uses a roving 
window of 3 x 3 cells when calculating first and second derivatives, such 
as slope gradient and slope curvatures, respectively. This small window 
can be problematic if the source DEM has a high resolution (e.g.,  
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Table 5-1
Selected Primary and Compound Terrain Attributes Used in 
Digital Soil Mapping

Attribute Measures Biophysical 
property

Primary
Curvature Second derivative of 

slope
Flow characterization, 

i.e., runoff or run-on
Relief, a.k.a. 

Topographic 
Ruggedness  
(Riley et al., 1999)

ABS(Zmax – Zmin)
for specified 
neighborhood

Broad characterization 
of terrain (infers 
parent material)

Normalized Slope 
Height, a.k.a. Relative 
Elevation or Relative 
Position

(Z – Zmin)/
(Zmax – Zmin) 
where Z = elevation 
of center cell 
for specified 
neighborhood

Relative landform 
position, catenary 
sequence, vegetation 
distribution

Compound
Solar Radiation 

(Hofierka and Suri, 
2002)

Estimates potential or 
actual incoming solar 
radiation for specified 
time interval

Solar energy incidence 
on surface, a means of 
modeling aspect 

Wetness Index, i.e., 
Topographic Wetness 
Index  
(Moore et al., 1991)

W = (A/S) 
where A = upslope 
contributing area 
for a cell and S = the 
tangent of slope 
gradient

Spatial distribution of 
zones of saturation 
for runoff (assumes 
uniform soil 
transmissivity within 
the catchment)

Potential Drainage 
Density  
(Dobos and 
Daroussin, 2005)

Cell count of 
stream segments 
within specified 
neighborhood

A measure of landscape 
dissection

Morphometric 
Protection Index 
(Olaya and Conrad, 
2009)

A measure of 
topographic openness

Plant communities, soil 
development, impact 
of wind

Multi-Resolution Valley 
Bottom Flatness 
Index and Ridge Top 
Flatness Index 
(Gallant and Dowling, 
2003)

Process to differentiate 
valley floor and 
ridgetop positions

Landscape position

Geomorphon 
(Jasiewicz and 
Stepinski, 2013)

Landform classification 
based on line-of-sight

Crisp landform classes, 
catenary sequence
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< 10 meters) or contains substantial noise. For example, calculating 
a slope gradient from a 3-m resolution NED DEM for an area in the 
Midwestern United States using the typical 3 x 3 neighborhood yields a 
noisy surface, whereas a larger neighborhood yields a smoother surface 
that better represents the slope patterns that govern soil distribution.

The expanding neighborhood size over which the DEM derivatives 
are calculated allows flexibility in depicting local or regional features. 
The larger the neighborhood, the greater the emphasis on broad trends 
and large features. The most suitable neighborhood size for the modeling 
target(s) under investigation should be determined. Neighborhood 
sizes should vary according to the terrain attribute being calculated. 
For example, an attribute like topographic ruggedness is commonly 
calculated using a larger neighborhood to characterize a regional trend 
(e.g., geomorphic/physiographic region) but slope gradient is typically 
modeled as a localized attribute (e.g., hillslope).

Terrain attributes based on hydrology must be calculated using 
extents that include intact, complete watersheds. Terrain attributes such 
as upslope contributing area (flow accumulation), wetness index, stream 
power index, and downslope distance gradient will have consistent, 
uniform output values when calculated for complete watersheds, and 
the output values will have the same meaning when compared across 
different watersheds.

Another factor related to hydrologically based attributes is 
the manner in which flow direction is determined. One of the first 
algorithms developed limited flow to one of the eight directions in a 
3 x 3 neighborhood. It is known as the deterministic 8 (D8) algorithm 
(O’Callaghan and Mark, 1984). The D8 algorithm works well if flow 
paths are confined to areas of concentrated flow and there is only one 
cell of lower elevation to route flow toward. Problems occur if the flow 
is diffuse. More recent algorithms, such as the multiple flow direction 
method (MFD) (Quinn et al., 1991) or the deterministic infinity (Dinf) 
method (Tarboton, 1997), allocate flow to multiple directions and so 
render a flow path that better represents the diffuse nature of water flow. 

Several terrain attributes listed in table 5-1 or in Wilson and Gallant 
(2000) are appropriate for stratifying study areas or defining broad, 
regional areas. They include Topographic Ruggedness (Riley et al., 1999), 
Roughness by Relief and Aspect (Behrens, 2003), Hammond’s Landforms 
(1954, 1964), Iwahashi and Pike’s Topographic Classification (2007), 
Fuzzy Landform Elements (Schmidt and Hewitt, 2004), and Geomorphons 
(Jasiewicz and Stepinski, 2013). Since most of these attributes are based on 
a large neighborhood, they can be used to describe regional characteristics. 
Creating combinations of these attributes may also be useful. For example, 
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a crisp class (i.e., Geomorphon landform elements) in combination with 
relative elevation would be useful for investigations of the relationship 
between upper, mid, and lower backslopes (Libohova et al., 2016).

Spectral Data Derivatives
Spectral data commonly is transformed (not just used as raw spectral 

bands) in order to emphasize useful spectral signatures. A spectral data 
derivative is simply the conversion of spectral data, either digital numbers 
or surface reflectance, into a new composite spectral variable. Typically, 
these transformations involve some combination of the spectral values in 
two or more bands. The original bands represent a measure of radiance 
for a specific spectral band, whereas the derivative transforms the data 
and typically represents some information useful for subsequent analysis.

Spectral derivatives are useful for several purposes, including: (1) 
indices of biophysical properties, commonly related to environmental 
covariates (SCORPAN); (2) data reduction, by concentrating information 
into a small number of new bands; and (3) suppression of topographically 
related illumination variation (considered noise, not information). Of 
these spectral transformations, the conversion of spectral data into indices 
of biophysical properties is probably the most important for digital soil 
mapping. The most effective and widely used biophysical indices relate 
to vegetation abundance, in part because vegetation has such a distinctive 
spectral reflectance pattern. However, any physical property, including soil 
mineralogy and moisture, can potentially be the focus of a transformation 
if the property has a measurable effect on the spectral reflectance that can 
differentiate it from other surface materials in an image. Three of the most 
widely used spectral transformations are band ratios, principal components 
analysis, and the Tasseled Cap (Kauth-Thomas) transformation.

Band ratios.—Ratios of spectral bands can be used to accentuate the 
differences between reflectance and absorption features (Jensen, 2005). 
The two kinds of ratios commonly used are simple and normalized. Simple 
ratios simply divide the digital number (DN) or surface reflectance value 
(%) of one sensor band by another (e.g., band 1 / band 2). Normalized 
ratios divide the difference between two bands by the sum of the two 
bands. Because ratios are not scene-dependent, ratios from different 
images potentially can be compared. Table 5-2 lists commonly used band 
ratios. The information in the ratio image must be validated with a priori 
knowledge of the area or other measured data. Specialized ratios can be 
developed based on a surface feature that reflects highly in one band and 
absorbs greatly in another, such as gypsum (Nield et al., 2007). Ratios 
must be calculated on atmospherically corrected or standardized images 
(images converted to surface reflectance).
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Table 5-2

Spectral Band Ratios Used in Digital Soil Mapping* 

Ratio name Equation Sensor/bands Biophysical 
property

NDVI1 
(Normalized 
Difference 
Vegetation 
Index)

NIR –Red
NIR + Red

Values range from 
-1 to 1

Red and Near Infrared 
bands;  Landsat 5, 
7—bands 3, 4; 

Landsat 8—bands 
4, 5

Healthy green 
vegetation

Soil 
Enhancement 
Ratios2 

1) Red/Green: 
carbonates 

2) Red/SWIR(a): iron
3) SWIR(a)/SWIR(b): 

hydroxyls (clay)

See band 
combinations for 
carbonate, iron, 
hydroxyls (clay) 
ratios below

Three simple ratios 
for carbonate, 
iron, and 
hydroxyls (clay) 
are combined 
into one three-
layer image

Carbonate 
Normalized 
Ratio3

Red – Green
Red + Green

Values range from 
-1 to 1

Red and Green bands;
Landsat 5, 7—bands 

3, 2;
Landsat 8—bands 

4, 3

Calcium carbonate-
bearing minerals

Iron Normalized 
Ratio4

Red – SWIR(a)
Red + SWIR(b)

Values range from 
-1 to 1

Red and SWIR bands;
Landsat 5, 7—bands 

3, 7;
Landsat 8—bands 

4, 7

Iron-bearing 
minerals

Clay 
(hydroxyls) 
Normalized 
Ratio5

SWIR(a) – SWIR(b)
SWIR(a) + SWIR(b)

Values range from 
-1 to 1

SWIR bands;
Landsat 5, 7—bands 

5, 7;
Landsat 8—bands 

6, 7

Clay or hydroxyl-
bearing minerals

Rock Outcrop 
Normalized 
Ratio6

SWIR(a) – Green 
SWIR(b) + Green

Values range from 
-1 to 1

SWIR and Green;
Landsat 5, 7—bands 

5, 2;
Landsat 8—bands 

6, 3

Sedimentary 
(bright pixels) 
vs. igneous (dark 
pixels) parent 
material

Ferrous 
Normalized 
Ratio

SWIR(a) – NIR
SWIR(a) + NIR

Values range from 
-1 to 1

SWIR bands;
Landsat 5, 7—bands 

5, 4;
Landsat 8—bands 

6, 5

Ferrous iron-
bearing minerals

* For documentation and ERDAS Imagine models available for most ratios listed, see 
USDA-NRCS (2016b).

1 Jensen, 2005
2 Developed by U.S. Bureau of Land Management
3 The carbonate band from the Soil Enhancement Ratio (see above) as a normalized 

index
4 The iron band from the Soil Enhancement Ratio (see above) as a normalized index
5 The clay band from the Soil Enhancement Ratio (see above) as a normalized index
6 Bodily, 2005; Stum et al., 2010
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Principal components analysis.—In applications for remote 
sensing, principal components analysis (PCA) is an image-dependent 
data transformation and varies depending on the spectral properties of 
pixels in the image. Because each PCA transformation is unique, the 
results of a PCA transformation from one image cannot be compared 
directly to that from another image. This condition is both a strength and 
a weakness: a strength because the transformation will adapt to highlight 
the information present in the particular image, and a weakness because 
interpreting the results of a PCA transformation can be difficult (i.e., each 
scene’s PCA is different and needs to be interpreted based on its specific 
transformation). 

A PCA transformation is the rotation and translation of the n bands of 
original image data to produce n bands of new data, which are orthogonal 
or mutually perpendicular in spectral feature (n-dimensional) space and 
uncorrelated. The consequence of this method of arranging the new 
bands is that most of the variance will be concentrated in a subset of 
the PC bands (Jensen, 2005). PCA reduces variance of the data in the 
new PC bands, a reduction which may be desirable. The resulting PC 
bands should be examined closely to determine which new PC bands 
contain the most information and could potentially be most useful in 
subsequent analysis and modeling. The most useful are typically PC 
1, 2, 3, but they should be evaluated for each individual image). PCA 
transformation is available in many software packages and does not 
require an atmospherically corrected (surface reflectance) image.

Tasseled Cap (Kauth-Thomas) transformation.—The Tasseled 
Cap transformation is similar to PCA in that it is an orthogonal, multiband 
transformation. Unlike PCA, the rotations are directed to capture specific 
biophysical properties and are not scene specific. The original Tasseled 
Cap transformation was developed for Landsat MSS data and then 
extended for Landsat TM data. It was based on an analysis of agricultural 
data from the U.S. Midwest but since has been used globally and for non-
agricultural areas (including forestry and urban applications). 

The Tasseled Cap transformation is based on the observation that 
most of the variability in Landsat TM data can be explained by three 
properties: (1) brightness, which is similar to the average DN value across 
all bands; (2) greenness, which is a measure of vegetation abundance, 
similar to a vegetation index, but which incorporates all the bands and 
not just red and NIR; and (3) wetness, which tends to be correlated with 
the amount of water present. It is available in image processing software 
packages, such as ERDAS Imagine, and requires an atmospherically 
corrected (surface reflectance) image (Jensen, 2005).
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Selection of Appropriate Predictors
After data has been explored and appropriate terrain and/or spectral 

derivatives established, but before the process of model building is 
started, an optimal set of predictor variables (i.e., covariates) needs 
to be selected. Digital soil mapping requires spatially exhaustive 
environmental covariates (SCORPAN) related to the soil class or 
property of interest. Generating 10s to 100s of covariates is inexpensive 
and relatively easy (Brungard et al., 2015; Miller et al., 2015; Xiong et 
al., 2014), particularly when multi-resolution digital elevation models are 
used (Behrens et al., 2010; Roecker and Thompson, 2010; Smith et al., 
2006). Although it is possible to use all available covariates as predictor 
variables in modeling, it is best to select an optimal subset. Inclusion of 
non-informative covariates increases model uncertainty, particularly for 
linear models. Covariate reduction (also known as feature selection) is 
also important because as the number of covariates increases so does 
the chance of model overfitting and the amount of computation time. 
Moreover, simpler models are easier to interpret. 

Pedological knowledge should be integrated in the covariate selection 
process (as described earlier in this chapter) because digital soil mapping 
is most accurate when fundamentally driven by an expert with significant 
knowledge of the soil system (Kuhn and Johnson, 2013). If pedological 
knowledge is lacking or uncertain (particularly regarding scale) and/or 
if multiple data layers represent the same SCORPAN covariate, these 
methods should be used. In some cases, semi-automated covariate 
selection methods can identify a subset of covariates from the larger set 
of all available covariates so that prediction accuracy is optimized with 
the fewest number of covariates (Nilsson et al., 2007; Xiong et al., 2014). 
Pedological knowledge and semi-automated covariate selection methods 
should be used together (Kempen et al., 2009; Kuhn and Johnson, 2013). 

Semi-automated covariate selection methods can be grouped into 
two broad categories: unsupervised and supervised (Kuhn and Johnson, 
2013). Unsupervised methods evaluate covariate relevance outside of a 
predictive model by selecting covariates that pass some criterion (Kuhn 
and Johnson, 2013). Supervised methods select optimal covariates by 
identifying the covariate set that maximizes model predictive ability 
(Kuhn and Johnson, 2013). 

Unsupervised covariate selection methods include correlation 
analysis, Optimal Index Factor (OIF), and principal components analysis 
(PCA). Correlation analysis retains or removes covariates that meet a pre-
determined correlation threshold. OIF ranks any covariate combinations 
of three bands so that the within-covariate variance is maximized and 
the between-covariate correlation is minimized (Kienast-Brown and 
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Boettinger, 2010; Nield et al., 2007). Combinations with the highest OIF 
are assumed to contain the most information. PCA transforms covariates 
so that they fall along the multivariate axes of greatest variance (Fox 
and Metla, 2005; Levi and Rasmussen, 2014). It eliminates between-
covariate correlations, but because it transforms covariates, the results 
can be difficult to interpret. Unsupervised methods are likely to be most 
useful when covariates are highly correlated. 

Supervised covariate selection methods include forward and 
backward selection, simulated annealing, genetic algorithms, and 
the Boruta algorithm. Forward and backward selection iteratively 
adds (forward selection) covariates or removes (backward selection) 
covariates to determine which covariates are not significant. Forward 
and backward selection is particularly useful for linear regression when 
combined with Akaike’s Information Criterion (AIC). Recursive feature 
elimination is a variant of backward selection that avoids fitting multiple 
models at each step (Guyon et al., 2002; Kuhn and Johnson, 2013). 
Simulated annealing modifies an initial random subset of covariates 
based on a slowly decreasing probability, so that over a number of 
iterations it becomes very unlikely that a suboptimal covariate set will 
be selected (Kuhn and Johnson, 2013). Genetic algorithms randomly 
change multiple covariate sets until a covariate set that produces the 
most accurate model is identified. The Boruta algorithm scores each 
covariate against a set of random covariates. Covariates that have 
importance scores significantly larger than the random covariates are 
deemed relevant (Kursa and Rudnicki, 2010). Additionally, several tree- 
and rule-based statistical models (i.e., random forests, cubist models, 
multivariate adaptive regression splines, and lasso models) conduct 
intrinsic covariate selection. Because each supervised method has a 
different approach to covariate selection, different methods identify 
different optimal covariate sets. Generally, it is useful to compare 
multiple supervised covariate selection approaches. Implementations 
of these methods can be found in the caret (Kuhn et al., 2015) and 
Boruta (Kursa and Rudnicki, 2010) packages for the R software for 
statistical computing (R Core Team, 2013).

Unsupervised and supervised covariate reduction methods can be 
used together. For example, in a digital soil mapping study of soil depth 
in southeastern Utah, correlation analysis was initially used to identify 
and remove highly correlated covariates from a set of 94 potential 
covariates. Next, both the Boruta algorithm and simulated annealing 
were used to identify a final set of 7 covariates. The final covariate set 
provided equal or better predictive accuracy than larger covariate sets 
(Brungard, unpublished data). 
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Qualitative visual inspection of spatial predictions should also be 
used to assess selected covariates. Covariates which are pedologically 
and statistically plausible but produce visually incorrect predictions, 
such as sharp linear boundaries where none exist, should be removed 
(Padarian et al., 2014). 

In summary, optimal covariate selection begins with using existing 
pedologic knowledge to identify data layers that represent relevant 
SCORPAN covariates. The result may be a relatively large number of 
covariates since it is likely that multiple data layers, at multiple scales, 
can represent each SCORPAN covariate. Supervised and unsupervised 
techniques can be used to further refine these covariates. The optimal 
predictor set should be the covariate set that is pedologically and 
statistically plausible, results in the most accurate model, and produces 
visually correct predictions. A guide to covariate selection is presented 
in figure 5-2. 

Sampling for Training Data
The digital soil mapping process is dependent on the relationship 

between predictor variables (i.e., covariates) and the target soil feature 
(soil class or property) of the model. This relationship applies to both 
knowledge-driven and data-driven modeling methods. It is important to 
select samples of covariates that are representative of the distribution of 
the target soil feature. These samples, known as training data, provide the 
data that will be used to train the model to predict similar occurrences. 
Prediction of soil classes or properties is most successful when precise, 
observed locations of typical soil members are available or when experts 
can provide precise tacit points. Directed (purposive) field investigations 
may be used in support of a knowledge-based modeling approach but 
should not be used exclusively. Random or stratified sampling is more 
robust and less prone to bias. Training data can be collected with case-
based or a priori sampling if existing data or knowledge is utilized or by 
in situ sampling if new data are collected specifically for the purpose of 
training a model. 

Case-Based and A Priori Knowledge Sampling
Case-based sampling for training data uses prior mapped locations of 

classes or properties to train a model to map the same classes or properties 
in unmapped locations. The empirical relationship between the outcome 
(class or property) and the covariates at known locations (previously 
mapped) can be used to predict an outcome in unknown areas with 
similar biophysical characteristics. The known and unknown areas must 
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Figure 5-2

Identify relevant soil-forming factors from available pedological knowledge
   – Experienced soil surveyors
   – Soil survey reports
   – Other available resources

Assemble covariates which represent soil-forming factors
   – Consider multiple scales
   – There will likely be multiple covariates for each soil-forming factor

Are covariates highly correlated?

Unsupervised methods Supervised methods

Yes

Yes

Yes

Yes

No

No

No

No

Reduced covariate set
   – Is this covariate set pedologically plausible?

Apply covariates to statistical models
   – Are covariates statistically plausible?

Make spatial predictions
   – Do the results show any obvious errors?

Final Map

Flow chart illustrating the general steps in selecting environmental covariates.
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have similar soil-landscape relationships. Knowledge of soil-landscape 
relationships, along with model performance measures (discussed under 
“Validation and Uncertainty”), should be used to determine how reliable 
and applicable the empirical relationships will be in unmapped areas.

A priori sampling for training data uses previous knowledge of an 
area to sample a training data location from the covariate data. It is best 
applied to classes that are very distinct and whose location is easily 
determined using high-resolution imagery, such as a rock outcrop or 
water class. It should not be used for classes that contain more variability, 
like a soil class, to avoid introducing bias into the sampling process. It is 
best to use case-based or field sampling for more variable and complex 
classes.

Field Sampling
Collecting training data in the field is an essential part of the 

digital soil mapping process. Data must be collected in the field using 
the selected set of covariates and a sampling design amenable to the 
modeling objectives. Sample point selection typically is determined 
using GIS software. Generally, a GPS receiver is used to navigate to 
sample locations in the field. 

The positional accuracy of GPS receivers varies dynamically 
according to satellite configuration, atmospheric and solar conditions, 
terrain, and type of GPS receiver in use. If possible, comparable GPS 
receivers should be used for all data collection activities for a given 
project. All GPS receivers provide a dynamic display of positional 
accuracy. A minimally acceptable standard of positional accuracy should 
be determined for the data collection activities. 

It is important for field personnel to know what the sample is 
intended to represent. Field computers that display spatial data against 
the GPS position and sample location are ideal for ensuring that the field 
location is close to the sample location. In remote areas where computers 
cannot be used, corroborating information should be supplied to help 
better reference the site location for field staff. For example, if the sample 
is located near the juncture of a side slope and footslope, but clearly on 
the side slope, this information should be given to the field crew. The 
information should be on a hard-copy field collection sheet or database 
form. Data collection forms, either digital or hard copy, should be 
standardized throughout a given project and include all variables needed 
to satisfy the target modeling objective(s). Including a data field item for 
GPS accuracy may be helpful and provide a reference throughout the 
course of a project.
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Sampling Design
The choice of sampling design depends on the size and accessibility 

of the project area, modeling objectives, desired level of confidence 
and precision, expected variability of the soil feature(s), and the cost of 
obtaining samples. The selected design needs to satisfy the statistical 
rigor of randomness as well as remain within the limits of time, money, 
and staff available for sampling. 

Simple random.—Simple random sampling is the most straight-
forward way to select independent and unbiased samples. Sample 
locations each have an equally probable chance of being selected (fig. 5-3). 
This design has the primary advantage of being unbiased and satisfying 
the statistical requirements of randomness. It gives every location the 
same probability (i.e., chance) of being selected for sampling. However, 
this design may result in irregular and/or clustered spacing of samples. 
In addition, detecting systematic variation may be difficult using this 
sampling method. This design is most useful for study areas that are 
small and homogeneous and have few explanatory variables.

Figure 5-3

Simple                           Systematic                      Stratified                         Multistage 
Random                                                                Random                          Random

Simplistic representation of sampling locations as determined by simple random, 
systematic, stratified random, and multistage random sampling designs.

Systematic.—A sample is taken according to a regularized pattern 
(fig. 5-3). This approach ensures even spatial coverage. Patterns may be 
rectilinear, triangular, or hexagonal. This design can be problematic with 
data that vary cyclically or vary at an interval smaller than the sample 
spacing. It is important to ensure that selected samples do not coincide 
with a particular cycle (e.g., the microhighs of hummocks) but fall on the 
complete spectrum of the population.

Stratified random.—The sampling region is spatially subset into 
different strata, and random sampling is applied to each strata (fig. 5-3). 
Strata are typically geographic, such as land cover type, landform, slope 
gradient, slope aspect, or parent material. It is assumed that these strata 
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are strongly related to the target soil feature(s). Strata may be sampled 
equally or in proportion to area. However, if the target is rare in the 
population, it may be preferable to sample the strata equally (Franklin 
and Miller, 2009; Kuhn and Johnson, 2013). Stratified random sampling 
offers higher accuracy at lower cost. These benefits are dependent on the 
suitability of the defined strata, which is dependent on adequate prior 
knowledge of the target soil feature(s).

Cluster.—A cluster or group of points is selected at one or more sites, 
and only a portion of the available strata or primary sampling units (such 
as geographic strata, fields, or other separations) are sampled. If strata are 
an important determinant of the target soil feature(s) being evaluated, it 
is better to use a stratified random sample and sample all strata. Ideally, 
each cluster in a cluster sampling design represents the full variability 
of the area in question and the within-cluster variability is greater than 
the between-cluster variability (Lohr, 2009). When the costs of getting 
to a primary sampling unit are high (e.g., when sampling areas are far 
from a road) and the cost of individual sampling units is low, cluster 
sampling is highly efficient. However, it can introduce bias if clusters are 
not representative of the population as a whole (e.g., if a cluster is on an 
odd highly disturbed area) and a loss of precision if the between-cluster 
variability is high. 

Multistage random.—Multistage random sampling is a complex 
form of stratification and cluster sampling. In this sampling design, only 
a subset of individual sampling units (such as pedons) within each cluster 
are selected for sampling. The individual sampling units can be arranged 
in order to maximize the variability, or arranged randomly, within the 
primary sampling unit. For example, as shown in figure 5-3, a two-stage 
random sampling design may stratify an area into a standard grid and 
randomly select a subset of strata units (first stage), then randomly select 
individual sample locations from within each strata unit (second stage) 
(Schaeffer et al., 1990; de Gruijter et al., 2006). This design offers the 
advantage of efficiency at reduced costs. The drawbacks include the 
potential for lower accuracy and precision. Successful multistage random 
sampling depends greatly on proper selection of strata.

Conditioned Latin hypercube.—Conditioned Latin hypercube 
sampling (cLHS) is a special type of stratified random sampling that uses 
the principle of Latin hypercube sampling conditioned with ancillary 
data (covariates). This sampling method selects sample locations that 
maximize the variability represented by multiple covariates and works 
on both continuous and categorical data (Minasny and McBratney, 
2006). It differs from other sampling strategies, which focus on 
sampling geographic space, by focusing on sampling covariate feature 
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(n-dimensional) space. This type of sampling design is efficient because 
it can represent the multivariate distribution of input covariates with 
relatively small sample sizes (Brungard and Boettinger, 2010).

This robust sampling method has been favored in digital soil mapping 
because it provides a representative sample based on the distribution of 
covariate data. Without a technique such as cLHS, obtaining a sample 
that is representative of the feature (n-dimensional) space becomes 
increasingly difficult as the number of covariates increases. Figure 5-4 
compares the distribution of different sampling methods over the data 
range of a covariate layer.

Figure 5-4
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Conditioned Latin hypercube sampling is appropriate for any digital 
soil mapping project for which multiple independent covariates related 
to the target soil feature(s) are known or can be inferred. If soil-covariate 
relationships are unknown or highly uncertain, another sampling design 
should be used. For areas with access constraints, constrained cLHS 
(Roudier et al., 2012) or cLHS with fuzzy k-means clustering (Kidd et 
al., 2015) can be used.

The information needed to run cLHS includes: (1) covariates covering 
the entire project area, (2) the number of desired samples, and (3) the 
number of iterations needed to reach a satisfactory sampling scheme. 
Conditioned Latin hypercube sampling can be performed in Matlab 
software (MathWorks, Inc.); the R software for statistical computing 
(Roudier, 2011); and the USFS (U.S. Forest Service) TEUI (Terrestrial 
Ecological Unit Inventory) Geospatial Toolkit (Vaughan and Megown, 
2015). 

Predicting Soil Classes and Properties
After the optimal set of SCORPAN covariates (predictor variables) 

has been selected and training data have been collected, a method 
may be applied to the data to predict soil classes or properties. Many 
prediction methods are available and applicable in digital soil mapping. 
Considerations in choosing a prediction method include:

• Are discrete soil classes or continuous properties the goal?
• Are the training data adequate to support the desired prediction 

method and/or number of desired classes?
• Are the data parametric (normally distributed) or nonparametric?
• At what step in the soil survey process is the prediction being 

applied: pre-mapping, initial mapping, update mapping, or 
secondary product?

• What are the time restrictions for completing the prediction?

Classification is the process of predicting discrete classes. It can be 
described as the process of sorting pixels into a finite number of classes, 
based on their data values and distribution in feature (n-dimensional) 
space. Simply stated, if a pixel satisfies the criteria defining a class, the 
pixel is assigned to that class. This process is executed according to a 
classification algorithm. Depending on the type of information one wants 
to extract from the predictor data, classes may simply represent clusters 
that look statistically different to the computer (exploratory) or that 
are associated with known features on the ground (definitive) (refer to 
ERDAS Field Guide, Intergraph Corp., 2013).
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Regression and interpolation methods predict continuous values 
rather than discrete classes. Interpolation methods model spatial patterns 
based on values at known locations and the assumption that locations 
that are closer to one another are more similar than those that are farther 
apart. Geostatistical approaches are forms of interpolation that rely on 
statistical functions rather than mathematical functions. Regression 
approaches use some statistical function to model the relationship 
between soil observations and a set of predictor variables. 

Unsupervised Classification
Unsupervised classification is the prediction method most reliant on 

computer automation presented in this chapter, and it is the only method 
that does not require soil observations (i.e., training data) covering the 
area. The algorithm uncovers statistical patterns inherent in the data and 
groups pixels with similar characteristics into unique clusters (classes) 
based on statistically determined criteria (Duda et al., 2001). The resulting 
class definitions are only dependent upon the predictor data representing 
the SCORPAN covariates and a few parameters defined at the time the 
classification is executed. The resulting classes must be interpreted to 
determine if they are meaningful in terms of soil-landscape relationships. 
Classes can be merged, disregarded, or manipulated based on evaluation 
of the class signature or definition in feature (n-dimensional) space. 

Iterative Self-Organizing Data Analysis Technique (ISODATA) 
(Tou and Gonzalez, 1974) and k-means (MacQueen, 1967) are the most 
commonly used unsupervised classification algorithms and are available 
in many software packages. ISODATA is a modification of the k-means 
algorithm (Schowengerdt, 1997). Both algorithms are parametric 
(assuming a normally distributed dataset). They employ an iterative 
process that creates clusters and classifies pixels until the change in class 
assignment at each pixel location is small, at which point final classes are 
defined. The main difference between the two algorithms is that k-means 
requires the number of classes to be set a priori while ISODATA allows 
a range for the number of final classes to be set. ISODATA can split, 
merge, and delete clusters during the classification process but k-means 
cannot. For this reason, ISODATA is considered more computationally 
robust and flexible than k-means and is commonly preferred. 

Unsupervised classification provides a non-subjective, data-driven 
method for exploring the inherent clustering of data and determining 
how many classes the data (predictor variables) can support. Because no 
prior knowledge of the area is required, unsupervised classification is a 
useful exploratory tool that can help direct field sampling and develop 
map unit concepts. However, because there is very little control over how 
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the clusters are defined, the results may be difficult to interpret. Using an 
appropriate selection of predictor data based on SCORPAN covariates 
helps to produce the most useful results of an unsupervised classification.

Unsupervised classification is most applicable in the exploratory 
or pre-mapping stage of soil survey (fig. 5-5). It can help target initial 
field sampling and be useful in comparing mapped and unmapped areas. 
Unsupervised classification can be beneficial in the initial phase of digital 
soil mapping in determining the number of classes the predictor data 
can support or in determining potential classes in areas with inadequate 
training data. These determinations prevent using more target classes 
than the data can separate or support.

Figure 5-5

ISODATA unsupervised classification of both terrain and spectral data derivatives 
in eastern Emery County, Utah, showing natural clustering in the data and how 
potential classes may be distributed across the landscape. The area was divided into 
five subsets based on geology to minimize variability for the classification, which was 
run on each subset independently (10-m grid resolution). Different colors represent 
different classes within each subset of the survey area.

 Supervised Classification
Supervised classification differs from unsupervised classification in 

that it requires soil observations covering the area and the target classes. 
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Soil observations, or training data, must be carefully chosen in order 
to adequately represent the target classes and produce a meaningful 
classification. Class definitions from training data are combined with 
carefully selected predictor data representing SCORPAN covariates, 
and the applied algorithm determines the class in which each pixel 
belongs. 

There are multiple algorithms for supervised classification that are 
frequently applied in digital soil mapping. This section discusses minimum 
distance to means, maximum likelihood (discriminant analysis), fuzzy 
classification, knowledge-based classification, and predictive modeling 
(machine learning or statistical modeling). 

Minimum distance to means.—Using this classification algorithm, 
candidate pixels can be classed according to the closest training class 
mean. This method, by definition, does not include information on the 
class variability. Therefore, if there are large differences in the variance 
of each class, the method will likely be unreliable. This method is com-
putationally very rapid. 

Maximum likelihood (discriminant analysis).—This classification  
is one of the most widely used standard supervised classification 
methods and is based on probability. Maximum likelihood uses the 
training class means and covariance matrices to classify candidate pixels. 
The probability of a candidate pixel belonging to each of the classes is 
calculated, and the class for which the probability is highest is assigned 
to the pixel. In addition, maximum likelihood allows the prior probability 
for the class (if known) to be specified across the dataset. 

Minimum distance to means and maximum likelihood are both 
parametric classifiers and assume a normally distributed dataset. 
Therefore, training data sites and class definitions must be homogenous. 
These approaches to supervised classification can be useful in areas that 
have large extents of homogenous soils whose properties do not vary 
over short distances. This kind of soil landscape allows very clean class 
definitions and a successful classification, if training and predictor data 
are properly selected. 

Fuzzy classification.—Homogenous soil landscapes are more 
simplistic for digital soil mapping. However, natural environments are 
more likely to contain subtle variation over short distances and non-
distinct boundaries between soil types. Commonly, a candidate pixel 
may be mixed and have properties that overlap multiple classes. 

Fuzzy set theory provides tools for working with imprecise data 
(Zadeh, 1965; Wang, 1990). Fuzzy classification allows information 
from multiple classes to contribute to the classification of a candidate 
pixel through the use of fuzzy logic and membership functions. In figure 
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5-6, for example, a candidate pixel may have a membership value of 0.25 
for Class A, 0.60 for Class B, and 0.15 for Class C. The pixel is most like 
Class B, but information about Classes A and C is still obtained. The major 
difference between fuzzy classification and traditional hard classification 
(like minimum distance to means and maximum likelihood) is the ability 
to obtain information about constituent classes occurring in a mixed 
pixel (Foody, 2000). Due to this characteristic, fuzzy classification can 
accommodate nonparametric datasets. 

Figure 5-6

Simplistic representation of hard classification (left) and fuzzy classification (right). 
Hard classification requires a candidate pixel to be assigned to only one class, 
whichever class mean is closest. Fuzzy classification uses class means but allows 
candidate pixels to express properties of several classes instead of just one. (Image 
based on Jensen, 2005.)

Fuzzy classification has the same starting point as the other supervised 
classification methods, i.e., training and predictor data. However, because 
of its ability to handle mixed pixels, training data for fuzzy classification 
can represent both homogenous and heterogeneous classes (Jensen, 
2005). Fuzzy classification is most useful in heterogeneous areas where 
variations in soil type result in mixed pixels or classes (common for soil 
landscapes). In the fuzzy classification process, it is possible to assign a 
single class to a pixel, also described as “hardening” (Zhu et al., 2001). 
However, information regarding constituent classes is still retained 
and can be used to understand the relationships in the data, refine class 
definitions or sort out confusion in the classification, and understand soil-
landscape relationships (fig. 5-7).
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Figure 5-7

Supervised fuzzy classification of Landsat imagery for an area along the east shore of 
the Great Salt Lake, Utah, showing a “hardened” version of the fuzzy classification 
(i.e., one class assigned per pixel). Results from the fuzzy classification were used to 
disaggregate broad map unit concepts in areas with wet and saline soils in an update 
soil survey project. Original Soil Survey Geographic Database (SSURGO) line work 
is shown in black; land cover classes representing clusters defined by soil-vegetation-
moisture relationships are shown in color.

Knowledge-based classification.—Knowledge-based classification 
uses expert systems to represent an expert’s knowledge as rules and data 
within a computer (Jensen, 2005). It is not only applicable to predicting soil 
classes but also very useful in documenting a soil scientist’s knowledge 
about soil-landscape relationships (Zhu et al., 2001). A knowledge-based 
expert system consists of the following:

• Source (expert, training data, predictor data)
• Knowledge base (rule-based domain)
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• Inference engine
• User 

The knowledge base or rule set is constructed using the predictor 
data and the expert’s knowledge about soil-landscape relationships and 
how they are expressed through the data (fig. 5-8). Specific knowledge 
that defines soil-landscape relationships, and subsequent soil classes, is 
required. An example is “badland soil complexes occur on steep eroded 
slopes.” This knowledge can be converted into specific rules, such as 
“badland soil complexes occur on slope % >= 8 and have Fe band ratio 
value >= 67,” and integrated into a knowledge base to predict the desired 
class (e.g., badland soil complex). In this example, the predictor data 
(a DEM-derived slope layer and the Fe band ratio layer derived from 
spectral data) are applied to the expert’s knowledge (the rule) about the 
badland soil-landscape relationship.

Knowledge-based classification requires the most a priori knowledge 
about soil-landscape relationships of all the classification methods 
presented in this chapter. It can be successful in areas where a lot of 
fieldwork and documentation have been completed and soil-landscape 
relationships are well documented and understood. Also needed are 
adequate predictor data to support and discriminate the specific rules 
defined in the knowledge base. 

Knowledge-based classification is a very time-intensive approach. It 
requires field observations to understand the soil-landscape relationships 
well enough to develop specific rules for each class as well as to refine 
the rules in an iterative manner (as more knowledge is acquired or 
needed). If the resources are available, knowledge-based classification 
can be worth the investment, especially in terms of its ability to capture 
the tacit knowledge of a soil scientist.

Several software packages offer knowledge-based classifications. 
Some provide a hierarchical decision-tree classifier (ERDAS Imagine 
Knowledge Classifier) while others employ a fuzzy classification 
approach (SoLIM, ArcSIE). Most expert systems have the flexibility of 
using both continuous and categorical predictor data.

Supervised classification methods are best applied once preliminary 
field documentation has been collected and map unit concepts are in 
development. Supervised classification can be effectively applied in both 
initial and update soil survey projects. Since a priori knowledge and 
class definitions in the form of class signatures (or rules) are required, 
the methods of supervised classification discussed above can be more 
time intensive to initiate than classification options that are more data 
driven and do not require as much input initially, such as unsupervised 
classification and predictive modeling. 
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Figure 5-8

Output from a hierarchical decision-tree knowledge-based classification for four 
classes—fluvial soils, badland soils, uplands, and alluvial fans (shown in different 
colors)—in an area near the Powder River Breaks, Wyoming (Cole and Boettinger, 
2007). Predictor data included both terrain and spectral data derivatives (10-m grid 
resolution).

Predictive modeling.—Predictive modeling (commonly referred to 
as statistical modeling or machine learning) for digital soil mapping is 
the process of developing a mathematical model that approximates the 
true relationship between soil properties or classes and environmental 
covariates in order to produce an accurate prediction. It involves choosing 
the necessary predictor data representing SCORPAN covariates and an 
appropriate model or algorithm. 

Predictive models can be conceptually divided into two broad 
groups: classification and regression. Classification methods are used 
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for predictions of a soil class, and regression methods are used for 
predictions of a continuous soil property. Within these broad groups, 
predictive models can be further divided based on the type of model: 
linear, non-linear, or tree- and rule-based. Examples of linear methods 
are simple linear regression and discriminant analysis. Examples of non-
linear methods are multivariate adaptive regression splines and neural 
networks. Examples of tree- and rule-based methods are random forests 
(fig. 5-9) and gradient boosting machines. Kuhn and Johnson (2013) and 
James et al. (2014) discuss each model algorithm in depth as well as the 
overall process of predictive modeling. 

Figure 5-9

Classification using random forests method for parent material classes in the 
Boundary Waters Canoe Area Wilderness, Minnesota. Predictor data included 
both terrain and spectral data derivatives and training data points from field data 
collection (5-m grid resolution).
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 Although many potential predictive models are available, a model that 
can always produce the most accurate predictions for any digital soil 
mapping project is difficult to find. This is because model predictive ability 
depends upon the structure of individual datasets and the methods used 
for covariate selection. The best approach is to apply several predictive 
models and pick the model that produces the most accurate prediction. 
One could start with a complex model (e.g., random forests or neural 
networks), then compare it to simpler models (e.g., linear regression or 
classification trees). If the accuracy of the simpler model is comparable 
to the more complex model, the simpler model can be selected. Simple 
models are favored for their ease of interpretation. 

Overfitting can occur when applying predictive modeling for digital 
soil mapping. The term “overfitting” indicates that the statistical model 
over-emphasizes random noise instead of the underlying function. 
Overfit models will not produce accurate predictions. Cross-validation 
(a model validation method for assessing how the results will generalize 
to an independent data set) should be used during the model building 
process to avoid overfitting. Cross-validation is inherent in, or at least an 
option for, many algorithms. 

Predictive modeling should be applied after preliminary fieldwork 
is complete and there is adequate training data to satisfy the model and 
produce an accurate prediction. It can be useful for initial or update soil 
survey and for soil property mapping. Depending on the model, parametric 
and non-parametric datasets as well as continuous and categorical data 
can be used in the modeling process. As a result, predictive modeling is 
one of the more flexible approaches to digital soil mapping prediction. 

Predictive modeling provides a non-subjective, quantitative alter-
native to conventional soil survey and returns an estimate of prediction 
uncertainty based on cross-validation. However, accurate predictive 
modeling may require more pedon observations than are available or can 
be collected given project constraints. Predictive modeling works best 
if observations are collected using a probabilistic sampling design and 
if it is driven by an expert with significant knowledge of the soil system 
(Kuhn and Johnson, 2013).

Geostatistics
The field of geostatistics encompasses a range of techniques for 

modeling spatial patterns that satisfy the basic assumption that nearby 
objects are more related to each other than distant objects. Central to 
this assumption is the concept of regionalized variable theory, or the 
description of spatial patterns as an additive mixture of trend, spatially 
correlated variation, and noise. Typically, geostatistical methods are 
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used to estimate values at unsampled locations (interpolation) based on 
a limited set of sampled continuous (and to a lesser extent, categorical) 
properties, such as A horizon pH, depth to root-restricting layer, or 
presence of a duripan. Geostatistics is closely related to a number of other 
spatial interpolation methods, such as Voronoi polygons, triangulation, 
natural neighbors, inverse distance weighting, trend surfaces, and 
splines. Geostatistical methods, however, are commonly preferred (when 
sufficient data are available and critical assumptions met) because they 
provide unbiased estimates of uncertainty. 

Once the appropriate data have been collected, the typical steps 
involved in geostatistical analysis (Webster and Oliver, 2007; Isaaks and 
Srivastava, 1989) are as follows: 

1. Check data for outliers, extreme deviance from a normal 
distribution, and any spatial trend.

2. In the presence of a strong trend (e.g., elevation gradient), de-
trend or use hybrid approaches such as regression-kriging (Hengl 
et al., 2007).

3. Transform data as needed (log transformation, normal-score 
transformation, and logit transformation are commonly used).

4. Compute the empirical variogram (a description of how the data 
are correlated with distance), and check for the influence of any 
unusual values.

5. Fit a model to the empirical variogram, and verify that the 
parameters make sense.

6. Use some form of kriging to make predictions for unvisited 
locations.

The greatest limitation of geostatistics for soil survey is that the 
reliability of the variogram (and thus subsequent spatial predictions) is 
dependent upon both sample size and design. Typical soil survey sampling 
methods are commonly inadequate for reliable variogram estimation. 
However, geostatistics may be used for new soil products, provided 
that sampling design is given special attention and sufficiently large 
numbers of observations are collected (fig. 5-10). At least 150 samples 
are needed for robust variogram estimation (Webster and Oliver, 2007). 
The mean sampling interval (i.e., distance between samples) should be at 
least one order of magnitude less than the variogram range (Olea, 2009). 
Additionally, the application of geostatistical methods requires special 
consideration of anisotropy, i.e., existing trends or gradients that exhibit 
some form of directionality (such as the orographic effect on climate 
or the complex pattern of a braided stream system). It is possible to 
incorporate external information on such trends into the kriging process 
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using methods such as universal kriging, kriging with external drift, or 
regression-kriging (Odeh et al., 1994, 1995).

Basic geostatistical methods have been implemented in the gstat 
package (Pebesma, 2004) for the R statistical software (R Core Team, 
2013). Other commonly available software packages, such as ArcGIS, 
include geostatistical analysis functionality.

Figure 5-10

Interpolation using ordinary kriging of soil K concentration in the Salt Lake City 
Valley, Utah. Points represent locations of soil K measurements collected in the field. 
Concentration of K ranges from low (blue) to high (orange).

Validation and Uncertainty
Qualitative (conventional soil survey) and quantitative (digital soil 

mapping) soil survey methods rely on conceptual or mathematical models 
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to describe soil spatial distribution. These models are approximations 
of reality and are thus subject to uncertainty. Due to the quantitative 
nature of digital soil mapping, predictions of soil classes or properties 
lend themselves to quantitative assessments of accuracy and uncertainty. 
Communicating the accuracy and uncertainty associated with soil spatial 
predictions is imperative and should be an integral part of any digital 
soil mapping project, particularly given that soil information is used in 
decision making and risk assessment.

Accuracy
All soil maps are approximations of reality, such that the values 

depicted on a map will deviate to some extent from true values. Accuracy 
estimates are therefore necessary to quantify prediction quality. Prediction 
accuracy is the difference between the predicted value at a location and 
the measured value at the same location (Brus et al., 2011). Desirable 
predictive models have high prediction accuracy (i.e., small differences 
between predicted and observed values).

Prediction accuracy is quantified differently depending on whether 
soil classes or soil properties are being modeled. Soil class prediction 
accuracy is quantified using overall accuracy, user’s accuracy, and 
producer’s accuracy. These metrics are best understood by reviewing a 
confusion matrix (table 5-3) that compares the number of correctly and 
incorrectly predicted observations for each class. Overall accuracy is 
the proportion of correctly classified observations in the entire dataset. 
User’s accuracy (also known as “errors of commission” or precision) 
is the proportion of a predicted class that matches the observed class. 
Producer’s accuracy (“errors of omission” or specificity) is the proportion 
of an observed class that matches the predicted class (Congalton, 1991; 
Kuhn and Johnson, 2013). 

Table 5-3 shows a confusion matrix of three modeled soil subgroup 
classes, modified from data presented in Brungard et al. (2015). 
Observation numbers were 26 Ustic Haplargids, 2 Ustic Paleargids, and 
21 Ustic Torriorthents. Overall accuracy was calculated by summing the 
correctly predicted observations (matrix diagonal; 11) and dividing by 
the total number of observations (49). User’s accuracy for each class 
was calculated by dividing the correctly predicted observations for each 
class by the row totals. Producer’s accuracy for each class was calculated 
by dividing the correctly predicted observations for each class by the 
column total. Overall accuracy was relatively low because the Ustic 
Paleargid class was never modeled correctly (an effect of low numbers 
of training observations). Low overall accuracy masks the relatively high 
accuracy of the other two classes.
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Table 5-3

Confusion Matrix of Three Modeled Soil Subgroup Classes

Predicted 
soil class 

Observed soil class
Total 

correctly 
predicted

User’s 
accuracy

Ustic 
Hapl-
argid

Ustic 
Pale-
argid

Ustic 
Torri-

orthent
Ustic 

Haplargid 6 1 1 0.75

Ustic 
Paleargid 0 0 0 0.00

Ustic 
Torriorthent 1 0 5 0.83

 11

Producer’s 
accuracy 0.86 0.00 0.83

Overall 
accuracy: 
0.22

It is important to note that the above accuracy metrics are all 
threshold-dependent, i.e., they depend upon a cutoff threshold above 
which observations are classified as belonging to a particular soil class. 
All predictive models output probability or membership values, which 
are then classified as belonging to a particular soil class if they are above 
some threshold (commonly 0.5 by default). However, if this threshold 
is changed, then validation observations may be included or excluded 
from a particular class and the confusion matrix and resulting accuracy 
metrics altered. Though most commonly used for two class predictions, 
threshold-independent metrics, such as the area-under-the-curve (AUC), 
provide an estimate of prediction accuracy over all threshold values 
(Kuhn and Johnson, 2013). 

Accuracy of soil property predictions is typically quantified using 
mean square error (MSE), root mean square error (RMSE), and coefficient 
of determination (R2). Mean square error is the average squared 
difference between predicted and measured values. Because MSE is a 
squared difference, the square root of MSE (RMSE) commonly is used 
to report accuracy in the same units as the original measurements (Kuhn 
and Johnson, 2013). Smaller RMSE indicates a more accurate model. 
The coefficient of determination (R2) is a measure of the correlation 
between observed and predicted values and commonly is interpreted 
as the proportion of the data explained by a model. Caution is needed 
when using R2 because it is a measure of correlation, not accuracy, and 
is dependent upon the variation in the test set (Kuhn and Johnson, 2013). 
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Validation observations (also known as reference observations) 
necessary to calculate prediction accuracy metrics can be derived from 
independent validation data, internal model performance measures, or 
data-splitting methods. Independent validation data are observations 
gathered independently from data used for model building (the training 
data set). Independent validation is the best way to assess prediction 
accuracy because it is the only way to determine true prediction accuracy. 
Independent validation data should be gathered using probabilistic 
sampling methods to avoid bias. Sampling schemes for validation can 
be found in Brus et al. (2011) and de Gruijter et al. (2006), and methods 
for calculating the required number of observations can be found in 
Congalton (1991).

Although independent validation data are preferable for accuracy 
assessment, in some cases it is not possible to collect such data (such 
as with legacy data) and other methods are required. Internal model 
performance measures (also termed calibration accuracy) are used for 
model tuning. They indicate how well the model matches the data. 
Examples of internal model performance measures include the out-
of-bag error (OOB) used in the random forests tree-based model and 
the mean squared error commonly used in many regression models 
(James et al., 2014). Internal model performance measures are useful for 
assessing model parameters, but such measures commonly overestimate 
actual prediction accuracy because statistical models are designed to 
minimize (or maximize) these internal accuracy measures. Prediction 
accuracy should not be inferred solely from internal model performance 
measures.

Related to internal model performance measures are data-splitting 
methods. Data-splitting methods involve reserving a portion (commonly 
10 to 30 percent) of the available training data to use only for validation. 
Using an observation for both model training and validation is redundant 
and strictly prohibited. In data splitting, the reserved portion of the data is 
only used in model validation and not in model training/building. While 
data-splitting practices are common, there is no guarantee that a different 
subset of the training data would result in the same accuracy estimates. 
A better alternative is to use cross-validation, which repeatedly divides 
the training data into n (commonly 5 or 10) training and validation 
subsets and thus evaluates many alternate versions of the data (Kuhn and 
Johnson, 2013). Cross-validation results in prediction accuracy estimates 
with associated variability (e.g., standard deviations). If the initial field-
sampling method was biased, cross-validation accuracy estimates may 
not adequately capture true prediction accuracy because cross-validation 
relies strictly on the data used in modeling.
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Estimates of prediction accuracy are necessary for quantifying 
digital soil mapping prediction quality and should be included as a vital 
component of any digital soil mapping project. Measures for accuracy 
calculation are available in many software packages and commonly are 
included in the execution of prediction models.

Uncertainty
Uncertainty in traditional soil survey results from the scale of 

mapping (e.g., order 1 vs. order 3), the placement of map unit lines, and 
the inclusion of similar soils. This uncertainty is quantified using map unit 
composition (e.g., Map unit 1 is 55% soil A, 30% soil B, and 15% soil C). 

Uncertainty in digital soil mapping results from several sources: 
(1) positional accuracy of the pedon location (particularly for legacy 
pedon observations); (2) covariate accuracy (e.g., vertical uncertainty of 
a digital elevation model); (3) soil class or property measurement (e.g., 
taxonomic classification or laboratory analysis); and (4) model structure 
(e.g., using a linear model for curvilinear data). 

Digital soil mapping uses memberships or probabilities to 
quantify prediction uncertainty when modeling soil classes. Soil class 
memberships/probabilities indicate the similarity of soil class occurrence 
in each grid cell. Digital soil mapping produces a membership/probability 
grid for each modeled soil class. Confusion between soil class predictions 
is quantified with the confusion index (CI):

CI = [1-(µmax – µ(max-1))]

where µmax is the membership/probability value of the class with the 
maximum membership/probability and µ(max-1) is the second-largest 
membership/probability value. If the memberships/probabilities of 
the two most likely classes are similar (e.g., 0.3 and 0.2) then the CI 
will approach 1, indicating high confusion about the class to which the 
prediction should belong (fig. 5-11). If the memberships/probabilities of 
the two most likely classes are dissimilar (e.g., 0.7 vs. 0.1) then the CI 
will approach 0, indicating little confusion between classes (Burrough et 
al., 1997; Odgers et al., 2014). 

Digital soil mapping uses prediction intervals to quantify 
uncertainty in soil property predictions (fig. 5-12). Prediction intervals 
(not confidence intervals, which measure uncertainty about the mean) 
indicate the range in values within which the true value is likely to occur 
(Malone et al., 2011). Digital soil mapping most commonly uses 90% 
prediction intervals, which indicate the range in values in which a new 
measurement will be found 9 times out of 10. Prediction intervals are 
most commonly shown as companion maps, where the lower prediction 
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Figure 5-11

Example of the confusion index for soil class prediction over approximately 300 km2 
in the Powder River Basin, Wyoming. Confusion index values near 1 indicate areas 
of uncertainty in soil class spatial predictions. Figure adapted from Brungard et al. 
(2015).

interval, mean, and upper prediction interval are shown side by side 
(fig. 5-12). In some cases, the prediction interval width is also provided 
to indicate the spatial variability of uncertainty (fig. 5-12). Although 
less common, another option for displaying soil property prediction 
uncertainty is through “whitening” (Hengl, 2003, 2007), i.e., predictions 
whiten/pale based on the uncertainty so that highly uncertain predictions 
approach the color white. Methods for calculating prediction uncertainty 
are readily available in many software packages.

Applications of Digital Soil Mapping

Digital soil mapping is widely used to predict soil classes and 
properties and produce a soil map. However, the process of generating 
spatially explicit predictions of natural phenomena using quantitative 
relationships between training data and predictor variables can be applied 
to create a broad spectrum of information products. The following 
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Figure 5-12

Example of prediction intervals and prediction interval width for soil depth to 
a restricting layer over approximately 50 km2 in San Juan County, Utah. Wider 
prediction intervals indicate greater uncertainty.

paragraphs discuss examples of the application of digital soil mapping in 
pedology and related fields to produce information products other than 
soil maps. 

Raster vs. Polygon, Disaggregation, and Evaluation of 
Existing Maps

A fuzzy classification of Landsat 7 spectral data was applied in an 
update soil survey of wet and saline map units along the east shore of 
the Great Salt Lake, Utah, specifically for disaggregation of a few very 
broad map units. The disaggregated product showed the distribution of 
soil components (tied to land cover type) with an overall map accuracy 
of 88%. It highlighted the additional information a raster product can 
convey that a vector product cannot. The disaggregated raster product 
allowed for refinement of map unit concepts and line work, particularly 
in areas previously lumped into a miscellaneous “Playa” map unit, which 
had no soil information to support it. This survey area is important for 
wetland preservation and migratory habitat for large populations of birds 
and is experiencing pressure from encroaching development (Kienast-
Brown and Boettinger, 2007).

Disaggregation of the Soil Survey Geographic Database (SSURGO) 
legacy data into maps at soil component level was completed for two 
West Virginia counties using soil-landscape knowledge, data mining, 
and predictive modeling (Nauman and Thompson, 2014). Descriptions 
of the soil-landscape relationships stored in the SSURGO database for 
the two survey areas were used, along with elevation data and derived 
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geomorphic indices, to build a set of representative training areas for 
all soil components. The training areas were used in classification tree 
ensemble models with additional environmental covariates to predict 
soil series extent (fig. 5-13). Underlying prediction frequency surfaces 
were also generated from the models and used to create continuous soil 
property maps. Model predictions agreed with validation pedons 22 to 
44% of the time. This study demonstrates how disaggregation techniques 
may be used to update soil surveys.

Figure 5-13

Example of a disaggregation of SSURGO in West Virginia (modified from Nauman and 
Thompson, 2014) showing the hardened classification of soil series components with 
an overlay of the original map unit boundaries.

Predicting Biological Soil Crusts
Biological soil crusts are communities of cyanobacteria, algae, 

microfungi, mosses, liverworts, and lichens at the soil surface  
(Soilcrust.org, 2016). They stabilize soil, minimize wind and water 
erosion, and are important sources of soil N and organic C in arid and 
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semiarid ecosystems (Belnap et al., 2001). Biological soil crust level-
of-development (LOD) classes represent a development sequence 
from low to high, with higher classes indicating greater cyanobacteria 
development (Belnap et al., 2008). Spatial predictions of low, moderate, 
and high LOD classes were completed for an area surrounding and 
including Canyonlands National Park, Utah, to assist in management of 
this important resource (Brungard and Boettinger, unpublished data).

Spatial predictions of the presence or absence of biological soil crust 
LOD class were derived using unweighted model averaging (Malone et 
al., 2014) of five statistical models: stochastic gradient boosting, random 
forests, maximum entropy, generalized linear models, and generalized 
additive models. Observations of biological soil crust used in model 
development were obtained during a 2006-2009 soil survey update of 
Canyonlands National Park, Utah. 

Prediction uncertainty was calculated as the standard deviation of 
the combined probability predictions from each model. Lower prediction 
uncertainty indicates more robust predictions. Prediction quality was 
assessed using concordance. Concordance is the number of models 
predicting class occurrence in each raster cell. High concordance values 
(e.g., 5) indicate areas where all models predict biological soil crust 
presence and thus identify areas where greater confidence may be placed 
in presence predictions. Conversely, low concordance values (e.g., 1) 
indicate areas where only a few models predict biological soil crust 
presence and thus identify areas where less confidence may be placed in 
spatial predictions.

Predicting Ecological Sites
Correlating ecological sites with soil map units is an important 

component of soil mapping in the United States. It provides an 
understanding of how biotic and abiotic factors in the environment 
interact and influence one another. (Appendix 4 discusses ecological site 
descriptions.) Ecological sites are considered a vital part of many land 
management decisions (USDA-NRCS, 2008). Several studies focused 
on predicting distribution of vegetation types, to assist in understanding 
spatial relationships of ecological sites, have been conducted in Rich 
County, Utah. A selected set of elevation (DEM) and spectral (Landsat) 
data derivatives were used as input to logistic regression models to 
produce predictions of vegetation types that play a key role in ecological 
site identification (Peterson, 2009). An accuracy of 71% was reported 
based on an independent validation data set. 
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A subsequent study in Rich County, Utah, used a combination of 
elevation and spectral derivatives and random forests classification to 
predict five dominant vegetation types (Stam, 2012). Reported overall 
accuracies were between 81% and 98%. Prediction of ecological sites 
and states was also explored in this same study using Landsat spectral 
data derivatives and supervised classification, specifically the maximum 
likelihood classifier. A similarity index was calculated, based on the 
Mahalanobis distance generated during the classification, and related to 
various states (6 total) of the ecological site. The similarity index was 
successful in defining where different states of a given ecological site 
occur on the landscape, with a reported accuracy of 65%. 

Predicting Rare Plant Habitat
Shrubby reed-mustard (Schoenocrambe suffrutescens), a U.S. 

federally listed endangered shrub endemic to the Uinta Basin, Utah, 
faces habitat loss due to fossil fuel energy development and extraction. 
Random forests models and digital environmental covariates were used 
to identify potential shrubby reed-mustard (SRM) habitat (Baker et al., 
2016). A three-step approach was used to create the final predictive map. 
First, soil properties measured in the field were used to predict SRM 
presence or absence (out-of-bag [OOB] error of 10%). Second, these 
soil properties were correlated to elevation and spectral data, including 
a DEM, DEM derivatives, and Landsat 5 TM imagery, to predict SRM 
habitat onto a spatial extent and generate training data points for a final 
model (OOB error of 28%). Calcium carbonate equivalent, silt content, 
and dry color value were strongly correlated with yellowness from the 
Tasseled Cap transformation, 3/2 normalized difference ratio, and 3/1 
normalized difference ratio (spectral band ratios typically associated 
with geology and carbonate content). Third, the spectral and elevation 
data were used to create a final predictive raster of potential SRM habitat 
with OOB error of 23%, validated by an independent dataset of SRM 
locations. Variable importance plots were used in all models to indicate 
the mean decrease in accuracy for each predictor variable. The most 
important predictor variables were selected and reduced to a subset by 
manual stepwise elimination to obtain the best model fit with the fewest 
variables. The final model can be used to identify potential habitat 
across a large area, especially where remote or rugged terrain make 
access difficult and time- and labor-intensive. Once soil and site data are 
located for potential habitat areas, they can be used to verify SRM habitat 
suitability and focus conservation or restoration efforts.
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Summary

Digital soil mapping uses field and laboratory observations coupled 
with spatially explicit environmental covariates (SCORPAN) and modern 
computer technology to predict soil classes or properties. It complements 
and builds upon the collective knowledge and expertise accumulated 
over many decades of conventional soil survey work. Major advantages 
of digital soil mapping include:

• The most accurate model that resources can support through the 
iterative process of development and testing can be used to create 
the final soil map. Models can be refined until the resulting soil 
map meets accuracy and uncertainty standards.

• The uniform application of the model across the project area 
results in a consistent soil map.

• The degree of accuracy and uncertainty associated with the soil 
map can be expressed quantitatively.

• Soil information is captured for each grid cell rather than 
aggregated for entire polygons. As a result, there is a more 
detailed portrayal of the short-range soil variability over the 
landscape.

• The models developed to predict soil classes or properties are an 
effective way to capture and preserve expert knowledge about 
soil and landscape relationships.

References

Arrouyas, D., N. McKenzie, J. Hempel, A.R. de Forges, and A.B. 
McBratney. 2014. GlobalSoilMap: Basis of the global spatial soil 
information system. Taylor and Francis, London, UK. 

Baker, J.B., B.B. Fonnesbeck, and J.L. Boettinger. 2016. Modeling rare 
endemic shrub habitat in the Uinta Basin using soil, spectra, and 
topographic data. Soil Science Society of America 80:395–408. 

Behrens, T. 2003. Digitale Reliefanalyse als Basis von Boden-
Landschafts-Modellen-am Beispiel der Modellierung periglaziarer 
Lagen im Ostharz. Boden und Landschaft 42:189. 

Behrens, T., and T. Scholten. 2006. A comparison of data-mining 
techniques in predictive soil mapping. In P. Lagacherie, A.B. 
McBratney, and M. Voltz (eds.) Digital soil mapping: An introductory 
perspective, Elsevier, Amsterdam, pp. 353–617.



 soil survey Manual 347

Behrens, T., H. Förster, T. Scholten, U. Steinrücken, E.-D. Spies, and 
M. Goldschmitt. 2005. Digital soil mapping using artificial neural 
networks. Journal of Plant Nutrition and Soil Science 168:21–33.

Behrens, T., A.X. Zhu, K. Schmidt, and T. Scholten. 2010. Multi-scale 
digital terrain analysis and feature selection for digital soil mapping. 
Geoderma 155(3–4):175–185.

Belnap, J., J.H. Kaltenecker, R. Rosentreter, J. Williams, S. Leonard, and 
D. Eldridge. 2001. Biological soil crusts: Ecology and management. 
Technical Reference No. 1730-2, USDI Geological Survey, Forest 
and Rangeland Ecosystem Science Center, Denver, CO.

Belnap, J., S.L. Phillips, D.L. Witwicki, and M.E. Miller. 2008. Visually 
assessing the level of development and soil surface stability of 
cyanobacterially dominated biological soil crusts. Journal of Arid 
Environments 72(7):1257–1264.

Bodily, J.M. 2005. Developing a digital soil survey update protocol at 
the Golden Spike National Historic site. M.S. thesis, Utah State 
University, Logan.

Boruvka, L., L. Pavlu, R. Vasat, V. Penizek, and O. Drabek. 2008. 
Delineating acidified soils in the Jizera Mountains region using 
fuzzy classification. In A.E. Hartemink, A. McBratney, and M.L. 
Mendonça-Santos (eds.) Digital soil mapping with limited data, 
Springer, The Netherlands, pp. 303–309. 

Bouma, J., A.G. Jongmans, A. Stein, and G. Peek. 1989. Characterizing 
spatially variable hydraulic properties of a boulder clay deposit in 
The Netherlands. Geoderma 45:19-29.

Brungard, C.W., and J.L. Boettinger. 2010. Conditioned Latin hypercube 
sampling: Optimal sample size for digital soil mapping of arid 
rangelands in Utah, USA. In J.L. Boettinger, D.W. Howell, A.C. 
Moore, A.E. Hartemink, and S. Kienast-Brown (eds.) Digital 
soil mapping: Bridging research, environmental application, and 
operation, Springer, Dordrecht, The Netherlands, pp. 67–75.

Brungard, C.W., J.L. Boettinger, M.C. Duniway, S.A. Wills, and T.C. 
Edwards. 2015. Machine learning for predicting soil classes in three 
semi-arid landscapes. Geoderma 239-240:68-83.

Brus, D.J., B. Kempen, and G.B.M. Heuvelink. 2011. Sampling for 
validation of digital soil maps. European Journal of Soil Science 
62(3):394–407.

Bui, E.N., and C.J. Moran. 2003. A strategy to fill gaps in soil survey over 
large spatial extents: An example from the Murray-Darling Basin of 
Australia. Geoderma 111:21–44.

Burrough, P.A., and R. McDonnell. 1998. Principles of geographical 
information systems. Oxford University Press.



348 ChapTer 5

Burrough, P.A., P.F.M. van Gaans, and R. Hootsmans. 1997. Continuous 
classification in soil survey: Spatial correlation, confusion and 
boundaries. Geoderma 77(2–4):115–135.

Carré, F., A.B. McBratney, T. Mayr, and L. Montanarella. 2007. Digital 
soil assessments: Beyond DSM. Geoderma 142:69-79. 

Cole, N.J., and J.L. Boettinger. 2007. A pedogenic understanding 
raster classification methodology for mapping soils, Powder River 
Basin, Wyoming, USA. In P. Lagacherie, A.B. McBratney, and 
M. Voltz (eds.) Digital soil mapping: An introductory perspective. 
Developments in Soil Science, Vol. 31, Elsevier, Amsterdam, pp. 
377-388. 

Colwell, R.N. 1997. History and place of photographic interpretation. 
In Manual of Photographic Interpretation, second ed., American 
Society for Photogrammetry and Remote Sensing.

Congalton, R. 1991. A review of assessing the accuracy of classifications 
of remotely sensed data. Remote Sensing of Environment 37(1):35–
46.

de Gruijter, J., D.J. Brus, M.F.P. Bierkens, and M. Knotters. 2006. 
Sampling for natural resource monitoring. Springer, Berlin. 

Dobos, E., and J. Daroussin. 2005. The derivation of the Potential 
Drainage Density Index (PDD). In E. Dobos, J. Daroussin, and L. 
Montanarella (eds.) An SRTM-based procedure to delineate SOTER 
terrain units on 1:1 and 1:5 million scales.

Duda, R.O., P.E. Hart, and D.G. Stork. 2001. Pattern classification. John 
Wiley & Sons, New York, NY.

Foody, G.M. 2000. Estimation of sub-pixel land cover composition in the 
presence of untrained classes. Computers and Geosciences 26:469-
478.

Fox, G.A., and R. Metla. 2005. Soil property analysis using principal 
components analysis, soil line, and regression models. Soil Science 
Society of America Journal 69(6):1782.

Franklin, J., and J.A. Miller. 2009. Mapping species distributions: Spatial 
inference and prediction. Cambridge University Press.

Gallant, J.C., and T.I. Dowling. 2003. A multiresolution index of valley 
bottom flatness for mapping depositional areas. Water Resources 
Research 39(12).

Guyon, I., J. Weston, S. Barnhill, and V. Vapnik. 2002. Gene selection 
for cancer classification using support vector machines. Machine 
Learning 46(1-3):389–422.

Hammond, E.H. 1954. Small scale continental landform maps. Annals of 
the Association of American Geographers 44:32-42.



 soil survey Manual 349

Hammond, E.H. 1964. Analysis of properties in land form geography: 
An application to broad-scale land form mapping. Annals of the 
Association of American Geographers 54(1):11-19. 

Hartemink, A.E., A. McBratney, and M.L. Mendonça-Santos (editors). 
2008. Digital soil mapping with limited data. Springer, Heidelberg. 

Hengl, T. 2003. Visualisation of uncertainty using the HSI colour model: 
Computations with colours. Proceedings of the 7th International 
Conference on GeoComputation, pp. 1–12.

Hengl, T. 2007. A practical guide to geostatistical mapping of environ-
mental variables. Geoderma 140(4):417–427.

Hengl, T., and H.I. Reuter. 2008. Geomorphometry. Developments in 
Soil Science, Vol. 33, Elsevier, Amsterdam.

Hengl, T., G.B.M. Heuvelink, and D.G. Rossiter. 2007. About regression-
kriging: From equations to case studies. Computers and Geosciences 
33(10):1301–1315.

Hofierka, J., and M. Suri. 2002. The solar radiation model for Open 
Source GIS: Implementation and applications. Proceedings of the 
Open Source GIS-GRASS User’s Conference, pp. 1-19.

Hole, F.D., and J.B. Campbell. 1985. Soil landscape analysis. Rowman 
& Littlefield.

Intergraph Corporation. 2013. ERDAS field guide. Available at http://
e2b.erdas.com/Libraries/Misc_Docs/ERDAS_FieldGuide_PDF_
Intergraph_brand.sflb.ashx. [Accessed 20 September 2016]

Issaks, E.H., and R.M. Srivastava. 1989. An introduction to applied 
geostatistics. Oxford University Press, New York, NY.

Iwahashi, J., and R.J. Pike. 2007. Automated classifications of topography 
from DEMs by an unsupervised nested-means algorithm and a three-
part geometric signature. Geomorphology 86(3):409-440.

James, G., D. Witten, T. Hastie, and R. Tibshirani. 2014. An introduction 
to statistical learning: With applications in R. Springer, New York, 
NY.

Jasiewicz, J., and T.F. Stepinski. 2013. Geomorphons—A pattern re-
cognition approach to classification and mapping of landforms. 
Geomorphology 182:147-156.

Jenny, H. 1941. The factors of soil formation. McGraw Hill, New York, 
NY. 

Jensen, J.R. 2005. Introductory digital image processing: A remote 
sensing perspective, 3rd edition. Pearson Prentice Hall, pp. 296-300, 
301-321, 315-316. 

Kempen, B., D.J. Brus, G.B.M. Heuvelink, and J.J. Stoorvogel. 2009. 
Updating the 1:50,000 Dutch soil map using legacy soil data: A 

http://e2b.erdas.com/Libraries/Misc_Docs/ERDAS_FieldGuide_PDF_Intergraph_brand.sflb.ashx
http://e2b.erdas.com/Libraries/Misc_Docs/ERDAS_FieldGuide_PDF_Intergraph_brand.sflb.ashx
http://e2b.erdas.com/Libraries/Misc_Docs/ERDAS_FieldGuide_PDF_Intergraph_brand.sflb.ashx


350 ChapTer 5

multinomial logistic regression approach. Geoderma 151(3-4):311–
326.

Kidd, D., B. Malone, A. McBratney, B. Minasny, and M. Webb. 2015. 
Operational sampling challenges to digital soil mapping in Tasmania, 
Australia. Geoderma Regional 4:1–10.

Kienast-Brown, S., and J.L. Boettinger. 2007. Land cover classification 
from Landsat imagery for mapping dynamic wet and saline soils. 
In P. Lagacherie, A.B. McBratney, and M. Voltz (eds.) Digital 
soil mapping: An introductory perspective. Developments in Soil 
Science, Vol. 31, Elsevier, Amsterdam, pp. 235–244.

Kienast-Brown, S., and J.L. Boettinger. 2010. Applying the optimum 
index factor to multiple data types in soil survey. In J.L. Boettinger, 
D.W. Howell, A.C. Moore, A.E. Hartemink, and S. Kienast-Brown 
(eds.) Digital soil mapping: Bridging research, environmental 
application, and operation, Springer, Dordrecht, The Netherlands, 
pp. 385–398.

Kuhn, M., and K. Johnson. 2013. Applied predictive modeling. Springer, 
New York, NY.

Kuhn, M., J. Wing, S. Weston, A. Williams, C. Keefer, A. Engelhardt, 
T. Cooper, Z. Mayer, B. Kenkel, T.R.C. Team, M. Benesty, R. 
Lescarbeau, A. Ziem, and L. Scrucca. 2015. caret: Classification and 
regression training.

Kursa, M.B., and W.R. Rudnicki. 2010. Feature selection with the Boruta 
package. Journal of Statistical Software 36(11):1–13.

Lagacherie, P., A.B. McBratney, and M. Voltz (editors). 2007. Digital 
soil mapping: An introductory perspective. Developments in Soil 
Science, Vol. 31, Elsevier, Amsterdam.

Levi, M.R., and C. Rasmussen. 2014. Covariate selection with iterative 
principal component analysis for predicting physical soil properties. 
Geoderma 219–220:46–57.

Libohova, Z., H.E. Winzeler, B. Lee, P.J. Schoeneberger, J. Datta, and 
P.R. Owens. 2016. Geomorphons: Landform and property predictions 
in a glacial moraine in Indiana landscapes. Catena 142:66-76. 

Lohr, S.L. 2009. Sampling: Design and analysis, 2nd edition. Nelson 
Education. 

MacQueen, J.B. 1967. Some methods for classification and analysis of 
multivariate observations. Proceedings of the Fifth Symposium on 
Math, Statistics, and Probability, University of California Press, 
Berkeley, CA.

Malone, B.P., A.B. McBratney, and B. Minasny. 2011. Empirical 
estimates of uncertainty for mapping continuous depth functions of 
soil attributes. Geoderma 160(3–4):614–626.



 soil survey Manual 351

Malone, B.P., B. Minasny, N.P. Odgers, and A.B. McBratney. 2014. 
Using model averaging to combine soil property rasters from legacy 
soil maps and from point data. Geoderma 232-234:34–44.

MathWorks, Inc. MATLAB 8.0 and Statistics Toolbox 8.1. Natick, MA.
McBratney, A.B., M.L. Mendonça-Santos, and B. Minasny. 2003. On 

digital soil mapping. Geoderma 117:3-52.
Miller, B.A., S. Koszinski, M. Wehrhan, and M. Sommer. 2015. Impact 

of multi-scale predictor selection for modeling soil properties. 
Geoderma 239-240:97–106. 

Minasny, B., and A.B. McBratney. 2006. A conditioned Latin hypercube 
method for sampling in the presence of ancillary information. 
Computers & Geosciences 32:1378–1388. 

Minasny, B., B.P. Malone, and A.B. McBratney. 2012. Digital soil 
assessments and beyond. Proceedings of the 5th Global Workshop 
on Digital Soil Mapping. CRC Press, Boca Raton, FL.

Mohanty, B.P., and Z. Mousli. 2000. Saturated hydraulic conductivity 
and soil water retention properties across a soil-slope transition. 
Water Resources Research 43(11):3311-3324.

Moore, I.D., R.B. Grayson, and A.R. Ladson. 1991. Digital terrain 
modelling: A review of hydrological, geomorphological, and bio-
logical applications. Hydrological Processes 5(1):3-30.

Nauman, T.W., and J.A. Thompson. 2014. Semi-automated disaggregation 
of conventional soil maps using knowledge driven data mining and 
classification trees. Geoderma 213:385-399.

Nield, S.J., J.L. Boettinger, and R.D. Ramsey. 2007. Digitally mapping 
gypsic and natric soil areas using Landsat ETM data. Soil Science 
Society of America Journal 71:245-252.

Nilsson, R., J.M. Peña, J. Björkegren, and J. Tegnér. 2007. Consistent 
feature selection for pattern recognition in polynomial time. Journal 
of Machine Learning Research 8:589–612.

O’Callaghan, J., and D. Mark. 1984. The extraction of drainage networks 
from digital elevation data. Computer Vision, Graphics, and Image 
Processing 28:323–344.

Odeh, I.O.A., A.B. McBratney, and D.J. Chittleborough. 1994. Spatial 
prediction of soil properties from landform attributes derived from a 
digital elevation model. Geoderma 63:197–214.

Odeh, I.O.A., A.B. McBratney, and D.J. Chittleborough. 1995. Further 
results on prediction of soil properties from terrain attributes—
Heterotrophic cokriging and regression kriging. Geoderma 67:215–
226.



352 ChapTer 5

Odgers, N.P., W. Sun, A.B. McBratney, B. Minasny, and D. Clifford. 
2014. Disaggregating and harmonising soil map units through 
resampled classification trees. Geoderma 214–215:91–100.

Olaya, V., and O. Conrad. 2009. Geomorphometry in SAGA. Devel-
opments in Soil Science, Vol. 33, Elsevier, Amsterdam, pp. 293-308.

Olea, R.A. 2009. A practical primer on geostatistics. USGS Open-File 
Report 2009-1103, USDI Geological Survey, Reston, Virginia.

Padarian, J., B. Minasny, A.B. McBratney, and N. Dalgliesh. 2014. 
Predicting and mapping the soil available water capacity of Australian 
wheatbelt. Geoderma Regional 2–3:110–118.

Park, S.J., G.R. Ruecker, W.A. Agyare, A. Akramhanov, D. Kim, and 
P.L.G. Vlek. 2009. Influence of grid cell size and flow routing 
algorithm on soil-landform modeling. Journal of the Korean Geo-
graphical Society 44:122–45.

Pebesma, E.J. 2004. Multivariable geostatistics in S: The gstat package. 
Computers and Geosciences 30:683–691.

Peterson, K.A. 2009. Modeling potential native plant species distributions 
in Rich County, Utah. All Graduate Theses and Dissertations Paper 
649, Utah State University.

PRISM Climate Group. 2016. PRISM climate data. Northwest Alliance 
for Computational Science & Engineering (NACSE) at Oregon State 
University. Available at http://prism.oregonstate.edu. [Accessed 16 
September 2016]

Quinn, P.F., K.J. Beven, P. Chevallier, and O. Planchon. 1991. The 
prediction of hillslope flowpaths for distributed modelling using 
digital terrain models. Hydrological Processes 5:59-80.

R Core Team. 2013. R: A language and environment for statistical 
computing. Vienna, Austria.

Riley, S.J., S.D. DeGloria, and R. Elliot. 1999. A terrain ruggedness index 
that quantifies topographic heterogeneity. Intermountain Journal of 
Sciences 5:23-27.

Roecker, S.M., and J.A. Thompson. 2010. Scale effects on terrain 
attribute calculation and their use as environmental covariates for 
digital soil mapping. In J.L. Boettinger, D.W. Howell, A.C. Moore, 
A.E. Hartemink, and S. Kienast-Brown (eds.) Digital soil mapping: 
Bridging research, environmental application, and operation, 
Springer, Dordrecht, The Netherlands, pp. 55–66.

Rossiter, D.G. 2003. Methodology for soil resource inventories, 3rd 
edition. ITC Lecture Notes SOL.27, International Institute for 
Aerospace Survey and Earth Sciences, Enschede, The Netherlands. 

Roudier, P. 2011. clhs: An R package for conditioned Latin hypercube 
sampling.

http://prism.oregonstate.edu


 soil survey Manual 353

Roudier, P., D.E. Beaudette, and A.E. Hewitt. 2012. A conditioned Latin 
hypercube sampling algorithm incorporating operational constraints. 
In B. Minasny, B.P. Malone, and A. McBratney (eds.) Digital soil 
assessments and beyond: Proceedings of the 5th Global Workshop on 
Digital Soil Mapping, CRC Press, Sydney, Australia, pp. 227–231.

Saunders, A.M., and J.L. Boettinger. 2007. Incorporating classification 
trees into a pedogenic understanding raster classification 
methodology, Green River Basin, Wyoming, USA. In P. Lagacherie, 
A.B. McBratney, and M. Voltz (eds.) Digital soil mapping: An 
introductory perspective. Developments in Soil Science, Vol. 31, 
Elsevier, Amsterdam, pp. 389-399. 

Schaeffer, R.L., W. Mendenhall, and L. Ott. 1990. Elementary survey 
sampling, 4th edition. PWS-Kent Publishing Company.

Schmidt, J., and A. Hewitt. 2004. Fuzzy land element classification 
from DTMs based on geometry and terrain position. Geoderma 
121(3):243-256.

Schowengerdt, R.A. 1997. Remote sensing: Models and methods for 
image processing, 2nd edition. Academic Press.

Smith, M.P., A.X. Zhu, J.E. Burt, and C. Stiles. 2006. The effects of DEM 
resolution and neighborhood size on digital soil survey. Geoderma 
137(1–2):58–69. 

Soilcrust.org. 2016. Biological soil crusts. http://www.soilcrust.org/
index.htm [Accessed 20 September 2016]

Stam, C.A. 2012. Using biophysical geospatial and remotely sensed data 
to classify ecological sites and states. All Theses and Dissertations 
Paper 1389, Utah State University. 

Stum, A.K., J.L. Boettinger, M.A. White, and R.D. Ramsey. 2010. 
Random forests applied as a soil spatial predictive model in arid 
Utah. In J.L. Boettinger, D.W. Howell, A.C. Moore, A.E. Hartemink, 
and S. Kienast-Brown (eds.) Digital soil mapping: Bridging research, 
environmental application, and operation, Springer, Dordrecht, The 
Netherlands, pp. 179–190.

Tarboton, D.G. 1997. A new method for the determination of flow 
directions and contributing areas in grid digital elevation models. 
Water Resources Research 33(2):309-319.

Thompson, J.A., J.C. Bell, and C.A. Butler. 2001. Digital elevation model 
resolution: Effects on terrain attribute calculation and quantitative 
soil-landscape modeling. Geoderma 100(1-2):67–89. 

Tou, J.T., and R.C. Gonzalez. 1974. Pattern recognition principles. 
Addison-Wesley.

Triantifilis, J., N.Y. Earl, and I.D. Gibbs. 2012. Digital soil-class mapping 
across the Edgeroi district using numerical clustering and gamma-ray 

http://www.soilcrust.org/index.htm
http://www.soilcrust.org/index.htm


354 ChapTer 5

spectrometry data. In B. Minasny, B.P. Malone, and A. McBratney 
(eds.) Digital soil assessments and beyond. Proceedings of the 5th 
Global Workshop on Digital Soil Mapping, CRC Press, Sydney, pp. 
187–191. 

U.S. Department of Agriculture, Natural Resources Conservation 
Service. 2008. Ecological sites: Understanding the landscape fact 
sheet. Available at http://nitcnrcsbase-www.nrcs.usda.gov/Internet/
FSE_DOCUMENTS/stelprdb1043492.pdf. [Accessed 20 September 
2016]

U.S. Department of Agriculture, Natural Resources Conservation 
Service. 2016a. Geospatial Data Gateway. https://gdg.sc.egov.usda.
gov [Accessed September 20, 2016]

U.S. Department of Agriculture, Natural Resources Conservation Service. 
2016b. Job Aids (Soil Databases, GIS). http://www.nrcs.usda.gov/
wps/portal/nrcs/detail/soils/edu/ncss/?cid=nrcs142p2_054322 
[Accessed 20 September 2016]

U.S. Department of the Interior, Geological Survey. 1999. National GAP 
analysis program land cover data, version 2. 

U.S Department of the Interior, Geological Survey. 2016a. EarthExplorer. 
http://earthexplorer.usgs.gov [Accessed 20 September 2016]

U.S Department of the Interior, Geological Survey. 2016b. The National 
Map. http://ned.usgs.gov/ [Accessed 20 September 2016]

Vaughan, R., and K. Megown. 2015. The Terrestrial Ecological Unit 
Inventory (TEUI) Geospatial Toolkit: User guide v5.2. RSAC-
10117-MAN1. USDA Forest Service, Remote Sensing Applications 
Center, Salt Lake City, UT.

Wang, F. 1990. Improving remote sensing image analysis through fuzzy 
information representation. Photogrammetric Engineering and 
Remote Sensing 56:1163-1169. 

Webster, R., and M.A. Oliver. 2007. Geostatistics for environmental 
scientists, 2nd edition. John Wiley & Sons. 

Wilson, J.P., and J.C. Gallant. 2000. Terrain analysis: Principles and 
applications. John Wiley & Sons.

Xiong, X., S. Grunwald, D.B. Myers, J. Kim, W.G. Harris, and N.B. 
Comerford. 2014. Holistic environmental soil-landscape modeling 
of soil organic carbon. Environmental Modelling and Software 
57:202–215.

Zadeh, L.A. 1965. Fuzzy sets. Information and Control 8:338-353.
Zhu, A.X., B. Hudson, J. Burt, K. Lubich, and D. Simonson. 2001. Soil 

mapping using GIS, expert knowledge, and fuzzy logic. Soil Science 
Society of America Journal 65:1463-1472. 

http://nitcnrcsbase-www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1043492.pdf
http://nitcnrcsbase-www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1043492.pdf
https://gdg.sc.egov.usda.gov
https://gdg.sc.egov.usda.gov
http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/edu/ncss/?cid=nrcs142p2_054322
http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/edu/ncss/?cid=nrcs142p2_054322
http://earthexplorer.usgs.gov
http://ned.usgs.gov

	Digital Soil Mapping
	Principles and Concepts
	Stages and Processes
	Applications of Digital Soil Mapping
	Summary
	References



