United States
Department of
Agriculture

Soil
Conservation
Service

In cooperation with
Washington State
Department of Natural
Resources and
Washington State
University, Agriculture
Research Center

Soil Survey of
Thurston County,
Washington
How To Use This Soil Survey

General Soil Map

The general soil map, which is the color map preceding the detailed soil maps, shows the survey area divided into groups of associated soils called general soil map units. This map is useful in planning the use and management of large areas.

To find information about your area of interest, locate that area on the map, identify the name of the map unit in the area on the color-coded map legend, then refer to the section General Soil Map Units for a general description of the soils in your area.

Detailed Soil Maps

The detailed soil maps follow the general soil map. These maps can be useful in planning the use and management of small areas.

To find information about your area of interest, locate that area on the Index to Map Sheets, which precedes the soil maps. Note the number of the map sheet, and turn to that sheet.

Locate your area of interest on the map sheet. Note the map unit symbols that are in that area. Turn to the Index to Map Units (see Contents), which lists the map units by symbol and name and shows the page where each map unit is described.

The Summary of Tables shows which table has data on a specific land use for each detailed soil map unit. See Contents for sections of this publication that may address your specific needs.
This soil survey is a publication of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other federal agencies, state agencies including the Agricultural Experiment Stations, and local agencies. The Soil Conservation Service has leadership for the federal part of the National Cooperative Soil Survey.

Major fieldwork for this soil survey was completed in 1981. Soil names and descriptions were approved in 1982. Unless otherwise indicated, statements in this publication refer to conditions in the survey area in 1982. This survey was made cooperatively by the Soil Conservation Service, Washington State Department of Natural Resources, and Washington State University, Agriculture Research Center. It is part of the technical assistance furnished to the Thurston County Conservation District.

Soil maps in this survey may be copied without permission. Enlargement of these maps, however, could cause misunderstanding of the detail of mapping. If enlarged, maps do not show the small areas of contrasting soils that could have been shown at a larger scale.

All programs and services of the Soil Conservation Service are offered on a nondiscriminatory basis, without regard to race, color, national origin, religion, sex, age, marital status, or handicap.

Cover: The Washington Capitol Building in Olympia, in an area of Skipop silt loam, 0 to 3 percent slopes. (Photo by Mike Siegrist, Washington State Department of Natural Resources)
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index to map units</td>
<td>v</td>
</tr>
<tr>
<td>Summary of tables</td>
<td>vi</td>
</tr>
<tr>
<td>Foreword</td>
<td>xi</td>
</tr>
<tr>
<td>General nature of the county</td>
<td>1</td>
</tr>
<tr>
<td>Physiography and drainage</td>
<td>1</td>
</tr>
<tr>
<td>History and development</td>
<td>1</td>
</tr>
<tr>
<td>Climate</td>
<td>2</td>
</tr>
<tr>
<td>How this survey was made</td>
<td>3</td>
</tr>
<tr>
<td>General soil map units</td>
<td>5</td>
</tr>
<tr>
<td>Soil descriptions</td>
<td>5</td>
</tr>
<tr>
<td>Broad land use considerations</td>
<td>9</td>
</tr>
<tr>
<td>Detailed soil map units</td>
<td>11</td>
</tr>
<tr>
<td>Soil descriptions</td>
<td>12</td>
</tr>
<tr>
<td>Prime farmland</td>
<td>105</td>
</tr>
<tr>
<td>Use and management of the soils</td>
<td>107</td>
</tr>
<tr>
<td>Crops and pasture</td>
<td>107</td>
</tr>
<tr>
<td>Woodland management and productivity</td>
<td>111</td>
</tr>
<tr>
<td>Recreation</td>
<td>115</td>
</tr>
<tr>
<td>Wildlife habitat</td>
<td>116</td>
</tr>
<tr>
<td>Engineering</td>
<td>118</td>
</tr>
<tr>
<td>Soil properties</td>
<td>123</td>
</tr>
<tr>
<td>Engineering index properties</td>
<td>123</td>
</tr>
<tr>
<td>Physical and chemical properties</td>
<td>124</td>
</tr>
<tr>
<td>Soil and water features</td>
<td>125</td>
</tr>
<tr>
<td>Classification of the soils</td>
<td>127</td>
</tr>
<tr>
<td>Soil series and their morphology</td>
<td>127</td>
</tr>
<tr>
<td>Alderwood series</td>
<td>128</td>
</tr>
<tr>
<td>Baldhill series</td>
<td>128</td>
</tr>
<tr>
<td>Baumgard series</td>
<td>129</td>
</tr>
<tr>
<td>Bellingham series</td>
<td>129</td>
</tr>
<tr>
<td>Boistfort series</td>
<td>130</td>
</tr>
<tr>
<td>Bunker series</td>
<td>131</td>
</tr>
<tr>
<td>Cagey series</td>
<td>131</td>
</tr>
<tr>
<td>Cathcart series</td>
<td>132</td>
</tr>
<tr>
<td>Centralla series</td>
<td>132</td>
</tr>
<tr>
<td>Chehalis series</td>
<td>133</td>
</tr>
<tr>
<td>Delphi series</td>
<td>134</td>
</tr>
<tr>
<td>Dupont series</td>
<td>135</td>
</tr>
<tr>
<td>Eld series</td>
<td>135</td>
</tr>
<tr>
<td>Everett series</td>
<td>136</td>
</tr>
<tr>
<td>Everson series</td>
<td>136</td>
</tr>
<tr>
<td>Galvin series</td>
<td>137</td>
</tr>
<tr>
<td>Giles series</td>
<td>138</td>
</tr>
<tr>
<td>Godfrey series</td>
<td>138</td>
</tr>
<tr>
<td>Grove series</td>
<td>139</td>
</tr>
<tr>
<td>Hoogdal series</td>
<td>139</td>
</tr>
<tr>
<td>Indianola series</td>
<td>140</td>
</tr>
<tr>
<td>Jonas series</td>
<td>141</td>
</tr>
<tr>
<td>Kapowsin series</td>
<td>141</td>
</tr>
<tr>
<td>Katula series</td>
<td>142</td>
</tr>
<tr>
<td>Lates series</td>
<td>142</td>
</tr>
<tr>
<td>Mal series</td>
<td>143</td>
</tr>
<tr>
<td>Mashel series</td>
<td>144</td>
</tr>
<tr>
<td>Maytown series</td>
<td>144</td>
</tr>
<tr>
<td>McKenna series</td>
<td>145</td>
</tr>
<tr>
<td>Melbourne series</td>
<td>146</td>
</tr>
<tr>
<td>Mukilteo series</td>
<td>146</td>
</tr>
<tr>
<td>Newberg series</td>
<td>147</td>
</tr>
<tr>
<td>Nisqually series</td>
<td>147</td>
</tr>
<tr>
<td>Norma series</td>
<td>148</td>
</tr>
<tr>
<td>Olympic series</td>
<td>148</td>
</tr>
<tr>
<td>Pheeney series</td>
<td>149</td>
</tr>
<tr>
<td>Pichuck series</td>
<td>149</td>
</tr>
<tr>
<td>Prather series</td>
<td>150</td>
</tr>
<tr>
<td>Puget series</td>
<td>151</td>
</tr>
<tr>
<td>Puyallup series</td>
<td>151</td>
</tr>
<tr>
<td>Rainier series</td>
<td>152</td>
</tr>
<tr>
<td>Raught series</td>
<td>152</td>
</tr>
<tr>
<td>Salkum series</td>
<td>153</td>
</tr>
<tr>
<td>Scammam series</td>
<td>153</td>
</tr>
<tr>
<td>Schneider series</td>
<td>154</td>
</tr>
<tr>
<td>Semiahmoo series</td>
<td>155</td>
</tr>
<tr>
<td>Shalcar series</td>
<td>155</td>
</tr>
<tr>
<td>Shalcar Variant</td>
<td>156</td>
</tr>
<tr>
<td>Skipopan series</td>
<td>156</td>
</tr>
<tr>
<td>Spana series</td>
<td>157</td>
</tr>
<tr>
<td>Spanaway series</td>
<td>158</td>
</tr>
<tr>
<td>Sultan series</td>
<td>158</td>
</tr>
<tr>
<td>Tacoma series</td>
<td>159</td>
</tr>
<tr>
<td>Tenino series</td>
<td>159</td>
</tr>
<tr>
<td>Tisch series</td>
<td>160</td>
</tr>
<tr>
<td>Vailton series</td>
<td>160</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Wilkeson series</td>
<td>161</td>
</tr>
<tr>
<td>Yelm series</td>
<td>162</td>
</tr>
<tr>
<td>Formation of the soils</td>
<td>163</td>
</tr>
<tr>
<td>Parent material</td>
<td>163</td>
</tr>
<tr>
<td>Climate</td>
<td>164</td>
</tr>
<tr>
<td>Living organisms</td>
<td>165</td>
</tr>
<tr>
<td>Relief</td>
<td>166</td>
</tr>
<tr>
<td>Time</td>
<td>166</td>
</tr>
<tr>
<td>References</td>
<td>169</td>
</tr>
<tr>
<td>Glossary</td>
<td>171</td>
</tr>
<tr>
<td>Tables</td>
<td>183</td>
</tr>
</tbody>
</table>

Issued June 1990
Index to Map Units

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alderwood gravelly sandy loam, 0 to 3 percent slopes</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>Alderwood gravelly sandy loam, 3 to 15 percent slopes</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>Alderwood gravelly sandy loam, 15 to 30 percent slopes</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>Alderwood gravelly sandy loam, 30 to 50 percent slopes</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>Balchill very stony sandy loam, 0 to 3 percent slopes</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>Balchill very stony sandy loam, 3 to 15 percent slopes</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>Balchill very stony sandy loam, 15 to 30 percent slopes</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>Balchill very stony sandy loam, 30 to 60 percent slopes</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>Baumgard loam, 10 to 40 percent slopes</td>
<td>18</td>
</tr>
<tr>
<td>10</td>
<td>Baumgard loam, 40 to 65 percent slopes</td>
<td>18</td>
</tr>
<tr>
<td>11</td>
<td>Baumgard-Pheene complex, 10 to 40 percent slopes</td>
<td>19</td>
</tr>
<tr>
<td>12</td>
<td>Baumgard-Pheene complex, 40 to 65 percent slopes</td>
<td>20</td>
</tr>
<tr>
<td>13</td>
<td>Baumgard-Rock outcrop complex, 40 to 65 percent slopes</td>
<td>21</td>
</tr>
<tr>
<td>14</td>
<td>Bellingham silty clay loam</td>
<td>21</td>
</tr>
<tr>
<td>15</td>
<td>Boistfort silt loam, 5 to 20 percent slopes</td>
<td>22</td>
</tr>
<tr>
<td>16</td>
<td>Boistfort silt loam, 20 to 40 percent slopes</td>
<td>23</td>
</tr>
<tr>
<td>17</td>
<td>Bunker gravelly silt loam, 5 to 30 percent slopes</td>
<td>24</td>
</tr>
<tr>
<td>18</td>
<td>Bunker gravelly silt loam, 30 to 65 percent slopes</td>
<td>24</td>
</tr>
<tr>
<td>19</td>
<td>Bunker-Boistfort complex, 40 to 65 percent slopes</td>
<td>25</td>
</tr>
<tr>
<td>20</td>
<td>Cagey loamy sand</td>
<td>26</td>
</tr>
<tr>
<td>21</td>
<td>Cathcart gravelly loam, 3 to 15 percent slopes</td>
<td>26</td>
</tr>
<tr>
<td>22</td>
<td>Cathcart gravelly loam, 15 to 35 percent slopes</td>
<td>27</td>
</tr>
<tr>
<td>23</td>
<td>Cental silt loam, 8 to 15 percent slopes</td>
<td>28</td>
</tr>
<tr>
<td>24</td>
<td>Cental silt loam, 15 to 30 percent slopes</td>
<td>29</td>
</tr>
<tr>
<td>25</td>
<td>Cental silt loam, 30 to 60 percent slopes</td>
<td>29</td>
</tr>
<tr>
<td>26</td>
<td>Chehalis silt loam</td>
<td>30</td>
</tr>
<tr>
<td>27</td>
<td>Delphi very gravelly loam, 3 to 15 percent slopes</td>
<td>31</td>
</tr>
<tr>
<td>28</td>
<td>Delphi very gravelly loam, 15 to 30 percent slopes</td>
<td>31</td>
</tr>
<tr>
<td>29</td>
<td>Dupont muck</td>
<td>32</td>
</tr>
<tr>
<td>30</td>
<td>Dystric Xerochrepts, 60 to 90 percent slopes</td>
<td>32</td>
</tr>
<tr>
<td>31</td>
<td>Eld loam</td>
<td>33</td>
</tr>
<tr>
<td>32</td>
<td>Everett very gravelly sandy loam, 0 to 3 percent slopes</td>
<td>34</td>
</tr>
<tr>
<td>33</td>
<td>Everett very gravelly sandy loam, 3 to 15 percent slopes</td>
<td>35</td>
</tr>
<tr>
<td>34</td>
<td>Everett very gravelly sandy loam, 15 to 30 percent slopes</td>
<td>35</td>
</tr>
<tr>
<td>35</td>
<td>Everett very gravelly sandy loam, 30 to 50 percent slopes</td>
<td>36</td>
</tr>
<tr>
<td>36</td>
<td>Everson clay loam</td>
<td>36</td>
</tr>
<tr>
<td>37</td>
<td>Galvin silt loam, 0 to 5 percent slopes</td>
<td>37</td>
</tr>
<tr>
<td>38</td>
<td>Giles silt loam, 0 to 3 percent slopes</td>
<td>38</td>
</tr>
<tr>
<td>39</td>
<td>Giles silt loam, 3 to 15 percent slopes</td>
<td>39</td>
</tr>
<tr>
<td>40</td>
<td>Giles silt loam, 15 to 30 percent slopes</td>
<td>39</td>
</tr>
<tr>
<td>41</td>
<td>Godfrey silty clay loam</td>
<td>40</td>
</tr>
<tr>
<td>42</td>
<td>Grove very gravelly sandy loam, 3 to 15 percent slopes</td>
<td>41</td>
</tr>
<tr>
<td>43</td>
<td>Hoogdal silt loam, 15 to 30 percent slopes</td>
<td>41</td>
</tr>
<tr>
<td>44</td>
<td>Hoogdal silt loam, 30 to 50 percent slopes</td>
<td>42</td>
</tr>
<tr>
<td>45</td>
<td>Hydraquents, tidal</td>
<td>42</td>
</tr>
<tr>
<td>46</td>
<td>Indianola loamy sand, 0 to 3 percent slopes</td>
<td>43</td>
</tr>
<tr>
<td>47</td>
<td>Indianola loamy sand, 3 to 15 percent slopes</td>
<td>43</td>
</tr>
<tr>
<td>48</td>
<td>Indianola loamy sand, 15 to 30 percent slopes</td>
<td>44</td>
</tr>
<tr>
<td>49</td>
<td>Jonas silt loam, 30 to 65 percent slopes</td>
<td>45</td>
</tr>
<tr>
<td>50</td>
<td>Kapowsin silt loam, 0 to 3 percent slopes</td>
<td>45</td>
</tr>
<tr>
<td>51</td>
<td>Kapowsin silt loam, 3 to 15 percent slopes</td>
<td>46</td>
</tr>
<tr>
<td>52</td>
<td>Kapowsin silt loam, 15 to 30 percent slopes</td>
<td>47</td>
</tr>
<tr>
<td>53</td>
<td>Kapowsin silt loam, 30 to 50 percent slopes</td>
<td>48</td>
</tr>
<tr>
<td>54</td>
<td>Kapowsin sandy loam, 0 to 3 percent slopes</td>
<td>49</td>
</tr>
<tr>
<td>55</td>
<td>Kapowsin sandy loam, 3 to 15 percent slopes</td>
<td>49</td>
</tr>
<tr>
<td>56</td>
<td>Katula very cobbly loam, 20 to 30 percent slopes</td>
<td>50</td>
</tr>
<tr>
<td>Page</td>
<td>Soil Type and Slope Details</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Katula very cobbly loam, 30 to 65 percent slopes</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Lates silt loam, 8 to 30 percent slopes</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Lates silt loam, 30 to 65 percent slopes</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Mal clay loam, 5 to 30 percent slopes</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Mal clay loam, 30 to 65 percent slopes</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Masheil loam, 5 to 30 percent slopes</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Masheil loam, 30 to 65 percent slopes</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Maytown silt loam</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>McKenna gravelly silt loam, 0 to 5 percent slopes</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>Melbourne silty clay loam, 5 to 20 percent slopes</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>Melbourne silty clay loam, 20 to 40 percent slopes</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>Melbourne silty clay loam, 40 to 65 percent slopes</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Mukilteo muck</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Mukilteo muck, drained</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Newberg fine sandy loam</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Newberg loam</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Nisqually loamy fine sand, 0 to 3 percent slopes</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Nisqually loamy fine sand, 3 to 15 percent slopes</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Norma fine sandy loam</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>Norma silt loam</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Olympic silt loam, 5 to 20 percent slopes</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Olympic silt loam, 20 to 40 percent slopes</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>Pheeneys gravelly loam, 5 to 30 percent slopes</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Pheeneys gravelly loam, 30 to 65 percent slopes</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>Pheeney-Baumgard complex, 30 to 65 percent slopes</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Pheeney-Rock outcrop complex, 40 to 65 percent slopes</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>Pheeney-Rock outcrop complex, 65 to 90 percent slopes</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>Pilchuck loamy sand</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Pits, gravel</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>Prather silty clay loam, 3 to 8 percent slopes</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Prather silty clay loam, 8 to 20 percent slopes</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>Puget silt loam</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>Puyallup silt loam</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>Rainier clay loam, 5 to 30 percent slopes</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>Rainier clay loam, 30 to 65 percent slopes</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>Rainier-Rock outcrop complex, 20 to 40 percent slopes</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>Raught silt loam, 5 to 30 percent slopes</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>Raught silt loam, 30 to 65 percent slopes</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>Riverwash</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>Rock outcrop-Pheeney complex, 40 to 90 percent slopes</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>Salkum silty clay loam, 3 to 8 percent slopes</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>Salkum silty clay loam, 8 to 15 percent slopes</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>Salkum silty clay loam, 15 to 30 percent slopes</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Scaman silty clay loam, 0 to 5 percent slopes</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>Scaman silty clay loam, 5 to 20 percent slopes</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>Schneider very gravelly loam, 20 to 40 percent slopes</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>Schneider very gravelly loam, 40 to 65 percent slopes</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>Semiahmoo muck</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>Shalcar muck</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>Shalcar Variant muck</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>Skipopa silt loam, 0 to 3 percent slopes</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>Skipopa silt loam, 3 to 15 percent slopes</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>Spana gravelly loam</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>Spanaway gravelly sandy loam, 0 to 3 percent slopes</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>Spanaway gravelly sandy loam, 3 to 15 percent slopes</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>Spanaway stony sandy loam, 0 to 3 percent slopes</td>
<td></td>
</tr>
</tbody>
</table>

vi
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>113</td>
<td>Spanaway stony sandy loam, 3 to 15 percent slopes</td>
<td>91</td>
</tr>
<tr>
<td>114</td>
<td>Spanaway-Nisqually complex, 2 to 10 percent slopes</td>
<td>92</td>
</tr>
<tr>
<td>115</td>
<td>Sultan silt loam</td>
<td>94</td>
</tr>
<tr>
<td>116</td>
<td>Tacoma silt loam</td>
<td>94</td>
</tr>
<tr>
<td>117</td>
<td>Tenino gravelly loam, 3 to 15 percent slopes</td>
<td>95</td>
</tr>
<tr>
<td>118</td>
<td>Tenino gravelly loam, 15 to 30 percent slopes</td>
<td>96</td>
</tr>
<tr>
<td>119</td>
<td>Tenino gravelly loam, 30 to 60 percent slopes</td>
<td>97</td>
</tr>
<tr>
<td>120</td>
<td>Tisch silt loam</td>
<td>97</td>
</tr>
<tr>
<td>121</td>
<td>Vailton silt loam, 5 to 30 percent slopes</td>
<td>98</td>
</tr>
<tr>
<td>122</td>
<td>Vailton silt loam, 30 to 65 percent slopes</td>
<td>99</td>
</tr>
<tr>
<td>123</td>
<td>Wilkeson silt loam, 5 to 20 percent slopes</td>
<td>99</td>
</tr>
<tr>
<td>124</td>
<td>Wilkeson silt loam, 20 to 40 percent slopes</td>
<td>100</td>
</tr>
<tr>
<td>125</td>
<td>Xerorthents, 0 to 5 percent slopes</td>
<td>100</td>
</tr>
<tr>
<td>126</td>
<td>Yelm fine sandy loam, 0 to 3 percent slopes</td>
<td>101</td>
</tr>
<tr>
<td>127</td>
<td>Yelm fine sandy loam, 3 to 15 percent slopes</td>
<td>102</td>
</tr>
<tr>
<td>128</td>
<td>Yelm fine sandy loam, 15 to 30 percent slopes</td>
<td>102</td>
</tr>
</tbody>
</table>
Summary of Tables

Temperature and precipitation (table 1) .. 184

Freeze dates in spring and fall (table 2) .. 186
 Probability. Temperature.

Growing season (table 3) .. 188

Acreage and proportionate extent of the soils (table 4) 189
 Acres. Percent.

Land capability classes and yields per acre of crops and pasture (table 5) ... 192

Capability classes and subclasses (table 6) 198
 Total acreage. Major management concerns.

Woodland management and productivity (table 7) 199

Recreational development (table 8) ... 209
 Camp areas. Picnic areas. Playgrounds. Paths and trails.
 Golf fairways.

Wildlife habitat (table 9) ... 218
 Potential for habitat elements. Potential as habitat for—
 Openland wildlife, Woodland wildlife, Wetland wildlife.

Building site development (table 10) .. 224
 Shallow excavations. Dwellings without basements.
 Dwellings with basements. Small commercial buildings.
 Local roads and streets. Lawns and landscaping.

Sanitary facilities (table 11) .. 232
 Septic tank absorption fields. Sewage lagoon areas.
Construction materials (table 12) .. 241

Water management (table 13) ... 249
 Limitations for—Pond reservoir areas; Embankments,
 dikes, and levees; Aquifer-fed excavated ponds. Features
 affecting—Drainage, Irrigation, Grassed waterways.

Engineering index properties (table 14) .. 256
 Depth. USDA texture. Classification—Unified, AASHTO.
 Fragments greater than 3 inches. Percentage passing
 sieve number—4, 10, 40, 200. Liquid limit. Plasticity index.

Physical and chemical properties of the soils (table 15) 268
 matter.

Water features (table 16) ... 274
 Hydrologic group. Flooding. High water table.

Soil features (table 17) ... 278
 Bedrock. Cemented pan. Subsidence. Potential frost
 action. Risk of corrosion.

Classification of the soils (table 18) ... 282
 Family or higher taxonomic class.
Foreword

This soil survey contains information that can be used in land-planning programs in Thurston County. It contains predictions of soil behavior for selected land uses. The survey also highlights limitations and hazards inherent in the soil, improvements needed to overcome the limitations, and the impact of selected land uses on the environment.

This soil survey is designed for many different users. Farmers, foresters, and agronomists can use it to evaluate the potential of the soil and the management needed for maximum food and fiber production. Planners, community officials, engineers, developers, builders, and home buyers can use the survey to plan land use, select sites for construction, and identify special practices needed to ensure proper performance. Conservationists, teachers, students, and specialists in recreation, wildlife management, waste disposal, and pollution control can use the survey to help them understand, protect, and enhance the environment.

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are shallow to bedrock. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

These and many other soil properties that affect land use are described in this soil survey. Broad areas of soils are shown on the general soil map. The location of each soil is shown on the detailed soil maps. Each soil in the survey area is described. Information on specific uses is given for each soil. Help in using this publication and additional information are available at the local office of the Soil Conservation Service or the Cooperative Extension Service.

Lynn A. Brown
State Conservationist
Soil Conservation Service
Location of Thurston County in Washington.
Soil Survey of Thurston County, Washington

By Russell F. Pringle, Soil Conservation Service

Soils surveyed by Russell F. Pringle and Carl J. McMurphy, Soil Conservation Service, and Ken Schlichte, Nick Comerford, Gerry Richardson, Norman Mofield, Chien-Lu Ping, and Harry Anderson, Washington State Department of Natural Resources

United States Department of Agriculture, Soil Conservation Service, in cooperation with Washington State Department of Natural Resources and Washington State University, Agriculture Research Center

Thurston County has a total acreage of 487,040 acres, or 761 square miles. It is in the western part of Washington, at the southern end of Puget Sound. The county is bounded on the east by the Nisqually River, which separates it from Pierce County. Many narrow inlets of Puget Sound form most of the irregular northern boundary, and the small regular part of this boundary joins Mason County. Grays Harbor County forms the western boundary, and Lewis County is to the south. Olympia, which is in the north-central part of the county, is the county seat and state capital. It is about 30 miles southwest of Tacoma and 60 miles southwest of Seattle.

General Nature of the County

This section provides general information about Thurston County. It describes physiography and drainage, history and development, and climate.

Physiography and Drainage

Thurston County is on a glacial plain that extends northward from a mountainous rim. It is bordered on the west, south, and east by mountains. Along the western boundary are low-lying mountain chains. The Black Hills and their adjoining ridges and spurs are in this area. The elevation at Capitol Peak is 2,658 feet. The mountains are mainly rounded peaks and ridges of basalt.

Along the western part of the southern border are low, rolling foothills and mountain spurs. The Michigan Hills, which are about 700 feet high, are in this area. Farther east, across the Chehalis River Valley and on the Lewis County border, are other mountain spurs. These spurs include Baldhill, Porcupine Ridge, and the Northcraft Mountains. The highest point in the county, 2,984 feet, is on a ridge running into the county from the Stahl and Ladd Mountains.

Thurston County is drained by five different river systems. These systems are the Black, Chehalis, Deschutes, Nisqually, and Skookumchuck Rivers.

History and Development

Because the main north-south migration route for settlers ended at Puget Sound, the area that later became Thurston County was the site of the first permanent American settlement on the Sound. It was also the site of the territorial capital. Thurston County was organized in 1853. It originally included the entire
area along Puget Sound from the Cowlitz River to the Canadian border. The present boundaries of Thurston County were established in 1861.

Agriculture was originally, and still is, a significant part of the economy. Timber production became a major economic factor in the 1850's and has remained so to this day. Sandstone quarrying and coal mining were in full swing around Tenino and Bucoda in the 1870's. This part of the county's past may well be reborn as coal deposits become increasingly marketable.

The closing of quarries and sawmills and the decline of coal mining and agriculture has caused growth to be slow in rural areas. At times in the county's history, settlers abandoned the area, engaging in a search for gold or other more lucrative efforts. The county's governmental sector reflected the slow growth pattern. Although the state capital was in the county, many state offices were located in the more populated urban areas.

During the period 1960-74, Thurston County became the second fastest growing county in the state. This sudden change resulted from an unusually high rate of immigration to the county. Immigration of newcomers has stemmed from the spillover growth of Tacoma and Fort Lewis and from legislated centralization of state offices in Olympia.

In 1974, Thurston County had a population of 83,900. It was the seventh most populated county of the state's 39 counties. It has the seventh smallest land base and the eighth highest population density per square mile in Washington State.

The present pattern of land use is that of an urban core partially surrounded by single-family suburbs, which, in turn, give way to rural areas where timber and agriculture are the main land uses. More than half of the region's population live in the urban core of Olympia, Lacey, and Tumwater. These cities cover approximately 20 square miles and have a population density of 2,000 people per square mile. The remaining 741 square miles of the county accommodates approximately 39,000 people (14,000 residences) and has a population density of 56 people per square mile. In these rural areas, development has taken place primarily along the roads and shorelines, leaving the interior largely undeveloped (18).

Because only 5 percent of the county's total land area has been developed for urban uses, the stately forests and clean air and water have been maintained. There are over 100 miles of saltwater coastline and more than 100 freshwater lakes in the county. Halfway between Seattle and Portland on a major interstate transportation route, Thurston County is at the gateway to the Olympic Peninsula.

Climate

Prepared by the National Climatic Data Center, Asheville, North Carolina.

The climate of Thurston County is greatly tempered by winds from the Pacific Ocean. Summers are fairly warm, and hot days are rare. Winters are cool, and snow and freezing temperatures are common only at the higher elevations. Irrigation is needed because rainfall is extremely light in summer, when several weeks often pass without precipitation. During the rest of the year, rains are frequent, especially in late fall and winter.

In most winters one or two storms throughout the survey area bring strong and sometimes damaging winds, and in some years the accompanying heavy rains cause serious flooding. Every few years, in either winter or summer, the invasion of a large continental airmass from the east results in temperatures that are well below freezing for several consecutive days in winter or in a week or more of sweltering heat in summer.

Table 1 gives data on temperature and precipitation for the survey area as recorded at Olympia, La Grande, and Centralia, Washington. Table 2 shows probable dates of the first freeze in fall and the last freeze in spring. Table 3 provides data on length of the growing season.

In winter, the average temperature is 39 degrees F at Olympia and 41 degrees at La Grande and Centralia, and the average daily minimum temperature is 33 degrees at Olympia, 34 degrees at La Grande, and 35 degrees at Centralia. The lowest temperature on record, which occurred at Olympia on January 27, 1972, is −7 degrees. In summer, the average temperature is 62 degrees at Olympia and 63 degrees at Centralia and La Grande, and the average daily maximum temperature is about 75 degrees at all three locations. The highest recorded temperature, which occurred at La Grande and Centralia on August 17, 1977, is 102 degrees.

Growing degree days are shown in table 1. They are equivalent to "heat units." During the month, growing degree days accumulate by the amount that the average temperature each day exceeds a base temperature (40 degrees F). The normal monthly accumulation is used to schedule single or successive plantings of a crop between the last freeze in spring and the first freeze in fall.
The total annual precipitation is about 51 inches at Olympia, 39 inches at La Grande, and 47 inches at Centralia. Of these totals, about 21 percent at Olympia, 32 percent at La Grande, and 24 percent at Centralia usually fall in April through September. The growing season for most crops falls within this period. The heaviest 1-day rainfall during the period of record was 4.33 inches at Olympia on November 19, 1962. Thunderstorms occur on about 5 days each year.

The average seasonal snowfall is about 15 inches at Olympia, 17 inches at La Grande, and 9 inches at Centralia. The greatest snow depth at any one time during the period of record was 24 inches at La Grande. On an average of less than 5 days, at least 1 inch of snow is on the ground. The number of such days varies from year to year.

The average relative humidity in midafternoon is about 60 percent. Humidity is higher at night, and the average at dawn is about 90 percent. The sun shines 65 percent of the time in summer and 30 percent in winter. The prevailing wind is from the south-southwest. Average windspeed is highest, 8 miles per hour, in winter.

How This Survey Was Made

This survey was made to provide information about the soils and miscellaneous areas in the survey area. The information includes a description of the soils and miscellaneous areas and their location and a discussion of their suitability, limitations, and management for specified uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They dug many holes to study the soil profile, which is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biologic activity.

The soils and miscellaneous areas in the survey area are in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind or segment of the landscape. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landscape, a soil scientist develops a concept or model of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with considerable accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Individual soils on the landscape commonly merge gradually into one another as their characteristics gradually change. To construct an accurate map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted color, texture, size, and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. The system of taxonomic classification used in the United States is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

While the soil survey was in progress, samples of some of the soils in the area were collected for laboratory analyses and for engineering tests. Soil scientists interpreted the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils were field tested through observation of the soils in different uses and under different levels of management. Some interpretations were modified to fit local conditions, and some new interpretations were developed to meet local needs. Data were assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management were assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable.
over long periods of time, but they are not predictable from year to year. For example, soil scientists can state with a fairly high degree of probability that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.
The general soil map at the back of this publication shows the soil associations in this survey area. Each association has a distinctive pattern of soils, relief, and drainage. Each is a unique natural landscape. Typically, an association consists of one or more major soils or miscellaneous areas and some minor soils or miscellaneous areas. It is named for the major soils or miscellaneous areas. The soils or miscellaneous areas making up one association can occur in another but in a different pattern.

The general soil map can be used to compare the suitability of large areas for general land uses. Areas of suitable soils or miscellaneous areas can be identified on the map. Likewise, areas that are not suitable can be identified.

Because of its small scale, the map is not suitable for planning the management of a farm or field or for selecting a site for a road or building or other structure. The soils in any one association differ from place to place in slope, depth, drainage, and other characteristics that affect management.

The descriptions, names, and delineations of the soils in this soil survey do not fully agree with those of the soils in adjacent survey areas. Differences are the result of a better knowledge of soils, modifications in series concepts, or variations in the intensity of mapping or the extent of soils within the survey areas.

The associations in this survey have been grouped into general kinds of landscape for broad interpretive purposes. Each of the broad groups and the associations in each group are described in the following pages.

Soil Descriptions

Soils on Flood Plains

These soils make up about 5 percent of the county. The native vegetation is mainly conifers, hardwoods, and grasses. Elevation is 100 to 500 feet. The average annual precipitation is 40 to 55 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 210 days.

These soils are nearly level, very deep, and well drained. They formed in alluvium derived from mixed sources. They are used as hayland, pasture, cropland, woodland, or homesites.

1. Chehalis-Newberg Association

Very deep, well drained, nearly level soils; on flood plains

These soils are along the major rivers in the county. Slope is 0 to 3 percent. The native vegetation is mainly grasses and sedges and an overstory of conifers and hardwoods. Elevation is 100 to 500 feet. The average annual precipitation is 40 to 55 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 210 days.

This association makes up about 5 percent of the county. It is about 31 percent Chehalis soils, 16 percent Newberg soils, and 53 percent soils of minor extent. Chehalis soils formed in alluvium. Typically, the surface layer is silt loam. The subsoil is silty clay loam. The substratum to a depth of 60 inches or more is loam.

Newberg soils formed in alluvium. Typically, the surface layer is loam and fine sandy loam. The substratum to a depth of 60 inches or more is fine sandy loam.

Of minor extent in this association are the poorly drained Godfrey and Puget soils, the moderately well drained Maytown and Sultan soils, the somewhat excessively drained Pichuck soils, the well drained Puyallup soils, and the very poorly drained Tacoma soils.

This association is used as hayland, pasture, cropland, woodland, or homesites. It is well suited to hayland, pasture, and cropland. Flooding is a hazard on sites for homes.

Soils on Glacial Uplands

These soils make up about 60 percent of the county.
The native vegetation is mainly conifers. Elevation is 50 to 900 feet. The average annual precipitation is 35 to 60 inches, the average annual air temperature is 49 to 51 degrees F, and the average frost-free period is 150 to 200 days.

These soils are nearly level to steep, moderately deep to very deep, and moderately well drained to somewhat excessively drained. They formed in glacial outwash and till derived dominantly from mixed sources.

Most areas of these soils are used as homesites, woodland, hayland, pasture, or cropland. A few areas are sources of gravel.

2. Spanaway-Nisqually Association

Very deep, somewhat excessively drained, nearly level to rolling soils: on glacial outwash terraces

These soils are mainly in the central part of the county. Slope is 0 to 15 percent. The native vegetation is mainly grasses and scattered conifers. Elevation is 50 to 400 feet. The average annual precipitation is 40 to 55 inches, the average annual air temperature is about 51 degrees F, and the average frost-free period is 150 to 200 days.

This association makes up about 18 percent of the county. It is about 45 percent Spanaway soils, 15 percent Nisqually soils, and 40 percent soils of minor extent.

Spanaway soils formed in glacial outwash. Typically, the surface layer is gravelly sandy loam. The subsoil is very gravelly sandy loam. The substratum to a depth of 60 inches or more is extremely gravelly sand.

Nisqually soils formed in sandy glacial outwash. Typically, the surface layer and subsoil are loamy fine sand. The substratum to a depth of 60 inches or more is loamy sand.

Of minor extent in this association are the moderately well drained Cagey and Yelm soils, the well drained Eld soils, the poorly drained Everson and McKenna soils, and the somewhat poorly drained Spana soils.

This association is used as hayland, pasture, cropland, or homesites or as a source of gravel. Some small areas are used as woodland. In the areas of hayland, pasture, or cropland, the main limitation is a low available water capacity during the growing season. The main problem on sites for septic tank absorption fields is ground water contamination caused by a poor filtering capacity.

3. Alderwood-Everett Association

Moderately deep and very deep, moderately well drained and somewhat excessively drained, nearly level to steep soils: on glacial till plains

These soils are mainly in the northern and northeastern parts of the county. Slope is 0 to 50 percent. The vegetation is mainly conifers and hardwoods. Elevation is 50 to 700 feet. The average annual precipitation is 35 to 60 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

This association makes up about 35 percent of the county. It is about 22 percent Alderwood soils, 21 percent Everett soils, and 57 percent soils of minor extent.

Alderwood soils are on broad glacial till plains. These soils are moderately deep and moderately well drained. They formed in ablation till over basal till. Typically, the surface layer and the upper part of the substratum are gravelly sandy loam. The lower part of the subsoil is very gravelly sandy loam. Below this is weakly cemented glacial till.

Everett soils are on terrace moraines and terrace escarpments. These soils are very deep and somewhat excessively drained. They formed in glacial outwash. Typically, the surface layer is very gravelly sandy loam. The substratum is a depth of 60 inches or more is extremely gravelly sand.

Of minor extent in this association are the well drained Baldhill and Giles soils, the poorly drained Bellingham, Everson, and Norma soils, the moderately well drained Hoogdal and Kapowsin soils, the somewhat excessively drained Indianola soils, the very poorly drained Mukilteo soils, and the somewhat poorly drained Skippa soils.

This association is used as hayland, pasture, woodland, or homesites. In the areas of hayland and pasture, the main limitation is low precipitation during the growing season. The main limitation on homesites is the seasonal wetness of the Alderwood soils.

4. Cathcart-Tenino Association

Deep and moderately deep, well drained, nearly level to steep soils: on glacial uplands and terminal moraines

These soils are mainly in the south-central part of the county. Slope is 3 to 65 percent. The vegetation is mainly conifers and hardwoods. Elevation is 50 to 900 feet. The average annual precipitation is 40 to 60 inches, the average annual air temperature is about 49 degrees F, and the average frost-free period is 150 to 200 days.
This association makes up about 5 percent of the county. It is about 52 percent Cathcart soils, 46 percent Tenino soils, and 2 percent soils of minor extent.

Cathcart soils are on uplands. These deep soils formed in glacial drift and volcanic ash over sandstone and siltstone. Typically, the surface layer is gravelly loam. The subsoil is silt loam, and the substratum is clay loam. Weathered siltstone or sandstone bedrock is at a depth of about 44 inches.

Tenino soils are on terminal moraines. These moderately deep soils formed in glacial till over glacial outwash. Typically, the surface layer is gravelly loam. The subsoil is gravelly loam and gravelly sandy loam. The upper part of the substratum is weakly cemented very gravelly loam. The lower part to a depth of 60 inches or more is extremely gravelly sandy loam.

Of minor extent in this association are the moderately well drained Alderwood soils, the somewhat excessively drained Everett and Indianola soils, and the poorly drained McKenna and Norma soils.

Most of this association is used as woodland. A few small areas are used as hayland, pasture, or homesites. In areas of hayland or pasture, the main limitation is a low available water capacity during the growing season. Slope is a limitation on sites for homes.

Soils on Uplands and Mountains

These soils make up about 26 percent of the county. The native vegetation is mainly conifers. Elevation is 200 to 2,800 feet. The average annual precipitation is 50 to 70 inches, the average annual air temperature is 43 to 51 degrees F, and the average frost-free period is 120 to 200 days.

These soils are nearly level to very steep, moderately deep to very deep, and moderately well drained and well drained. They formed in residuum and colluvium weathered from basalt and andesite and from some siltstone and sandstone. Most areas of these soils are used as woodland.

5. Baumgard-Wilkeson Association

Deep and very deep, well drained, sloping to steep soils; on uplands and mountains

These soils are in the southeastern part of the county. Slope is 5 to 65 percent. The native vegetation is conifers. Elevation is 400 to 1,600 feet. The average annual precipitation is 50 to 70 inches, the average annual air temperature is 47 or 48 degrees F, and the average frost-free period is 125 to 175 days.

This association makes up about 13 percent of the county. It is about 46 percent Baumgard soils, 25 percent Wilkeson soils, and 29 percent soils of minor extent.

Baumgard soils are on uplands. These deep soils formed in residuum and colluvium derived dominantly from andesite. Typically, the surface layer is loam. The subsoil is clay loam and very gravelly clay loam. Fractured andesite is at a depth of about 45 inches.

Wilkeson soils are on uplands and mountains. These deep soils formed in material weathered from andesite and basalt. Typically, the surface layer is silt loam. The subsoil to a depth of 60 inches or more is very gravelly silty clay loam and gravelly clay loam.

Of minor extent in this association are the well drained Jonas and Pheeney soils, the moderately well drained Mashel and Rainier soils, and the somewhat poorly drained Scamman soils.

This association is used for woodland, recreational development, or wildlife habitat.

6. Pheeney-Mal Association

Moderately deep and very deep, well drained and moderately well drained, sloping to very steep soils; on mountain slopes

These soils are in the southeastern part of the county. Slope is 5 to 90 percent. The native vegetation is mainly conifers. Elevation is 1,500 to 2,800 feet. The average annual precipitation is 60 to 70 inches, the average annual air temperature is about 43 degrees F, and the average frost-free period is 120 to 170 days.

This association makes up about 4 percent of the county. It is about 55 percent Pheeney soils, 9 percent Mal soils, and 36 percent soils of minor extent.

Pheeney soils are on mountainsides. These soils are moderately deep and well drained. They formed in residuum and colluvium derived from andesite mixed with volcanic ash. Typically, the upper part of the surface layer is gravelly loam, and the lower part is gravelly silt loam. The subsoil is very gravelly silt loam. Slightly weathered, fractured andesite is at a depth of about 30 inches.

Mal soils are on foothills and mountainsides. These soils are very deep and moderately well drained. They formed in material derived from highly weathered, tuffaceous marine siltstone and sandstone mixed with volcanic ash in the upper part. Typically, the surface layer and the upper part of the subsoil are clay loam. The lower part of the subsoil to a depth of 60 inches or more is clay.

Of minor extent in this association are the well drained Jonas and Vailton soils and the somewhat poorly drained Scamman soils.
This association is used for woodland, recreational development, or wildlife habitat.

7. Olympic-Raught Association

Very deep, well drained, sloping to steep soils; on uplands

These soils are in the western part of the county. Slope is 5 to 65 percent. The native vegetation is mainly conifers. Elevation is 200 to 1,600 feet. The average annual precipitation is 50 to 70 inches, the average annual air temperature is 50 or 51 degrees F, and the average frost-free period is 150 to 200 days.

This association makes up about 7 percent of the county. It is about 32 percent Olympic soils, 21 percent Raught soils, and 47 percent soils of minor extent.

Olympic soils formed in material weathered from basalt. Typically, the surface layer is silt loam. The upper part of the subsoil is silty clay loam, and the lower part to a depth of 60 inches or more is clay.

Raught soils formed in material weathered from basalt. Typically, the surface layer is silt loam. The subsoil to a depth of 60 inches or more also is silt loam.

Of minor extent in this association are the very deep Boisfort soils, the deep Bunker soils, and the moderately deep Katula and Lates soils.

This association is used for woodland, recreational development, or wildlife habitat.

8. Schneider-Delphi Association

Deep, well drained, nearly level to steep soils; on foothills, mountains, and uplands

These soils are in the northwestern part of the county. Slope is 3 to 65 percent. The native vegetation is conifers and hardwoods. Elevation is 100 to 1,200 feet. The average annual precipitation is 50 to 70 inches, the average annual air temperature is 49 or 50 degrees F, and the average frost-free period is 150 to 200 days.

This association makes up about 4 percent of the county. It is about 49 percent Schneider soils, 35 percent Delphi soils, and 16 percent soils of minor extent.

Schneider soils are on foothills and mountains. They formed in colluvium derived from basalt. Typically, the surface layer is very gravelly loam and very gravelly silt loam. The subsoil is extremely gravelly silt loam. Fractured basalt is at a depth of about 55 inches.

Delphi soils are on glacial uplands. They formed in continental glacial till. Typically, the surface layer is very gravelly loam. The subsoil is extremely gravelly silt loam. Weakly cemented glacial till is at a depth of about 48 inches.

Of minor extent in this association are the somewhat excessively drained Grove soils and the well drained Giles soils.

This association is used for woodland, recreational development, or wildlife habitat. Some small areas are used as homesites. Slope is a limitation on the homesites.

Soils on Sedimentary Uplands and Glacial Drift Plains

These soils make up about 9 percent of the county. The native vegetation is conifers and hardwoods. Elevation is 200 to 600 feet. The average annual precipitation is 40 to 60 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

These soils are nearly level to steep, deep and very deep, and moderately well drained and well drained. They formed in highly weathered marine siltstone and sandstone and in highly weathered, ancient glacial drift. Most areas of these soils are used as woodland, hayland, pasture, or homesites.

9. Salkum-Prather Association

Deep and very deep, well drained and moderately well drained, nearly level to steep soils; on upland terraces

These soils are mainly in the southwestern part of the county. Slope is 3 to 30 percent. The native vegetation is conifers. Elevation is 200 to 600 feet. The average annual precipitation is 40 to 60 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

This association makes up about 2 percent of the county. It is about 66 percent Salkum soils, 14 percent Prather soils, and 20 percent soils of minor extent.

Salkum soils are deep and well drained. They formed in highly weathered, ancient glacial drift. Typically, the surface layer is silty clay loam. The subsoil to a depth of 60 inches or more is silty clay.

Prather soils are very deep and moderately well drained. They formed in highly weathered, ancient glacial drift. Typically, the surface layer is silty clay loam. The upper part of the subsoil is silty clay, and the lower part to a depth of 60 inches or more is clay.

Of minor extent in this association are the somewhat poorly drained Galvin and Scamman soils.

This association is used as woodland, hayland, pasture, or homesites. Shrinking and swelling and seasonal wetness are problems on sites for homes.
10. Melbourne-Centralia Association

Deep and very deep, well drained, gently sloping to steep soils: on uplands

These soils are in the southern part of the county. Slope is 5 to 65 percent. The native vegetation is conifers and hardwoods. Elevation is 200 to 600 feet. The average annual precipitation is 40 to 60 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

This association makes up about 7 percent of the county. It is about 58 percent Melbourne soils, 30 percent Centralia soils, and 12 percent soils of minor extent.

Melbourne soils are deep. They formed in residuum and colluvium derived from highly weathered marine siltstone. Typically, the surface layer and the upper part of the subsoil are silty clay loam. The lower part of the subsoil to a depth of 60 inches or more is clay loam.

Centralia soils are very deep. They formed in residuum derived from highly weathered, micaceous marine sandstone. Typically, the surface layer is silty loam. The subsoil to a depth of 60 inches or more is clay loam.

Of minor extent in this association are the somewhat poorly drained Galvin and Scamman soils.

This association is used for woodland, recreational development, or wildlife habitat. Some small areas are used as homesites.

Broad Land Use Considerations

The general soil map is an aid in planning the general use and management of areas of land. It should not be used when sites for specific uses are selected or when management programs for individual farms are designed. Specific, detailed data about soils can be found in the section “Detailed Soil Map Units” and in the tables at the back of this survey.

Approximately 70 percent of the soils in Thurston County is used for the production of commercial timber. Productivity for Douglas-fir is high in associations 5, 6, 7, 8, 9, and 10. Because of the slope, carefully constructing logging roads helps to control erosion and stream sedimentation. Operating heavy, tracked and wheeled equipment only during the dry summer months minimizes compaction and puddling.

About 20 percent of the county is used for hay, pasture, hay silage, sweet corn, corn silage, peas, small grain, or blueberries. Cropland is in scattered areas throughout the county, but it is concentrated mainly in associations 1, 2, and 3. The soils in association 1 are subject to flooding during the winter. Because the flooding occurs after row crops have been harvested, crop damage is minimal. In poorly drained areas and depressional areas, however, damage to perennial grasses and fall-planted small grain can be severe. Blueberries are grown on Mukilteo soils, which are of minor extent in association 3.

About 25,000 acres in the county has been classified as urban or built-up land. In general, the nearly level to sloping Alderwood, Everett, Indiana, and Spanaway soils have a high potential for urban development. These soils are mainly in association 3. The principal soil limitations affecting urban uses in the other associations are low strength, wetness, and slope. Soils on flood plains, such as those in association 1, are severely limited as sites for homes.

The potential for recreational development ranges from low to high, depending on the type of recreation, the intensity of the expected use, and the properties of the soils. Most of the soils in associations 2 and 3 have a high potential for intensive recreational development. The soils in association 1 have a low potential because of flooding. The slope in associations 4, 5, 6, 7, 8, 9, and 10 is a limitation on sites for such recreational areas as playgrounds and camping areas. Small areas that are suitable for intensive recreational development may be included in associations that otherwise have a low potential for this kind of development. The soils in all of the associations are suitable for extensive recreational uses, such as hiking or horseback riding.

The potential for wildlife habitat is generally high throughout the county. The soils in associations 1, 2, and 3 have a high potential for openland wildlife habitat. Those in associations 4, 5, 6, 7, 8, 9, and 10 have a high potential for woodland wildlife habitat. Some of the soils on the flood plains and in the upland depressions in associations 1 and 3 have a high potential for wetland wildlife habitat.
Detailed Soil Map Units

The map units delineated on the detailed maps at the back of this survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions in this section, along with the maps, can be used to determine the suitability and potential of a unit for specific uses. They also can be used to plan the management needed for those uses. More information on each map unit is given under "Use and Management of the Soils."

A map unit delineation on a map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils or miscellaneous areas. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils and miscellaneous areas are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some "included" areas that belong to other taxonomic classes.

Most included soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, inclusions. They may or may not be mentioned in the map unit description. Other included soils and miscellaneous areas, however, have properties and behavior divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, inclusions. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. The included areas of contrasting soils or miscellaneous areas are mentioned in the map unit descriptions. A few included areas may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of included areas in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into segments that have similar use and management requirements. The delineation of such landscape segments on the map provides sufficient information for the development of resource plans, but if intensive use of small areas is planned, onsite investigation to precisely define and locate the soils and miscellaneous areas is needed.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives the principal hazards and limitations to be considered in planning for specific uses.

Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer or of the underlying layers, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer or of the underlying layers. They also can differ in slope, stoniness, wetness, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alderwood gravelly sandy loam, 3 to 15 percent slopes, is a phase in the Alderwood series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are
complexes. A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Baumgard-Pheeney complex, 10 to 40 percent slopes, is an example.

This survey includes miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Pits, gravel, is an example.

The descriptions, names, and delineations of the soils in this soil survey do not fully agree with those of the soils in adjacent survey areas. Differences are the result of a better knowledge of soils, modifications in series concepts, or variations in the intensity of mapping or the extent of soils in the survey areas.

Table 4 gives the acreage and proportionate extent of each map unit. Other tables (see “Summary of Tables”) give properties of the soils and the limitations and capabilities for many uses. The Glossary defines many of the terms used in describing the soils or miscellaneous areas.

Soil Descriptions

1—Alderwood gravelly sandy loam, 0 to 3 percent slopes. This moderately deep, moderately well drained soil is on glacial till plains. It formed in ablation till overlying basal till. The native vegetation is mainly conifers and hardwoods. Elevation is 50 to 500 feet. The average annual precipitation is 40 to 60 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 165 to 200 days.

Typically, the surface layer is very dark brown gravelly sandy loam about 6 inches thick. The upper 9 inches of the subsoil is dark brown gravelly sandy loam. The lower 15 inches is dark brown very gravelly sandy loam. A weakly cemented hardpan is at a depth of about 30 inches. It is strongly compacted and crushes to very gravelly loamy sand. Depth to the hardpan ranges from 20 to 40 inches.

Included in this unit are small areas of Bellingham, McKenna, and Norma soils in drainageways and Everett and Indianola soils on terraces. Also included are small areas of Alderwood gravelly sandy loam that have slopes of 3 to 15 percent. Included areas make up about 15 percent of the total acreage.

Permeability is moderately rapid above the hardpan in the Alderwood soil and very slow in the pan. Available water capacity is low. Effective rooting depth is 20 to 40 inches. A perched seasonal high water table is at a depth of 18 to 36 inches from November to March. Runoff is slow, and the hazard of water erosion is slight.

This unit is used mainly for woodland or homesites. It is also used for hay and pasture.

Douglas-fir is the main woodland species on this unit. Among the trees of limited extent are red alder, western redcedar, western hemlock, and Pacific madrone. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 146. On the basis of a 50-year site curve, it is 111. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 153 cubic feet per acre per year at 60 years of age.

This soil is suited to year-round logging. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Droughtiness in the surface layer reduces the seedling survival rate. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs periodically in cutover areas. When openings are made in the canopy, invading brushy plants can delay the establishment of planted seedlings. Because the rooting depth is restricted by the hardpan, trees are subject to occasional windthrow.

Common forest understory plants are salal, evergreen huckleberry, cascade Oregon-grape, western brackenfern, and western swordfern.

The main limitations affecting hay and pasture are the low available water capacity, the seasonal high water table, and the soil depth, which is limited by the hardpan. Grazing when the soil is wet damages the plants and results in compaction of the surface layer. Proper stocking rates, pasture rotation, and restricted grazing during wet periods help to keep the pasture in good condition. Irrigation is needed for maximum yields. Irrigation water can be applied by sprinklers.

If this unit is used for homesites, the main limitation is the seasonal wetness. The soil can support large loads. A drainage system should be installed on sites for buildings with basements or crawl spaces.

Preserving the existing plant cover during construction helps to control erosion. Topsoil can be stockpiled and used to reclaim areas disturbed during construction. The hazard of erosion is increased if the surface is bare during site development. Pebbles and cobbles should be removed, particularly in areas used for lawns. In summer, irrigation is needed for lawn grasses, shrubs, vines, shade trees, and ornamental trees. Mulch,
fertilizer, and irrigation are needed to establish lawn grasses and other small-seeded plants.

The main limitations on sites for septic tank absorption fields are the depth to the hardpan and the seasonal wetness. Because of the restrictive layer, onsite sewage disposal systems often fail or do not function properly during periods of heavy rainfall.

This map unit is in capability subclass IVw.

2—Alderwood gravelly sandy loam, 3 to 15 percent slopes. This moderately deep, moderately well drained soil is on glacial till plains. It formed in ablation till overlying basal till. The native vegetation is mainly conifers and hardwoods. Elevation is 50 to 500 feet. The average annual precipitation is 40 to 60 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 165 to 200 days.

Typically, the surface layer is very dark brown gravelly sandy loam about 6 inches thick. The upper 9 inches of the subsoil is dark brown gravelly sandy loam. The lower 15 inches is dark brown very gravelly sandy loam. A weakly cemented hardpan is at a depth of about 30 inches. It is strongly compacted and crushes to very gravelly loamy sand. Depth to the hardpan ranges from 20 to 40 inches.

Included in this unit are small areas of Everett, Indianola, Kapowsin, and Skippa soils on terraces. Also included are small areas of Alderwood gravelly sandy loam that have slopes of 0 to 3 percent or 15 to 30 percent. Included areas make up about 15 percent of the total acreage.

Permeability is moderately rapid above the hardpan in the Alderwood soil and very slow in the pan. Available water capacity is low. Effective rooting depth is 20 to 40 inches. A perched seasonal high water table is at a depth of 18 to 36 inches from November to March. Water flows along the top of the hardpan and can seep at the bottom of slopes. Runoff is slow, and the hazard of water erosion is slight.

Most areas of this unit are used for woodland or homesites. A few areas are used for hay and pasture.

Douglas-fir is the main woodland species on this unit. Among the trees of limited extent are red alder, western redcedar, western hemlock, and Pacific madrone. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 146. On the basis of a 50-year site curve, it is 111. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 153 cubic feet per acre per year at 60 years of age.

This soil is suited to year-round logging. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seeding establishment is the main concern in the production of timber. Droughtiness in the surface layer reduces the seedling survival rate. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs periodically in cutover areas. When openings are made in the canopy, invading brushy plants can delay the establishment of planted seedlings. Because the rooting depth is restricted by the hardpan, trees are subject to occasional windthrow.

Common forest understory plants are salal, evergreen huckleberry, cascade Oregon-grape, western brackenfern, and western swordfern.

The main limitation affecting homesites is the seasonal wetness. This soil can support large loads. A drainage system should be installed on sites for buildings with basements or crawl spaces. Preserving the existing plant cover during construction helps to control erosion. Topsoil can be stockpiled and used to reclaim areas disturbed during construction. Excavation for roads and buildings increases the hazard of erosion. Erosion is a hazard in the steeper areas. Only the part of the site that is used for construction should be disturbed. The hazard of erosion is increased if the surface is bare during site development. Pebbles and cobbles should be removed, particularly in areas used for lawns. In summer, irrigation is needed for lawn grasses, shrubs, vines, shade trees, and ornamental trees. Mulch, fertilizer, and irrigation are needed to establish lawn grasses and other small-seeded plants.

The main limitations on sites for septic tank absorption fields are the hardpan and the seasonal wetness. Because of the restrictive layer, onsite sewage disposal systems often fail or do not function properly during periods of heavy rainfall. During the rainy season, effluent from onsite sewage disposal systems may seep at points downslope. The slope hinders the installation of the absorption fields. Absorption lines should be installed on the contour.

The main limitations affecting hay and pasture are the low available water capacity, the seasonal high water table, and the soil depth, which is limited by the hardpan. Grasses and legumes grow well if fertilizer is applied. The seedbed should be prepared on the contour or across the slope where practical. Grazing when the soil is wet damages the plants and results in compaction of the surface layer, poor tilth, and excessive runoff. Proper stocking rates, pasture rotation, and restricted grazing during wet periods help
to keep the pasture in good condition and to control erosion. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and helps to control weeds. In some years irrigation is needed for maximum yields. Irrigation water can be applied by the sprinkler method.

This map unit is in capability subclass IVe.

3—Alderwood gravelly sandy loam, 15 to 30 percent slopes. This moderately deep, moderately well drained soil is on glacial till plains. It formed in ablation till overlying basal till. The native vegetation is mainly conifers and hardwoods. Elevation is 50 to 400 feet. The average annual precipitation is 40 to 60 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 165 to 200 days.

Typically, the surface layer is very dark brown gravelly sandy loam about 6 inches thick. The upper 9 inches of the subsoil is dark brown gravelly sandy loam. The lower 15 inches is dark brown very gravelly sandy loam. A weakly cemented hardpan is at a depth of about 30 inches. It crushes to very gravelly loamy sand. Depth to the hardpan ranges from 20 to 40 inches.

Included in this unit are small areas of Everett, Hoogdal, Indianola, and Kapowsin soils on terraces. Also included are small areas of Alderwood gravelly sandy loam that have slopes of 3 to 15 percent or 30 to 50 percent. Included areas make up about 20 percent of the total acreage.

Permeability is moderately rapid above the hardpan in the Alderwood soil and very slow in the pan. Available water capacity is low. Effective rooting depth is 20 to 40 inches. A perched seasonal high water table is at a depth of 18 to 36 inches from November to March. Water flows along the top of the hardpan and can seep at the bottom of slopes. Runoff is medium, and the hazard of water erosion is moderate.

Most areas of this unit are used for woodland. A few areas are used for pasture.

Douglas-fir is the main woodland species on this unit. Among the trees of limited extent are red alder, western redcedar, western hemlock, and Pacific madrone. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 146. On the basis of a 50-year site curve, it is 111. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 153 cubic feet per acre per year at 60 years of age.

This soil is suited to year-round logging. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Skid trails and firebreaks are subject to rilling and gully unless they are protected by a plant cover or adequate water bars are provided. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Droughtiness in the surface layer reduces the seedling survival rate. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs periodically in cutover areas. When openings are made in the canopy, invading brushy plants can delay the establishment of planted seedlings. Because the rooting depth is restricted by the hardpan, trees are subject to occasional windthrow.

Common forest understory plants are salal, evergreen huckleberry, cascade Oregon-grape, western brackenfern, and western swordfern.

The main limitations affecting pasture are the low available water capacity, the seasonal high water table, the slope, and the soil depth, which is limited by the hardpan. The seedbed should be prepared on the contour or across the slope where practical. Grazing when the soil is wet damages the plants and results in compaction of the surface layer, poor tillth, and excessive runoff. Proper stocking rates, pasture rotation, and restricted grazing during wet periods help to keep the pasture in good condition and protect the soil from erosion. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Irrigation is needed for maximum yields. Irrigation water can be applied by the sprinkler method.

This map unit is in capability subclass IVe.

4—Alderwood gravelly sandy loam, 30 to 50 percent slopes. This moderately deep, moderately well drained soil is on terrace escarpments. It formed in ablation till overlying basal till. The native vegetation is mainly conifers and hardwoods. Elevation is 50 to 500 feet. The average annual precipitation is 40 to 60 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 165 to 200 days.

Typically, the surface layer is very dark brown gravelly sandy loam about 6 inches thick. The upper 9 inches of the subsoil is dark brown gravelly sandy loam, and the lower 15 inches is dark brown very gravelly sandy loam. A weakly cemented and strongly compacted hardpan is at a depth of about 30 inches. It crushes to very gravelly loamy sand. Depth to the hardpan ranges from 20 to 40 inches.
Included in this unit are small areas of Everett, Hoogdahl, and Kapowsin soils. Also included are small areas of Alderwood gravelly sandy loam that have slopes of 15 to 30 percent. Included areas make up about 25 percent of the total acreage.

Permeability is moderately rapid above the hardpan in the Alderwood soil and very slow in the pan. Available water capacity is low. Effective rooting depth is 20 to 40 inches. A perched seasonal high water table is at a depth of 18 to 36 inches from November to March. Water flows along the top of the hardpan and can seep at the bottom of slopes. Runoff is rapid, and the hazard of water erosion is severe.

This unit is used as woodland. Douglas-fir is the main woodland species. Among the trees of limited extent are red alder, western redcedar, western hemlock, and Pacific madrone. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 146. On the basis of a 50-year site curve, it is 111. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 153 cubic feet per acre per year at 60 years of age.

The main limitation affecting the harvesting of timber is slope. The slope restricts the use of wheeled and tracked equipment in skidding operations. Cable yarding systems generally are safer and minimize damage to the surface. This soil is suited to year-round logging. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Steep yarding paths, skid trails, and firebreaks are subject to rilling and gullying unless they are protected by a plant cover or adequate water bars are provided.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs periodically in cutover areas. When openings are made in the canopy, invading brushy plants can delay the establishment of planted seedlings. Droughtiness in the surface layer reduces the seedling survival rate. Because the rooting depth is restricted by the hardpan, trees are subject to occasional windthrow.

Common forest understory plants are salal, evergreen huckleberry, cascade Oregon-grape, western brackenfern, and western swordfern.

This map unit is in capability subclass Vle.

5—Baldhill very stony sandy loam, 0 to 3 percent slopes. This deep, well drained soil is on terminal moraines. It formed in stony ablation till. The native vegetation is mainly conifers and hardwoods. Elevation is 400 to 700 feet. The average annual precipitation is 40 to 60 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 160 to 210 days.

Typically, the surface layer is dark brown very stony sandy loam about 4 inches thick. The upper 25 inches of the subsoil is dark yellowish brown and dark brown very stony sandy loam, and the lower 25 inches is olive brown and dark yellowish brown very gravelly sandy loam and extremely gravelly sandy loam. The substratum to a depth of 60 inches or more is dark yellowish brown very gravelly loamy sand.

Included in this unit are small areas of Alderwood, Everett, and Kapowsin soils on terraces and Mukilteo and Norma soils in depressions. Also included are small areas of Baldhill very stony sandy loam that have slopes of 3 to 15 percent. Included areas make up about 25 percent of the total acreage.

Permeability is moderately rapid in the subsoil of the Baldhill soil and very rapid in the substratum. Available water capacity is moderate. Effective rooting depth is 40 to 60 inches. Runoff is slow, and the hazard of water erosion is slight.

Most areas of this unit are used as woodland. A few areas are used for homesites.

Douglas-fir is the main woodland species on this unit. Among the trees of limited extent are red alder, bigleaf maple, western hemlock, and western redcedar. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 146. On the basis of a 50-year site curve, it is 114. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 153 cubic feet per acre per year at 60 years of age.

The main limitation affecting the harvesting of timber is the surface stoniness. The stones hinder harvesting and can cause breakage of timber when the trees are felled. This soil is suited to year-round logging. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs periodically in cutover areas. When openings are made in the canopy, invading brushy plants can delay the establishment of planted seedlings.
Droughtiness in the surface layer reduces the seedling survival rate.

Common forest understory plants are trailing blackberry, cascade Oregon-grape, western swordfern, salal, and bunchberry dogwood.

The main limitation affecting homesites is the stoniness on and below the surface. Plans for homesites should provide for the preservation of as many trees as possible. Pebbles, cobbles, and stones should be removed, particularly in areas used for lawns. In summer, irrigation is needed for lawn grasses, shrubs, vines, shade trees, and ornamental trees. Mulch, fertilizer, and irrigation are needed to establish lawn grasses and other small-seeded plants. Cutbanks are not stable and are subject to sloughing. The main limitation affecting septic tank absorption fields is the stoniness.

This map unit is in capability subclass VIs.

6—Baldhill very stony sandy loam, 3 to 15 percent slopes. This deep, well drained soil is on terminal moraines. It formed in stony ablation till. The native vegetation is mainly conifers and hardwoods. Elevation is 400 to 700 feet. The average annual precipitation is 40 to 60 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 160 to 210 days.

Typically, the surface layer is dark brown very stony sandy loam about 4 inches thick. The upper 25 inches of the subsoil is dark yellowish brown and dark brown very stony sandy loam, and the lower 25 inches is olive brown and dark yellowish brown very gravelly sandy loam and extremely gravelly sandy loam. The substratum to a depth of 60 inches or more is dark yellowish brown very gravelly loamy sand.

Included in this unit are small areas of Alderwood, Everett, and Kapowsin soils on terraces. Also included are small areas of Baldhill very stony sandy loam that have slopes of 0 to 3 percent or 15 to 30 percent. Included areas make up about 25 percent of the total acreage.

Permeability is moderately rapid in the subsoil of the Baldhill soil and very rapid in the substratum. Available water capacity is moderate. Effective rooting depth is 40 to 60 inches. Runoff is slow, and the hazard of water erosion is slight.

Most areas of this unit are used as woodland. A few areas are used for homesites.

Douglas-fir is the main woodland species on this unit. Among the trees of limited extent are red alder, bigleaf maple, western hemlock, and western redcedar. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 146. On the basis of a 50-year site curve, it is 114. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 153 cubic feet per acre per year at 60 years of age.

The main limitation affecting the harvesting of timber is the surface stoniness. The stones hinder harvesting and can cause breakage of timber when the trees are felled. This soil is suited to year-round logging. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs periodically in cutover areas. When openings are made in the canopy, invading brushy plants can delay the establishment of planted seedlings. Droughtiness in the surface layer reduces the seedling survival rate.

Common forest understory plants are trailing blackberry, cascade Oregon-grape, western swordfern, salal, and bunchberry dogwood.

The main limitation affecting homesites is the stoniness on and below the surface. Excavation for roads and buildings increases the hazard of erosion. The hazard of erosion also is increased if the surface is bare during site development. Plans for homesites should provide for the preservation of as many trees as possible. A plant cover can be established and maintained through proper fertilizing, seeding, mulching, and shaping of the slopes. Pebbles, cobbles, and stones should be removed, particularly in areas used for lawns. In summer, irrigation is needed for lawn grasses, shrubs, vines, shade trees, and ornamental trees. Mulch, fertilizer, and irrigation are needed to establish lawn grasses and other small-seeded plants. Cutbanks are not stable and are subject to sloughing.

The main limitation affecting septic tank absorption fields is the stoniness. Slope hinders installation of the absorption fields. Absorption lines should be installed on the contour.

This map unit is in capability subclass VIs.

7—Baldhill very stony sandy loam, 15 to 30 percent slopes. This deep, well drained soil is on terminal moraines. It formed in stony ablation till. The native vegetation is mainly conifers and hardwoods.
Elevation is 400 to 700 feet. The average annual precipitation is 40 to 60 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 160 to 210 days.

Typically, the surface layer is dark brown very stony sandy loam about 4 inches thick. The upper 25 inches of the subsoil is dark yellowish brown and dark brown very stony sandy loam. The lower 25 inches is olive brown and dark yellowish brown very gravelly sandy loam and extremely gravelly sandy loam. The substratum to a depth of 60 inches or more is dark yellowish brown very gravelly loamy sand.

Included in this unit are small areas of Alderwood, Everett, and Kapowsin soils on terraces. Also included are small areas of Baldhill very stony sandy loam that have slopes of 3 to 15 percent or 30 to 60 percent. Included areas make up about 25 percent of the total acreage.

Permeability is moderately rapid in the subsoil of the Baldhill soil and very rapid in the substratum. Available water capacity is moderate. Effective rooting depth is 40 to 60 inches. Runoff is medium, and the hazard of water erosion is moderate.

This unit is used for woodland. Douglas-fir is the main woodland species. Among the trees of limited extent are red alder, bigleaf maple, western hemlock, and western redcedar. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 146. On the basis of a 50-year site curve, it is 114. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 153 cubic feet per acre per year at 60 years of age.

The main limitation affecting the harvesting of timber is the surface stoniness. The stones hinder yarding and can cause breakage of the timber when the trees are felled. This soil is suited to year-round logging. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available in areas of this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Steep yarding paths, skid trails, and firebreaks are subject to rilling and gully unless they are protected by a plant cover or adequate water bars are provided. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs periodically in cutover areas. When openings are made in the canopy, invading brushy plants can delay the establishment of planted seedlings. Droughtiness in the surface layer reduces the seedling survival rate.

Common forest understory plants are trailing blackberry, cascade Oregon-grape, western swordfern, salal, and bunchberry dogwood.

This map unit is in capability subclass VIs.

8—Baldhill very stony sandy loam, 30 to 60 percent slopes. This deep, well drained soil is on terminal moraines. It formed in stony ablation till. The native vegetation is mainly conifers and hardwoods. Elevation is 400 to 700 feet. The average annual precipitation is 40 to 60 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 160 to 210 days.

Typically, the surface layer is dark brown very stony sandy loam about 4 inches thick. The upper 25 inches of the subsoil is dark yellowish brown and dark brown very stony sandy loam, and the lower 25 inches is olive brown and dark yellowish brown very gravelly sandy loam and extremely gravelly sandy loam. The substratum to a depth of 60 inches or more is dark yellowish brown very gravelly loamy sand.

Included in this unit are small areas of Alderwood, Everett, and Kapowsin soils on terraces. Also included are small areas of Baldhill very stony sandy loam that have slopes of 15 to 30 percent. Included areas make up about 20 percent of the total acreage.

Permeability is moderately rapid in the subsoil of the Baldhill soil and very rapid in the substratum. Available water capacity is moderate. Effective rooting depth is 40 to 60 inches. Runoff is rapid, and the hazard of water erosion is severe.

This unit is used as woodland. Douglas-fir is the main woodland species. Among the trees of limited extent are red alder, bigleaf maple, western hemlock, and western redcedar. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 146. On the basis of a 50-year site curve, it is 114. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 153 cubic feet per acre per year at 60 years of age.

The main limitations affecting the harvesting of timber are slope and stones on the surface. The slope restricts the use of wheeled and tracked equipment in skidding operations. Cable yarding systems generally are safer and minimize damage to the surface. The stones hinder harvesting and can cause breakage of timber when the trees are felled. This soil is suited to year-round logging. Logging roads require suitable surfacing material for year-round use. Rock for road construction
is not readily available on this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Steep yarding paths, skid trails, and firebreaks are subject to rilling and gullying unless they are protected by a plant cover or adequate water bars are provided.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs periodically in cutover areas. When openings are made in the canopy, invading brushy plants can delay the establishment of planted seedlings. Droughtiness in the surface layer reduces the seedling survival rate.

Common forest understory plants are trailing blackberry, cascade Oregon-grape, western swordfern, salal, and bunchberry dogwood.

This map unit is in capability subclass VIe.

9—Baumgard loam, 10 to 40 percent slopes. This deep, well drained soil is on uplands. It formed in residuum and colluvium derived dominantly from andesite. The native vegetation is mainly conifers. Elevation is 400 to 1,600 feet. The average annual precipitation is 55 to 65 inches, the average annual air temperature is about 48 degrees F, and the average frost-free period is 150 to 175 days.

Typically, the surface layer is dark reddish brown loam about 14 inches thick. The upper 16 inches of the subsoil is reddish brown and yellowish red clay loam. The lower 15 inches is dark yellowish brown very gravelly clay loam. Fractured andesite is at a depth of about 45 inches. Depth to the andesite ranges from 40 to more than 60 inches.

Included in this unit are small areas of Mashel, Pheeney, Scamman, and Wilkeson soils. Also included are small areas of Baumgard loam that have slopes of 40 to 65 percent. Included areas make up about 20 percent of the total acreage.

Permeability is moderate in the Baumgard soil. Available water capacity is high. Effective rooting depth is 40 to more than 60 inches. Runoff is medium, and the hazard of water erosion is moderate.

This unit is used for woodland. Douglas-fir is the main woodland species. Among the trees of limited extent are red alder, western hemlock, western redcedar, and bigleaf maple. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 161. On the basis of a 50-year site curve, it is 122. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 171 cubic feet per acre per year at 65 years of age.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is readily available on this unit. Establishing a plant cover on slopes that have been cut or filled reduces the hazard of erosion. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of Douglas-fir seedlings.

Common forest understory plants are cascade Oregon-grape, red huckleberry, western brackenfern, western swordfern, and salal.

This map unit is in capability subclass IVe.

10—Baumgard loam, 40 to 65 percent slopes. This deep, well drained soil is on upland hillsides and ridgetops. It formed in residuum and colluvium derived dominantly from andesite. The native vegetation is mainly conifers. Elevation is 400 to 1,600 feet. The average annual precipitation is 55 to 65 inches, the average annual air temperature is about 48 degrees F, and the average frost-free period is 150 to 175 days.

Typically, the surface layer is dark reddish brown loam about 14 inches thick. The upper 16 inches of the subsoil is reddish brown and yellowish red clay loam. The lower 15 inches is dark yellowish brown very gravelly clay loam. Fractured andesite is at a depth of about 45 inches. Depth to the andesite ranges from 40 to more than 60 inches.

Included in this unit are small areas of Mashel and Pheeney soils. Also included are small areas of Baumgard loam that have slopes of 10 to 40 percent. Included areas make up about 20 percent of the total acreage.

Permeability is moderate in the Baumgard soil. Available water capacity is high. Effective rooting depth is 40 to more than 60 inches. Runoff is rapid, and the hazard of water erosion is severe.

This unit is used for woodland. Douglas-fir is the
main woodlands species. Among the trees of limited extent are red alder, western hemlock, western redcedar, and bigleaf maple. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 161. On the basis of a 50-year site curve, it is 122. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 171 cubic feet per acre per year at 65 years of age.

The main limitation affecting the harvesting of timber is slope. The slope restricts the use of wheeled and tracked equipment in skidding operations. Cable yarding systems generally are safer and minimize damage to the surface. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is readily available on this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Steep yarding paths, skid trails, and firebreaks are subject to rilling and gullying unless they are protected by a plant cover or adequate water bars are provided.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. The seedling mortality rate is higher on ridgetops that are subject to strong, persistent winds than in other areas of this unit. When openings are made in the canopy, invading brushy plants can prevent the establishment of Douglas-fir seedlings.

Common forest understory plants are cascade Oregon-grape, red huckleberry, western brackenfern, western swordfern, and salal.

This map unit is in capability subclass VIIe.

11—Baumgard-Pheeney complex, 10 to 40 percent slopes. This map unit is on uplands. The native vegetation is mainly conifers. Elevation is 1,000 to 1,800 feet. The average annual precipitation is 55 to 65 inches, the average annual air temperature is about 48 degrees F, and the average frost-free period is 150 to 175 days.

This unit is about 50 percent Baumgard loam and 30 percent Pheeney gravelly loam. The components of this unit are so intricately intermingled that it was not practical to map them separately at the scale used.

The Baumgard soil is deep and well drained. It formed in residuum and colluvium derived dominantly from andesite. Typically, the surface layer is dark reddish brown loam about 14 inches thick. The upper 16 inches of the subsoil is reddish brown and yellowish red clay loam. The lower 15 inches is dark yellowish brown very gravelly clay loam. Fractured andesite is at a depth of about 45 inches. Depth to the andesite ranges from 40 to more than 60 inches.

Permeability is moderate in the Baumgard soil. Available water capacity is high. Effective rooting depth is 40 to more than 60 inches. Runoff is medium, and the hazard of water erosion is moderate.

The Pheeney soil is moderately deep and well drained. It formed in colluvium derived dominantly from andesite. Typically, the upper part of the surface layer is black gravelly loam about 6 inches thick. The lower part is very dark brown gravelly silt loam about 4 inches thick. The subsoil is dark yellowish brown very gravelly silt loam about 20 inches thick. Fractured andesite is at a depth of about 30 inches. Depth to the andesite ranges from 20 to 40 inches.

Permeability is moderate in the Pheeney soil. Available water capacity is low. Effective rooting depth is 20 to 40 inches. Runoff is medium, and the hazard of water erosion is moderate.

Included in this unit are small areas of Jonas, Mashel, Rainier, Scamman, and Wilkeson soils. Also included are small areas of Baumgard and Pheeney soils that have slopes of 40 to 65 percent. Included areas make up about 20 percent of the total acreage.

This unit is used for woodland. Douglas-fir is the main woodland species on the Baumgard soil. Among the trees of limited extent are red alder, western hemlock, western redcedar, and bigleaf maple. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 161. On the basis of a 50-year site curve, it is 122. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 171 cubic feet per acre per year at 65 years of age.

Douglas-fir and western hemlock are the main woodland species on the Pheeney soil. Among the trees of limited extent are red alder, bigleaf maple, and western redcedar. On the basis of a 100-year site curve, the mean site index is 135 for Douglas-fir and 121 for western hemlock. On the basis of a 50-year site curve, it is 101 for Douglas-fir and 85 for western hemlock. The highest average growth rate of an unmanaged, even-aged stand is 138 cubic feet per acre per year at 70 years of age for Douglas-fir and 182 cubic feet per acre per year at 50 years of age for western hemlock.

The main limitation affecting the harvesting of timber on this unit is the mudness caused by seasonal wetness and occasional snowpack. Use of wheeled and
tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is readily available on this unit. Establishing a plant cover on slopes that have been cut or filled reduces the hazard of erosion. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber on this unit. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by western hemlock and red alder occurs readily in cutover areas. Droughtiness in the surface layer of the Pheene soil reduces the seedling survival rate. When openings are made in the canopy on this unit, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings on the Baumgard soil and can delay the establishment of planted Douglas-fir seedlings and the natural reforestation of western hemlock on the Phene soil. Because the rooting depth is restricted by the underlying bedrock, trees on the Phene soil are subject to occasional windthrow.

Among the common forest understory plants are cascade Oregon-grape, western swordfern, vine maple, red huckleberry, and salal.

This map unit is in capability subclass V1e.

12—Baumgard-Pheene complex, 40 to 65 percent slopes. This map unit is on uplands. The native vegetation is mainly conifers. Elevation is 1,000 to 1,800 feet. The average annual precipitation is 55 to 65 inches, the average annual air temperature is about 48 degrees F, and the average frost-free period is 150 to 175 days.

This unit is about 45 percent Baumgard loam and 30 percent Pheene gravelly loam. The components of this unit are so intricately intermingled that it was not practical to map them separately at the scale used.

The Baumgard soil is deep and well drained. It formed in residuum and colluvium derived dominantly from andesite. Typically, the surface layer is dark reddish brown loam about 14 inches thick. The upper 16 inches of the subsoil is reddish brown and yellowish red clay loam. The lower 15 inches is dark yellowish brown very gravelly clay loam. Fractured andesite is at a depth of about 45 inches. Depth to the andesite ranges from 40 to more than 60 inches.

Permeability is moderate in the Baumgard soil. Available water capacity is high. Effective rooting depth is 40 to more than 60 inches. Runoff is rapid, and the hazard of water erosion is severe.

The Pheene soil is moderately deep and well drained. It formed in colluvium derived dominantly from andesite. Typically, the upper part of the surface layer is black gravelly loam about 6 inches thick. The lower part is very dark brown gravelly silt loam about 4 inches thick. The subsoil is dark yellowish brown very gravelly silt loam about 20 inches thick. Fractured andesite is at a depth of about 30 inches. Depth to the andesite ranges from 20 to 40 inches.

Permeability and available water capacity are moderate in the Pheene soil. Effective rooting depth is 20 to 40 inches. Runoff is rapid, and the hazard of water erosion is severe.

Included in this unit are small areas of Jonas, Mashel, and Rainier soils. Also included are small areas of Baumgard and Pheene soils that have slopes of 10 to 40 percent. Included areas make up about 25 percent of the total acreage.

This unit is used for woodland. Douglas-fir is the main woodland species on the Baumgard soil. Among the trees of limited extent are red alder, western hemlock, western redcedar, and bigleaf maple. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 161. On the basis of a 50-year site curve, it is 122. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 171 cubic feet per acre per year at 65 years of age.

Douglas-fir and western hemlock are the main woodland species on the Pheene soil. Among the trees of limited extent are red alder, bigleaf maple, and western redcedar. On the basis of a 100-year site curve, the mean site index is 135 for Douglas-fir and 121 for western hemlock. On the basis of a 50-year site curve, it is 101 for Douglas-fir and 85 for western hemlock. The highest average growth rate of an unmanaged, even-aged stand is 138 cubic feet per acre per year at 70 years of age for Douglas-fir and 182 cubic feet per acre per year at 50 years of age for western hemlock.

The main limitation affecting the harvesting of timber is slope. The slope restricts the use of wheeled and tracked equipment in skidding operations. Cable yarding systems generally are safer and minimize damage to the surface. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is readily available on this unit.

Establishing a plant cover on steep slopes that have
been cut or filled reduces the hazard of erosion. Steep yarding paths, skid trails, and firebreaks are subject to rilling and gullying unless they are protected by a plant cover or adequate water bars are provided.

Seeding establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by western hemlock and red alder occurs readily in cutover areas. Droughtiness in the surface layer of the Pheeney soil reduces the seeding survival rate. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings on the Baumgard soil and can delay the establishment of planted Douglas-fir seedlings and the natural reforestation of western hemlock on the Pheeney soil. Because the rooting depth is restricted by the underlying bedrock, trees on the Pheeney soil are subject to occasional windthrow.

Among the common forest understory plants are cascade Oregon-grape, western swordfern, vine maple, red huckleberry, and salal.

This map unit is in capability subclass VIIe.

13—Baumgard-Rock outcrop complex, 40 to 65 percent slopes. This map unit is on mountainsides and ridgetops. The native vegetation is mainly conifers. Elevation is 800 to 1,600 feet. The average annual precipitation is 55 to 65 inches, the average annual air temperature is about 48 degrees F, and the average frost-free period is 150 to 175 days.

This unit is about 55 percent Baumgard loam and 25 percent Rock outcrop. The components of this unit are so intricately intermingled that it was not practical to map them separately at the scale used.

The Baumgard soil is deep and well drained. It formed in residuum and colluvium derived dominantly from andesite. Typically, the surface layer is dark reddish brown loam about 14 inches thick. The upper 16 inches of the subsoil is reddish brown and yellowish red clay loam. The lower 15 inches is dark yellowish brown very gravelly clay loam. Fractured andesite is at a depth of about 45 inches. Depth to the andesite ranges from 40 to more than 60 inches.

Permeability is moderate in the Baumgard soil. Available water capacity is high. Effective rooting depth is 40 to more than 60 inches. Runoff is rapid, and the hazard of water erosion is severe.

The Rock outcrop consists mainly of exposed andesite in the form of cliffs, dikes, and boulder-sized humps.

Included in this unit are small areas of Baumgard loam that have slopes of 10 to 40 percent and small areas of Mashel and Pheeney soils. Also included are small areas of soils that are less than 40 inches deep to bedrock. Included areas make up about 20 percent of the total acreage.

This unit is used for woodland. Douglas-fir is the main woodland species on the Baumgard soil. Among the trees of limited extent are red alder, western hemlock, western redcedar, and bigleaf maple. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 161. On the basis of a 50-year site curve, it is 122. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 171 cubic feet per acre per year at 65 years of age.

The main limitation affecting the harvesting of timber is slope. The slope restricts the use of wheeled and tracked equipment in skidding operations. Cable yarding systems generally are safer and minimize damage to the surface. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is readily available on this unit. The Rock outcrop hindered yarding and may cause breakage of timber when the trees are felled. Avoiding large areas of Rock outcrop results in the convergence of yarding paths and skid trails and thus in compaction of the soil. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Steep yarding paths, skid trails, and firebreaks are subject to rilling and gullying unless they are protected by a plant cover or adequate water bars are provided.

Seeding establishment is the main concern in the production of timber on the Baumgard soil. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. The seeding mortality rate is higher on ridgetops that are subject to strong, persistent winds than in other areas of this unit. The areas of Rock outcrop limit the even distribution of reforestation. When openings are made in the canopy, invading brushy plants can prevent the establishment of Douglas-fir seedlings.

Common forest understory plants are cascade Oregon-grape, red huckleberry, western brackenfern, salmonberry, and salal.

This map unit is in capability subclass VIIe.

14—Bellingham silty clay loam. This very deep, poorly drained soil is in depressions. Drainage has
been altered by tiling and open ditches. The soil formed in alluvium and lacustrine sediments. Slopes are 0 to 3 percent. The native vegetation is mainly hardwoods and conifers. Elevation is 20 to 400 feet. The average annual precipitation is 35 to 60 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface layer is black silty clay loam about 5 inches thick. The upper part of the subsoil is gray, mottled silty clay about 9 inches thick. The lower part to a depth of 60 inches or more is gray and dark gray, mottled silty clay and clay.

Included in this unit are small areas of Norma, Mckenna, Mukilteo, and Skippa soils and Bellingham soils that have not been drained. Included areas make up about 15 percent of the total acreage.

Permeability is slow in the Bellingham soil. Available water capacity is high. Effective rooting depth is limited by a seasonal high water table that is at a depth of 18 to 36 inches from October to March. Runoff is very slow, and the hazard of water erosion is slight.

This unit is used mainly for hayland, pasture, or woodland. It is also used for homesites.

The main limitation affecting hay and pasture is the high water table. All forage crops commonly produced in the survey area can be grown if the drainage system is adequate. Grazing when the soil is wet damages the plants and results in compaction of the surface layer. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Rotation grazing helps to maintain the quality of forage. Applying fertilizer improves the growth of forage plants.

Undrained areas are suited to woodland. On the basis of a 50-year site curve, the estimated site index for red alder is 85. The estimated growth rate of an unmanaged, even-aged stand of red alder is 92 cubic feet per acre per year at 40 years of age.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. The seasonal high water table limits the use of equipment to dry periods. Use of wheeled and tracked equipment when the soil is wet results in rut and soil compaction. Unsurfaced roads and skid trails are sticky and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Disturbance of the protective duff layer can be reduced with the careful use of wheeled and tracked equipment.

Seeding establishment and the hazard of windthrow are the main concerns in the production of timber. Reforestation can be accomplished by planting western redcedar seedlings. If the stand includes seed trees, natural reforestation by red alder occurs periodically in cutover areas. The seasonal high water table inhibits root respiration and thus results in high seedling mortality. When openings are made in the canopy, invading brushy plants can delay the establishment of planted western redcedar seedlings. Because the rooting depth is restricted by the silty clay and clay subsoil and the high water table, trees are subject to frequent windthrow.

The main limitations affecting urban development are the seasonal wetness and the shrink-swell potential. A drainage system is needed if roads or buildings are constructed. A drainage system also is needed for best results with most lawn grasses, shade trees, ornamental trees, shrubs, vines, and vegetable gardens. Excess water can be removed by suitably designed drainage ditches. On sites for buildings and roads, the effects of shrinking and swelling can be minimized by using proper engineering designs and by backfilling with material that has a low shrink-swell potential.

The main limitations affecting septic tank absorption fields are the slow permeability and the seasonal wetness. During the rainy season, effluent from onsite sewage disposal systems may seep at points downslope.

This map unit is in capability subclass IIIw.

15—Boistfort silt loam, 5 to 20 percent slopes. This very deep, well drained soil is on uplands. It formed in material derived from basalt. The native vegetation is mainly conifers. Elevation is 300 to 1,500 feet. The average annual precipitation is 70 to 75 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface is covered with a mat of needles and twigs about 2 inches thick. The upper part of the surface layer is dark brown silt loam about 9 inches thick, and the lower part is dark brown silty clay loam about 10 inches thick. The subsoil to a depth of 60 inches or more is dark brown and strong brown silty clay.

Included in this unit are small areas of Bunker, Katula, Lates, Olympic, and Raught soils. Also included are small areas of Boistfort silt loam that have slopes of 20 to 40 percent. Included areas make up about 20 percent of the total acreage.

Permeability is moderate in the Boistfort soil. Available water capacity is high. Effective rooting depth is 60 inches or more. Runoff is slow, and the hazard of water erosion is slight.

This unit is used as woodland. Douglas-fir and
western hemlock are the main woodland species. Among the trees of limited extent are red alder, western redcedar, and bigleaf maple. On the basis of a 100-year site curve, the mean site index is 170 for Douglas-fir and 161 for western hemlock. On the basis of a 50-year site curve, it is 129 for Douglas-fir and 114 for western hemlock. The highest average growth rate of an unmanaged, even-aged stand is 181 cubic feet per acre per year at 60 years of age for Douglas-fir and 256 cubic feet per acre per year at 50 years of age for western hemlock.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and slippery and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is readily available on this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seeding establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by western hemlock and red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings and delay the natural reforestation of western hemlock.

Common forest understory plants are salmonberry, western swordfern, salal, vine maple, and cascade Oregon-grape.

This map unit is in capability subclass Ille.

16—Boistfort silt loam, 20 to 40 percent slopes.
This very deep, well drained soil is on uplands. It formed in material derived from basalt. The native vegetation is mainly conifers. Elevation is 300 to 1,500 feet. The average annual precipitation is 70 to 75 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface is covered with a mat of needles and twigs about 2 inches thick. The upper part of the surface layer is dark brown silt loam about 9 inches thick, and the lower part is dark brown silty clay loam about 10 inches thick. The subsoil to a depth of 60 inches or more is dark brown and strong brown silty clay.

Included in this unit are small areas of Bunker, Katula, Lates, Olympic, and Raught soils. Also included are small areas of Boistfort silt loam that have slopes of 5 to 20 percent. Included areas make up about 25 percent of the total acreage.

Permeability is moderate in the Boistfort soil. Available water capacity is high. Effective rooting depth is 60 inches or more. Runoff is medium, and the hazard of water erosion is moderate.

This unit is used as woodland. Douglas-fir and western hemlock are the main woodland species. Among the trees of limited extent are red alder, western redcedar, and bigleaf maple. On the basis of a 100-year site curve, the mean site index is 170 for Douglas-fir and 161 for western hemlock. On the basis of a 50-year site curve, it is 129 for Douglas-fir and 114 for western hemlock. The highest average growth rate of an unmanaged, even-aged stand is 181 cubic feet per acre per year at 60 years of age for Douglas-fir and 256 cubic feet per acre per year at 50 years of age for western hemlock.

The main limitation affecting the harvesting of timber is slope. The slope restricts the use of wheeled and tracked equipment in skidding operations. Cable yarding systems generally are safer and minimize damage to the surface. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and slippery and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is readily available on this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Steep yarding paths, skid trails, and firebreaks are subject to rilling and gullying unless they are protected by a plant cover or adequate water bars are provided. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seeding establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by western hemlock and red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings and delay the natural reforestation of western hemlock.

Common forest understory plants are salmonberry,
western swordfern, salal, vine maple, and cascade Oregon-grape. This map unit is in capability subclass Vle.

17—Bunker gravelly silt loam, 5 to 30 percent slopes. This deep, well drained soil is on side slopes in the uplands. It formed in colluvium derived from basalt. The native vegetation is mainly conifers. Elevation is 500 to 2,200 feet. The average annual precipitation is 70 to 75 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 175 days.

Typically, the surface is covered with a mat of needles and twigs about 2 inches thick. The surface layer is dark reddish brown gravelly silt loam about 10 inches thick. The upper 20 inches of the subsoil is dark reddish brown gravelly silt loam, and the lower 24 inches is reddish brown gravelly silt loam. Fractured basalt is at a depth of about 54 inches. Depth to the basalt ranges from 40 to 60 inches.

Included in this unit are small areas of Boistfort, Katula, Lates, Olympic, and Raught soils. Also included are small areas of Bunker gravelly silt loam that have slopes of 30 to 65 percent. Included areas make up about 20 percent of the total acreage.

Permeability is moderate in the Bunker soil. Available water capacity is high. Effective rooting depth is 40 to 60 inches. Runoff is slow, and the hazard of water erosion is slight.

This unit is used as woodland. Douglas-fir and western hemlock are the main woodland species. Among the trees of limited extent are red alder, western redcedar, and bigleaf maple. On the basis of a 100-year site curve, the mean site index is 161 for Douglas-fir and 156 for western hemlock. On the basis of a 50-year site curve, it is 124 for Douglas-fir and 110 for western hemlock. The highest average growth rate of an unmanaged, even-aged stand is 171 cubic feet per acre per year at 65 years of age for Douglas-fir and 248 cubic feet per acre per year at 50 years of age for western hemlock.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and slippery and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is readily available on this unit.

Establishing a plant cover on slopes that have been cut or filled reduces the hazard of erosion. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by western hemlock and red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings and delay the natural reforestation of western hemlock.

Common forest understory plants are salmonberry, western swordfern, western brackenfern, salal, and vine maple.

This map unit is in capability subclass IVe.

18—Bunker gravelly silt loam, 30 to 65 percent slopes. This deep, well drained soil is on side slopes in the uplands. It formed in colluvium derived from basalt. The native vegetation is mainly conifers. Elevation is 700 to 2,200 feet. The average annual precipitation is 70 to 75 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 175 days.

Typically, the surface is covered with a mat of needles and twigs about 2 inches thick. The surface layer is dark reddish brown gravelly silt loam about 10 inches thick. The upper 20 inches of the subsoil is dark reddish brown gravelly silt loam, and the lower 24 inches is reddish brown gravelly silt loam. Fractured basalt is at a depth of about 54 inches. Depth to the basalt ranges from 40 to 60 inches.

Included in this unit are small areas of Boistfort, Katula, Lates, Olympic, and Raught soils. Also included are small areas of Bunker gravelly silt loam that have slopes of 5 to 30 percent. Included areas make up about 20 percent of the total acreage.

Permeability is moderate in the Bunker soil. Available water capacity is high. Effective rooting depth is 40 to 60 inches. Runoff is medium, and the hazard of water erosion is moderate.

This unit is used as woodland. Douglas-fir and western hemlock are the main woodland species. Among the trees of limited extent are red alder, western redcedar, and bigleaf maple. On the basis of a 100-year site curve, the mean site index is 161 for Douglas-fir and 156 for western hemlock. On the basis of a 50-year site curve, it is 124 for Douglas-fir and 110 for western hemlock. The highest average growth rate of an unmanaged, even-aged stand is 171 cubic feet per acre per year at 65 years of age for Douglas-fir and 248 cubic feet per acre per year at 50 years of age for western hemlock.
The main limitation affecting the harvesting of timber is the slope. The slope restricts the use of wheeled and tracked equipment in skidding operations. Cable yarding systems generally are safer and minimize damage to the surface. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and slippery and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is readily available on this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Steep yarding paths, skid trails, and firebreaks are subject to rilling and gullying unless they are protected by a plant cover or adequate water bars are provided. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by western hemlock and red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings and delay the natural reforestation of western hemlock.

Common forest understory plants are salmonberry, western swordfern, western brackenfern, salal, and vine maple.

This map unit is in capability subclass Vle.

19—Bunker-Boistfort complex, 40 to 65 percent slopes. This map unit is on uplands. The native vegetation is mainly conifers. Elevation is 300 to 1,700 feet. The average annual precipitation is 70 to 75 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

This unit is about 50 percent Bunker soil and 30 percent Boistfort soil. The components of this unit are so intricately intermingled that it was not practical to map them separately at the scale used.

The Bunker soil is deep and well drained. It formed in colluvium derived dominantly from basalt. Typically, the surface is covered with a mat of needles and twigs about 2 inches thick. The surface layer is dark reddish brown gravelly silt loam about 10 inches thick. The upper 20 inches of the subsoil is dark reddish brown gravelly silt loam, and the lower 24 inches is reddish brown gravelly silt loam. Fractured basalt is at a depth of about 54 inches. Depth to the basalt ranges from 40 to 60 inches.

Permeability is moderate in the Bunker soil. Available water capacity is high. Effective rooting depth is 40 to 60 inches. Runoff is medium, and the hazard of water erosion is moderate.

The Boistfort soil is very deep and well drained. It formed in residuum derived dominantly from basalt. Typically, the surface is covered with a mat of needles and twigs about 2 inches thick. The surface layer is dark brown silt loam about 9 inches thick. The subsurface layer is dark brown silty clay loam about 10 inches thick. The subsoil to a depth of 60 inches or more is dark brown and strong brown silty clay.

Permeability is moderate in the Boistfort soil. Available water capacity is high. Effective rooting depth is 60 inches or more. Runoff is medium, and the hazard of water erosion is moderate.

Included in this unit are small areas of Bunker and Boistfort soils that have slopes of less than 40 percent. Also included are small areas of soils in which the depth to bedrock is less than 40 inches. Included areas make up about 20 percent of the total acreage.

This unit is used as woodland. Douglas-fir and western hemlock are the main woodland species. Among the trees of limited extent are red alder, western redcedar, and bigleaf maple. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 161 on the Bunker soil and 170 on the Boistfort soil and for western hemlock is 156 on the Bunker soil and 161 on the Boistfort soil. On the basis of a 50-year site curve, the mean site index for Douglas-fir is 124 on the Bunker soil and 129 on the Boistfort soil and for western hemlock is 110 on the Bunker soil and 114 on the Boistfort soil. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 171 cubic feet per acre per year at age 65 on the Bunker soil and 181 cubic feet per acre per year at age 60 on the Boistfort soil. The highest average growth rate of an unmanaged, even-aged stand of western hemlock is 248 cubic feet per acre per year at age 50 on the Bunker soil and 256 cubic feet per acre per year at age 50 on the Boistfort soil.

The main limitation affecting the harvesting of timber is slope. The slope restricts the use of wheeled and tracked equipment in skidding operations. Cable yarding systems generally are safer and minimize damage to the surface. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and slippery and can be impassable when wet. Logging roads
require suitable surfacing material for year-round use. Rock for road construction is readily available on this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Steep yarning paths, skid trails, and firebreaks are subject to rilling and gully unless they are protected by a plant cover or adequate water bars are provided. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by western hemlock and red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings and delay the natural reforestation of western hemlock.

Common forest understory plants are salmonberry, western swordfern, western brackenfern, salal, and vine maple.

This map unit is in capability subclass V1e.

20—Cagey loamy sand. This very deep, moderately well-drained soil is on terraces. It formed in sandy glacial drift. Slopes are 0 to 4 percent. The native vegetation is mainly conifers and hardwoods. Elevation is 100 to 300 feet. The average annual precipitation is 40 to 60 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 170 to 200 days.

Typically, the surface layer is dark brown loamy sand about 6 inches thick. The subsoil is dark yellowish brown loamy sand about 22 inches thick. The upper 6 inches of the substratum is light olive brown fine sand, and the lower part to a depth of 60 inches or more is light olive brown, mottled fine sand.

Included in this unit are small areas of Alderwood soils on till plains and Everett, Indianola, McKenna, Nisqually, and Spanaway soils on terraces. Included areas make up about 15 percent of the total acreage.

Permeability is rapid in the Cagey soil. Available water capacity is moderate. Effective rooting depth is 60 inches or more. A seasonal high water table is at a depth of 18 to 30 inches from November to April. Runoff is slow, and the hazard of water erosion is slight.

This unit is used mainly for woodland. It is also used for Christmas trees, hay, pasture, or homesites.

Douglas-fir is the main woodland species on this unit. Among the trees of limited extent are red alder, bigleaf maple, and western redcedar. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 160. On the basis of a 50-year site curve, it is 120. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 170 cubic feet per acre per year at 65 years of age.

This unit is suited to year-round logging. Unsurfaced roads and skid trails are soft. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling mortality is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can delay the establishment of planted Douglas-fir seedlings. Droughtiness in the surface layer reduces the seedling survival rate.

Common forest understory plants are western brackenfern, western swordfern, salal, trailing blackberry, and cascade Oregon-grape.

This unit is suited to hay and pasture. The main limitation is the moderate available water capacity. Proper stocking rates, pasture rotation, and restricted grazing during wet periods help to keep the pasture in good condition. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and helps to control weeds. Animal manure can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least once a year. Rotation grazing helps to maintain the quality of forage. In most years irrigation is needed for maximum production. Sprinkler irrigation is the most suitable method of applying water. The amount of water applied should be sufficient to wet the root zone but small enough to minimize the leaching of plant nutrients.

The main limitation affecting homesites is the seasonal wetness. A subsurface drainage system is needed. The main limitations affecting septic tank absorption fields are the seasonal wetness and a poor filtering capacity. If the density of housing is moderate or high, community sewage systems are needed to prevent the contamination of water supplies caused by seepage from onsite sewage disposal systems.

This map unit is in capability subclass IVw.

21—Cathcart gravelly loam, 3 to 15 percent slopes. This deep, well-drained soil is on uplands. It formed in
glacial drift, volcanic ash, and material weathered from sandstone and siltstone. The native vegetation is mainly conifers and hardwoods. Elevation is 100 to 900 feet. The average annual precipitation is 40 to 55 inches, the average annual air temperature is about 49 degrees F, and the average frost-free period is 160 to 200 days.

Typically, the surface layer is dark brown gravelly loam about 4 inches thick. The upper 8 inches of the subsoil is dark brown gravelly loam, and the lower 21 inches is reddish brown and yellowish red silt loam. The substratum is reddish brown, mottled clay loam about 11 inches thick. Weathered siltstone is at a depth of about 44 inches. Depth to weathered siltstone or sandstone ranges from 40 to 60 inches.

Included in this unit are small areas of Alderwood, Centralia, Everett, Indianaola, and Melbourne soils on terraces. Also included are small areas of Everson, Mukilteo, and Norma soils in depressions and small areas of Cathcart gravelly loam that have slopes of 15 to 30 percent. Included areas make up about 15 percent of the total acreage.

Permeability is moderate in the Cathcart soil. Available water capacity is high. Effective rooting depth is 40 to 60 inches. Runoff is slow, and the hazard of water erosion is slight.

This unit is used mainly for woodland. It is also used for hay, pasture, or homesites.

Douglas-fir is the main woodland species on this unit. Among the trees of limited extent are red alder, western redcedar, and Pacific madrone. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 173. On the basis of a 50-year site curve, it is 130. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 184 cubic feet per acre per year at 60 years of age.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seeding establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings.

Common forest understory plants are western swordfern, thalling blackberry, cascade Oregon-grape, salal, western brackenfern, and red huckleberry.

This unit is well suited to hay and pasture. Grasses and legumes grow well if fertilizer is applied. The seedbed should be prepared on the contour or across the slope where practical. Proper stocking rates, pasture rotation, and restricted grazing during wet periods help to keep the pasture in good condition and protect the soil from erosion. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. In some years irrigation is needed for maximum production. Sprinkler irrigation is the most suitable method of applying water.

The main limitation affecting homesites is the slope. On sites for buildings or roads, deep cuts may be necessary. They can expose the bedrock. The hazard of erosion is increased if the surface is bare during site development.

If the unit is used for septic tank absorption fields, the moderate permeability is a limitation. It can be overcome by increasing the size of the absorption field. The slope hinders the installation of the absorption field. Absorption lines should be installed on the contour.

This map unit is in capability subclass I1e.

22—Cathcart gravelly loam, 15 to 35 percent slopes. This deep, well drained soil is on uplands. It formed in glacial drift, volcanic ash, and material weathered from sandstone and siltstone. The native vegetation is mainly conifers and hardwoods. Elevation is 100 to 900 feet. The average annual precipitation is 40 to 55 inches, the average annual air temperature is about 49 degrees F, and the average frost-free period is 160 to 200 days.

Typically, the surface layer is dark brown gravelly loam about 4 inches thick. The upper 8 inches of the subsoil is dark brown gravelly loam, and the lower 21 inches is reddish brown and yellowish red silt loam. The substratum is reddish brown, mottled clay loam about 11 inches thick. Weathered siltstone is at a depth of about 44 inches. Depth to weathered siltstone or sandstone ranges from 40 to 60 inches.

Included in this unit are small areas of Alderwood, Centralia, Everett, Indianaola, and Melbourne soils on terraces. Also included are small areas of Cathcart gravelly loam that have slopes of 3 to 15 percent. Included areas make up about 20 percent of the total acreage.
Permeability is moderate in the Cathcart soil. Available water capacity is high. Effective rooting depth is 40 to 60 inches. Runoff is medium, and the hazard of water erosion is moderate.

This unit is used as woodland. Douglas-fir is the main woodland species. Among the trees of limited extent are red alder, western redcedar, and Pacific madrone. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 173. On the basis of a 50-year site curve, it is 130. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 184 cubic feet per acre per year at 60 years of age.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings.

Common forest understory plants are western swordfern, trailing blackberry, cascade Oregon-grape, salal, western brackenfern, and red huckleberry.

This map unit is in capability subclass IVe.

23—Centralia silt loam, 8 to 15 percent slopes.
This very deep, well drained soil is on broad ridgetops, small plateaus, and shoulder slopes. It formed in residuum derived dominantly from highly weathered, micaceous marine sandstone. The native vegetation is mainly conifers and hardwoods. Elevation is 200 to 500 feet. The average annual precipitation is 40 to 60 inches. the average annual air temperature is about 50 degrees F. and the average frost-free period is 150 to 200 days.

Typically, the surface is covered with a mat of needles, leaves, and twigs about 2 inches thick. The upper part of the surface layer is very dark grayish brown silt loam about 5 inches thick, and the lower part is dark brown silt loam about 5 inches thick. The subsoil to a depth of 60 inches or more is dark brown and dark yellowish brown clay loam.

Included in this unit are small areas of Galvin and Scamman soils on alluvial fans and side slopes and Melbourne, Prather, and Salton soils on ridgetops and shoulder slopes. Also included are small areas of Centralia silt loam that have slopes of 15 to 30 percent. Included areas make up about 20 percent of the total acreage.

Permeability is moderate in the Centralia soil. Available water capacity is high. Effective rooting depth is 60 inches or more. Runoff is slow, and the hazard of water erosion is slight.

This unit is used mainly for woodland. It is also used for homesites.

Douglas-fir is the main woodland species on this unit. Among the trees of limited extent are red alder, western redcedar, western hemlock, and bigleaf maple. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 180. On the basis of a 50-year site curve, it is 135. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 191 cubic feet per acre per year at 60 years of age.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Cut slopes generally are stable, but slumping can occur. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings.

Common forest understory plants are western brackenfern, western swordfern, salal, red huckleberry, cascade Oregon-grape, trailing blackberry, and vine maple.

The main limitations affecting homesites are the slope and the shrink-swell potential. Properly designing foundations and footings and diverting runoff away from buildings help to prevent the structural damage caused by shrinking and swelling. The hazard of erosion is
increased if the surface is bare during site development. Plans for homestead development should provide for the preservation of as many trees as possible. A plant cover can be established and maintained through proper fertilizing, seeding, mulching, and shaping of the slopes. In summer, irrigation is needed for lawn grasses, shrubs, vines, shade trees, and ornamental trees.

If this unit is used for septic tank absorption fields, the moderate permeability is a limitation. It can be overcome by increasing the size of the absorption field. The slope hinders the installation of the absorption field. Absorption lines should be installed on the contour.

This map unit is in capability subclass I111.

24—Centralia silt loam, 15 to 30 percent slopes.
This very deep, well drained soil is on uplands. It formed in residuum derived dominantly from highly weathered, micaceous marine sandstone. The native vegetation is mainly conifers and hardwoods. Elevation is 200 to 500 feet. The average annual precipitation is 40 to 60 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface is covered with a mat of needles, leaves, and twigs about 2 inches thick. The upper part of the surface layer is very dark grayish brown silt loam about 5 inches thick, and the lower part is dark brown silt loam about 5 inches thick. The subsoil to a depth of 60 inches or more is dark brown and dark yellowish brown clay loam.

Included in this unit are small areas of Melbourne, Prather, and Scamman soils on shoulder slopes. Also included are small areas of Centralia silt loam that have slopes of 8 to 15 percent or 30 to 60 percent. Included areas make up about 25 percent of the total acreage.

Permeability is moderate in the Centralia soil. Available water capacity is high. Effective rooting depth is 60 inches or more. Runoff is medium, and the hazard of water erosion is moderate.

This unit is used as woodland. Douglas-fir is the main woodland species. Among the trees of limited extent are red alder, western redcedar, western hemlock, and bigleaf maple. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 180. On the basis of a 50-year site curve, it is 135. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 191 cubic feet per acre per year at 60 years of age.

The main limitation affecting the harvesting of timber is the mudiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Cut slopes generally are stable, but slumping can occur. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings.

Common forest understory plants are western brackenfern, western swordfern, salal, red huckleberry, cascade Oregon-grape, trailing blackberry, and vine maple.

This map unit is in capability subclass I111.

25—Centralia silt loam, 30 to 60 percent slopes.
This very deep, well drained soil is on back slopes and foot slopes in the uplands. It formed in residuum derived dominantly from highly weathered, micaceous marine sandstone. The native vegetation is mainly conifers and hardwoods. Elevation is 200 to 500 feet. The average annual precipitation is 40 to 60 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface is covered with a mat of needles, leaves, and twigs about 2 inches thick. The upper part of the surface layer is very dark grayish brown silt loam about 5 inches thick, and the lower part is dark brown silt loam about 5 inches thick. The subsoil to a depth of 60 inches or more is dark brown and dark yellowish brown clay loam.

Included in this unit are small areas of Melbourne and Centralia soils that have slopes of 15 to 30 percent. Included areas make up about 20 percent of the total acreage.

Permeability is moderate in the Centralia soil. Available water capacity is high. Effective rooting depth is 60 inches or more. Runoff is medium, and the hazard of water erosion is moderate.

This unit is used as woodland. Douglas-fir is the main woodland species. Among the trees of limited extent are red alder, western redcedar, western hemlock, and bigleaf maple. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 180. On the basis of a 50-year site curve, it is 135. The
The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 191 cubic feet per acre per year at 60 years of age.

The main limitation affecting the harvesting of timber is the slope. The slope restricts the use of wheeled and tracked equipment in skidding operations. Cable yarding systems generally are safer and minimize damage to the surface. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Land slumping and road failure can occur following clearcut harvesting. Steep yarding paths, skid trails, and firebreaks are subject to rilling and gullying unless they are protected by a plant cover or adequate water bars are provided.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings.

Common forest understory plants are western brackenfern, western swordfern, salal, red huckleberry, cascade Oregon-grape, trailing blackberry, and vine maple.

This map unit is in capability subclass Vle.

26—Chehalis silt loam. This very deep, well drained soil is on flood plains. It formed in alluvium. Slope is 0 to 2 percent. The native vegetation is mainly conifers. Elevation is 100 to 200 feet. The average annual precipitation is 40 to 50 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the upper part of the surface layer is very dark grayish brown silt loam about 7 inches thick, and the lower part is dark brown silty clay loam about 18 inches thick. The subsoil is dark yellowish brown and dark brown silty clay loam about 19 inches thick. The substratum to a depth of 60 inches or more is dark brown loam.

Included in this unit are small areas of Godfrey soils in depressions, Newberg soils on natural levees, and Maytown soils. Included areas make up about 15 percent of the total acreage.

Permeability is moderate in the Chehalis soil. Available water capacity is high. Effective rooting depth is 60 inches or more. Runoff is slow, and the hazard of water erosion is slight. This soil is occasionally flooded for brief periods from November to March.

Most areas of this unit are used for hayland, pasture, or cropland. A few areas are used for woodland or homesites.

This unit is well suited to hay and pasture. The main management concern is the hazard of flooding. Grasses and legumes grow well if fertilizer is applied. Proper stocking rates, pasture rotation, and restricted grazing during wet periods help to keep the pasture in good condition. Rotation grazing helps to maintain the quality of forage. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Animal manure can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least once a year. In most years irrigation is needed for maximum production. Sprinkler irrigation is the best method of applying water.

This unit is suited to all crops commonly grown in the survey area. Sweet corn, corn silage, peas, small grain, and strawberries are commonly grown on this soil. The main management concern affecting cropland is the hazard of flooding. Channeling and deposition are common along streambanks. Flooding can be controlled by dikes and levees. Applying animal manure and returning crop residue to the soil help to maintain the organic matter content, fertility, and tilth. A cover crop should be planted in the fall to protect the soil from erosion during periods of flooding. In some years irrigation is needed for maximum production. Sprinkler irrigation is the best method of applying water.

This unit is suited to woodland. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 173. On the basis of a 50-year site curve, it is 130. The estimated growth rate of an unmanaged, even-aged stand of Douglas-fir is 184 cubic feet per acre per year at 60 years of age.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the
stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. The occasional flooding inhibits root respiration and thus results in some seedling mortality. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings.

The main limitation affecting homesites is the hazard of flooding. Dikes and channels that have outlets for floodwater can be used to protect buildings and onsite sewage disposal systems from flooding. Roads and streets should be built above the expected flood level.

This map unit is in capability subclass IIw.

27—Delphi very gravelly loam, 3 to 15 percent slopes. This deep, well drained soil is on glacial till plains. It formed in continental glacial till. The native vegetation is mainly conifers and hardwoods. Elevation is 100 to 1,000 feet. The average annual precipitation is 50 to 60 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 165 to 195 days.

Typically, the surface is covered with a mat of needles, leaves, and twigs about 2 inches thick. The upper part of the surface layer is dark reddish brown very gravelly loam about 8 inches thick, and the lower part is dark brown very gravelly loam about 5 inches thick. The upper 18 inches of the subsoil is dark yellowish brown very gravelly silt loam, and the lower 17 inches is dark yellowish brown extremely gravelly silt loam. Glacial till is at a depth of about 48 inches. Depth to the glacial till ranges from 40 to 55 inches.

Included in this unit are small areas of Grove soils on outwash plains and Schneider soils on foothills. Also included are small areas of Delphi very gravelly loam that have slopes of 15 to 30 percent. Included areas make up about 15 percent of the total acreage.

Permeability is moderate above the glacial till in the Delphi soil and very slow through the till. Available water capacity is moderate. Effective rooting depth is 40 to 55 inches. A perched seasonal high water table is at a depth of 3.5 to 4.5 feet from October to April. Runoff is slow, and the hazard of water erosion is slight.

This unit is used mainly for woodland. It is also used for homesites.

Douglas-fir is the main woodland species on this unit. Among the trees of limited extent are red alder, western redcedar, western hemlock, and bigleaf maple. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 172. On the basis of a 50-year site curve, it is 129. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 183 cubic feet per acre per year at 60 years of age.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment and seedling mortality are the main concerns in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. Droughtiness in the surface layer reduces the seedling survival rate. When openings are made in the canopy, invading brushy plants can delay the establishment of planted Douglas-fir seedlings.

Common forest understory plants are cascade Oregon-grape, salal, western brackenfern, red huckleberry, vine maple, and salmonberry.

The main limitations affecting homesites are the slope and the seasonal wetness. A drainage system should be installed on sites for buildings with basements or crawl spaces. Because of the perched water table, onsite sewage disposal systems often fail or do not function properly during periods of heavy rainfall. The cuts needed to provide essentially level building sites can expose the hardpan. Water flows along the top of the hardpan and can seep at the bottom of slopes.

This map unit is in capability subclass IVe.

28—Delphi very gravelly loam, 15 to 30 percent slopes. This deep, well drained soil is on glacial till plains. It formed in continental glacial till. The native vegetation is mainly conifers and hardwoods. Elevation is 100 to 1,000 feet. The average annual precipitation is 50 to 60 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 165 to 195 days.

Typically, the surface is covered with a mat of needles, leaves, and twigs about 2 inches thick. The upper part of the surface layer is dark reddish brown very gravelly loam about 8 inches thick, and the lower part is dark brown very gravelly loam about 5 inches thick. The upper 18 inches of the subsoil is dark yellowish brown very gravelly silt loam, and the lower 17 inches is dark yellowish brown extremely gravelly silt loam. Glacial till is at a depth of about 48 inches. Depth to the glacial till ranges from 40 to 55 inches.
Included in this unit are small areas of Grove soils on outwash plains and Schneider soils on foot slopes. Also included are small areas of Delphi very gravelly loam that have slopes of 3 to 15 percent. Included areas make up about 15 percent of the total acreage.

Permeability is moderate above the glacial till in the Delphi soil and very slow through the till. Available water capacity is moderate. Effective rooting depth is 40 to 55 inches. A perched seasonal high water table is at a depth of 3.5 to 4.5 feet from October to April. Runoff is medium, and the hazard of water erosion is moderate.

This unit is used as woodland. Douglas-fir is the main woodland species. Among the trees of limited extent are red alder, western redcedar, western hemlock, and bigleaf maple. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 172. On the basis of a 50-year site curve, it is 129. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 183 cubic feet per acre per year at 60 years of age.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in rut and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment and seedling mortality are the main concerns in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. Droughtiness in the surface layer reduces the seedling survival rate. When openings are made in the canopy, invading brushy plants can delay the establishment of planted Douglas-fir seedlings.

Common forest understory plants are cascade Oregon-grape, salal, western brackenfern, red huckleberry, vine maple, and salmonberry.

This map unit is in capability subclass IVe.

29—Dupont muck. This very deep, poorly drained soil is in depressions on glaciated uplands. Drainage has been altered by subsurface drains and open ditches. The soil formed in organic material derived from decomposed shrubs, sedges, and grasses and in diatomaceous earth. Slopes are 0 to 1 percent. The native vegetation is mainly sedges, spirea, and rushes. Elevation is 150 to 350 feet. The average annual precipitation is 40 to 60 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 190 days.

Typically, the surface layer is dark brown muck about 7 inches thick. The next 10 inches is dark grayish brown volcanic ash and diatomaceous earth lenses. The substratum to a depth of 60 inches or more is stratified dark reddish brown muck and white volcanic ash and diatomaceous earth.

Included in this unit are small areas of Bellingham, Mukilteo, and Tisch soils. Included areas make up about 10 percent of the total acreage.

Permeability is moderately slow in the Dupont soil. Available water capacity is high. Effective rooting depth is limited by a seasonal high water table that is at a depth of 6 to 24 inches from October to May. Runoff is very slow, and water erosion is not a hazard.

This unit is used mainly for hay and pasture. It is also used for cropland.

The main limitation affecting hay and pasture is the seasonal high water table. Most of the forage crops commonly produced in the survey area can be grown if an adequate drainage system is installed. Subsidence is minimized if the water table is maintained immediately below the root zone and is allowed to return to the surface during the nongrowing season. Proper stocking rates, pasture rotation, and restricted grazing during wet periods help to keep the pasture in good condition. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Rotation grazing helps to maintain the quality of forage. Applying fertilizer improves the growth of forage plants.

The main limitation affecting cropland is the high water table. Most of the crops commonly produced in the survey area can be grown if an adequate drainage system is installed. Blueberries are commonly grown on this soil. During the growing season, the water table should be lowered to a depth of about 2 to 5 feet. Subsidence is minimized if the water table is maintained immediately below the root zone and is allowed to return to the surface during the nongrowing season.

This map unit is in capability subclass IIIw.

30—Dystric Xerochrepts, 60 to 90 percent slopes. These moderately deep to very deep, well drained soils are on escarpments. They formed in glacial till and colluvium. The native vegetation is mainly conifers and hardwoods. Elevation is 0 to 1,000 feet. The average
annual precipitation is 40 to 60 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

No single profile is typical of these soils, but in one of the more common ones, the surface is covered with a mat of leaves and twigs about 2 inches thick. The surface layer is brown very gravelly sandy loam about 4 inches thick. The subsoil is yellowish brown very gravelly sandy loam about 26 inches thick. The substratum to a depth of 60 inches or more is compact glacial till. Depth to the glacial till ranges from 20 to more than 60 inches.

Included in this unit are small areas of Alderwood, Everett, Hoogdal, Indianola, and Skippa soils on ridges. Also included are areas of soils that are poorly drained to moderately well drained. Included areas make up about 25 percent of the total acreage.

Permeability is moderate above the dense glacial till in the Dystric Xerochrepts and very slow through the till. Available water capacity is low or moderate. Effective rooting depth is 20 to more than 60 inches. Runoff is rapid, and the hazard of water erosion is severe.

This unit is used as woodland. Douglas-fir is the main woodland species. Among the trees of limited extent are red alder, bigleaf maple, western redcedar, and Pacific madrone. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 150. On the basis of a 50-year site curve, it is 115. The estimated growth rate of an unmanaged, even-aged stand of Douglas-fir is 158 cubic feet per acre per year at 60 years of age.

The main limitation affecting the harvesting of timber is slope. Cable yarding systems generally are used on this unit. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rounded pebbles and cobbles for road construction are readily available. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Steep yarding paths, skid trails, and firebreaks are subject to rilling and gullying unless they are protected by a plant cover or adequate water bars are provided. Land slumping and road failure can occur following clearcut harvesting. Harvesting systems that lift logs entire off the ground reduce the disturbance of the protective layer of duff.

Seeding mortality is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. Droughtiness in the surface layer reduces the seeding survival rate.

When openings are made in the canopy, invading brushy plants can delay the establishment of planted Douglas-fir seedlings. Because the rooting depth is restricted by the compact till, trees are subject to occasional windthrow.

This map unit is in capability subclass VII.

31—Eld loam. This deep, well drained soil is on alluvial fans and flood plains. It formed in alluvium derived dominantly from basaltic material. Slopes are 0 to 5 percent. The native vegetation is mainly conifers and hardwoods. Elevation is 150 to 250 feet. The average annual precipitation is 45 to 55 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the upper part of the surface layer is dark reddish brown loam about 7 inches thick, and the lower part is dark reddish brown loam and silt loam about 15 inches thick. The subsoil to a depth of 60 inches or more is dark brown loam and silt loam.

Included in this unit are small areas of Godfrey soils in depressions on flood plains and Maytown soils on flood plains. Included areas make up about 10 percent of the total acreage.

Permeability is moderate in the Eld soil. Available water capacity is high. Effective rooting depth is 40 to 60 inches. Runoff is slow, and the hazard of water erosion is slight. This soil is subject to rare flooding in winter.

This unit is used for hay and pasture, cropland, or woodland. It is well suited to hay and pasture. Proper stocking rates, pasture rotation, and restricted grazing during wet periods help to keep the pasture in good condition. Rotation grazing helps to maintain the quality of forage. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Animal manure can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least once a year. Applying fertilizer improves the growth of forage plants. In most years irrigation is needed for maximum production. Sprinkler irrigation is the best method of applying water.

This unit is well suited to cropland. It is suited to all of the crops commonly grown in the survey area. Corn silage and sweet corn are commonly grown on this soil. Applying animal manure and returning crop residue to the soil help to maintain the organic matter content, fertility, and tilth. In most years irrigation is needed for maximum production. Sprinkler irrigation is the best method of applying water.

Douglas-fir is the main woodland species on this unit.
Among the trees of limited extent are red alder, western redcedar, and bigleaf maple. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 160. On the basis of a 50-year site curve, it is 120. The estimated growth rate of an unmanaged, even-aged stand of Douglas-fir is 170 cubic feet per acre per year at 65 years of age.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seeding establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings.

This map unit is in capability class I.

32—Everett gravelly sandy loam, 0 to 3 percent slopes. This very deep, somewhat excessively drained soil is on terraces and outwash plains. It formed in glacial outwash. The native vegetation is mainly conifers. Elevation is 50 to 700 feet. The average annual precipitation is 35 to 45 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface layer is dark reddish brown very gravelly sandy loam about 3 inches thick. The subsoil is dark brown and dark yellowish brown extremely gravelly sandy loam about 17 inches thick. The substratum to a depth of 60 inches or more is olive brown extremely gravelly loamy sand and dark grayish brown extremely gravelly sand.

Included in this unit are small areas of Alderwood and Kapowsin soils on till plains, Baldhill soils on terminal moraines, and Indianola and Spanaway soils on outwash plains. Also included are small areas of Everett gravelly sandy loam that have slopes of 3 to 15 percent. Included areas make up about 20 percent of the total acreage.

Permeability is rapid in the Everett soil. Available water capacity is low. Effective rooting depth is 60 inches or more. Runoff is slow, and the hazard of water erosion is slight.

This unit is used mainly for homesites or woodland. It is also used for hay and pasture.

This unit is well suited to homesites. Cutbanks are not stable and are subject to sloughing.

The main limitation affecting septic tank absorption fields is a poor filtering capacity. If the density of housing is moderate or high, community sewage systems are needed to prevent the contamination of water supplies caused by seepage from onsite sewage disposal systems.

Pebbles and cobbles should be removed, particularly in areas used for lawns. In summer, irrigation is needed for lawn grasses, shrubs, vines, shade trees, and ornamental trees. Mulch, fertilizer, and irrigation are needed to establish lawn grasses and other small-seeded plants.

Douglas-fir is the main woodland species on this unit. Among the trees of limited extent are red alder, western hemlock, western redcedar, and bigleaf maple. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 138. On the basis of a 50-year site curve, it is 106. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 142 cubic feet per acre per year at 70 years of age.

This soil is suited to year-round logging. Logging roads require suitable surfacing material for year-round use. Rounded pebbles and cobbles for road construction are readily available on this unit.

Seeding mortality is the main concern in the production of timber. Droughtiness in the surface layer reduces the seedling survival rate. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can delay the establishment of planted Douglas-fir seedlings.

Common forest understory plants are salal, western brackenfern, cascade Oregon-grape, red huckleberry, and trailing blackberry.

The main limitation affecting hay and pasture is the low available water capacity. Proper grazing practices, weed control, and fertilizer are needed to ensure maximum quality of forage. Rotation grazing helps to maintain the quality of forage. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Animal manure can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least
once a year. In some years irrigation is needed for maximum production. Sprinkler irrigation is the best method of applying water. The amount of water applied should be sufficient to wet the root zone but small enough to minimize the leaching of plant nutrients.

This map unit is in capability subclass IVs.

33—Everett very gravelly sandy loam, 3 to 15 percent slopes. This very deep, somewhat excessively drained soil is on terraces and outwash plains. It formed in glacial outwash. The native vegetation is mainly conifers. Elevation is 50 to 700 feet. The average annual precipitation is 35 to 45 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface layer is dark reddish brown very gravelly sandy loam about 3 inches thick. The subsoil is dark brown and dark yellowish brown extremely gravelly sandy loam and extremely gravelly loamy sand about 17 inches thick. The substratum to a depth of 60 inches or more is olive brown extremely gravelly loamy sand and dark grayish brown extremely gravelly sand.

Included in this unit are small areas of Alderwood and Kapowsin soils on till plains, Baldhill soils on terminal moraines, and Indianola and Spanaway soils on outwash plains. Also included are small areas of Everett very gravelly sandy loam that have slopes of 0 to 3 percent or 15 to 30 percent. Included areas make up about 20 percent of the total acreage.

Permeability is rapid in the Everett soil. Available water capacity is low. Effective rooting depth is 60 inches or more. Runoff is slow, and the hazard of water erosion is slight.

This unit is used as woodland or homesites. Douglas-fir is the main woodland species. Among the trees of limited extent are red alder, western hemlock, western redcedar, and bigleaf maple. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 138. On the basis of a 50-year site curve, it is 106. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 142 cubic feet per acre per year at 70 years of age.

This soil is suited to year-round logging. Logging roads require suitable surfacing material for year-round use. Rounded pebbles and cobbles for road construction are readily available on this unit.

Seedling mortality is the main concern in the production of timber. Droughtiness in the surface layer reduces the seedling survival rate. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can delay the establishment of planted Douglas-fir seedlings.

Common forest understory plants are salal, western brackenfern, cascade Oregon-grape, red huckleberry, and trailing blackberry.

This unit is suited to homesites. Cutbanks are not stable and are subject to sloughing. Pebbles and cobbles should be removed, particularly in areas used for lawns. In summer, irrigation is needed for lawn grasses, shrubs, vines, shade trees, and ornamental trees. Mulch, fertilizer, and irrigation are needed to establish lawn grasses and other small-seeded plants.

The main limitation affecting septic tank absorption fields is a poor filtering capacity. If the density of housing is moderate or high, community sewage systems are needed to prevent the contamination of water supplies caused by seepage from onsite sewage disposal systems. Slope hinders the installation of septic tank absorption fields. Absorption lines should be installed on the contour.

This map unit is in capability subclass IVe.

34—Everett very gravelly sandy loam, 15 to 30 percent slopes. This very deep, somewhat excessively drained soil is on terraces and outwash plains. It formed in glacial outwash. The native vegetation is mainly conifers. Elevation is 50 to 700 feet. The average annual precipitation is 35 to 45 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface layer is dark reddish brown very gravelly sandy loam about 3 inches thick. The subsoil is dark brown and dark yellowish brown extremely gravelly sandy loam and extremely gravelly loamy sand about 17 inches thick. The substratum to a depth of 60 inches or more is olive brown extremely gravelly loamy sand and dark grayish brown extremely gravelly sand.

Included in this unit are small areas of Alderwood and Kapowsin soils on till plains, Baldhill soils on terminal moraines, and Indianola soils on outwash plains. Also included are small areas of Everett very gravelly sandy loam that have slopes of 3 to 15 percent or 30 to 60 percent. Included areas make up about 25 percent of the total acreage.

Permeability is rapid in the Everett soil. Available water capacity is low. Effective rooting depth is 60 inches or more. Runoff is medium, and the hazard of water erosion is moderate.

This unit is used as woodland. Douglas-fir is the
main woodland species. Among the trees of limited extent are red alder, western hemlock, western redcedar, and bigleaf maple. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 138. On the basis of a 50-year site curve, it is 106. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 142 cubic feet per acre per year at 70 years of age.

This soil is suited to year-round logging. Logging roads require suitable surfacing material for year-round use. Rounded pebbles and cobbles for road construction are readily available on this unit. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling mortality is the main concern in the production of timber. Droughtiness in the surface layer reduces the seedling survival rate. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can delay the establishment of planted Douglas-fir seedlings.

Common forest understory plants are salal, western brackenfern, cascade Oregon-grape, red huckleberry, and trailing blackberry.

This map unit is in capability subclass IVe.

35—Everett very gravelly sandy loam, 30 to 50 percent slopes. This very deep, somewhat excessively drained soil is on terrace escarpments. It formed in glacial outwash. The native vegetation is mainly conifers. Elevation is 50 to 700 feet. The average annual precipitation is 35 to 45 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface is dark reddish brown very gravelly sandy loam about 3 inches thick. The subsoil is dark brown and dark yellowish brown extremely gravelly sandy loam and extremely gravelly loamy sand about 17 inches thick. The substratum to a depth of 60 inches or more is olive brown extremely gravelly loamy sand and dark grayish brown extremely gravelly sand.

Included in this unit are small areas of Alderwood and Kapowsin soils on terrace escarpments and Baldhill soils on terminal moraines. Also included are small areas of Everett very gravelly sandy loam that have slopes of 15 to 30 percent. Included areas make up about 25 percent of the total acreage.

Permeability is rapid in the Everett soil. Available water capacity is low. Effective rooting depth is 60 inches or more. Runoff is rapid, and the hazard of water erosion is severe.

This unit is used as woodland. Douglas-fir is the main woodland species. Among the trees of limited extent are red alder, western hemlock, western redcedar, and bigleaf maple. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 138. On the basis of a 50-year site curve, it is 106. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 142 cubic feet per acre per year at 70 years of age.

The main limitation affecting the harvesting of timber is slope. The slope restricts the use of wheeled and tracked equipment in skidding operations. Cable yarding systems generally are safer and minimize damage to the surface. This soil is suited to year-round logging. Logging roads require suitable surfacing material for year-round use. Rounded pebbles and cobbles for road construction are readily available on this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Steep yarding paths, skid trails, and firebreaks are subject to rilling and gullying unless they are protected by a plant cover or adequate water bars are provided.

Seedling mortality is the main concern in the production of timber. Droughtiness in the surface layer reduces the seedling survival rate. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can delay the establishment of planted Douglas-fir seedlings.

Common forest understory plants are salal, western brackenfern, cascade Oregon-grape, red huckleberry, and trailing blackberry.

This map unit is in capability subclass IVe.

36—Everson clay loam. This deep, poorly drained soil is in depressions on outwash terraces. Drainage has been altered by subsurface drains and open ditches. The soil formed in alluvium or lacustrine deposits and glacial outwash. Slopes are 0 to 2 percent. The native vegetation is mainly hardwoods and conifers. Elevation is 100 to 300 feet. The average annual precipitation is 40 to 55 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface layer is very dark grayish brown clay loam about 6 inches thick. The upper 10 inches of the subsoil is very dark grayish brown and very dark gray, mottled clay loam and silty clay, and the
lower 14 inches is brown and reddish brown, mottled clay and clay loam. The substratum to a depth of 60 inches or more is dark gray, mottled sand.

Included in this unit are small areas of Bellingham, McKenna, and Norma soils in depressions and Cakey and Yelm soils on terraces. Included areas make up about 15 percent of the total acreage.

Permeability is slow in the subsoil of the Everson soil and rapid in the substratum. Available water capacity is high. Effective rooting depth is about 50 inches. A seasonal high water table is at a depth of 12 to 36 inches from November to April. Runoff is slow, and the hazard of water erosion is slight.

Most areas of this unit are used for hay and pasture. A few areas are used as woodland.

If drained, this unit is well suited to hay and pasture. The main limitation is the seasonal high water table. Most of the forage crops commonly produced in the survey area can be grown if an adequate drainage system is installed. Proper stocking rates, pasture rotation, and restricted grazing during wet periods help to keep the pasture in good condition. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Rotation grazing helps to maintain the quality of forage. Applying fertilizer improves the growth of forage plants. In some years irrigation is needed. Sprinkler irrigation is the best method of applying water.

In undrained areas this unit is suited to woodland. On the basis of a 50-year site curve, the mean site index for red alder is 90. The estimated growth rate of an unmanaged, even-aged stand of red alder is 101 cubic feet per acre per year at 40 years of age.

The main limitation affecting the harvesting of timber is the mudiness caused by seasonal wetness. The seasonal high water table limits the use of equipment to dry periods. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are sticky and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling mortality is the main concern in the production of timber. Reforestation can be accomplished by planting western redcedar seedlings. If the stand includes seed trees, natural reforestation by red alder occurs periodically in cutover areas. The seasonal high water table inhibits root respiration and thus results in high seedling mortality. When openings are made in the canopy, invading brushy plants can delay the establishment of planted western redcedar seedlings. Because the rooting depth is restricted by the seasonal high water table, trees are subject to frequent windthrow.

This map unit is in capability subclass IIIw.

37—Galvin silt loam, 0 to 5 percent slopes. This very deep, somewhat poorly drained soil is on alluvial fans. It formed in alluvium derived dominantly from shale and sandstone. The native vegetation is mainly conifers and hardwoods. Elevation is 150 to 500 feet. The average annual precipitation is 40 to 50 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the upper part of the surface layer is very dark grayish brown silt loam about 7 inches thick, and the lower part is dark brown silt loam about 5 inches thick. The upper 23 inches of the subsoil is dark yellowish brown, mottled silt loam and silty clay loam, and the lower part to a depth of 60 inches or more is yellowish brown, mottled silty clay.

Included in this unit are small areas of Centralia, Melbourne, Prather, and Saikum soils on broad ridgetops and on shoulder slopes. Included areas make up about 10 percent of the total acreage.

Permeability is slow in the Galvin soil. Available water capacity is high. Effective rooting depth is 60 inches or more. A seasonal high water table is at a depth of 6 to 18 inches from November to April. Runoff is slow, and the hazard of water erosion is slight.

This unit is used mainly for hay and pasture. It is also used as woodland.

This unit is suited to hay and pasture. The main limitation is the seasonal high water table. Most of the forage crops commonly produced in the survey area can be grown if an adequate drainage system is installed. Proper stocking rates, pasture rotation, and restricted grazing during wet periods help to keep the pasture in good condition. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Rotation grazing helps to maintain the quality of forage. Applying fertilizer improves the growth of forage plants. In some years irrigation is needed. Sprinkler irrigation is the best method of applying water.

This unit is suited to woodland. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 160. On the basis of a 50-year site curve, it is 120. The estimated growth rate of an unmanaged, even-aged stand of Douglas-fir is 170 cubic feet per acre per year at 65 years of age.
The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. The seasonal high water table limits the use of equipment to dry periods. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seeding establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. The seasonal high water table inhibits root respiration and thus results in high seeding mortality. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings. Because the rooting depth is restricted by the seasonal high water table, trees are subject to frequent windthrow.

This map unit is in capability subclass IIIw.

38—Giles silt loam, 0 to 3 percent slopes. This deep, well drained soil is on terraces. It formed in volcanic ash and glacial outwash. The native vegetation is mainly conifers and hardwoods. Elevation is 50 to 500 feet. The average annual precipitation is 45 to 55 inches, the average annual air temperature is about 49 degrees F, and the average frost-free period is 170 to 200 days.

Typically, the surface is covered with a mat of needles and twigs about 1 inch thick. The surface layer is dark brown silt loam about 3 inches thick. The upper part of the subsoil is dark yellowish brown silt loam about 7 inches thick. The lower part is olive brown silt loam about 36 inches thick. The substratum to a depth of 60 inches or more is olive brown silt loam.

Included in this unit are small areas of Indianola, Nisqually, and Yelm soils on terraces and Norma soils in depressions. Also included are small areas of Giles silt loam that have slopes of 3 to 15 percent. Included areas make up about 15 percent of the total acreage.

Permeability is moderate in the Giles soil. Available water capacity is high. Effective rooting depth is 40 to 60 inches. Runoff is slow, and the hazard of water erosion is slight.

This unit is used mainly for cropland or for hay and pasture. It is also used as woodland or homesites.

This unit is well suited to cropland. No major hazards or limitations affect cropping. Corn silage, sweet corn, raspberries, strawberries, and small grain are commonly grown on this soil. Applying animal manure and returning crop residue to the soil help to maintain the organic matter content, fertility, and tilth. In most years irrigation is needed for maximum production. Sprinkler irrigation is the most suitable method of applying water.

This unit is well suited to hay and pasture. No major hazards or limitations affect forage crops. Proper stocking rates, pasture rotation, and restricted grazing during wet periods help to keep the pasture in good condition. Rotation grazing helps to maintain the quality of forage. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Animal manure can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least once a year. Applying fertilizer improves the growth of forage plants. In most years irrigation is needed for maximum production. Sprinkler irrigation is the most suitable method of applying water.

This unit is suited to woodland. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 173. On the basis of a 50-year site curve, it is 130. The estimated growth rate of an unmanaged, even-aged stand of Douglas-fir is 184 cubic feet per acre per year at 60 years of age.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seeding establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings.

This unit is well suited to homesites. No major hazards or limitations affect building site development. In summer, irrigation is needed for lawn grasses, shrubs, vines, shade trees, and ornamental trees. Mulch, fertilizer, and irrigation are needed to establish lawn grasses and other small-seeded plants.

The main limitation affecting septic tank absorption
fields is the moderate permeability. This limitation can be overcome by increasing the size of the absorption field.

This map unit is in capability subclass IIc.

39—Giles silt loam, 3 to 15 percent slopes. This deep, well drained soil is on terraces. It formed in volcanic ash and glacial outwash. The native vegetation is mainly conifers and hardwoods. Elevation is 50 to 500 feet. The average annual precipitation is 45 to 55 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 170 to 200 days.

Typically, the surface is covered with a mat of needles and twigs about 1 inch thick. The surface layer is dark brown silt loam about 3 inches thick. The upper part of the subsoil is dark yellowish brown silt loam about 7 inches thick. The lower part is olive brown silt loam about 38 inches thick. The substratum to a depth of 60 inches or more is olive brown silt loam.

Included in this unit are small areas of Indianola, Nisqually, and Yelm soils on terraces. Also included are small areas of Giles silt loam that have slopes of 0 to 3 percent or 15 to 30 percent. Included areas make up about 15 percent of the total acreage.

Permeability is moderate in the Giles soil. Available water capacity is high. Effective rooting depth is 40 to 60 inches. Runoff is slow, and the hazard of water erosion is slight.

This unit is used mainly for hay and pasture. It is also used as woodland or homesites.

This unit is well suited to hay and pasture. The main management concern is the hazard of erosion. Proper stocking rates, pasture rotation, and restricted grazing during wet periods help to keep the pasture in good condition and protect the soil from erosion. Rotation grazing helps to maintain the quality of forage. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Animal manure can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least once a year. Applying fertilizer improves the growth of forage plants. In most years irrigation is needed for maximum production. Sprinkler irrigation is the best method of applying water.

This unit is suited to woodland. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 173. On the basis of a 50-year site curve, it is 130. The estimated growth rate of an unmanaged, even-aged stand of Douglas-fir is 184 cubic feet per acre per year at 60 years of age.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings.

This unit is well suited to homesites. The main limitation is slope. In summer, irrigation is needed for lawn grasses, shrubs, vines, shade trees, and ornamental trees. A plant cover can be established and maintained through proper fertilizing, seeding, mulching, and shaping of the slopes.

The main limitations affecting septic tank absorption fields are the slope and the moderate permeability. The slope hinders the installation of the absorption fields. Absorption lines should be installed on the contour. The moderate permeability can be overcome by increasing the size of the absorption fields.

This map unit is in capability subclass IIe.

40—Giles silt loam, 15 to 30 percent slopes. This deep, well drained soil is on terrace escarpments. It formed in volcanic ash and glacial outwash. The native vegetation is mainly conifers and hardwoods. Elevation is 50 to 500 feet. The average annual precipitation is 45 to 55 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 170 to 200 days.

Typically, the surface is covered with a mat of needles and twigs about 1 inch thick. The surface layer is dark brown silt loam about 3 inches thick. The upper part of the subsoil is dark yellowish brown silt loam about 7 inches thick. The lower part is olive brown silt loam about 38 inches thick. The substratum to a depth of 60 inches or more is olive brown silt loam.

Included in this unit are small areas of Indianola and Yelm soils on terrace escarpments. Also included are small areas of Giles silt loam that have slopes of 3 to 15 percent. Included areas make up about 15 percent of the total acreage.

Permeability is moderate in the Giles soil. Available
water capacity is high. Effective rooting depth is 40 to 60 inches. Runoff is medium, and the hazard of water erosion is moderate.

This unit is used as woodland. It is suited to trees. Among the trees of limited extent are red alder, western redcedar, and bigleaf maple. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 173. On the basis of a 50-year site curve, it is 130. The estimated growth rate of an unmanaged, even-aged stand of Douglas-fir is 184 cubic feet per acre per year at 60 years of age.

The main limitation affecting the harvesting of timber is the mudness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings.

This map unit is in capability subclass IVe.

41—Godfrey silty clay loam. This deep, poorly drained soil is in depressions on flood plains. Drainage has been altered by subsurface drains. The soil formed in alluvium. Slopes are 0 to 3 percent. The native vegetation is mainly hardwoods. Elevation is 20 to 200 feet. The average annual precipitation is 40 to 50 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 165 to 180 days.

Typically, the surface layer is very dark grayish brown, mottled silty clay loam about 8 inches thick. The upper 3 inches of the subsoil is very dark gray, mottled silty clay loam, and the lower 19 inches is dark gray, mottled silty clay. The upper 12 inches of the substratum is dark gray, mottled clay loam, and the lower part to a depth of 60 inches or more is olive gray, mottled silty clay loam and dark gray, mottled silty clay.

Included in this unit are small areas of Chehalis soils on flood plains. Newburg and Puyallup soils on natural levees, and Puget and Sultan soils in depressions. Also included are small areas of Godfrey soils that have not been drained. Included areas make up about 15 percent of the total acreage.

Permeability is very slow in the Godfrey soil. Available water capacity is high. Effective rooting depth is limited by a seasonal high water table that is at a depth of about 12 to 24 inches from October to March. Runoff is slow, and the hazard of water erosion is slight. This soil is occasionally flooded for brief periods from November to March.

This unit is used for hay and pasture or for woodland. The main problems affecting hay and pasture are the seasonal high water table and the hazard of flooding. Most of the forage crops commonly produced in the survey area can be grown if an adequate drainage system is installed. Proper stocking rates, pasture rotation, and restricted grazing during wet periods help to keep the pasture in good condition. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Rotation grazing helps to maintain the quality of forage. Applying fertilizer improves the growth of forage plants.

This unit is suited to woodland. On the basis of a 50-year site curve, the mean site index for red alder is 90. The estimated growth rate of an unmanaged, even-aged stand of red alder is 101 cubic feet per acre per year at 40 years of age.

The main limitation affecting the harvesting of timber is the mudness caused by seasonal wetness. The seasonal high water table and the occasional flooding limit the use of equipment to dry periods. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are sticky and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling mortality is the main concern in the production of timber. Reforestation can be accomplished by planting western redcedar seedlings. If the stand includes seed trees, natural reforestation by red alder occurs periodically in cutover areas. The seasonal high water table and the occasional flooding inhibit root respiration and thus result in high seedling mortality. When openings are made in the canopy, invading brushy plants can delay the establishment of planted western redcedar seedlings. Because the rooting depth is restricted by the seasonal high water table, trees are subject to frequent windthrow.

This map unit is in capability subclass IIIw.
42—Grove very gravelly sandy loam, 3 to 15 percent slopes. This very deep, somewhat excessively drained soil is on outwash plains. It formed in glacial outwash. The native vegetation is mainly conifers. Elevation is 100 to 500 feet. The average annual precipitation is 50 to 60 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 160 to 200 days.

Typically, the surface is covered with a mat of needles and twigs about 3 inches thick. The upper 6 inches of the subsoil is dark reddish brown very gravelly sandy loam, the next 15 inches is reddish brown very gravelly loamy sand, and the lower 15 inches is dark brown very gravelly sand. The substratum to a depth of 60 inches or more is dark brown extremely gravelly coarse sand.

Included in this unit are small areas of Delphi soils on till plains and Raught and Schneider soils on foothills and mountains. Included areas make up about 15 percent of the total acreage.

Permeability is rapid in the Grove soil. Available water capacity is low. Effective rooting depth is 60 inches or more. Runoff is slow, and the hazard of water erosion is slight.

This unit is used as woodland. Douglas-fir is the main woodland species. Among the trees of limited extent are western hemlock, red alder, western redcedar, and bigleaf maple. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 148. On the basis of a 50-year site curve, it is 112. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 156 cubic feet per acre per year at 60 years of age.

This soil is suited to year-round logging. Logging roads require suitable surfacing material for year-round use. Rounded pebbles and cobbles for road construction are readily available on this unit. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seeding mortality is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can delay the establishment of planted Douglas-fir seedlings. Droughtiness in the surface layer reduces the seeding survival rate.

Common forest understory plants are salal, salmonberry, western brackenfern, western swordfern, and cascade Oregon-grape.

This map unit is in capability subclass Vle.

43—Hoogdal silt loam, 15 to 30 percent slopes. This moderately deep, moderately well drained soil is on terrace escarpments. It formed in loess and glaciolacustrine sediment. The native vegetation is mainly conifers and hardwoods. Elevation is 100 to 300 feet. The average annual precipitation is 40 to 50 inches, the average annual air temperature is about 51 degrees F, and the average frost-free period is 160 to 200 days.

Typically, the surface layer is dark grayish brown silt loam about 5 inches thick. The upper 5 inches of the subsoil is yellowish brown silty clay loam, and the lower 15 inches is light yellowish brown, mottled silty clay. The substratum to a depth of 60 inches or more is olive gray, mottled silty clay.

Included in this unit are small areas of Alderwood and Kapowsin soils on till plains and Everett, Giles, Skipopa, and Yelm soils on terraces and terrace escarpments. Also included are small areas of Hoogdal soils that have slopes of 30 to 50 percent. Included areas make up about 15 percent of the total acreage.

Permeability is very slow in the Hoogdal soil. Available water capacity is moderate. Effective rooting depth is 15 to 30 inches. A perched seasonal high water table fluctuates between depths of 18 and 24 inches from December to March. Runoff is medium, and the hazard of water erosion is moderate.

This unit is used as woodland. Douglas-fir is the main woodland species. Among the trees of limited extent are red alder, western redcedar, and bigleaf maple. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 167. On the basis of a 50-year site curve, it is 124. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 178 cubic feet per acre per year at 60 years of age.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. The seasonal high water table limits the use of equipment to dry periods. Land slumping and road failure can occur following clearcut harvesting. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.
Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of Douglas-fir seedlings. Because the rooting depth is restricted by the seasonal high water table, trees are subject to occasional windthrow.

Common forest understory plants are western swordfern, salmonberry, western brackenfern, trailing blackberry, and red huckleberry.

This map unit is in capability subclass IVe.

44—Hoogdal silt loam, 30 to 50 percent slopes. This moderately deep, moderately well drained soil is on terrace escarpments. It formed in loess and glaciolacustrine sediment. The native vegetation is mainly conifers and hardwoods. Elevation is 100 to 300 feet. The average annual precipitation is 40 to 50 inches, the average annual air temperature is about 51 degrees F, and the average frost-free period is 160 to 200 days.

Typically, the surface layer is dark grayish brown silt loam about 5 inches thick. The upper 5 inches of the subsoil is yellowish brown silty clay loam, and the lower 15 inches is light yellowish brown, mottled silty clay. The substratum to a depth of 60 inches or more is olive gray, mottled silty clay.

Included in this unit are small areas of Alderwood and Kapowsin soils on till plains and Everett, Giles, and Yelm soils on terrace escarpments. Also included are small areas of Hoogdal soils that have slopes of 15 to 30 percent. Included areas make up about 15 percent of the total acreage.

Permeability is very slow in the Hoogdal soil. Available water capacity is high. Effective rooting depth is 15 to 30 inches. A perched seasonal high water table fluctuates between depths of 18 and 24 inches from December to March. Runoff is medium, and the hazard of water erosion is moderate.

This unit is used as woodland. Douglas-fir is the main woodland species. Among the trees of limited extent are red alder, western redcedar, and bigleaf maple. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 167. On the basis of a 50-year site curve, it is 124. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 178 cubic feet per acre per year at 60 years of age.

The main limitation affecting the harvesting of timber is slope. The slope restricts the use of wheeled and tracked equipment in skidding operations. Cable yarding systems generally are safer and minimize damage to the surface. Use of wheeled and tracked equipment when the soil is wet results in rut and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. The seasonal high water table limits the use of equipment to dry periods. Land slumping and road failure can occur following clearcut harvesting. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Steep yarding paths, skid trails, and firebreaks are subject to rilling and gully ing unless they are protected by a plant cover or adequate water bars are provided.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of Douglas-fir seedlings. Because the rooting depth is restricted by the seasonal high water table, trees are subject to occasional windthrow.

Common forest understory plants are western swordfern, salmonberry, western brackenfern, trailing blackberry, and red huckleberry.

This map unit is in capability subclass Vle.

45—Hydrauquents, tidal. These very deep, poorly drained soils are on tideland. They formed in alluvium. Slopes are 0 to 1 percent. The native vegetation is mainly salt-tolerant grasses. Elevation is 0 to 3 feet. The average annual precipitation is 40 to 50 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

No one pedon is typical of these soils, but one of the more commonly observed ones has a surface layer of olive gray fine sandy loam about 6 inches thick. The substratum to a depth of 60 inches or more is stratified silty clay loam to fine sandy loam.

Included in this unit are small areas of water.

Permeability is moderate. Available water capacity is high. Effective rooting depth is limited by a seasonal high water table that is at or above the surface during periods of high tide. These soils are frequently flooded for brief periods during high tides throughout the year.

This unit is used for wildlife habitat or recreation.

This map unit is in capability subclass VIIw.
46—Indianola loamy sand, 0 to 3 percent slopes.
This very deep, somewhat excessively drained soil is on terraces, eskers, and kames. It formed in sandy glacial drift. The native vegetation is mainly conifers. Elevation is 50 to 700 feet. The average annual precipitation is 40 to 55 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 160 to 210 days.

Typically, the surface layer is dark reddish brown loamy sand about 6 inches thick. The upper 7 inches of the subsoil is dark reddish brown loamy sand, and the lower 12 inches is dark brown loamy sand. The upper 10 inches of the substratum is dark yellowish brown sand, and the lower part to a depth of 60 inches or more is olive brown sand.

Included in this unit are small areas of Cagey, Everett, Giles, Nisqually, Spanaway, and Yelm soils on terraces. Also included are small areas of Indianola soils that have slopes of 3 to 15 percent. Included areas make up about 20 percent of the total acreage.

Permeability is rapid in the Indianola soil. Available water capacity is moderate. Effective rooting depth is 60 inches or more. Runoff is very slow, and the hazard of water erosion is slight.

This unit is used for hayland, pasture, cropland, woodland, or homesites. The main limitation affecting hay and pasture is the moderate available water capacity. Proper grazing practices, weed control, and fertilizer are needed to ensure maximum quality of forage. Periodic mowing helps to maintain uniform growth, discourses selective grazing, and controls weeds. Animal manure can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least once a year. In summer, irrigation is needed for maximum production of most forage crops. Sprinkler irrigation is the best method of applying water. The amount of water applied should be sufficient to wet the root zone but small enough to minimize the leaching of plant nutrients.

The main limitation affecting cropland is low precipitation during the growing season. Sweet corn, wheat, oats, strawberries, and raspberries are commonly grown on this soil. In summer, irrigation is needed for maximum production of most crops. Sprinkler irrigation is the best method of applying water. The amount of water applied should be sufficient to wet the root zone but small enough to minimize the leaching of plant nutrients.

Douglas-fir is the main woodland species on this unit. Among the trees of limited extent are red alder, bigleaf maple, western redcedar, and western hemlock. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 151. On the basis of a 50-year site curve, it is 115. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 159 cubic feet per acre per year at 60 years of age.

This soil is suited to year-round logging. Unsurfaced roads and skid trails are soft when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment and seedling mortality are the main concerns in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can delay the establishment of planted Douglas-fir seedlings. Droughtiness in the surface layer reduces the seedling survival rate.

Common forest understory plants are western brackenfern, western swordfern, salal, trailing blackberry, red huckleberry, and cascade Oregon-grape.

This unit is suited to homesites. Cutbanks are not stable and are subject to sloughing. In summer, irrigation is needed for lawn grasses, shrubs, vines, shade trees, and ornamental trees. A plant cover can be established and maintained through proper fertilizing, seeding, mulching, and shaping of the slopes.

The main limitation affecting septic tank absorption fields is a poor filtering capacity. If the density of housing is moderate or high, community sewage systems are needed to prevent the contamination of water supplies caused by seepage from onsite sewage disposal systems.

This map unit is in capability subclass IVs.

47—Indianola loamy sand, 3 to 15 percent slopes.
This very deep, somewhat excessively drained soil is on terraces, eskers, and kames. It formed in sandy glacial drift. The native vegetation is mainly conifers. Elevation is 50 to 700 feet. The average annual precipitation is 40 to 55 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 160 to 210 days.

Typically, the surface layer is dark reddish brown loamy sand about 6 inches thick. The upper 7 inches of the subsoil is dark reddish brown loamy sand, and the lower 12 inches is dark brown loamy sand. The upper 10 inches of the substratum is dark yellowish brown
sand, and the lower part to a depth of 60 inches or more is olive brown sand.

Included in this unit are small areas of Everett, Giles, Nisqually, Spanaway, and Yelm soils on terraces. Also included are small areas of Indianola soils that have slopes of 0 to 3 percent or 15 to 30 percent. Included areas make up about 20 percent of the total acreage.

Permeability is rapid in the Indianola soil. Available water capacity is moderate. Effective rooting depth is 60 inches or more. Runoff is slow, and the hazard of water erosion is slight.

This unit is used for hayland, pasture, woodland, or homesites. The main limitation affecting hay and pasture is the moderate available water capacity. Proper grazing practices, weed control, and fertilizer are needed to ensure maximum quality of forage. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. In summer, irrigation is needed for maximum production of most forage crops. Sprinkler irrigation is the best method of applying water. The amount of water applied should be sufficient to wet the root zone but small enough to minimize the leaching of plant nutrients.

Douglas-fir is the main woodland species on this unit. Among the trees of limited extent are red alder, bigleaf maple, western redcedar, and western hemlock. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 151. On the basis of a 50-year site curve, it is 115. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 159 cubic feet per acre per year at 60 years of age.

This soil is suited to year-round logging. Unsurfaced roads and skid trails are soft when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment and seedling mortality are the main concerns in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can delay the establishment of planted Douglas-fir seedlings. Droughtiness in the surface layer reduces the seedling survival rate.

Common forest understory plants are western brackenfern, western sword fern, salal, trailing blackberry, red huckleberry, and cascade Oregon-grape.

This unit is suited to homesites. Cutbanks are not stable and are subject to sloughing. In summer, irrigation is needed for lawn grasses, shrubs, vines, shade trees, and ornamental trees. A plant cover can be established and maintained through proper fertilizing, seeding, mulching, and shaping of the slopes.

The main limitation affecting septic tank absorption fields is a poor filtering capacity. If the density of housing is moderate or high, community sewage systems are needed to prevent the contamination of water supplies caused by seepage from onsite sewage disposal systems. The slope hinders the installation of the absorption fields. Absorption lines should be installed on the contour.

This map unit is in capability subclass IVs.

48—Indianola loamy sand, 15 to 30 percent slopes. This very deep, somewhat excessively drained soil is on terrace escarpments. It formed in sandy glacial drift. The native vegetation is mainly conifers. Elevation is 50 to 700 feet. The average annual precipitation is 40 to 55 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 160 to 210 days.

Typically, the surface layer is dark reddish brown loamy sand about 6 inches thick. The upper 7 inches of the subsoil is dark reddish brown loamy sand, and the lower 12 inches is dark brown loamy sand. The upper 10 inches of the substratum is dark yellowish brown sand, and the lower part to a depth of 60 inches or more is olive brown sand.

Included in this unit are small areas of Everett, Giles, and Yelm soils on terraces. Also included are small areas of Indianola soils that have slopes of less than 15 percent. Included areas make up about 15 percent of the total acreage.

Permeability is rapid in the Indianola soil. Available water capacity is moderate. Effective rooting depth is 60 inches or more. Runoff is medium, and the hazard of water erosion is moderate.

This unit is used as woodland. Douglas-fir is the main woodland species. Among the trees of limited extent are red alder, bigleaf maple, western redcedar, and western hemlock. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 151. On the basis of a 50-year site curve, it is 115. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 159 cubic feet per acre per year at 60 years of age.

This soil is suited to year-round logging. Unsurfaced roads and skid trails are soft when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on...
this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment and seedling mortality are the main concerns in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can delay the establishment of planted Douglas-fir seedlings. Droughtiness in the surface layer reduces the seedling survival rate.

Common forest understory plants are western brackenfern, western swordfern, salal, trailing blackberry, red huckleberry, and cascade Oregon-grape.

This map unit is in capability subclass IVs.

49—Jonas silt loam, 30 to 65 percent slopes. This deep, well drained soil is on mountain slopes. It formed in colluvium and residuum derived dominantly from andesite, which is mixed with volcanic ash in the upper part. The native vegetation is mainly conifers. Elevation is 1,800 to 2,400 feet. The average annual precipitation is 60 to 75 inches, the average air temperature is about 43 degrees F, and the average frost-free period is 130 to 160 days.

Typically, the upper part of the surface layer is very dark grayish brown silt loam about 4 inches thick, and the lower part is very dark brown very cobbly silt loam about 10 inches thick. The upper 11 inches of the subsoil is dark brown cobbly loam, and the lower part to a depth of 60 inches or more is dark brown and dark yellowish brown cobbly clay loam.

Included in this unit are small areas of Pheeney and Vailton soils on mountainsides. Included areas make up about 15 percent of the total acreage.

Permeability and available water capacity are moderate in the Jonas soil. Effective rooting depth is 40 to 60 inches. Runoff is rapid, and the hazard of water erosion is severe.

This unit is used as woodland. Douglas-fir and western hemlock are the main woodland species. Among the trees of limited extent are red alder, bigleaf maple, and western redcedar. On the basis of a 100-year site curve, the mean site index is 158 for Douglas-fir and 160 for western hemlock. On the basis of a 50-year site curve, it is 121 for Douglas-fir and 110 for western hemlock. The highest average growth rate of an unmanaged, even-aged stand is 168 cubic feet per acre per year at 65 years of age for Douglas-fir and 254 cubic feet per acre per year at 50 years of age for western hemlock.

The main limitation affecting the harvesting of timber is slope. The slope restricts the use of wheeled and tracked equipment in skidding operations. Cable yarding systems generally are safer and minimize damage to the surface. Use of wheeled and tracked equipment when the soil is wet results in rutting and compacts the soil. Unsurfaced roads and skid trails are soft and slippery and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is readily available on this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Steep yarding paths, skid trails, and firebreaks are subject to gullying and gullies unless they are protected by a plant cover or adequate water bars are provided.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. When openings are made in the canopy, invading brushy plants can delay the establishment of planted Douglas-fir seedlings and the natural reforestation of western hemlock.

Common forest understory plants are vine maple, cascade Oregon-grape, western brackenfern, western swordfern, and red huckleberry.

This map unit is in capability subclass Vle.

50—Kapowsin silt loam, 0 to 3 percent slopes. This moderately deep, moderately well drained soil is on till plains. It formed in compact glacial till. The native vegetation is mainly conifers and hardwoods. Elevation is 50 to 600 feet. The average annual precipitation is 35 to 50 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface layer is dark brown silt loam about 4 inches thick. The upper 14 inches of the subsoil is dark yellowish brown silt loam, the next 4 inches is dark yellowish brown, mottled loam, and the lower 8 inches is dark yellowish brown, mottled gravelly loam. The substratum to a depth of 60 inches or more is a grayish brown, weakly cemented hardpan. The hardpan is strongly compacted and crushes to gravelly loam. It is at a depth of about 20 to 30 inches.

Included in this unit are small areas of Alderwood soils on till plains, Bellingham, Dupont, McKenna, and Tisch soils in depressions, and Skipapa soils on terraces. Also included are small areas of Kapowsin silt loam that have slopes of 3 to 15 percent. Included
areas make up about 10 percent of the total acreage.
Permeability is moderate above the hardpan in the Kapowsin soil and very slow through the pan. Available water capacity is moderate. Effective rooting depth is 30 to 40 inches. A perched seasonal high water table is at a depth of 12 to 24 inches from December to June. Runoff is slow, and the hazard of water erosion is slight.

This unit is used for hayland, pasture, cropland, woodland, or homesites. The main limitations affecting hay and pasture are the seasonal high water table and the soil depth, which is limited by the hardpan. Grasses and legumes grow well if fertilizer is applied. Grazing when the soil is wet damages the plants and results in compaction of the surface layer. Proper stocking rates, pasture rotation, and restricted grazing during wet periods help to keep the pasture in good condition. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Animal manure can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least once a year. In most years irrigation is needed for maximum production. Sprinkler irrigation is the best method of applying water.

Sweet corn, corn silage, oats, and strawberries are commonly grown on this soil. The main limitations affecting cropland are the seasonal high water table and the soil depth, which is limited by the hardpan. Artificial drainage improves the timeliness of fieldwork and increases yields of perennial crops. Applying animal manure and returning crop residue to the soil help to maintain the organic matter content, fertility, and tilth. In most years irrigation is needed for maximum production. Sprinkler irrigation is the best method of applying water.

Douglas-fir is the main woodland species on this unit. Among the trees of limited extent are red alder, western redcedar, western hemlock, and bigleaf maple. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 161. On the basis of a 50-year site curve, it is 123. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 171 cubic feet per acre per year at 65 years of age.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in rutts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings. Because the rooting depth is restricted by the seasonal high water table and the weakly cemented hardpan, trees are subject to occasional windthrow.

Common forest understory plants are cascade Oregon-grape, western brackenfern, western swordfern, vine maple, and salal.

The main limitation affecting homesites is the seasonal high water table. A drainage system should be installed on sites for buildings with basements or crawl spaces.

The main limitations affecting septic tank absorption fields are the wetness and the hardpan. Because of the restrictive layer, onsite sewage disposal systems often fail or do not function properly during periods of heavy rainfall. The effluent from septic tank absorption fields can surface in downslope areas and thus create a health hazard.

This map unit is in capability subclass IIIw.

51—Kapowsin silt loam, 3 to 15 percent slopes. This moderately deep, moderately well drained soil is on till plains. It formed in compact glacial till. The native vegetation is mainly conifers and hardwoods. Elevation is 50 to 600 feet. The average annual precipitation is 35 to 50 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface layer is dark brown silt loam about 4 inches thick. The upper 14 inches of the subsoil is dark yellowish brown silt loam, the next 4 inches is dark yellowish brown, mottled loam, and the lower 8 inches is dark yellowish brown, mottled gravelly loam. The substratum to a depth of 60 inches or more is a grayish brown, weakly cemented hardpan. It is strongly compacted and crushes to gravelly loam. It is at a depth of about 20 to 30 inches.

Included in this unit are small areas of Alderwood soils on till plains and Indianola and Skippa soils on terraces. Also included are small areas of Kapowsin silt loam that have slopes of 0 to 3 percent or 15 to 30 percent. Included areas make up about 10 percent of the total acreage.

Permeability is moderate above the hardpan in the Kapowsin soil and very slow through the pan. Available
water capacity is moderate. Effective rooting depth is about 20 to 30 inches. A perched seasonal high water table is at a depth of 12 to 24 inches from December to June. Runoff is slow, and the hazard of water erosion is slight.

This unit is used for hayland, pasture, woodland, or homesites. The main limitations affecting hay and pasture are the seasonal high water table and the soil depth, which is limited by the hardpan. Grasses and legumes grow well if fertilizer is applied. Grazing when the soil is wet results in compaction of the surface layer, poor tillth, and excessive runoff. The seedbed should be prepared on the contour or across the slope where practical. Proper stocking rates, pasture rotation, and restricted grazing during wet periods help to keep the pasture in good condition and protect the soil from erosion. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Animal manure can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least once a year. In most years irrigation is needed for maximum production. Sprinkler irrigation is the best method of applying water.

Douglas-fir is the main woodland species on this unit. Among the trees of limited extent are red alder, western redcedar, western hemlock, and bigleaf maple. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 161. On the basis of a 50-year site curve, it is 123. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 171 cubic feet per acre per year at 65 years of age.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings. Because the rooting depth is restricted by the hardpan, trees are subject to occasional windthrow.

Common forest understory plants are cascade Oregon-grape, western brackenfern, western swordfern, vine maple, and salal.

The main limitation affecting homesites is the seasonal high water table. A drainage system should be installed on sites for buildings with basements or crawl spaces. The hardpan is rippable.

The main limitations affecting septic tank absorption fields are the seasonal wetness and the hardpan. Because of the restrictive layer, onsite sewage disposal systems often fail or do not function properly during periods of heavy rainfall. The effluent from septic tank absorption fields can surface in downslope areas and thus create a health hazard. The slope hinders the installation of the absorption fields. Absorption lines should be installed on the contour.

This map unit is in capability subclass Ille.

52—Kapowsin silt loam, 15 to 30 percent slopes. This moderately deep, moderately well drained soil is on till plains. It formed in compact glacial till. The native vegetation is mainly conifers and hardwoods. Elevation is 50 to 600 feet. The average annual precipitation is 35 to 50 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface layer is dark brown silt loam about 4 inches thick. The upper 14 inches of the subsoil is dark yellowish brown silt loam, the next 4 inches is dark yellowish brown, mottled loam, and the lower 8 inches is dark yellowish brown, mottled gravelly loam. The substratum to a depth of 60 inches or more is a grayish brown, weakly cemented hardpan. It is strongly compacted and crushes to gravelly loam. It is at a depth of about 20 to 30 inches.

Included in this unit are small areas of Alderwood soils on till plains and Hoogdal and Indianola soils on terraces. Also included are small areas of Kapowsin silt loam that have slopes of 3 to 15 percent or 30 to 50 percent. Included areas make up about 15 percent of the total acreage.

Permeability is moderate above the hardpan in the Kapowsin soil and very slow through the pan. Available water capacity is moderate. Effective rooting depth is about 20 to 30 inches. A perched seasonal high water table is at a depth of 12 to 24 inches from December to June. Runoff is medium, and the hazard of water erosion is moderate.

Most areas of this unit are used as woodland. A few areas are used for pasture.

Douglas-fir is the main woodland species on this unit. Among the trees of limited extent are red alder, western redcedar, western hemlock, and bigleaf maple. On the
basis of a 100-year site curve, the mean site index for Douglas-fir is 161. On the basis of a 50-year site curve, it is 123. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 171 cubic feet per acre per year at 65 years of age.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings. Because the rooting depth is restricted by the hardpan, trees are subject to occasional windthrow.

Common forest understory plants are cascade Oregon-grape, western brackenfern, western swordfern, vine maple, and salal.

The main limitations affecting pasture are the seasonal high water table, the slope, and the soil depth, which is limited by the hardpan. Grasses and legumes grow well if fertilizer is applied. Grazing when the soil is wet results in compaction of the surface layer, poor tillth, and excessive runoff. The seedbed should be prepared on the contour or across the slope where practical. Proper stocking rates, pasture rotation, and restricted grazing during wet periods help to keep the pasture in good condition and protect the soil from erosion. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Animal manure can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least once a year. In most years irrigation is needed for maximum production. Sprinkler irrigation is the best method of applying water.

This map unit is in capability subclass IVe.

53—Kapowsin silt loam, 30 to 50 percent slopes.

This moderately deep, moderately well drained soil is on escarpments on till plains. It formed in compact glacial till. The native vegetation is mainly conifers and hardwoods. Elevation is 50 to 600 feet. The average annual precipitation is 35 to 50 inches, the average air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface layer is dark brown silt loam about 4 inches thick. The upper 14 inches of the subsoil is dark yellowish brown silt loam, the next 4 inches is dark yellowish brown, mottled loam, and the lower 8 inches is dark yellowish brown, mottled gravelly loam. The substratum to a depth of 60 inches or more is a grayish brown, weakly cemented hardpan. It is strongly compacted and crushes to gravelly loam. It is at a depth of about 20 to 30 inches.

Included in this unit are small areas of Alderwood soils on till plains and escarpments and Hoogdals soils on terraces. Also included are small areas of Kapowsin silt loam that have slopes of 15 to 30 percent. Included areas make up about 15 percent of the total acreage.

Permeability is moderate above the hardpan in the Kapowsin soil and very slow through the pan. Available water capacity is moderate. Effective rooting depth is about 20 to 30 inches. A perched seasonal high water table is at a depth of 12 to 24 inches from December to June. Runoff is rapid, and the hazard of water erosion is severe.

This unit is used as woodland. Douglas-fir is the main woodland species. Among the trees of limited extent are red alder, western redcedar, western hemlock, and bigleaf maple. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 161. On the basis of a 50-year site curve, it is 123. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 171 cubic feet per acre per year at 65 years of age.

The main limitation affecting the harvesting of timber is slope. The slope restricts the use of wheeled and tracked equipment in skidding operations. Cable yarding systems generally are safer and minimize damage to the surface. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Steep yarding paths, skid trails, and firebreaks are subject to rilling and gullying unless they are protected by a plant cover or adequate water bars are provided.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the
stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings. Because the rooting depth is restricted by the hardpan, trees are subject to occasional windthrow.

Common forest understory plants are cascade Oregon-grape, western brackenfern, western swordfern, vine maple, and salal.

This map unit is in capability subclass V1e.

54—Kapowsin stony loam, 0 to 3 percent slopes.
This moderately deep, moderately well drained soil is on till plains. It formed in compact glacial till. The native vegetation is mainly conifers and hardwoods. Elevation is 400 to 550 feet. The average annual precipitation is 35 to 50 inches. The average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface layer is dark yellowish brown stony loam about 6 inches thick. The upper 9 inches of the subsoil is dark yellowish brown gravelly loam, and the lower 15 inches is yellowish brown, mottled gravelly loam. The substratum to a depth of 60 inches or more is a grayish brown, weakly cemented hardpan. It is strongly compacted and crushes to gravelly loam. It is at a depth of about 20 to 30 inches.

Included in this unit are small areas of Alderwood soils on till plains, Baldhill soils on terminal moraines, and Everson and Norma soils in depressions. Also included are small areas of Kapowsin stony loam that have slopes of 3 to 15 percent. Included areas make up about 10 percent of the total acreage.

Permeability is moderate above the hardpan in the Kapowsin soil and very slow through the pan. Available water capacity is moderate. Effective rooting depth is about 20 to 30 inches. A perched seasonal high water table is at a depth of 12 to 24 inches from December to June. Runoff is slow, and the hazard of water erosion is slight.

This unit is used for hayland, pasture, woodland, or homesites. The main limitations affecting hay and pasture are the seasonal high water table, stones on the surface, and the soil depth, which is limited by the hardpan. Grasses and legumes grow well if fertilizer is applied. Grazing when the soil is wet damages the plants and results in compaction of the surface layer. Proper stocking rates, pasture rotation, and restricted grazing during wet periods help to keep the pasture in good condition. Because of the stones, spreading manure, mowing, and seeding are difficult. In most years irrigation is needed for maximum production.

Sprinkler irrigation is the best method of applying water.

Douglas-fir is the main woodland species on this unit. Among the trees of limited extent are red alder, western redcedar, western hemlock, and bigleaf maple. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 161. On the basis of a 50-year site curve, it is 123. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 171 cubic feet per acre per year at 65 years of age.

The main limitations affecting the harvesting of timber are the surface stones and the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. The stones hinder harvesting and can cause breakage of timber when the trees are felled. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings. Because the rooting depth is restricted by the hardpan, trees are subject to occasional windthrow.

Common forest understory plants are cascade Oregon-grape, western brackenfern, western swordfern, vine maple, and salal.

The main limitation affecting homesites is the seasonal high water table. A drainage system should be installed on sites for buildings with basements or crawl spaces.

The main limitations affecting septic tank absorption fields are the seasonal wetness and the hardpan. Because of the restrictive layer, onsite sewage disposal systems often fail or do not function properly during periods of heavy rainfall. The effluent from septic tank absorption fields can surface in downslope areas and thus create a health hazard.

This map unit is in capability subclass IVw.

55—Kapowsin stony loam, 3 to 15 percent slopes.
This moderately deep, moderately well drained soil is on uplands. It formed in compact glacial till. The native vegetation is mainly conifers and hardwoods. Elevation is 400 to 550 feet. The average annual precipitation is
35 to 50 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface layer is dark yellowish brown stony loam about 6 inches thick. The upper 9 inches of the subsoil is dark yellowish brown gravelly loam, and the lower 15 inches is yellowish brown, mottled gravelly loam. The substratum to a depth of 60 inches or more is a grayish brown, weakly cemented, strongly compacted hardpan. It crushes to gravelly loam. It is at a depth of about 20 to 30 inches.

Included in this unit are small areas of Alderwood soils on till plains, Baldhill soils on terminal moraines, and Everson and Norma soils in depressions. Also included are small areas of Kapowsin stony loam that have slopes of 0 to 3 percent. Included areas make up about 10 percent of the total acreage.

Permeability is moderate above the hardpan in the Kapowsin soil and very slow through the pan. Available water capacity is moderate. Effective rooting depth is about 20 to 30 inches. A perched seasonal high water table is at a depth of 12 to 24 inches from December to June. Runoff is slow, and the hazard of water erosion is slight.

This unit is used for hayland, pasture, woodland, or homesites. The main limitations affecting hay and pasture are the seasonal high water table, stones on the surface, and the soil depth, which is limited by the hardpan. Grasses and legumes grow well if fertilizer is applied. Grazing when the soil is wet results in compaction of the surface layer, poor tilth, and excessive runoff. The seedbed should be prepared on the contour or across the slope where practical. Proper stocking rates, pasture rotation, and restricted grazing during wet periods help to keep the pasture in good condition and protect the soil from erosion. Because of the stones, spreading manure, mowing, and seeding are difficult. In most years irrigation is needed for maximum production. Sprinkler irrigation is the best method of applying water.

Douglas-fir is the main woodland species on this unit. Among the trees of limited extent are red alder, western redcedar, western hemlock, and bigleaf maple. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 161. On the basis of a 50-year site curve, it is 123. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 171 cubic feet per acre per year at 65 years of age.

The main limitations affecting the harvesting of timber are the surface stones and the mudliness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use.

Rock for road construction is not readily available on this unit. Stones on the surface hinder harvesting and can cause breakage of timber when the trees are felled. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of Douglas-fir seedlings. Because the rooting depth is restricted by the hardpan, trees are subject to occasional windthrow.

Common forest understory plants are cascade Oregon-grape, western brackenfern, and western swordfern.

The main limitation affecting homesites is the seasonal high water table. A drainage system should be installed on sites for buildings with basements or crawl spaces. The hardpan is ripappable.

The main limitations affecting septic tank absorption fields are the seasonal wetness and the hardpan. Because of the restrictive layer, onsite sewage disposal systems often fail or do not function properly during periods of heavy rainfall. The effluent from septic tank absorption fields can surface in downslope areas and thus create a health hazard. The slope hinders the installation of the absorption fields. Absorption lines should be installed on the contour.

This map unit is in capability subclass IVc.

56—Katula very cobbly loam, 20 to 30 percent slopes. This moderately deep, well drained soil is on narrow ridgetops and back slopes in the uplands. It formed in colluvium and residuum derived from basalt. The native vegetation is mainly conifers. Elevation is 1,800 to 2,650 feet. The average annual precipitation is 70 to 80 inches, the average annual air temperature is about 48 degrees F, and the average frost-free period is 130 to 170 days.

Typically, the surface layer is dark reddish brown very cobbly loam about 5 inches thick. The subsoil is dark brown extremely cobbly loam about 27 inches thick. Fractured basalt is at a depth of about 32 inches. Depth to the basalt ranges from 20 to 40 inches.

Included in this unit are small areas of Bunker and Lates soils and Rock outcrop on ridgetops. Also
included are small areas of Katula very cobbly loam that have slopes of 30 to 65 percent. Included areas make up about 20 percent of the total acreage.

Permeability is moderate in the Katula soil. Available water capacity is low. Effective rooting depth is 20 to 40 inches. Runoff is slow, and the hazard of water erosion is slight.

This unit is used as woodland. Douglas-fir and western hemlock are the main woodland species. Among the trees of limited extent are red alder, bigleaf maple, and Pacific silver fir. On the basis of a 100-year site curve, the mean site index is 143 for Douglas-fir and 145 for western hemlock. On the basis of a 50-year site curve, it is 108 for Douglas-fir and 104 for western hemlock. The highest average growth rate of an unmanaged, even-aged stand is 149 cubic feet per acre per year at 65 years of age for Douglas-fir and 228 cubic feet per acre per year at 50 years of age for western hemlock. Areas on ridgetops that are subject to strong, persistent winds are less productive than other areas of this unit.

The main limitation affecting the harvesting of timber is surface cobbles, which can hinder skidding operations. This soil is suited to year-round logging. Logging roads require suitable surfacing material for year-round use. Rock for road construction is readily available on this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir and noble fir seedlings. If the stand includes seed trees, natural reforestation by western hemlock and Pacific silver fir occurs periodically in cutover areas. The seedling mortality rate is higher on ridgetops that are subject to strong, persistent winds than in other areas of this unit. Droughtiness in the surface layer reduces the seedling survival rate. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir and noble fir seedlings and the natural reforestation of western hemlock and Pacific silver fir. Because the rooting depth is restricted by the underlying bedrock, trees are subject to occasional windthrow.

Common forest understory plants are salal, salmonberry, cascade Oregon-grape, red huckleberry, and western swordfern.

This map unit is in capability subclass VIs.
accomplished by planting Douglas-fir and noble fir seedlings. If the stand includes seed trees, natural reforestation by western hemlock and Pacific silver fir occurs periodically in cutover areas. Droughtiness in the surface layer reduces the seedling survival rate. The seedling mortality rate is higher on ridgetops that are subject to strong, persistent winds than in other areas of this unit. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir and noble fir seedlings and the natural reforestation of western hemlock and Pacific silver fir. Because the rooting depth is restricted by the underlying bedrock, trees are subject to occasional windthrow.

Common forest understory plants are salal, salmonberry, cascade Oregon-grape, red huckleberry, and western swordfern.

This map unit is in capability subclass VI.s.

58—Lates silt loam, 8 to 30 percent slopes. This moderately deep, well drained soil is on mountains. It formed in material weathered from basalt. The native vegetation is mainly conifers. Elevation is 1,800 to 2,600 feet. The average annual precipitation is 75 to 80 inches, the average annual air temperature is about 43 degrees F, and the average frost-free period is 130 to 170 days.

Typically, the surface layer is very dark brown silt loam about 12 inches thick. The upper 10 inches of the subsoil is dark brown gravelly loam, and the lower 10 inches is dark brown gravelly silt loam. Fractured basalt is at a depth of about 32 inches. Depth to the basalt ranges from 20 to 40 inches.

Included in this unit are small areas of Bunker and Katula soils on ridgetops and shoulder slopes, soils that are less than 20 inches deep to bedrock, a poorly drained soil, and Rock outcrop. Also included are small areas of Lates silt loam that have slopes of 30 to 65 percent. Included areas make up about 20 percent of the total acreage.

Permeability and available water capacity are moderate in the Lates soil. Effective rooting depth is 20 to 40 inches. Runoff is slow, and the hazard of water erosion is slight.

This unit is used as woodland. Western hemlock and Douglas-fir are the main woodland species. Among the trees of limited extent are Pacific silver fir, red alder, bigleaf maple, Sitka spruce, and western redcedar. On the basis of a 100-year site curve, the mean site index is 135 for western hemlock and 138 for Douglas-fir. On the basis of a 50-year site curve, it is 95 for western hemlock and 110 for Douglas-fir. The highest average growth rate of an unmanaged, even-aged stand is 209 cubic feet per acre per year at 50 years of age for western hemlock and 142 cubic feet per acre per year at 70 years of age for Douglas-fir.

The main limitation affecting the harvesting of timber is the mudiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and slippery and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is readily available on this unit.

Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir or noble fir seedlings. If the stand includes seed trees, natural reforestation by western hemlock and Pacific silver fir occurs periodically in cutover areas. When openings are made in the canopy, invading brushy plants can delay the establishment of planted Douglas-fir and noble fir seedlings and the natural reforestation of western hemlock and Pacific silver fir. Because the rooting depth is restricted by the underlying bedrock, trees are subject to occasional windthrow.

Common forest understory plants are salmonberry, salal, red huckleberry, western swordfern, and western brackenfern.

This map unit is in capability subclass IV-e.

59—Lates silt loam, 30 to 65 percent slopes. This moderately deep, well drained soil is on mountains. It formed in material weathered from basalt. The native vegetation is mainly conifers. Elevation is 1,800 to 2,600 feet. The average annual precipitation is 75 to 80 inches, the average annual air temperature is about 43 degrees F, and the average frost-free period is 130 to 170 days.

Typically, the surface layer is very dark brown silt loam about 12 inches thick. The upper 10 inches of the subsoil is dark brown gravelly loam, and the lower 10 inches is dark brown gravelly silt loam. Fractured basalt is at a depth of about 32 inches. Depth to the basalt ranges from 20 to 40 inches.

Included in this unit are small areas of Bunker and Katula soils on ridgetops and shoulder slopes, soils that are less than 20 inches deep to bedrock, a poorly drained soil, and Rock outcrop. Also included are small areas of Lates silt loam that have slopes of 30 to 65 percent. Included areas make up about 20 percent of the total acreage.

Permeability and available water capacity are moderate in the Lates soil. Effective rooting depth is 20 to 40 inches. Runoff is slow, and the hazard of water erosion is slight.

This unit is used as woodland. Western hemlock and Douglas-fir are the main woodland species. Among the trees of limited extent are Pacific silver fir, red alder, bigleaf maple, Sitka spruce, and western redcedar. On the basis of a 100-year site curve, the mean site index is 135 for western hemlock and 138 for Douglas-fir. On the basis of a 50-year site curve, it is 95 for western hemlock and 110 for Douglas-fir. The highest average growth rate of an unmanaged, even-aged stand is 209 cubic feet per acre per year at 50 years of age for western hemlock and 142 cubic feet per acre per year at 70 years of age for Douglas-fir.

The main limitation affecting the harvesting of timber is the mudiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and slippery and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is readily available on this unit.

Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir or noble fir seedlings. If the stand includes seed trees, natural reforestation by western hemlock and Pacific silver fir occurs periodically in cutover areas. When openings are made in the canopy, invading brushy plants can delay the establishment of planted Douglas-fir and noble fir seedlings and the natural reforestation of western hemlock and Pacific silver fir. Because the rooting depth is restricted by the underlying bedrock, trees are subject to occasional windthrow.

Common forest understory plants are salmonberry, salal, red huckleberry, western swordfern, and western brackenfern.

This map unit is in capability subclass IV-e.
and small areas of Lates silt loam that have slopes of 8 to 30 percent. Included areas make up about 20 percent of the total acreage.

Permeability and available water capacity are moderate in the Lates soil. Effective rooting depth is 20 to 40 inches. Runoff is medium, and the hazard of water erosion is moderate.

This unit is used as woodland. Western hemlock and Douglas-fir are the main woodland species. Among the trees of limited extent are Pacific silver fir, red alder, bigleaf maple, Sitka spruce, and western redcedar. On the basis of a 100-year site curve, the mean site index is 135 for western hemlock and 138 for Douglas-fir. On the basis of a 50-year site curve, it is 95 for western hemlock and 110 for Douglas-fir. The highest average growth rate of an unmanaged, even-aged stand is 209 cubic feet per acre per year at 50 years of age for western hemlock and 142 cubic feet per acre per year at 70 years of age for Douglas-fir.

The main limitation affecting the harvesting of timber is slope. The slope restricts the use of wheeled and tracked equipment in skidding operations. Cable yarding systems generally are safer and minimize damage to the surface. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and slippery and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is readily available on this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Steep yarding paths, skid trails, and firebreaks are subject to rilling and gullyfing unless they are protected by a plant cover or adequate water bars are provided.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir or noble fir seedlings. If the stand includes seed trees, natural reforestation by western hemlock and Pacific silver fir occurs periodically in cutover areas. When openings are made in the canopy, invading brushy plants can delay the establishment of planted Douglas-fir and noble fir seedlings and the natural reforestation of western hemlock and Pacific silver fir. Because the rooting depth is restricted by the underlying bedrock, trees are subject to occasional windthrow.

Common forest understory plants are salmonberry, salal, red huckleberry, western swordfern, and western brackenfern.

This map unit is in subclass Vle.

60—Mal clay loam, 5 to 30 percent slopes. This very deep, moderately well drained soil is on foothills and mountain slopes. It formed in residuum derived dominantly from highly weathered tuffaceous marine siltstone and fine grained sandstone, which are mixed with volcanic ash in the upper part. The native vegetation is mainly conifers. Elevation is 1,800 to 2,300 feet. The average annual precipitation is 60 to 70 inches, the average air temperature is about 43 degrees F, and the average frost-free period is 120 to 150 days.

Typically, the surface layer is dark yellowish brown clay loam about 7 inches thick. The upper 9 inches of the subsoil is dark brown clay loam, and the lower part to a depth of 60 inches or more is dark yellowish brown and strong brown clay.

Included in this unit are small areas of Jonas and Vailton soils on mountainsides. Also included are small areas of Mal clay loam that have slopes of 30 to 65 percent. Included areas make up about 15 percent of the total acreage.

Permeability is moderately slow in the Mal soil. Available water capacity is high. Effective rooting depth is 60 inches or more. Runoff is medium, and the hazard of water erosion is moderate.

This unit is used as woodland. Douglas-fir is the main woodland species. Among the trees of limited extent are western hemlock, red alder, western redcedar, and bigleaf maple. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 133. On the basis of a 50-year site curve, it is 110. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 134 cubic feet per acre per year at 70 years of age.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and sticky and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by western hemlock and red alder occurs readily in cutover
areas. When openings are made in the canopy, invading brushy plants can delay the establishment of planted Douglas-fir seedlings and the natural reforestation of western hemlock.

Common forest understory plants are cascade Oregon-grape, western brackenfern, vine maple, red huckleberry, and devil's club.

This map unit is in capability subclass IVe.

61—Mal clay loam, 30 to 65 percent slopes. This very deep, moderately well drained soil is on foothills and mountainsides. It formed in residuum derived dominantly from highly weathered tuffaceous marine siltstone and fine grained sandstone, which are mixed with volcanic ash in the upper part. The native vegetation is mainly conifers. Elevation is 1,800 to 2,300 feet. The average annual precipitation is 60 to 70 inches. The average annual air temperature is about 43 degrees F. and the average frost-free period is 120 to 150 days.

Typically, the surface layer is dark yellowish brown clay loam about 7 inches thick. The upper 9 inches of the subsoil is dark brown clay loam, and the lower part to a depth of 60 inches or more is dark yellowish brown and strong brown clay.

Included in this unit are small areas of Jonas and Vailston soils on mountainsides. Also included are small areas of Mal clay loam that have slopes of 5 to 30 percent. Included areas make up about 15 percent of the total acreage.

Permeability is moderately slow in the Mal soil. Available water capacity is high. Effective rooting depth is 60 inches or more. Runoff is rapid, and the hazard of water erosion is severe.

This unit is used as woodland. Douglas-fir is the main woodland species. Among the trees of limited extent are western hemlock, red alder, western redcedar, and bigleaf maple. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 133. On the basis of a 50-year site curve, it is 110. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 134 cubic feet per acre per year at 70 years of age.

The main limitation affecting the harvesting of timber is slope. The slope restricts the use of wheeled and tracked equipment in skidding operations. Cable yarding systems generally are safer and minimize damage to the surface. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and sticky and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Steep yarding paths, skid trails, and firebreaks are subject to rilling and gully unless they are protected by a plant cover or adequate water bars are provided.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by western hemlock and red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can delay the establishment of planted Douglas-fir seedlings and the natural reforestation of western hemlock.

Common forest understory plants are cascade Oregon-grape, western brackenfern, vine maple, red huckleberry, and devil's club.

This map unit is in capability subclass Vle.

62—Mashel loam, 5 to 30 percent slopes. This deep, moderately well drained soil is on glaciated plains and the adjacent uplands. It formed in highly weathered glacial till. The native vegetation is mainly conifers. Elevation is 900 to 1,500 feet. The average annual precipitation is 50 to 60 inches, the average annual air temperature is about 49 degrees F, and the average frost-free period is 130 to 190 days.

Typically, the surface is covered with a mat of needles and twigs about 3 inches thick. The surface layer is dark brown loam about 8 inches thick. The upper 8 inches of the subsoil is dark brown loam, and the lower 39 inches is yellowish brown and light yellowish brown silty clay and clay loam. The substratum to a depth of 60 inches or more is grayish brown and light yellowish brown loam.

Included in this unit are small areas of Rainier soils on mountainsides and Scamman soils on terraces. Also included are small areas of Mashel loam that have slopes of 30 to 65 percent. Included areas make up about 15 percent of the total acreage.

Permeability is moderately slow in the Mashel soil. Available water capacity high. Effective rooting depth is 40 to more than 60 inches. Runoff is medium, and the hazard of water erosion is moderate.

This unit is used as woodland. Douglas-fir is the main woodland species. Among the trees of limited extent are red alder, western hemlock, western redcedar, and bigleaf maple. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 162. On the basis of a 50-year site curve, it is 123. The highest average growth rate of an unmanaged, even-
aged stand of Douglas-fir is 172 cubic feet per acre per year at 65 years of age.

The main limitation affecting the harvesting of timber is the mudiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in rut and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs periodically in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of Douglas-fir seedlings.

Common forest understory plants are vine maple, western swordfern, salal, red huckleberry, and trailing blackberry.

This map unit is in capability subclass IVe.

63—Mashel loam, 30 to 65 percent slopes. This deep, moderately well drained soil is on glacial plains and the adjacent uplands. It formed in highly weathered glacial till. The native vegetation is mainly conifers. Elevation is 900 to 1,500 feet. The average annual precipitation is 60 to 70 inches, the average annual air temperature is about 49 degrees F, and the average frost-free period is 130 to 190 days.

Typically, the surface is covered with a mat of needles and twigs about 3 inches thick. The surface layer is dark brown loam about 8 inches thick. The upper 8 inches of the subsoil is dark brown loam, and the lower 39 inches is yellowish brown and light yellowish brown silty clay and clay loam. The substratum to a depth of 60 inches or more is grayish brown and light yellowish brown loam.

Included in this unit are small areas of Rainier soils on mountainsides and Scamman soils on terraces. Also included are small areas of Mashal loam that have slopes of 5 to 30 percent. Included areas make up about 15 percent of the total acreage.

Permeability is moderately slow in the Mashel soil. Available water capacity is high. Effective rooting depth is 40 to more than 60 inches. Runoff is rapid, and the hazard of water erosion is severe.

This unit is used as woodland. Douglas-fir is the main woodland species. Among the trees of limited extent are red alder, western hemlock, western redcedar, and bigleaf maple. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 162. On the basis of a 50-year site curve, it is 123. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 172 cubic feet per acre per year at 65 years of age.

The main limitation affecting the harvesting of timber is slope. The slope restricts the use of wheeled and tracked equipment when the soil is wet results in rut and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Steep yarning paths, skid trails, and firebreaks are subject to rilling and gullying unless they are protected by a plant cover or adequate water bars are provided.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs periodically in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of Douglas-fir seedlings.

Common forest understory plants are vine maple, western swordfern, salal, red huckleberry, and trailing blackberry.

This map unit is in capability subclass VIIe.

64—Maytown silt loam. This very deep, moderately well drained soil is on flood plains. It formed in alluvium derived dominantly from glacial sediments. Slope is 0 to 2 percent. The native vegetation is mainly conifers. Elevation is 50 to 500 feet. The average annual precipitation is 50 to 65 inches, the average annual air temperature is about 51 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface layer is dark brown silt loam about 16 inches thick. The upper 12 inches of the subsoil is brown silt loam, the next 8 inches is brown silty clay loam, and the lower part to a depth of 60 inches or more is brown, mottled silty clay loam.

Included in this unit are small areas of Chehalis soils on flood plains, Godfrey soils in depressions, and
Newberg soils on natural levees. Included areas make up about 15 percent of the total acreage.

Permeability is moderately slow in the Maytown soil. Available water capacity is high. Effective rooting depth is 60 inches or more. A seasonal high water table is at a depth of 30 to 40 inches from November to April. Runoff is slow, and the hazard of water erosion is slight. This soil is occasionally flooded for brief periods from November to April.

Most areas of this unit are used for hayland, pasture, or cropland. A few areas are used for homesteads or woodland.

This unit is well suited to hay and pasture. The main limitations are the seasonal high water table and the hazard of flooding. Grasses and legumes grow well if fertilizers are applied. Grazing when the soil is wet damages the plants and results in compaction of the surface layer. Rotation grazing helps to maintain the quality of forage. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Animal manure can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least once a year. In most years irrigation is needed for maximum production. Sprinkler irrigation is the best method of applying water.

Sweet corn, corn silage, peas, and small grain are commonly grown on this soil. The main limitations affecting cropland are the seasonal high water table and the hazard of flooding. Channeling and deposition are common along streambanks. Flooding can be controlled by dikes and levees. Applying animal manure and returning crop residue to the soil help to maintain the organic matter content, fertility, and tilth. A cover crop should be planted in the fall to protect the soil from erosion during periods of flooding. In most years irrigation is needed for maximum production. Sprinkler irrigation is the best method of applying water.

This unit is suited to woodland. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 160. On the basis of a 50-year site curve, it is 120. The estimated growth rate for an unmanaged, even-aged stand of Douglas-fir is 170 cubic feet per acre per year at 65 years of age.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seeding establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. The occasional flooding inhibits root respiration and thus results in some seedling mortality. When the openings are made in the canopies, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings. Because the rooting depth is restricted by the seasonal high water table, trees are subject to occasional windthrow.

The main limitation affecting homesteads is the hazard of flooding. Dikes and channels that have outlets for floodwater can be used to protect buildings and onsite sewage disposal systems from flooding. Roads and streets should be built above the expected flood level.

The main limitations affecting septic tank absorption fields are the hazard of flooding, the seasonal wetness, and the moderately slow permeability. The moderately slow permeability and the high water table increase the likelihood that the septic tank system will fail. Backfilling the trench with sandy material and installing long absorption lines help to compensate for the moderately slow permeability.

This map unit is in capability subclass I1w.

65—McKenna gravelly silt loam. 0 to 5 percent slopes. This moderately deep, poorly drained soil is in depressions and drainageways. It formed in glacial drift. The native vegetation is mainly hardwoods. Elevation is 50 to 500 feet. The average annual precipitation is 45 to 55 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 180 days.

Typically, the surface is covered with a mat of leaves and twigs about 3 inches thick. The surface layer is black gravelly silt loam about 9 inches thick. The upper 4 inches of the subsoil is very dark grayish brown gravelly silt loam, the next 8 inches is dark brown very gravelly silt loam, and the lower 15 inches is dark brown and dark yellowish brown, mottled very gravelly loam. The substratum to a depth of 60 inches or more is grayish brown, dense glacial till, which grades to very gravelly loam. Depth to the glacial till ranges from 20 to 40 inches.

Included in this unit are small areas of Alderwood and Kapowsin soils on till plains, Bellingham and Norma soils in depressions, and Everett and Skipawa soils on terraces. Included areas make up about 10 percent of the total acreage.
Permeability is moderate above the dense glacial till in the McKenna soil and very slow through the till. Available water capacity is moderate. Effective rooting depth is about 20 to 40 inches. A perched seasonal high water table is near or above the surface from November to April. Runoff is ponded or very slow, and the hazard of water erosion is slight.

Most areas of this unit are used as woodland. A few areas are used for hay and pasture.

Red alder is the main woodland species on this unit. Among the trees of limited extent are western redcedar and western hemlock. On the basis of a 50-year site curve, the mean site index for red alder is 90. The estimated growth rate of an unmanaged, even-aged stand of red alder is 101 cubic feet per acre per year at 40 years of age.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. The seasonal high water table and the ponding limit the use of equipment to dry periods. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling mortality is the main concern in the production of timber. Reforestation can be accomplished by planting western redcedar seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. The high water table and the ponding inhibit root respiration and thus result in high seedling mortality. When openings are made in the canopy, invading brushy plants can delay the establishment of planted western redcedar seedlings. Because the rooting depth is restricted by the high water table, trees are subject to frequent windthrow.

Common forest understory plants are salmonberry, devil's club, vine maple, trailing blackberry, and sedges.

The main limitations affecting hay and pasture are the high water table and the ponding. Wetness limits the choice of plants and the period of cutting or grazing and increases the risk of winterkill. Grazing should be delayed until the soil has drained sufficiently and is firm enough to withstand trampling by livestock. Grazing when the soil is wet damages the plants and results in compaction of the surface layer. Subsurface drains, open drains, or both can lower the water table if a suitable outlet is available. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Animal manure can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least once a year.

This map unit is in capability subclass Vlw.

66—Melbourne silty clay loam, 5 to 20 percent slopes. This deep, well drained soil is on uplands. It formed in residuum derived dominantly from highly weathered marine siltstone. The native vegetation is mainly conifers and hardwoods. Elevation is 200 to 600 feet. The average annual precipitation is 45 to 60 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface layer is dark brown silty clay loam about 11 inches thick. The upper 43 inches of the subsoil is dark brown silty clay loam, and the lower part to a depth of 60 inches or more is brown clay loam.

Included in this unit are small areas of Centralia soils on uplands. Galvin soils on alluvial fans, Prather and Salkum soils on broad uplands, and Scamman soils on terraces. Also included are small areas of Melbourne silty clay loam that have slopes of 20 to 40 percent. Included areas make up about 20 percent of the total acreage.

Permeability is moderately slow in the Melbourne soil. Available water capacity is high. Effective rooting depth is 40 to 60 inches. Runoff is slow, and the hazard of water erosion is slight.

This unit is used mainly for woodland. It is also used for homesites.

Douglas-fir is the main woodland species on this unit. Among the trees of limited extent are red alder, western redcedar, western hemlock, and bigleaf maple. On the basis of a 100-year site curve, the mean site index is 175 for Douglas-fir. On the basis of a 50-year site curve, it is 132 for Douglas-fir and 98 for red alder. The highest average growth rate of an unmanaged, even-aged stand is 186 cubic feet per acre per year at 60 years of age for Douglas-fir and 115 cubic feet per acre per year at 40 years of age for red alder.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and sticky and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Disturbance of the protective layer of duff can be
minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings.

Common forest understory plants are western brackenfern, western swordfern, salal, red huckleberry, cascade Oregon-grape, and trailing blackberry.

The main limitations affecting homesites are the slope and the shrink-well potential. Cut slopes generally are stable, but sloughing can occur. The hazard of erosion is increased if the surface is bare during site development. A plant cover can be established and maintained through proper fertilizing, seeding, mulching, and shaping of the slopes. In summer, irrigation is needed for lawn grasses, shrubs, vines, shade trees, and ornamental trees. Properly designing foundations and footings and diverting runoff away from buildings help to prevent the structural damage caused by shrinking and swelling.

The main limitation affecting septic tank absorption fields is the moderately slow permeability. This limitation can be overcome by increasing the size of the absorption fields. Absorption lines should be installed on the contour.

This map unit is in capability subclass I1e.

67—Melbourne silty clay loam, 20 to 40 percent slopes. This deep, well drained soil is on uplands. It formed in residuum derived dominantly from highly weathered marine siltstone. The native vegetation is mainly conifers and hardwoods. Elevation is 200 to 600 feet. The average annual precipitation is 45 to 60 inches. The average annual air temperature is about 50 degrees F. and the average frost-free period is 150 to 200 days.

Typically, the surface layer is dark brown silty clay loam about 11 inches thick. The upper 43 inches of the subsoil is dark brown silty clay loam, and the lower part to a depth of 60 inches or more is brown clay loam.

Included in this unit are small areas of Centrallia soils on uplands and Salkum and Scamman soils on terraces. Also included are small areas of Melbourne silty clay loam that have slopes of 5 to 20 percent or 40 to 65 percent. Included areas make up about 20 percent of the total acreage.

Permeability is moderately slow in the Melbourne soil. Available water capacity is high. Effective rooting depth is 40 to 60 inches. Runoff is medium, and the hazard of water erosion is moderate.

This unit is used as woodland. Douglas-fir is the main woodland species. Among the trees of limited extent are red alder, western redcedar, western hemlock, and bigleaf maple. On the basis of a 100-year site curve, the mean site index is 175 for Douglas-fir. On the basis of a 50-year site curve, it is 132 for Douglas-fir and 98 for red alder. The highest average growth rate of an unmanaged, even-aged stand is 186 cubic feet per acre per year at 60 years of age for Douglas-fir and 115 cubic feet per acre per year at 40 years of age for red alder.

The main limitation affecting the harvesting of timber is slope. The slope restricts the use of wheeled and tracked equipment in skidding operations. Cable yarding systems generally are safer and minimize damage to the surface. Use of wheeled and tracked equipment when the soil is wet results in rut and soil compaction. Unsurfaced roads and skid trails are soft and sticky and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Steep yarding paths, skid trails, and firebreaks are subject to rilling and gullying unless they are protected by a plant cover or adequate water bars are provided. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings.

Common forest understory plants are western brackenfern, western swordfern, salal, red huckleberry, cascade Oregon-grape, and trailing blackberry.

This map unit is in capability subclass V1e.

68—Melbourne silty clay loam, 40 to 65 percent slopes. This deep, well drained soil is on uplands. It formed in residuum and colluvium derived dominantly from highly weathered marine siltstone. The native vegetation is mainly conifers and hardwoods. Elevation is 200 to 600 feet. The average annual precipitation is
45 to 60 inches, the average air temperature is about 50 degrees F. and the average frost-free period is 150 to 200 days.

Typically, the surface layer is dark brown silty clay loam about 11 inches thick. The upper 43 inches of the subsoil is dark brown silty clay loam, and the lower part to a depth of 60 inches or more is brown clay loam.

Included in this unit are small areas of Centralia soils on uplands. Also included are small areas of Melbourne silty clay loam that have slopes of 20 to 40 percent. Included areas make up about 15 percent of the total acreage.

Permeability is moderately slow in the Melbourne soil. Available water capacity is high. Effective rooting depth is 40 to 60 inches. Runoff is medium, and the hazard of water erosion is moderate.

This unit is used as woodland. Douglas-fir is the main woodland species. Among the trees of limited extent are red alder, western redcedar, western hemlock, and bigleaf maple. On the basis of a 100-year site curve, the mean site index is 175 for Douglas-fir. On the basis of a 50-year site curve, it is 132 for Douglas-fir and 98 for red alder. The highest average growth rate of an unmanaged, even-aged stand is 186 cubic feet per acre per year at 60 years of age for Douglas-fir and 115 cubic feet per acre per year at 40 years of age for red alder.

The main limitation affecting the harvesting of timber is slope. The slope restricts the use of wheeled and tracked equipment in skidding operations. Cable yarding systems generally are safer and minimize damage to the surface. Unsurfaced roads and skid trails are soft and sticky and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Steep yarding paths, skid trails, and firebreaks are subject to rilling and gully ing unless they are protected by a plant cover or adequate water bars are provided. Slumping and road failure can occur following clearcut harvesting.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings.

Common forest understory plants are western brackenfern, western swordfern, salal, red huckleberry, cascade Oregon-grape, and trailing blackberry.

This map unit is in capability subclass VIIe.

69—Mukilteo muck. This very deep, very poorly drained soil is in upland depressions. It formed in organic material derived from sedges. Slopes are 0 to 2 percent. The native vegetation is mainly sedges and rushes. Elevation is 50 to 700 feet. The average annual precipitation is 40 to 60 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface layer is dark yellowish brown and dark reddish brown muck about 6 inches thick. Below this to a depth of 60 inches or more is dark reddish brown mucky peat.

Included in this unit are small areas of Shalcar and Mukilteo soils in upland depressions that have been artificially drained. Included areas make up about 10 percent of the total acreage.

Permeability is moderate in the Mukilteo soil. Available water capacity is high. Effective rooting depth is limited by a seasonal high water table that is at or above the surface from October to April. Runoff is ponded, and water erosion is not a hazard.

This unit is used for wildlife habitat or woodland. Red alder is the main woodland species. On the basis of a 50-year site curve, the estimated mean site index for red alder is 85. The highest average growth rate for red alder is about 90 cubic feet per acre per year at age 40 provided a fully stocked stand is established.

The main limitation affecting the harvesting of timber is the extreme muddiness caused by the extended periods of wetness. Logging roads are typically not located on this unit. Rock for road construction is not readily available. The seasonal high water table and the ponding limit the use of equipment to dry periods.

Seedling mortality and seedling establishment are the main concerns in the production of timber. Reforestation can be accomplished by planting western redcedar. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of seedlings. The seasonal high water table inhibits root respiration and thus results in a low seedling survival rate. Because the rooting depth is restricted by the seasonal high water table, trees are frequently subject to windthrow.

This map unit is in capability subclass VIIw.

70—Mukilteo muck, drained. This very deep, very poorly drained soil is in upland depressions. Drainage has been altered by subsurface drains and open
ditches. The soil formed in organic material derived dominantly from sedges. Slopes are 0 to 2 percent. The native vegetation is mainly sedges and rushes. Elevation is 50 to 700 feet. The average annual precipitation is 40 to 60 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface layer is dark yellowish brown and dark reddish brown muck about 6 inches thick. Below this to a depth of 60 inches or more is dark reddish brown mucky peat.

Included in this unit are small areas of Mukilteo and Shalcar soils in upland depressions that have not been artificially drained. Included areas make up about 10 percent of the total acreage.

Permeability is moderate in the Mukilteo soil. Available water capacity is high. Effective rooting depth is limited by a controlled water table that is at a depth of about 18 to 36 inches during the growing season. Runoff is slow, and water erosion is not a hazard.

This unit is used for cropland, hayland, or pasture. Blueberries are commonly grown on this soil. Most of the crops commonly produced in the survey area can be grown if an adequate drainage system is installed. The main limitation affecting cropland is the high water table. During the growing season, the water table should be lowered to a depth to about 2 to 5 feet. Subsidence is minimized if the water table is maintained immediately below the root zone and is allowed to return to the surface during the nongrowing season.

All forage crops commonly produced in the survey area can be grown if the drainage system is adequate. Subsidence is minimized if the water table is maintained immediately below the root zone and is allowed to return to the surface during the nongrowing season. Proper stocking rates, pasture rotation, and restricted grazing during wet periods help to keep the pasture in good condition. Grazing when the soil is wet damages the plants and results in compaction of the surface layer. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Animal manure can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least once a year.

This map unit is in capability subclass IIw.

71—Newberg fine sandy loam. This very deep, well drained soil is on natural levees on flood plains. It formed in alluvium. Slopes are 0 to 3 percent. The native vegetation is mainly conifers. Elevation is 100 to 500 feet. The average annual precipitation is 40 to 55 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 165 to 210 days.

Typically, the upper part of the surface layer is very dark grayish brown fine sandy loam about 8 inches thick, and the lower part is dark brown fine sandy loam about 9 inches thick. The substratum to a depth of 60 inches or more is dark yellowish brown fine sandy loam.

Included in this unit are small areas of Chehalis, Eld, and Maytown soils on flood plains and Godfrey soils in depressions. Also included are small areas of Newberg soils that have a loam surface layer. Included areas make up about 10 percent of the total acreage.

Permeability is moderately rapid in the Newberg soil. Available water capacity is high. Effective rooting depth is 60 inches or more. Runoff is very slow, and the hazard of water erosion is slight. This soil is occasionally flooded for brief periods from December to March.

Most areas of this unit are used for cropland, hayland, or pasture. A few areas are used for woodland or homesites.

This unit is well suited to crops. Sweet corn, corn silage, oats, and strawberries are commonly grown. The main limitation affecting cropland is the hazard of flooding. Channeling and deposition are common along streambanks. Flooding can be controlled by dikes. Applying animal manure and returning crop residue to the soil help to maintain the organic matter content, fertility, and tilth. Irrigation is needed for maximum yields. Sprinkler irrigation is the best method of applying water. The amount of water applied should be sufficient to wet the root zone but small enough to minimize the leaching of plant nutrients.

The main limitation affecting hay and pasture is the hazard of flooding. Grasses and legumes grow well if fertilizer is applied. Proper stocking rates, pasture rotation, and restricted grazing during wet periods help to keep the pasture in good condition. Rotation grazing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Animal manure can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least once a year. Irrigation is needed for maximum production. Sprinkler irrigation is the best method of applying water. The amount of water applied should be sufficient to wet the root zone but small enough to minimize the leaching of plant nutrients.

This unit is suited to woodland. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 160. On the basis of a 50-year site curve, it is 120. The estimated growth rate of an unmanaged, even-
aged stand of Douglas-fir is 170 cubic feet per acre per year at 65 years of age.

The main limitation affecting the harvesting of timber is the mudness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. The occasional flooding inhibits root respiration and thus results in some seedling mortality. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings.

The main problem affecting homesites is the hazard of flooding. Dikes and channels that have outlets for floodwater can be used to protect buildings and onsite sewage disposal systems from flooding. Roads and streets should be built above the expected flood level.

The main problems affecting septic tank absorption fields are the hazard of flooding and a poor filtering capacity. If the density of housing is moderate or high, community sewage systems are needed to prevent the contamination of water supplies caused by seepage.

This map unit is in capability subclass IIw.

72—Newberg loam. This very deep, well drained soil is on natural levees on flood plains. It formed in alluvium. Slopes are 0 to 3 percent. The native vegetation is mainly conifers. Elevation is 100 to 500 feet. The average annual precipitation is 40 to 55 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 165 to 210 days.

Typically, the upper part of the surface layer is very dark grayish brown loam about 8 inches thick, and the lower part is dark brown fine sandy loam about 9 inches thick. The substratum to a depth of 60 inches or more is dark yellowish brown fine sandy loam.

Included in this unit are small areas of Chehalis, Eld, and Maytown soils on flood plains and Godfrey soils in depressions. Also included are small areas of Newberg soils that have a fine sandy loam surface layer. Included areas make up about 10 percent of the total acreage.

Permeability is moderately rapid in the Newberg soil. Available water capacity is high. Effective rooting depth is 60 inches or more. Runoff is very slow, and the hazard of water erosion is slight. This soil is occasionally flooded for brief periods from December to March.

Most areas of this unit are used for cropland, hayland, or pasture. A few areas are used for woodland or homesites.

This unit is well suited to cropland. Sweet corn, corn silage, oats, and strawberries are commonly grown. The main limitation affecting cropland is the hazard of flooding. Channeling and deposition are common along streambanks. Flooding can be controlled by the use of dikes. Applying animal manure and returning crop residue to the soil help to maintain the organic matter content, fertility, and tilth. Irrigation is needed for maximum yields. Sprinkler irrigation is the best method of applying water.

The main problem affecting hay and pasture is the hazard of flooding. Grasses and legumes grow well if fertilizer is applied. Grazing when the soil is wet damages the plants and results in compaction of the surface layer. Rotation grazing helps to maintain the quality of forage. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Animal manure can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least once a year. Irrigation is needed for maximum production. Sprinkler irrigation is the best method of applying water.

This unit is suited to woodland. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 160. On the basis of a 50-year site curve, it is 120. The estimated growth rate of an unmanaged, even-aged stand of Douglas-fir is 170 cubic feet per acre per year at 65 years of age.

The main limitation affecting the harvesting of timber is the mudness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red
alder occurs readily in cutover areas. The occasional flooding inhibits root respiration and thus results in some seedling mortality. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings.

The main problem affecting homesites is the hazard of flooding. Dikes and channels that have outlets for floodwater can be used to protect buildings and onsite sewage disposal systems from flooding. Roads and streets should be built above the expected flood level.

The main problems affecting septic tank absorption fields are the hazard of flooding and a poor filtering capacity. If the density of housing is moderate or high, community sewage systems are needed to prevent the contamination of water supplies caused by seepage from onsite sewage disposal systems.

This map unit is in capability subclass I1w.

73—Nisqually loamy fine sand. 0 to 3 percent slopes. This very deep, somewhat excessively drained soil is on terraces. It formed in sandy glacial outwash. The native vegetation is mainly prairie grasses, ferns, and mosses. Elevation is 50 to 400 feet. The average annual precipitation is 40 to 55 inches. The average air temperature is about 51 degrees F. and the average frost-free period is 150 to 200 days.

Typically, the upper part of the surface layer is black loamy fine sand about 5 inches thick, and the lower part is very dark gray and very dark grayish brown loamy fine sand about 26 inches thick. The substratum to a depth of 60 inches or more is light olive brown loamy sand.

Included in this unit are small areas of Cagey, Giles, Indianola, Spanaway, and Yelm soils on terraces and Everson and Norma soils in depressions. Also included are small areas of Nisqually loamy fine sand that have slopes of 3 to 15 percent. Included areas make up about 10 percent of the total acreage.

Permeability is moderately rapid in the surface layer of the Nisqually soil and very rapid in the substratum. Available water capacity is moderate. Effective rooting depth is 60 inches or more. Runoff is slow, and the hazard of water erosion is slight.

This unit is used mainly for hayland, pasture, or homesites. It is also used as woodland.

The main limitation affecting hay and pasture is the moderate available water capacity. Proper grazing practices, weed control, and fertilizer are needed to ensure maximum quality of forage. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Animal manure can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least once a year. In summer, irrigation is needed for maximum production of most forage crops. Sprinkler irrigation is the best method of applying water. The amount of water applied should be sufficient to wet the root zone but small enough to minimize the leaching of plant nutrients.

The main limitation affecting cropland is the moderate available water capacity. Sweet corn, wheat, oats, strawberries, and raspberries are commonly grown on this soil. Broccoli is grown in a few areas (fig. 1). Returning crop residue to the soil and growing cover crops help to maintain the organic matter content, fertility, and tilth. In summer, irrigation is needed for maximum production of most crops. Sprinkler irrigation is the best method of applying water. Water should be applied in amounts sufficient to wet the root zone but small enough to minimize the leaching of plant nutrients.

Douglas-fir is the main woodland species on this unit. Among the trees of limited extent are red alder, bigleaf maple, and western redcedar. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 167. On the basis of a 50-year site curve, it is 125. The estimated growth rate of an unmanaged, even-aged stand of Douglas-fir is 178 cubic feet per acre per year at 60 years of age.

The unit is suited to year-round logging. Unsurfaced roads and skid trails are soft and slippery when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment and seedling mortality are the main concerns in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can delay the establishment of planted Douglas-fir seedlings. Droughtiness in the surface layer reduces the seedling survival rate.

This unit is suited to homesites. Cutbanks are not stable and are subject to sloughing. In summer, irrigation is needed for lawn grasses, shrubs, vines, shade trees, and ornamental trees. A plant cover can be established and maintained by proper fertilizing, seeding, mulching, and shaping of the slopes.

The main limitation affecting septic tank absorption fields is a poor filtering capacity. If the density of housing is moderate or high, community sewage
systems are needed to prevent the contamination of water supplies caused by seepage from onsite sewage disposal systems.

This map unit is in capability subclass IVs.

74—Nisqually loamy fine sand, 3 to 15 percent slopes. This very deep, somewhat excessively drained soil is on terraces. It formed in sandy glacial outwash.

The native vegetation is mainly prairie grasses, ferns, and mosses. Elevation is 50 to 400 feet. The average annual precipitation is 40 to 55 inches, the average annual air temperature is about 51 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the upper part of the surface layer is black loamy fine sand about 5 inches thick, and the lower part is very dark gray and very dark grayish brown loamy
fine sand about 26 inches thick. The substratum to a depth of 60 inches or more is light olive brown loamy sand.

Included in this unit are small areas of Giles, Indianola, Spanaway, and Yelm soils on terraces. Also included are small areas of Nisqually loamy fine sand that have slopes of 0 to 3 percent. Included areas make up about 15 percent of the total acreage.

Permeability is moderately rapid in the surface layer of the Nisqually soil and very rapid in the substratum. Available water capacity is moderate. Effective rooting depth is 60 inches or more. Runoff is slow, and the hazard of water erosion is slight.

This unit is used mainly for hayland, pasture, or homesites. It is also used as woodland.

The main limitation affecting hay and pasture is the moderate available water capacity. Proper grazing practices, weed control, and fertilizer are needed to ensure maximum quality of forage. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Animal manure can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least once a year. In summer, irrigation is needed for maximum production of most forage crops. Sprinkler irrigation is the best method of applying water. Water should be applied in amounts sufficient to wet the root zone but small enough to minimize the leaching of plant nutrients.

Douglas-fir is the main woodland species on this unit. Among the trees of limited extent are red alder, bigleaf maple, and western redcedar. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 167. On the basis of a 50-year site curve, it is 125. The estimated growth rate of an unmanaged, even-aged stand of Douglas-fir is 178 cubic feet per acre per year at 60 years of age.

This soil is suited to year-round logging. Unsurfaced roads and skid trails are soft and slippery when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seeding establishment and seeding mortality are the main concerns in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can delay the establishment of planted Douglas-fir seedlings. Droughtiness in the surface layer reduces the seedling survival rate.

This unit is suited to homesites. Cutbanks are not stable and are subject to sloughing. In summer, irrigation is needed for lawn grasses, shrubs, vines, shade trees, and ornamental trees. A plant cover can be established and maintained by fertilizing, seeding, mulching, and shaping of the slopes.

The main limitation affecting septic tank absorption fields is a poor filtering capacity. If the density of housing is moderate or high, community sewage systems are needed to prevent the contamination of water supplies caused by seepage from onsite sewage disposal systems. The slope hinders installation of the absorption fields. Absorption lines should be installed on the contour.

This map unit is in capability subclass IVe.

75—Norma fine sandy loam. This very deep, poorly drained soil is in depressions on till plains. It formed in alluvium. Slope is 0 to 3 percent. The native vegetation is mainly sedges, rushes, and hardwoods. Elevation is 50 to 500 feet. The average annual precipitation is 40 to 55 inches, the average annual air temperature is about 50 degrees F. and the average frost-free period is 150 to 200 days.

Typically, the surface layer is very dark grayish brown fine sandy loam about 7 inches thick. The subsoil is dark grayish brown, mottled fine sandy loam about 18 inches thick. The substratum to a depth of 60 inches or more is olive gray, mottled sandy loam.

Included in this unit are small areas of Alderwood and Kapowsin soils on till plains, Everson soils in depressions, and Cagey and Everett soils on terraces. Also included are small areas of Norma silt loam. Included areas make up about 15 percent of the total acreage.

Permeability is moderately rapid in the Norma soil. Available water capacity is high. Effective rooting depth is limited by a seasonal high water table that is near or above the surface from November to April. Runoff is slow, and the hazard of water erosion is slight.

This unit is used for hayland, pasture, or woodland. The main limitations affecting hay and pasture are the seasonal high water table and the ponding. Some areas have been partially drained, but adequate drainage systems have not been maintained. Wetness limits the choice of plants and the period of cutting or grazing and increases the risk of winterkill. Grazing should be delayed until the soil has drained sufficiently and is firm enough to withstand trampling by livestock. Proper
stocking rates, pasture rotation, and restricted grazing during wet periods help to keep the pasture in good condition. Subsurface drains, open drains, or both can lower the water table if a suitable outlet is available. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Animal manure can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least once a year.

This unit is suited to woodland. On the basis of a 50-year site curve, the mean site index for red alder is 90. The estimated growth rate of an unmanaged, even-aged stand of red alder is 101 cubic feet per acre per year at 40 years of age.

The main limitation affecting the harvesting of timber is the extreme muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. The seasonal high water table and the ponding limit the use of equipment to dry periods. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling mortality is the main concern in the production of timber. Reforestation can be accomplished by planting western redcedar seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. The ponding and the seasonal high water table inhibit root respiration and thus result in high seedling mortality. When openings are made in the canopy, invading brushy plants can delay the establishment of planted western redcedar seedlings. Because the rooting depth is restricted by the seasonal high water table, trees are subject to frequent windthrow.

This map unit is in capability subclass VIw.

76—Norma silt loam. This very deep, poorly drained soil is in depressions on till plains. It formed in alluvium. Slope is 0 to 3 percent. The native vegetation is mainly sedges, rushes, and hardwoods. Elevation is 50 to 500 feet. The average annual precipitation is 40 to 55 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface layer is very dark gray silt loam about 8 inches thick. The subsoil is dark grayish brown, mottled sandy loam about 22 inches thick. The substratum to a depth of 60 inches or more is olive gray, mottled sandy loam.

Included in this unit are small areas of Alderwood and Kapowsin soils on till plains, Everson soils in depressions, and Cagey and Everett soils on terraces. Also included are small areas of Norma fine sandy loam. Included areas make up about 15 percent of the total acreage.

Permeability is moderately rapid in the Norma soil. Available water capacity is high. Effective rooting depth is limited by a seasonal high water table that is near or above the surface from November to April. Runoff is slow, and the hazard of water erosion is slight.

This unit is used for hayland, pasture, or woodland. The main limitations affecting hay and pasture are the seasonal high water table and the ponding. Some areas have been partially drained, but adequate drainage systems have not been maintained. Wetness limits the choice of plants and the period of cutting or grazing and increases the risk of winterkill. Grazing should be delayed until the soil has drained sufficiently and is firm enough to withstand trampling by livestock. Grazing when the soil is wet damages the plants and results in compaction of the surface layer. Proper stocker rates, pasture rotation, and restricted grazing during wet periods help to keep the pasture in good condition. Subsurface drains, open drains, or both can lower the water table if a suitable outlet is available. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Animal manure can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least once a year.

This unit is suited to woodland. On the basis of a 50-year site curve, the mean site index for red alder is 90. The estimated growth rate of an unmanaged, even-aged stand of red alder is 101 cubic feet per acre per year at 40 years of age.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. The seasonal high water table and the ponding limit the use of equipment to dry periods. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling mortality is the main concern in the
production of timber. Reforestation can be accomplished by planting western redcedar seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. The ponding and the seasonal high water table inhibit root respiration and thus result in high seedling mortality. When openings are made in the canopy, invading brushy plants can delay the establishment of planted western redcedar seedlings. Because the rooting depth is restricted by the seasonal high water table, trees are subject to frequent windthrow.

This map unit is in capability subclass V1w.

77—Olympic silt loam, 5 to 20 percent slopes. This very deep, well drained soil is on uplands. It formed in residuum derived from basalt. The native vegetation is mainly conifers. Elevation is 200 to 1,600 feet. The average annual precipitation is 50 to 60 inches, the average annual air temperature is about 51 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface layer is dark brown and dark reddish brown silt loam about 12 inches thick. The upper 12 inches of the subsoil is yellowish red silty clay loam, and the lower part to a depth of 60 inches or more is yellowish red clay.

Included in this unit are small areas of Boistfort, Bunker, Centralia, Melbourne, and Raught soils on uplands and Galvin soils on alluvial fans. Also included are small areas of Olympic silt loam that have slopes of 20 to 40 percent. Included areas make up about 20 percent of the total acreage.

Permeability is moderately slow in the Olympic soil. Available water capacity is high. Effective rooting depth is 60 inches or more. Runoff is slow, and the hazard of water erosion is slight.

This unit is used as woodland. Douglas-fir is the main woodland species. Among the trees of limited extent are red alder, western hemlock, bigleaf maple, and western redcedar. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 175. On the basis of a 50-year site curve, it is 133. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 186 cubic feet per acre per year at 60 years of age.

The main limitation affecting the harvesting of timber is the mudness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction generally is available at a depth of about 5 to 10 feet.

Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of Douglas-fir seedlings.

Common forest understory plants are salmonberry, western swordfern, western brackenfern, salal, and vine maple.

This map unit is in capability subclass Ille.

78—Olympic silt loam, 20 to 40 percent slopes. This very deep, well drained soil is on uplands. It formed in residuum derived from basalt. The native vegetation is mainly conifers. Elevation is 200 to 1,600 feet. The average annual precipitation is 50 to 60 inches, the average annual air temperature is about 51 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface layer is dark brown and dark reddish brown silt loam about 12 inches thick. The upper 12 inches of the subsoil is yellowish red silty clay loam, and the lower part to a depth of 60 inches or more is yellowish red clay.

Included in this unit are small areas of Boistfort, Bunker, Centralia, Melbourne, and Raught soils on uplands. Also included are small areas of Olympic silt loam that have slopes of 20 to 40 percent. Included areas make up about 20 percent of the total acreage.

Permeability is moderately slow in the Olympic soil. Available water capacity is high. Effective rooting depth is 60 inches or more. Runoff is medium, and the hazard of water erosion is moderate.

This unit is used as woodland. Douglas-fir is the main woodland species. Among the trees of limited extent are red alder, western hemlock, bigleaf maple, and western redcedar. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 175. On the basis of a 50-year site curve, it is 133. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 186 cubic feet per acre per year at 60 years of age.

The main limitation affecting the harvesting of timber is slope. The slope restricts the use of wheeled and tracked equipment in skidding operations. Cable yarding systems generally are safer and minimize damage to the surface. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction.
Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction generally is available at a depth of about 5 to 10 feet. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Steep yarding paths, skid trails, and firebreaks are subject to rilling and gullying unless they are protected by a plant cover or adequate water bars are provided. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of Douglas-fir seedlings.

Common forest understory plants are salmonberry, western sword fern, western bracken fern, salal, and vine maple.

This map unit is in capability subclass Vle.

79—Pheeney gravelly loam, 5 to 30 percent slopes. This moderately deep, well drained soil is on upland benches, ridge crests, and mountain slopes. It formed in residuum and colluvium derived dominantly from andesite, which is mixed with volcanic ash in the upper part. The native vegetation is mainly conifers. Elevation is 1,500 to 2,800 feet. The average annual precipitation is 60 to 70 inches, the average annual air temperature is about 43 degrees F., and the average frost-free period is 130 to 170 days.

Typically, the upper part of the surface layer is black gravelly loam about 6 inches thick, and the lower part is very dark brown gravelly silt loam about 4 inches thick. The subsoil is dark yellowish brown very gravelly silt loam about 20 inches thick. Fractured andesite is at a depth of about 30 inches. Depth to the andesite ranges from 20 to 40 inches.

Included in this unit are small areas of Baumgard soils on uplands and Jonas and Vailton soils on mountainsides. Also included are small areas of Pheeney gravelly loam that have slopes of 30 to 65 percent and small areas of Rock outcrop. Included areas make up about 20 percent of the total acreage.

Permeability is moderate in the Pheeney soil. Available water capacity is low. Effective rooting depth is 20 to 40 inches. Runoff is medium, and the hazard of water erosion is moderate.

This unit is used as woodland. Douglas-fir and western hemlock are the main woodland species. Among the trees of limited extent are red alder, bigleaf maple, and western red cedar. On the basis of a 100-year site curve, the mean site index is 135 for Douglas-fir and 121 for western hemlock. On the basis of a 50-year site curve, it is 101 for Douglas-fir and 85 for western hemlock. The highest average growth rate of an unmanaged, even-aged stand is 138 cubic feet per acre per year at 70 years of age for Douglas-fir and 182 cubic feet per acre per year at 50 years of age for western hemlock. Areas on ridgetops that are subject to strong, persistent winds are less productive than other areas of this unit.

The main limitations affecting the harvesting of timber are occasional snowpack and the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is readily available on this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment and seedling mortality are the main concerns in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by western hemlock occurs readily in cutover areas. The seedling mortality rate is higher on ridgetops that are subject to strong, persistent winds than in other areas of this unit. Droughtiness in the surface layer reduces the seedling survival rate. When openings are made in the canopy, invading brushy plants can delay the establishment of Douglas-fir seedlings and the natural reforestation of western hemlock. Because the rooting depth is restricted by the underlying bedrock, trees are subject to occasional windthrow.

Common forest understory plants are western bracken fern, vine maple, cascade Oregon-grape, western sword fern, and red huckleberry.

This map unit is in capability subclass IVe.

80—Pheeney gravelly loam, 30 to 65 percent slopes. This moderately deep, well drained soil is on mountainsides. It formed in residuum and colluvium derived dominantly from andesite, which is mixed with volcanic ash in the upper part. The native vegetation is mainly conifers. Elevation is 1,500 to 2,800 feet. The average annual precipitation is 60 to 70 inches, the
average annual air temperature is about 43 degrees F, and the average frost-free period is 130 to 170 days.

Typically, the upper part of the surface layer is black gravelly loam about 6 inches thick, and the lower part is very dark brown gravelly silt loam about 4 inches thick. The subsoil is dark yellowish brown very gravelly silt loam about 20 inches thick. Fractured andesite is at a depth of about 30 inches. Depth to the andesite ranges from 20 to 40 inches.

Included in this unit are small areas of Baumgard soils on uplands and Jonas and Vailton soils on mountainsides. Also included are small areas of Pheeney gravelly loam that have slopes of 5 to 30 percent and small areas of Rock outcrop. Included areas make up about 20 percent of the total acreage.

Permeability is moderate in the Pheeney soil. Available water capacity is low. Effective rooting depth is 20 to 40 inches. Runoff is rapid, and the hazard of water erosion is severe.

This unit is used as woodland. Douglas-fir and western hemlock are the main woodland species. Among the trees of limited extent are red alder, bigleaf maple, and western redcedar. On the basis of a 100-year site curve, the mean site index is 135 for Douglas-fir and 121 for western hemlock. On the basis of a 50-year site curve, it is 101 for Douglas-fir and 85 for western hemlock. The highest average growth rate of an unmanaged, even-aged stand is 138 cubic feet per acre per year at 70 years of age for Douglas-fir and 182 cubic feet per acre per year at 50 years of age for western hemlock.

The main limitation affecting the harvesting of timber is slope. The slope restricts the use of wheeled and tracked equipment in skidding operations. Cable yarding systems generally are safer and minimize damage to the surface. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is readily available on this unit.

Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Steep yarding paths, skid trails, and firebreaks are subject to rilling and gullying unless they are protected by a plant cover or adequate water bars are provided.

Seedling establishment and seedling mortality are the main concerns in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by western hemlock occurs readily in cutover areas. Droughtiness in the surface layer reduces the seedling survival rate. When openings are made in the canopy, invading brushy plants can delay the establishment of Douglas-fir seedlings and the natural reforestation of western hemlock. Because the rooting depth is restricted by the underlying bedrock, trees are subject to occasional windthrow.

Common forest understory plants are western brackenfern, vine maple, cascade Oregon-grape, western swordfern, and red huckleberry.

This map unit is in capability subclass Vle.

81—Pheeney-Baumgard complex, 30 to 65 percent slopes. This map unit is on uplands and mountainsides. The native vegetation is mainly conifers. Elevation is 1,200 to 1,800 feet. The average annual precipitation is 60 to 70 inches, the average annual air temperature is 43 to 48 degrees F, and the average frost-free period is 130 to 170 days.

This unit is about 40 percent Pheeney gravelly loam and 30 percent Baumgard loam. The components of this unit are so intricately intermingled that it is not practical to map them separately at the scale used.

The Pheeney soil is moderately deep and well drained. It formed in colluvium derived dominantly from andesite. Typically, the upper part of the surface layer is black gravelly loam about 6 inches thick, and the lower part is very dark brown gravelly silt loam about 4 inches thick. The subsoil is dark yellowish brown very gravelly silt loam about 20 inches thick. Fractured andesite is at a depth of about 30 inches. Depth to the andesite ranges from 20 to 40 inches.

Permeability is moderate in the Pheeney soil. Available water capacity is low. Effective rooting depth is 20 to 40 inches. Runoff is rapid, and the hazard of water erosion is severe.

The Baumgard soil is deep and well drained. It formed in residuum and colluvium derived dominantly from andesite. Typically, the surface layer is dark reddish brown loam about 14 inches thick. The upper 16 inches of the subsoil is reddish brown and yellowish red clay loam, and the lower 15 inches is dark yellowish brown very gravelly clay loam. Fractured andesite is at a depth of about 45 inches. Depth to the andesite ranges from 40 to 60 inches.

Permeability is moderate in the Baumgard soil. Available water capacity is high. Effective rooting depth is 40 to 60 inches. Runoff is rapid, and the hazard of water erosion is severe.

Included in this unit are small areas of Mashel soils on glacial plains and Jonas, Rainier, and Vailton soils on mountainsides. Included areas make up about 30 percent of the total acreage.
This unit is used as woodland. Douglas-fir and western hemlock are the main woodland species on the Pheeney soil. Among the trees of limited extent are red alder, bigleaf maple, and western redcedar. On the basis of a 100-year site curve, the mean site index is 135 for Douglas-fir and 121 for western hemlock. On the basis of a 50-year site curve, it is 101 for Douglas-fir and 85 for western hemlock. The highest average growth rate of an unmanaged, even-aged stand is 138 cubic feet per acre per year at 70 years of age for Douglas-fir and 182 cubic feet per acre per year at 50 years of age for western hemlock.

Douglas-fir is the main woodland species on the Baumgard soil. Among the trees of limited extent are red alder, western hemlock, western redcedar, and bigleaf maple. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 161. On the basis of a 50-year site curve, it is 122. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 171 cubic feet per acre per year at 65 years of age.

The main limitation affecting the harvesting of timber is slope. The slope restricts the use of wheeled and tracked equipment in skidding operations. Cable yarding systems generally are safer and minimize damage to the surface. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and slippery and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is readily available on this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Steep yarding paths, skid trails, and firebreaks are subject to rilling and gullyng unless they are protected by a plant cover or adequate water bars are provided.

Seedling establishment and seedling mortality on the Pheeney soil and seedling establishment on the Baumgard soil are the main concerns in the production of timber. Retorestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by western hemlock and red alder occurs readily in cutover areas. Droughtiness in the surface layer reduces the seedling survival rate on the Pheeney soil. When openings are made in the canopy of stands, invading brushy plants can prevent the establishment of Douglas-fir seedlings on both soils and delay the natural reforestation of western hemlock on the Pheeney soil. Because the rooting depth is restricted in the Pheeney soil by the underlying bedrock, trees are subject to occasional windthrow.

Common forest understory plants are cascade Oregon-grape, western sword fern, vine maple, red huckleberry, and salal.

This map unit is in capability subclass Vle.

82—Pheeney-Rock outcrop complex, 40 to 65 percent slopes. This map unit is on mountainsides and ridgetops. The native vegetation is mainly conifers. Elevation is 1,700 to 2,800 feet. The average annual precipitation is 60 to 70 inches, the average annual air temperature is about 43 degrees F, and the average frost-free period is 130 to 170 days.

This unit is about 50 percent Pheeney gravelly loam and 25 percent Rock outcrop. The components of this unit are so intricately intermingled that it was not practical to map them separately at the scale used.

The Pheeney soil is moderately deep and well drained. It formed in colluvium derived dominantly from andesite. Typically, the upper part of the surface layer is black gravelly loam about 6 inches thick, and the lower part is very dark brown gravelly silt loam about 4 inches thick. The subsoil is dark yellowish brown very gravelly silt loam about 20 inches thick. Fractured andesite is at a depth of about 30 inches. Depth to the andesite ranges from 20 to 40 inches.

Permeability is moderate in the Pheeney soil. Available water capacity is low. Effective rooting depth is 20 to 40 inches. Runoff is rapid, and the hazard of water erosion is severe.

The Rock outcrop consists mainly of exposed andesite occurring as cliffs, dikes, and boulder-sized humps.

Included in this unit are small areas of Baumgard soils on uplands and Jonas and Vailton soils on mountainsides. Also included are small areas of soils that are more than 40 inches deep to bedrock and small areas of Pheeney soils that have slopes of 65 to 90 percent. Included areas make up about 25 percent of the total acreage.

This unit is used as woodland. Douglas-fir and western hemlock are the main woodland species on the Pheeney soil. Among the trees of limited extent are red alder, bigleaf maple, and western redcedar. On the basis of a 100-year site curve, the mean site index is 135 for Douglas-fir and 121 for western hemlock. On the basis of a 50-year site curve, it is 101 for Douglas-fir and 85 for western hemlock. The highest average growth rate of an unmanaged, even-aged stand is 138 cubic feet per acre per year at 70 years of age for Douglas-fir and 182 cubic feet per acre per year at 50 years of age for western hemlock. Areas on ridgetops that are subject to strong, persistent winds are less
productive than other areas of this unit.

The main limitation affecting the harvesting of timber is slope. The slope restricts the use of wheeled and tracked equipment in skidding operations. Cable yarding systems generally are safer and minimize damage to the surface. Use of wheeled and tracked equipment when the soil is wet results in runs and soil compaction. Unsurfaced roads and skid trails are soft and slippery and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is readily available on this unit. The Rock outcrop can hinder yarding and cause breakage of timber when the trees are felled. Avoiding large areas of Rock outcrop results in the convergence of yarding paths and skid trails and thus in compaction of the soil. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Steep yarding paths, skid trails, and firebreaks are subject to rilling and gullyling unless they are protected by a plant cover or adequate water bars are provided.

Seedling establishment and seedling mortality are the main concerns in the production of timber on the Pheeney soil. The seedling mortality rate is higher on ridgetops that are subject to strong, persistent winds than in other areas of this unit. Droughtiness in the surface layer reduces the seedling survival rate. Because the rooting depth is restricted by the underlying bedrock, trees are subject to occasional windthrow. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by western hemlock occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can delay the establishment of Douglas-fir seedlings and the natural reforestation of western hemlock. The Rock outcrop limits the even distribution of reforestation.

Common forest understory plants are western brackenfern, vine maple, cascade Oregon-grape, western swordfern, and red huckleberry.

This map unit is in capability subclass VIIe.

83—Pheeney-Rock outcrop complex, 65 to 90 percent slopes. This map unit is on mountainsides. The native vegetation is mainly conifers. Elevation is 1,700 to 2,800 feet. The average annual precipitation is 60 to 70 inches, the average annual air temperature is about 43 degrees F, and the average frost-free period is 130 to 170 days.

This unit is about 50 percent Pheeney gravelly loam and 25 percent Rock outcrop. The components of this unit are so intricately intermingled that it was not practical to map them separately at the scale used.

The Pheeney soil is moderately deep and well drained. It formed in colluvium derived dominantly from andesite. Typically, the upper part of the surface layer is black gravelly loam about 6 inches thick, and the lower part is very dark brown gravelly silt loam about 4 inches thick. The subsoil is dark yellowish brown very gravelly silt loam about 20 inches thick. Fractured andesite is at a depth of 30 inches. Depth to the andesite ranges from 20 to 40 inches.

Permeability is moderate in the Pheeney soil. Available water capacity is low. Effective rooting depth is 20 to 40 inches. Runoff is rapid, and the hazard of water erosion is severe.

The Rock outcrop consists mainly of areas of exposed andesite occurring as cliffs, dikes, and boulder-sized humps.

Included in this unit are small areas of Baumgard soils on uplands and Jonas and Valiton soils on mountainsides. Also included are small areas of soils that are more than 40 inches deep to bedrock and small areas of Pheeney soils that have slopes of 40 to 65 percent. Included areas make up about 25 percent of the total acreage.

This unit is used as woodland. Douglas-fir and western hemlock are the main woodland species on the Pheeney soil. Among the trees of limited extent are red alder, bigleaf maple, and western redcedar. On the basis of a 100-year site curve, the mean site index is 135 for Douglas-fir and 121 for western hemlock. On the basis of a 50-year site curve, it is 101 for Douglas-fir and 85 for western hemlock. The highest average growth rate of an unmanaged, even-aged stand is 138 cubic feet per acre per year at 70 years of age for Douglas-fir and 182 cubic feet per acre per year at 50 years of age for western hemlock.

The main limitation affecting the harvesting of timber is slope. Cable yarding systems generally are used on this unit. Use of wheeled and tracked equipment when the soil is wet results in runs and soil compaction. Unsurfaced roads and skid trails are soft and slippery and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is readily available on this unit. The rock outcrop hinders yarding and may cause breakage of timber when the trees are felled. Avoiding large areas of Rock outcrop results in the convergence of yarding paths and skid trails and thus in compaction of the soil. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Steep yarding paths, skid trails, and firebreaks are subject to rilling and gullyling unless they are
protected by a plant cover or adequate water bars are provided. Harvesting systems that lift logs entirely off the ground reduce the disturbance of the protective layer of duff.

Seedling establishment and seedling mortality are the main concerns in the production of timber on the Pheeney soil. The seedling mortality rate is higher on ridgetops that are subject to strong, persistent winds than in other areas of this unit. Droughtiness in the surface layer reduces the seedling survival rate. Because the rooting depth is restricted by the underlying bedrock, trees are subject to occasional windthrow. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by western hemlock occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can delay the establishment of Douglas-fir seedlings and the natural reforestation of western hemlock. The Rock outcrop limits the even distribution of reforestation.

Common forest understory plants are western brackenfern, vine maple, cascade Oregon-grape, western swordfern, and red huckleberry.

This map unit is in capability subclass VIIe.

84—Pilchuck loamy sand. This very deep, somewhat excessively drained soil is on flood plains. It formed in alluvium. Slope is 0 to 3 percent. The native vegetation is mainly conifers and hardwoods. Elevation is 20 to 600 feet. The average annual precipitation is 40 to 55 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 160 to 210 days.

Typically, the surface layer is very dark brown loamy sand about 6 inches thick. The upper 18 inches of the substratum is dark brown fine sand, the next 8 inches is dark brown loamy fine sand, and the lower part to a depth of 60 inches or more is very dark grayish brown fine sand.

Included in this unit are small areas of Puget and Sultan soils in depressions and Newberg and Puyallup soils on natural levees. Included areas make up about 15 percent of the total acreage.

Permeability is rapid in the Pilchuck soil. Available water capacity is low. Effective rooting depth is 60 inches or more. A seasonal high water table is at a depth of about 24 to 48 inches from November to April. Runoff is slow, and the hazard of water erosion is slight. This soil is occasionally flooded for brief periods from November to April.

This unit is used mainly for woodland. It is also used for hay and pasture.

Douglas-fir is the main woodland species on this unit. Among the trees of limited extent are red alder, bigleaf maple, western redcedar, western hemlock, and black cottonwood. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 152. On the basis of a 50-year site curve, it is 114. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 161 cubic feet per acre per year at 60 years of age.

The main hazard affecting the harvesting of timber is the flooding, which limits the use of equipment to dry periods. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment and seedling mortality are the main concerns in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. The flooding inhibits root respiration and thus results in high seedling mortality. Droughtiness in the surface layer reduces the seedling survival rate. When openings are made in the canopy, invading brushy plants can delay the establishment of planted Douglas-fir seedlings.

Common forest understory plants are vine maple, salmonberry, western swordfern, western brackenfern, and common snowberry.

The main limitations affecting hay and pasture are the low available water capacity, low fertility, and the flooding. Proper grazing practices, weed control, and fertilizer are needed to ensure maximum quality of forage. Channeling and deposition are common along streambanks. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. In summer, irrigation is needed for maximum production of most crops. Sprinkler irrigation is the best method of applying water. The amount of water applied should be sufficient to wet the root zone but small enough to minimize the leaching of plant nutrients.

This map unit is in capability subclass IVw.

85—Pits, gravel. This map unit consists of open excavations from which soil and the underlying rounded glacial pebbles and stones have been removed. It supports little or no vegetation. The excavated gravelly material is used as ballast and as topdressing on logging roads.
This map unit is in capability subclass Vlls.

86—Prather silty clay loam, 3 to 8 percent slopes. This very deep, moderately well drained soil is on upland terraces. It formed in residuum derived dominantly from highly weathered, ancient glacial drift. The native vegetation is mainly conifers. Elevation is 200 to 600 feet. The average annual precipitation is 40 to 60 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the upper part of the surface layer is very dark grayish brown silty clay loam about 5 inches thick, and the lower part is dark brown silty clay loam about 7 inches thick. The upper 17 inches of the subsoil is dark brown silty clay, the next 13 inches is dark brown, mottled silty clay, and the lower part to a depth of 60 inches or more is yellowish brown, mottled clay.

Included in this unit are small areas of Galvin soils on alluvial fans and Salkum and Scamman soils on terraces. Also included are small areas of Prather silty clay loam that have slopes of 8 to 20 percent. Included areas make up about 15 percent of the total acreage.

Permeability is moderate in the upper part of the subsoil in the Prather soil and slow in the lower part. Available water capacity is high. Effective rooting depth is 60 inches or more. A seasonal high water table is at a depth of about 18 to 36 inches from November to April. Runoff is slow, and the hazard of water erosion is slight.

This unit is used mainly for woodland. It is also used for hayland, pasture, or homesites.

Douglas-fir is the main woodland species on this unit. Among the trees of limited extent are red alder, western redcedar, bigleaf maple, and western hemlock. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 156. On the basis of a 50-year site curve, it is 120. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 165 cubic feet per acre per year at 60 years of age.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and sticky and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings. Because the rooting depth is restricted by the seasonal high water table, trees are subject to occasional windthrow.

Common forest understory plants are salal, cascade Oregon-grape, vine maple, red huckleberry, western swordfern, and western brackenfern.

The main limitation affecting hay and pasture is the seasonal high water table. Grasses and legumes grow well if fertilizer is applied. Grazing when the soil is wet damages the plants and results in compaction of the surface layer. Proper stocking rates, pasture rotation, and restricted grazing during wet periods help to keep the pasture in good condition and protect the soil from erosion. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Animal manure can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least once a year. In some years irrigation is needed for maximum production. Sprinkler irrigation is the best method of applying water.

The main limitations affecting homesites are the shrink-swell potential and the seasonal wetness. The wetness can be reduced by installing drains around the footings. The effects of shrinking and swelling can be minimized by using proper engineering designs and by backfilling with material that has a low shrink-swell potential.

The main limitations affecting septic tank absorption fields are the slow permeability and the seasonal wetness, which increase the likelihood that the disposal system will fail. The slow permeability can be overcome by increasing the size of the absorption field.

This map unit is in capability subclass llc.

87—Prather silty clay loam, 8 to 20 percent slopes. This very deep, moderately well drained soil is on upland terraces. It formed in residuum derived dominantly from highly weathered, ancient glacial drift. The native vegetation is mainly conifers. Elevation is 200 to 600 feet. The average annual precipitation is 40 to 60 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the upper part of the surface layer is very dark grayish brown silty clay loam about 5 inches thick,
and the lower part is dark brown silty clay loam about 7 inches thick. The upper 17 inches of the subsoil is dark brown silty clay, the next 13 inches is dark brown, mottled silty clay, and the lower part to a depth of 60 inches or more is yellowish brown, mottled clay.

Included in this unit are small areas of Centralia, Melbourne, Salkum, and Scamman soils on terraces. Also included are small areas of Prather silty clay loam that have slopes of 3 to 8 percent. Included areas make up about 20 percent of the total acreage.

Permeability is moderate in the upper part of the subsoil in the Prather soil and slow in the lower part. Available water capacity is high. Effective rooting depth is 60 inches or more. A seasonal high water table is at a depth of about 18 to 36 inches from November to April. Runoff is medium, and the hazard of water erosion is moderate.

This unit is used mainly for woodland. It is also used for hayland, pasture, or homesteads.

Douglas-fir is the main woodland species on this unit. Among the trees of limited extent are red alder, western redcedar, bigleaf maple, and western hemlock. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 156. On the basis of a 50-year site curve, it is 120. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 165 cubic feet per acre per year at 60 years of age.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and sticky and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit.

Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seeding establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of Douglas-fir seedlings. Because the rooting depth is restricted by the seasonal high water table, trees are subject to occasional windthrow.

Common forest understory plants are salal, cascade Oregon-grape, vine maple, red huckleberry, western swordfern, and western brackenfern.

The main limitation affecting hay and pasture is the seasonal high water table. Grasses and legumes grow well if fertilizer is applied. Grazing when the soil is wet results in compaction of the surface layer, poor tillth, and excessive runoff. The seedbed should be prepared on the contour or across the slope where practical. Proper stocking rates, pasture rotation, and restricted grazing during wet periods help to keep the pasture in good condition and protect the soil from erosion. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Animal manure can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least once a year. In some years irrigation is needed for maximum production. Sprinkler irrigation is the best method of applying water.

The main limitations affecting homesteads are the shrink-swell potential, the seasonal wetness, and the slope. The wetness can be reduced by installing drains around the footings. Preserving the existing plant cover during construction helps to control erosion. The effects of shrinking and swelling can be minimized by using proper engineering designs and by backfilling with material that has a low shrink-swell potential.

The main limitations affecting septic tank absorption fields are the slow permeability and the seasonal wetness, which increase the likelihood that the disposal system will fail. The slow permeability can be overcome by increasing the size of the absorption fields. The slope hinders the installation of the absorption fields. Absorption lines should be installed on the contour.

This map unit is in capability subclass Ille.

88—Puget silt loam. This very deep, poorly drained soil is in depressions on flood plains. Drainage has been altered by subsurface drains. The soil formed in alluvium. Slopes are 0 to 3 percent. The native vegetation is mainly grasses and sedges. Elevation is 10 to 100 feet. The average annual precipitation is 40 to 55 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface layer is very dark grayish brown, mottled silt loam about 9 inches thick. The substratum to a depth of 60 inches or more is dark grayish brown and olive gray, mottled silty clay loam and silt loam.

Included in this unit are small areas of Newberg and Puyallup soils on natural levees and Pilchuck, Semiahmoo, and Sultan soils on flood plains. Also included are small areas of Puget soils that have not
been artificially drained. Included areas make up about 20 percent of the total acreage.

Permeability is moderately slow in the Puget soil. Available water capacity is high. Effective rooting depth is 60 inches or more. A seasonal high water table is at a depth of about 12 to 36 inches from November to April. Runoff is slow, and the hazard of water erosion is slight. This soil is occasionally flooded for brief periods from November to April.

Most areas of this unit are used for hayland, pasture, or cropland. A few areas are used as woodland.

The main limitations affecting hay and pasture are the seasonal high water table and the flooding. All forage crops commonly produced in the survey area can be grown if the drainage system is adequate. Grazing when the soil is wet damages the plants and results in compaction of the surface layer. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Animal manure can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least once a year. Rotation grazing helps to maintain the quality of forage. Applying fertilizer improves the growth of forage plants. In some years irrigation is needed for maximum production. Sprinkler irrigation is the best method of applying water.

Sweet corn, corn silage, and small grain are commonly grown on this soil. The main limitations affecting cropland are the high water table and the flooding. The flooding can be controlled by dikes and levees. During the growing season, the water table should be lowered to a depth of about 2 to 5 feet. Most of the crops commonly produced in the survey area can be grown if an adequate drainage system is installed. Applying animal manure and returning crop residue to the soil help to maintain the organic matter content, fertility, and tilth. In some years irrigation is needed for maximum production. Sprinkler irrigation is the best method of applying water.

Undrained and unprotected areas are suited to woodland. On the basis of a 50-year site curve, the mean site index for red alder is 90. The estimated growth rate of an unmanaged, even-aged stand of red alder is 101 cubic feet per acre per year at 40 years of age.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. The seasonal high water table and the flooding limit the use of equipment to dry periods. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling mortality is the main concern in the production of timber. Reforestation can be accomplished by planting western redcedar seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. The seasonal high water table and the flooding inhibit root respiration and thus result in high seedling mortality. When openings are made in the canopy, invading brushy plants can delay the establishment of western redcedar seedlings. Seedling mortality may be high where flooding occurs. Because the rooting depth is restricted by the seasonal high water table, trees are subject to frequent windthrow.

This map unit is in capability subclass llw.

89—Puyallup silt loam. This deep, well drained soil is on flood plains. It formed in alluvium. Slopes are 0 to 3 percent. The native vegetation is mainly conifers and deciduous trees. Elevation is 20 to 600 feet. The average annual precipitation is 40 to 60 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 170 to 200 days.

Typically, the upper part of the surface layer is very dark grayish brown silt loam about 10 inches thick, and the lower part is dark brown loamy fine sand and fine sandy loam about 9 inches thick. The substratum to a depth of 60 inches or more is very dark gray sand.

Included in this unit are small areas of Newberg and Pilchuck soils on flood plains and Puget and Sultan soils in depressions. Included areas make up about 15 percent of the total acreage.

Permeability is moderately rapid in the Puyallup soil. Available water capacity is moderate. Effective rooting depth is 40 to 60 inches or more. Runoff is slow, and the hazard of water erosion is slight. This soil is occasionally flooded for brief periods from November to April.

This unit is used mainly for hayland, pasture, or cropland. It is also used as woodland.

This unit is well suited to hay and pasture. The main limitations are the flooding and the moderate available water capacity. Grasses and legumes grow well if fertilizer is applied. Grazing when the soil is wet damages the plants and results in compaction of the surface layer. Rotation grazing helps to maintain the quality of forage. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and
controls weeds. Animal manure can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least once a year. In most years irrigation is needed for maximum production. Sprinkler irrigation is the best method of applying water.

This unit is well suited to cropland. Corn silage, sweet corn, rhubarb, and small grain are commonly grown. The main hazard affecting cropland is the flooding. Channeling and deposition are common along streambanks. The flooding can be controlled by dikes and levees. Applying animal manure and returning crop residue to the soil help to maintain the organic matter content, fertility, and tilth. In most years irrigation is needed for maximum production. Sprinkler irrigation is the best method of applying water.

This unit is suited to woodland. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 167. On the basis of a 50-year site curve, it is 125. The estimated growth rate of an unmanaged, even-aged stand of Douglas-fir is 178 cubic feet per acre per year at 60 years of age.

The main limitation affecting the harvesting of timber is the mudiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in rutting and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. The flooding limits the use of equipment to dry periods. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. The flooding inhibits root respiration and thus results in some seedling mortality. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings.

This map unit is in capability subclass llw.

90—Rainier clay loam, 5 to 30 percent slopes. This deep, moderately well drained soil is on mountainsides. It formed in residuum and colluvium derived from breccia and glacial till. The native vegetation is mainly conifers and hardwoods. Elevation is 700 to 1,700 feet. The average annual precipitation is 45 to 55 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 130 to 150 days.

Typically, the surface layer is very dark grayish brown clay loam about 8 inches thick. The upper 6 inches of the subsoil is very dark grayish brown clay loam, and the lower 31 inches is dark grayish brown clay loam and dark brown clay. Slightly weathered breccia is at a depth of about 45 inches. Depth to the breccia ranges from 40 to 60 inches.

Included in this unit are small areas of Baumgard and Pheeney soils on mountainsides, Mashel soils on glacial uplands, and Scamman soils on terraces. Also included are small areas of Rainier clay loam that have slopes of 30 to 65 percent. Included areas make up about 20 percent of the total acreage.

Permeability is moderately slow in the Rainier soil. Available water capacity is high. Effective rooting depth is 40 to 60 inches. A seasonal high water table is at a depth of about 36 to 42 inches from November to April. Runoff is medium, and the hazard of water erosion is moderate.

This unit is used as woodland. Douglas-fir is the main woodland species. Among the trees of limited extent are red alder, western hemlock, western redcedar, and bigleaf maple. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 127. On the basis of a 50-year site curve, it is 95. The highest growth rate of an unmanaged, even-aged stand of Douglas-fir is 125 cubic feet per acre per year at 70 years of age.

The main limitation affecting the harvesting of timber is the mudiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in rutting and soil compaction. Unsurfaced roads and skid trails are soft and sticky and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is readily available on this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can delay the establishment of planted Douglas-fir seedlings.

Common forest understory plants are salal, vine maple, cascade Oregon-grape, red huckleberry, and western swordfern.
This map unit is in capability subclass IVe.

91—Rainier clay loam, 30 to 65 percent slopes. This deep, moderately well drained soil is on mountainsides. It formed in residuum and colluvium derived from breccia and glacial till. The native vegetation is mainly conifers and hardwoods. Elevation is 700 to 1,700 feet. The average annual precipitation is 45 to 55 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 130 to 150 days.

Typically, the surface layer is very dark grayish brown clay loam about 8 inches thick. The upper 6 inches of the subsoil is very dark grayish brown clay loam, and the lower 31 inches is dark grayish brown clay loam and dark brown clay. Slightly weathered breccia is at a depth of about 45 inches. Depth to the breccia ranges from 40 to 60 inches.

Included in this unit are small areas of Baumgard and Pheeney soils on mountainsides, Mashel soils on glacial uplands, and Scamman soils on terraces. Also included are small areas of Rainier clay loam that have slopes of 5 to 30 percent. Included areas make up about 20 percent of the total acreage.

Permeability is moderately slow in the Rainier soil. Available water capacity is high. Effective rooting depth is 40 to 60 inches. A seasonal high water table is at a depth of about 36 to 42 inches from November to April. Runoff is rapid, and the hazard of water erosion is severe.

This unit is used as woodland. Douglas-fir is the main woodland species. Among the trees of limited extent are red alder, western hemlock, western redcedar, and bigleaf maple. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 127. On the basis of a 50-year site curve, it is 95. The highest growth rate of an unmanaged, even-aged stand of Douglas-fir is 125 cubic feet per acre per year at 70 years of age.

The main limitation affecting the harvesting of timber is slope. The slope restricts the use of wheeled and tracked equipment in skidding operations. Cable yarding systems generally are safer and minimize damage to the surface. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and sticky and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is readily available on this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Steep yarding paths, skid trails, and firebreaks are subject to rilling and gully unless they are protected by a plant cover or adequate water bars are provided. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Retorestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can delay the establishment of Douglas-fir seedlings.

Common forest understory plants are salal, vine maple, cascade Oregon-grape, red huckleberry, and western swordfern.

This map unit is in capability subclass IVe.

92—Rainier-Rock outcrop complex, 20 to 40 percent slopes. This map unit is on mountainsides. The native vegetation is mainly conifers and hardwoods. Elevation is 700 to 1,700 feet. The average annual precipitation is 45 to 55 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 130 to 150 days.

This unit is about 50 percent Rainier loam and 25 percent Rock outcrop. The components of this unit are so intricately intermingled that it was not practical to map them separately at the scale used.

The Rainier soil is deep and moderately well drained. It formed in residuum and colluvium derived dominantly from breccia and glacial till. Typically, the surface layer is very dark grayish brown clay loam about 8 inches thick. The upper 6 inches of the subsoil is very dark grayish brown clay loam, and the lower 31 inches is dark grayish brown clay loam and dark brown clay. Slightly weathered breccia is at a depth of about 45 inches. Depth to the breccia ranges from 40 to 60 inches.

Permeability is moderately slow in the Rainier soil. Available water capacity is high. Effective rooting depth is 40 to 60 inches. A seasonal high water table is at a depth of about 36 to 42 inches from November to April. Runoff is medium, and the hazard of water erosion is moderate.

The Rock outcrop consists mainly of exposed breccia occurring as cliffs, dikes, and boulder-sized humps.

Included in this unit are small areas of Baumgard and Pheeney soils on mountainsides, Mashel soils on glacial uplands, and Scamman soils on terraces. Also included are small areas of soils that are less than 40 inches deep to bedrock. Included areas make up about 25 percent of the total acreage.

This unit is used as woodland. Douglas-fir is the
main woodland species on the Ranier soil. Among the trees of limited extent are red alder, western hemlock, western redcedar, and bigleaf maple. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 127. On the basis of a 50-year site curve, it is 95. The highest growth rate of an unmanaged, even-aged stand of Douglas-fir is 125 cubic feet per acre per year at 70 years of age.

The main limitation affecting the harvesting of timber is slope. The slope restricts the use of wheeled and tracked equipment in skidding operations. Cable yarding systems generally are safer and minimize damage to the surface. Unsurfaced roads and skid trails are soft and sticky and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is readily available on this unit. The Rock outcrop hinders yarding and may cause breakage of timber when the trees are felled. Avoiding large areas of Rock outcrop results in the convergence of yarding paths and skid trails and thus in compaction of the soil. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Steep yarding paths, skid trails, and firebreaks are subject to rilling and gully ing unless they are protected by a plant cover or adequate water bars are provided. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber on the Ranier soil. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of Douglas-fir seedlings. The Rock outcrop limits the even distribution of reforestation.

Common forest understory plants are salal, vine maple, cascade Oregon-grape, red huckleberry, and western swordfern.

This map unit is in capability subclass Vle.

93—Raught silt loam, 5 to 30 percent slopes. This very deep, well drained soil is on shoulder slopes in the uplands. It formed in material weathered from basalt. The native vegetation is mainly conifers. Elevation is 200 to 1,500 feet. The average annual precipitation is 50 to 70 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface layer is dark brown silt loam about 11 inches thick. The subsoil to a depth of 60 inches or more is dark brown and dark reddish brown silt loam.

Included in this unit are small areas of Boistfort, Bunker, Centralia, Melbourne, and Olympic soils on uplands. Also included are small areas of Raught silt loam that have slopes of 30 to 65 percent. Included areas make up about 20 percent of the total acreage. Permeability is moderate in the Raught soil. Available water capacity is high. Effective rooting depth is 60 inches or more. Runoff is slow, and the hazard of water erosion is slight.

This unit is used as woodland. Douglas-fir and western hemlock are the main woodland species. Among the trees of limited extent are red alder, western redcedar, and bigleaf maple. On the basis of a 100-year site curve, the mean site index is 176 for Douglas-fir and 162 for western hemlock. On the basis of a 50-year site curve, it is 131 for Douglas-fir and 115 for western hemlock. The highest average growth rate of an unmanaged, even-aged stand is 187 cubic feet per acre per year at 60 years of age for Douglas-fir and 258 cubic feet per acre at 50 years of age for western hemlock.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction generally is readily available on this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. Also, natural reforestation by western hemlock occurs periodically. When openings are made in the canopy, invading brushy plants can prevent the establishment of Douglas-fir seedlings and can delay the natural reforestation of western hemlock.

Common forest understory plants are salmonberry, salal, cascade Oregon-grape, vine maple, and western swordfern.

This map unit is in capability subclass IVe.

94—Raught silt loam, 30 to 65 percent slopes. This very deep, well drained soil is on shoulder slopes in the
uplands. It formed in material weathered from basalt. The native vegetation is mainly conifers. Elevation is 200 to 1,500 feet. The average annual precipitation is 50 to 70 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface layer is dark brown silt loam about 11 inches thick. The subsoil to a depth of 60 inches or more is dark brown and dark reddish brown silt loam.

Included in this unit are small areas of Boistfort, Centralia, Melbourne, and Olympic soils on uplands. Also included are small areas of Raught silt loam that have slopes of 5 to 30 percent. Included areas make up about 20 percent of the total acreage.

Permeability is moderate in the Raught soil. Available water capacity is high. Effective rooting depth is 60 inches or more. Runoff is medium, and the hazard of water erosion is moderate.

This unit is used as woodland. Douglas-fir and western hemlock are the main woodland species. Among the trees of limited extent are red alder, western redcedar, and bigleaf maple. On the basis of a 100-year site curve, the mean site index is 176 for Douglas-fir and 162 for western hemlock. On the basis of a 50-year site curve, it is 131 for Douglas-fir and 115 for western hemlock. The highest growth rate of an unmanaged, even-aged stand is 187 cubic feet per acre per year at 60 years of age for Douglas-fir and 258 cubic feet per acre per year at 50 years of age for western hemlock.

The main limitation affecting the harvesting of timber is slope. The slope restricts the use of wheeled and tracked equipment in skidding operations. Cable yarning systems generally are safer and minimize damage to the surface. Use of wheeled and tracked equipment when the soil is wet results in rutting and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is readily available on this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Steep yarning paths, skid trails, and firebreaks are subject to rilling and gullying unless they are protected by a plant cover or adequate water bars are provided.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can delay the establishment of Douglas-fir seedlings and the natural reforestation of western hemlock.

Common forest understory plants are salmonberry, salal, cascade Oregon-grape, vine maple, and western swordfern.

This map unit is in capability subclass Vle.

95—Riverwash. This map unit is on flood plains along streams. It is frequently flooded and is commonly altered by severe erosion and deposition. It formed in recent alluvium consisting of sand, gravel, cobbles, and stones. It is very deep and somewhat excessively drained. It supports little or no vegetation. Elevation is 30 to 1,000 feet. The average annual precipitation is 35 to 70 inches, the average annual air temperature is about 50 degrees F, and the average frost-free season is 150 to 200 days.

The texture of the soil material and the content of gravel, cobbles, and stones vary widely within short distances.

Included in this unit are small areas of sandbars. Also included are areas of Pilchuck soils on flood plains. Included areas make up about 30 percent of the total acreage.

Some areas of this unit are suitable sources of sand and gravel.

This map unit is in capability subclass VIIIw.

96—Rock outcrop-Pheeney complex, 40 to 90 percent slopes. This map unit is on mountainsides and ridgetops. The native vegetation is mainly conifers. Elevation is 1,700 to 2,800 feet. The average annual precipitation is 60 to 70 inches, the average annual air temperature is 43 degrees F, and the average frost-free period is 130 to 170 days.

This unit is about 50 percent Rock outcrop and 25 percent Pheeney gravelly loam. The components of this unit are so intricately intermingled that it was not practical to map them separately at the scale used.

The Rock outcrop consists mainly of exposed andesite occurring as cliffs, dikes, and boulder-sized humps.

The Pheeney soil is moderately deep and well drained. It formed in colluvium derived dominantly from andesite. Typically, the upper part of the surface layer is black gravelly loam about 6 inches thick, and the lower part is very dark brown gravelly silt loam about 4 inches thick. The subsoil is dark yellowish brown very gravelly silt loam about 20 inches thick. Fractured andesite is at a depth of about 30 inches. Depth to the andesite ranges from 20 to 40 inches.

Permeability is moderate in the Pheeney soil. Available water capacity is low. Effective rooting depth
is 20 to 40 inches. Runoff is rapid, and the hazard of water erosion is severe. Included in this unit are small areas of Baumgard soils on uplands and Jonas and Valton soils on mountainsides. Also included are small areas of soils that are more than 40 inches deep to bedrock. Included areas make up about 25 percent of the total acreage.

This unit is used as woodland. Douglas-fir and western hemlock are the main woodland species on the Pheeney soil. Among the trees of limited extent are red alder, western redcedar, and bigleaf maple. On the basis of a 100-year site curve, the mean site index is 135 for Douglas-fir and 121 for western hemlock. On the basis of a 50-year site curve, it is 101 for Douglas-fir and 85 for western hemlock. The highest growth rate of an unmanaged, even-aged stand is 138 cubic feet per acre per year at 70 years of age for Douglas-fir and 182 cubic feet per acre per year at 50 years of age for western hemlock. Areas of ridgetops that are subject to strong, persistent winds are less productive than other areas of this unit.

The main limitation affecting the harvesting of timber is slope. Cable yarding systems generally are used on this unit. Unsurfaced roads and skid trails are soft and slippery and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is readily available. The Rock outcrop hinders yarding and may cause breakage of timber when trees are felled. Avoiding large areas of Rock outcrop results in the convergence of yarding paths and skid trails and thus in compaction of the soil. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Harvesting systems that lift logs entirely off the ground reduce the disturbance of the protective layer of duff.

Seedling establishment and seedling mortality are the main concerns in the production of timber on the Pheeney soil. The seedling mortality rate is higher on ridgetops that are subject to strong, persistent winds than in other areas of this unit. Droughtiness in the surface layer reduces the seedling survival rate. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by western hemlock occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can delay the establishment of Douglas-fir seedlings and the natural reforestation of western hemlock. The Rock outcrop limits the even distribution of reforestation. Because the rooting depth is restricted by the bedrock underlying the Pheeney soil, trees are subject to occasional windthrow.

Common forest understory plants are western brackenfern, vine maple, cascade Oregon-grape, western swordfern, and red huckleberry.

This map unit is in capability subclass VII.

97—Salkum silty clay loam, 3 to 8 percent slopes. This deep, well drained soil is on terraces. It formed in residuum derived dominantly from highly weathered, ancient glacial drift. The native vegetation is mainly conifers. Elevation is 200 to 600 feet. The average annual precipitation is 45 to 60 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface layer is dark brown silty clay loam about 12 inches thick. The upper 27 inches of the subsoil is reddish brown silty clay, the next 12 inches is yellowish red silty clay, and the lower part to a depth of 60 inches or more is yellowish red silty clay. Included in this unit are small areas of Galvin soils on alluvial fans, Prather soils on broad ridgetops, and Scamman soils on terraces. Also included are small areas of Salkum silty clay loam that have slopes of 8 to 15 percent. Included areas make up about 15 percent of the total acreage.

Permeability is moderately slow in the Salkum soil. Available water capacity is high. Effective rooting depth is 40 to 60 inches or more. Runoff is slow, and the hazard of water erosion is slight.

This unit is used mainly for woodland. It is also used for hayland, pasture, or homesites.

Douglas-fir is the main woodland species on this unit. Among the trees of limited extent are red alder, western hemlock, grand fir, bigleaf maple, western redcedar, and bitter cherry. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 164. On the basis of a 50-year site curve, it is 126. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 174 cubic feet per acre per year at 60 years of age.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and sticky and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the
stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can delay the establishment of planted Douglas-fir seedlings.

Common forest understory plants are salal, cascade Oregon-grape, vine maple, red huckleberry, western swordfern, and western brackenfern. This unit is well suited to hay and pasture. Grasses and legumes grow well if fertilizer is applied. Grazing when the soil is wet results in compaction of the surface layer. Proper stocking rates, pasture rotation, and restricted grazing during wet periods help to keep the pasture in good condition and protect the soil from erosion. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Animal manure can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least once a year. In some years irrigation is needed for maximum production. Sprinkler irrigation is the best method of applying water.

This unit is suited to homesites. The main limitation affecting septic tank absorption fields is the slow permeability. This limitation can be overcome by increasing the size of the absorption field.

This map unit is in capability subclass Ile.

98—Salkum silty clay loam, 8 to 15 percent slopes. This deep, well drained soil is on upland terraces. It formed in residuum derived dominantly from highly weathered, ancient glacial drift. The native vegetation is mainly conifers. Elevation is 200 to 600 feet. The average annual precipitation is 45 to 65 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface layer is dark brown silty clay loam about 12 inches thick. The upper 27 inches of the subsoil is reddish brown silty clay, the next 12 inches is yellowish red silty clay, and the lower part to a depth of 60 inches or more is yellowish red silty clay.

Included in this unit are small areas of Centralia, Melbourne, Prather, and Scammam soils on terraces. Also included are small areas of Salkum silty clay loam that have slopes of 3 to 8 percent and 15 to 30 percent. Included areas make up about 20 percent of the total acreage.

Permeability is moderately slow in the Salkum soil. Available water capacity is high. Effective rooting depth is 40 to 60 inches or more. Runoff is slow, and the hazard of water erosion is slight.

This unit is used mainly for woodland. It is also used for hayland, pasture, or homesites.

Douglas-fir is the main woodland species on this unit. Among the trees of limited extent are red alder, western hemlock, grand fir, bigleaf maple, western redcedar, and bitter cherry. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 164. On the basis of a 50-year site curve, it is 126. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 174 cubic feet per acre per year at 60 years of age.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and sticky and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings.

Common forest understory plants are salal, cascade Oregon-grape, vine maple, red huckleberry, western swordfern, and western brackenfern. This unit is well suited to hay and pasture. The main hazard is water erosion. Grasses and legumes grow well if fertilizer is applied. Grazing when the soil is wet results in compaction of the surface layer, poor tilth, and excessive runoff. The seedbed should be prepared on the contour or across the slope where practical. Proper stocking rates, pasture rotation, and restricted grazing during wet periods help to keep the pasture in good condition and protect the soil from erosion. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Animal manure can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least once a year. In some years irrigation is needed for maximum production. Sprinkler irrigation is the best method of applying water. This method permits the even, controlled application of water and helps to control runoff and erosion.
The main limitation affecting homesites is the slope. Preserving the existing plant cover during construction helps to control erosion.

The main limitation affecting septic tank absorption fields is the slow permeability. This limitation can be overcome by increasing the size of the absorption field. The slope hinders the installation of the absorption fields. Absorption lines should be installed on the contour.

This map unit is in capability subclass IIc.

99—Salkum silty clay loam, 15 to 30 percent slopes. This deep, well drained soil is on terraces. It formed in residuum derived dominantly from highly weathered, ancient glacial drift. The native vegetation is mainly conifers. Elevation is 200 to 600 feet. The average annual precipitation is 45 to 60 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface layer is dark brown silty clay loam about 12 inches thick. The upper 27 inches of the subsoil is reddish brown silty clay, the next 12 inches is yellowish red silty clay, and the lower part to a depth of 60 inches or more is yellowish red silty clay.

Included in this unit are small areas of Centrailia and Melbourne soils on terraces. Also included are small areas of Salkum silty clay loam that have slopes of 8 to 15 percent. Included areas make up about 20 percent of the total acreage.

Permeability is moderately slow in the Salkum soil. Available water capacity is high. Effective rooting depth is 40 to 60 inches or more. Runoff is medium, and the hazard of water erosion is moderate.

This unit is used as woodland. Douglas-fir is the main woodland species. Among the trees of limited extent are red alder, western hemlock, grand fir, bigleaf maple, western redcedar, and bitter cherry. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 164. On the basis of a 50-year site curve, it is 126. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 174 cubic feet per acre per year at 60 years of age.

The main limitation affecting the harvesting of timber is the mudiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and sticky and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion.

Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings.

Common forest understory plants are salal, cascade Oregon-grape, vine maple, red huckleberry, western swordfern, and western brackenfern.

This map unit is in capability subclass IVe.

100—Scamman silty clay loam, 0 to 5 percent slopes. This deep, somewhat poorly drained soil is on terraces. It formed in mixed glaciofluvial and sedimentary material. The native vegetation is mainly conifers and hardwoods. Elevation is 150 to 1,600 feet. The average annual precipitation is 45 to 70 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface layer is dark brown silty clay loam about 5 inches thick. The subsurface layer is dark yellowish brown, mottled silty clay loam about 6 inches thick. The next 13 inches is a mixture of dark brown, mottled silty clay loam and gray silt loam. The subsoil to a depth of 60 inches or more is dark grayish brown, mottled silty clay.

Included in this unit are small areas of Baumgard, Melbourne, Pheeney, Prather, and Salkum soils on uplands, Centrailia soils on terraces, Mashel soils on glaciated plains, and Rainier soils on mountainsides. Also included are small areas of Scamman silty clay loam that have slopes of 5 to 20 percent. Included areas make up about 20 percent of the total acreage.

Permeability is moderate in the upper part of the Scamman soil and slow in the subsoil. Available water capacity is high. Effective rooting depth is 40 to 60 inches. A seasonal high water table is at a depth of about 6 to 18 inches from November to March. Runoff is slow, and the hazard of water erosion is slight.

This unit is used mainly for woodland. It is also used for hay and pasture.

Douglas-fir is the main woodland species on this unit. Among the trees of limited extent are western hemlock, red alder, grand fir, western redcedar, and bigleaf maple. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 152. On the basis of a 50-year site curve, it is 116. The highest average growth
rate of an unmanaged, even-aged stand of Douglas-fir is 161 cubic feet per acre per year at 60 years of age.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and sticky and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. The seasonal high water table limits the use of equipment to dry periods. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs periodically in cutover areas. The seasonal high water table inhibits root respiration and thus results in a lower seedling survival rate. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings. Because the rooting depth is restricted by the seasonal high water table, trees are subject to frequent windthrow.

Common forest understory plants are western swordfern, cascade Oregon-grape, salal, salmonberry, and vine maple.

The main limitation affecting hay and pasture is the seasonal high water table. Grasses and legumes grow well if fertilizer is applied. Grazing when the soil is wet damages the plants and results in compaction of the surface layer. Proper stocking rates, pasture rotation, and restricted grazing during wet periods help to keep the pasture in good condition and protect the soil from erosion. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Animal manure can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least once a year. In some years irrigation is needed for maximum production. Sprinkler irrigation is the best method of applying water.

This map unit is in capability subclass IIIw.

101—Scamman silty clay loam, 5 to 20 percent slopes. This deep, somewhat poorly drained soil is on terraces. It formed in mixed glaciofluvial and sedimentary material. The native vegetation is mainly conifers and hardwoods. Elevation is 150 to 1,600 feet. The average annual precipitation is 45 to 70 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface layer is dark brown silty clay loam about 5 inches thick. The subsurface layer is dark yellowish brown, mottled silty clay loam about 6 inches thick. The next 13 inches is a mixture of dark brown, mottled silty clay loam and gray silt loam. The subsoil to a depth of 60 inches or more is dark grayish brown, mottled silty clay.

Included in this unit are small areas of Baumgard, Melbourne, Pheneey, Prather, and Salkum soils on uplands, Centralia soils on terraces, Mashel soils on glaciated plains, and Rainier soils on mountainsides. Also included are small areas of Scamman silty clay loam that have slopes of 0 to 5 percent. Included areas make up about 15 percent of the total acreage.

Permeability is moderate in the upper part of the Scamman soil and slow in the subsoil. Available water capacity is high. Effective rooting depth is 40 to 60 inches. A seasonal high water table is at a depth of about 6 to 18 inches from November to March. Runoff is slow, and the hazard of water erosion is slight.

This unit is used as woodland. Douglas-fir is the main woodland species. Among the trees of limited extent are western hemlock, red alder, western redcedar, and bigleaf maple. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 152. On the basis of a 50-year site curve, it is 116. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 161 cubic feet per acre per year at 60 years of age.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and sticky and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. The seasonal high water table limits the use of equipment to dry periods. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs periodically in cutover areas. The seasonal high water table inhibits root respiration and thus results in a lower seedling survival rate. When openings are
made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings. Because the rooting depth is restricted by the seasonal high water table, trees are subject to frequent windthrow.

Common forest understory plants are western swordfern, cascade Oregon-grape, salal, salmonberry, and vine maple.

This map unit is in capability subclass IIe.

102—Schneider very gravelly loam, 20 to 40 percent slopes. This deep, well drained soil is on foothills and mountains. It formed in colluvium derived from basalt. The native vegetation is mainly conifers. Elevation is 500 to 1,200 feet. The average annual precipitation is 60 to 70 inches, the average annual air temperature is about 49 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface layer is dark brown very gravelly loam about 6 inches thick. The upper 26 inches of the subsoil is dark reddish brown very gravelly silt loam, and the lower 23 inches is dark brown extremely gravelly silt loam. Basalt is at a depth of about 55 inches. Depth to the basalt ranges from 40 to 60 inches.

Included in this unit are small areas of Delphi soils on glacial till plains, Grove soils on outwash terraces, Olympic soils on uplands, and Raught soils on shoulder slopes. Also included are small areas of Schneider very gravelly loam that have slopes of 40 to 60 percent and small areas of soils that are less than 40 inches deep to bedrock. Included areas make up about 15 percent of the total acreage.

Permeability and available water capacity are moderate in the Schneider soil. Effective rooting depth is 40 to 60 inches. Runoff is slow, and the hazard of water erosion is slight.

This unit is used as woodland. Douglas-fir is the main woodland species. Among the trees of limited extent are red alder, western hemlock, bigleaf maple, and western redcedar. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 151. On the basis of a 50-year site curve, it is 113. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 159 cubic feet per acre per year at 60 years of age.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment and seedling mortality are the main concerns in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can delay the establishment of planted Douglas-fir seedlings. Droughtiness in the surface layer reduces the seedling survival rate.

Common forest understory plants are vine maple, salmonberry, cascade Oregon-grape, salal, and western swordfern.

This map unit is in capability subclass IVe.

103—Schneider very gravelly loam, 40 to 65 percent slopes. This deep, well drained soil is on foothills and mountains. It formed in colluvium derived from basalt. The native vegetation is mainly conifers. Elevation is 500 to 1,200 feet. The average annual precipitation is 60 to 70 inches, the average annual air temperature is about 49 degrees, and the average frost-free period is 150 to 200 days.

Typically, the surface layer is dark brown very gravelly loam about 6 inches thick. The upper 26 inches of the subsoil is dark reddish brown very gravelly silt loam, and the lower 23 inches is dark brown extremely gravelly silt loam. Basalt is at a depth of about 55 inches. Depth to the basalt ranges from 40 to 60 inches.

Included in this unit are small areas of Delphi soils on glacial till plains, Grove soils on outwash terraces, Olympic soils on uplands, and Raught soils on shoulder slopes. Also included are small areas of Schneider very gravelly loam that have slopes of 20 to 40 percent and areas of soils that are less than 40 inches deep to bedrock. Included areas make up about 20 percent of the total acreage.

Permeability and available water capacity are moderate in the Schneider soil. Effective rooting depth is 40 to 60 inches. Runoff is medium, and the hazard of water erosion is moderate.

This unit is used as woodland. Douglas-fir is the main woodland species. Among the trees of limited extent are red alder, western hemlock, bigleaf maple, and western redcedar. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 151. On the
basis of a 50-year site curve, it is 113. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 159 cubic feet per acre per year at 60 years of age.

The main limitation affecting the harvesting of timber is slope. The slope restricts the use of wheeled and tracked equipment in skidding operations. Cable yarding systems generally are safer and minimize damage to the surface. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is readily available on this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Steep yarding paths, skid trails, and firebreaks are subject to rilling and gully formation unless they are protected by a plant cover or adequate water bars are provided.

Seedling establishment and seedling mortality are the main concerns in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can delay the establishment of Douglas-fir seedlings and the natural reforestation of western hemlock. Droughtiness in the surface layer reduces the seedling survival rate.

Common forest understory plants are vine maple, salmonberry, cascade Oregon-grape, salal, and western swordfern.

This map unit is in capability subclass VIIe.

104—Semiahmoo muck. This very deep, very poorly drained soil is on flood plains. Drainage has been altered by subsurface drains and open ditches. The soil formed in herbaceous organic deposits. Slopes are 0 to 1 percent. The native vegetation is mainly sedges and rushes. Elevation is 20 to 300 feet. The average annual precipitation is 45 to 55 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the soil is black muck to a depth of 60 inches or more.

Included in this unit are small areas of Semiahmoo soils that have not been artificially drained and small areas of Shalcar Variant, Puget, and Sultan soils in depressions on flood plains. Included areas make up about 10 percent of the total acreage.

Permeability is moderate in the Semiahmoo soil. Available water capacity is high. Effective rooting depth is limited by a controlled water table. Runoff is slow, and water erosion is not a hazard. This soil is subject to rare flooding (fig. 2).

This unit is used for cropland, hayland, or pasture. Sweet corn and small grain are commonly grown. Most of the crops commonly produced in the survey area can be grown if an adequate drainage system is installed. The main limitation affecting cropland is the high water table. During the growing season, the water table should be lowered to a depth of about 2 to 5 feet. Subsidence is minimized if the water table is maintained immediately below the root zone and is allowed to return to the surface during the nongrowing season.

All forage crops commonly produced in the survey area can be grown if the drainage system is adequate. Subsidence is minimized if the water table is maintained immediately below the root zone and is allowed to return to the surface during the nongrowing season. Proper stocking rates, pasture rotation, and restricted grazing during wet periods help to keep the pasture in good condition. Grazing when the soil is wet damages the plants and results in compaction of the surface layer. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Animal manure can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least once a year.

This unit has limited potential for woodland. On the basis of a 50-year site curve, the estimated mean site index for red alder is 85. The highest average growth rate for red alder is about 90 cubic feet per acre per year at age 40 provided a fully stocked stand is established.

The main limitation affecting the harvesting of timber is the mudflats caused by seasonal wetness. Logging roads generally are not located on this unit. Rock for road construction is not readily available on this unit. The seasonal high water table limits the use of equipment to dry periods.

Seedling mortality and seedling establishment are the main concerns in the production of timber. Reforestation can be accomplished by planting western redcedar seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of seedlings. The seasonal high water table inhibits root respiration and thus results in a lower seedling survival rate. Because the rooting depth is restricted by the seasonal high water table, trees are frequently subject to windthrow.

This map unit is in capability subclass llw.
105—Shalcar muck. This deep, very poorly drained soil is in upland depressions. It formed in herbaceous organic deposits over alluvium. Slopes are 0 to 2 percent. The native vegetation is mainly sedges and rushes. Elevation is 50 to 700 feet. The average annual precipitation is 45 to 55 inches, the average annual air temperature is about 50 degrees F., and the average frost-free period is 150 to 200 days.

Typically, the surface layer is black muck about 24 inches thick. The upper 5 inches of the substratum is olive gray silt loam, and the lower part to a depth of 60 inches or more is grayish brown, mottled silty clay loam.

Included in this unit are small areas of Dupont, Everson, McKenna, Mukilteo, and Norma soils in depressions. Also included are small areas of Shalcar soils that have been artificially drained. Included areas make up about 10 percent of the total acreage.

Permeability is moderately slow in the Shalcar soil. Available water capacity is high. Effective rooting depth is limited by a seasonal high water table that is at or above the surface from October to April. Runoff is ponded, and water erosion is not a hazard.
This unit is used mainly for wildlife habitat. Where drained, it is also used for hayland, pasture, or blueberries.

The main limitations affecting hay and pasture are the seasonal high water table and the ponding. Some areas have been partially drained, but adequate drainage systems have not been maintained. Wetness limits the choice of plants and the period of cutting or grazing and increases the risk of winterkill. Grazing should be delayed until the soil has drained sufficiently and is firm enough to withstand trampling by livestock. Grazing when the soil is wet damages the plants and results in compaction of the surface layer. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Subsurface drains, open drains, or both can lower the water table if a suitable outlet is available.

This unit has limited potential for woodland. On the basis of a 50-year site curve, the estimated mean site index for red alder is 85. The highest average growth rate for red alder is about 90 cubic feet per acre per year at age 40 provided a fully stocked stand is established.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Logging roads generally are not located on this unit. Rock for road construction is not readily available. The seasonal high water table and the ponding limit the use of equipment to dry periods.

Seedling mortality and seedling establishment are the main concerns in the production of timber. Reforestation can be accomplished by planting western redcedar seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of seedlings. The seasonal high water table inhibits root respiration and thus results in a lower seedling survival rate. Because the rooting depth is restricted by the seasonal high water table, trees are frequently subject to windthrow.

This map unit is in capability subclass V1w.

107—Skippa silt loam, 0 to 3 percent slopes. This moderately deep, somewhat poorly drained soil is on terraces. It formed in volcanic ash and loess over glaciolacustrine sediment. The native vegetation is mainly conifers and hardwoods. Elevation is 150 to 300 feet. The average annual precipitation is 40 to 50 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 160 to 200 days.

Typically, the surface layer is dark brown silt loam about 8 inches thick. The upper 7 inches of the subsoil is brown silt loam, and the lower 3 inches is grayish brown, mottled silty clay loam. The substratum to a depth of 60 inches or more is greenish gray, mottled silty clay and clay.

Included in this unit are small areas of Alderwood and Kapowsin soils on till plains, Bellingham and
Mukilteo soils in depressions, and Everett, Giles, and Yelm soils on terraces. Also included are small areas of Skippop silt loam that have slopes of 3 to 8 percent. Included areas make up about 15 percent of the total acreage.

Permeability is moderate in the subsoil of the Skippop soil and very slow in the substratum. Available water capacity is moderate. Effective rooting depth is 15 to 30 inches. A perched seasonal high water table fluctuates between depths of 12 and 24 inches from November to May. Runoff is slow, and the hazard of water erosion is slight.

This unit is used mainly for woodland, hayland, pasture, or cropland. It is also used for homesites.

Douglas-fir and red alder are the main woodland species on this unit. Among the trees of limited extent are western redcedar and bigleaf maple. On the basis of a 100-year site curve, the mean site index is 151 for Douglas-fir. On the basis of a 50-year site curve, it is 116 for Douglas-fir and 97 for red alder. The highest average growth rate for an unmanaged, even-aged stand is 159 cubic feet per acre per year at 60 years of age for Douglas-fir and 113 cubic feet per acre per year at 40 years of age for red alder.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and slippery and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. The seasonal high water table limits the use of equipment to dry periods. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings. Because the rooting depth is restricted by the seasonal high water table, trees are subject to occasional windthrow.

Common forest understory plants are western swordfern, salmonberry, western brackenfern, trailing blackberry, and red huckleberry.

The main limitation affecting hay and pasture is the seasonal high water table. All forage crops commonly produced in the survey area can be grown if the drainage system is adequate. Grasses and legumes grow well if fertilizer is applied. Grazing when the soil is wet damages the plants and results in compaction of the surface layer. Proper stocking rates, pasture rotation, and restricted grazing during wet periods help to keep the pasture in good condition. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Animal manure can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least once a year. In some years irrigation is needed for maximum production. Sprinkler irrigation is the best method of applying water.

Wheat and oats are commonly grown on this soil. The main limitations affecting cropland are the seasonal high water table and the very slow permeability. Artificial drainage improves the timeliness of fieldwork and increases yields of perennial crops. Drainage tile should be closely spaced because of the very slow permeability. Applying animal manure and returning crop residue to the soil help to maintain the organic matter content, fertility, and tilth. In some years irrigation is needed for maximum production. Sprinkler irrigation is the best method of applying water. Because of the very slow permeability, the application should be regulated so that water does not stand on the surface and damage the crops.

The main limitation affecting homesites is the seasonal wetness. A drainage system is needed if roads or buildings are constructed on this soil. A drainage system also is needed for best results with most lawn grasses, shade trees, ornamental trees, shrubs, vines, and vegetable gardens. Topsoil can be stockpiled and used to reclaim areas disturbed during construction. The main limitations affecting septic tank absorption fields are the seasonal wetness and the very slow permeability, which increase the likelihood that the disposal system will fail, especially during rainy periods. This map unit is in capability subclass IIw.

108—Skippop silt loam, 3 to 15 percent slopes. This moderately deep, somewhat poorly drained soil is on terraces. It formed in volcanic ash and loess over glacial lacustrine sediment. The native vegetation is mainly conifers and hardwoods. Elevation is 150 to 300 feet. The average annual precipitation is 40 to 50 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface layer is dark brown silt loam about 8 inches thick. The upper 7 inches of the subsoil is dark brown silt loam, and the lower 3 inches is
grayish brown, mottled silt loam. The substratum to a depth of 60 inches or more is greenish gray, mottled silty clay and clay.

Included in this unit are small areas of Alderwood and Kapowsin soils on till plains and Everett, Giles, and Yelm soils on terraces. Also included are small areas of Skipopa silt loam that have slopes of 0 to 3 percent. Included areas make up about 15 percent of the total acreage.

Permeability is moderate in the subsoil of the Skipopa soil and very slow in the substratum. Available water capacity is moderate. Effective rooting depth is 15 to 30 inches. A perched seasonal high water table fluctuates between depths of 12 and 24 inches from November to May. Runoff is slow, and the hazard of water erosion is slight.

This unit is used mainly for woodland, hayland, or pasture. It is also used for homesteads.

Douglas-fir and red alder are the main woodland species on this unit. Among the trees of limited extent are western redcedar and bigleaf maple. On the basis of a 100-year site curve, the mean site index is 151 for Douglas-fir. On the basis of a 50-year site curve, it is 116 for Douglas-fir and 97 for red alder. The highest average growth rate of an unmanaged, even-aged stand is 159 cubic feet per acre per year at 60 years of age for Douglas-fir and 113 cubic feet per acre per year at 40 years of age for red alder.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts, soil compaction, and damage to tree roots. Unsurfaced roads and skid trails are soft and slippery and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. The seasonal high water table limits the use of equipment to dry periods. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seeding establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings. Because the rooting depth is restricted by the seasonal high water table, trees are subject to occasional windthrow.

Common forest understory plants are western swordfern, salmonberry, western brackenfern, trailing blackberry, and red huckleberry.

This unit is suited to hay and pasture. The main limitations affecting hay and pasture are the seasonal high water table and water erosion. Grasses and legumes grow well if fertilizer is applied. Proper stocking rates, pasture rotation, and restricted grazing during wet periods help to keep the pasture in good condition and protect the soil from erosion. The seeder bed should be prepared on the contour or across the slope where practical. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Animal manure can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least once a year. In some years irrigation is needed for maximum production. Sprinkler irrigation is the best method of applying water.

The main limitation affecting homesteads is the seasonal wetness. A drainage system is needed if roads or buildings are constructed on this soil. A drainage system also is needed for best results with most lawn grasses, shade trees, ornamental trees, shrubs, vines, and vegetable gardens. Topsoil can be stockpiled and used to reclaim areas disturbed during construction.

The main limitations affecting septic tank absorption fields are the seasonal wetness and the very slow permeability, which increase the likelihood that the disposal system will fail, especially during rainy periods. The slope hinders the installation of the absorption fields. Absorption lines should be installed on the contour.

This map unit is in capability subclass IIe.

109—Spana gravelly loam. This very deep, somewhat poorly drained soil is in elongated drainageways on outwash plains. It formed in glacial outwash. Slopes are 0 to 3 percent. The native vegetation is mainly conifers, hardwoods, and grasses. Elevation is 100 to 500 feet. The average annual precipitation is 35 to 45 inches, the average annual air temperature is about 51 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface layer is black gravelly loam about 22 inches thick. The upper 4 inches of the subsoil is very dark grayish brown gravelly loam, and the lower 12 inches is brown very gravelly loam. The substratum to a depth of 60 inches or more is dark yellowish brown and dark brown extremely gravelly sandy loam.

Included in this unit are small areas of Alderwood soils on glacial till plains and Everett, Indianola, Nisqually, and Spanaway soils on outwash terraces.
Included areas make up about 10 percent of the total acreage.

Permeability is moderately rapid in the Spana soil. Available water capacity is moderate. Effective rooting depth is 20 to 40 inches. A seasonal high water table is at a depth of about 12 to 36 inches from November to April. Runoff is slow, and the hazard of water erosion is slight.

Most areas are used as hayland and pasture. This unit is suited to hay and pasture. The main limitations are the seasonal high water table and the moderate available water capacity. Proper stocking rates, pasture rotation, and restricted grazing during wet periods help to keep the pasture in good condition and protect the soil from erosion. Rotation grazing helps to maintain the quality of forage. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. In most years irrigation is needed for maximum production. Sprinkler irrigation is the best method of applying water. The amount of water applied should be sufficient to wet the root zone but small enough to minimize the leaching of plant nutrients.

A few areas are used as woodland. On the basis of a 100-year site curve, the estimated site index for Douglas-fir is 144. On the basis of a 50-year site curve, it is 110. The estimated growth rate of an unmanaged, even-aged stand of Douglas-fir is 150 cubic feet per acre per year at 60 years of age.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rounded pebbles and cobbles for road construction are readily available on this unit. The seasonal high water table limits the use of equipment to dry periods. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs periodically in cutover areas. The seasonal high water table inhibits root respiration and thus results in some seedling mortality. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings.

Common forest understory plants are cascade Oregon-grape, salal, vine maple, western brackenfern, and Oregon white oak.

This map unit is in capability subclass IIw.

110—Spanaway gravelly sandy loam, 0 to 3 percent slopes. This very deep, somewhat excessively drained soil is on terraces. It formed in glacial outwash and volcanic ash. The native vegetation is mainly grasses, ferns, and a few conifers. Elevation is 100 to 400 feet. The average annual precipitation is 45 to 55 inches, the average annual air temperature is about 51 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface layer is black gravelly sandy loam about 15 inches thick. The subsoil is dark yellowish brown very gravelly loam about 5 inches thick. The substratum to a depth of 60 inches or more is dark yellowish brown extremely gravelly sand.

Included in this unit are small areas of Alderwood soils on till plains; Everett, Indianola, and Nisqually soils on outwash terraces; and Spana soils in depressions. Also included are small areas of Spanaway soils that have a stony sandy loam surface layer and small areas of Spanaway gravelly sandy loam that have slopes of 3 to 15 percent. Included areas make up about 20 percent of the total acreage.

Permeability is moderately rapid in the subsoil of the Spanaway soil and very rapid in the substratum. Available water capacity is low. Effective rooting depth is 60 inches or more. Runoff is slow, and the hazard of water erosion is slight.

This unit is used mainly as hayland, pasture, or cropland, as a site for homes, or as a source of gravel. It is also used as woodland.

The main limitation affecting hay and pasture is the low available water capacity. Proper grazing practices, weed control, and fertilizer are needed to ensure maximum quality of forage. Rotation grazing helps to maintain the quality of forage. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Animal manure can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least once a year. In summer, irrigation is needed for maximum production of most forage crops. Sprinkler irrigation is the best method of applying water. The amount of water applied should be sufficient to wet the root zone but small enough to minimize the leaching of plant nutrients.

This unit is suited to crops. Wheat, oats, strawberries, raspberries, blackberries, and sweet corn are commonly grown. The main limitation is the low available water capacity. In summer, irrigation is needed for maximum production of most crops.
Sprinklers can be used, but a slow application rate is needed to minimize runoff. The amount of water applied should be sufficient to wet the root zone but small enough to minimize the leaching of plant nutrients. The application rate should be adjusted to the available water capacity, the water intake rate, and the needs of the crop. Animal manure can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least once a year.

This unit is well suited to homesites. Pebbles and cobbles should be removed, particularly in areas used for lawns. In summer, irrigation is needed for lawn grasses, shrubs, vines, shade trees, and ornamental trees. Mulch, fertilizer, and irrigation are needed to establish lawn grasses and other small-seeded plants.

The main limitation affecting septic tank absorption fields is a poor filtering capacity. If the density of housing is moderate or high, community sewage systems are needed to prevent the contamination of water supplies caused by seepage from onsite sewage disposal systems. Cutbanks are not stable and are subject to sloughing.

Douglas-fir is the main woodland species on this unit. Among the trees of limited extent are Oregon white oak, lodgepole pine, and red alder. Douglas-fir and Scotch pine are grown on Christmas tree plantations. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 140. On the basis of a 50-year site curve, it is 108. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 145 cubic feet per acre per year at 65 years of age.

This soil is suited to year-round logging. Unsurfaced roads and skid trails are slippery when wet. Logging roads require suitable surfacing material for year-round use. Rounded pebbles and cobbles for road construction are readily available on this unit. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment and seedling mortality are the main concerns in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by Douglas-fir, Oregon white oak, and lodgepole pine occurs periodically in cutover areas. Droughtiness in the surface layer reduces the seedling survival rate. When openings are made in the canopy, invading brushy plants can delay the establishment of planted Douglas-fir seedlings.

Common forest understory plants are cascade Oregon-grape, salal, western brackenfern, western swordfern, Indian plum, and Scotch-broom.

This map unit is in capability subclass IVs.

111—Spanaway gravelly sandy loam, 3 to 15 percent slopes. This very deep, somewhat excessively drained soil is on terraces. It formed in glacial outwash and volcanic ash. The native vegetation is mainly grasses, ferns, and a few conifers. Elevation is 100 to 400 feet. The average annual precipitation is 45 to 55 inches, the average annual air temperature is about 51 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface layer is black gravelly sandy loam about 15 inches thick. The subsoil is dark yellowish brown very gravelly sandy loam about 5 inches thick. The substratum to a depth of 60 inches or more is dark yellowish brown extremely gravelly sand.

Included in this unit are small areas of Alderwood soils on till plains and Everett, Indiana, and Nisqually soils on terraces. Also included are small areas of Spanaway soils that have a stony sandy loam surface layer and small areas of Spanaway gravelly sandy loam that have slopes of 0 to 3 percent. Included areas make up about 20 percent of the total acreage.

Permeability is moderately rapid in the subsoil of the Spanaway soil and very rapid in the substratum. Available water capacity is low. Effective rooting depth is 60 inches or more. Runoff is slow, and the hazard of water erosion is slight.

This unit is used mainly as hayland or pasture, as a site for homes, or as a source of gravel. It is also used as woodland.

The main limitation affecting hay and pasture is the low available water capacity during the growing season. Proper grazing practices, weed control, and fertilizer are needed to ensure maximum quality of forage. Rotation grazing helps to maintain the quality of forage. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Animal manure can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least once a year. In summer, irrigation is needed for maximum production of most forage crops. Sprinkler irrigation is the best method of applying water. The amount of water applied should be sufficient to wet the root zone but small enough to minimize the leaching of plant nutrients.

This unit is suited to homesites. The main limitation is the slope. Cutbanks are not stable and are subject to sloughing. A plant cover can be established and maintained through proper fertilizing, seeding, mulching, and shaping of the slopes. Pebbles and cobbles should be removed, particularly in areas used for lawns.
summer, irrigation is needed for lawn grasses, shrubs, vines, shade trees, and ornamental trees. Mulch, fertilizer, and irrigation are needed to establish lawn grasses and other small-seeded plants. Topsoil can be stockpiled and used to reclaim areas disturbed during construction.

The main limitation affecting septic tank absorption fields is a poor filtering capacity in the substratum. If the density of housing is moderate or high, community sewage systems are needed to prevent the contamination of water supplies caused by seepage from onsite sewage disposal systems. The slope hinders the installation of the absorption fields. Absorption lines should be installed on the contour.

Douglas-fir is the main woodland species on this unit. Among the trees of limited extent are Oregon white oak, lodgepole pine, and red alder. Douglas-fir and Scotch pine are grown on Christmas tree plantations. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 140. On the basis of a 50-year site curve, it is 108. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 145 cubic feet per acre per year at 65 years of age.

This soil is suited to year-round logging. Unsurfaced roads and skid trails are slippery when wet. Logging roads require suitable surfacing material for year-round use. Rounded pebbles and cobbles for road construction are readily available on this unit. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment and seedling mortality are the main concerns in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation of cutover areas by Oregon white oak and lodgepole pine occurs infrequently. Droughtiness in the surface layer reduces the seedling survival rate. When openings are made in the canopy, invading brushy plants can delay the establishment of planted Douglas-fir seedlings.

Common forest understory plants are cascade Oregon-grape, salal, western brackenfern, western swordfern, Indian plum, and Scotch-broom.

This map unit is in capability subclass IVs.

112—Spanaway stony sandy loam, 0 to 3 percent slopes. This very deep, somewhat excessively drained soil is on terraces. It formed in glacial outwash and volcanic ash. The native vegetation is mainly grasses, ferns, and a few conifers. Elevation is 200 to 400 feet. The average annual precipitation is 40 to 50 inches, the average annual air temperature is about 51 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface layer is black stony sandy loam about 16 inches thick. The subsoil is very dark brown gravelly sandy loam about 6 inches thick. The substratum to a depth of 60 inches or more is grayish brown extremely gravelly sand.

Included in this unit are small areas of Alderwood soils on till plains, Baldhill soils on terminal moraines, and Everett, Indiana, and Nisqually soils on terraces. Also included are small areas of Spanaway soils that have a gravelly sandy loam surface layer and small areas of Spanaway stony sandy loam that have slopes of 3 to 15 percent. Included areas make up about 15 percent of the total acreage.

Permeability is moderately rapid in the subsoil of the Spanaway soil and very rapid in the substratum. Available water capacity is low. Effective rooting depth is 60 inches or more. Runoff is slow, and the hazard of water erosion is slight.

This unit is used mainly for hayland, pasture, or homesites. The main limitations affecting hay and pasture are the low available water capacity and the stones on the surface. Proper grazing practices, weed control, and fertilizer are needed to ensure maximum quality of forage. Rotation grazing helps to maintain the quality of the forage. Because of the surface stones, spreading animal manure, mowing, and seeding are difficult. In summer, irrigation is needed for maximum production of most forage crops. Sprinkler irrigation is the best method of applying water. The amount of water applied should be sufficient to wet the root zone but small enough to minimize the leaching of plant nutrients.

This unit is well suited to homesites. Pebbles, cobbles, and stones should be removed, particularly in areas used for lawns. In summer, irrigation is needed for lawn grasses, shrubs, vines, shade trees, and ornamental trees. Mulch, fertilizer, and irrigation are needed to establish lawn grasses and other small-seeded plants. Cutbanks are not stable and are subject to sloughing.

The main limitation affecting septic tank absorption fields is a poor filtering capacity in the substratum. If the density of housing is moderate or high, community sewage systems are needed to prevent the contamination of water supplies caused by seepage from onsite sewage disposal systems.

This map unit is in capability subclass IVs.

113—Spanaway stony sandy loam, 3 to 15 percent slopes. This very deep, somewhat excessively drained soil is on terraces. It formed in glacial outwash and
volcanic ash. The native vegetation is mainly grasses, ferns, and a few conifers. Elevation is 200 to 400 feet. The average annual precipitation is 40 to 50 inches, the average annual air temperature is about 51 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface layer is black stony sandy loam about 16 inches thick. The subsoil is very dark brown gravelly sandy loam about 6 inches thick. The substratum to a depth of 60 inches or more is grayish brown extremely gravelly sand.

Included in this unit are small areas of Alderwood soils on till plains, Everett, Indianola, and Nisqually soils on terraces, and Baldhill soils on terminal moraines. Also included are small areas of Spanaway soils that have a gravelly sandy loam surface layer and small areas of Spanaway stony sandy loam that have slopes of 0 to 3 percent. Included areas make up about 15 percent of the total acreage.

Permeability is moderately rapid in the subsoil of the Spanaway soil and very rapid in the substratum. Available water capacity is low. Effective rooting depth is 60 inches or more. Runoff is slow, and the hazard of water erosion is slight.

This unit is used mainly for hayland, pasture, or homesites. The main limitations affecting hay and pasture are the low available water capacity and the stones on the surface. Proper grazing practices, weed control, and fertilizer are needed to ensure maximum quality of forage. Rotation grazing helps to maintain the quality of the forage. Because of the surface stones, spreading animal manure, mowing, and seeding are difficult. In summer, irrigation is needed for maximum production of most forage crops. Sprinkler irrigation is the best method of applying water. The amount of water applied should be sufficient to wet the root zone but small enough to minimize the leaching of plant nutrients.

This unit is well suited to homesites. The main limitation is the slope. Cutbanks are not stable and are subject to sloughing. A plant cover can be established and maintained through proper fertilizing, seeding, mulching, and shaping of the slopes. Pebbles, cobbles, and stones should be removed, particularly in areas used for lawns. In summer, irrigation is needed for lawn grasses, shrubs, vines, shade trees, and ornamental trees. Mulch, fertilizer, and irrigation are needed to establish lawn grasses and other small-seeded plants. Topsoil can be stockpiled and used to reclaim areas disturbed during construction.

The main limitation affecting septic tank absorption fields is a poor filtering capacity in the substratum. If the density of housing is moderate or high, community sewage systems are needed to prevent the contamination of water supplies caused by seepage from onsite sewage disposal systems. The slope hinders the installation of the absorption fields. Absorption lines should be installed on the contour.

This map unit is in capability subclass IVs.

114—Spanaway-Nisqually complex, 2 to 10 percent slopes. This map unit is on mounds and in areas between mounds. The mounds are circular or elliptical, and they are 3 to 5 feet high in the center (fig. 3). The native vegetation is mainly grasses and ferns. Elevation is 100 to 250 feet. The average annual precipitation is 45 to 55 inches, the average annual air temperature is about 51 degrees F, and the average frost-free period is 150 to 200 days.

This unit is 60 percent Spanaway gravelly sandy loam, which has a slope of 2 to 5 percent, and 30 percent Nisqually loamy fine sand, which has a slope of 2 to 10 percent. The components of this unit are so intricately intermingled that it was not practical to map them separately at the scale used.

The Spanaway soil is very deep and somewhat excessively drained. It formed in gravelly glacial outwash and volcanic ash. Typically, the surface layer is black gravelly sandy loam about 15 inches thick. The subsoil is dark yellowish brown very gravelly sandy loam about 5 inches thick. The substratum to a depth of 60 inches or more is dark yellowish brown extremely gravelly sand.

Permeability is moderately rapid in the subsoil of the Spanaway soil and very rapid in the substratum. Available water capacity is low. Effective rooting depth is 60 inches or more. Runoff is slow, and the hazard of water erosion is slight.

The Nisqually soil is deep and somewhat excessively drained. It formed in sandy glacial outwash. Typically, the upper part of the surface layer is black and very dark gray loamy fine sand about 18 inches thick, and the lower part is very dark grayish brown loamy fine sand about 13 inches thick. The substratum to a depth of 60 inches or more is light olive brown loamy sand.

Permeability is moderately rapid in the surface layer of the Nisqually soil and very rapid in the substratum. Available water capacity is moderate. Effective rooting depth is 60 inches or more. Runoff is slow, and the hazard of water erosion is slight.

Included in this unit are small areas of Everett and Indianola soils on terraces. Included areas make up about 10 percent of the total acreage.

This unit is used for hayland, pasture, or homesites. In the areas used for hay and pasture, the main
limitation is the low available water capacity. Proper grazing practices, weed control, and fertilizer are needed to ensure maximum quality of forage. Rotation grazing helps to maintain the quality of the forage. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Animal manure can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least once a year. In summer, irrigation is needed for maximum production of most forage crops. Sprinkler irrigation is the best method of applying water. The amount of water applied should be sufficient to wet the root zone but small enough to minimize the leaching of plant nutrients.

This unit is well suited to homesites. Pebbles and cobbles should be removed, particularly in areas used for lawns. In summer, irrigation is needed for lawn grasses, shrubs, vines, shade trees, and ornamental
trees. Mulch, fertilizer, and irrigation are needed to establish lawn grasses and other small-seeded plants. Cutbanks are not stable and are subject to sloughing.

The main limitation affecting septic tank absorption fields is a poor filtering capacity in the substratum. If the density of housing is moderate or high, community sewage systems are needed to prevent the contamination of water supplies caused by seepage from onsite sewage disposal systems. The slope hinders the installation of the absorption fields. Absorption lines should be installed on the contour.

This map unit is in capability subclass IVs.

115—Sultan silt loam. This very deep, moderately well drained soil is on flood plains. It formed in alluvium. Slope is 0 to 3 percent. The native vegetation is mainly conifers and hardwoods. Elevation is 20 to 75 feet. The average annual precipitation is 40 to 50 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface layer is dark yellowish brown silt loam about 7 inches thick. The upper 8 inches of the subsoil is dark yellowish brown silt loam, the next 10 inches is dark brown, mottled silt loam, and the lower 20 inches is dark yellowish brown, mottled silt loam. The substratum to a depth of 60 inches or more is grayish brown, mottled silt loam.

Included in this unit are small areas of Godfrey and Puget soils in depressions and Pilchuck and Puyallup soils on terraces. Included areas make up about 15 percent of the total acreage.

Permeability is moderate in the Sultan soil. Available water capacity is high. Effective rooting depth is 60 inches or more. A seasonal high water table is at a depth of about 24 to 48 inches from November to April. Runoff is slow, and the hazard of water erosion is slight. This soil is occasionally flooded for brief periods from November to April.

This unit is used for hayland, pasture, or cropland. It is well suited to hay and pasture. The main limitations affecting hay and pasture are the seasonal high water table and the flooding. Grasses and legumes grow well if fertilizer is applied. Grazing when the soil is wet damages the plants and results in compaction of the surface layer. Rotation grazing helps to maintain the quality of forage. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Animal manure can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least once a year. In some years irrigation is needed for maximum production. Sprinkler irrigation is the best method of applying water.

Corn silage, sweet corn, rhubarb, and small grain are commonly grown on this soil. The main limitations affecting cropland are the seasonal high water table and the flooding. The flooding can be controlled by dikes and levees. Applying animal manure and returning crop residue to the soil help to maintain the organic matter content, fertility, and tilth. A cover crop should be planted in the fall to protect the soil from erosion during periods of flooding. In some years irrigation is needed for maximum production.

This unit is suited to woodland. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 160. On the basis of a 50-year site curve, it is 120. The estimated growth rate of an unmanaged, even-aged stand of Douglas-fir is 170 cubic feet per acre per year at 65 years of age.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. The flooding limits the use of equipment to dry periods. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. The flooding inhibits root respiration and thus results in some seedling mortality. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings.

This map unit is in capability subclass IIw.

116—Tacoma silt loam. This deep, very poorly drained soil is on flood plains and deltas. It formed in alluvium high in content of volcanic ash. Slopes are 0 to 1 percent. The native vegetation is mainly sedges, grasses, and willows. Elevation is 0 to 20 feet. The average annual precipitation is 40 to 50 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 160 to 200 days.

Typically, the surface layer is dark brown, mottled silt loam about 7 inches thick. The upper 33 inches of the subsoil is dark grayish brown, mottled silt loam, and the
lower 10 inches is grayish brown, mottled silt loam. The substratum to a depth of 60 inches or more is dark greenish gray, mottled clay.

Included in this unit are small areas of Hydraquents, tidal, and Puget soils on flood plains. Included areas make up about 10 percent of the total acreage.

Permeability is moderately slow in the Tacoma soil. Available water capacity is high. Effective rooting depth is limited by a seasonal high water table that is at or above the surface from November to June. Runoff is ponded, and water erosion is not a hazard. This soil is frequently flooded for brief periods from November to June.

This unit is used for hay and pasture. The main limitations affecting hay and pasture are the seasonal high water table and the flooding. All of the forage crops commonly produced in the survey area can be grown if the drainage system is adequate. Grazing when the soil is wet damages the plants and results in compaction of the surface layer. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Animal manure can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least once a year. Rotation grazing helps to maintain the quality of forage.

This map unit is in capability subclass Vw.

117—Tenino gravelly loam, 3 to 15 percent slopes.
This moderately deep, well drained soil is on terminal moraines. It formed in glacial till over glacial outwash. The native vegetation is mainly conifers and hardwoods. Elevation is 50 to 400 feet. The average annual precipitation is 45 to 60 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface layer is dark reddish brown and dark yellowish brown gravelly loam about 11 inches thick. The upper 10 inches of the subsoil is dark brown gravelly loam, the next 15 inches is dark yellowish brown gravelly loam, and the lower 4 inches is a weakly cemented, strongly compacted, yellowish brown hardpan. The hardpan crushes to very gravelly loam. The substratum to a depth of 60 inches or more is dark yellowish brown extremely gravelly sandy loam. Depth to the hardpan ranges from 25 to 40 inches.

Included in this unit are small areas of Alderwood soils on till plains and Everett and Indianola soils on terraces. Also included are small areas of Tenino gravelly loam that have slopes of 15 to 30 percent. Included areas make up about 20 percent of the total acreage.

Permeability is moderate above the hardpan in the Tenino soil, very slow in the pan, and very rapid below the pan. Available water capacity is moderate. Effective rooting depth is 25 to 40 inches. Runoff is slow, and the hazard of water erosion is slight.

This unit is used mainly for woodland. It is also used for hayland, pasture, or homesites.

Douglas-fir is the main woodland species on this unit. Among the trees of limited extent are red alder, bigleaf maple, and western redcedar. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 154. On the basis of a 50-year site curve, it is 122. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 163 cubic feet per acre per year at 60 years of age.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rounded pebbles and cobbles for road construction are readily available on this unit. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling mortality and seedling establishment are the main concerns in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs periodically in cutover areas. When openings are made in the canopy, invading brushy plants can delay the establishment of planted Douglas-fir seedlings. Because the rooting depth is restricted by the hardpan, trees are subject to occasional windthrow. Droughtliness in the surface layer reduces the seedling survival rate.

Common forest understory plants are salal, cascade Oregon-grape, western brackenfern, western swordfern, and trailing blackberry.

The main limitations affecting hay and pasture are the moderate available water capacity and the restricted soil depth. Grasses and legumes grow well if fertilizer is applied. Grazing when the soil is wet results in compaction of the surface layer, poor tilth, and excessive runoff. The seedbed should be prepared on the contour or across the slope where practical. Proper stocking rates, pasture rotation, and restricted grazing during wet periods help to keep the pasture in good condition and protect the soil from erosion. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Animal manure
can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least once a year. Irrigation is needed for maximum production. Sprinkler irrigation is the best method of applying water. This method permits the even, controlled application of water, reduces the runoff rate, and minimizes the risk of erosion.

The main limitations affecting homesites are the depth to the hardpan and the slope. The cuts needed to provide essentially level building sites can expose the hardpan. The hardpan is rippable. Excavating for roads and buildings increases the hazard of erosion, especially in the steeper areas. This hazard can be reduced by preserving the existing plant cover during construction. Topsoil can be stockpiled and used to reclaim areas disturbed during construction. Only the part of the site that is used for construction should be disturbed. The hazard of erosion is increased if the surface is bare during site development. In summer, irrigation is needed for lawn grasses, shrubs, vines, shade trees, and ornamental trees. Mulch, fertilizer, and irrigation are needed to establish lawn grasses and other small-seeded plants. Cutbanks are not stable and are subject to sloughing.

The main limitation affecting septic tank absorption fields is the weakly cemented hardpan. The suitability of the soil for these fields can be improved by ripping the very slowly permeable hardpan. Because of the restrictive layer, onsite sewage disposal systems often fail or do not function properly during periods of heavy rainfall. Absorption lines should be installed below the very slowly permeable layer. Increasing the size of the absorption area helps to compensate for the restricted permeability. The slope hinders the installation of the absorption fields. The absorption lines should be installed on the contour.

This map unit is in capability subclass IVe.

118—Tenino gravelly loam, 15 to 30 percent slopes. This moderately deep, well drained soil is on terminal moraines. It formed in glacial till over glacial outwash. The native vegetation is mainly conifers and hardwoods. Elevation is 50 to 400 feet. The average annual precipitation is 45 to 60 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface layer is dark reddish brown and dark yellowish brown gravelly loam about 11 inches thick. The upper 10 inches of the subsoil is dark brown gravelly loam, the next 15 inches is dark yellowish brown gravelly loam, and the lower 4 inches is a weakly cemented, strongly compacted, yellowish brown hardpan. The hardpan crushes to very gravelly loam. The substratum to a depth of 60 inches or more is dark yellowish brown extremely gravelly sandy loam. Depth to the hardpan ranges from 25 to 40 inches.

Included in this unit are small areas of Alderwood soils on till plains and Everett and Indianola soils on terraces. Also included are small areas of Tenino gravelly loam that have slopes of 3 to 15 percent or 30 to 60 percent. Included areas make up about 20 percent of the total acreage.

Permeability is moderate above the hardpan in the Tenino soil, very slow in the pan, and very rapid below the pan. Available water capacity is moderate. Effective rooting depth is 25 to 40 inches. Runoff is medium, and the hazard of water erosion is moderate.

This unit is used as a woodland. Douglas-fir is the main woodland species. Among the trees of limited extent are red alder, bigleaf maple, and western redcedar. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 154. On the basis of a 50-year site curve, it is 122. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 163 cubic feet per acre per year at 60 years of age.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rounded pebbles and cobbles for road construction are readily available on this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling mortality and seedling establishment are the main concerns in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs periodically in cutover areas. When openings are made in the canopy, invading brushy plants can delay the establishment of planted Douglas-fir seedlings. Because the rooting depth is restricted by the hardpan, trees are subject to occasional windthrow. Droughtiness in the surface layer reduces the seedling survival rate.

Common forest understory plants are salal, cascade Oregon-grape, western brackenfern, western swordfern, and trailing blackberry.

This map unit is in capability subclass IVe.
119—Tenino gravelly loam, 30 to 60 percent slopes. This moderately deep, well drained soil is on terminal moraines. It formed in glacial till over glacial outwash. The native vegetation is mainly conifers and hardwoods. Elevation is 50 to 400 feet. The average annual precipitation is 45 to 60 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the surface layer is dark reddish brown and dark yellowish brown gravelly loam about 11 inches thick. The upper 10 inches of the subsoil is dark brown gravelly loam, the next 15 inches is dark yellowish brown gravelly loam, and the lower 4 inches is a weakly cemented, strongly compacted, yellowish brown hardpan. The hardpan crushes to very gravelly loam. The substratum to a depth of 60 inches or more is dark yellowish brown extremely gravelly sandy loam. Depth to the hardpan ranges from 25 to 40 inches.

Included in this unit are small areas of Alderwood and Everett soils on terrace escarpments. Also included are small areas of Tenino gravelly loam that have slopes of 15 to 30 percent. Included areas make up about 20 percent of the total acreage.

Permeability is moderate above the hardpan in the Tenino soil, very slow in the pan, and very rapid below the pan. Available water capacity is moderate. Effective rooting depth is 25 to 40 inches. Runoff is rapid, and the hazard of water erosion is high.

This unit is used as woodland. Douglas-fir is the main woodland species. Among the trees of limited extent are red alder, bigleaf maple, and western redcedar. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 154. On the basis of a 50-year site curve, it is 122. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 163 cubic feet per acre per year at 60 years of age.

The main limitation affecting the harvesting of timber is slope. The slope restricts the use of wheeled and tracked equipment in skidding operations. Cable yarding systems generally are safer and minimize damage to the surface. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rounded pebbles and cobbles for road construction are readily available on this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Steep yarding paths, skid trails, and firebreaks are subject to rilling and gullying unless they are protected by a plant cover or adequate water bars are provided.

Seedling mortality and seedling establishment are the main concerns in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs periodically in cutover areas. When openings are made in the canopy, invading brushy plants can delay the establishment of planted Douglas-fir seedlings. Because the rooting depth is restricted by the hardpan, trees are subject to occasional windthrow. Droughtiness in the surface layer reduces the seedling survival rate.

Common forest understory plants are salal, cascade Oregon-grape, western brackenfern, western swordfern, and trailing blackberry.

This map unit is in capability subclass Vle.

120—Tisch silt loam. This deep, very poorly drained soil is in upland depressions and drainageways. Drainage has been altered by subsurface drains. The soil formed in diatomaceous earth, volcanic ash, and alluvium. Slopes are 0 to 3 percent. The native vegetation is mainly hardwoods, spirea, grasses, and sedges. Elevation is 50 to 200 feet. The average annual precipitation is 40 to 50 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

Typically, the upper part of the surface layer is very dark brown silt loam about 6 inches thick, and the lower part is very dark grayish brown silt about 5 inches thick. The substratum to a depth of 60 inches or more is stratified black, very dark brown, dark grayish brown, and dark brown silt and muck.

Included in this unit are small areas of Dupont, Everson, McKenna, and Norma soils in depressions and Giles and Yelm soils on terraces. Included areas make up about 20 percent of the total acreage.

Permeability is moderately slow in the Tisch soil. Available water capacity is high. Effective rooting depth is limited by a seasonal high water table that is at or near the surface from December to April. Runoff is very slow, and erosion is not a hazard. This soil is subject to rare flooding.

This unit is used for hayland, pasture, or cropland. It is suited to hay and pasture. The main limitation is the seasonal high water table. Subsurface drains, open ditches, or both can lower the water table if a suitable outlet is available. Grazing when the soil is wet damages the plants and results in compaction of the surface layer. Periodic mowing helps to maintain
uniform growth, discourages selective grazing, and controls weeds. Animal manure can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least once a year. Rotation grazing helps to maintain the quality of forage.

Corn silage, sweet corn, and small grain are commonly grown on this soil. The main limitation affecting cropland is the seasonal high water table. During the growing season, the water table should be lowered to a depth of about 2 to 5 feet. Most of the crops commonly produced in the survey area can be grown if adequate drainage systems are installed. Applying animal manure and returning crop residue to the soil help to maintain the organic matter content, fertility, and tilth. Irrigation is needed for maximum production in most years. Sprinkler irrigation is the best method of applying water.

In undrained areas this unit is suited to woodland. Red alder is the main woodland species. Western redcedar is of limited extent. On the basis of a 50-year site curve, the mean site index for red alder is 90. The estimated growth rate of red alder is 101 cubic feet per acre per year for an unmanaged, fully stocked stand at 40 years of age.

The main limitation affecting the harvesting of timber is the extreme muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in rutts and soil compaction. Unsurfaced roads and skid trails are soft and slippery and can be impassable when wet. Logging roads are generally not built on this unit. Rock for road construction is not readily available. The seasonal high water table limits the use of equipment to dry periods. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment and seedling mortality are the main concerns in the production of timber. Reforestation can be accomplished by planting western redcedar seedlings. If the stand includes seed trees, natural reforestation by red alder occurs periodically in cutover areas. The seasonal high water table inhibits root respiration and thus results in high seedling mortality. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted western redcedar seedlings. Because the rooting depth is restricted by the seasonal high water table, trees are subject to frequent windthrow.

This unit is in capability subclass IIIw.

121—Vailton silt loam, 5 to 30 percent slopes. This deep, well-drained soil is on mountainsides. It formed in colluvium and residuum derived from siltstone and shale mixed with volcanic ash. The native vegetation is mainly conifers and hardwoods. Elevation is 1,700 to 2,500 feet. The average annual precipitation is 70 to 80 inches, the average annual air temperature is about 43 degrees F, and the average frost-free period is 130 to 170 days.

Typically, the upper part of the surface layer is very dark grayish brown silt loam about 10 inches thick, and the lower part is dark brown silty clay loam about 5 inches thick. The upper 15 inches of the subsoil is dark yellowish brown silty clay loam, and the lower 12 inches is dark brown silty clay loam. The substratum is dark yellowish brown silty clay loam about 6 inches thick. Weathered siltstone is at a depth of about 48 inches. Depth to the siltstone ranges from 40 to 60 inches.

Included in this unit are small areas of Baumgard soils on uplands, Jonas and Pheeney soils on mountainsides, and Mal and Wilkeson soils on foothills and mountainsides. Also included are small areas of Vailton silt loam that have slopes of 30 to 65 percent. Included areas make up about 20 percent of the total acreage.

Permeability is moderate in the Vailton soil. Available water capacity is high. Effective rooting depth is 40 to 60 inches. Runoff is medium, and the hazard of water erosion is moderate.

This unit is used as woodland. Douglas-fir and western hemlock are the main woodland species. Among the trees of limited extent are red alder, bigleaf maple, and western redcedar. On the basis of a 100-year site curve, the mean site index is 141 for Douglas-fir and 146 for western hemlock. On the basis of a 50-year site curve, it is 113 for Douglas-fir and 103 for western hemlock. The highest average growth rate for an unmanaged, even-aged stand is 146 cubic feet per acre per year at 65 years of age for Douglas-fir and 230 cubic feet per acre per year at 50 years of age for western hemlock.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in rutts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the
stand includes seed trees, natural reforestation by western hemlock and red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can delay the establishment of planted Douglas-fir seedlings and the natural reforestation of western hemlock.

Common forest understory plants are western brackenfenn, vine maple, cascade Oregon-grape, western swordfern, and salal.

This map unit is in capability subclass IVe.

122—Vailton silt loam, 30 to 65 percent slopes. This deep, well drained soil is on mountainsides. It formed in colluvium and residuum derived from siltstone and shale mixed with volcanic ash. The native vegetation is mainly conifers and hardwoods. Elevation is 1,700 to 2,500 feet. The average annual precipitation is 70 to 80 inches, the average annual air temperature is about 43 degrees F, and the average frost-free period is 130 to 170 days.

Typically, the upper part of the surface layer is very dark grayish brown silt loam about 10 inches thick, and the lower part is dark brown silty clay loam about 5 inches thick. The upper 15 inches of the subsoil is dark yellowish brown silty clay loam, and the lower 12 inches is dark brown silty clay loam. The substratum is dark yellowish brown silty clay loam about 6 inches thick. Weathered siltstone is at a depth of about 48 inches. Depth to the siltstone ranges from 40 to 60 inches.

Included in this unit are small areas of Baumgard soils on uplands, Jonas and Pheney soils on mountainsides, and Mal and Wilkeson soils on foothills and mountainsides. Also included are small areas of Vailton silt loam that have slopes of 5 to 30 percent. Included areas make up about 20 percent of the total acreage.

Permeability is moderate in the Vailton soil. Available water capacity is high. Effective rooting depth is 40 to 60 inches. Runoff is rapid, and the hazard of water erosion is severe.

This unit is used as woodland. Douglas-fir and western hemlock are the main woodland species. Among the trees of limited extent are red alder, bigleaf maple, and western redcedar. On the basis of a 100-year site curve, the mean site index is 141 for Douglas-fir and 146 for western hemlock. On the basis of a 50-year site curve, it is 113 for Douglas-fir and 103 for western hemlock. The highest average growth rate of an unmanaged, even-aged stand is 146 cubic feet per acre per year at 65 years of age for Douglas-fir and 230 cubic feet per acre per year at 50 years of age for western hemlock.

The main limitation affecting the harvesting of timber is slope. The slope restricts the use of wheeled and tracked equipment in skidding operations. Cable yarding systems generally are safer and minimize damage to the surface. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and slippery and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Land slumping and road failure can occur following clearcut harvesting. Steep yarding paths, skid trails, and firebreaks are subject to rilling and gully unless they are protected by a plant cover or adequate water bars are provided.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by western hemlock and red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can delay the establishment of Douglas-fir seedlings and the natural reforestation of western hemlock.

Common forest understory plants are western brackenfenn, vine maple, cascade Oregon-grape, western swordfern, and salal.

This map unit is in capability subclass Vle.

123—Wilkeson silt loam, 5 to 20 percent slopes. This very deep, well drained soil is on uplands and mountains. It formed in weathered andesite and basalt. The native vegetation is mainly conifers and hardwoods. Elevation is 600 to 1,200 feet. The average annual precipitation is 50 to 70 inches, the average annual air temperature is about 47 degrees F, and the average frost-free period is 125 to 175 days.

Typically, the surface layer is dark brown silt loam about 11 inches thick. The upper 12 inches of the subsoil is dark yellowish brown silty clay loam, the next 24 inches is dark brown gravelly silty clay loam, and the lower part to a depth of 60 inches or more is dark brown gravelly clay loam.

Included in this unit are small areas of Baumgard soils on uplands and Jonas and Pheney soils on mountainsides. Also included are small areas of Wilkeson silt loam that have slopes of 20 to 40 percent. Included areas make up about 20 percent of the total acreage.

Permeability is moderate in the Wilkeson soil.
Available water capacity is high. Effective rooting depth is 60 inches or more. Runoff is slow, and the hazard of water erosion is slight.

This unit is used as woodland. Douglas-fir is the main woodland species. Among the trees of limited extent are red alder, bigleaf maple, western redcedar, and bitter cherry. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 161. On the basis of a 50-year site curve, it is 122. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 171 cubic feet per acre per year at 65 years of age.

The main limitation affecting the harvesting of timber is the mudiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings.

Common forest understory plants are vine maple, western swordfern, red huckleberry, salal, and trailing blackberry.

This map unit is in capability subclass Ille.

124—Wilkeson silt loam, 20 to 40 percent slopes. This very deep, well drained soil is on uplands and mountains. It formed in weathered andesite and basalt. The native vegetation is mainly conifers and hardwoods. Elevation is 600 to 1,200 feet. The average annual precipitation is 50 to 70 inches, the average annual air temperature is about 47 degrees F, and the average frost-free period is 125 to 175 days.

Typically, the surface layer is dark brown silt loam about 11 inches thick. The upper 12 inches of the subsoil is dark yellowish brown gravelly silty clay loam, the next 24 inches is dark brown gravelly silty clay loam, and the lower part to a depth of 60 inches or more is dark brown gravelly clay loam.

Included in this unit are small areas of Baumgard soils on uplands and Jonas and Pheeney soils on mountainsides. Also included are small areas of Wilkeson silt loam that have slopes of 5 to 20 percent. Included areas make up about 20 percent of the total acreage.

Permeability is moderate in the Wilkeson soil. Available water capacity is high. Effective rooting depth is 60 inches or more. Runoff is medium, and the hazard of water erosion is moderate.

This unit is used as woodland. Douglas-fir is the main woodland species. Among the trees of limited extent are red alder, western hemlock, bigleaf maple, western redcedar, and bitter cherry. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 161. On the basis of a 50-year site curve, it is 122. The highest average growth rate of an unmanaged, even-aged stand of Douglas-fir is 171 cubic feet per acre per year at 65 years of age.

The main limitation affecting the harvesting of timber is slope. The slope restricts the use of wheeled and tracked equipment in skidding operations. Cable yarding systems generally are safer and minimize damage to the surface. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Rock outcrop hinders yarding and may cause breakage of timber when the trees are felled. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Steep yarding paths, skid trails, and firebreaks are subject to rilling and gullying unless they are protected by a plant cover or adequate water bars are provided. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by western hemlock and red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of Douglas-fir seedlings.

Common forest understory plants are vine maple, western swordfern, red huckleberry, salal, and trailing blackberry.

This map unit is in capability subclass Vle.

125—Xerotihents, 0 to 5 percent slopes. These deep, moderately well drained to somewhat excessively drained soils are on uplands and tidelands. They formed in sandy and loamy cut and fill material. The
native vegetation is Scotch-broom and various weeds and grasses. Elevation is 0 to 800 feet. The average annual precipitation is 40 to 60 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is 150 to 200 days.

The surface soil and subsoil have been removed or covered with other soil material. Texture and depth vary greatly within short distances.

Included in this unit are small areas of Alderwood and Everett soils on till plains and areas filled with nonsoil material. Included areas make up about 20 percent of the total acreage.

Permeability, available water capacity, and effective rooting depth vary in the Xerorthents. Runoff is slow, and the hazard of water erosion is slight. These soils are subject to rare flooding.

This unit is used for industrial sites. The main management concern is the hazard of flooding. Dikes and channels that have outlets for floodwater can be used to protect buildings and onsite sewage disposal systems from flooding. Roads and streets should be built above the expected flood level.

This map unit is in capability subclass VIIu.

126—Yelm fine sandy loam, 0 to 3 percent slopes. This deep, moderately well drained soil is on terraces. It formed in volcanic ash and glacial outwash. The native vegetation is mainly conifers and hardwoods. Elevation is 25 to 300 feet. The average annual precipitation is 40 to 60 inches, the average annual air temperature is about 51 degrees F, and the average frost-free period is 170 to 200 days.

Typically, the surface layer is dark brown fine sandy loam about 8 inches thick. The upper 9 inches of the subsoil is dark yellowish brown fine sandy loam, and the lower 29 inches is dark grayish brown and olive brown, mottled fine sandy loam. The substratum to a depth of 60 inches or more is light olive brown loamy sand.

Included in this unit are small areas of Everson and Norma soils in depressions and Cagey, Giles, Indianola, and Skipop soils on terraces. Also included are small areas of Yelm fine sandy loam that have slopes of 3 to 15 percent. Included areas make up about 20 percent of the total acreage.

Permeability is moderately rapid in the Yelm soil. Available water capacity is high. Effective rooting depth is 40 to 60 inches. A seasonal high water table fluctuates between depths of 18 and 36 inches from December to March. Runoff is slow, and the hazard of water erosion is slight.

This unit is used mainly for cropland, hayland, pasture, or specialty crops. It is also used for woodland or homesites.

Corn silage, sweet corn, raspberries, strawberries, and small grain are commonly grown on this soil. The main limitation affecting cropland is the seasonal high water table. Artificial drainage improves the timeliness of fieldwork and increases yields of perennial crops. Subsurface drains, open drains, or both can lower the water table if a suitable outlet is available. Applying animal manure and returning crop residue to the soil help to maintain the organic matter content, fertility, and tilth. In some years irrigation is needed for maximum production. Sprinkler irrigation is the best method of applying water.

The main limitation affecting hay and pasture is the seasonal high water table. Grasses and legumes grow well if fertilizer is applied. Grazing when the soil is wet damages the plants and results in compaction of the surface layer. Rotation grazing helps to maintain the quality of forage. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Animal manure can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least once a year. Subsurface drains, open drains, or both can lower the water table if a suitable outlet is available. In some years irrigation is needed for maximum production. Sprinkler irrigation is the best method of applying water. The amount of water applied should be sufficient to wet the root zone but small enough to minimize the leaching of plant nutrients.

This unit is suited to woodland. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 173. On the basis of a 50-year site curve, it is 130. The estimated growth rate of an unmanaged, even-aged stand of Douglas-fir is 184 cubic feet per acre per year at 60 years of age.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in rutting and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings
are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings.

The main limitation affecting homesites and septic tank absorption fields is the seasonal wetness. A drainage system is needed. Cutbanks are not stable and are subject to sloughing.

This map unit is in capability subclass Ilw.

127—Yelm fine sandy loam, 3 to 15 percent slopes. This deep, moderately well drained soil is on terraces. It formed in volcanic ash and glacial outwash. The native vegetation is mainly conifers and hardwoods. Elevation is 25 to 300 feet. The average annual precipitation is 40 to 60 inches, the average annual air temperature is about 51 degrees F, and the average frost-free period is 170 to 200 days.

Typically, the surface layer is dark brown fine sandy loam about 8 inches thick. The upper 9 inches of the subsoil is dark yellowish brown fine sandy loam, and the lower 29 inches is dark grayish brown and olive brown, mottled fine sandy loam. The substratum to a depth of 60 inches or more is light olive brown loamy sand.

Included in this unit are small areas of Cagey, Giles, Indianola, and Skipopa soils on terraces. Also included are small areas of Yelm fine sandy loam that have slopes of 0 to 3 percent and 15 to 30 percent. Included areas make up about 20 percent of the total acreage.

Permeability is moderately rapid in the Yelm soil. Available water capacity is high. Effective rooting depth is 40 to 60 inches. A seasonal high water table fluctuates between depths of 18 and 36 inches from December to March. Runoff is slow, and the hazard of water erosion is slight.

This unit is used mainly for hay and pasture. It is also used as woodland or homesites.

The main limitation affecting hay and pasture is the seasonal high water table. Grasses and legumes grow well if fertilizer is applied. Proper stocking rates, pasture rotation, and restricted grazing during wet periods help to keep the pasture in good condition and protect the soil from erosion. The seedbed should be prepared on the contour or across the slope where practical. Rotation grazing helps to maintain the quality of forage. Periodic mowing helps to maintain uniform growth, discourages selective grazing, and controls weeds. Animal manure can be applied periodically during the growing season. Areas that receive heavy applications should be harrowed at least once a year. In some years irrigation is needed for maximum production. Sprinkler irrigation is the best method of applying water. The amount of water applied should be sufficient to wet the root zone but small enough to minimize the leaching of plant nutrients.

This unit is suited to woodland. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 173. On the basis of a 50-year site curve, it is 130. The estimated growth rate of an unmanaged, even-aged stand of Douglas-fir is 184 cubic feet per acre per year at 60 years of age.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings.

The main limitations affecting homesites are the slope and the seasonal wetness. A drainage system is needed if roads or buildings are constructed. Cutbanks are not stable and are subject to sloughing. In summer, irrigation is needed for lawn grasses, shrubs, vines, shade trees, and ornamental trees. A plant cover can be established and maintained through proper fertilizing, seeding, mulching, and shaping of the slopes.

The main limitation affecting septic tank absorption fields is the seasonal wetness. The slope hinders the installation of the absorption fields. Absorption lines should be installed on the contour.

This map unit is in capability subclass Ille.

128—Yelm fine sandy loam, 15 to 30 percent slopes. This deep, moderately well drained soil is on terraces. It formed in volcanic ash and glacial outwash. The native vegetation is mainly conifers and hardwoods. Elevation is 25 to 300 feet. The average annual precipitation is 40 to 60 inches, the average annual air temperature is 51 degrees F, and the average frost-free period is 170 to 200 days.

Typically, the surface layer is dark brown fine sandy loam about 8 inches thick. The upper 9 inches of the subsoil is dark yellowish brown fine sandy loam, and
the lower 29 inches is dark grayish brown and olive brown, mottled fine sandy loam. The substratum to a depth of 60 inches or more is light olive brown loamy sand.

Included in this unit are small areas of Giles, Hocgdal and Indianola soils on terraces. Also included are small areas of Yelm fine sandy loam that have slopes of 3 to 15 percent. Included areas make up about 20 percent of the total acreage.

Permeability is moderately rapid in the Yelm soil. Available water capacity is high. Effective rooting depth is 40 to 60 inches. A seasonal high water table fluctuates between depths of 18 and 36 inches from December to March. Runoff is slow, and the hazard of water erosion is slight.

This unit is used as woodland. It is suited to trees. On the basis of a 100-year site curve, the mean site index for Douglas-fir is 173. On the basis of a 50-year site curve, it is 130. The estimated growth rate of an unmanaged, even-aged stand of Douglas-fir is 184 cubic feet per acre per year at 60 years of age.

The main limitation affecting the harvesting of timber is the muddiness caused by seasonal wetness. Use of wheeled and tracked equipment when the soil is wet results in ruts and soil compaction. Unsurfaced roads and skid trails are soft and can be impassable when wet. Logging roads require suitable surfacing material for year-round use. Rock for road construction is not readily available on this unit. Establishing a plant cover on steep slopes that have been cut or filled reduces the hazard of erosion. Disturbance of the protective layer of duff can be minimized by the careful use of wheeled and tracked equipment.

Seedling establishment is the main concern in the production of timber. Reforestation can be accomplished by planting Douglas-fir seedlings. If the stand includes seed trees, natural reforestation by red alder occurs readily in cutover areas. When openings are made in the canopy, invading brushy plants can prevent the establishment of planted Douglas-fir seedlings.

This map unit is in capability subclass IVe.
Prime Farmland

In this section, prime farmland is defined and discussed and the prime farmland soils in this survey area are listed.

Prime farmland is of major importance in meeting the Nation’s short- and long-range needs for food and fiber. The acreage of high-quality farmland is limited, and the U.S. Department of Agriculture recognizes that government at local, state, and federal levels, as well as individuals, must encourage and facilitate the wise use of our Nation’s prime farmland.

Prime farmland soils, as defined by the U.S. Department of Agriculture, are soils that are best suited to producing food, seed, forage, fiber, and oilseed crops. Such soils have properties that are favorable for the economic production of sustained high yields of crops. The soils need only to be treated and managed using acceptable farming methods. Adequate moisture and a sufficiently long growing season are required. Prime farmland soils produce the highest yields with minimal inputs of energy and economic resources, and farming these soils results in the least damage to the environment.

Prime farmland soils may presently be in use as cropland, pasture, or woodland, or they may be in other uses. They either are used for producing food and fiber or are available for these uses. Urban or built-up land, public land, and water areas cannot be considered prime farmland. Urban or built-up land is any contiguous unit of land 10 acres or more in size that is used for such purposes as housing, industrial, and commercial sites, sites for institutions or public buildings, small parks, golf courses, cemeteries, railroad yards, airports, sanitary landfills, sewage treatment plants, and water control structures. Public land is land not available for farming in national forests, national parks, military reservations, and state parks.

Prime farmland soils commonly get an adequate and dependable supply of moisture from precipitation or irrigation. Temperature and length of growing season are favorable, and level of acidity or alkalinity is acceptable. The soils have few, if any, rocks and are permeable to water and air. They are not excessively erodible or saturated with water for long periods and are not flooded during the growing season. The slope ranges mainly from 0 to 6 percent.

Soils that have a high water table, are subject to flooding, or are droughty may qualify as prime farmland soils if the limitations are overcome by drainage, flood control, or irrigation. Onsite evaluation is necessary to determine the effectiveness of corrective measures. More information on the criteria for prime farmland soils can be obtained at the local office of the Soil Conservation Service.

A recent trend in land use has been the conversion of prime farmland to urban and industrial uses. The loss of prime farmland to other uses puts pressure on lands that are less productive than prime farmland.

The following map units meet the soil requirements for prime farmland. On some soils included in the list, measures should be used to overcome a hazard or limitation, such as flooding, wetness, or droughtiness. The location of each map unit is shown on the detailed soil maps at the back of this publication. Soil qualities that affect use and management are described in the section “Detailed Soil Map Units.” This list does not constitute a recommendation for a particular land use.

14 Bellingham silty clay loam (where drained)
26 Chehalis silt loam
29 Dupont muck (where drained)
31 Eld loam
36 Everson clay loam (where drained)
37 Galvin silt loam, 0 to 5 percent slopes
38 Giles silt loam, 0 to 3 percent slopes
41 Godfrey silty clay loam (where drained)
50 Kapowsin silt loam, 0 to 3 percent slopes
64 Maytown silt loam
69 Mukilteo muck (where drained)
70 Mukilteo muck, drained
71 Newberg fine sandy loam
72 Newberg loam
<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
<td>Nisqually loamy fine sand, 0 to 3 percent slopes (where irrigated)</td>
<td>104</td>
<td>Semiahmoo muck (where drained)</td>
</tr>
<tr>
<td>75</td>
<td>Norma fine sandy loam (where drained)</td>
<td>105</td>
<td>Shalcar muck (where drained)</td>
</tr>
<tr>
<td>76</td>
<td>Norma silt loam (where drained)</td>
<td>106</td>
<td>Shalcar Variant muck (where drained)</td>
</tr>
<tr>
<td>86</td>
<td>Prather silt clay loam, 3 to 8 percent slopes</td>
<td>107</td>
<td>Skipapa silt loam, 0 to 3 percent slopes (where drained)</td>
</tr>
<tr>
<td>88</td>
<td>Puget silt loam (where drained)</td>
<td>115</td>
<td>Sultan silt loam</td>
</tr>
<tr>
<td>89</td>
<td>Puyallup silt loam</td>
<td>120</td>
<td>Tisch silt loam (where drained)</td>
</tr>
<tr>
<td>97</td>
<td>Salkum silt clay loam, 3 to 8 percent slopes</td>
<td>126</td>
<td>Yelm fine sandy loam, 0 to 3 percent slopes</td>
</tr>
<tr>
<td>100</td>
<td>Scamman silt clay loam, 0 to 5 percent slopes (where drained)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Use and Management of the Soils

This soil survey is an inventory and evaluation of the soils in the survey area. It can be used to adjust land uses to the limitations and potentials of natural resources and the environment. Also, it can help avoid soil-related failures in land uses.

In preparing a soil survey, soil scientists, conservationists, engineers, and others collect extensive field data about the nature and behavioral characteristics of the soils. They collect data on erosion, droughtiness, flooding, and other factors that affect various soil uses and management. Field experience and collected data on soil properties and performance are used as a basis in predicting soil behavior.

Information in this section can be used to plan the use and management of soils for crops and pasture; as woodland; as sites for buildings, sanitary facilities, highways and other transportation systems, and parks and other recreation facilities; and for wildlife habitat. It can be used to identify the potentials and limitations of each soil for specific land uses and to help prevent construction failures caused by unfavorable soil properties.

Planners and others using soil survey information can evaluate the effect of specific land uses on productivity and on the environment in all or part of the survey area. The survey can help planners to maintain or create a land use pattern in harmony with the natural soil.

Contractors can use this survey to locate sources of sand and gravel, roadfill, and topsoil. They can use it to identify areas where bedrock, wetness, or very firm soil layers can cause difficulty in excavation.

Health officials, highway officials, engineers, and others may also find this survey useful. The survey can help them plan the safe disposal of wastes and locate sites for pavements, sidewalks, campgrounds, playgrounds, lawns, and trees and shrubs.

Crops and Pasture

General management needed for crops and for hay and pasture is suggested in this section. The system of land capability classification used by the Soil Conservation Service is explained, and the estimated yields of the main crops and hay and pasture plants commonly grown are listed for each soil.

Planners of management systems for individual fields or farms should consider the detailed information given in the description of each soil under “Detailed Soil Map Units.” Specific information can be obtained from the local office of the Soil Conservation Service or the Cooperative Extension Service.

More than 100,000 acres in the county was used for crops and pasture in 1967 (23). Of this total, 6,200 acres was used for row crops, mainly corn for silage; 1,600 acres was used for close-growing crops, mainly wheat and oats; 28,000 acres was used for pasture (fig. 4); and 63,000 acres was used for rotation hay and pasture. The rest was idle cropland. The acreage of crops and pasture has gradually been decreasing as more and more land is used for urban development. In 1967, about 32,000 acres in the county was urban and built-up land.

The paragraphs that follow describe the management needed on the pasture and cropland in the survey area. Management concerns are soil drainage, soil fertility, soil tilth, and water erosion.

Soil drainage is a major management concern on about 50 percent of the acreage used for crops and pasture in the survey area. Some soils are too wet for the crops commonly grown in the area. These include the poorly drained Norma and McKenna soils and the very poorly drained Tisch soils, which make up about 29,000 acres of the survey area, and the organic Mukittoo, Semiahmoo, and Shalcar soils, which make up about 11,800 acres. Unless drained, the poorly drained Bellingham, Everson, Godfrey, and Puget soils are so wet that crops are damaged during most years. These soils make up 13,300 acres of the survey area.

The design of both surface and subsurface drainage systems varies with the kind of soil. A combination of surface and subsurface drains is needed in most areas of the poorly drained and very poorly drained soils used
for crops and pasture. Drains should be more closely spaced in slowly permeable soils than in the more permeable soils. Finding adequate outlets for subsurface drains is difficult in many areas.

Organic soils, such as Semiahmoo and Shalcar, oxidize and subside when their pore space is filled with air. As a result they require special drainage considerations (7). Keeping the water table at the level required by crops during the growing season and then raising it to the surface during other parts of the year minimize the oxidation and subsidence of these soils. Information on the design of drainage systems for each kind of soil is given in the Technical Guide, which is available at the local office of the Soil Conservation Service.

Soil fertility is also a concern in the county. The moderately well drained and well drained soils on uplands and old terraces formed under coniferous forests. Examples are Centralia, Melbourne, Olympic, Prathar, and Salkum soils. These soils are moderately acid and are strongly leached of plant nutrients. The carbon-nitrogen ratio on newly cleared lands is relatively wide, and only small quantities of nitrogen are made available to crops from the soil. Cropping over a period of years tends to increase the organic matter content and narrow the carbon-nitrogen ratio, thus making more nitrogen available for crops (28).

On these soils the main management need is the addition of organic matter and nitrogen, which are best supplied and maintained by planting legumes, rotating
crops, plowing under green-manure crops, and adding barnyard manure. The cost of commercial nitrogen fertilizer may limit its use to the more intensively grown cash crops. Phosphate fertilizer is generally beneficial and can be added with barnyard manure to good advantage.

Cagey, Eld, Galvin, Yelm, and other soils on the younger terraces and alluvial fans have been subject to less weathering and leaching than the soils on uplands and old terraces. They generally are less acid and are higher in inherent fertility. Nevertheless, the nutrient deficiencies and crop responses to soil management are generally similar to those of soils on uplands and old terraces.

Soils on alluvial flood plains are only slightly acid and are high in inherent fertility. Under continuous cropping, however, they are becoming deficient in both nitrogen and phosphorus. Increases in yields have been obtained by applications of fertilizer. The most beneficial results are obtained by applying phosphate and nitrogen fertilizers. Soils in this group include Chehalis, Newberg, Puyallup, and Sultan.

On all soils, additions of lime and fertilizer should be based on the results of soils tests, on the needs of the crop, and on the expected level of yields. The Cooperative Extension Service can help in determining the kind and proper amount of fertilizer and lime to be applied.

Soil tilth is an important factor in the germination and emergence of seeds and in the infiltration of water into the soil. Soils that have good tilth are granular and porous.

Most of the soils used for crops have a silty clay loam or silt loam surface layer that is dark in color and moderately high in content of organic matter. Regular additions of crop residue, manure, and other organic material improve soil structure and minimize crusting and the formation of clods.

Generally, well drained and moderately well drained soils can be worked early in spring. These soils are sufficiently drained for early crops in spring and for winter grain. Soils in this group include Prather, Salkum, Giles, and Kapowsin.

The artificially drained Everson and Godfrey soils have a moderately high content of clay in the surface layer. Tilth is a problem because these soils stay wet until late in the spring. If plowed when wet, the soils can become compacted and they tend to be very cloddy when dry. As a result, preparing a good seedbed is difficult. Plowing these soils in the fall generally results in good tilth in the spring.

Water erosion on cropland is a concern if the soil is left bare during the winter rainy season and the slope is more than 2 percent. Growing a winter cover crop between consecutive years of a row crop helps to protect the soil. Other erosion-control practices include tilling across the slope, planting row crops on the contour, applying organic matter, and establishing grassed waterways.

If the vegetative cover is destroyed and the soil is bare during the rainy season, water erosion and sedimentation are problems in areas of industrial and residential development and on other construction sites. Well managed construction projects include plans for control of water and silt during construction and for revegetation and erosion-control structures after the project is completed.

Field crops are grown most intensively on the fertile alluvial flood plains. The principal crops, generally grown for dairy cattle, are corn silage, small grain, hay, and pasture. Well drained soils on the flood plains, such as Chehalis and Puyallup, are naturally fertile and produce high yields. Summer pasture, clover, and grass benefit from irrigation during dry years.

Specialty crops grown for commercial use include blueberries, certified berry plants, raspberries, peas, sweet corn, forest tree seedlings, and Christmas trees. Quaker comfrey is grown in a few areas (fig. 5). It is used for herbal tea. Most specialty crops are grown along the Chehalis and Nisqually Rivers and their tributaries. Christmas trees are grown on the uplands south and east of Olympia. Christmas tree production is gaining steadily in popularity. Douglas-fir, noble fir, grand fir, and Scotch pine are the species most often planted.

The latest information on growing specialty crops can be obtained from the local office of the Soil Conservation Service or the Cooperative Extension Service.

Yields Per Acre

The average yields per acre that can be expected of the principal crops under a high level of management are shown in table 5. In any given year, yields may be higher or lower than those indicated in the table because of variations in rainfall and other climatic factors.

The yields are based mainly on the experience and records of farmers, conservationists, and extension agents. Available yield data from nearby counties and results of field trials and demonstrations are also considered.

The management needed to obtain the indicated yields of the various crops depends on the kind of soil
and the crop. Management can include drainage, erosion control, and protection from flooding; the proper planting and seeding rates; suitable high-yielding crop varieties; appropriate and timely tillage; control of weeds, plant diseases, and harmful insects; favorable soil reaction and optimum levels of nitrogen, phosphorus, potassium, and trace elements for each crop; effective use of crop residue, barnyard manure, and green-manure crops; and harvesting that ensures the smallest possible loss.

For yields of irrigated crops, it is assumed that the irrigation system is adapted to the soils and to the crops grown, that good quality irrigation water is uniformly applied as needed, and that tillage is kept to a minimum.

The estimated yields reflect the productive capacity of each soil for each of the principal crops. Yields are likely to increase as new production technology is developed. The productivity of a given soil compared with that of other soils, however, is not likely to change.

Crops other than those shown in table 5 are grown in the survey area, but estimated yields are not listed.
because the acreage of such crops is small. The local office of the Soil Conservation Service or of the Cooperative Extension Service can provide information about the management and productivity of the soils for those crops.

Land Capability Classification

Land capability classification shows, in a general way, the suitability of soils for most kinds of field crops (20). Crops that require special management are excluded. The soils are grouped according to their limitations for field crops, the risk of damage if they are used for crops, and the way they respond to management. The grouping does not take into account major and generally expensive landforming that would change slope, depth, or other characteristics of the soils, nor does it consider possible but unlikely major reclamation projects. Capability classification is not a substitute for interpretations designed to show suitability and limitations of groups of soils for woodland and for engineering purposes.

In the capability system, soils generally are grouped at three levels: capability class, subclass, and unit. Only class and subclass are used in this survey.

Capability classes, the broadest groups, are designated by Roman numerals I through VIII. The numerals indicate progressively greater limitations and narrower choices for practical use. The classes are defined as follows:

Class I soils have few limitations that restrict their use.
Class II soils have moderate limitations that reduce the choice of plants or that require moderate conservation practices.
Class III soils have severe limitations that reduce the choice of plants or that require special conservation practices, or both.
Class IV soils have very severe limitations that reduce the choice of plants or that require very careful management, or both.
Class V soils are not likely to erode but have other limitations, impractical to remove, that limit their use.
Class VI soils have severe limitations that make them generally unsuitable for cultivation.
Class VII soils have very severe limitations that make them unsuitable for cultivation.
Class VIII soils and miscellaneous areas have limitations that nearly preclude their use for commercial crop production.

Capability subclasses are soil groups within one class. They are designated by adding a small letter, e, w, s, or c, to the class numeral, for example, Ile. The letter e shows that the main limitation is risk of erosion unless close-growing plant cover is maintained; w shows that water in or on the soil interferes with plant growth or cultivation (in some soils the wetness can be partly corrected by artificial drainage); s shows that the soil is limited mainly because it is shallow, droughty, or stony; and c, used in only some parts of the United States, shows that the chief limitation is climate that is very cold or very dry.

In class I there are no subclasses because the soils of this class have few limitations. Class V contains only the subclasses indicated by w, s, or c because the soils in class V are subject to little or no erosion. They have other limitations that restrict their use to pasture, rangeland, woodland, wildlife habitat, or recreation.

The acreage of soils in each capability class and subclass is shown in Table 6. The capability classification of each map unit is given in the section "Detailed Soil Map Units."

Woodland Management and Productivity

Two-thirds of Thurston County is woodland. Of this acreage, 50 percent is held by private nonindustrial owners and 26 percent by forest industries. The remaining 24 percent is county, state, or federal property.

Thurston County can be divided into four major woodland zones. These zones are shown on the woodland zone map at the back of this publication. They are based on naturally occurring forest overstory species, climate, and soil characteristics. Although the species in the zone name dominate the zone, other species can, and many times do, occur as isolated trees or nearly pure stands. The boundary lines separating the different zones should be thought of as gradual changes in native vegetation and soil rather than a precise division. With few exceptions each woodland zone is made up of distinct kinds of soil. A given soil occurs only in its specific zone. A brief description of each zone follows.

The Douglas-fir/red alder zone is the most extensive zone in Thurston County. It includes the Alderwood, Baldhill, Baumgard, Bellingham, Cagey, Cathcart, Centralia, Chehalis, Delphi, Eld, Everett, Everson, Galvin, Giles, Godfrey, Grove, Hoogdal, Indianola, Kapowsin, Mashel, Maytown, McKenna, Melbourne, Newberg, Norma, Olympic, Pilchuck, Prather, Puget, Puyallup, Rainier, Salkum, Scamman, Schneider,
Skippa, Spaha, Sultan, Tacoma, Tenino, Tisch, Wilkeson, and Yelm soils.

Elevation ranges from 0 to 1,700 feet in this zone. The soils are mostly deep and are poorly drained. The temperature is mild, and the frost-free period ranges from 125 days. The mean annual precipitation is 35 to 60 inches; however, soil moisture for tree growth is limited during the summer. Associated area species include western redcedar, bigleaf maple, western hemlock, grand fir, black cottonwood, Pacific madrone, bitter cherry, and western dogwood. Common forest understory species are salal, cascade Oregon-grape, western brackenfern, western sword fern, western hazel, vine maple, salmonberry, red huckleberry, trailing blackberry, Pacific trillium, northern twinflower, violet, and bedstraw. Christmas tree production is a common land use on the coarser-textured soils. Douglas-fir, Scotch pine, noble fir, and grand fir are the most common species of Christmas trees.

The main management concerns in this zone are restricted harvesting during the rainy season on the finer textured soils; the invasion of brush and red alder into cutover areas, which can prevent the establishment of planted seedlings; and a high seedling mortality rate on poorly drained and somewhat excessively drained soils. Management practices generally include clear-cut harvesting (fig. 6) when stands reach an age of 50 to 60 years old, removal of logging slash and brush in preparation for reforestation, and hand planting of Douglas-fir seedlings during the first planting season after harvest. Red alder frequently invades cutover areas and, if not controlled, can outcompete young Douglas-fir seedlings. Thinning and fertilizing Douglas-fir stands increase commercial yields at the time of intermediate and final harvest. Young red alder stands are not commonly thinned. Because of their nitrogen-fixing capability, they also are not fertilized.

The Douglas-fir/Oregon white oak zone is made up of Nisqually and Spanaway soils. Elevation ranges from 50 to 400 feet. The soils are mostly deep and are somewhat excessively drained. The temperature is mild, and the frost-free period ranges from 150 to 200 days. The mean annual precipitation is 40 to 60 inches; however, soil moisture for tree growth is limited during the summer. Lodgepole pine occurs occasionally as an associated tree species. Common forest understory species include snowberry, salal, western brackenfern, Scotch-broom, cascade Oregon-grape, oceanspray, and trailing blackberry. Christmas trees are commonly grown in this zone. Douglas-fir and Scotch pine are the most prevalent species of Christmas trees.

Interspersed within this zone are areas of native prairie. Grasses and ferns are the dominant kinds of prairie vegetation. Clumps of Oregon white oak are common at the margins and on some of the prairies. Douglas-fir has invaded some of the outer limits of the prairies. Scattered limby fir trees are throughout some areas.

The main management concern in this zone is a high seedling mortality rate resulting from a droughty, gravelly surface layer. The soils are well suited to year-round logging. The management for Douglas-fir is similar to that needed in the Douglas-fir/red alder zone. Much of this zone is not used as forest land.

The Douglas-fir/western hemlock/red alder zone is made up of Boistfort, Bunder, Jonas, Mal, Rheene, Raught, and Vailton soils. Elevations ranges from 300 to 2,600 feet. The soils are mostly deep and are well drained. The temperature is mild, and the frost-free period ranges from 120 to 200 days. The mean annual precipitation is 65 to 70 inches. Soil moisture for tree growth is adequate during the summer. Associated tree species include western redcedar, bigleaf maple, grand fir, Sitka spruce, and bitter cherry. Common forest understory species are red huckleberry, salal, western bracken fern, salmonberry, vine maple, devil's club, and Oregon oxalis.

The western hemlock/Douglas-fir/Pacific silver fir zone consists of Katula and Lates soils. It occurs within the Douglas-fir/western hemlock/red alder zone. Elevation ranges from 1,800 to 2,650 feet. The soils are moderately deep. The mean annual precipitation is 70 to 80 inches. The temperature is cool. The frost-free period is shorter than that of the Douglas-fir/western hemlock/red alder zone. Also, red alder is less extensive.

The management concerns and practices in the Douglas-fir/western hemlock/red alder and western hemlock/Douglas-fir/Pacific silver fir zones are similar to those in the Douglas-fir/red alder zone. A major difference, however, is the opportunity of altering harvest methods somewhat to allow for natural reforestation of western hemlock. Western hemlock can tolerate more shade than Douglas-fir. As a result, brush encroachment is less of a problem. Also, in terms of total wood fiber, western hemlock can usually outproduce Douglas-fir in these two zones. As older stands are harvested in the western hemlock/Douglas-fir/Pacific silver fir zone, Pacific silver fir is decreasing in abundance. Noble fir is likely to be a better suited species for reforestation on ridgetops in this higher elevation zone.

The success or failure of many management practices can be predicted through knowledge of the
properties of the various soils on which trees grow. Detailed descriptions of the various soils are available in the section "Detailed Soil Map Units." The description of each map unit that is suitable for wood crops provides information concerning potential productivity, the limitations that affect timber production and harvesting, and the common tree species and forest understory plants.

Table 7 can be used by woodland owners or forest managers in planning the use of soils for wood crops. Only those soils suitable for wood crops are listed. The table lists the ordination (woodland suitability) symbol for each soil. Soils assigned the same ordination symbol require the same general management and have about the same potential productivity.

The ordination symbol is based on a uniform system of labeling an individual soil to determine the productivity potential and the principal soil properties in
relation to any hazards or limitations of that soil. The first element of the ordination symbol is a number that denotes potential productivity in terms of cubic meters of wood per hectare per year for the indicator tree species. Potential productivity is based on site index and the corresponding culmination of mean annual increment. For example, the number 1 indicates a potential production of 1 cubic meter of wood per hectare per year (14.3 cubic feet per acre per year) and 10 indicates a potential production of 10 cubic meters of wood per hectare per year (143 cubic feet per acre per year). Cubic feet multiplied by 5 gives the approximate growth volume in Scribner board feet.

The second element of the symbol, a letter, indicates the major kind of soil limitation. The letter R indicates steep slopes: X, stoniness or rockiness; W, excess water in or on the soil; T, toxic substances in the soil; D, restricted rooting depth; C, clay in the upper part of the soil; S, sandy texture; and F, a high content of rock fragments in the soil. The letter A indicates that limitations or restrictions are insignificant. If a soil has more than one limitation, the priority is as follows: R, X, W, T, D, C, S, and F.

In table 7, slight, moderate, and severe indicate the degree of the major soil limitations to be considered in management.

Equipment limitation reflects the characteristics and conditions of the soil that restrict use of the equipment generally needed in woodland management or harvesting. The chief characteristics and conditions considered in the ratings are slope, stones on the surface, rock outcrops, soil wetness, and texture of the surface layer. A rating of slight indicates that under normal conditions the kind of equipment or season of use is not significantly restricted by soil factors. Soil wetness can restrict equipment use, but the wet period does not exceed 1 month. A rating of moderate indicates that equipment use is moderately restricted because of one or more soil factors. If the soil is wet, the wetness restricts equipment use for a period of 1 to 3 months. A rating of severe indicates that equipment use is severely restricted either as to the kind of equipment that can be used or the season of use. If the soil is wet, the wetness restricts equipment use for more than 3 months.

As slope gradient and length increase, operating wheeled equipment becomes more difficult. The degree of difficulty generally increases on slopes of 25 to 35 percent. On still steeper slopes, generally of 35 to 45 percent, tracked equipment should be used. On the steepest gradients, even tracked equipment cannot be operated safely, and more sophisticated systems should be used. Wetness, especially in fine textured soils, can severely limit the use of equipment, making harvesting practical only during dry summer months.

Seedling mortality refers to the death of naturally occurring or planted tree seedlings, as influenced by the kinds of soil, soil wetness, or topographic conditions. The factors used in rating the soils for seedling mortality are texture of the surface layer, depth to a seasonal high water table and the length of the period when the water table is high, rock fragments in the surface layer, effective rooting depth, and slope aspect. A rating of slight indicates that seedling mortality is not likely to be a problem under normal conditions. Expected mortality is less than 25 percent. A rating of moderate indicates that some problems from seedling mortality can be expected. Extra precautions are advisable. Expected mortality is 25 to 50 percent. A rating of severe indicates that seedling mortality is a serious problem. Extra precautions are important. Replanting may be necessary. Expected mortality is more than 50 percent.

Windthrow hazard is the likelihood that trees will be uprooted by the wind because the soil is not deep enough for adequate root anchorage. The main restrictions that affect rooting are a seasonal high water table and the depth to bedrock, a fragipan, or other limiting layers. A rating of slight indicates that under normal conditions no trees are blown down by the wind. Strong winds may damage trees, but they do not uproot them. A rating of moderate indicates that some trees can be blown down during periods when the soil is wet and winds are moderate or strong. A rating of severe indicates that many trees can be blown down during these periods.

Plant competition ratings indicate the degree to which undesirable species are expected to invade and grow when openings are made in the tree canopy. The main factors that affect plant competition are the depth to the water table and the available water capacity. A rating of slight indicates that competition from undesirable plants is not likely to prevent natural regeneration or suppress the more desirable species. Planted seedlings can become established without undue competition. A rating of moderate indicates that competition may delay the establishment of desirable species. Competition may hamper stand development, but it will not prevent the eventual development of fully stocked stands. A rating of severe indicates that competition can be expected to prevent regeneration unless precautionary measures are applied.

The potential productivity of merchantable or common trees on a soil is expressed as a site index and as a productivity class. The site index is the average height,
in feet, that dominant and codominant trees of a given species attain in a specified number of years. The site index applies to fully stocked, even-aged, unmanaged stands. Commonly grown trees are those that woodland managers generally favor in intermediate or improvement cuttings. They are selected on the basis of growth rate, quality, value, and marketability.

Generally, the higher the site index, the higher the production of wood fiber. A site index for a species on one map unit should be compared only to site indexes for the same species on other map units. A site index was not assigned to any minor species. Because of the lack of data or a suitable site index publication, it also was not assigned to certain principal species (3, 5, 8, 9, 27, 29, 30).

The productivity class, a number, is the yield likely to be produced by the most important trees. This number, expressed as cubic meters per hectare per year, indicates the amount of fiber produced on a fully stocked, even-aged, unmanaged stand.

The first species listed under common trees for a soil is the indicator species for that soil. It is the dominant species on the soil and the one that determines the ordination class.

Trees to plant are those that are suitable for commercial wood production.

Recreation

The soils of the survey area are rated in table 8 according to limitations that affect their suitability for recreation. The ratings are based on restrictive soil features, such as wetness, slope, and texture of the surface layer. Susceptibility to flooding is considered. Not considered in the ratings, but important in evaluating a site, are the location and accessibility of the area, the size and shape of the area and its scenic quality, vegetation, access to water, potential water impoundment sites, and access to public sewer lines. The capacity of the soil to absorb septic tank effluent and the ability of the soil to support vegetation are also important. Soils subject to flooding are limited for recreation use by the duration and intensity of flooding and the season when flooding occurs. In planning recreation facilities, onsite assessment of the height, duration, intensity, and frequency of flooding is essential.

In table 8, the degree of soil limitation is expressed as slight, moderate, or severe. Slight means that soil properties generally are favorable and that limitations are minor and easily overcome. Moderate means that limitations can be overcome or alleviated by planning, design, or special maintenance. Severe means that soil properties are unfavorable and that limitations can be offset only by costly soil reclamation, special design, intensive maintenance, limited use, or by a combination of these measures.

The information in table 8 can be supplemented by other information in this survey; for example, interpretations for dwellings without basements and for local roads and streets in table 10 and interpretations for septic tank absorption fields in table 11.

Camp areas require site preparation such as shaping and leveling the tent and parking areas, stabilizing roads and intensively used areas, and installing sanitary facilities and utility lines. Camp areas are subject to heavy foot traffic and some vehicular traffic. The best soils are gently sloping and are not wet or subject to flooding during the period of use. The surface has few or no stones or boulders, absorbs rainfall readily but remains firm, and is not dusty when dry. Strong slopes and stones or boulders can greatly increase the cost of constructing campsites.

Picnic areas are subject to heavy foot traffic. Most vehicular traffic is confined to access roads and parking areas. The best soils for picnic areas are firm when wet, are not dusty when dry, are not subject to flooding during the period of use, and do not have slopes or stones or boulders that increase the cost of shaping sites or of building access roads and parking areas.

Playgrounds require soils that can withstand intensive foot traffic. The best soils are almost level and are not wet or subject to flooding during the season of use. The surface is free of stones and boulders, is firm after rains, and is not dusty when dry. If grading is needed, the depth of the soil over bedrock or a hardpan should be considered.

Paths and trails for hiking and horseback riding should require little or no cutting and filling. The best soils are not wet, are firm after rains, are not dusty when dry, and are not subject to flooding more than once a year during the period of use. They have moderate slopes and few or no stones or boulders on the surface.

Golf fairways are subject to heavy foot traffic and some light vehicular traffic. Cutting or filling may be required. The best soils for use as golf fairways are firm when wet, are not dusty when dry, and are not subject to prolonged flooding during the period of use. They have moderate slopes and no stones or boulders on the surface. The suitability of the soil for tees or greens is not considered in rating the soils.
Wildlife Habitat

Richard W. Zarwell, soil conservationist, Soil Conservation Service, prepared this section.

Thurston County has a wide variety of habitats for fish and wildlife. These habitats support many interesting and valuable species. They range from saltwater tidelands and shorelines on Puget Sound to the forest plant communities in the Black Hills and the foothills of the Cascade Mountains. Elevation of these areas ranges from 0 to 2,984 feet. Most of the land is privately owned, but there are large parcels of state, federal, and industrial forest property.

Habitat is the arrangement of three essential ingredients—food, cover, and water—required to meet the biological needs of one or more species. Generally, for mammals and birds the critical limiting factor is the availability of their preferred food. Shelter or escape cover is of secondary importance. For salmon and other aquatic species, the most severe limiting factors generally are the sedimentation caused by erosion, the blocking of stream passage by debris, and various forms of water pollution.

Saltwater habitat is an important resource in Thurston County. There are more than 100 miles of saltwater shoreline in the county. Estuaries and tidelands produce oysters, clams, crabs, and many fish species. Numerous kinds of shorebirds and waterfowl, including great blue heron, gulls, sandpipers, mallards, wigeon, goldeneye, and Canada geese, also depend on these habitats.

The Nisqually Delta is particularly important since it is one of the last major unspoiled estuaries along the entire Pacific coast. The Delta area is a highly productive marine nursery of great economic value for both commercial and sport fishing. Nearly 200 species of birds, more than 20 species of mammals, and a rich variety of fish and other aquatic life utilize this environment. This unique area is a living outdoor laboratory, which fosters a host of scientific and educational activities, as well as recreational pursuits.

Most of the county is woodland. The principal conifer species are Douglas-fir and western hemlock. Conifer species of lesser extent are western redcedar and grand fir. The principal deciduous species are red alder and bigleaf maple. Deciduous species of limited extent are black cottonwood, Oregon white oak, bitter cherry, and Pacific madrone. These wooded areas have a diverse understory of salal, cascade Oregon-grape, huckleberry, and other species. Wildlife attracted to these areas include raccoon, black-tailed deer, woodpeckers, owls, and songbirds.

Prairie openings and numerous small farms are in areas where the woodland has been cleared. These areas are used mainly for pasture or hay crops, such as reed canarygrass, orchardgrass, fescue, and clover. A small acreage is used for corn or truck crops. These areas support openland wildlife, such as California quail, pheasant, rabbit, and numerous nongame species.

More than 100 freshwater lakes provide habitat for both cold-water and warm-water fish. Warm-water species require a water temperature of more than 65 degrees F and cold-water species one of 65 degrees or less. Warm-water species of game fish in natural waters and manmade reservoirs include bass, bluegill, crappies, perch, and catfish. The principal species of cold-water game fish is rainbow trout.

Many of the rivers and streams that run into Puget Sound once supported large runs of Chinook, coho, and chum salmon and steelhead trout. These fish require good-quality cold water, clean gravel beds for spawning, pools and riffles for rearing their young, and free access to and from the ocean. Although many runs have been eliminated or severely damaged by poor land use, some streams still produce moderate numbers of these fish. Anadromous fish have high commercial and sport value.

Timber production and farming activities have a great impact on wildlife habitat. Also, expanding urban and recreational developments have destroyed or degraded wildlife habitat. Management of these activities is a determining factor in the future quality of the habitat for fish and wildlife. Few of the soils in the county are managed specifically to provide appropriate wildlife habitat. Consequently, management of the soils used mainly for other purposes largely determines the amount and quality of habitat and the abundance of wildlife.

Proper management of cropland and pasture can enhance wildlife habitat. Suitable practices include planting cover crops; returning crop residue to the soil; leaving strips of undisturbed vegetation along shorelines, streambanks, and fence rows; proper handling of livestock waste to prevent pollution of water; and proper handling of pesticides and chemicals.

Some soils in the area are poorly drained and are suited to the development of ponds, marshes, and wetland areas. Building dikes, water-control structures, and islands and fencing off vital areas can create or improve wetland habitat.

Appropriate woodland management practices can greatly enhance wildlife abundance. Small scale clearcutting creates a diversity of successional stages in
of the vegetation and provides food adjacent to cover. Leaving strips of undisturbed vegetation along stream corridors helps to protect spawning gravel and other aquatic habitats from smothering sedimentation; provides shade, which helps to maintain a cold water temperature; and provides food and cover for terrestrial species. Standing snags provide sites for cavity nesting birds and provide food for other animals. The needs of fish and wildlife should be considered when logging roads and skid trails are constructed. Seeding burns, roads, skid trails, and other disturbed areas to grasses and legumes helps to stabilize soils, provides food, and reduces water pollution. Logging practices that help to keep debris from blocking streams and reduce the risk of erosion should be used.

As both urban and rural populations increase, careful planning is needed to preserve as much wildlife habitat as possible. Landscaping can both beautify urban areas and provide habitat. Control of sediment from construction sites is needed to prevent disturbance to adjacent areas and water pollution. Proper disposal systems for sewage, storm runoff, pesticides, and other possibly harmful pollutants are also needed. Strips of riparian vegetation should be maintained to reduce the risk of streambank erosion, intercept sediment, and provide food and cover.

The successful management of wildlife in any area requires that food, cover, and water be available in a suitable combination. Lack of any one element, or an imbalance of any one, will keep the desired species from inhabiting the area.

Soils affect the kind and amount of vegetation that is available to wildlife as food and cover. They also affect the construction of water impoundments. The kind and abundance of wildlife depend largely on the amount and distribution of food, cover, and water. Wildlife habitat can be created or improved by planting appropriate vegetation, by maintaining the existing plant cover, or by promoting the natural establishment of desirable plants.

In table 9, the soils in the survey area are rated according to their potential for providing habitat for various kinds of wildlife. This information can be used in planning parks, wildlife refuges, nature study areas, and other developments for wildlife: in selecting soils that are suitable for establishing, improving, or maintaining specific elements of wildlife habitat; and in determining the intensity of management needed for each element of the habitat.

The potential of the soil is rated good, fair, poor, or very poor. A rating of good indicates that the element or kind of habitat is easily established, improved, or maintained. Few or no limitations affect management, and satisfactory results can be expected. A rating of fair indicates that the element or kind of habitat can be established, improved, or maintained in most places. Moderately intensive management is required for satisfactory results. A rating of poor indicates that limitations are severe for the designated element or kind of habitat. Habitat can be created, improved, or maintained in most places, but management is difficult and must be intensive. A rating of very poor indicates that restrictions for the element or kind of habitat are very severe and that unsatisfactory results can be expected. Creating, improving, or maintaining habitat is impractical or impossible.

The elements of wildlife habitat are described in the following paragraphs.

Grain and seed crops are domestic grains and seed-producing herbaceous plants. Soil properties and features that affect the growth of grain and seed crops are depth of the root zone, texture of the surface layer, available water capacity, wetness, slope, surface stoniness, and flood hazard. Soil temperature and soil moisture are also considerations. Examples of grain and seed crops are corn, wheat, oats, and barley.

Grasses and legumes are domestic perennial grasses and herbaceous legumes. Soil properties and features that affect the growth of grasses and legumes are depth of the root zone, texture of the surface layer, available water capacity, wetness, surface stoniness, flood hazard, and slope. Soil temperature and soil moisture are also considerations. Examples of grasses and legumes are fescue, bromegrass, clover, and alfalfa.

Wild herbaceous plants are native or naturally established grasses and forbs, including weeds. Soil properties and features that affect the growth of these plants are depth of the root zone, texture of the surface layer, available water capacity, wetness, surface stoniness, and flood hazard. Soil temperature and soil moisture are also considerations. Examples of wild herbaceous plants are western brackenfern and western swordfern.

Hardwood trees and woody understory produce nuts or other fruit, buds, catkins, twigs, bark, and foliage. Soil properties and features that affect the growth of hardwood trees and shrubs are depth of the root zone, the available water capacity, and wetness. Examples of these plants are red alder, willow, vine maple, and dogwood.

Coniferous plants furnish browse and seeds. Soil properties and features that affect the growth of coniferous trees, shrubs, and ground cover are depth of the root zone, available water capacity, and wetness.
Examples of coniferous plants are Douglas-fir, western redcedar, and western hemlock.

Shrubs are bushy woody plants that produce fruit, buds, twigs, bark, and foliage. Soil properties and features that affect the growth of shrubs are depth of the root zone, available water capacity, salinity, and soil moisture. Examples of shrubs are salmonberry, salal, cascade Oregon-grape, huckleberry, snowberry, and elderberry.

Wetland plants are annual and perennial wild herbaceous plants that grow on moist or wet sites. Submerged or floating aquatic plants are excluded. Soil properties and features affecting wetland plants are texture of the surface layer, wetness, reaction, salinity, slope, and surface stoniness. Examples of wetland plants are smartweed, saltgrass, rushes, sedges, and reeds.

Shallow water areas have an average depth of less than 5 feet. Some are naturally wet areas. Others are created by dams, levees, or other water-control structures. Soil properties and features affecting shallow water areas are depth to bedrock, wetness, surface stoniness, slope, and permeability. Examples of shallow water areas are marshes, waterfowl-feeding areas, and ponds.

The habitat for various kinds of wildlife is described in the following paragraphs.

Habitat for openland wildlife consists of cropland, pasture, meadows, and areas that are overgrown with grasses, herbs, shrubs, and vines. These areas produce grain and seed crops, grasses and legumes, and wild herbaceous plants. The wildlife attracted to these areas include California quail, pheasant, meadowlark, robin, field sparrow, crow, killdeer, and rabbit.

Habitat for woodland wildlife consists of areas of deciduous plants or coniferous plants, or both, and associated grasses, legumes, and wild herbaceous plants. Wildlife attracted to these areas include band-tailed pigeons, ruffed grouse, mountain beavers, woodpeckers, squirrels, raccoon, black-tailed deer, and black bear.

Habitat for wetland wildlife consists of open, marshy or swampy shallow water areas. Some of the wildlife attracted to such areas are ducks, geese, herons, shore birds, kingfishers, muskrat, mink, and beaver.

Engineering

This section provides information for planning land uses related to urban development and to water management. Soils are rated for various uses, and the most limiting features are identified. The ratings are given in the following tables: Building Site Development, Sanitary Facilities, Construction Materials, and Water Management. The ratings are based on observed performance of the soils and on the estimated data and test data in the “Soil Properties” section.

Information in this section is intended for land use planning, for evaluating land use alternatives, and for planning site investigations prior to design and construction. The information, however, has limitations. For example, estimates and other data generally apply only to that part of the soil within a depth of 5 or 6 feet. Because of the map scale, small areas of different soils may be included within the mapped areas of a specific soil.

The information is not site specific and does not eliminate the need for onsite investigation of the soils or for testing and analysis by personnel experienced in the design and construction of engineering works.

Government ordinances and regulations that restrict certain land uses or impose specific design criteria were not considered in preparing the information in this section. Local ordinances and regulations need to be considered in planning, in site selection, and in design.

Soil properties, site features, and observed performance were considered in determining the ratings in this section. During the fieldwork for this soil survey, determinations were made about grain-size distribution, liquid limit, plasticity index, soil reaction, depth to bedrock, hardness of bedrock within 5 to 6 feet of the surface, soil wetness, depth to a seasonal high water table, slope, likelihood of flooding, natural soil structure aggregation, and soil density. Data were collected about kinds of clay minerals, mineralogy of the sand and silt fractions, and the kind of adsorbed cations. Estimates were made for erodibility, permeability, corrosivity, shrink-swell potential, available water capacity, and other behavioral characteristics affecting engineering uses.

This information can be used to (1) evaluate the potential of areas for residential, commercial, industrial, and recreation uses; (2) make preliminary estimates of construction conditions; (3) evaluate alternative routes for roads, streets, highways, pipelines, and underground cables; (4) evaluate alternative sites for sanitary landfills, septic tank absorption fields, and sewage lagoons; (5) plan detailed onsite investigations of soils and geology; (6) locate potential sources of gravel, sand, earthfill, and topsoil; (7) plan drainage systems, irrigation systems, ponds, terraces, and other structures for soil and water conservation; and (8) predict performance of proposed small structures and
pavements by comparing the performance of existing similar structures on the same or similar soils.

The information in the tables, along with the soil maps and soil descriptions, and other data provided in this survey can be used to make additional interpretations.

Some of the terms used in this soil survey have a special meaning in soil science and are defined in the Glossary.

Building Site Development

Table 10 shows the degree and kind of soil limitations that affect shallow excavations, dwellings with and without basements, small commercial buildings, local roads and streets, and lawns and landscaping. The limitations are considered slight if soil properties and site features generally are favorable for the indicated use and limitations are minor and easily overcome; moderate if soil properties or site features are not favorable for the indicated use and special planning, design, or maintenance is needed to overcome or minimize the limitations; and severe if soil properties or site features are so unfavorable or so difficult to overcome that special design, significant increases in construction costs, and possibly increased maintenance are required. Special feasibility studies may be required where the soil limitations are severe.

Shallow excavations are trenches or holes dug to a maximum depth of 5 or 6 feet for basements, graves, utility lines, open ditches, and other purposes. The ratings are based on soil properties, site features, and observed performance of the soils. The ease of digging, filling, and compacting is affected by the depth to bedrock, cemented pan, large stones, and flooding affect the ease of excavation and construction. Landscaping and grading that require cuts and fills of more than 5 to 6 feet are not considered.

Local roads and streets have an all-weather surface and carry automobile and light truck traffic all year. They have a subgrade of cut or fill soil material, a base of gravel, crushed rock, or stabilized soil material, and a flexible or rigid surface. Cuts and fills generally are limited to less than 6 feet. The ratings are based on soil properties, site features, and observed performance of the soils. Depth to bedrock or to a cemented pan, a high water table, flooding, large stones, and slope affect the ease of excavating and grading. Soil strength (as inferred from the engineering classification of the soil), shrink–swell potential, frost action potential, and depth to a high water table affect the traffic supporting capacity.

Lawns and landscaping require soils on which turf and ornamental trees and shrubs can be established and maintained. The ratings are based on soil properties, site features, and observed performance of the soils. Soil reaction, a high water table, depth to bedrock or to a cemented pan, and the available water capacity in the upper 40 inches affect plant growth. Flooding, wetness, slope, stoniness, and the amount of sand, clay, or organic matter in the surface layer affect trafficability after vegetation is established.

Sanitary Facilities

Table 11 shows the degree and kind of soil limitations that affect septic tank absorption fields, sewage lagoons, and sanitary landfills. The limitations are considered slight if soil properties and site features generally are favorable for the indicated use and limitations are minor and easily overcome; moderate if soil properties or site features are not favorable for the indicated use and special planning, design, or maintenance is needed to overcome or minimize the limitations; and severe if soil properties or site features are so unfavorable or so difficult to overcome that special design, significant increases in construction costs, and possibly increased maintenance are required.

Table 11 also shows the suitability of the soils for use as daily cover for landfills. A rating of good indicates that soil properties and site features are favorable for the use and good performance and low maintenance can be expected; fair indicates that soil properties and site features are moderately favorable for the use and one or more soil properties or site
features make the soil less desirable than the soils rated good: and poor indicates that one or more soil properties or site features are unfavorable for the use and overcoming the unfavorable properties requires special design, extra maintenance, or costly alteration.

Septic tank absorption fields are areas in which effluent from a septic tank is distributed into the soil through subsurface tiles or perforated pipe. Only that part of the soil between depths of 24 and 72 inches is evaluated. The ratings are based on soil properties, site features, and observed performance of the soils. Permeability, a high water table, depth to bedrock or to a cemented pan, and flooding affect absorption of the effluent. Large stones and bedrock or a cemented pan interfere with installation.

Unsatisfactory performance of septic tank absorption fields, including excessively slow absorption of effluent, surfacing of effluent, and hillside seepage, can affect public health. Ground water can be polluted if highly permeable sand and gravel or fractured bedrock is less than 4 feet below the base of the absorption field, if slope is excessive, or if the water table is near the surface (25). There must be unsaturated soil material beneath the absorption field to filter the effluent effectively. Many local ordinances require that this material be of a certain thickness.

Sewage lagoons are shallow ponds constructed to hold sewage while aerobic bacteria decompose the solid and liquid wastes. Lagoons should have a nearly level floor surrounded by cut slopes or embankments of compacted soil. Lagoons generally are designed to hold the sewage within a depth of 2 to 5 feet. Nearly impervious soil material for the lagoon floor and sides is required to minimize seepage and contamination of ground water.

Table 11 gives ratings for the natural soil that makes up the lagoon floor. The surface layer and, generally, 1 or 2 feet of soil material below the surface layer are excavated to provide material for the embankments. The ratings are based on soil properties, site features, and observed performance of the soils. Considered in the ratings are slope, permeability, a high water table, depth to bedrock or to a cemented pan, flooding, large stones, and content of organic matter.

Excessive seepage because of rapid permeability of the soil or a water table that is high enough to raise the level of sewage in the lagoon causes a lagoon to function unsatisfactorily. Pollution results if seepage is excessive or if floodwater overtops the lagoon. A high content of organic matter is detrimental to proper functioning of the lagoon because it inhibits aerobic activity. Slope, bedrock, and cemented pans can cause construction problems, and large stones can hinder compaction of the lagoon floor.

Sanitary landfills are areas where solid waste is disposed of by burying it in soil. There are two types of landfill—trench and area. In a trench landfill, the waste is placed in a trench. It is spread, compacted, and covered daily with a thin layer of soil excavated at the site. In an area landfill, the waste is placed in successive layers on the surface of the soil. The waste is spread, compacted, and covered daily with a thin layer of soil from a source away from the site.

Both types of landfill must be able to bear heavy vehicular traffic. Both types involve a risk of ground water pollution. Ease of excavation and revegetation needs to be considered.

The ratings in table 11 are based on soil properties, site features, and observed performance of the soils. Permeability, depth to bedrock or to a cemented pan, a high water table, slope, and flooding affect both types of landfill. Texture, stones and boulders, highly organic layers, and soil reaction affect trench type landfills. Unless otherwise stated, the ratings apply only to that part of the soil within a depth of about 6 feet. For deeper trenches, a limitation rated slight or moderate may not be valid. Onsite investigation is needed.

Daily cover for landfill is the soil material that is used to cover compacted solid waste in an area type sanitary landfill. The soil material is obtained offsite, transported to the landfill, and spread over the waste.

Soil texture, wetness, coarse fragments, and slope affect the ease of removing and spreading the material during wet and dry periods. Loamy or silty soils that are free of large stones or excess gravel are the best cover for a landfill. Clayey soils are sticky or cloddy and are difficult to spread; sandy soils are subject to wind erosion.

After soil material has been removed, the soil material remaining in the borrow area must be thick enough over bedrock, a cemented pan, or the water table to permit revegetation. The soil material used as final cover for a landfill should be suitable for plants. The surface layer generally has the best workability, more organic matter, and the best potential for plants. Material from the surface layer should be stockpiled for use as the final cover.

Construction Materials

Table 12 gives information about the soils as a source of roadfill, sand, gravel, and topsoil. The soils are rated good, fair, or poor as a source of roadfill and topsoil. They are rated as a probable or improbable source of sand and gravel. The ratings are based on
soil properties and site features that affect the removal of
the soil and its use as construction material. Normal
compaction, minor processing, and other standard
construction practices are assumed. Each soil is
evaluated to a depth of 5 or 6 feet.

Roadfill is soil material that is excavated in one place
and used in road embankments in another place. In this
table, the soils are rated as a source of roadfill for low
embankments, generally less than 6 feet high and less
exacting in design than higher embankments.

The ratings are for the soil material below the surface
layer to a depth of 5 or 6 feet. It is assumed that soil
layers will be mixed during excavating and spreading.
Many soils have layers of contrasting suitability within
their profile. The table showing engineering index
properties provides detailed information about each soil
layer. This information can help determine the suitability
of each layer for use as roadfill. The performance of soil
after it is stabilized with lime or cement is not
considered in the ratings.

The ratings are based on soil properties, site
features, and observed performance of the soils. The
thickness of suitable material is a major consideration.
The ease of excavation is affected by large stones, a
high water table, and slope. How well the soil performs
in place after it has been compacted and drained is
determined by its strength (as inferred from the
engineering classification of the soil) and shrink-swell
potential.

Soils rated good contain significant amounts of sand
or gravel, or both. They have at least 5 feet of suitable
material, low shrink-swell potential, few cobbles and
stones, and slopes of 15 percent or less. Depth to the
water table is more than 3 feet. Soils rated fair are more
than 35 percent silt- and clay-sized particles and have a
plasticity index of less than 10. They have moderate
shrink-swell potential, slopes of 15 to 25 percent, or
many stones. Depth to the water table is 1 to 3 feet.
Soils rated poor have a plasticity index of more than 10,
a high shrink-swell potential, many stones, or slopes of
more than 25 percent. They are wet, and the depth to
the water table is less than 1 foot. They may have
layers of suitable material, but the material is less than
3 feet thick.

Sand and gravel are natural aggregates suitable for
commercial use with a minimum of processing. Sand
and gravel are used in many kinds of construction.
Specifications for each use vary widely. In table 12,
only the probability of finding material in suitable
quantity is evaluated. The suitability of the material for
specific purposes is not evaluated, nor are factors that
 affect excavation of the material.

The properties used to evaluate the soil as a source
of sand or gravel are gradation of grain sizes (as
indicated by the engineering classification of the soil),
the thickness of suitable material, and the content of
rock fragments. Kinds of rock, acidity, and stratification
are given in the taxonomic unit descriptions. Gradation
of grain sizes is given in the table on engineering index
properties.

A soil rated as a probable source has a layer of clean
sand or gravel or a layer of sand or gravel that is as
among as 12 percent silty fines. This material must be at
least 3 feet thick and less than 50 percent, by weight,
large stones. All other soils are rated as an improbable
source. Coarse fragments of soft bedrock, such as
shale and siltstone, are not considered to be sand and
gravel.

Topsoil is used to cover an area so that vegetation
can be established and maintained. The upper 40
inches of a soil is evaluated for use as topsoil. Also
evaluated is the reclamation potential of the borrow
area.

Plant growth is affected by toxic material and by such
properties as soil reaction, available water capacity, and
fertility. The ease of excavating, loading, and spreading
is affected by rock fragments, slope, a water table, soil
texture, and thickness of suitable material. Reclamation
of the borrow area is affected by slope, a water table,
rock fragments, bedrock, and toxic material.

Soils rated good have friable loamy material to a
depth of at least 40 inches. They are free of stones and
cobbles, have little or no gravel, and have slopes of
less than 8 percent. They are low in content of soluble
salts, are naturally fertile or respond well to fertilizer,
and are not so wet that excavation is difficult.

Soils rated fair are sandy soils. loamy soils that have
a relatively high content of clay, soils that have only 20
to 40 inches of suitable material, soils that have an
appreciable amount of gravel, stones, or soluble salts,
or soils that have slopes of 8 to 15 percent. The soils
are not so wet that excavation is difficult.

Soils rated poor are very sandy or clayey, have less
than 20 inches of suitable material, have a large
amount of gravel, stones, or soluble salts, have slopes
of more than 15 percent, or have a seasonal water
table at or near the surface.

The surface layer of most soils generally is preferred
for topsoil because of its organic matter content.
Organic matter greatly increases the absorption and
retention of moisture and nutrients for plant growth.

Water Management

Table 13 gives information on the soil properties and
site features that affect water management. The degree and kind of soil limitations are given for pond reservoir areas: embankments, dikes, and levees; and aquifer-fed ponds. The limitations are considered slight if soil properties and site features generally are favorable for the indicated use and limitations are minor and are easily overcome. Moderate if soil properties or site features are not favorable for the indicated use and special planning, design, or maintenance is needed to overcome or minimize the limitations; and severe if soil properties or site features are so unfavorable or so difficult to overcome that special design, significant increase in construction costs, and possibly increased maintenance are required.

This table also gives for each soil the restrictive features that affect drainage, irrigation, and grassed waterways.

Pond reservoir areas hold water behind a dam or embankment. Soils best suited to this use have low seepage potential in the upper 60 inches. The seepage potential is determined by the permeability of the soil and the depth to fractured bedrock or other permeable material. Excessive slope can affect the storage capacity of the reservoir area.

Embankments, dikes, and levees are raised structures of soil material, generally less than 20 feet high, constructed to impound water or to protect land against overflow. In this table, the soils are rated as a source of material for embankment fill. The ratings apply to the soil material below the surface layer to a depth of about 5 feet. It is assumed that soil layers will be uniformly mixed and compacted during construction.

The ratings do not indicate the ability of the natural soil to support an embankment. Soil properties to a depth even more than the height of the embankment can affect performance and safety of the embankment. Generally, deeper onsite investigation is needed to determine these properties.

Soil material in embankments must be resistant to seepage, piping, and erosion and have favorable compaction characteristics. Unfavorable features include less than 5 feet of suitable material and a high content of stones or boulders, organic matter, or salts or sodium. A high water table affects the amount of usable material. It also affects trafficability.

Aquifer-fed excavated ponds are pits or dugouts that extend to a ground water aquifer or to a depth below a permanent water table. Excluded are ponds that are fed only by surface runoff and embankment ponds that impound water 3 feet or more above the original surface. Excavated ponds are affected by depth to a permanent water table, permeability of the aquifer, and quality of the water as inferred from the salinity of the soil. Depth to bedrock and the content of large stones affect the ease of excavation.

Drainage is the removal of excess surface and subsurface water from the soil. How easily and effectively the soil is drained depends on the depth to bedrock, to a cemented pan, or to other layers that affect the rate of water movement; permeability; depth to a high water table or depth of standing water if the soil is subject to ponding; slope; susceptibility to flooding; subsidence of organic layers; and potential frost action. Excavating and grading and the stability of ditchbanks are affected by depth to bedrock or to a cemented pan, large stones, slope, and the hazard of cutbanks caving. The productivity of the soil after drainage is adversely affected by extreme acidity or by toxic substances in the root zone, such as salts, sodium, or sulfur. Availability of drainage outlets is not considered in the ratings.

Irrigation is the controlled application of water to supplement rainfall and support plant growth. The design and management of an irrigation system are affected by depth to the water table, the need for drainage, flooding, available water capacity, intake rate, permeability, erosion hazard, and slope. The construction of a system is affected by large stones and depth to bedrock or to a cemented pan. The performance of a system is affected by the depth of the root zone, the amount of salts or sodium, and soil reaction.

Grassed waterways are natural or constructed channels, generally broad and shallow, that conduct surface water to outlets at a nonerosive velocity. Large stones, wetness, slope, and depth to bedrock or to a cemented pan affect the construction of grassed waterways. A hazard of wind erosion, low available water capacity, restricted rooting depth, toxic substances such as salts or sodium, and restricted permeability adversely affect the growth and maintenance of the grass after construction.
Soil Properties

Data relating to soil properties are collected during the course of the soil survey. The data and the estimates of soil and water features listed in tables are explained on the following pages.

Soil properties are determined by field examination of the soils and by laboratory index testing of some benchmark soils. Established standard procedures are followed. During the survey, many shallow borings are made and examined to identify and classify the soils and to delineate them on the soil maps. Samples are taken from some typical profiles and tested in the laboratory to determine grain-size distribution and plasticity.

Estimates of soil properties are based on field examinations, on laboratory tests of samples from the survey area, and on laboratory tests of samples of similar soils in nearby areas (22). Tests verify field observations, verify properties that cannot be estimated accurately by field observation, and help to characterize key soils.

The estimates of soil properties shown in the tables include the range of grain-size distribution and Atterberg limits, the engineering classifications, and the physical and chemical properties of the major layers of each soil. Pertinent soil and water features also are given.

Engineering Index Properties

Table 14 gives estimates of the engineering classification and of the range of index properties for the major layers of each soil in the survey area. Most soils have layers of contrasting properties within the upper 5 to 6 feet.

Depth to the upper and lower boundaries of each layer is indicated. The range in depth and information on other properties of each layer are given for each taxonomic unit under "Soil Series and Their Morphology."

Texture is given in the standard terms used by the U.S. Department of Agriculture. These terms are defined according to percentages of sand, silt, and clay in the fraction of the soil that is less than 2 millimeters in diameter. "Loam," for example, is soil that is 7 to 27 percent clay, 28 to 50 percent silt, and less than 52 percent sand. If the content of particles coarser than sand is as much as 15 percent, an appropriate modifier is added, for example, "gravelly." Textural terms are defined in the Glossary.

Classification of the soils is determined according to the system adopted by the American Association of State Highway and Transportation Officials (1) and the Unified soil classification system (2). Both systems are described in the PCA Soil Primer (14).

The Unified system classifies soils according to properties that affect their use as construction material. Soils are classified according to grain-size distribution of the fraction less than 3 inches in diameter and according to plasticity index, liquid limit, and organic matter content. Sandy and gravelly soils are identified as GW, GP, GM, GC, SW, SP, SM, and SC; silty and clayey soils as ML, CL, OL, MH, CH, and OH; and highly organic soils as PT. Soils exhibiting engineering properties of two groups can have a dual classification; for example, SP-SM.

The AASHTO system classifies soils according to those properties that affect roadway construction and maintenance. In this system, the fraction of a mineral soil that is less than 3 inches in diameter is classified in one of seven groups from A-1 through A-7 on the basis of grain-size distribution, liquid limit, and plasticity index. Soils in group A-1 are coarse grained and low in content of fines (silt and clay). At the other extreme, soils in group A-7 are fine grained. Highly organic soils are classified in group A-8 on the basis of visual inspection.

If laboratory data are available, the A-1, A-2, and A-7 groups are further classified as A-1-a, A-1-b, A-2-4, A-2-5, A-2-6, A-2-7, A-7-5, or A-7-6. As an additional refinement, the suitability of a soil as subgrade material can be indicated by a group index number. Group index numbers range from 0 for the best subgrade material to 20 or higher for the poorest.
Rock fragments larger than 3 inches in diameter are indicated as a percentage of the total soil on a dry-weight basis. The percentages are estimates determined mainly by converting volume percentage in the field to weight percentage.

Percentage of soil particles passing designated sieves is the percentage of the soil fraction less than 3 inches in diameter based on an ovendry weight. The sieves, numbers 4, 10, 40, and 200 (USA Standard Series), have openings of 4.76, 2.00, 0.420, and 0.074 millimeters, respectively. Estimates are based on laboratory tests of soils sampled in the survey area and in nearby areas and on estimates made in the field.

Liquid limit and plasticity index (Atterberg limits) indicate the plasticity characteristics of a soil. The estimates are based on test data from the survey area or from nearby areas and on field examination.

The estimates of grain-size distribution, liquid limit, and plasticity index are rounded to the nearest 5 percent. Thus, if the ranges of gradation and Atterberg limits extend a marginal amount (1 or 2 percentage points) across classification boundaries, the classification in the marginal zone is omitted in the table.

Physical and Chemical Properties

Table 15 shows estimates of some characteristics and features that affect soil behavior. These estimates are given for the major layers of each soil in the survey area. The estimates are based on field observations and on test data for these and similar soils.

Depth to the upper and lower boundaries of each layer is indicated. The range in depth and information on other properties of each layer are given for each taxonomic unit under “Soil Series and Their Morphology.”

Clay as a soil separate consists of mineral soil particles that are less than 0.002 millimeter in diameter. In this table, the estimated clay content of each major soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

The amount and kind of clay greatly affect the fertility and physical condition of the soil. They determine the ability of the soil to adsorb cations and to retain moisture. They influence shrink-swell potential, permeability, plasticity, the ease of soil dispersion, and other soil properties. The amount and kind of clay in a soil also affect tillage and earth-moving operations.

Permeability refers to the ability of a soil to transmit water or air. The estimates indicate the rate of downward movement of water when the soil is saturated. They are based on soil characteristics observed in the field, particularly structure, porosity, and texture. Permeability is considered in the design of soil drainage systems, septic tank absorption fields, and construction where the rate of water movement under saturated conditions affects behavior.

Available water capacity refers to the quantity of water that the soil is capable of storing for use by plants. The capacity for water storage is given in inches of water per inch of soil for each major soil layer. The capacity varies, depending on soil properties that affect the retention of water and the depth of the root zone. The most important properties are the content of organic matter, soil texture, bulk density, and soil structure. Available water capacity is an important factor in the choice of plants or crops to be grown and in the design and management of irrigation systems. Available water capacity is not an estimate of the quantity of water actually available to plants at any given time.

Soil reaction is a measure of acidity or alkalinity and is expressed as a range in pH values. The range in pH of each major horizon is based on many field tests. For many soils, values have been verified by laboratory analyses. Soil reaction is important in selecting crops and other plants, in evaluating soil amendments for fertility and stabilization, and in determining the risk of corrosion.

Shrink-swell potential is the potential for volume change in a soil with a loss or gain in moisture. Volume change occurs mainly because of the interaction of clay minerals with water and varies with the amount and type of clay minerals in the soil. The size of the load on the soil and the magnitude of the change in soil moisture content influence the amount of swelling of soils in place. Laboratory measurements of swelling of undisturbed clods were made for many soils. For others, swelling was estimated on the basis of the kind and amount of clay minerals in the soil and on measurements of similar soils.

If the shrink-swell potential is rated moderate to very high, shrinking and swelling can cause damage to buildings, roads, and other structures. Special design is often needed.

Shrink-swell potential classes are based on the change in length of an unconfined clod as moisture content is increased from air-dry to field capacity. The change is based on the soil fraction less than 2 millimeters in diameter. The classes are low, a change of less than 3 percent; moderate, 3 to 6 percent; and high, more than 6 percent. Very high, more than 9 percent, is sometimes used.

Erosion factor K indicates the susceptibility of a soil
to sheet and rill erosion. Factor K is one of six factors used in the Universal Soil Loss Equation (USLE) to predict the average rate of soil loss by sheet and rill erosion in tons per acre per year. The estimates are based primarily on percentage of silt, very fine sand, sand, and organic matter (as much as 4 percent) and on soil structure and permeability. The estimates are modified by the presence of rock fragments. Values of K range from 0.02 to 0.69. The higher the value the more susceptible the soil is to sheet and rill erosion.

Erosion factor T is an estimate of the maximum average rate of soil erosion by wind or water that can occur without affecting crop productivity over a sustained period. The rate is in tons per acre per year.

Organic matter is the plant and animal residue in the soil at various stages of decomposition. In Table 15, the estimated content of organic matter is expressed as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

The content of organic matter of a soil can be maintained or increased by returning crop residue to the soil. Organic matter affects the available water capacity, infiltration rate, and tilth. It is a source of nitrogen and other nutrients for crops.

Soil and Water Features

Table 16 and 17 gives estimates of various soil and water features. The estimates are used in land use planning that involves engineering considerations.

Hydrologic soil groups are used to estimate runoff from precipitation. Soils not protected by vegetation are assigned to one of four groups. They are grouped according to the intake of water when the soils are thoroughly wet and receive precipitation from long-duration storms (21).

The four hydrologic soil groups are:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sand or gravelly sand. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clay that has high shrink-swell potential, soils that have a permanent high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

Flooding, the temporary covering of the soil surface by flowing water, is caused by overflow from streams, by runoff from adjacent slopes, or by inflow from high tides. Shallow water standing or flowing for short periods after rainfall or snowmelt is not considered to be flooding. Standing water in swamps and marshes or in closed depressional areas is considered to be ponding.

Table 16 gives the frequency and duration of flooding and the time of year when flooding is most likely to occur.

Frequency, duration, and probable period of flooding are estimated. Frequency is expressed as none, rare, occasional, and frequent. None means that flooding is not probable, rare that it is unlikely but is possible under unusual weather conditions (chance of flooding in any year is 0 to 5 percent), occasional that it occurs infrequently under normal weather conditions (chance of flooding in any year is 5 to 50 percent), and frequent that it occurs often under normal weather conditions (chance of flooding in any year is more than 50 percent).

Duration is expressed as very brief (less than 2 days), brief (2 to 7 days), long (7 days to 1 month), and very long (more than 1 month). The time of year that flooding is most likely to occur is expressed in months. November-May, for example, means that flooding can occur during the period November through May. About two-thirds to three-fourths of all flooding occurs during the stated period.

The information on flooding is based on evidence in the soil profile, namely thin strata of gravel, sand, silt, or clay deposited by floodwater; irregular decrease in organic matter content with increasing depth; and absence of distinctive horizons, which are characteristic of soils that are not subject to flooding.

Also considered are local information about the extent and level of flooding and the relation of each soil on the landscape to historic floods. Information on the extent of flooding based on soil data is less specific than that provided by detailed engineering surveys that delineate flood-prone areas at specific flood frequency levels.
High water table (seasonal) is the highest level of a saturated zone in the soil in most years. The depth to a seasonal high water table applies to undrained soils. The estimates are based mainly on the evidence of a saturated zone, namely grayish colors or mottles in the soil. Indicated in Table 16 are the depth to the seasonal high water table; the kind of water table—that is, perched, artesian, or apparent; and the months of the year that the water table usually is highest. A water table that is seasonally high for less than 1 month is not indicated in the table.

An apparent water table is a thick zone of free water in the soil. It is indicated by the level at which water stands in an uncased borehole after adequate time is allowed for adjustment in the surrounding soil. An artesian water table is under hydrostatic head, generally below an impermeable layer. When this layer is penetrated, the water level rises in an uncased borehole. A perched water table is water standing above an unsaturated zone. In places an upper, or perched, water table is separated from a lower water table by a dry zone.

The two numbers in the column "High water table" indicate the normal range in depth to a saturated zone. Depth is given to the nearest half foot. The first numeral in the range indicates the highest water level. A plus sign preceding the range in depth indicates that the water table is below the surface of the soil. “More than 6.0” indicates that the water table is below a depth of 6 feet or that the water table exists for less than a month.

Depth to bedrock is given in Table 17 if bedrock is within a depth of 5 feet. The depth is based on many soil borings and on observations during soil mapping. The rock is specified as either soft or hard. If the rock is soft or fractured, excavations can be made with trenching machines, backhoes, or small rippers. If the rock is hard or massive, blasting or special equipment generally is needed for excavation.

A cemented pan is a cemented or indurated subsurface layer at a depth of 5 feet or less. Such a pan causes difficulty in excavation. Pans are classified as thin or thick. A thin pan is one that is less than 3 inches thick if continuously indurated or less than 18 inches thick if discontinuous or fractured. Excavations can be made by trenching machines, backhoes, or small rippers. A thick pan is one that is more than 3 inches thick if continuously indurated or more than 18 inches thick if it is discontinuous or fractured. Such a pan is so thick or massive that blasting or special equipment is needed in excavation.

Subsidence is the settlement of organic soils or of saturated mineral soils of very low density. Subsidence results from either desiccation and shrinkage or oxidation of organic material, or both, following drainage. Subsidence takes place gradually, usually over a period of several years. Table 17 shows the expected initial subsidence, which usually is a result of drainage, and total subsidence, which usually is a result of oxidation.

Not shown in the table is subsidence caused by an imposed surface load or by the withdrawal of ground water throughout an extensive area as a result of lowering the water table.

Potential frost action is the likelihood of upward or lateral expansion of the soil caused by the formation of segregated ice lenses (frost heave) and the subsequent collapse of the soil and loss of strength on thawing. Frost action occurs when moisture moves into the freezing zone of the soil. Temperature, texture, density, permeability, content of organic matter, and depth to the water table are the most important factors considered in evaluating the potential for frost action. It is assumed that the soil is not insulated by vegetation or snow and is not artificially drained. Silty and highly structured clayey soils that have a high water table in winter are most susceptible to frost action. Well drained, very gravelly, or very sandy soils are the least susceptible. Frost heave and low soil strength during thawing cause damage mainly to pavements and other rigid structures.

Risk of corrosion pertains to potential soil-induced electrochemical or chemical action that dissolves or weakens uncoated steel or concrete. The rate of corrosion of uncoated steel is related to such factors as soil moisture, particle-size distribution, acidity, and electrical conductivity of the soil. The rate of corrosion of concrete is based mainly on the sulfate and sodium content, texture, moisture content, and acidity of the soil. Special site examination and design may be needed if the combination of factors creates a severe corrosion environment. The steel in installations that intersect soil boundaries or soil layers is more susceptible to corrosion than steel in installations that are entirely within one kind of soil or within one soil layer.

For uncoated steel, the risk of corrosion, expressed as low, moderate, or high, is based on soil drainage class, total acidity, electrical resistivity near field capacity, and electrical conductivity of the saturation extract.

For concrete, the risk of corrosion is also expressed as low, moderate, or high. It is based on soil texture, acidity, and amount of sulfates in the saturation extract.