

United States National Institute Department of of Food Agriculture and Agriculture



BIOENERGY, CLIMATE, AND ENVIRONMENT

#### Air Quality Program



YOUTH, FAMILY. AND COMMUNITY







FOOD SAFETY AND NUTRITION



USDA





Institute of Bioenergy, Climate, and Environment

NATIONAL INSTITUTE OF FOOD AND AGRICULTURE

INVESTING IN SCIENCE | SECURING OUR FUTURE | WWW.NIFA.USDA.GOV



# National Institute of Food and Agriculture

- Catalyzes transformative discoveries, education, and engagement to address agricultural challenges.
- Brings groundbreaking discoveries from research laboratories to farms, communities, and classrooms.
- Integrate (research, education and extension) and transdisciplinary approaches.



#### National Institute of Food and Agriculture (NIFA)

- Mission -- financial assistance and national leadership
- \$ 1.3 1.7 B per year of extramural <u>competitive funds</u> such as the Agriculture Food Research Initiative (AFRI) and <u>capacity funds</u> such as those to landgrant institutions through the Smith-Lever (extension) and Hatch Act (research).



### **NIFA AFRI Challenge Areas**

- Climate Variability and Change
- Water for Food Production Systems
- Food Safety
- Childhood Obesity Prevention
- Food Security
- Sustainable Bioenergy



### **NIFA AFRI Foundational Science**

- Plant health and production and plant products
- Animal health and production and animal products
- Food safety, nutrition, and health
- Bioenergy natural resources and environment
- Agriculture systems and technology
- Agriculture economics and rural communities



#### **Critical Issues for Stakeholders**

- The effects of climate change on rangelands and grasslands.
- Water quality, quantity, and drought—no longer a western state problem.
- The need for hard data and better communication among landowners, policy makers and appropriators, and non-farmers.
- "Bring research to management" and we need more "conservation on working lands."



## NIFA's Air Quality Program Goals

- To predict an emission rate at any point in the production cycle for the whole farm.
- To predict the fate and transport of emissions downwind.
- To validate regional and local transport models.
- To mitigate emissions.
- To measure dry and wet deposition.



# What have we learned over the last 5 years?

- Better understanding of gas and particulate matter concentrations in animal and crop production systems
- Better understanding of the fate and transport of gas and particulates
- Better characterization of the diurnal and seasonal nature of gas concentrations
- Better monitoring and measurement systems
- Better understanding of particle size distributions
- Better estimates of errors associated with particulate matter measurements and methods

#### NIFA Air Quality Investments (2009 – 2014)

| Fiscal Year: | Total Capacity Expenditures                                     | <b>Total Competitive Grant Obligations</b>                      |
|--------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
|              | Air Resources Protection and<br>Management (KA:141 & SOI: 0410) | Air Resources Protection and<br>Management (KA:141 & SOI: 0410) |
| 2009         | \$1,312,000                                                     | \$7,508,167                                                     |
| 2010         | \$1,211,000                                                     | \$8,889,819                                                     |
| 2011         | \$1,722,000                                                     | \$4,050,984                                                     |
| 2012         | \$2,209,000                                                     | \$3,624,513                                                     |
| 2013         | \$1,917,000                                                     | \$3,126,329                                                     |
| 2014         | <b>\$1,259,000</b>                                              | <b>\$2,405,561</b>                                              |
| Tota         | \$9,630,000                                                     | \$29,605,373                                                    |



United States National Institute Department of of Food Agriculture and Agriculture



INVESTING IN SCIENCE | SECURING OUR FUTURE | WWW.NIFA.USDA.GOV





INVESTING IN SCIENCE | SECURING OUR FUTURE | WWW.NIFA.USDA.GOV



### NIFA Air Quality Investments 2001-2014



Competitive Capacity Total



#### NIFA Air Quality Program Emphasis Areas

- New focus on understanding the Nitrogen Cycle and the role of Reactive Nitrogen (Nr) on Environment and Air Quality
- Emission data from production practices particulates, gases/odors (more focus on crop production).
- Improved measurement protocols/ instrumentation for within field and edge of field boundaries
- Practices for mitigating emissions
- Fate and transport of emitted particulates and gases

Roll cursor over source areas to reveal pollutant species and percent of contribution.

**Nfüregen Cycle** 





United States National Institute Department of of Food Agriculture and Agriculture

# **Reactive Nitrogen (Nr)**

In contrast to non-reactive gaseous  $N_2$ , includes all biologically active, chemically reactive, and radiatively active nitrogen compounds in the atmosphere and biosphere of the earth.





#### Atmospheric Nitrogen

#### US-Reactive Nitrogen(Tg N/yr)



**Energy production - NO<sub>x</sub>** 

Food/Biofuel production - NH<sub>x</sub>



## Implications of different forms of N lost from plant-soil systems

Gaseous losses N<sub>2</sub> N<sub>2</sub>O NO NO<sub>2</sub>

NH<sub>3</sub>

Runoff & erosion NO<sub>3</sub> leaching

Negative environmental or health impacts.

- Atmospheric aerosols
- Formation of tropospheric ozone
- Depletion of stratospheric ozone
- Acid rain, acidification of soils
- N deposition
- Impacts on aquatic & terrestrial ecosystems
- Can provide a secondary source for reemissions
- Contamination of ground & surface water
- Blooms of toxic algae
- Eutrophication & hypoxia in coastal ecosystems
- Increases in disease vectors such as mosquitoes
- Soil acidification

**Source:** Peoples *et al* (2004) SCOPE 65 *Agriculture & the N Cycle*, (Island Press), pp 53-69;, pp 349-385





Source: Steffen and others, 16 January 2015, Science

INVESTING IN SCIENCE | SECURING OUR FUTURE | WWW.NIFA.USDA.GOV



#### **Nitrogen Sources**

**Gulf of Mexico** 

Chesapeake Bay

After: EPA (US Environmental Protection Agency). 2010b. Discussion Document: Coming Together for Clean Water, Background Information on From Discussion Topics. US Environmental Protection Agency Forum, April 15, 2010 [online]. Available: http://blog.epa.gov/waterforum/discussion-docume.usba.gov



# Goal: Reduce the global pool of reactive nitrogen

- Reduce the fixation of reactive nitrogen
  - Improved N use efficiency of plant and animal systems
- Recycle more reactive nitrogen
  - Life-cycle analysis (farm to fork)
  - Cover crops
- Convert reactive nitrogen to dinitrogen gas
  - Edge-of-field treatments



#### Likely impact of research investment in different areas towards improving N use efficiency (NUE)





#### **Research effort (years)**

Adapted from: Giller et al. (2004) SCOPE 65 Agriculture & the N Cycle, (Island Press), pp 35-52



#### Transformative vs. Incremental

The trajectory of research discovery should be commensurate with the scope of the problem to be solved:

- Reduce nutrient loading to Gulf of Mexico by 40% in 20 yrs
- Reduce deposition of nitrogen in Rocky Mountain National Park to 3 kg/ha/yr



United States National Institute Department of of Food

**Dietary Protein** 



Differences in protein production (blue line), consumption (red line), and the impact of eliminating food waste ("An opportunity") and consuming the recommended amount of protein ("Another one"). Source: Dr. Jim Galloway

#### **Biogeochemical vs. Social Science**

- Creating markets that reward sustainability
  - Educating consumers
    - Sustainable diet
    - Food waste
- Policy analysis
  - Voluntary vs. regulatory
- NIFA is developing Nr Initiative. This initiative is summarized in the following graphical presentation.





#### Questions

#### Greg Crosby, National Program Leader, Sustainable Development (202) 401-6050 gcrosby@nifa.usda.gov

or contact:

Ali Mohamed, Director Division of Environmental Systems (202) 720-5229 amohamed@nifa.usda.gov

