Buffalo Rapids District No. 2 Sediment Transport & Nutrient Loss Reduction Project

> Terry Field Office 2023 - 2027

Overview/Background Information

This Targeted Implementation Plan (TIP) will encompass Buffalo Rapids Irrigation District No. 2 (BR), from the Shirley pump site in northeastern Custer County through the Fallon system paralleling the Yellowstone River. Town boundaries, existing sprinkler systems and roadways were excluded from the TIP boundary. The Buffalo Rapids Irrigation Project was constructed by the U.S. Bureau of Reclamation between 1937 and 1950 in an effort to spur settlement and development along the Yellowstone after the Great Depression. The Fallon unit was the last to be completed in 1950. District 2 has a total of 10,593 irrigable acres and is made up of three units – Shirley, Terry, and Fallon. Table 1 lists acres of irrigated land in the Buffalo Rapids Irrigation District No. 2.

Table 1: Current Irrigation Delivery Methods						
Dist. No. 2 Division	Flood Acres	Pivot Acres				
Shirley	3,979	1,303				
Terry	1,781	1,554				
Fallon	1,970	1,091				

Transportation of sediment in the Buffalo Rapids system was first analyzed in the late 1990s^{1,2} and both studies note that sedimentation and irrigation induced erosion are primary natural resource concerns that need addressed. This was reinforced in the Yellowstone River Cumulative Effects study, which noted that reaches C and D of the Yellowstone River, encompassing the Buffalo Rapids project, have a moderate to major altered sediment regime due to irrigation for agriculture³.

Since the mid-1990s, and in particular after the NRCS Priority Area Initiative in 1998, considerable effort has been put into replacing earthen laterals that serve multiple producers with PVC pipe and lining large canals to reduce seepage. However, very little effort has been put into on-farm improvements; many producers continue to flood irrigate or utilize gated pipe.

Irrigation water quality and irrigation improvements have been discussed at every Local Work Group meeting as far back as 2009 and are clearly outlined in the Prairie County Long Range Plan, page 40. The last investment in irrigation projects by NRCS in Prairie County was in 2013 through PL-566, but interest remains high. Producers realize the benefits of improved irrigations systems but cannot afford to implement them on their own; they are ready and willing to partner with NRCS for the conversion of flood to sprinkler irrigation.

Problem Statement

The lack of on-farm irrigation system improvements on the Buffalo Rapids District No. 2 project contributes largely to sediment transport, nutrient loss, and labor inefficiencies. Currently, flood irrigators apply upwards of four inches per irrigation on timed sets; the bulk of that application is lost as runoff, which carries sediment and sediment attached nutrients away from the field. When using the Surface Irrigation Soil Loss Model, gated pipe irrigation systems, the most common in the TIP area, can contribute up to an average of 6.4 tons/year of surface soil loss per system. Along with excess sediment transportation and inefficient water use, over-application of irrigation water results in wasted labor and energy. Throughout the irrigation season, irrigators on the BR No. 2 system spend an average \$45.71/acre in labor, just setting water. Sprinkler irrigation systems apply much less water per set in more frequent applications. The uniform distribution reduces sediment runoff, provides more timely water applications for crops, and decreases

expenditures of time, labor, and energy. Sprinkler irrigation systems could also contribute to changing tillage practices, further reducing sediment loss.

Inefficient irrigation systems result in overapplication of water which leaves the field as runoff. Sediment carried in runoff is deposited in drain ditches, eventually reducing their capacity. Runoff from improperly irrigated fields also impacts water quality by contributing to sediment in the Yellowstone River. Every year Buffalo Rapids spends an average of 120 hours cleaning the drains that serve multiple producers. These producers must then also clean their own on-farm drains to remove deposits of sediment carried off the irrigated fields (Figure 1). Changing to sprinkler irrigation systems would reduce decrease the cost and time of cleaning drain ditches and reduce the amount sediment, nutrients and contaminates reaching the river (Figures 2, 3).

Figure 1: Sediment that's been cleaned from the drain ditch at the end of the crop field.

Figures 2, 3: Sediment leaving the BR drain reaches the Yellowstone River.

T Value is an estimate of the maximum average annual rate of soil erosion by wind and/or water that can occur without affecting crop productivity over a sustained period. The rate is in tons per acre per year. Soils within the TIP boundary range from 1T to 5T and are predominantly 5T (Appendix C, figures 7, 8, 9).

Soils within the proposed TIP boundary typically have a higher clay content (Appendix C, figure 1). Although a higher clay content tends to increase available water holding capacity, these soils have higher K-factors and are much more susceptible to runoff due to small particle size. These soils are suited better for lower gross water applications per irrigation due to their tendency for increased runoff potential. As previously discussed, the Surface Irrigation Soil Loss Model (Appendix B) reinforces this susceptibility by decreasing the average soils loss from 6.8 tons/year to 1.4 tons/year.

Nitrogen, a critical nutrient for plant growth, is easily transported by water and is often associated with the impairment of ground and surface water quality⁴ (Appendix C, figure 2). As previously mentioned, soils in the TIP area have a higher percentage of clay, which also lends to nitrogen transport as those fine clay particles attract ammonium nitrogen⁴. While it seems that the nitrate leaching potential above appears to be low, it should be noted that the map units are rated under a non-irrigated condition. When water is applied, the potential for nitrate leaching increases. Further, after modeling before and after scenarios with the Montana Nitrogen Risk Assessment tool (Appendix A), the risk of leaching decreases from High to barely within the medium category with the conversion flood to sprinkler irrigation.

Phosphorus, like nitrogen, is a critical nutrient for crops. When overapplication occurs, phosphorus can be carried with sediment to surface waters during erosion events⁶. Soil tests within the TIP area show an Olson P range from 8-12ppm; therefore, phosphorus transport risk is low. However, for the sake of investigation the Phosphorus Risk Assessment tool (Appendix A) was run. The risk decreases from Medium to Low with the conversion from flood to sprinkler irrigation.

Prime Farmland, Soils of Statewide Importance and Prime if Irrigated Soils are designations assigned by U.S. Department of Agriculture defining soils that have the best combination of physical and chemical characteristics for producing food, feed, forage, fiber, and oilseed crops and is also available for these land uses.

Farmland of Statewide Importance are soils that have been determined to be of significance for production of food, feed, fiber, forage, and oilseed crops. These soils have an adequate and dependable water supply from precipitation or irrigation, favorable temperature and growing season, acceptable acidity or alkalinity, acceptable salt and sodium content, and few or no rocks. They are permeable to water and air, are not excessively erodible or saturated with water for a long period of time, and either do not flood frequently or are protected from flooding. They are available for farming, but could currently be cropland, pastureland, rangeland, forestland, or other land.

Prime Farmland if Irrigated soils are those with the best combination of physical and chemical characteristics for agriculture such as the soil quality and adequate growing season necessary to produce high yields of crops suited to the region but occur in areas of limited rainfall. Approximately 66.7% of soils within the TIP project area are either Prime Farmland if Irrigated or Farmland of Statewide Importance (Appendix C, Figure 3). It is critical to the sustainability of agriculture in Prairie County that these soils remain healthy and productive. Appendix C, figures 4 and 5 show the locations of these soils within the project area.

In 2017, NRCS published "Economics of Reduced Tillage in Sugar Beets," which included data from a Prairie County producer. Among other factors, the study compared erosion estimates, SCI (Soil Conditioning Index) and STIR (Soil Tillage Intensity Rating) values in conventional and reduced tillage sugar beet systems. STIR is a measure the of the

level of tillage disturbance, with greater values indicating greater disturbance. Each piece of machinery is assigned a STIR value in WEPS (Wind Erosion Prediction System). To calculate the average annual STIR value, WEPS adds each individual machinery STIR value for the entire rotation and divides by the number of years in the rotation. SCI is a unitless measure of the soil organic matter trend; a positive SCI indicates an increasing trend in soil organic matter, while a negative SCI indicates a decreasing trend in soil organic matter.

A reduction in erosion rates can be attributed to the change in tillage (reduced STIR value), but furrow irrigation also plays a role. By artificially creating furrows, water easily carries sediment off the field (Figure 4). An additional benefit of the change from furrow or flood to sprinkler irrigation is the ability to plant perpendicular to the prevailing wind.

Figure 4: Irrigation induced erosion at the end of crop fields within the project area; the original wood posts in the photos were 42" high. Sediment has run in and around posts reducing their height by half.

To get a sense of the impact of changing to sprinkler irrigation on erosion Field Office staff looked at a typical conversion scenario within the TIP boundary. The producer in this scenario is an average producer in terms of amount of soil disturbance. A common rotation within the TIP boundary is malt barley, beans, spring wheat, and grain corn. Maps of his plan and associated WEPS runs are available in Appendix E. While the producer doesn't till extensively, he will not meet the 345 practice standard due to yearly burning of residue on his fields. With the conversion from flood to pivot irrigation, and elimination of the burning and tillage, his STIR goes from 42.2 per year down to 7.2 and gross loss of soil goes from 1.2 t/ac to a trace.

	Current Condition	Planned Condition
Surface Loss Model	6.8	1.4
WEPS Model	1.2	0.1
Total Soil Loss	8.0 t/ac	1.5 t/ac

Table 2: Wind and	Water Frosion	Reduction	Estimates
		Neudellon	Loundies

Anecdotal data from the above example producer indicates that switching to sprinkler irrigation systems can reduce or eliminate certain tillage practice that are currently necessary in gated pipe/furrow irrigation systems- i.e., ditching (furrowing) would no longer be needed. This reduction/elimination of tillage practices from an operation drastically decreases Soil Tillage Intensity Rating (STIR) values which will also contribute to the reduction of sediment/nutrient loss and improve soil structure. Additionally, decreasing tillage practices decreases expenditures of time, labor, and energy.

Irrigation Water Management plans implemented in sprinkler irrigation systems contribute to significantly lower potential for sediment and nutrient runoff due to lower gross irrigation water application and increased uniformity of application. Conversion from flood to sprinkler irrigation will help reduce runoff and sediment transport to field ditches and the Yellowstone River.

Goals and Objectives

<u>Primary Resource Concern</u>: Sediment Transported to Surface Water <u>Secondary Resource Concern</u>: Nutrients transported to Surface Water

The goal of this TIP is to reduce sediment transport to surface water on 3,860 acres in Buffalo Rapids Irrigation District No.2 Shirley, Terry, and Fallon systems through the installation of more efficient irrigation systems. Inefficient irrigation causes runoff that transports large amounts of sediment. The modernization of irrigation systems on the farm, together with the implementation of management practices, provide producers important tools to conserve resources (irrigation water, energy, and human capital) and to reduce sediment transport. Modelling data show that Nitrogen Risk decreases from High to Medium and Phosphorus Risk decreases from Medium to Low (Appendix A). Further, sediment transport can be reduced from 8 tons per acre to 1/5 tons per acre (Table 2, Appendix B).

The objective is to target irrigated crop fields that are currently flood irrigated, have high erosion and sediment transfer rates where producers are willing to convert to sprinkler irrigation, reduce their average annual STIR level and encourage implementation of irrigation water management or nutrient management practices. Wind Erosion Prediction System software, Nitrogen Risk Assessment model, and Surface Irrigation Loss Model will be used with each producer's specific information to model baseline conditions.

Alternatives & Implementation

Alternative One (not selected) - Replace surface flood irrigation with sprinkler systems and flow meters to increase irrigation efficiency, reduce sediment transport to surface water, and lower labor inputs. Implementation of Alternative One will cost an average of \$75,801 per system. With this initial investment, several producers will be able to improve their irrigation system and those improved efficiencies will result in improved crop yields. Conservation plans may include the following practices:

- 442 Sprinkler System (Center Pivot)
- 430 Irrigation Pipeline
- 500 Obstruction Removal
- 533 Pumping Plant
- 587 Structure for Water Control

Alternative Two (preferred) encompasses the whole of Alternative One and will include required implementation of Irrigation Water Management (449) and Nutrient Management (590) during the first three years. Management practices develop and apply strategies to improve sustainability and reduce production costs by using inputs (irrigation water and fertilizer) conservatively.

Alternative Three (not selected)– Include the entirety of alternatives one and two plus the addition of Residue Tillage and Management (345) as a required management practice. After investigation of operations within the TIP boundary, it is unnecessary to include this practice as most of the operations already have a STIR rating below 80.

Alterative Four - No action (not selected). Under this alternative, current conditions persist. Without irrigation system improvements, erosion will carry soil from the crop fields, inefficiency of irrigation water application will continue, and producers will experience shortages of labor and time.

This TIP will span five years. Program applications will be accepted in years 2023 through 2026 with infrastructure planned in the first four years.

<u>Cost</u>

Cost Share estimates are based on the FY2022 NRCS EQIP General Cost List payment rates.

Table 3: Cost Share E	Estimate (Irrig	gation TIP	2023)				
EXAMPLE		80	acres				
By: Terry Field Office	December 2021	Checked By:			Date:		
Item			Unit	Amount	PR Unit Cost	1	otal Cost
Center Pivot Sprinkler System (442)							
Center Pivot, 801 to 1,200 feet			ac	80	\$611.13	\$	48,890.40
Irrigation Pipeline (430)							
Polyvinyl Chloride (PVC), Pipe, less than or equ	al to 8 inch		lb	1782	\$2.58	\$	4,597.56
Pumping Plant (533)							
Electric-Powered Pump, greater than 5 to 30 He	orse Power		hp	30	\$415.02	\$	12,450.60
Variable Frequency Drive, less than 75 HP				25	\$100.57	\$	2,514.25
Structure For Water Control (587)							
Miscellaneous Structure, Extra Small			ea	1	\$3,407.42	\$	3,407.42
Flow Meter with Electronic Index			in	8	\$222.50	\$	1,780.00
Irrigation Water Management (449)							
Intermediate IWM, Year 1			ea	1	\$1,050.41	\$	1,050.41
Intermediate IWM, Years 2 and 3			ea	2	\$555.38	\$	1,110.76
Nutrient Management (590)						-	
Basic NM (Non-Organic/Organic)			ac	80	\$6.68	\$	534.40
				Total Co	ost Per System	\$	76,335.80
				Total	Cost Per Acre	\$	954.20

After a preliminary inventory of the TIP area, we predict that more applicants with smaller acreages will participate. There are approximately 7,720 acres within the inventory area that have the potential to convert from flood irrigation to sprinkler systems. These conversions will address the resource concern of Sediment Transported to Surface Water for the selected area. Our goal is to address this resource concern on 50% of the available acres within the three-year signup period.

The Terry Field Office requests the following:

			TIP Funds		
Fiscal	Number of	Acres	Average Expected	Average Expected	Total
Year	Contracts	Treated	Cost Per Acre	Cost per Contract	TOLAI
2023	10	965	\$947.52	\$76,335.80	\$763,358
2024	10	965	\$947.52	\$76,335.80	\$763,358
2025	10	965	\$947.52	\$76,335.80	\$763,358
2026	10	965	\$947.52	\$76,335.80	\$763,358
TOTALS	40	3,860			\$3,053,432

Technical assistance from NRCS will include cultural resources inventories and field visits, system design and plan development, construction checks, operation and maintenance plans, and assistance with soil moisture monitoring and irrigation water management.

The Terry Field Office will require assistance from the Miles City Area engineering staff for training and development of Job Approval Authority for larger TIP irrigation systems. Prairie County Conservation District, Prairie County Grazing District, and Prairie County Extension Service will also provide technical assistance as needed.

Ranking and Prioritization

Prioritization

Application screening & prioritization will be done using the current year program screening bulletin when it becomes available.

Local Ranking Questions

The following questions will be used to rank all eligible applications for this TIP:

1) Will the participant contract Irrigation Water Management and Nutrient Management?

Both IWM and NM IWM NM only None

- 2) Will the application include Intermediate or Advanced Irrigation Water Management that includes soil moisture monitors?
 - Yes

No

Progress Evaluation and Monitoring

Progress will be measured primarily using the erosion and nutrient loss models specific to each producer's operation. WEPS will also be used to model baseline and planned wind erosion. Staffing and funding limitations inhibit our ability to directly measure sediment and nutrient values in irrigation runoff. Implementation success will be measured by the number of acres converted from flood to sprinkler irrigation upon the conclusion of the TIP.

References

¹ Buffalo Rapids PL 83-566 Watershed Plan Environmental Assessment, November 1999

² Improving Irrigation Efficiency and Water Quality – A Priority Area Proposal, June 1998

³ Yellowstone River Cumulative Effects Analysis, December 2015

⁴ NRCS Agronomy Tech Note MT-91

⁵ Economics of Reduced Tillage in Sugar Beets, NRCS, January 2017

⁶ NRCS Agronomy Tech Note MT-77

Appendix A Nitrogen & Phosphorus Risk Assessment Tool Models

Before model:

Montana Nitrogen Risk Assessment Tool

Completing Risk Ratings

Each site category's weighting factor in Table 3 is multiplied by the site risk rating (value) to get a weighted risk value. All categories are rated (according to individual category instructions), and the overall rating is the sum of all values. After individual sites/fields are rated, refer to the appropriate vulnerability rating in Table 5.

Table 3.	MONTANA NITROGEN RISK ASSESSMENT TOOL

SITE CATEGORY	NONE (0)	LOW (1)	MEDIUM (2)	ні <u>с</u> н (4)	VERY HIGH (8)	RISK VALUE (0, 1, 2, 4, 8)	WEIGHT	WEIGHTED RISK FACTOR
Water and Wind Erosion	N/A	<5 ton/ac/yr	5-10 tons/ac/yr	10-15 tons/ac/yr	>15 tons/ac/yr	4	x 1.0	4
Soil Series Risk Assessment	N/A	LOW		HIGH	VERY HIGH	2	X 2.0	4
Precipitation Minus ET (October 1 – April 1)		LOW	MEDIUM	HIGH	VERY HIGH	1	x 2.0	2
Irrigation Method	N/A	Sprinkler system with soil moisture sensors or IWM	Sprinkler system without sensors or IWM	Other irrigation systems with sensors or IWM	Other irrigation systems without sensors or IWM	8	x 2.0	16
Nitrogen Soil Test N		< 50 lbs / ac	50-100 lbs / ac	101-150 lbs / ac	>150 lbs / ac	1	x 0.5	.5
Nitrogen Application Method	None Applied	Applied according to current soil tests and MSU guidelines with split applications based on growth stages	Applied according to current soil test and MSU guidelines < 2 weeks of planting or surface applied during the growing season	Applied < 2 weeks of planting with no soil testing	Applied > 2 weeks of planting with no soil testing	8	x 0.5	4
Nitrogen Application Rate	None Applied	Total N application rate below agronomic rate	Total N application rate equal to agronomic rate	Total N application rate 1- 50 lbs above agronomic rate	Total N application rate >50 lbs above agronomic rate	2	x 0.5	1
					Overa	all Risk	Factor	31.5
					Overall F	Risk F	ating	High

Interpreting Results of Site Vulnerability Ratings

After multiplying the weighting factor by the risk value for each category and totaling all values in Table 3, assign the overall site/field vulnerability to nitrogen loss from Table 4.

Table 4. SITE/FIELD VULNERABILITY TO NITROGEN LOSS

Total of Weighted Risk Values	Site Vulnerability	Site/Field Number(s)
<11	LOW	
11-21	MEDIUM	
22-43	HIGH	Current Condition
> 43	VERY HIGH	

NRCS-Montana-Technical Note-Agronomy MT-91

5

After model:

Montana Nitrogen Risk Assessment Tool

Completing Risk Ratings

Each site category's weighting factor in Table 3 is multiplied by the site risk rating (value) to get a weighted risk value. All categories are rated (according to individual category instructions), and the overall rating is the sum of all values. After individual sites/fields are rated, refer to the appropriate vulnerability rating in Table 5.

TADIE J. MONTANA NITROGEN RIJR ASSESSMENT TOC	Table 3.	MONTANA NITROGEN RISK ASSESSMENT	TOOL
---	----------	----------------------------------	------

SITE CATEGORY	NONE (0)	LOW (1)	MEDIUM (2)	ні <u>с</u> н (4)	VERY HIGH (8)	RISK VALUE (0, 1, 2, 4, 8)	WEIGHT	WEIGHTED RISK FACTOR
Water and Wind Erosion	N/A	<5 ton/ac/yr	5-10 tons/ac/yr	10-15 tons/ac/yr	>15 tons/ac/yr	1	x 1.0	1
Soil Series Risk Assessment	N/A	LOW		HIGH	VERY HIGH	2	X 2.0	4
Precipitation Minus ET (October 1 – April 1)		LOW	MEDIUM	HIGH	VERY HIGH	1	× 2.0	2
Irrigation Method	N/A	Sprinkler system with soil moisture sensors or IWM	Sprinkler system without sensors or IWM	Other irrigation systems with sensors or IWM	Other irrigation systems without sensors or IWM	1	x 2.0	2
Nitrogen Soil Test N		< 50 lbs / ac	50-100 lbs / ac	101-150 lbs / ac	>150 lbs / ac	1	x 0.5	.5
Nitrogen Application Method	None Applied	Applied according to current soil tests and MSU guidelines with split applications based on growth stages	Applied according to current soil test (and MSU) guidelines < 2 weeks of (planting of surface applied during the growing season	Applied < 2 weeks of planting with no soil testing	Applied > 2 weeks of planting with no soil testing	2	x 0.5	1
Nitrogen Application Rate	None Applied	Total N application rate below agronomic rate	Total N application rate equal to agronomic rate	Total N application rate 1- 50 lbs above agronomic rate	Total N application rate >50 lbs above agronomic rate	2	x 0.5	1
					Overa	all Risk	Factor	11.5
					Overall F	Risk R	lating	Medium

Interpreting Results of Site Vulnerability Ratings

After multiplying the weighting factor by the risk value for each category and totaling all values in Table 3, assign the overall site/field vulnerability to nitrogen loss from Table 4.

Table 4. SITE/FIELD VULNERABILITY TO NITROGEN LOSS

Total of Weighted Risk Values	Site Vulnerability	Site/Field Number(s)
<11	LOW	
11-21	MEDIUM	Planned Condition
22-43	HIGH	
> 43	VERY HIGH	

NRCS-Montana-Technical Note-Agronomy MT-91

Before model:

Montana Phosphorus Risk Assessment Tool

Completing Risk Ratings

Each site category's weighting factor in Table 4 is multiplied by the site risk rating (value) to get a weighted risk value. All categories are rated (according to individual category instructions), and the overall rating is the sum of all values. After individual sites/fields are rated, refer to the appropriate vulnerability rating in Table 5.

Table 4.	MONTANA PHOSPHORUS RISK ASSESSMENT TOOL
----------	---

SITE CATEGORY	NONE (0)	LOW (1)	MEDIUM (2)	нідн (4)	VERY HIGH (8)	RISK VALUE (0, 1, 2, 4, 8)	WEIGHT	WEIGHTED RISK FACTOR
Water and Wind Erosion	N/A	<5 ton/ac/yr	5-10 tons/ac/yr	10-15 tons/ac/yr	>15 tons/ac/yr	1	x 1.5	1.5
Furrow Irrigation Erosion	N/A	Tailwater recovery, QS > 6 very erodible soils, or QS> 10	QS> 10 for erosion resistant soils	QS > 10 for erodible soils	QS > 6 for erodible very soils	2	x1.5	3
Sprinkler Irrigation Erosion	All sites 0- 3% slope, all sandy sites, or indicates, little or no runoff, large spray on silts 3- 8%	medium spray on silty soils 3- 15% slopes, large spray on silty soils 8-15% slope, low spray on silt soils 3- 8%, large spray on clay soil 3- 15% slope	medium spray on clay soils 3- 8% slopes, large spray on clay soils >15% slope, medium spray on silt soil >15% slope	medium spray on clay soils >8% slopes, low spray on clay soils 3-8% slope, low spray on sitty soil >15% slope	low spray on clay soils >8% slopes,	0	x 0.5	0
Runoff Class	Negligible	very low or low	medium	high	very high	1	x 0.5	0.5
Olsen Soil Test P	< 10	10-20 ppm	20-40 ppm	41-80 ppm	>80 ppm	1	x 1.0	1
Phosphorus Application Method	None Applied	Injected deeper than 2 inches or subsurface applied	Incorporated < 2 weeks or surface applied during the growing season	Incorporated >2 weeks and <1 month or surface applied <1 month before crop emerges	Surface applied to pasture or applied > 1 month before crop emerges	1	x 1.0	1
Phosphorus Application Rate	None Applied	< 30 lbs./ac. (P ₂ O ₅)	31-90 lbs./ac. P ₂ O ₅	91-150 lbs./ac. P ₂ O ₅	> 150 lbs./ac. P ₂ 0 ₅	1	x 1.0	1
Distance to Concentrated Surface Water Flow	> 1000 feet	200-1000 feet, or functioning grass waterway in concentrated surface water	100-200 feet	< 100 feet with a vegetated buffer at least 35 feet in width	< 35 feet with no vegetated buffer	4	x 1.0	4
				Association and the second second	Phosphorus Ris	2014 - 201414 - 401-9293		12
				Site/Field F	Phosphorus Risk	Assessm	ent Rating	Medium

Interpreting Results of Site Vulnerability Ratings

After multiplying the weighting factor by the risk value for each category and totaling all values in Table 3, assign the overall site/field vulnerability to phosphorus loss from Table 4.

Table 5. SITE/FIELD VULNERABILITY TO PHOSPHORUS LOSS

Total of Weighted Risk Values	Site Vulnerability	Site/Field Number(s)
<11	LOW	345 34436 6350
11-21	MORDERATE or MEDIUM	Current Condition
22-43	HIGH	
> 43	VERY HIGH	

NRCS-Montana-Technical Note-Agronomy MT-77 (Rev. 4)

Montana Phosphorus Risk Assessment Tool

Completing Risk Ratings

Each site category's weighting factor in Table 4 is multiplied by the site risk rating (value) to get a weighted risk value. All categories are rated (according to individual category instructions), and the overall rating is the sum of all values. After individual sites/fields are rated, refer to the appropriate vulnerability rating in Table 5.

SITE CATEGORY	NONE (0)	LOW (1)	MEDIUM (2)	нідн (4)	VERY HIGH (8)	RISK VALUE (0, 1, 2, 4, 8)	WEIGHT FACTOR	WEIGHTED RISK FACTOR
Water and Wind Erosion	N/A	<5 ton/ac/yr	5-10 tons/ac/yr	10-15 tons/ac/yr	>15 tons/ac/yr	1	x 1.5	1.5
Furrow Irrigation Erosion	(N/A)	Tailwater recovery, QS > 6 very erodible soils, or QS> 10	QS> 10 for erosion resistant soils	QS > 10 for erodible soils	QS > 6 for erodible very soils	Ø	x1.5	0
Sprinkler Irrigation Erosion	All sites 0- 3% slope, all sandy sites, or site evaluation indicates little or no runoff, large spray on silts 3- 8%	medium spray on silty soils 3- 15% slopes, large spray on silty soils 8-15% slope, low spray on silt soils 3- 8%, large spray on clay soil 3- 15% slope	medium spray on clay soils 3- 8% slopes, large spray on clay soils >15% slope, medium spray on silt soil >15% slope	medium spray on clay soils >8% slopes, low spray on clay soils 3-8% slope, low spray on sitty soil >15% slope	low spray on clay soils >8% slopes,	0	x 0.5	0
Runoff Class	Negligible	very low or low	medium	high	very high	1	x 0.5	0.5
Olsen Soil Test P	< 10	10-20 ppm	20-40 ppm	41-80 ppm	>80 ppm	1	x 1.0	1
Phosphorus Application Method	None Applied	Injected deeper than 2 inches or subsurface applied	Incorporated < 2 weeks or surface applied during the growing season	Incorporated >2 weeks and <1 month or surface applied <1 month before crop emerges	Surface applied to pasture or applied > 1 month before crop emerges	1	x 1.0	1
Phosphorus Application Rate	None Applied	< 30 lbs./ac. P ₂ O ₅	31-90 lbs./ac. P ₂ O ₅	91-150 lbs./ac. P ₂ O ₅	> 150 lbs./ac. P ₂ 0 ₅	11	x 1.0	1
Distance to Concentrated Surface Water Flow	> 1000 feet	200-1000 feet, or functioning grass waterway in concentrated surface water	100-200 feet	< 100 feet with a vegetated buffer (at least 35 feet (in width)	< 35 feet with no vegetated buffer	4	x 1.0	4
		•		Site/Field	Phosphorus Risl	Assessm	ent Value	9
				Site/Field F	² hosphorus Risk	Assessm	ent Rating	Low

Table 4. MONTANA PHOSPHORUS RISK ASSESSMENT TOOL

Interpreting Results of Site Vulnerability Ratings

After multiplying the weighting factor by the risk value for each category and totaling all values in Table 3, assign the overall site/field vulnerability to phosphorus loss from Table 4.

Table 5. SITE/FIELD VULNERABILITY TO PHOSPHORUS LOSS

Total of Weighted Risk Values	Site Vulnerability	Site/Field Number(s)
<11	LOW	Planned Condition
11-21	MORDERATE or MEDIUM	
22-43	HIGH	
> 43	VERY HIGH	

NRCS-Montana-Technical Note-Agronomy MT-77 (Rev. 4)

Before model- flood irrigation

Appendix B Surface Irrigation Soil Loss Model

Prepared for:	2023 Pivot Tip				Dar	2/9/	2022
Prepared by	Nate Bumgardne	r			\$C	D	
Soli Map Unit	115	Slope 1	-1.9%		Kt	actor 0.43	
Present Cond	ition: Flood	Irrigation - Before Con	version				
irrigation System	Gated Pipe	Length of run	1320 6	ret	Co	nvex End Mod	erate
Crop Rotation			BSL	PC	CP	IP	SISL
Malt Barley		-	9.10	0.75	1	1	5.9
Beans			9.1	0.85	1	1	6.73
Spring Wheat			9.1	1	1	1	7.9
Grain Com			9.1	0.85	1	1	6.7
			0	1	1	1	0.0
			0	1	1	1	0.0
			0	1	1	1	0.0
			0	1	1	1	0.0
			0	1	1	1	0.0
			_				
			ō	1	1	i - 1	0.0
			_	i		1 al (tons)	0.0
After model-	sprinkler irriga	tion	_	1		1 al (tons) erage (tons/year)	0.0
After model- Alternative 1		tion n - After Conversion	_	1			0.0
	Sprinkler Irrigatio		ō		Aw		0.0 27.3) 6.8
Alternative 1 Irrigation System Crop Rotation	Sprinkler Irrigatio	n - After Conversion	0 1320 fe B\$L	PC	Av Co CP	nvex End <u>Mod</u>	0.0 27.3) 6.8 lerate \$I\$L
Alternative 1 Irrigation System Crop Rotation Malt Barley	Sprinkler Irrigatio	n - After Conversion	0 1320 fe B\$L 10.00	PC 0.75	Ам Со 0.2	nvex End <u>Mod</u>	0.0 27.3) 6.8 lerate <u>\$I\$L</u> 1.1
Alternative 1 Irrigation System Crop Rotation Malt Barley Beans	Sprinkler Irrigatio	n - After Conversion	0 1320 fe B\$L 10.00 10.00	PC 0.75 0.85	Co CP 0.2 0.2	nvex End <u>Mod</u> 0.9 0.9	0.0 27.3 6.8 Ierate SISL 1.1 1.3
Alternative 1 Irrigation System Crop Rotation Mat Barley Beans Spring Wheat	Sprinkler Irrigatio	n - After Conversion	0 1320 fe B\$L 10.00 10.00 10.00	PC 0.75 0.85 1	Co CP 0.2 0.2 0.2	nvex End Mod IP 0.9 0.9 0.9	0.0 27.3) 6.8 lerate <u>\$I\$L</u> 1.1 1.3 1.5
Alternative 1 Irrigation System Crop Rotation Malt Barley Beans Spring Wheat Grain Com	Sprinkler Irrigatio	n - After Conversion	0 1320 fe B\$L 10.00 10.00 10.00 10.00	PC 0.75 0.85 1 0.85	Aw CO CP 0.2 0.2 0.2 0.2 0.2	nvex End <u>Mod</u> 0.9 0.9 0.9 0.9 0.9 0.9 0.9	0.0 27.3) 6.8 ierate <u>\$I\$L</u> 1.1 1.3 1.5 1.3
Alternative 1 Irrigation System Crop Rotation Malt Barley Beans Spring Wheat Grain Com 0	Sprinkler Irrigatio	n - After Conversion	0 1320 fe B\$L 10.00 10.00 10.00 10.00 0.00	PC 0.75 0.85 1 0.85 1	Aw CO CP 0.2 0.2 0.2 0.2 0.2 1	nvex End <u>Mod</u> 0.9 0.9 0.9 0.9 0.9 1	0.0 27.3) 6.8 ierate <u>\$I\$L</u> 1.1 1.3 1.5 1.3 0.0
Alternative 1 Irrigation System Crop Rotation Malt Barley Beans Spring Wheat Grain Com 0	Sprinkler Irrigatio	n - After Conversion	0 1320 % B\$L 10.00 10.00 10.00 10.00 0.00 0.00	PC 0.75 0.85 1 0.85 1 1 1	Aw CO CP 0.2 0.2 0.2 0.2 1 1	nvex End <u>Mod</u> IP 0.9 0.9 0.9 0.9 1 1	0.0 27.3 6.8 ierate SISL 1.1 1.3 1.5 1.3 0.0 0.0
Alternative 1 Irrigation System Crop Rotation Malt Barley Beans Spring Wheat Grain Com 0 0	Sprinkler Irrigatio	n - After Conversion	1320 % B\$L 10.00 10.00 10.00 10.00 0.00 0.00 0.00	PC 0.75 0.85 1 0.85 1 1 1	Aw CO CP 0.2 0.2 0.2 0.2 1 1 1 1	nvex End <u>Mod</u> IP 0.9 0.9 0.9 1 1 1	0.0 27.3) 6.8 (erate SISL 1.1 1.3 1.5 1.3 0.0 0.0 0.0
Alternative 1 Irrigation System Crop Rotation Mait Barley Beans Spring Wheat Grain Com 0 0	Sprinkler Irrigatio	n - After Conversion	1320 % B\$L 10.00 10.00 10.00 10.00 0.00 0.00 0.00	PC 0.75 0.85 1 0.85 1 1 1 1	Aw CO CP 0.2 0.2 0.2 0.2 1 1 1 1 1 1	nvex End <u>Mod</u> IP 0.9 0.9 0.9 1 1 1 1	0.0 27.3) 6.8 (erate SISL 1.1 1.3 1.5 1.3 0.0 0.0 0.0 0.0
Alternative 1 Irrigation System Crop Rotation Malt Barley Beans Spring Wheat Grain Com 0 0 0 0 0 0 0 0 0 0 0 0 0	Sprinkler Irrigatio	n - After Conversion	0 1320 k B\$L 10.00 10.00 10.00 10.00 0.00 0.00 0.00	PC 0.75 0.85 1 0.85 1 1 1 1 1	Aw CO CP 0.2 0.2 0.2 0.2 1 1 1 1	nvex End <u>Mod</u> IP 0.9 0.9 0.9 1 1 1	0.0 27.3 6.8 (erate 51SL 1.1 1.3 1.5 1.3 0.0 0.0 0.0 0.0 0.0 0.0
Alternative 1 Irrigation System Crop Rotation Malt Barley Beans Spring Wheat Grain Com 0 0 0 0 0 0 0 0 0 0 0 0 0	Sprinkler Irrigatio	n - After Conversion	1320 % B\$L 10.00 10.00 10.00 10.00 0.00 0.00 0.00	PC 0.75 0.85 1 0.85 1 1 1 1	Ave CP 0.2 0.2 0.2 0.2 1 1 1 1 1 1 1 1 1 1	nvex End <u>Mod</u> IP 0.9 0.9 0.9 1 1 1 1	0.0 27.3 6.8 (erate 51SL 1.1 1.3 1.5 1.3 0.0 0.0 0.0 0.0

**Note: The same rotation was used in both the present condition and Alternative 1. The model moved from gated pipe to a sprinkler, switched from conventional tillage to seasonal reduced tillage and added irrigation water management as a second conservation practice.

Appendix C Soil Characteristic Maps

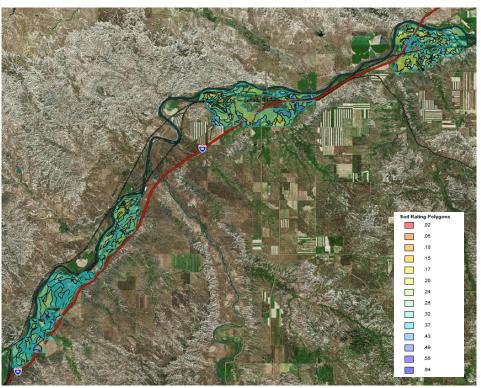


Figure 1. TIP K-factor Map. Higher K-factor values indicate soils with higher erodibility. Soils within the TIP boundary have an average K-factor of 0.31.

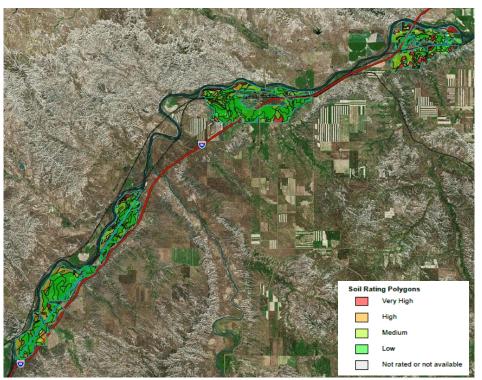


Figure 2. Nitrogen Leaching Potential Map

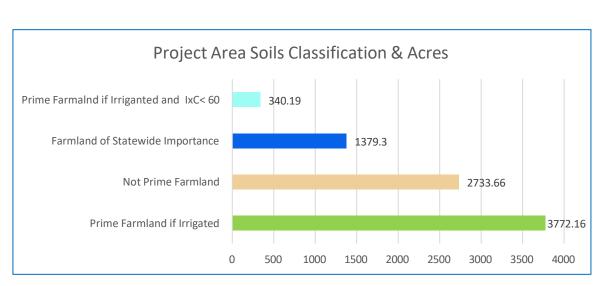


Figure 3. Acres of Important Soils in the TIP Project Area.

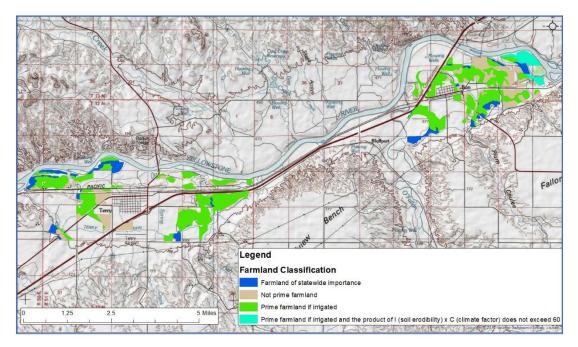
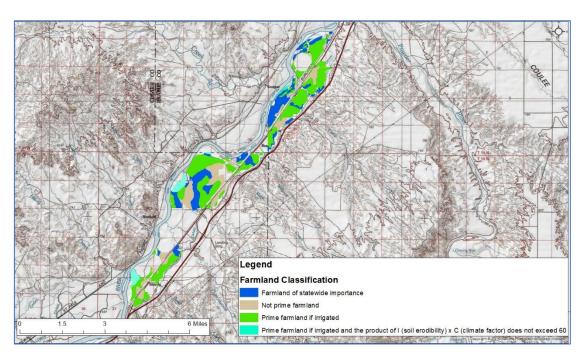



Figure 4. Important Soils, East End of Project Area – Terry and Fallon.

Figure 5. Important Soils, West End of Project Area – Powder River to Shirley.

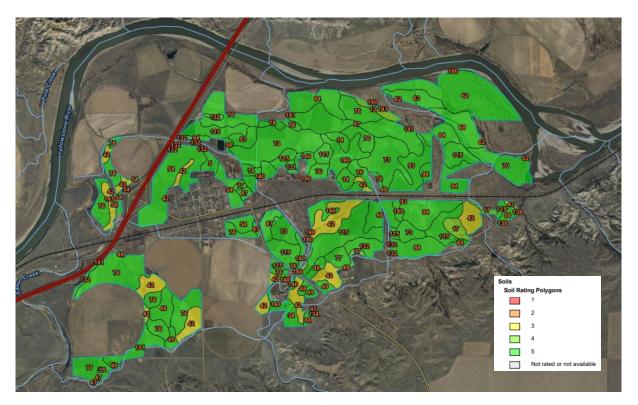


Figure 6. Fallon Unit T Values

Figure 7. Terry Unit T Values

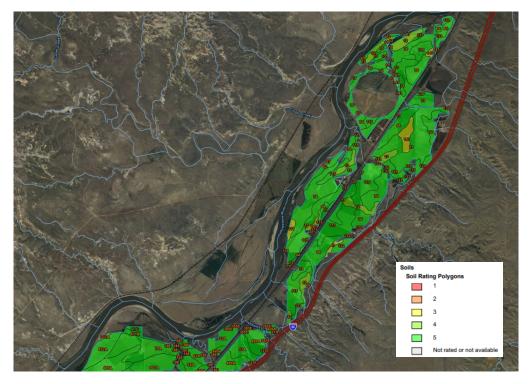


Figure 8. Shirley Unit North T Values

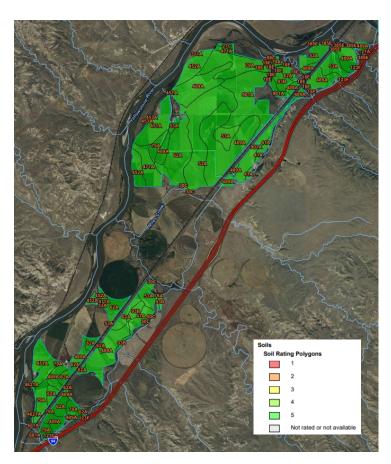


Figure 9. Shirley Unit South T Values

Appendix D: Producer Example Map & WEPS run – Before Conversion

before					
Run Date: Client Name: Farm No: Run Location: Management: Soil:	1 Runs	y, February 03, 2 Tract M fore_calib.man p_115_85_SICL.ife	lo:		ield No:1P
Location Site	a Informa	tion X-Length: Y-Length: Area: Elevation: Orientation:	2600.1 ft 1299.9 ft 77.6 ac 2076.8 ft 45.0 °	Site: Location: Cligen:	NRCS (T): 5.0 t/ac/yr UNITED STATES MONTANA PRAIRIE 46.87047° N, 105.13991° W GLENDIVE Interpolated (46.86047° N, 105.37791°

			Gross Loss	100	let Soil Loss From	m Field (t/ac)	
Period	Crop/Residue		t/ac	Total	Creep/Salt.	Suspen.	PM10
Rot. year: 1	Barley, spring		0.6	0.6	0.3	0.4	0.01
Rot. year: 2	Bean, field, dry		1.2	1.2	0.5	0.7	0.02
Rot. year: 3	Wheat, spring 7	in rows	2.0	2.0	0.9	1.1	0.03
Rot. year: 4	Corn, grain		1.1	1.1	0.5	0.6	0.02
Ave. Annual			1.2	1.2	0.5	0.7	0.02
Crop Inte	rval Erosion						
			Gross Loss	1	let Soil Loss From	m Field (t/ac)	
Date Range	Days	Crop	t/ac	Tota	al Creep/Salt	. Suspen.	PM1
Nov 15, 04 - 3	ul 31, 01 258	Barley, spring	0.6	0.	6 0.3	0.4	0.0
Jul 31, 01 - /	ug 20, 02 385	Bean, field, dry	1.0	1.	0 0.4	0.6	0.0
Aug 20, 02 - 3	lul 31, 03 345	Wheat, spring 7in rows	2.2	2.	2 1.0	1.2	0.0
Jul 31, 03 - M	lov 15, 04 472	Corn, grain	1.1	1.	1 0.5	6 0 .6	0.0
Harvests							
				Resid	ue Ha	rvest	Yield
Date	Crop			lb	/ac	Yield % M	loisture
Jul 31, 01	Barley, spring	ß		5,5	98 82.	6 bu/ac	9.6
Aug 20, 02	Bean, field, d	ry		1,4	34 1470.	6 lb/ac	16.0
	Wheat, spring	7in rows		6,5	02 89	5 bu/ac	13.5

Run Summary

ONRCS Natural Resources Conservation Service

before

Date	Crop			Residue lb/ac		larvest Yield	Yield % Moisture
Nov 15, 04	Corn, grain			6,605	11	8.4 bu/ac	15.5
Nov 15, 04	Corn, grain			1,567	132	6.4 lb/ac	15.5
SCI Summ	nary						
Soil Conditio	ning Index:	0.3	SCI Sub	ofactors			
Energy Calcu	lator:	3.8 gal diesel/ac	OM:	-0.07			
Average Ann	ual STIR:	42.2	FO:	0.58			
Wind Erosion	Soil Loss:	1.2 t/ac	ER:	0.52			
Water Erosio	n Soil	0.0 t/ac					
Rotation	Stir Energy	1					
						Energ	y Cos
Date	Operation		Fuel		Stir	Btu/a	c USD/a
Apr 15, 01	Burn reside	le	Diese	el	0.0		0.0
Apr 20, 01	Lister, 30 i	n	Diese	el	35.1	157,45	2 4.5
Apr 25, 01	Drill or airs	eeder, double disk	Diese	el	6.3	63,01	1 1.8
Apr 26, 01	Irrigation,	Start Monitor (Border, Fi	urrow) Diese	el	0.0		0.0
May 07, 01	Fert applic	. surface broadcast	Diese	el	0.1	27,98	B 0.8
May 25, 01	Sprayer, p	ost emergence	Diese	el	0.1	22,75	0.6
Jun 15, 01	Sprayer, p	ost emergence	Diese	el .	0.1	22,75	0.6
Jul 23, 01	Irrigation,	Stop Monitor	Diese	el	0.0	(0.0
Jul 31, 01	Harvest, ki stubble	lling crop 30pct standin	g Diese	el	0.1	267,75	B 7.6
Aug 15, 01	Graze, stu	oble or residue 50 pct	Diese	el	0.5		0.0
Sep 20, 01	Sprayer, p	ost emergence	Diese	el	0.1	22,75	0.6
Apr 15, 02	Burn residu	Je	Diese	el 🛛	0.0		0.0
Apr 20, 02	Lister, 30 i	n	Diese	el	35.1	157,45	2 4.5
Apr 26, 02	Irrigation,	Start Monitor (Border, Fi	urrow) Diese	el	0.0		0.0
May 08, 02	Planter, do	uble disk opnr	Diese	el	2.4	76,93	0 2.2
May 25, 02	Sprayer, p	ost emergence	Diese	el 🛛	0.1	22,75	0.6
Jun 15, 02	Sprayer, p	ost emergence	Diese	el	0.1	22,75	0.6
Aug 13, 02	Irrigation,	Stop Monitor	Diese	el	0.0		0.0
Aug 20, 02	Harvest, ki	nife, windrow, combine	Diese	el	6.6	594,93	5 17.0
Aug 30, 02	Graze, stul	oble or residue 50 pct	Diese	el	0.5		0.0
Sep 20, 02	Sprayer, p	ost emergence	Diese	el	0.1	22,75	0.6
Apr 15, 03	Burn residu	Je	Diese		0.0		0.0

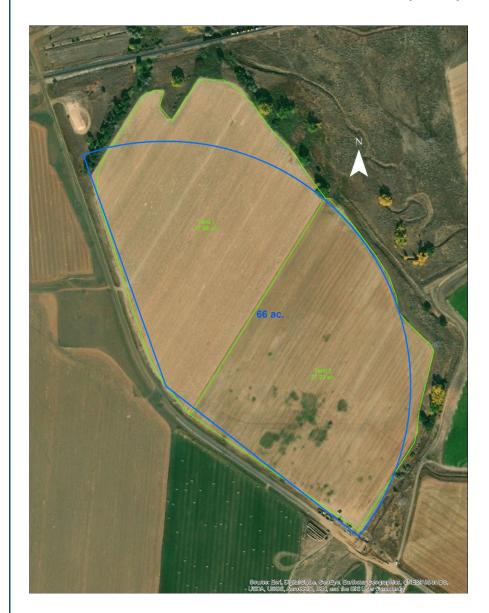
Run Summary

before

				Energy	Cos
Date	Operation	Fuel	Stir	Btu/ac	USD/a
Apr 20, 03	Lister, 30 in	Diesel	35.1	157,452	4.5
Apr 25, 03	Drill or airseeder, double disk	Diesel	6.3	63,011	1.8
Apr 26, 03	Irrigation, Start Monitor (Border, Furrow)	Diesel	0.0	0	0.0
May 07, 03	Fert applic. surface broadcast	Diesel	0.1	27,988	0.8
May 25, 03	Sprayer, post emergence	Diesel	0.1	22,750	0.6
Jun 15, 03	Sprayer, post emergence	Diesel	0.1	22,750	0.6
Jul 23, 03	Irrigation, Stop Monitor	Diesel	0.0	0	0.0
Jul 31, 03	Harvest, killing crop 30pct standing stubble	Diesel	0.1	267,758	7.6
Aug 15, 03	Graze, stubble or residue 50 pct	Diesel	0.5	0	0.0
Sep 20, 03	Sprayer, post emergence	Diesel	0.1	22,750	0.6
Apr 15, 04	Burn residue	Diesel	0.0	0	0.0
Apr 20, 04	Lister, 30 in	Diesel	35.1	157,452	4.5
Apr 26, 04	Irrigation, Start Monitor (Border, Furrow)	Diesel	0.0	0	0.0
May 07, 04	Fert applic. surface broadcast	Diesel	0.1	27,988	0.8
May 10, 04	Planter, double disk opnr	Diesel	2.4	76,930	2.2
May 25, 04	Sprayer, post emergence	Diesel	0.1	22,750	0.6
Jun 15, 04	Sprayer, post emergence	Diesel	0.1	22,750	0.6
Sep 15, 04	Irrigation, Stop Monitor	Diesel	0.0	0	0.0
Nov 15, 04	Harvest, corn grain and cobs	Diesel	0.1	267,758	7.6
Nov 19, 04	Graze, stubble or residue 50 pct	Diesel	0.5	0	0.0
		Total / ac		2,642,112	75.5
		Total	168.8	204,996,844	5,858.7
Crop Interv	val Stir Energy				
				Energy	Cos
Date Range	Days Crop		Stir	Btu/ac	USD/a
Nov 15, 04 - Ju	L 31, 01 258 Barley, spring		42.4	561,709	16.0
Jul 31, 01 - Aug	20, 02 385 Bean, field, dry		45.0	897,567	25.6
Aug 20, 02 - Ju	1 31, 03 345 Wheat, spring 7in rows		42.6	584,459	16.7
Jul 31, 03 - Nov	v 15, 04 472 Corn, grain		38.7	598,378	17.1
Notes					
	enerated one or more Warning messages. For d .txt' output file.	etailed informati	on about th	ese Warnings, s	ee this
25/ 4/ 1 8/ 5/ 2	Barley, spring 1.150 Bean, field, dry 1.000				

WEPS 1.5.52

Printed Thursday, February 03, 2022, 01:38 PM


Page 2 of3

WEPS 1.5.52

Printed Thursday, February 03, 2022, 01:38 PM

Page 3 of3

Producer Example Map & WEPS run – After Conversion

after_cal	ib				
Run Date: Client Name: Farm No: Run Location: Management: Soil:	1 Runs aft	r, February 03, 2 Tract N er_calib.man _115_85_SICL.ifo	lo:		ield No:1P
Location Site	1	tion X-Length: Y-Length: Radius: Area: Elevation: Orientation:	1299.9 ft 2600.1 ft 1466.9 ft 77.6 ac 2076.8 ft -45.0 °	Site:	NRCS (T): 5.0 t/ac/yr UNITED STATES MONTANA PRAIRIE
Teld shape approxi	+Lenger mate			Cligen:	: 46.87047° N, 105.13991° W GLENDIVE : Interpolated (46.86047° N, 105.37791°

				Gross Loss	m Field (t/ac)			
Period	Crop/Res	idue		t/ac	Total C	reep/Salt.	Suspen.	PM10
Rot. year: 1	Barley, s	pring		0.0	0.0	0.0	0.0	0.00
Rot. year: 2	Bean, fie	ld, dry		0.1	0.1	0.1	Trace	Trace
Rot. year: 3	Wheat, s	pring 7	in rows	0.1	0.1	0.1	0.1	Trace
Rot. year: 4	Corn, gra	ain		0.0	0.0	0.0	0.0	0.00
Ave. Annual				Trace	Trace	Trace	Trace	Trace
Crop Inte	rval Ero	sion						
				Gross Loss	Ne	t Soil Loss Fro	m Field (t/ac)	
Date Range		Days	Crop	t/ac	Total	Creep/Salt	. Suspen.	PM1
Nov 15, 04 -	Jul 31, 01	258	Barley, spring	0.0	0.0	0.0	0.0	0.0
Jul 31, 01 -	Aug 20, 02	385	Bean, field, dry	0.0	0.0	0.0	0.0	0.0
Aug 20, 02 -	Jul 31, 03	345	Wheat, spring 7in rows	0.2	0.2	0.1	0.1	0.0
Jul 31, 03 -	Nov 15, 04	472	Corn, grain	0.0	0.0	0.0	0.0	0.0
Harvests								
					Residu	e Ha	rvest	Yiel
Date	Crop				lb/a	ic	Yield % M	loistur
Jul 31, 01	Barley	, spring]		5,36	0 78	6 bu/ac	9.0
Aug 20, 02	Bean,	field, d	ry		1,40	8 1442	0 lb/ac	16.0
Jul 31, 03	Wheat	sprine	7 7in rows		6,59	1 90.	7 bu/ac	13.

Run Summary

ONRCS Natural Resources Conservation Service

after_calib

Date	Crop			Residue Ib/ac	н	arvest Yield	Yield % Moisture
Nov 15, 04	Corn, grain			6,711	120).5 bu/ac	15.5
Nov 15, 04	Corn, grain			1,570	1349). <mark>4</mark> lb/ac	15.5
SCI Sumr	nary						
Soil Conditio	oning Index:	0.6	SCI Subf	actors			
Energy Calc	ulator:	3.0 gal diesel/ac	OM:	0.05			
Average Ann	ual STIR:	7.2	FO:	0.93			
Wind Erosio	n Soil Loss:	0.1 t/ac	ER:	0.98			
Water Erosio	on Soil	0.0 t/ac					
	Stir Energy					Energ	
Date	Operation		Fuel		Stir	Btu/a	
Apr 20, 01		st emergence	Diesel		0.1	22,75	
Apr 25, 01		eeder, double disk	Diesel		6.3	63,01	
Apr 26, 01	wheelline)	tart Monitor (pivot, linear,	Diesel		0.0		0.00
May 07, 01	Fert applic.	surface broadcast	Diesel		0.1	27,98	B 0.80
May 25, 01	Sprayer, po	st emergence	Diesel		0.1	22,75	0.65
Jun 15, 01	Sprayer, po	st emergence	Diesel		0.1	22,75	0.65
Jul 23, 01	Irrigation, S	itop Monitor	Diesel		0.0		0.00
Jul 31, 01	Harvest, kil stubble	ling crop 30pct standing	Diesel		0.1	267,75	8 7.65
Aug 15, 01	Graze, stub	ble or residue 50 pct	Diesel		0.5		0.00
Sep 20, 01	Sprayer, po	st emergence	Diesel		0.1	22,75	0.65
Apr 20, 02	Sprayer, po	st emergence	Diesel		0.1	22,75	0.65
Apr 26, 02	Irrigation, S wheelline)	itart Monitor (pivot, linear,	Diesel		0.0	D	0.00
May 08, 02	Planter, do	uble disk opnr	Diesel		2.4	76,93	0 2.20
May 25, 02	Sprayer, po	st emergence	Diesel		0.1	22,75	0.65
Jun 15, 02	Sprayer, po	st emergence	Diesel		0.1	22,75	0.65
Aug 13, 02	Irrigation, S	itop Monitor	Diesel		0.0		0.00
Aug 20, 02	Harvest, kn	ife, windrow, combine	Diesel		6.6	594,93	5 17.00
Aug 30, 02	Graze, stub	ble or residue 50 pct	Diesel		0.5		0.00
Sep 20, 02	Sprayer, po	st emergence	Diesel		0.1	22,75	0.65
Apr 20, 03	Sprayer, po	st emergence	Diesel		0.1	22,75	0.65
Apr 25, 03	Drill or size	eeder, double disk	Diesel		6.3	63,01	1 1.80

Run Summary after_calib

Date

ORCS Natural Resources Conservation Service

Stir

0.0

0.1

0.1

Energy

27,988

22,750

Btu/ac

0

Cost

USD/ac

0.00

0.80

0.65

Rotation Stir Energy Operation Fuel Irrigation, Start Monitor (pivot, linear, Apr 26, 03 Diesel wheelline) May 07, 03 Fert applic. surface broadcast Diesel May 25, 03 Sprayer, post emergence Diesel

		Total	29.0	163,191,562	4,663.99
		Total / ac		2,103,303	60.11
Nov 19, 04	Graze, stubble or residue 50 pct	Diesel	0.5	0	0.00
Nov 15, 04	Harvest, corn grain and cobs	Diesel	0.1	267,758	7.65
Sep 15, 04	Irrigation, Stop Monitor	Diesel	0.0	0	0.00
Jun 15, 04	Sprayer, post emergence	Diesel	0.1	22,750	0.65
May 25, 04	Sprayer, post emergence	Diesel	0.1	22,750	0.65
May 10, 04	Planter, double disk opnr	Diesel	2.4	76,930	2.20
May 07, 04	Fert applic. surface broadcast	Diesel	0.1	27,988	0.80
Apr 26, 04	Irrigation, Start Monitor (pivot, linear, wheelline)	Diesel	0.0	0	0.00
Apr 20, 04	Sprayer, post emergence	Diesel	0.1	22,750	0.65
Sep 20, 03	Sprayer, post emergence	Diesel	0.1	22,750	0.65
Aug 15, 03	Graze, stubble or residue 50 pct	Diesel	0.5	0	0.00
Jul 31, 03	Harvest, killing crop 30pct standing stubble	Diesel	0.1	267,758	7.65
Jul 23, 03	Irrigation, Stop Monitor	Diesel	0.0	0	0.00
Jun 15, 03	Sprayer, post emergence	Diesel	0.1	22,750	0.65

Crop Interval Stir Energy

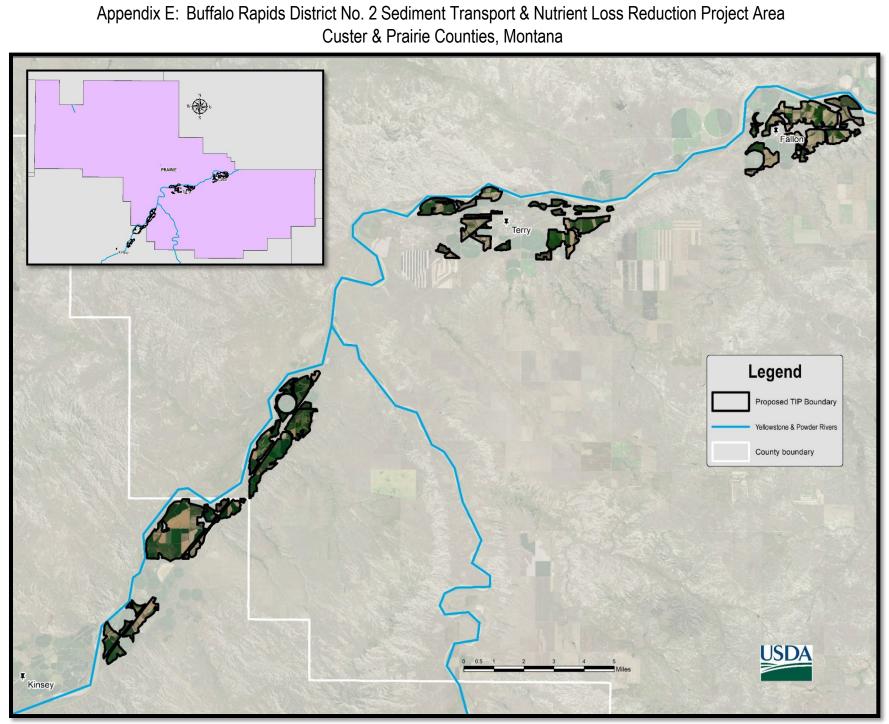
										Energy	Cost
Date Range		Days	Сгор	Stir	Btu/ac	USD/ac					
Nov	15,	04	-	Jul	31,	01	258	Barley, spring	7.5	427,006	12.20
Jul	31,	01	-	Aug	20,	02	385	Bean, field, dry	10.1	762,864	21.80
Aug	20,	02	-	Jul	31,	03	345	Wheat, spring 7in rows	7.6	449,756	12.85
Jul	31,	03	-	Nov	15,	04	472	Corn, grain	3.7	463,675	13.25

Notes

This WEPS Run generated one or more Warning messages. For detailed information about these Warnings, see this run's 'warnings.txt' output file.

25/ 4/ 1 8/ 5/ 2 25/ 4/ 3 10/ 5/ 4 Barley, spring Bean, field, dry Wheat, spring 7in rows Corn, grain 1.123 0.9062 0.9084

WEPS 1.5.52


Printed Thursday, February 03, 2022, 01:54 PM

Page 2 of3

WEPS 1.5.52

Printed Thursday, February 03, 2022, 01:54 PM

Page 3 of 3

