

United States Department of Agriculture

Natural Resources Conservation Service

USDA, NRCS and Climate Smart Agriculture: Reducing GHG's, Increasing Resilience, and Maintaining Productivity on Working Lands

Michael A. Wilson, PhD National Leader for Climate Change USDA – Natural Resources Conservation Service

> Air Quality Task Force Meeting Sacramento, CA September 8, 2016

Climate Change Impacts are occurring

Increased drought

Extreme Rainfall

Increasing wildfire seasons and intensity of wildfires

Reduction in water tables

Increasing pests and diseases

A study in the journal Climate Change found:

"found that even members of the public who are "alarmed" about a warming planet show <u>relatively low levels of public-</u> <u>sphere action</u>..."

C. Harvey, Washington Post, May 2016

From a paper entitled "Quest for Climate-proof Farms: "....(a) <u>communication gap</u> has long separated scientists from farmers in planning for climate change." Q. Schiermier; Nature, Vol 523, 2015

From article by David Roberts, Vox.com:

"People often seem to think that clever wordsmithery is the key to good framing, but it's not even really necessary. <u>Two things make a message stick</u>. First, it comes from a <u>trusted source</u>, and second, <u>messages</u> stick when they are <u>repeated</u>." Collectively universities, government, private industry and others (e.g., science, political and social leadership) have an obligation to <u>provide a path</u> that will prepare citizens to understand and address climate change issues –this pathway is occurring and agriculture is playing a role

Agriculture issues – Now and in the Future

Regional climate change and extreme weather

- Temperature shifts (long-term and sudden)
- Extreme storms: excessive rain/snowfall
- Droughts: flash seasonal mega

Pests – insects, diseases, invasive

Degradation of agricultural soil and water assets

- Air Quality
- Soil carbon
- Water Quantity (dryland and irrigated)
- Water Quality (e.g., salinity, nitrates/hypoxia)
- Erosion

Creating Resilience and Transformation In Agriculture

≻Sustainability

Environmental Protection Ecosystem Services (e.g., wildlife habitat, recreation, wetlands) > Avoiding Regulation >Yield and Profitability \succ US and global food security (yield, food prices, distribution) Stewardship and Farmland preservation

Transforming to build a more resilient agricultural production system

2013-

USDA recognized that farmers, ranchers and forest land managers were in need of <u>tools</u>, <u>information and best</u> <u>management practices</u> that can enable them to maintain or increase production and profit in light of a changing climate.

Science was not making it to the field fast enough

United States Department of Agriculture (USDA) USDA Climate Hubs

Agricultural Research Service (ARS) US Forest Service (USFS) Natural Resources Conservation Service (NRCS) Farm Service Agency (FSA) Rural Development (RD) Animal and Plant Health Inspections Service (APHIA) Risk Management Agency (RMA) National Institute of Food and Agriculture (NIFA)

Regional Hubs for Risk Adaptation and Mitigation to Climate Change

USDA Climate Hubs

Regional Hubs for Risk Adaptation and Mitigation to Climate Change

Established: February 2014

Purpose: Develop and deliver science-based, region-specific information, technologies, and program support to agricultural / natural resource managers and communities

Clientele: farmers, ranchers, forest landowners, tribes, agribusiness, and resource managers

Rationale: To make climate-informed, timely decision-making in light of the increased risks and vulnerabilities associated with a changing climate.

Hubs develop solutions for a range of time scales (seasonal to decadal) due to the varying time frames for producer issues.

USDA Climate Hubs

<u>Regional Focus-</u>differences in soils, landscapes, hydrology, land use and impact of climate change

FEDERAL INTERACTIONS

- Complement and build on existing regional climate change networks (e.g., CSCs, LCCs, RISAs)
- Multiple other partners for USDA Climate Hubs:
 - NASA, State Climatologists, Universities, Extension, Crop Advisors

USDA-Focus on production agriculture, grazing systems, forest lands, and subsistence activities

Framework/Network for a USDA Regional Hub

Science and Technology providers:

Lanu Management Stakenouers

Farmers / Ranchers / Forest Managers / Tribes / States / Feds / LCCs / Others

SERCCH – Finding Solutions for Agriculture, Forest, and Rangeland Sustainability in the Southeastern US

A Proposal from the Agricultural Research Service, Forest Service, and Natural Resources Conservation Service to Develop the USDA Southeastern Regional Climate Change Hub (SERCCH) for Risk Adaptation and Mitigation to Climate Change in Raleigh, North Carolina

SERCCH Members & Partners USDA ARS – Plant Science Research USDA Forest Service – SRS-Raleigh (*Host*), NFS Region 8, State & Private USDA NRCS – East National Technology Support Center DOI Southeastern Climate Science Center

DOI Landscape Conservation Cooperatives Mississippi State University National Atmospheric Deposition Program – Critical Load of Atmospheric Deposition NOAA Regional Integrated Sciences and Assessments Program North Carolina Central University North Carolina Department of Agriculture / Forest Service North Carolina State University PINEMAP RTI International Southeast Climate Consortium Southeast Watershed Forum

Southern Group of State Foresters Southern Regional Extension Forestry State Climate Office of North Carolina The Nature Conservancy USDA National Agroforestry Center University of Alabama, Huntsville University of Florida University of Georgia United South & Eastern Tribes Virginia Agricultural Experiment Station Virginia Polytechnic Institute & State University

ठेठ

Steven McNulty Proposed Director, USDA Forest Service David Marshall Submitter, USDA Agricultural Research Service Darren Hickman, Submitter, USDA Natural Resources Conservation Service

Proposed Host and Location USDA Forest Service, Raleigh, North Carolina

Initial Climate Hub Actions

Build a network of partners to connect the existing pieces

Home » Regional Vulnerability Assessments

Regional Vulnerability Assessments

USDA's Regional Climate Hubs were established in February of 2014 to deliver science-based knowledge, practical information, and program support to farmers, ranchers, forest landowners, and resource managers to enable climate-informed decision-making in light of the increased risks and vulnerabilities associated with a changing climate. As part of their function, the Hubs were tasked with providing periodic regional assessments of risk and vulnerability to production sectors and rural economies, building on material provided under the National Climate Assessment conducted through the United States Global Change Research Program (USGCRP).

Throughout 2015, eight regional vulnerability assessments were published representing all of the Climate Hub regions across the country. With the publication of these Vulnerability Assessments, the Regional Climate Hubs are providing their stakeholders with an introduction to the region, regional sensitivities and adaptation strategies for working lands, a greenhouse gas emissions profile with mitigation opportunities, and an overview of how partner USDA agencies are being affected by a changing climate. These

vulnerability assessments are an important first step in establishing a baseline "snapshot" of current climate vulnerabilities, and provides regionspecific adaptation and mitigation strategies to increase the resilience of working lands in the region.

Click on a region below to read about your region's vulnerabilities and adaptation/mitigation opportunities!

	Vulnerability Assessment Abstracts		Vulnerability Assessment Full Reports	
•	Northeast Abstract	•	Northeast and Northern Forests Region	
•	Northern Forests Abstract			
•	Southeast Abstract	•	Southeast Region	
•	Midwest Abstract	•	Midwest and Northern Forests Region	
•	Caribbean Abstract	•	Caribbean Region	
•	Northern Plains Abstract	•	Northern Plains Region	
•	Southern Plains Abstract	•	Southern Plains Region	
•	Northwest Abstract	•	Northwest Region	
•	Southwest Abstract	•	Southwest Region and California	

Vulnerability Assessments

Eight Regional Vulnerability Assessments published Fall 2015

Vulnerability-

Sensitivity of a particular system to climate changes, its exposure to those changes, and its capacity to adapt

Catalog Tools to Deliver Climate Information to producers

• Provide usable climate science and land management tools to make farmland and forests healthier, more productive, and resilient.

USDA Partner Efforts

AgroClimate.org--a web-resource of tools and data on climate and crops that can be used to assist with decisions about the management of agricultural systems in the Southeastern U.S.

- Seasonal Drought Outlook
- Climate Risk
- Freeze Risk
- Climate Anomaly Maps
- NWS Forecast
- ARID Monitory and Forecast

http://agroclimate.org/

USDA Partner Efforts

- AgClimate View
- Probable Fieldwork Days
- Corn GDD
- Corn N Rate Calculator
- Nitrogen Watch

Information Translation

Effects of Drought on Forests and Rangelands in the United States:

A Comprehensive Science Synthesis

300-page scientific document

USDA USDA Regional Climate Hubs: Pacific Northwest

Drought Impacts on Forests and Rangelands in the Pacific Northwest and Alaskan Regions

Overview:

The Northwestern states of Oregon and Washington are known for abundant precipitation, especially near the coast where large conifers dominate the natural landscape. The overwhelming portion of this precipitation falls during the October-April wet season, but very little falls during May-September High levels of precipitation reach into southeast Alaska, although here the dry season is less pronounced. Eastern Washington and Oregon, as well as Jdaho, have much less precipitation, but snowmelt and subterranean flow support year-around urban, industrial, and agricultural water use.

Loss of snowpack from warmer temperatures is already occurring and is projected to continue to decline given the effects of climate change on warmer winners (higher rain snow ratio) and hotter simmers that will reduce soil moisture and streamflows throughout the Northwest, much like we experienced in 2015. Global climate model projections for precipitation are inconsistent, but most indicate slightly wetter winters and slightly direct summers, including higher winter peak flows and more floods caused by rain or rain-on-snow extreme events. Dominant mode's climatic variation (El Niño Southern Oscillation, Pacific Decadal Oscillation) can in some cases accentate extremes of drought and flooding.

Climate change is expected to alter the timing and magnitude, water temperature, and streamflow volume of rivers and streams. Snowdominant watersheds will likely have earlier and reduced spring peak flow, increased winter flow, and reduced late-summer flow, and raindominant watershed could have higher winter streamflows. Mixed rainsnow watersheds will become more rain-dominant.

Temperatures in the Pacific Northwest have been increasing in the last 80 years. As this trend continues, it will lead to lower soil moisture in summer, lower growth in some tree species, lower fuel moistures, and increased area burned by wildfire.

Like most northern latitude locations. Alaska has experienced larger temperature increases than the nest of the United States. Growth has declined in white spruce forests of interior Alaska because of drought stress, spruce beetles have caused extensive mortality in southern Alaska, and the number of large wildfires has recently increased.

and higher mortality in the driest locations. This can alter ecosystem structure and function, reducing the goods and services coming from the land. Management options to deal with this additional stress include:

- Plant trees with genetic characteristics that confer tolerance to environmental stress now and in the future, considering both species and populations within species
- · Manage forest stand density to ensure adequate soil water and other resources for the remaining trees.

Conclusions:

 Transition land managers from a reactive to an anticipatory mode to protect investments and defend against extreme weather events.

- Prepare for increased fire occurrence, especially where numbers of fires have historically been low (coastal coniferous forests).
- Invest in forest and shrubland fuels reduction, post-fire restoration efforts, and related research.

Promote adaptation demonstrations, leveraging successful applications to advance climate change integration and adaptation in natural resource planning, particularly for owners and managers of livestock operations, woodlots, large forested areas, industrial lands, wildlife refuges, and watersheds.

learly all forest, rangeland, and will contribute to fire hazard and

r forests and shrublands. ead and very intense. native plant species into nvasive annual weeds exacerbate agebrush.

grazing and native ungulates.

ught will reduce domestic and

or become more severe and d insect pests expand into new is more opportunities for non-) mountain pine beetles in elands. non species support a vibrant

species such as bull trout will be

ential users and uses. generally more resilient to easing adaptability.

d one can expect lower tree growth

Education: Adaptive Management Resources:

- >For Different perspectives
 - Forestry
 - Wildlife
 - Livestock
 - Agriculture
 - International Development
- A variety of land owners with **diverse** goals and objectives
- Developing useful information, tools, and tactics for resource users

Forest Adaptation Resources: Climate Change Tools and Approaches for Land Managers

ADAPTING

Climate-Smart Conservation Putting Adaptation Principles into Practice

SUSGS ⊕EPA

Preparing Smallholder Farm Families to Adapt to Climate Change

POCKET GUIDE 1 EXTENSION PRACTICE FOR AGRICULTURAL ADAPTATION

David Schmidt Elizabeth Whitefield David Smith

A Planning Guide

Development of: Adaptation Resources for Agriculture

Forest Adaptation Resources: Climate Change Tools and Approaches for Land Managers

General Technical Report NRS-87 2012

Adaptation Resources for Agriculture: Responding to Climate Variability and Change in the Midwest and Northeast

Maria Janowiak, Daniel Dostie, Michael Wilson, Michael Kucera, Howard Skinner, Jerry Hatfield, David Hollinger, and Christopher Swanston

U.S. Department of Agriculture, Office of the Chief Economist Climate Change Program Office Washington, DC Technical Bulletin 1944 September 2016

Published in cooperation with USDA's: Midwest, Northeast, and Northern Forests Climate Hubs Agricultural Research Service Natural Resources Conservation Service US Forest Service NE Climate Hub MW Climate Hub NRCS USFS ARS

Nov 12, 2014:

President Obama announced that by 2025 the U.S. intends to reduce GHG emissions by 26 to 28 percent below 2005 levels

How are you adapting to climate change?

GREENHOUSE GAS EMISSIONS FROM AGRICULTURE

Figure 5-1: 2014 Agriculture Chapter Greenhouse Gas Emission Sources (MMT CO₂ Eq.)

Total 2014 US emissions = 6,870.5 MMT CO₂ Eq

2014 Ag emissions = 573.6 MMT CO_2 Eq 2014: Agriculture contributes 8.3 percent of total U.S. greenhouse gas emissions.

USDA Conservation Programs

- Voluntary
- Provide technical and financial assistance
- Partnership driven (e.g., Conservation Innovation Grants, Regional Conservation Partnership Program)
- Addressing state and local conservation priorities
 - vulnerable soils/regions
 - wildlife conservation areas
 - urbanizing/endangered lands

Use conservation programs to assist farmers in profitability, resiliency, and protection of natural resources

NRCS—A pioneer in conservation for over 80 years, working with landowners, local and state governments, tribes, and other federal agencies to maintain healthy and productive working landscapes.

Background for USDA Action

• USDA is well-positioned to contribute since:

- Farmers and ranchers can:
 - Reduce GHG emissions
 - Store carbon

Involves USDA Climate Change Program Office, multiple USDA Agencies and Partners

• On-going conservation efforts of agencies, for example

- Soil Health Initiative
- Forest Restoration
- Climate Change Adaptation

USDA Building Blocks for Climate Smart Ag and Forestry Building Blocks Lead: USDA Climate Change Program Office Agencies: NRCS, USFS, RD, FSA, ARS, NIFA, ERS, RUS

COP 21 Paris

United Nations Framework Convention on Climate Change

USDA Announcements

- April 23, 2015 Secretary's announcement at Michigan State Univ for the USDA Building Blocks for Climate Smart Agriculture and Forestry
- Dec 12, 2015 COP 21 International Climate Agreement (UNFCCC) in Paris
- May 12, 2016. Secretary released a roadmap for the Building Blocks

Building Block	Goals by 2025	
Soil Health	Promote conservation practices that improve SOM, reduce emissions from soils/equipment	
Nitrogen Stewardship	Reduce N ₂ O emissions and provide cost savings through application of 4 "Rs"	
Livestock Partnerships	Use anaerobic digesters & impermeable covers on dairy and swine operations	
Conservation of Sensitive Lands	Conservation Reserve Program and Easements to protect wetlands and organic rich soils	
Grazing and Pasture Lands	Establish grazing management plans on an additional 9 M acres	
Private Forest Growth and Retention	Through FLP and CFP, protect almost 1 M acres of working landscapes	Equivalent of taking <u>25 million cars off</u> <u>the road</u> , or offsetting emissions produced by powering nearly <u>11</u>
Stewardship of Federal Forests	Reforest 32,000 acres per year on National Forest System lands	
Promotion of Wood Products	Increase the number of wooden building projects	
Urban Forests	Plant 100,000 additional trees in urban areas	
Energy Generation and Efficiency	Promote renewable energy technologies and improve energy efficiency	<u>million homes</u>
Total	~122-136 MMT CO ₂ e	

Highlight Two Building Blocks ➢ Soil Health ➢ Nitrogen Stewardship

USDA Building Blocks for Climate Smart Agriculture and Forestry

Building Block Goals and Key Actions

Building Block	Goals (by 2025)	Greenhouse Gas (GHG) Reduction Goai (MMTCO ₂ e per year by 2025)
Soll Health	Integrate with the NRCS Soil Health Initiative and promote more than 10 NRCS conservation practices that improve soil organic matter, reduce emissions from soils and equipment, and promote healthier soils nationwide.	4.0-18.0
Nitrogen Stewardship	Reduce nitrous oxide emissions and provide cost savings by focusing on the right timing, type, placement, and quantity of nutrients.	7.0

Soil Health

Soil Health Monitoring and Enhancement Network
Training:

 Advanced soil health training course and complementary webinar series to train trainers, train >2,000 field, area, and state technical staff
 Certification requirements for soil health management planners.

Soil Health

- Partnerships: to develop standardized comprehensive soil health assessment availability and economic data.
- Conservation Practice Standards—Review and update related to soil health management systems (SHMS).
- Investment: Continue to invest in research, education, and extension on practices that promote soil health and reduce GHG emissions from cropland.

Soil Health Management Systems

Conservation buffers

Conservation Tillage

Cover Crops

Avoided Grassland Conversion (CRP)

Improved Rotations

An NCGA Initiative

Support from Monsanto Natural Resources Conservation Service United Soybean Board The Walton Family Foundation

With Technical Support From The Environmental Defense Fund The Nature Conservancy

Building Blocks Involve Partners

Farmer-led Movement for Soil Health Receives \$4 Million Boost

Funding will accelerate Soil Health Partnership's efforts to show farmers economic benefits of sound agriculture practices

Midwest Row Crop Collaborative

Members

- Cargill
- Environmental Defense Fund
- General Mills
- Kellogg Company
- Monsanto Company
- PepsiCo
- The Nature Conservancy
- Walmart
- World Wildlife Fund US

Nitrogen Stewardship Building Block

Nitrogen Stewardship Goal - Reduce 7 MMT CO₂e from Nitrogen Applications Annually

Enroll and maintain a total of 64 million acres of crop and pasture land under an enhanced nitrogen management plan designed to mitigate N_2O emissions

- Requires improving nutrient management on 4.5 million <u>new</u> acres each year from 2016 through 2025
- <u>AND</u> requires 75% of these new acres be maintained under an Enhanced 4R Nutrient Management Plan

Nitrogen Stewardship – 4R Approach

Enhanced Nitrogen Management applying 4R principles - right time, right place, right rate, and using the right source

- Benefits extend beyond N₂O emissions
 - Reduced potential for nutrient runoff, resulting in improved local water quality
 - Improved nutrient use efficiency may reduce amount of fertilizer applied, thus reducing fertilizer costs without impacting yield; <u>creating a "win-win" for producers</u>
 - Expected 75% of acres converted to enhanced nutrient management will continue— "nitrogen management conservation legacy effect"

Nitrogen Stewardship – Challenges

Weather—impact N losses/efficiency

Soil Health—Increase soils abilities to cycle N

Nitrogen Application-time, place, rate, source

Nitrogen Stewardship – Focus

Corn production in the US represents the largest use of nitrogen fertilizer, thus has largest potential for N₂O emission reductions

- Priority placed on enhanced nitrogen management for corn production to mitigate N₂O emissions
- N₂O emission reduction quantification methodologies for corn rotations and new dynamic modeling approaches will improve measurement and mitigation of emissions in the future

Nitrogen Stewardship – How?

To accomplish 64 million acres of crop and pasture land under an enhanced nitrogen management plan designed to mitigate N₂O emissions, NRCS will need to:

- Prioritize efforts in major corn producing states
- Continue/Increase NRCS technical and financial assistance
- Recruit and train additional Technical Service Providers (TSPs), which will provide direct technical assistance to producers
- Acquire additional TSP funding
- Prioritize use of nutrient management conservation activity plan (CAP 104)
- Develop partnerships with ag industry, especially agronomic consultants and ag retailers

Two purposes

- Document results
- Track progress toward the goals
 Two parts
 - Practice and technology data
- Greenhouse gas calculations
 Tracking both direct impacts of USDA actions and indirect effects of practice and technology diffusion

Whole farm and ranch GHG accounting tool

USDA CARBONSCAPES

A national look at carbon landscapes and a central location for USDA Carbon inventory, modeling and mapping of terrestrial biosphere carbon

A national look at carbon landscapes and a central location for USDA Carbon Inventory, modeling, and mapping of terrestrial biosphere carbon

NRCS Commitment for USDA Building Blocks – 2016 Additional EQIP Funding

- Additional \$72.3 million in EQIP financial assistance (FA) and technical assistance (TA) to states
- > Targeted funds for conservation practices that align to GHG Building Blocks
- Increase soil organic C (carbon sequestration) and reduce GHG emissions associated with food and fiber production.
- Same practices will also increase resilience of soils and cropping systems against the impacts of climatic variability and extreme weather events

California received \$4.73 million from this EQIP fund

Climate Smart EQIP Practice Priorities FY 2016		Climate	Smart	EQIP Practice Priorities FY 2016	
Climate Mitigation Building Block	Code	Conservation Practice	Climate Mitigation Building Block	Code	Conservation Practice
	327	Conservation Cover	Livestock	366	Anaerobic Digester
	328	Conservation Crop Rotation	Partnership	367	Roofs and Covers
		Residue and Tillage Management, No	Grazing &	512	Forage and Biomass Planting
	329	29 Till	Pasture	528	Prescribed Grazing
	330	Contour Farming		550	Range Planting
	332	Contour Buffer Strips		372	Combustion System Improvement
	340	Cover Crop	Energy Efficiency	374	Farmstead Energy Improvement
Soil	342	Critical Area Planting		670	Lighting System Improvement
Health		Residue and Tillage Management,		672	Building Envelope Improvement
	345	Reduced Till		380	Windbreaks and Shelterbelts
	386	Field Border		381	Silvopasture Establishment
	393	ter Strips		390	Riparian Herbaceous Buffer
	412	Grassed Waterways	Private	391	Riparian Forest Buffer
	585	Stripcropping	Forests	612	Tree and Shrub Establishment
	601	Vegetative Barriers		645	Upland Wildlife Habitat
	603	Herbaceous Wind Barriers		650	Windbreak Renovation
Nitrogen					
Mgt	590	Nutrient Management			

